应用导数研究三次函数课件

合集下载

导数在研究函数中的应用PPT课件

导数在研究函数中的应用PPT课件
2 x
是减函数,求a的取值范围.
例4(09年宁夏/海南卷)已知函数 3 2 x f ( x) ( x 3x ax b)e . (1)若a=b=-3,求f(x)的单调区间 (2)若f(x)在(-∞,α ),(2,β )内 单调递增,在(α ,2),(β ,+∞)单调 递减,证明:β -α >6. 【解题要点】 求导后要指出定义域→由导数大于0得递 增开区间,定义域内其余区间为递减区 间→单调递增条件转化为导数非负.
考点2 导数在函数极值问题中的应用 3 x 2 例5 求函数 f ( x) 的极值 . 2 ( x 1) 例6 已知函数 f ( x) ( x ax a)e 有极小值0,求实数a的值.
2 x
例7(09年湖南卷文)已知函数 3 2 f ( x) x bx cx 的导函数的图象关于 直线x=2对称,且函数f(x)在x=t处取 得极小值g(t),求函数g(t)的定义域和 值域.
10.2
导数在研究函数中的应用
知识梳理
1 5730 p 2
t
1.导数与函数的单调性: f ′(x)≥0 Ûf(x)单调递增; f ′(x)≤0 Û f(x)单调递减, 其中f ′(x)不恒等于0.
2.函数极值的概念: 函数f(x)在点x0附近有定义,且对x0附近 的所有的点,都有 (1)f(x)>f(x0),则f(x0)为函数f(x)的 极小值; (2)f(x)<f(x0),则f(x0)为函数f(x)的 极大值.
例8(09年全国卷)已知函数 2 x 1和x 2, f x x aIn 1 有两个极值点 x 且x 1<x 2. (1)求实数a的取值范围;
1 2 In2 (2)证明 f x2 . 4
【解题要点】 由导函数的变号零点确定极值点→结合 图象确定极值类型.

导数的应用-单调性nbsp新课件[1].1

导数的应用-单调性nbsp新课件[1].1

课后作业
P78习题3.3第1、2题
思考题: 函数f(x)=2x3-6x2+7 能不能画
出该函数的草图?
小结:
1.学习函数导数与单调性的关系.首先要确定函 数的定义域,再通过讨论导数的符号来判断函数 的单调区间,或证明函数的单调性. 2.利用导数的符号来判断函数的单调区间,是导 数几何意义在研究曲线变化规律的一个应用,它 充分体现了数形结合的思想. 3.掌握研究数学问题的一般方法: 从特殊到一般;从简单到复杂。
导数在研究函数中的应用
—单调性
分析:从图形看 若函数在区间(a,b)内单调递增,我们 发现在(a,b)上切线的斜率为正,即 在(a,b)内的每一点处的导数值为正
若函数在区间(a,b)内单调递减,发 现在(a,b)上切线的斜率为负,即 在(a,b)内的每一点处的导数值为负,
一般地, 设函数y=f(x)在区间上可导,
例2、确定函数f(x)=sinx在x∈(0,2π) 上的单调减区间 解: f’(x)=cosx 令f’(x)<0由cosx <0, 又x∈(0 , 2π) ∴x∈( π/2, 3π/2) 所以函数f(x)单调减区间 是( π/2 , 3π/2)
例3、若函数f(x)=ax3-x2+x-5(a≠0) 在R上单调递增,求a取值范围.
1)如果在某区间上f′(x)>0,那么f(x) 为该区间上的增函数,
2)如果在某区间上f′(x)<0,那么f(x) 为该区间上的减函数。
y
y=f(x)
y
y=f(x)
o
a
b
x
o a
bபைடு நூலகம்
x
思考:上述结论的逆命题正确吗? 观察三次函数y=x3的图象; 一般地,设函数y=f(x)在某个区间内 可导,则函数在该区间 如果f(x)为增函数, 则 f′(x) ≥0. 如果f(x)为减函数, 则 f′(x) ≤0. 注意:如果在某个区间内恒有f′(x)=0,

