高考数学 考点04 分段函数试题解读与变式

合集下载

高考数学函数专题训练《分段函数》含答案解析

高考数学函数专题训练《分段函数》含答案解析

高考数学函数专题训练 分段函数一、选择题1.已知函数21,1()11,1x x f x x x x -⎧<⎪=+⎨⎪-⎩…,若()f a 3=,则实数a 的值为( )A .2B .2-C .2±D .2或3-【答案】C【解析】Q 函数21,1()11,1x x f x x x x -⎧<⎪=+⎨⎪-⎩…,()3f a =,∴当1a <时,1()31a f a a -==+,解得2a =-; 当1a …时,2()13f a a =-=,解得2a =或2a =-(舍).综上,实数a 的值为2±.故选C . 2. 若()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数,则a 的取值范围是( )A .2,35⎡⎫⎪⎢⎣⎭B .2,35⎛⎤ ⎥⎝⎦C .(),3-∞D .2,5⎛⎫+∞⎪⎝⎭【答案】A【解析】由于函数()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数,则函数()34y a x a =--在(),1-∞上是增函数,所以,30a ->,即3a <;且有()23141a a -⨯-≤,即351a -≤,得25a ≥, 因此,实数a 的取值范围是2,35⎡⎫⎪⎢⎣⎭,故选A.3. 若函数()314,025,0xx f x x x x ⎧⎛⎫+≤⎪ ⎪=⎨⎝⎭⎪--+>⎩,,当[],1x m m ∈+时,不等式()()2-<+f m x f x m 恒成立,则实数m 的取值范围是( ) A .(),4-∞- B .(),2-∞-C .()2,2-D .(),0-∞【答案】B【解析】依题意得:函数()314,025,0xx f x x x x ⎧⎛⎫+≤⎪ ⎪=⎨⎝⎭⎪--+>⎩,在x ∈R 上单调递减,因为()()2-<+f m x f x m ,所以2m x x m ->+,即2x m <,在[],1x m m ∈+上恒成立, 所以2(1)m m +<,即2m <-,故选B .4. 已知函数lg ,0()1lg ,0x x f x x x >⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,若()()f m f m >-,则实数m 的取值范围是( )A .(1,0)(1,)-⋃+∞B .(,1)(1,)-∞-+∞UC .(1,0)(0,1)-UD .(,1)(0,1)-∞-U【答案】A【解析】由函数的解析式可得函数()f x 为奇函数,则不等式()()f m f m >-即()()f m f m >-,即()0f m >,由此可得可得实数m 的取值范围是()()1,01,-⋃+∞.故选A.5. 已知函数1,0,()ln(),0,kx x f x x x -≥⎧=⎨--<⎩若函数()f x 的图象上关于原点对称的点有2对,则实数k 的取值范围为( ) A .(,0)-∞ B .1(0,)2C .(0,)+∞D .(0,1)【答案】D【解析】要使函数()f x 的图象上关于原点对称的点有2对,只需函数()()ln 0y x x =--<的图象关于原点对称的函数()ln 0y x x =>的图象与直线()10y kx x =->的交点个数为2即可.如图,可作出函数()()ln 0y x x =--<关于原点对称的函数()ln 0y x x =>的图象,当直线1y kx =-与ln y x =的图象相切时,设切点为(),ln m m ,又ln y x =的导数为1'y x =,则1ln 1km mk m -=⎧⎪⎨=⎪⎩,解得11m k =⎧⎨=⎩,可得切线的斜率为1,结合图象可知()0,1k ∈时,函数ln y x =的图象与直线1y kx =-有2个交点,即函数()f x 的图象上关于原点对称的点有2对,故选D.6. 已知函数f(x)=2-(0),0(0),()(0)x ax b xxg x x⎧+>⎪=⎨⎪<⎩在区间24,-4a b ba⎛⎫++⎪⎝⎭上满足f(-x)+f(x)=0,则g(-2)的值为()A.-22B.22C.-2D.2【答案】B【解析】由题意知f(x)是区间24,-4a b ba⎛⎫++⎪⎝⎭上的奇函数,∴a+4a-b2+4b=0,由于()224244b b b-+=--+≤,由对勾函数的性质,当0a>时,44aa+≥,故a<0,∴(b-2)2+2---aa⎛⎪⎝⎭=0,解得b=2,a=-2.∴g(-2)=-f(2)=-2-2a+b=-2+22+2=22.故选B.7. 已知函数()22log042708433x xf xx x x⎧<≤⎪=⎨-+>⎪⎩,,,若a b c d,,,互不相同,且满足,()()()()f a f b f c f d===则abcd的取值范围是()A.()3233,B.()3234,C.()3235,D.()3236,【答案】C【解析】由题意,可画出函数()f x图象如下:由题意,,,,a b c d Q 互不相同,∴可不妨设a b c d <<<.∵()()f a f b =,由图象,可知22log a log b -=.即:220log a log b +=.∴20log ab =,∴1ab =.又∵()()()()f a f b f c f d ===,∴依据图象,它们的函数值只能在0到2之间, ∴4578c d <<,<<.根据二次函数的对称性,可知:2612c d +=⨯=.∴()()2·121245abcd cd c c c c c ,<<==-=-+则可以将abcd 看成一个关于c 的二次函数.由二次函数的知识,可知:212c c -+在45c <<上的值域为()3235,. abcd ∴的取值范围即为()3235,,故选C . 8. 已知函数(,且)在上单调递增,且关于的方程恰有两个不相等的实数解,则的取值范围是( ) A .B .C .D .【答案】D 【解析】由函数()f x 的解析式可知函数在区间上单调递增,当时,函数单调递减,由复合函数的单调性法则可知:,且函数在处满足:,解得:,故,方程恰有两个不相等的实数解,则函数与函数的图像有且仅有两个不同的交点,绘制函数的图像如图中虚线所示,令可得:,由可知,,则直线与函数的图像在区间上存在唯一的交点,原问题转化为函数与二次函数在区间上存在唯一的交点,很明显当,即时满足题意,当直线与二次函数相切时,设切点坐标为,亦即,由函数的解析式可得:,故:,则,切点坐标为,从而:,即.据此可得:的取值范围是.故选D .9. 已知函数11ln ,01()1,12x x x f x x -+<≤⎧⎪=⎨>⎪⎩,若方程2()(1)()0f x a f x a -++=恰有三个不同的实数根,则实数a 的取值范围为 A .)0,(-∞ B .(0,)+∞ C .(1,)+∞ D .(0,1)【答案】D【解析】2()(1)()0f x a f x a -++=可变形为[()][()1]0f x a f x --=,即()a x f =或()1=x f ,由题可知函数()f x 的定义域为(0,)+∞,当(]0,1x ∈时,函数()f x 单调递增;当()1,x ∈+∞时,函数()f x 单调递减,画出函数()f x 的大致图象,如图所示,当且仅当1x =时,()1=x f ,因为方程2()(1)()0f x a f x a -++=恰有三个不同的实数根,所以()a x f =恰有两个不同的实数根,即(),y f x y a ==的图象有两个交点,由图可知10<<a 时,(),y f x y a ==的图象有两个交点,所以实数a 的取值范围为(0,1),故选D .10. 