人工神经网络
《人工神经网络》课件
动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成
08-人工神经网络共27页PPT资料
三、ANN连接模型
反馈型网络
层间反馈——非线性动力系统 层内反馈——横向抑制、竞争 Hopfield网是单层节点全互连的反馈网
…
…
人工神经网络
1 人工神经网络概述 2 神经元模型 3 ANN的学习算法 4 应用举例
8.3 ANN的学习算法
ANN的学习算法可分为 有导师学习 无导师学习
人工神经网络
(Artificial Neural Network,ANN)
人工神经网络
1 人工神经网络概述 2 神经元模型 3 ANN的学习算法 4 应用举例
一、人工神经网络的提出
AI研究的两大学派: 符号主义——用计算机从外特性上模仿
人脑宏观的功能 连接主义——在微观内部结构上模仿人
脑的神经
机不能解决XOR问题,ANN进入低潮
二、人工神经网络的历史
过渡期(1970’s) 低潮中,许多学者深入研究ANN理论、模型。 MIT的Marr提出视觉模型 Boston Univ的Grossbery全面研究ANN理论,提
出ART1,ART2,ART3自适应谐振理论模型。 甘利俊一 ANN的数学理论 Fuknshima 神经认知网络理论 芬兰的Kohonen 自组织联想记忆
缺图案也可识别rdnaimoban 1988 AT&T Bell lab 120*120元件的ANN 1989 三菱 光学ANN芯片,32个神经元识别26个字母
1989 日立 5“硅片集成576个神经元 1990 Bell Lab 黄庭钰 数字光学处理器 1990 IBM AS400 提供ANN仿真开发环境 1992 SGI 将ANN用于航天飞机控制臂 ANN已在专家系统、智能控制等领域广泛应用
《人工神经网络》课件
拟牛顿法
改进牛顿法的不足,使用正定矩阵近 似Hessian矩阵,提高优化效率。
共轭梯度法
结合梯度下降法和共轭方向的思想, 在每一步迭代中选择合适的共轭方向 进行搜索。
遗传算法
模拟生物进化过程的优化算法,通过 选择、交叉、变异等操作寻找最优解 。
正则化技术
L1正则化
对权重参数的绝对值进行惩罚总结词
自然语言处理是利用人工神经网络对自然语言文本进行分析和处理的技术。
详细描述
自然语言处理是实现人机文本交互的关键技术之一,通过训练神经网络对大量文本数据进 行学习,可以实现对文本的自动分类、情感分析、机器翻译等功能。
具体应用
在社交媒体领域,自然语言处理技术可以用于情感分析和舆情监控;在新闻媒体领域,可 以用于新闻分类和摘要生成;在机器翻译领域,可以用于实现多语言之间的自动翻译。
06
人工神经网络的未 来展望
新型神经网络模型的研究
持续探索新型神经网络模型
随着技术的不断发展,新型神经网络模型的研究将不断涌现,以解决传统模型无法处理 的复杂问题。这些新型模型可能包括更复杂的拓扑结构、更高效的参数优化方法等。
结合领域知识进行模型设计
未来的神经网络模型将更加注重与领域知识的结合,以提高模型的针对性和实用性。例 如,在医疗领域,结合医学影像和病理学知识的神经网络模型能够更准确地辅助医生进
THANKS
感谢您的观看
文字、人脸等目标的技术。
02 03
详细描述
图像识别是人工神经网络应用的重要领域之一,通过训练神经网络对大 量图像数据进行学习,可以实现对图像的自动分类、目标检测、人脸识 别等功能。
具体应用
在安防领域,图像识别技术可以用于人脸识别和视频监控;在医疗领域 ,可以用于医学影像分析;在电商领域,可以用于商品图片的自动分类 和检索。
人工神经网络概述
2.1 感知器
单层感知器的学习法:
2.1 感知器
多层感知器:
在输入层和输出层之间加入一层或多层隐单元,构成 多层感知器。提高感知器的分类能力。
两层感知器可以解决“异或”问题的分类及识别任一凸 多边形或无界的凸区域。
更多层感知器网络,可识别更为复杂的图形。
2.2 BP网络
多层前馈网络的反向传播 (BP)学习算法,简称BP 算法,是有导师的学习,它 是梯度下降法在多层前馈网 中的应用。
基本感知器
是一个具有单层计算神经元的两层网络。 只能对线性可分输入矢量进行分类。