高考数学专题复习《导数的综合应用》PPT课件

高考数学专题复习《导数的综合应用》PPT课件
3.函数不等式的类型与解法
(1)∀x∈D,f(x)≤k⇔f(x)max≤k;∃x∈D,f(x)≤k⇔f(x)min≤k;
(2)∀x∈D,f(x)≤g(x) ⇔f(x)max≤g(x)min;∃x∈D,f(x)≤g(x) ⇔ f(x)min≤g(x)max.
4.含两个未知数的不等式(函数)问题的常见题型及具体转化策略
(+1)ln
H(x)=
,则
-1
1
=
--2ln
(-1)
2
,
2 -2+1
K'(x)= 2 >0,于是

K(x)在(1,+∞)上单调递增,
所以 K(x)>K(1)=0,于是 H'(x)>0,从而 H(x)在(1,+∞)上单调递增.由洛必达法
(x+1)x
则,可得 lim+
x-1
→1
取值范围是(-∞,2].
第三章
高考大题专项(一) 导数的综合应用




01
突破1
利用导数研究与不等式有关的问题
必备知识预案自诊
关键能力学案突破
02
突破2
利用导数研究与函数零点有关的问题
必备知识预案自诊
关键能力学案突破
【考情分析】
从近五年的高考试题来看,对导数在函数中的应用的考查常常是一大一小
两个题目,其中解答题的命题特点是:以三次函数、对数函数、指数函数及
(1)∀x1∈[a,b],x2∈[c,d],f(x1)>g(x2)⇔f(x)在[a,b]上的最小值>g(x)在[c,d]上的
最大值.
(2)∃x1∈[a,b],x2∈[c,d],f(x1)>g(x2)⇔f(x)在[a,b]上的最大值>g(x)在[c,d]上的

高考数学一轮复习导数在函数中的应用-教学课件

高考数学一轮复习导数在函数中的应用-教学课件

聚焦中考——语文 第五讲
表达方式与记叙的顺序
• (2013·荆门)阅读下文,完成习题。 • ①那天下午6点多,该上公交车的人早已上了车,唯独有个小女孩,在车
门边来回徘徊。眼看着司机就要开车了,我在想,这小女孩肯定是没钱 上车。 ②“小姑娘,上车吧,我帮你交车票钱。”当看到我为她刷完卡后,她 随即上了车,说了声“谢谢阿姨”,一时脸蛋儿全红了。近距离一看, 才发现,小女孩左侧脸上有颗小痣。几天前的一幕不由浮现眼前—— ③送走远方的朋友,我从火车站迎着风雨赶到就近的公交车站台,已是 下午5点多。这时正是下班高峰期,来了几辆公交车,我总也挤不上去。 雨还在急速地下着,人还在不断地涌来。当又一辆10路公交驶来后,我 和许多人一起先往前门挤,但挤不上去。等司机发话后,才从后门好不 容易挤上车。车内人头攒动,人满为患。这人贴人的,身体若要移动一 下都难。正感叹着,我突然感觉好像有一件事还没做。是什么事呢?哦, 对了,没买车票。本想挤到前面去交车钱,可大伙儿都好像没事人一样 在原地一动不动,根本挤不过去。见此情形,司机也没说什么,这样, 我也就心安理得地和大家一样坐了一次免费的公交车。
本题在当年的高考中,出错最多的就是将第(1)题 的 a=4 用到第(2)题中,从而避免讨论,当然这是错误的.
【互动探究】 1.(2011 届广东台州中学联考)设 f′(x)是函数 f(x)的导函数,
将 y=f(x)和 y=f′(x)的图象画在同一直角坐标系中,不可能正确 的是( D )
考点2 导数与函数的极值和最大(小)值
高考数学一轮复习导数在函数中的应用-教学课件
第2讲 导数在函数中的应用
考纲要求
考纲研读
1.了解函数单调性和导数的关系;能利用 1.用导数可求函数的单 导数研究函数的单调性,会求函数的单调 调区间或以单调区间为 区间(对多项式函数一般不超过三次). 载体求参数的范围.