已知函数()2,02()211,0x x f x x f x x ⎧≤≠-⎪=+⎨⎪-+>⎩且若关于x 的方程()f x kx =都有4个不同的根,则k 的取值范围是( ) A .52,2⎡⎫⎪⎢⎣⎭B .52,2⎛⎤ ⎥⎝⎦C .75,42⎡⎫⎪⎢⎣⎭D .75,42⎛⎤⎥⎝⎦【答案】C【解析】()f x kx =都有4个不同的根,等价于(),,y f x y kx ==的图象有四个交点,因为()2,02()211,0x xf x x f x x ⎧≤≠-⎪=+⎨⎪-+>⎩且,所以,若01x <≤,则110x -<-≤,则2()(1)111f x f x x =-+=++;若12x <≤,则2Bq mRυυ=,则2()(1)12f x f x x=-+=+; 若23x <≤,则112x <-≤,则2()(1)131f x f x x =-+=+-; 若34x <≤,则213x <-≤,则2()(1)142f x f x x =-+=+-; 若45x <≤,则314x <-≤,则2()(1)153f x f x x =-+=+-; ...,作出()f x 的图象如图,求得()()4,7,2,5A B ,则75,42OAOB kk ==, 由图可知,7542k ≤<时,(),,y f x y kx ==的图象有四个交点,此时,关于x 的方程()f x kx =有4个不同的根,所以,k 的取值范围是75,42⎡⎫⎪⎢⎣⎭,故选C .11. 已知函数1,03 ()lg(6),36gx a xf xx a x⎧-<≤⎪=⎨--<<⎪⎩,(其中a R∈),若()f x的四个零点从小到大依次为1x,2x,3x,4x,则4121iix x x=+∑的值是()A.16 B.13 C.12 D.10【答案】B【解析】由题意可知,()f x有四个零点等价于函数lg,03()lg(6),36x xg xx x⎧<≤⎪=⎨-<<⎪⎩图象与函数y a=有四个交点,如图所示,由图形可知,1lg x a-=,2lg x a=,3lg(6)x a-=,4lg(6)x a--=,∴110ax-=,210ax=,3610ax-=,4610ax--=,即110ax-=,210ax=,3610ax=-,4610ax-=-,所以121x x=,41101061061012a a a aiix--==++-+-=∑,故412113iix x x=+=∑,故选B.12. 已知函数ln,1()1(2)(),1x xf xx x a xe≥⎧⎪=⎨+-<⎪⎩(a为常数,e为自然对数的底数)的图象在点(),1A e处的切线与该函数的图象恰好有三个公共点,求实数a 的取值范围是( ) A.33a --<<-+B.233a -+<<C.3a <--233a -+<< D.3a -+<【答案】C【解析】由()ln f x x =,1x ≥,得()1f x x '=,()1'f e e= ()f x ∴在点(),1A e 处的切线方程为1y x e=,① 函数()()()12y f x x x a e==+-,1x <② ∴由①②联立方程组可得:11(2)()y x ey x x a e ⎧=⎪⎪⎨⎪=+-⎪⎩,其中1x <,化简得:2(1)20x a x a +--=,③Q 切线与该函数的图象在(),1A e 点有一个交点,∴只需要满足③在当1x <时有两个不相同的交点,很明显2x =-不是函数的零点,整理方程可得:()222322x x a x x x +==++-++,问题转化为函数y a =与平移之后的对勾函数()2232y x x =++-+有两个不同的交点, 绘制函数()2232y x x =++-+的图像如图所示,结合均值不等式的结论可知,当2x >-时,()2232232y x x =++-≥+, 当2x <-时,()2232232y x x =++-≤-+, 且当1x =时,()222323y x x =++-=+, 结合函数图像可知,实数a 的取值范围是:322a <--或23223a -+<<. 故选C . 二、填空题13.函数22,1()log ,1x x f x x x ⎧<=⎨-≥⎩的值域为____________.【答案】(,2)-∞【解析】当1x <时,()2xf x =,其值域为()0,2,当1x ≥时,()2log f x x =-,其值域为(],0-∞所以函数()22,1log ,1x x f x x x ⎧<=⎨-≥⎩的值域为(]()(),00,2,2-∞⋃=-∞14. 函数223,0,(),0,x x f x x x --<⎧=⎨≥⎩若0a b >>,且()()f a f b =,则()f a b +的取值范围是________. 【答案】[)1-+∞,【解析】设()()f a f b t ==,作出函数()f x 的图象, 由图象可得0t ≥时,由()2f a a t ==,解得a t =,由()23f bb t =--=,解得32tb --=, 则23131(1)12222t a b t t t t --+=+=-+-=---, 因为0t ≥,则0t ≥,设m a b =+, 则21(1)112m a b t =+=---≤-, 此时()()23231f a b f m m +==--≥-=-, 所以()f a b +的取值范围是[1,)-+∞.15. 设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,2()1(1)f x x =--,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中0k >.若在区间(0]9,上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是_____.【答案】12,34⎡⎫⎪⎢⎪⎣⎭. 【解析】当(]0,2x ∈时,()2()11,f x x =--即()2211,0.x y y -+=≥又()f x 为奇函数,其图象关于原点对称,其周期为4,如图,函数()f x 与()g x 的图象,要使()()f xg x =在(]0,9上有8个实根,只需二者图象有8个交点即可.当1g()2x =-时,函数()f x 与()g x 的图象有2个交点; 当g()(2)x k x =+时,()g x 的图象为恒过点()2,0-的直线,只需函数()f x 与()g x 的图象有6个交点.当()f x 与()g x 图象相切时,圆心()1,0到直线20kx y k -+=的距离为12211k k k +=+,得24k =,函数()f x 与()g x 的图象有3个交点;当g()(2)x k x =+过点1,1()时,函数()f x 与()g x 的图象有6个交点,此时13k =,得13k =. 综上可知,满足()()f x g x =在(]0,9上有8个实根的k 的取值范围为1234⎡⎫⎪⎢⎪⎣⎭,. 16. 已知函数()()ln ,02,2x x e f x f e x e x e⎧<≤⎪=⎨-<<⎪⎩,函数()()F x f x ax =-有4个零点,则实数a 的取值范围是____________. 【答案】10,e ⎛⎫ ⎪⎝⎭【解析】设2e x e <<,则02e x e <-<,故()()ln 2f x e x =-,即()()ln ,0ln 2,2x x e f x e x e x e ⎧<≤⎪=⎨-<<⎪⎩, 绘制函数图像如图所示,函数()()F x f x ax =-有4个零点则函数()f x 与函数y ax =有4个交点,如图所示,考查临界情况,当直线与函数相切时,设切点坐标为()00,x ax ,由题意可得:0001ln a x x ax ⎧=⎪⎨⎪=⎩,解得:01x e a e =⎧⎪⎨=⎪⎩. 则直线与函数相切时斜率为1e, 数形结合可知实数a 的取值范围是10,e ⎛⎫ ⎪⎝⎭.。