n个输入向量x1,x2, …, xn 均为实数,w1i,w2i,…,wni 分别是n个输入 的连接权值,b是感知器的阈值,传递函数f一般是阶跃函数,y 是感 知器的输出。通过对网络权值的训练,可以使感知器对一组输入矢量 的响应成为0或1的目标输出,从而达到对输入矢量分类识别的目的。
网络结构 见图,u、y是网络的输
入、输出向量,神经元用节 点表示,网络由输入层、隐 层和输出层节点组成,隐层 可一层,也可多层(图中是 单隐层),前层至后层节点 通过权联接。由于用BP学习 算法,所以常称BP神经网络 。
2.2 BP网络
已知网络的输入/输出样本,即导师信号 。
BP学习算法由正向传播和反向传播组成 :
net.trainparam.goal=0.00001;
网络可能根本不能训
% 进行网络训练和仿真:
练或网络性能很差;
[net,tr]=train(net,X,Y);
若隐层节点数太多,
% 进行仿真预测
虽然可使网络的系统
XX1=[0.556 0.556 0.556 0.556 0.556 0.556 0.556] 误差减小,但一方面
人工神经网络是什么
⼈⼯神经⽹络是什么⽬录⼀、⼈⼯神经⽹络⼈⼯智能的主流研究⽅法是连接主义,通过⼈⼯构建神经⽹络的⽅式模拟⼈类智能。
⼈⼯神经⽹络(Artificial Neural Network,即ANN ),是20世纪80 年代以来⼈⼯智能领域兴起的研究热点。
它从信息处理⾓度对⼈脑神经元⽹络进⾏抽象,建⽴某种简单模型,按不同的连接⽅式组成不同的⽹络。
⼈⼯神经⽹络借鉴了⽣物神经⽹络的思想,是超级简化版的⽣物神经⽹络。
以⼯程技术⼿段模拟⼈脑神经系统的结构和功能,通过⼤量的⾮线性并⾏处理器模拟⼈脑中众多的神经元,⽤处理器复杂的连接关系模拟⼈脑中众多神经元之间的突触⾏为。
⼆、⽣物神经⽹络⼈脑由⼤约千亿个神经细胞及亿亿个神经突触组成,这些神经细胞及其突触共同构成了庞⼤的⽣物神经⽹络每个神经元伸出的突起分为树突和轴突。
树突分⽀⽐较多,每个分⽀还可以再分⽀,长度⼀般⽐较短,作⽤是接受信号。
轴突只有⼀个,长度⼀般⽐较长,作⽤是把从树突和细胞表⾯传⼊细胞体的神经信号传出到其他神经元。
⼤脑中的神经元接受神经树突的兴奋性突触后电位和抑制性突触后电位,产⽣出沿其轴突传递的神经元的动作电位。
⽣物神经⽹络⼤概有以下特点:1. 每个神经元都是⼀个多输⼊单输出的信息处理单元,神经元输⼊分兴奋性输⼊和抑制性输⼊两种类型2. 神经细胞通过突触与其他神经细胞进⾏连接与通信,突触所接收到的信号强度超过某个阈值时,神经细胞会进⼊激活状态,并通过突触向上层神经细胞发送激活细号3. 神经元具有空间整合特性和阈值特性,较⾼层次的神经元加⼯出了较低层次不具备的“新功能”4. 神经元输⼊与输出间有固定的时滞,主要取决于突触延搁外部事物属性⼀般以光波、声波、电波等⽅式作为输⼊,刺激⼈类的⽣物传感器。
三、硅基智能与碳基智能⼈类智能建⽴在有机物基础上的碳基智能,⽽⼈⼯智能建⽴在⽆机物基础上的硅基智能。
碳基智能与硅基智能的本质区别是架构,决定了数据的传输与处理是否能够同时进⾏。
人工智能神经网络
人工智能神经网络人工智能神经网络(Artificial Neural Networks,ANN)是一种模拟人脑神经网络的计算模型。
它由一些简单的单元(神经元)组成,每个神经元都接收一些输入,并生成相关的输出。
神经元之间通过一些连接(权重)相互作用,以完成某些任务。
神经元神经元是神经网络中的基本单元,每个神经元都有多个输入和一个输出。
输入传递到神经元中,通过一些计算生成输出。
在人工神经网络中,神经元的模型是将所有输入加权求和,将权重乘以输入值并加上偏差值(bias),然后将结果带入激活函数中。
激活函数决定神经元的输出。
不同类型的神经元使用不同的激活函数,如Sigmond函数、ReLU函数等。
每个神经元的输出可以是其他神经元的输入,这些连接和权重形成了一个图,即神经网络。
神经网络神经网络是一种由多个神经元组成的计算模型。
它以输入作为网络的初始状态,将信息传递到网络的每个神经元中,并通过训练来调整连接和权重值,以产生期望的输出。
神经网络的目的是通过学习输入和输出之间的关系来预测新数据的输出。
神经网络的设计采用层次结构,它由不同数量、形式和顺序的神经元组成。
最简单的网络模型是单层感知器模型,它只有一个神经元层。
多层神经网络模型包括两种基本结构:前向传播神经网络和循环神经网络。