高中数学第三章导数及其应用32导数的计算课件新人教A版选修1

高中数学第三章导数及其应用32导数的计算课件新人教A版选修1

sin x
x
,f′(x)为函数f(x)的导函数,则f′
(π)=________.
解析:因为f′(x)=(sin
x)′x-sin x2
x·(x)′
=x·cosxx2-sin x
所以f′(π)=π·cos
π-sin π2
π=-ππ-2 0=-π1 .
答案:-π1
5.曲线 y=ln x 在 x=a 处的切线倾斜角为π4,则 a =____.
(2)准确记忆公式. (3)根式、分式求导时,应将根式、分式转化为幂的 形式. 2.解决函数求导的问题,应先分析所给函数的结构 特点,选择正确的公式和法则.对较为复杂的求导运算, 在求导之前应先将函数化简,然后求导,以减少运算量.
结束
语 同学们,你们要相信梦想是价值的源泉,相信成
功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念,
x x

1- 1+
x x

(1+ x)2 1-x

(11--xx)2=2(11-+xx)=1-4 x-2,
所以
y′

1-4 x-2


4′(1-x)-4(1-x)′ (1-x)2

4 (1-x)2.
类型 3 导数的应用(巧思妙解) [典例 3] 求抛物线 y=x2 上的点到直线 x-y-2=0 的最短距离. [常规解法]设与抛物线 y=x2 相切且与直线 x-y-2 =0 平行的直线 l 的方程 x-y+m=0(m≠-2),
1.基本初等函数的导数公式
原函数
导函数
f(x)=c f(x)=xa(a∈Q*)
f(x)=sin x f(x)=cos x

高中数学选修2《导数在研究函数中的应用》课件

高中数学选修2《导数在研究函数中的应用》课件


x>1
时,
f (x)>0,
-
1 3
x
1
时,
∴ 函数在 (-∞,
f (x)<0.
- 13) 或 (1,
+∞) 上是增函数,

(
-
1 3
,
1)上是减函数.
4. 证明函数 f(x)=2x3-6x2+7 在 (0, 2) 内是减函数.
证明: f (x)=6x2-12x,
解不等式 6x2-12x<0 得 0<x<2,
函数是增函数.
例2. 判断下列函数的单调性, 并求出单调区间: (1) f(x)=x3+3x;
(2) f(x)=x2-2x-3;
(3) f(x)=sinx-x, x(0, p);
(4) f(x)=2x3+3x2-24x+1.
y
解: (3) f (x) = cosx-1,
解不等式 cosx-1>0 得
果 f(x)<0, 那么函数 y=f(x)在
这个区域内单调递减.
例1. 已知导函数 f (x) 的下列信息:
当 1<x<4 时, f (x)>0;
当 x>4, 或 x<1 时, f (x)<0;
当 x=4, 或 x=1 时, f (x)=0.
试画出函数 f(x) 图象的大致形状.
解: 在区间 (1, 4) 内, f (x)>0,
解不等式 6x2+6x-24>0 得
x
-
1 2
-
17 2
,