高考数学考点04分段函数试题解读与变式(2021学年)

高考数学考点04分段函数试题解读与变式(2021学年)

2018版高考数学考点04 分段函数试题解读与变式编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学考点04 分段函数试题解读与变式)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学考点04 分段函数试题解读与变式的全部内容。

考点4 分段函数以及应用一、知识储备汇总与命题规律展望1.知识储备汇总:(1)分段函数概念:若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数。

(2)分段函数定义域与值域:分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.(3)分段函数的图像:分段函数有几段它的图像就由几条曲线组成,作图的关键就是根据每段函数的定义区间和表达式在同一坐标系中作出其图像,作图时要注意每段曲线端点的虚实,而且横坐标相同之处不可有两个以上的点.(4)分段函数的求值:先确定要求值的自变量属于哪一段区间,然后按该段的表达式去求值,直到求出值为止。

(5)分段函数的奇偶性:先看定义域是否关于原点对称,不对称就不是奇(偶)函数,再由-<0 ,分别代入各段函数式计算)x>0,xf=)(xf-(x-,当x=0有定(xf与)(xf-的值,若有)义时0f-,则)(x(xf是偶函数.f,则))0(=(xf是奇函数;若有f(x)=)(6)分段函数的单调性:分别判断出各段函数在其定义区间的单调性结合图象处理分段函数的问题。

(7)分段函数的周期性:对分段函数的周期性问题,利用周期函数定义、性质或图像进行判定或解决。

分段函数、解析式与图像含详解答案

分段函数、解析式与图像含详解答案

解析式、分段函数、函数图像作业题型一分段函数1.已知函数2,01,()2,12,1,2,2x x f x x x ⎧⎪≤≤⎪=<<⎨⎪⎪≥⎩,则3[()]2f f f ⎧⎫⎨⎬⎩⎭的值为2.设函数23,0()(2),0x x x f x f x x ⎧+≥=⎨+<⎩,则(3)f -=_____3.设()()121,1x f x x x <<=-≥⎪⎩,若()12f a =,则a =4.分段函数已知函数3,0,()4,0.x x f x x x -+≤⎧=⎨>⎩(1)画函数图像(2)求((1))f f -;(3)若0()2f x >,求0x 的取值范围.题型二解析式1.求下列函数的解析式(1)已知2()f x x x =+,求(1)f x -的解析式(2)若1)f x +=+()f x 的解析式(3)如果1f x ⎛⎫ ⎪⎝⎭=1x x-,则当x ≠0,1时,求()f x 的解析式(4)已知2112f x x x x ⎛⎫+=+ ⎪⎝⎭,求()f x 的解析式2.求下列函数的解析式(1)已知函数()f x 是一次函数,若()48f f x x =+⎡⎤⎣⎦,求()f x 的解析式;(2)已知()f x 是二次函数,且满足()01f =,()()12f x f x x +-=,求()f x 的解析式(3)已知函数f (x )+2f (-x )=x 2+2x,求()f x 的解析式.(4)已知函数()f x 的定义域是一切非零实数,且满足13()24f x f x x ⎛⎫+=⎪⎝⎭.求()f x 的解析式.3.已知函数()21f x x =-,2,0,(){1,0,x x g x x ≥=-<求()f g x ⎡⎤⎣⎦和()g f x ⎡⎤⎣⎦的解析式.题型三函数图像1.画出函数2)(x x f =的图像,并用变换的方法画出以下函数的图像。

(1)2)(2+=x x f (2)2)1()(-=x x f (3)2)2()(2+-=x x f (4)32)(2+-=x x x f (5)542)(2-+=x x x f 2.画出下列函数函数的图像。