前向传播神经网络也称为一次性神经网络,通过将输入传递到一个或多个隐藏层,并生成输出。
循环神经网络采用时间序列的概念,它的输出不仅与当前的输入有关,还与以前的输入有关。
训练训练神经网络是调整其连接和权重值以达到期望输出的过程。
训练的目的是最小化训练误差,也称为损失函数。
训练误差是神经网络输出与期望输出之间的差异。
通过训练,可以将网络中的权重和偏置调整到最佳值,以最大程度地减小训练误差。
神经网络的训练过程通常有两种主要方法:1.前向传播: 在此方法中,神经网络的输入通过网络经过一种学习算法来逐步计算,调整每个神经元的权重和偏置,以尽可能地减小误差。
05神经网络原理及应用
5.1 概述
5.1.2 人工神经网络的发展
• 第二次高潮期—Hopfield网络模型的出现和人 工神经网络的复苏
– 1984年,Hopfield设计研制了后来被人们称为 Hopfield网的电路,较好地解决了TCP问题,找到了 最佳解的近似解,引起了较大轰动。 – 1985年,Hinton、Sejnowsky、Rumelhart等研究者 在Hopfield网络中引入随机机制,提出了所谓的 Bolziman机。 – 1986年,Rumelhart等研究者独立地提出多层网络的 学习算法—BP算法,较好地解决了多层网络的学习问 题。 – 1990年12月,国内首届神经网络大会在北京举行。
• 训练时,把要教给神经网络的信息(外部输入)作为网 络的输入和要求的输出,使网络按某种规则(称为训练 算法)调节各处理单元间的连接权值,直至加上给定输 入,网络就能产生给定输出为止。 • 这时,各连接权已调接好,网络的训练就完成了。
– 正常操作(回忆操作)
• 对训练好的网络输入一个信号,它就可以正确回忆出相 应输出,得到识别结果。
5.1 概述
5.1.2 人工神经网络的发展
• 反思期—神经网络的低潮
– 1969年,Marvin Minsky和Seymour Papert合著了一本 书“Perception”,分析了当时的简单感知器,指出它 有非常严重的局限性,甚至不能解决简单的“异或”问 题,为Rosenblatt的感知器判了“死刑”。 – 此时,批评的声音高涨,导致了停止对人工神经网络研 究所需的大量投资。 – 不少研究人员把注意力转向了人工智能,导致对人工神 经网络的研究陷入低潮。
5.1.3 人工神经网络的特点
• 人工神经网络的局限性
– 正确的训练数据的收集
人工神经网络建模
语音识别
总结词
语音识别是将人类语音转换成文本的过程, 利用人工神经网络进行语音特征提取和分类 。
详细描述
语音识别技术使得人机交互更加自然,广泛 应用于智能助手、语音搜索、语音翻译等领
域。
自然语言处理
要点一
总结词
自然语言处理是利用人工神经网络对人类语言进行分析、 理解和生成的过程。
要点二
详细描述
自然语言处理技术包括文本分类、情感分析、机器翻译等 ,使得计算机能够更好地理解人类语言,提高人机交互的 效率和自然度。
人工神经网络的应用领域
语音识别
利用循环神经网络(RNN)和 长短时记忆网络(LSTM)识 别语音并转换成文本。
推荐系统
利用深度神经网络为用户推荐 感兴趣的内容。
图像识别
利用卷积神经网络(CNN)识 别图像中的物体和特征。
自然语言处理
利用循环神经网络和注意力机 制处理自然语言任务,如机器 翻译、文本生成等。
训练算法
总结词
训练算法是指导神经网络学习和优化的算法,常用的有梯度下降法等。
详细描述
训练算法根据学习率和优化目标,不断迭代更新网络权重,使网络在训练数据上 获得更好的性能表现。
03
常见的人工神经网络模型
前馈神经网络
总结词
前馈神经网络是一种最基础的人工神 经网络模型,信息从输入层开始,逐 层向前传递,直至输出层。
数据清洗与预处理
去除异常值、缺失值,进 行数据标准化、归一化等 处理,以提高模型的准确 性和稳定性。
数据划分
将训练数据集划分为训练 集、验证集和测试集,以 便于模型训练、验证和评 估。
训练过程中的优化算法
梯度下降法
基于梯度下降的优化算法,通 过迭代更新权重和偏置项,最
人工神经网络
神经元
如图所示 a1~an为输入向量的各个分量 w1~wn为神经元各个突触的权值 b为偏置 f为传递函数,通常为非线性函数。以下默认为hardlim() t为神经元输出 数学表示 t=f(WA'+b) W为权向量 A为输入向量,A'为A向量的转置 b为偏置 f为传递函数