x
-
1 2
+

2.8数学探究活动(二)探究三次函数性质课件高二下学期数学北师大版选择性

2.8数学探究活动(二)探究三次函数性质课件高二下学期数学北师大版选择性
北师大版 数学 选择性
必修第二册
三次函数y=ax3+bx2+cx+d(a≠0)是高中阶段一种重要的函数,同时又是高考
的重点内容.三次函数的性质存在一定的规律性,下面用导数工具探求其图
象及性质.
一、三次函数图象和性质
三次函数f(x)=ax3+bx2+cx+d(a≠0),导数f'(x)=3ax2+2bx+c(a≠0),
数知识的关系,使学生既学到了新知识,又巩固了旧知识,为更有效解决三
次函数的极值、某一区间的单调性、证明不等式等问题找到较好的解决
办法.
3.上述例题均以三次函数为背景,主要考查导数在研究函数的单调性、极
值、最值中的应用,意在考查考生运用数形结合思想、分类讨论思想解决
问题的能力.
∴m的取值范围是[-22,+∞).
规律方法
1.要学会用导数方法解决三次函数单调性与极值问题中四类
题型:(1)已知函数解析式求单调性问题;(2)已知函数解析式求极值问题;(3)
已知含参数的函数解析式的极值问题求参数;(4)已知含参数的函数解析式
的单调性问题求参数.
2.通过上述例题研究了三次(高次)函数的性质,同时验证了高ax2-(a2-4),
∵当x=1时,函数f(x)有极大值,∴f'(1)=3a-(a2-4)=0,解得a=4,或a=-1.
若a=4,f'(x)=12x2-12=12(x+1)(x-1),
可得当-1<x<1时,f'(x)<0,此时函数f(x)单调递减;当x>1时,f'(x)>0,此时函数
2
-∞,- 3
2

函数导数及其应用PPT课件

函数导数及其应用PPT课件

记 法 y=f(x),x∈A
对应f:A→B是一个映 射
[思考探究1] 映射与函数有什么区别?
提示:函数是特殊的映射,二者区别在于映射定义中的两个 集合是非空集合,可以不是数集,而函数中的两个集合必须 是非空数集.
2.函数的相关概念 (1)函数的三要素是 定义域 、值域 和 对应关系 . (2)相等函数
[思路点拨] A中不存在元素与k对应⇔方程-x2+2x=k无解, 利用判别式可以求k的范围.
[课堂笔记] 由题意,方程-x2+2x=k无实数根,也就是x2 -2x+k=0无实数根. ∴Δ=(-2)2-4k=4(1-k)<0,∴k>1. ∴当k>1时,集合A中不存在元素与实数k∈B对应. [答案] A
分段函数是高考的热点内容,以考查求分段函数的 函数值为主,属容易题,但09年山东高考将函数的周 期性应用到求分段函数函数值的过程中,使试题难度 陡然增加,这也代表了一种新的考查方向.
[考题印证] (2009·山东高考)定义在R上的函数f(x)满足f(x)=
则f(2 009)的值为 ( ) A.-
设函数f(x)=
若f(-4)=f(0),f(-2)
=-2,则关于x的方程f(x)=x的解的个数为
()
[思路点拨] 求b,c 求f(x)的解析式
解方程f(x)=x
[课堂笔记] 法一:若x≤0,f(x)=x2+bx+c. ∵f(-4)=f(0),f(-2)=-2,

解得
∴f(x)=
当x≤0时,由f(x)=x,得x2+4x+2=x,
的对应关系f,使对
对应关系
于集合A中的 任意
应关系f,使对于集合A 中的任意 一个元素x,
f:A→B
一个数x,在集合B 中都有唯一确定的

三次函数的性质及导函数研究函数的应用

三次函数的性质及导函数研究函数的应用

专题一:三次函数的中心、单调性、极值、零点和恒成立问题前言:研究三次函数的性质,实质上是研究导函数对应的二次函数的性质。

一、三次多项式函数的中心理论:①若))(,(00x f x 是三次函数的中心,则0)(0//=x f 且0212x x x =+时,有)(2)()(021x f x f x f =+。

②若三次函数)(),(x f x g 的中心分别是))(,()),(,(0000x f x x g x ,则)()(x f x g y +=的中心为))()(,(000x g x f x +。

例1:(1)若()323f x x x =-,则1220122012f f ⎛⎫⎛⎫++⎪ ⎪⎝⎭⎝⎭4022...2012f ⎛⎫+ ⎪⎝⎭40232012f ⎛⎫+=⎪⎝⎭A -8046B -4023C -2013D -2012(2)若321151()3132122g x x x x x =-+-+-,则12342010()()()()()20112011201120112011g g g g g +++++= (A )2010 (B )2011 (C )2012 (D )2013 二、三次函数的极值理论:函数有极值⇔函数不单调⇔导函数二次函数的0>∆; 函数无极值⇔函数单调⇔导函数二次函数的0≤∆。