高考数学 热点题型和提分秘籍 专题04 函数及其表示 理(含解析)新人教A版-新人教A版高三全册数

高考数学 热点题型和提分秘籍 专题04  函数及其表示 理(含解析)新人教A版-新人教A版高三全册数

2016年高考数学 热点题型和提分秘籍 专题04 函数及其表示 理(含解析)新人教A 版【高频考点解读】1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用. 【热点题型】题型一 考查函数的定义域 例 1.(1)(函数f (x )= 1-2x+1x +3的定义域为( )A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)函数y =ln ⎝⎛⎭⎪⎫1+1x + 1-x 2的定义域为________.【答案】(1)A (2)(0,1] 【解析】【提分秘籍】1.函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,归纳起来常见的命题角度有:(1)求给定函数解析式的定义域.(2)已知f (x )的定义域,求f (g (x ))的定义域. (3)已知定义域确定参数问题. 2.简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知函数f (x )的定义域为[a ,b ],则函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出.【举一反三】已知f (x )的定义域为⎣⎢⎡⎦⎥⎤-12,12,求函数y =f ⎝⎛⎭⎪⎫x 2-x -12的定义域.题型二 考查函数的解析式例2、(1)已知f (1-cos x )=sin 2x ,求f (x )的解析式;(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式;(3)已知f (x )+2f ⎝ ⎛⎭⎪⎫1x=x (x ≠0),求f (x )的解析式.【解析】 (1)f (1-cos x )=sin 2x =1-cos 2x , 令t =1-cos x ,则cos x =1-t ,t ∈[0,2], ∴f (t )=1-(1-t )2=2t -t 2,t ∈[0,2], 即f (x )=2x -x 2,x ∈[0,2].(2)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1,∴⎩⎪⎨⎪⎧2a =1,a +b =-1,即⎩⎪⎨⎪⎧a =12,b =-32.∴f (x )=12x 2-32x +2.(3)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,∴f ⎝ ⎛⎭⎪⎫1x +2f (x )=1x.解方程组⎩⎪⎨⎪⎧f x +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x ,得f (x )=23x -x3(x ≠0).【提分秘籍】求函数解析式的常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式.(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法.(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值X 围.(4)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).【举一反三】已知函数f (x )满足f (x )+2f (3-x )=x 2,则f (x )的解析式为( ) A .f (x )=x 2-12x +18 B .f (x )=13x 2-4x +6C .f (x )=6x +9D .f (x )=2x +3 【答案】B题型三 考查分段函数例3、如图,点P 从点O 出发,分别按逆时针方向沿周长均为12的正三角形、正方形运动一周,O ,P 两点连线的距离y 与点P 走过的路程x 的函数关系分别记为y =f (x ),y =g (x ),定义函数h (x )=⎩⎪⎨⎪⎧fx ,f x ≤g x ,g x ,f x >g x .对于函数y =h (x ),下列结论正确的个数是( )①h (4)=10;②函数h (x )的图象关于直线x =6对称;③函数h (x )的值域为[0,13 ];④函数h (x )的递增区间为(0,5).A .1B .2C .3D .4 【答案】 C 【解析】【提分秘籍】(1)求分段函数的函数值时,应根据所给自变量的大小选择相应段的解析式求解,有时每段交替使用求值.(2)若给出函数值或函数值的X 围求的变量值或自变量的取值X 围,应根据每一段的解析式分别求解.但要注意检验,是否符合相应段的自变量的取值X 围.【举一反三】已知f (x )=⎩⎪⎨⎪⎧2x ,x >0,f x +1,x ≤0,则f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43等于________.【答案】4【解析】f ⎝ ⎛⎭⎪⎫43=2×43=83, f ⎝ ⎛⎭⎪⎫-43=f ⎝ ⎛⎭⎪⎫-13=f ⎝ ⎛⎭⎪⎫23=2×23=43,f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=83+43=4. 【高考风向标】【2015高考某某,理7】存在函数()f x 满足,对任意x R ∈都有( ) A. (sin 2)sin f x x = B. 2(sin 2)f x x x =+ C. 2(1)1f x x +=+ D. 2(2)1f x x x +=+ 【答案】D. 【解析】(2014·某某卷)设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎪⎫23π6=( )A.12B.32 C .0 D .-12【答案】A【解析】由已知可得,f ⎝⎛⎭⎪⎫23π6=f ⎝ ⎛⎭⎪⎫17π6+sin 17π6=f ⎝ ⎛⎭⎪⎫11π6+sin 11π6+sin 17π6 =f ⎝⎛⎭⎪⎫5π6+sin 5π6+sin 11π6+sin 17π6=2sin 5π6+sin ⎝ ⎛⎭⎪⎫-π6=sin 5π6=12.(2014·卷)下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1 B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1) 【答案】A【解析】由基本初等函数的性质得,选项B 中的函数在(0,1)上递减,选项C ,D 中的函数在(0,+∞)上为减函数,所以排除B ,C ,D ,选A.(2014·某某卷)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞) 【答案】D(2014·某某卷)函数f (x )=ln(x 2-x )的定义域为( )A .(0,1]B .[0,1]C .(-∞,0)∪(1,+∞) D.(-∞,0]∪[1,+∞) 【答案】C【解析】由x 2-x >0,得x >1或x <0. (2014·某某卷)函数f (x )=1(log 2x )2-1的定义域为( ) A.⎝ ⎛⎭⎪⎫0,12 B .(2,+∞) C. ⎝ ⎛⎭⎪⎫0,12∪(2,+∞) D. ⎝ ⎛⎦⎥⎤0,12∪[2,+∞) 【答案】C【解析】根据题意得,⎩⎪⎨⎪⎧x >0,(log 2)2-1>0,解得⎩⎪⎨⎪⎧x >0,x >2或x <12.故选C. (2013·某某卷)已知函数f(x)=a ⎝ ⎛⎭⎪⎫1-2⎪⎪⎪⎪⎪⎪x -12,a 为常数且a>0. (1)证明:函数f(x)的图像关于直线x =12对称;(2)若x 0满足f(f(x 0))=x 0,但f(x 0)≠x 0,则称x 0为函数f(x)的二阶周期点.如果f(x)有两个二阶周期点x 1,x 2,试确定a 的取值X 围;(3)对于(2)中的x 1,x 2和a ,设x 3为函数 f(f(x))的最大值点,A(x 1,f(f(x 1))),B(x 2,f(f(x 2))),C(x 3,0).记△A BC 的面积为S(a),讨论S(a)的单调性.【解析】当a>12时,有f(f(x))=⎩⎪⎪⎨⎪⎪⎧4a 2x ,x ≤14a,2a -4a 2x ,14a <x ≤12,2a (1-2a )+4a 2x ,12<x ≤4a -14a ,4a 2-4a 2x ,x>4a -14a.所以f(f(x))=x 有四个解0,2a 1+4a 2,2a 1+2a ,4a 21+4a 2,又f(0)=0,f ⎝ ⎛⎭⎪⎫2a 1+2a =2a 1+2a,f ⎝ ⎛⎭⎪⎫2a 1+4a 2≠2a 1+4a 2,f ⎝ ⎛⎭⎪⎫4a 21+4a 2≠4a 21+4a 2,故只有2a 1+4a 2,4a 21+4a 2是f(x)的二阶周期点. 综上所述,所求a 的取值X 围为a>12.(2013·某某卷)设函数f(x)在(0,+∞)内可导,且f(e x)=x +e x,则f′(1)=________. 【答案】2【解析】f(e x )=x +e x,利用换元法可得f(x)=ln x +x ,f′(x)=1x +1,所以f′(1)=2.(2013·某某卷)如图1-3所示,半径为1的半圆O 与等边三角形ABC 夹在两平行线l 1,l 2之间,l∥l 1,l 与半圆相交于F ,G 两点,与三角形ABC 两边相交于E ,D 两点.设弧FG 的长为x(0<x<π),y =EB +BC +CD ,若l 从l 1平行移动到l 2,则函数y =f(x)的图像大致是( )图1-3图1-4 【答案】D 【解析】(2013·某某卷)函数y =xln(1-x)的定义域为( )A .(0,1)B .[0,1)C .(0,1]D .[0,1] 【答案】B【解析】x≥0且1-x>0,得x∈[0,1),故选B.(2013·某某卷)已知函数f(x)=x 2-2(a +2)x +a 2,g(x)=-x 2+2(a -2)x -a 2+8.设H 1(x)=max {}f (x ),g (x ),H 2(x)=min {}f (x ),g (x )(max {}p ,q 表示p ,q 中的较大值,min {}p ,q 表示p ,q 中的较小值).记H 1(x)的最小值为A , H 2(x)的最大值为B ,则A -B =( )A .16B .-16C .a 2-2a -16 D .a 2+2a -16【答案】B【解析】由题意知当f(x)=g(x)时,即x 2-2(a +2)x +a 2=-x 2+2(a -2)x -a 2+8, 整理得x 2-2ax +a 2-4=0,所以x =a +2或x =a -2,所以H 1(x)=max{f(x),g(x)}=⎩⎪⎨⎪⎧x 2-2(a +2)x +a 2(x≤a-2),-x 2+2(a -2)x -a 2+8(a -2<x<a +2),x 2-2(a +2)x +a 2(x≥a+2),H 2(x)=min{f(x),g(x)}=⎩⎪⎨⎪⎧-x 2+2(a -2)x -a 2+8(x≤a-2),x 2-2(a +2)x +a 2(a -2<x<a +2),-x 2+2(a -2)x -a 2+8(x≥a+2).由图形(图形略)可知,A =H 1(x)min =-4a -4,B =H 2(x)max =12-4a ,则A -B =-16. 故选B.(2013·全国卷)已知函数f(x)的定义域为(-1,0),则函数f(2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎪⎫-1,-12C .(-1,0) D.⎝ ⎛⎭⎪⎫12,1【答案】B【解析】对于f(2x +1),-1<2x +1<0,解得-1<x<-12,即函数f(2x +1)的定义域为⎝⎛⎭⎪⎫-1,-12. (2013·某某卷)设函数f(x)=⎩⎨⎧⎝ ⎛⎭⎪⎫x -1x 6,x<0,-x ,x≥0,则当x>0时,f[f(x)]表达式的展开式中常数项为( )A .-20B .20C .-15D .15 【答案】A(2013·某某卷)函数y =x33x -1的图像大致是( )图1-5【答案】C【解析】函数的定义域是{x∈R|x≠0},排除选项A;当x<0时,x3<0,3x-1<0,故y>0,排除选项B;当x→+∞时,y>0且y→0,故为选项C中的图像.(2013·新课标全国卷Ⅱ] 经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图1-4所示,经销商为下一个销售季度购进了130 t该农产品,以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57 000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X∈[100,110),则取X=105,且X=105的概率等于需求量落入[100,110)的频率),求T的数学期望.【解析】(3)依题意可得T 的分布列为T 45 000 53 000 61 000 65 000 P0.10.20.30.4所以E(T)=45 000×0.1+53 000×0.2+61 000×0.3+65 000×0.4=59 400. 【高考押题】1. 若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )【答案】B【解析】注意定义域和值域的限制,只有B 正确.2.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于 ( )A. 12 B. 45C. 2D. 9【答案】C3. 函数f (x )=2x -1log 3x 的定义域为 ( )A. (0,+∞)B. (1,+∞)C. (0,1)D. (0,1)∪(1,+∞)【答案】D【解析】由log 3x ≠0得x >0且x ≠1,因此,函数f (x )=2x -1log 3x 的定义域是(0,1)∪(1,+∞),选D.4.已知映射f :A →B ,其中A =B =R ,对应法则f :x →y =|x |12,若对实数k ∈B ,在集合A 中不存在元素x 使得f :x →k ,则k 的取值X 围是( )A. k ≤0B. k >0C. k ≥0D. k <0【答案】D【解析】由题易知y =|x |12的值域为[0,+∞),要使集合A 中不存在元素x 使得f :x →k ,只需k 不在此值域中,即k <0.5.如右图,是X 大爷晨练时所走的离家距离(y )与行走时间(x )之间的函数关系的图象.若用黑点表示X 大爷家的位置,则X 大爷散步行走的路线可能是( )【答案】D【解析】6.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )=( )A. x -1B. x +1C. 2x +1D. 3x +3【答案】B【解析】在2f (x )-f (-x )=3x +1① 将①中x 换为-x ,则有 2f (-x )-f (x )=-3x +1② ①×2+②得3f (x )=3x +3, ∴f (x )=x +1. 7. 已知函数f (x )=1x +1,则函数f [f (x )]的定义域是________. 【答案】{x |x ≠-1,且x ≠-2} 【解析】由x +1≠0且1x +1+1≠0,得x ≠-1,且x ≠-2. ∴定义域为{x |x ≠-1,且x ≠-2}. 8.若函数f (x )=⎩⎪⎨⎪⎧2x x <3,3x -m x ≥3,且f (f (2))>7,则实数m 的取值X 围为________.【答案】m <5【解析】因为f (2)=4,所以f (f (2))=f (4)=12-m >7,解得m <5. 9.设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =________.【答案】±1【解析】若a ≥0,则a +1=2,得a =1;若a <0,则-a +1=2,得a =-1.故a =±1. 10. 根据下列条件分别求出函数f (x )的解析式: (1)f (x +1)=x +2x ;(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x ).解:(1)令t =x +1,∴t ≥1,x =(t -1)2. 则f (t )=(t -1)2+2(t -1)=t 2-1, 即f (x )=x 2-1,x ∈[1,+∞). (2)设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17, ∴a =2,b =7,故f (x )=2x +7.11. 已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0,(1)求f [g (2)]与g [f (2)]. (2)求f [g (x )]与g [f (x )]的表达式.12.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2 km ,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y (km)与时间x (分)的关系.试写出y =f (x )的函数解析式.。