分类
根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。在监督学习中,将训练样本的数据 加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经 多次训练后收敛到一个确定的权值。当样本情况发生变化时,经学习可以修改权值以适应新的环境。使用监督学 习的神经网络模型有反传网络、感知器等。非监督学习时,事先不给定标准样本,直接将网络置于环境之中,学 习阶段与工作阶段成为一体。此时,学习规律的变化服从连接权值的演变方程。非监督学习最简单的例子是Hebb 学习规则。竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。自组织映射、 适应谐振理论网络等都是与竞争学习有关的典型模型。
神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。其中,具有分布存储、并行处理、 自学习、自组织以及非线性映射等优点的神经网络与其他技术的结合以及由此而来的混合方法和混合系统,已经 成为一大研究热点。由于其他方法也有它们各自的优点,所以将神经网络与其他方法相结合,取长补短,继而可 以获得更好的应用效果。目前这方面工作有神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集 理论、分形理论、证据理论和灰色系统等的融合。
什么是人工神经网络
什么是人工神经网络人工神经网络是一种基于机器学习的人工智能技术,它可以让计算机学习如何识别与处理复杂的数据,比如图像、音频和视频。
本文将专注介绍人工神经网络,深入讨论它的构成、工作原理以及它如今所扮演的角色。
人工神经网络是一种仿照生物神经系统的架构和功能而开发的计算机技术。
它最初的概念可以追溯到1957年,由包括Frank Rosenblatt、Marvin Minsky和John McCarthy等在内的几位科学家在系统思想和计算机科学领域开发,它实际上是受到脑神经网络结构启发而发展出来的一种技术。
人工神经网络能够以一种类似于人类“思考”的方式从大量数据中获取结果,比如分析情感、视觉识别、语音识别等。
它可以通过学习过去的经验和观察,来推断当前和未来的情况。
人工神经网络的组成主要有神经元,连接和权重。
每个神经元都有输入、激活函数和输出。
神经元是网络中不同组件的基本部分,它们可以接受、处理和转发信号,以触发期望输出。
连接则用于把不同的神经元连接起来传输信息,这些连接可以赋予不同的权值,影响输入信号的最终输出。
最后,人工神经网络的工作原理,是通过迭代输入数据,调整权重使输出更接近期望结果,并且能够通过反馈机制自我调整参数和权重,以达到期望的训练结果。
人工神经网络如今已经被许多公司和组织使用,用于处理各种任务,包括复杂的图像识别、语音识别、语言建模、自动驾驶以及计算机视觉等。
它们已经成为机器学习和自然计算中最流行的方法之一,并广泛应用于商业、政府以及军事等众多领域。
比如,人工神经网络用于语音识别,top07机器人使用神经网络解析语音,帮助用户进行语音识别;或者用于机器视觉,Google等公司使用深度学习神经网络识别图像,可以对不同的图像进行分类,有效地提升图像浏览的用户体验。
总的来说,人工神经网络是一项设计用来处理繁杂任务的数据处理技术,可以重现生物神经系统架构和功能以及学习能力。
它是一种可以从大量数据中快速获取结果的技术,如今已经得到了普遍应用,被用于各种场景中。
人工神经网络练习题
人工神经网络练习题
1. 什么是人工神经网络?
人工神经网络是一种模仿人类神经系统结构和功能的计算模型。
它由许多人工神经元组成,通过模拟神经元之间的相互连接和信息
传递来研究和处理数据。
2. 人工神经网络的优点是什么?
人工神经网络具有以下优点:
- 能够进行非线性建模,适用于处理复杂的非线性问题。
- 具有自适应研究能力,能够通过反馈机制不断优化性能。
- 对于模式识别、分类和预测等任务表现良好。
- 具有容错性,即使部分神经元损坏,网络仍然可以正常工作。
3. 人工神经网络的主要组成部分有哪些?