例2:(1)若a >0,b >0,且函数224)(23+--=bx ax x x f 在x =1处有极值,则ab 的最大值等于 【 】 A .2 B .3 C .6 D .9(2)已知函数f (x )=13x 3-12x 2+cx +d 有极值,则c 的取值范围为 【 】A .c <14B . c ≤14C .c ≥14D .c >14(3)133)(23++-=x ax x x f 。

(i )2=a 时,求)(x f 的单调区间;(ii )若)(x f 在)3,2(中至少有一个极值点,求a 的范围。

苏教版高考总复习一轮数学精品课件 主题二 函数 第四章 第四节 三次函数的图象与性质

苏教版高考总复习一轮数学精品课件 主题二 函数 第四章 第四节 三次函数的图象与性质
[解析]′ = − − + − − ,由题意得
− − ⋅ + − − ≥ 恒成立,∴ = −

− ൫
− − ൯ = − + − + + = ( − + ) ≤ ,
主题二 函数
第四章 一元函数的导数及其应用
第四节 三次函数的图象与性质
1
1 强基础 知识回归
2
2 研考点 题型突破
课 1.借助一元三次函数了解函数的单调性与导数的关系,能利用导数研究函数的单调性.
标 2.能求不超过三次的多项式函数的单调区间.
解 3.借助导数,会求闭区间上一元三次函数的最大值与最小值,体会导数与单调性、极
1 , 2
增区间为____________
____;减区间为______
−∞, 1 2 , +∞
____________
_______
1 ,2
三次函数要么无极值点,要么有两个,不可能只有一个.
无增区间;减区
−∞, +∞
间为__________

____
4.奇偶性
==0
(1) 不可能为偶函数;(2)当且仅当__________时是奇函数.
涉及求函数的单调区间、极值、最值,已知单调区间求参数范围等问题.
题型二 三次函数的零点与切线问题
典例2(1)函数 = 3 + + 2存在3个零点,则实数的取值范围是()
B
A. −∞, −2 B. −∞, −3 C. −4, −1 D. −3,0
[解析]由 = + + ,得′ = + ,若 存在3个零点,则 要
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3a 3a
知识点2 切线条数 切点的个数
数学思想方法 数形结合,特殊与一般,化归转化
思考
一般情形的证明
对于对称问题,在函数中讲到了很 多,你能用所学知识证明一般三次函数 f (x) ax3 bx2 cx d (a 0) 的对称中心 是 ( b , f ( b ))的这个结论吗?
3a 3a
g(x) x3 3x2 2x 1 (1,1)
x y20
过对称中心的切线只有1条
上下区域 1条
左右区域 3条
切线上(除对称中心) 2条
曲线上(除对称中心) 2条
一般情形
小结
知识点1 对称中心
三次函数有唯一的对称中心,对称中心的横 坐标与其导函数顶点的横坐标相同. ( b , f ( b ))
应用导数研究三次函数
图像的对称性及切线条数
湖北省黄冈中学 袁小幼
函数 y x3图像的对称性
函数 y 的x3图像关于(0,0)对称.
三次函数的图像有唯一的对称中心,对称中 心的横坐标与其导函数顶点的横坐标相同.
一般三次函数图像的对称性
三次函数 f (x) ax3 bx2 cx d (a 0)图像 的对称中心是什么?
f (x) 3ax2 2bx c 3a(x b )2 c b2
3a
3a
( b , f ( b )) 3a 3a
三次函数在对称中心处的切线
函数 g(x) x3 3x2 2x 1 过对称中心 (1,数图像切线条数的探究
同样的,你能证明切线条数的一般 性结论吗?
谢 谢!
相关文档
最新文档