新高考分段函数试题点析

新高考分段函数试题点析

新高考分段函数试题点析发表时间:2020-12-01T15:13:21.957Z 来源:《中小学教育》2020年8月24期作者:石惠敏[导读] 在高中阶段乃至是在高考阶段,函数的相关内容都是重点和必考点,石惠敏浙江省义乌市群星外国语学校 322000摘要:在高中阶段乃至是在高考阶段,函数的相关内容都是重点和必考点,因此函数教学在高中数学教学阶段占有很强的地位。

然而,虽然在历年高考答题中都会有函数相应内容的出现,但是考察的方式以及题型的变化都在慢慢的改变。

关键词:新高考;分段函数;试题点析一、针对新高考试题图像分段类进行点析在现阶段高考函数类型问题中大多会将函数图像与函数解析式相结合的考试题目进行展示,针对这一类型的试题大多会在高考判断或选择类题目中出现,该类型题目主要是为了锻炼学生们对函数表达式的了解程度,以及与之对用的图像转换进行判断和分析。

于此同时,在新高考试题中也会通过将分段函数与数轴相结合的方式同时展示出来,并让学生们结合数轴曲线运作方向判断出正确的函数解析式;或者让学生们根据函数解析式的类型带入到不同的函数图像中然后通过判断找出与之相对应的函数图像,这样的试题类型在新高考数学中不仅占了一部分分值,同时也是不容小觑的一种考试题型。

所以在平时针对分段函数进行学习以及练习中应多通过一些相似类型的考试题目或者借助往年的考试真题,让学生们进行分析和计算,从而使学生们对分段函数中的图像转换题型有更进一步的了解以及更深刻的认识,从而促使学生们在高考中对这一类问题的正常发挥。

例如:当我们针对2018年浙江高考中所涉及到的分段函数图像类问题展开探索和评价时,首先这类题型在试卷判断类题目中出现,其问题是:在函数y=2|x|sin2x中的图象可能是什么,然后在下方给出了四种不同形状以及四种不同类型的曲线图形。

针对这一题型,其重点就是要让学生们根据分段函数的性质及特点对函数对应的图象进行选择。

首先,在这一类型题目中要先让学生们对函数的奇偶性进行判断,在本题首先先令f(x)= 2|x|sin2x,因为X∈R,然后在f(-x)= 2|-x|sin2(-x)中可以判断出f(-x)=-f(x),根据函数奇偶性可以判断出该函数为奇函数,根据奇函数对称轴为0,则可以将不符合条件的图象选项进行排除;然后在该分段函数中因为在x∈(π/2,π)时,f(x)<0,根据该性质则可以判断出图象的运动趋势,最终通过图象性质则更加快速的对分段函数的图形类型进行选择。