人工神经网络主要由以下组成部分构成:
- 输入层:接收外部输入数据。
- 隐藏层:进行数据处理和特征提取。
- 输出层:给出最终的结果。
- 权重:神经元之间的连接强度。
- 激活函数:用于处理神经元的输入和输出。
4. 请解释反向传播算法的工作原理。
反向传播算法是一种用于训练人工神经网络的方法。
它通过将
输入数据传递给网络,并比较输出结果与期望结果之间的差异,然
后根据差异调整网络中的权重和偏置值。
该过程从输出层开始,逐
渐向前传播误差,然后通过梯度下降法更新权重和偏置值,最终使
网络逼近期望输出。
5. 请列举几种常见的用途人工神经网络的应用。
人工神经网络可以应用于许多领域,包括但不限于:
- 机器研究和模式识别
- 金融市场预测
- 医学诊断和预测
- 自动驾驶汽车
- 语音和图像识别
以上是关于人工神经网络的练习题,希望对您的学习有所帮助。
人工神经网络概述
参考内容二
人工神经网络(Artificial Neural Network,简称ANN)是一种模拟人类 神经系统运作的数学模型,由多个简单计算单元(即神经元)组成,通过学习方 式从数据中提取模式并预测未来数据。
一、人工神经网络的基本结构
人工神经网络的基本结构包括输入层、隐藏层和输出层。输入层负责接收外 部输入的数据,隐藏层通过一系列复杂的计算将输入转化为有意义的特征,最后 输出层将隐藏层的结果转化为具体的输出。在隐藏层中,每个神经元都通过权重 和激活函数来对输入进行转换,以产生更有意义的输出。
根据任务的不同,人工神经网络可以分为监督学习、无监督学习和强化学习 三种。监督学习是指通过输入输出对之间的映射关系来训练模型;无监督学习是 指通过聚类或降维等方式来发现数据中的潜在规律;强化学习是指通过与环境的 交互来学习策略,以达到在给定的情况下采取最优行动的目标。
四、人工神经网络的未来发展
随着深度学习技术的不断发展,人工神经网络的性能和应用范围也在不断扩 大。未来的人工神经网络将更加注重模型的可解释性和鲁棒性,同时也将更加注 重跨领域的研究和应用。此外,随着计算机硬件的不断升级和算法的不断优化, 人工神经网络的训练速度和精度也将不断提高。
三、人工神经网络的种类
根据连接方式的不同,人工神经网络可以分为前馈神经网络和反馈神经网络 两种。前馈神经网络是一种层次结构,其中每个节点只与前一层的节点相连,每 个节点的输出都是前一层的加权输入。而反馈神经网络则是一种循环结构,其中 每个节点都与前一层的节点和后一层的节点相连,每个节点的输出不仅取决于前 一层的输入,还取决于后一层的输出。
反向传播算法是一种监督学习算法,它通过比较网络的输出和真实值来计算 误差,然后将这个误差反向传播到网络中,调整每个神经元的权重以减小误差。
人工神经网络
人工神经网络人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model)目录[隐藏]∙ 1 人工神经网络概述∙ 2 人工神经网络的特点∙ 3 人工神经网络的特点与优越性∙ 4 人工神经网络的主要研究方向∙ 5 人工神经网络的应用分析人工神经网络概述人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model),是对人脑或自然神经网络(Natural Neural Network)若干基本特性的抽象和模拟。
人工神经网络以对大脑的生理研究成果为基础的,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能。
国际著名的神经网络研究专家,第一家神经计算机公司的创立者与领导人Hecht Nielsen给人工神经网络下的定义就是:“人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作状态相应而进行信息处理。
” 这一定义是恰当的。
人工神经网络的研究,可以追溯到1957年Rosenblatt提出的感知器模型(Perceptron) 。
它几乎与人工智能——AI(Artificial Intelligence)同时起步,但30余年来却并未取得人工智能那样巨大的成功,中间经历了一段长时间的萧条。
直到80年代,获得了关于人工神经网络切实可行的算法,以及以Von Neumann体系为依托的传统算法在知识处理方面日益显露出其力不从心后,人们才重新对人工神经网络发生了兴趣,导致神经网络的复兴。
目前在神经网络研究方法上已形成多个流派,最富有成果的研究工作包括:多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。
人工神经网络是在现代神经科学的基础上提出来的。
它虽然反映了人脑功能的基本特征,但远不是自然神经网络的逼真描写,而只是它的某种简化抽象和模拟。
人工神经网络简介
Page 4
神经网络模型
神经元模型
输入输出关系:
xi jiu j i
j 1 n
ω是连接神经元的权值
θ是神经元的阈值
x可认为是神经元的净输入
5
yi f ( xi )
Page 5
神经网络模型
f ( x) 是传递函数,或称为激励函数,其作用有:
1. 控制输入对输出的激活作用; 2. 对输入输出进行函数转换; 3. 将可能的无限域输入转换成有限域的输出;
Page 17
17
BP神经网络
总结
BP网络实现了一个从输入到输出的非线性映射,即F: Rn→Rm,f(x)=y。对于样本集合:输入xi(xi∈Rn)和yi(yi∈Rm), 可认为存在某一映射g,使得: g(xi)=yi i=1,2,...n BP神经网络就是寻找逼近映射g的最佳映射f过程。
人工神经网络简介
刘章
人工神经网络
人工神经网络(artificial neural network,缩写 ANN),简称神经网络(neural network,缩 写NN),是一种模仿生物神经网络的结构 和功能的数学模型或计算模型。神经网络由 大量的人工神经元联结进行计算。大多数情 况下人工神经网络能在外界信息的基础上改 变内部结构,是一种自适应系统。
Page 10
10
神经网络的学习方式
神经网络的学习方法
2.无监督学习方法 神经网络仅仅是根据其输入调整神经元连接间的权
重和阈值,此时的学习评价标准隐含在内部。
Page 11
11
BP神经网络
反向传播网络(Back-Propagation Network),简称BP网络。
人工神经网络课件
目录
• 神经网络基本概念 • 前馈神经网络 • 反馈神经网络 • 深度学习基础 • 优化算法与技巧 • 实践应用与案例分析
01 神经网络基本概念
生物神经网络简介
01
02
03
生物神经网络组成
生物神经网络由大量神经 元通过突触连接而成,具 有并行处理、分布式存储 和自学习等特性。
信号传递方式
每次只利用一个样本的梯度信息进行参数更新,计算量小,收敛速度快,但容易受到噪声干扰, 陷入局部最优解。
小批量梯度下降法(Mini-Batch Gradie…
折中方案,每次利用一小批样本的梯度信息进行参数更新,兼具批量梯度下降法和随机梯度下降 法的优点。
正则化方法防止过拟合
L1正则化(Lasso)
01
RNN在自然语言处理领域有广泛应用,如机器翻译、文本生成、情感分析等,同时也可以应用于语音识别 和图像处理等领域。
05 优化算法与技巧
梯度下降法及其改进算法
批量梯度下降法(Batch Gradient Des…
利用整个数据集的梯度信息进行参数更新,计算量大,收敛速度慢,但能找到全局最优解。
随机梯度下降法(Stochastic Gradien…
03 反馈神经网络
反馈神经网络结构
01
02
03
04
神经元之间相互连接,形成反 馈回路。
网络中的每个神经元都接收来 自其他神经元的信号,并产生
输出信号。
输出信号会再次作为输入信号 反馈到网络中,影响其他神经
元的输出。
通过不断调整神经元之间的连 接权重,网络可以学习并适应
不同的输入模式。
Hopfield网络模型与算法
批处理、随机梯度下降等优化策略
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人工神经网络(ANN)又称神经网络,是在现代神经科学研究成果的基础上,对生物神经系统的结构和功能进行数学抽象、简化和模仿而逐步发展起来的一种新型信息处理和计算系统。
由于人工神经网络具有自学习、高容错、高度非线性描述能力等优点,现已广泛应用于经济、机器人和自动控制、军事、医疗、化学等领域[l ~ 3],并取得了许多成果。
本文简要介绍人工神经网络的原理和特点,论述人工神经网络在高分子科学与工程领域的应用。
橡胶配方是决定橡胶制品性能的关键因素,由于材料配方与制品性能之间存在很复杂的非线性关系,多数情况下无法建立完整精确的理论模型,只能借助于回归方法得到经验公式。
传统的回归方法存在以下局限性:(1)使用不同的回9j方法可获得不同的经验公式,导致经验公式的繁多和不一致;(2)当配方项目及性能指标项目较多时,采用回归公式无法完全再现实验数据;(3)当实验进一步完善,实验数据增多的时候.其他人员再进行回归时,如果无法找到原来的回归方法、程序和实验数据,原来的回归公式将不能被利用,造成一定的浪费。