高中常见分段函数题型归纳.doc

高中常见分段函数题型归纳.doc

匕5(osxia(小,求 f{f[f(a)]} (avO)的值.分析:求此函数值关键是由内到外逐一求值,即由a<0, f(a)=2a,又0<2a<l,怎又声〉所以,分段函数常见题型及解法分段函数是指口变量在两个或两个以上不同的范围內,有不同的对应法则的函数,它是一个函数, 非儿个函数;它的定义域是各段函数定义域的并集,其值域也是各段函数值域的并集.与分段函数有关的类型题的求解,在教材小只出现了由分段函数作出其图象的题型,并未作深入说明, 因此,对于分段函数类型的求解不少同学感到困难较多,现举例说明其求解方法.1.求分段函数的定义域和值域= xw (o,2);例1・求函数xw[2,+oo);的定义域、值域. 解析:作图,利用“数形结合”易知门兀)的定义域为[一1,+°°),值 域为(-1, 2JU {3}.例2.求函数X®的值或解析:因为当沦0时,x 2+l>l ;当x<0时,-x 2<0.所以,原函数的值域M[1,4-OO )U(-oo,0).2.求分段函数的函数值例1.已知函数(I 兀 1> 1)/[/({)]解析:因为 /(i )=li-i|-2 = -14I 所以皿处心例2.(2知函数注:求分段函数值的关键是根据口变量的取值代入相应的函数段.g(x) = 练1 •设e\x<0. Inx, x > 0.练2.设2广Sv 2), log3(x2-i)3.求分段函数的最值4x + 3 (x<0)/(%) = * x-t-3(0<x< 1)例1.求函数卜小(X>1)的最大值.解析:当兀<° 吋,人ax (X )= /(°)= 3,当° VxWl 时,ZnaxS) = '(」)= ",当 X > 1 吋,~x + 5<-1 + 5 = 4综 |-有 f nax (") — °例2.设a 为实数,函数f(x)=x 2+|x ・a|+l,xWR,求f(x)的最小值. 分析:因为原函数可化为所以,只要分别求出其最小值,再取两者较小者即可.1+<!*■ —解:当 x<a 吋,函数 f(x)=x 2-x+a+l 才4,a < —所以若 S 则函数f(x)在(ga ]上单调递减,从而f(x)在(・oo,a ]上的最小值为f(a)=a 2+l.<i > —/(^ ■三*a若 2,贝ij 函数f (x )^(-oo,a ]上的最小值为24<ji-lJ(-!)---« b _若 2 ,则函数f (x )在[a,+s)上的最小值为 丫 4 ,且 2*若 2 ,则函数f(x)^E [a,+co)±的最小值为f(a)=a2+1.*丄综上,当 3时,函数f(x)的最小值是';当2 2时,函数f(x)的最小值是a'+l ;当 2时,函数f(x)的最小值是 4.注:分段函数最值求解方法是先分别求出各段函数的最值,再进行大小比鮫,从I 何达到求解的冃的.4.求分段函数的解析式当x>a 时, 函数例1.在同一平面直角坐标系中,函数y = 和y = 的图彖关于直线>, = x对称,现将-v =巩兀)的图彖沿兀轴向左平移2个单位,再沿y 轴向上平移1个单位,所得的图彖是由两条线段组成的折线(如图所示),则函数/(X )的表达式为()解析:当"[-2,0]时, 尸和+ 1,将其图象沿兀轴向右平移2个单位,再沿y 轴向下平移1个 单位,得解析式为)=+(兀-2) + 1-1 = *兀-1,所以 f(x) = 2x + 2 (XG [-1,0])?当"[0,1]时, y = 2x + l,将其图彖沿x 轴向右平移2个单位,再沿)'轴向下平移1个单位,得解析式y = 2(x-2) +1 -1 = 2x-4所以 /(x) = y% + 2 (尢c[0,2]),综上可得故选A.例2•某蔬菜基地种植西红柿,由历年市场行情得知,从2刀1 H 起的300天内,西红柿售价与上市时 间的关系用图1的一•条折线表示;西红柿的种植成木与上市时间的关系用图2的抛物线段表示: ⑴写出图1表示的市场售价与时间的函数关系式P=f(t),写出图2表示的种植成本与上市时间的函数关系 式Q=g(t); (II)认定市面上售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?解析:⑴由图I 可得市场售价与时间的关系为300 r (0£/£200))B. C.f(x) =fM =2x + 2 于+ 2 2x-2 7-2[2x-2D. f(x) =2x-6 f-3(-l<x<0)(0 < x < 2)(-l<x<0) (0<x<2) (l<x<2) (2<x<4)(l<x< 2) (2 < x < 4)-• 333 、・ 、 、--- JI/' ■ / i:: ・200 300°图1V23工 153 1 、■、 』1 1 11- •十: 1 11 1 • • 1 ill 0】53 :刃 300 t图22«-300 C200<«<?iJO) 山图2可得种植成本与吋间的函数关系为(0<t<300)o(II)设t 吋间的纯收益为h(t),由题意得丄尸丄“直(pit^2Da ).200 2 2-1^5(200 <Zi300X 2002 2再求h(t)的最大值即可。

分段函数例题及解析

分段函数例题及解析

分段函数例题及解析1. 分段函数的定义分段函数是指在定义域上根据不同的条件对应不同的函数表达式的函数。

通常用于描述现实中具有不同规律的情况。

2. 分段函数的表示方式分段函数可以用函数图像、函数表达式和条件表示等方式来表示。

2.1 函数图像表示我们可以通过绘制函数图像来直观地表示分段函数的值随自变量的变化情况。

2.2 函数表达式表示在分段函数的定义域上,我们可以使用不同的函数表达式来表示不同条件下的函数值。

2.3 条件表示我们也可以使用条件表示法来表示分段函数。

例如:当自变量小于等于某个数时,函数的值为一个表达式;当自变量大于某个数时,函数的值为另一个表达式。

3. 分段函数的例题及解析3.1 例题1考虑以下分段函数:$$ f(x)=\\begin{cases} x+1, & \\text{if } x < 0 \\\\ 2x, & \\text{if } x \\geq 0\\end{cases} $$我们来分析该分段函数的性质。

首先,我们可以通过函数表达式表示这个分段函数。

当x<0时,函数的表达式为x+1;当$x \\geq 0$时,函数的表达式为2x。

其次,我们可以绘制该分段函数的函数图像。

对于x<0的情况,函数的图像是一个斜率为1的直线,与x轴交于点(−1,0);对于$x \\geq 0$的情况,函数的图像是一个斜率为2的直线,通过原点。

通过图像可以看出,在x=0处,由两条直线组成的函数图像连接起来,形成一个光滑的图像。

3.2 例题2考虑以下分段函数:$$ g(x)=\\begin{cases} x^2, & \\text{if } x \\leq 2 \\\\ 2x+1, & \\text{if } x > 2\\end{cases} $$我们来分析该分段函数的性质。