随着计箅机的发展而出现的人工神经网络是人工智能方法.它不像回归方法那样,需预先给定基本函数,而是以实验数据为基础.经过有限次的迭代计算而获得的一个反映实验数据内在联系的数学模型,具有极强的非线性处理、自组织调整、自适应学习及容错抗噪能力,特别适用于研究像材料配方与制品性能之间关系的复杂非线性系统特性【¨】。
因此,人们开始将人工神经网络应用于橡胶配方设计”J。
随着橡胶制品在各领域应用的拓展,橡胶配方设计变得越来越重要。
人们进行橡胶配方设计主要有3个目的:提高制品的性能;改善加工工艺;降低生产成本。
传统的橡胶配方设计方法有全因素设计、正交试验设计n_3]、均匀设计[4‘60等,而这些配方设计试验数据的处理方法无外乎方差分析和回归分析口]。
由于材料的配方和性能之问存在非常复杂的非线性关系,回归分析只适合于单目标优化数据处理的模型,对于不同的性能,需要建立不同的模型,因此将其应用于配方设计有一定的局限性。
近年来,发展日趋成熟的人工神经网络技术,尤其是BP神经网络凭借其结构简单、收敛速度快、预测精度高等优势越来越多地应用到橡胶配方设计试验中。
1橡胶配方设计1.1橡胶配方设计概述配方设计¨J是橡胶工业中的首要技术问题,在橡胶工业中占有重要地位。
所谓配方设计,就是根据产品的性能要求和工艺条件,通过试验、优化、鉴定,合理地选用原材料,确定各种原材料的用量配比关系。
橡胶配方人员的主要工作就是要确定一系列变量对橡胶各项性能的定量或定性影响。
变量可以是硫化剂、促进剂、填充剂、防老剂等,也可以是加工:[艺条件(如硫化温度、硫化时间等),总之是配方人员可能控制或测得的变量。
橡胶各项基本性能包括拉伸强度、撕裂强度、硬度、定伸应力等物理机械性能,以及加工性能、光洁度、外观等。
橡胶配方设计常常是多变量的试验设计,配方设计理论和试验设计方法对于配方设计具有重要意义。
作为橡胶配方设计理论,必须具备两个基本条件【2J:一、能揭示客观存在的橡胶配方设计的一般性规律,二、能指导橡胶胶料配方设计实践。
目前,配方设计的基本理论是相关性理论,又称相关性原理。
根据表象学研究,在橡胶配方设计中存在着两类相关关系。
其一,橡胶配方组分与硫化胶及混炼胶的性能之间存在着相关关系,配方组分的品种、类型和用量对硫化胶和混炼胶的性能具有决定性影响。
其二,硫化胶的性能与性能之间也存在着相关关系,即硫化胶的某些性能对橡胶制品的使用性能具有决定性影响。
根据相关性原理,橡胶胶料配方设计可遵循如下途径进行。
首先,利用第二类相关关系,寻找并确定与制品使用性能相关的胶料性能,包括硫化胶性能和胶料工艺性能等;然后根据第一类相关关系,寻找并确定与所需胶料物理机械性能和工艺性能相关的胶料配合组分,最后完成配方试验。
试验设计是属于一般研究方法中的科学试验方法的范畴,它是由试验方法与数学方法,特别是统计方法相互交叉而形成的--i'1科学。
运用试验设计方法的目的是对试验因素作合理的、有效的安排,最大限度地减少试验误差,使之达到高效、快速、经济的目的。
从近代试验设计发展趋势来看,试验设计主要集中在模型优化试验设计、针对性强的特殊试验设计和系列性试验设计等三个方面。
橡胶配方设计中主要采用模型优化试验设计,即对少量的关键因子优良水平进一步研究因子间相互作用,探讨试验过程最优水平组合及工艺参数。
采用的试验设计方法主要有正交设计、回归设计、均匀设计等。
橡胶配方设计相关性原理的研究和试验设计理论及方法的发展,为现代橡胶配方设计、建立计算机辅助设计奠定了基础。
另一方面,橡胶材料的组分与性能之间的关系十分复杂。
只有依靠现代数理统计学和计算机技术的帮助,才能进行有效地研究。
实践证明,两者结合,是取得配方设计成功的必由之路。
1.4人工神经网络1.4.1人工神经网络简介自从20世纪80年代初以来,人工神经网络(ArtificalNeuralNetwork,简称ANN)在全世界范围内迅速地发展起来。
其中主要的原因是人工神经网络的结构和它的计算方法是在模拟人类大脑的结构和思方式的基础上建立起来的,具有极强的非线性处理、自组织处理、自适应学习和容错抗噪能力¨”。
人工神经网络[161是由大量简单的基本元件一神经元相互连接而成的自适应非线性系统,是人工智能的一个重要分支。
人工神经网络基本结构是人工神经元,它一般具有多个输入、一个输出的非线性处理单元,具有输入、处理和输出信号三个基本功能。
神经元按层次的形式组织,每层上的神经元以加权的方式与其他层上的神经元连接而构成神经网络。
与传统的信息和数据处理方法相比,人工神经网络能将分布存储的信息进行并行协同处理,是一个非线性动力学过程,因而在处理复杂的多的多维非线性问题方面具有十分明显的优势。
总的来说,人工神经网络具有以下四个特点Ⅲ】:①人工神经网络是一个广泛连接的巨型复杂系统;②人工神经网络具有并行结构和并行处理机制:③人工神经网络的分布结构使其具有和人脑1样的容错性和联想能力;④人工神经网络具有学习、自组织、自适应能力。