首先,我们可以使用条件表示法来表示这个分段函数。

当$x \\leq 2$时,函数的值为x2;当x>2时,函数的值为2x+1。

分段函数“题型”剖析

分段函数“题型”剖析

ʏ王 飞分段函数是自变量取不同范围时所使用的解析式不同 ,于是,求解分段函数要时刻盯着自变量的范围是否发生变化,即 分段函数分区间研究其性质 ㊂题型1:分段函数的求值问题例1 已知分段函数f (x )=x (x +4),x ȡ0,x (x -4),x <0,求f (1),f (-3),f (a +1)的值㊂分析:求f (1),f (-3),可选用解析式求值;求f (a +1),依据(a +1)和0的大小进行分类,再选择解析式求值㊂解:因为f (x )=x (x +4),x ȡ0,x (x -4),x <0,所以f (1)=1ˑ(1+4)=5,f (-3)=-3ˑ(-3-4)=21,f (a+1)=(a +1)(a +5),a ȡ-1,(a +1)(a -3),a <-1㊂分段函数求值,可依据自变量的值,选择对应的解析式求值㊂当自变量不确定时,先合理分类,再利用区间上的解析式求值㊂题型2:分段函数的复合函数求值问题例2 设函数f (x )=2,x >0,0,x =0,-2,x <0,函数g (x )=1,x ɪQ ,-1,x ɪ(∁R Q),则f g (π) 的值为㊂分析:求f [g (π)]的值,需认清由内向外的顺序,合理选择区间上的解析式求值㊂解:因为π为无理数,所以g (π)=-1㊂又-1<0,所以f [g (π)]=f (-1)=-2㊂分段函数的复合函数求值,注意由内向外的复合过程,每一次都由自变量的范围合理选择区间上对应的解析式求值㊂本题先求g (π)的值,再求f [g (π)]的值㊂题型3:分段函数的不等式问题例3 已知分段函数f (x )=1x -1,1<x ɤ2,12x ,x >2,则满足f (a )>3的实数a 的取值范围是㊂分析:求f (a )>3,需依据a 的取值范围选择解析式,这就要对a 进行分类讨论,利用f (a )构建不等式组,最后求并集㊂解:当1<a ɤ2时,由f (a )=1a -1>3,解得1<a <43;当2<a 时,由f (a )=12a >3,解得a >6㊂综上可得,实数a ɪ1,43ɣ(6,+ɕ)㊂求分段函数的不等式,关键是先利用区间上的解析式,对整体变量进行合理分类,构建不等式组,再求并集,凸显了 先分后合 的分类方法㊂题型4:分段函数与实际应用问题例4 某单位为鼓励职工节约用水,有如下规定:每位职工每月用水量不超过10m 3,按3元/m 3收费;用水量超过10m 3,超过部分按5元/m 3收费㊂某职工某月缴水费55元,则该职工这个月实际用水量为m 3㊂分析:先设出职工的月实际用水量,由题设构建所交水费与用水量的分段函数,借助分段函数的函数值构建方程,再求对应的用水量㊂解:设职工的月实际用水量为x m 3,所缴水费为y 元㊂结合题意可得y =71知识结构与拓展高一数学 2023年10月Copyright ©博看网. All Rights Reserved.3x ,0ɤx ɤ10,30+5(x -10),x >10, 即所缴水费y =3x ,0ɤx ɤ10,5x -20,x >10㊂因为该职工实际用水量超过10m 3,所以5x -20=55,解得x =15㊂故该职工这个月实际用水量为15m 3㊂在阅读理解的基础上,构建分段函数模型是解题的关键㊂解题的难点是 当x >10时,y =30+5(x -10) 的应用㊂题型5:分段函数的单调性问题例5 已知分段函数f (x )=(2a -1)x +4a ,x <1,-x +1,x ȡ1是定义在R 上的减函数,则实数a 的取值范围为㊂分析:当x ȡ1时,f (x )为减函数,当x <1时,f (x )也为减函数,且注意分界点处的函数值的大小关系,从而构建不等式组求出参数的取值范围㊂解:因为f (x )为定义在R 上的减函数,所以2a -1<0,(2a -1)ˑ1+4a ȡ-1+1,解得16ɤa <12,即所求实数a ɪ16,12㊂分段函数由区间单调到R 上单调,既要考虑 同步单调 ,也要考虑分界点处的函数值的大小关系㊂题型6:新定义的分段函数问题例6 对于实数a 和b ,定义运算 *:a *b =a 2-a b (a ɤb ),b 2-a b (a >b ),设f (x )=(2x -1)*(x -1),且关于x 的方程f (x )=m (m ɪR )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是㊂分析:理解新定义是解题的重点㊂解:由所给新定义的运算可得函数f (x )=(2x -1)*(x-1)=(2x -1)2-(2x -1)(x -1)(x ɤ0),(x -1)2-(2x -1)(x -1)(x >0),即函数f (x )=2x 2-x (x ɤ0),-x 2+x (x >0)㊂画出函数f (x )的大 图1致图像,如图1所示㊂关于x 的方程f (x )=m 有三个互不相等的实数根x 1,x 2,x 3,即函数f (x )的图像与直线y =m有三个不同的交点,所以0<m <14㊂不妨设从左到右的交点的横坐标分别为x 1,x 2,x 3㊂当x >0时,-x 2+x =m ,即x 2-x +m =0,所以x 2+x 3=1,且x 2ɪ0,12,所以x 2x 3=x 2(1-x 2)=-x 2-12 2+14,所以0<x 2x 3<14㊂当x <0时,由2x 2-x =14,x <0,解得x =1ʃ34,所以1-34<x 1<0,所以0<-x 1<3-14㊂据上可得,0<-x 1x 2x 3<3-116,所以1-316<x 1x 2x 3<0,即x 1x 2x 3ɪ1-316,0㊂解答本题的关键是由新定义的运算法则得到函数f (x )=(2x -1)*(x -1)=2x 2-x (x ɤ0),-x 2+x (x >0), 再结合分段函数的图像求出x 1x 2x 3的取值范围㊂若分段函数f(x )=(2b -1)x +b -1,x >0,-x 2+(2-b )x ,x ɤ0是R 上的增函数,则实数b 的取值范围是㊂提示:因为f (x )是R 上的增函数,所以2b -1>0,2-b 2ȡ0,b -1ȡ0,解得1ɤb ɤ2,即b ɪ[1,2]㊂作者单位:陕西省洋县中学(责任编辑 郭正华)81 知识结构与拓展 高一数学 2023年10月Copyright ©博看网. All Rights Reserved.。