1.4.2人工神经网络的工作原理118.20人工神经网络首先要以一定的学习准则进行学习,然后才能工作。
现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为⋯0。
所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。
首先,给网络的各连接权值赋予(O,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。
在此情况下,网络输出为“1”和⋯0的概率各为50%,也就是说是完全随机的。
这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。
如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。
如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。
这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记·tz,在网络的各个连接权值上。
当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。
一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。
1.4.3人工神经网络模型神经网络|2”在目前已有几十种不同的模型。
人们按不同的角度对神经网络进行分类,通常可按5个原则进行神经网络的归类。
按照网络的结构区分,则有前向网络和反馈网络。
按照学习方式区分,则有有教师学习和无教师学习网络。
按照网络性能区分,则有连续型和离散性网络,随机型和确定型网络。
按照突触性质区分,则有一阶线性关联网络和高阶非线性关联网络。
按对生物神经系统的层次模拟区分,则有神经元层次模型,组合式模型,网络层次模型,神经系统层次模型和智能型模型。
通常,人们较多地考虑神经网络的互连结构。
⋯段而言,神经网络【22l有分层网络,层内连接的分层网络.反馈连接的分层网络,互连网络等4种互连结构。
在人们提出的几十种神经网络模型中,人们较多用的是Hopfield网络、BP网络、Kohonen网络和ART(自适应共振理论)网络。
Itopfield网络123-24j是最典型的反馈网络模型,它是目前人们研究得最多的模型之一。
Hopfield网络是由相同的神经元构成的单层,并且不具学习功能的自联想网络。
它需要对称连接。
这个网络习以完成制约优化和联想记忆等功能。
BP网络是反向传播(BackPropagation)网络。
它是一种多层前向网络,采用最小均方差学习方式。
这是一种最广泛应用的网络。
它可用于语言综合,识别和自适应控制等用途。
BP网路需有教师训练。
Kohonen网络125】是典型的自组织神经网络,这种网络也称为自组织特征映射网络SOM。
它的输入层是单层单维神经元;而输出层是二维的神经元,神经元之间存在以“墨西哥帽”形式进行侧向交互的作用。
因而,在输出层中,神经元之间有近扬远抑的反馈特性;从而使Kohonen网络可以作为模式特征的检测器。
ART网络也是一种自组织网络模型。
这是一种无教师学习网络。
它能够较好地协调适应性,稳定性和复杂性的要求。
在ART网络中,通常需要两个功能互补的子系统相互作用.这两个子系统称注意子系统和取向子系统。
ART网络主要用于模式识别,它不足之处是在于对转换、失真和规模变化较敏感。
2 BP神经网络的基本原理从结构上来讲,BP神经网络是一个多层网络,由输入层、隐层和输出层三部分组成,输入层和输出层各含有一些神经元,其中在输入层对神经元输入信息(如组分配比),在输出层得到输入信息的输出响应(如拉伸强度)。
隐层则由具有独特处理单元的神经元组成。
输入层和隐层可能还会存在一些附加节点,称为偏差神经元。
神经网络层与层之间大多采用全互连方式,同一层中各神经元之间不发生连接。
当给定网络的一个输入向量时,该向量由输入单元传人隐层单元,经隐层单元逐层处理后传到输出层单元,由输出层单元处理后产生一个输出向量。
这是一个逐层状态更新的过程,称为前向传播。
如果输出向量与期望输出之间有误差,那么就转入误差后向传播,将误差值逐层沿连接通路传送并修正连接权值。
每个神经元都与其连接的神经元有紧密联系,并且它们之间的影响程度取决于训练过程中校正的连接权值大小。
BP神经网络计算过程的关键步骤[16]如下。
(1)向输入层神经元输入数据z:。