分段函数常见题型解法-含答案

分段函数常见题型解法-含答案

【知识要点】分段函数问题是高中数学中常见的题型之一,也是高考经常考查的问题.主要考查分段函数的解析式、求值、解不等式、奇偶性、值域(最值)、单调性和零点等问题.1、 求分段函数的解析式,一般一段一段地求,最后综合.即先分后总.注意分段函数的书写格式为:1122()()()()n n n f x x D f x x D f x x D f x x D ∈⎧⎪∈⎪=⎨∈⎪⎪∈⎩,不要写成1122()()()()n n ny f x x D y f x x D f x x D y f x x D =∈⎧⎪=∈⎪=⎨∈⎪⎪=∈⎩.注意分段函数的每一段的自变量的取值范围的交集为空集,并集为函数的定义域D .一般左边的区域写在上面,右边的区域写在下面.2、分段函数求值,先要看自变量在哪一段,再代入那一段的解析式计算.如果不能确定在哪一段,就要分类讨论.注意小分类要求交,大综合要求并.3、分段函数解不等式和分段函数求值的方法类似,注意小分类要求交,大综合要求并.4、分段函数的奇偶性的判断,方法一:定义法.方法二:数形结合.5、分段函数的值域(最值),方法一:先求每一段的最大(小)值,再把每一段的最大(小)值比较,即得到函数的最大(小)值. 方法二:数形结合.6、分段函数的单调性的判断,方法一:数形结合,方法二:先求每一段的单调性,再写出整个函数的单调性.7、分段函数的零点问题,方法一:解方程,方法二:图像法,方法三:方程+图像法. 和一般函数的零点问题的处理方法是一样的.虽然分段函数是一种特殊的函数,在处理这些问题时,方法其实和一般的函数大体是一致的. 【方法讲评】【例1】已知函数)(x f 对实数R x ∈满足)1()1(,0)()(+=-=-+x f x f x f x f ,若当[)1,0∈x 时,21)23(),1,0()(-=≠>+=f a a b a x f x .(1)求[]1,1-∈x 时,)(x f 的解析式;(2)求方程0log )(4=-x x f 的实数解的个数.(2) )()2()1()1(,0)()(x f x f x f x f x f x f =+∴+=-=-+ )(x f ∴是奇函数,且以2为周期.方程0log )(4=-x x f 的实数解的个数也就是函数x y x f y 4log )(==和的交点的个数.在同一直角坐标系中作出这俩个函数的图像,由图像得交点个数为2,所以方程0log )(4=-x x f 的实数解的个数为2.【点评】(1)本题的第一问,根据题意要把[1,1]-分成三个部分,即(1,0),1,(0,1)x x x ∈-=±∈,再一段一段地求. 在求函数的解析式时,要充分利用函数的奇偶性、对称性等. (2)本题第2问解的个数,一般利用数形结合解答.【检测1】已知定义在R 上的函数()()22f x x =-.(Ⅰ)若不等式()()223f x t f x +-<+对一切[]0,2x ∈恒成立,求实数t 的取值范围;(Ⅱ)设()g x =,求函数()g x 在[]0,(0)m m >上的最大值()m ϕ的表达式.【例2】已知函数()()22log 3,2{21,2x x x f x x ---<=-≥ ,若()21f a -= ,则()f a = ( )A. 2-B. 0C. 2D. 9【解析】当22a -< 即0a >时, ()()211log 3211,22a a a ---=⇒+==- (舍); 当22a -≥ 即0a ≤时, ()2222111log 42a a f a ---=⇒=-⇒=-=- ,故选A.【点评】(1)要计算(2)f a -的值,就要看自变量2a -在分段函数的哪一段,但是由于无法确定,所以要就2222a a -<-≥和分类讨论. (2)分类讨论时,注意数学逻辑,小分类要求交,大综合要求并.当0a >时 ,解得12a =-,要舍去.【例3】【2017山东,文9】设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫=⎪⎝⎭( ) A. 2 B. 4 C. 6 D. 8【点评】(1)要化简()()1f a f a =+,必须要讨论a 的范围,要分1a ≥和01a <<讨论.当1a≥时,可以解方程2(1)2(11)a a -=+-,得方程没有解.也可以直接由2(1)y x =-单调性得到()()1f a f a ≠+.【检测2】已知函数210()0xx f x x -⎧-≤⎪=>,若0[()]1f f x =,则0x = .【例3】已知函数则的解集为( )A.B.C.D.【点评】(1)本题中()f x 的自变量x 不确定它在函数的哪一段,所以要分类讨论. (2)当20x -<<时,计算()f x -要注意确定x -的范围,02x <-<,所以求()f x -要代入第一段的解析式.数学思维一定要注意逻辑和严谨. (3)分类讨论时,一定要注意数学逻辑,小分类要求交,大综合要求并.【检测3】已知函数()()()22log 2,02,{2,20,x x f x f x x --+≤<=---<<则()2f x ≤的解集为__________.【检测4】【2017课标3,理15】设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是_________.【例4】判断函数⎩⎨⎧>+-<+=)0()0()(22x x x x x x x f 的奇偶性 【解析】由题得函数的定义域关于原点对称.设0,x <2()f x x x =+,则0x ->,222()()()()f x x x x x x x f x -=---=--=-+=- 设0,x >2()f x x x =-+则0x -<,222()()()()f x x x x x x x f x -=--=-=--+=- 所以函数()f x 是奇函数.【点评】(1)对于分段函数奇偶性的判断,也是要先看函数的定义域,再考虑定义,由于它是分段函数,所以要分类讨论. (2)注意,当0x <时,求()f x -要代入下面的解析式,因为0x ->,不是还代入上面一段的解析式.【检测5】已知函数()f x 是定义在R 上的奇函数,且当0x ≥时22)(+=x xx f . (1)求()f x 的解析式;(2)判断()f x 的单调性(不必证明);(3) 若对任意的t R ∈,不等式0)2()3(22≤++-t t f t k f 恒成立,求k 的取值范围.【例5】若函数62()3log 2a x x f x x x -+≤⎧=⎨+>⎩(01)a a >≠且的值域是[4,)+∞,则实数a 的取值范围是 .【点评】(1)分段函数求最值(值域),方法一:先求每一段的最大(小)值,再把每一段的最大(小)值比较,即得到函数的最大(小)值. 方法二:数形结合.(2)本题既可以用方法一,也可以利用数形结合分析解答. (3)对于对数函数log a y x =,如果没有说明a 与1的大小关系,一般要分类讨论.【检测6】设()()2,014,0x a x f x x a x x ⎧-≤⎪=⎨+++⎪⎩,>若()0f 是()f x 的最小值,则a 的取值范围为( ) A. []2,3- B. []2,0- C. []1,3 D. []0,3【检测7】已知函数()()222log 23,1{1,1x ax a x f x x x -+≥=-<的值域为R ,则常数a 的取值范围是( )A. ][()1123-,,B. ][()12-∞+∞,,C. ()[)1123-,,D. (,0]-∞{}[)123,【例6】若()()3,1{log ,1a a x a x f x x x --<=> 是(),-∞+∞上的增函数,那么a 的取值范围是( ).A. ()1,+∞B. 3,32⎡⎫⎪⎢⎣⎭C. (),3-∞D. ()1,3【点评】(1)函数是一个分段函数是增函数必须满足两个条件,条件一:分段函数的每一段必须是增函数;条件二:左边一段的最大值必须小于等于右边一段的最小值. 函数是一个分段函数是减函数必须满足两个条件,条件一:分段函数的每一段必须是减函数;条件二:左边一段的最小值必须大于等于右边一段的最大值. (3)一个分段函数是增函数,不能理解为只需每一段是增函数. 这是一个必要不充分条件.【检测8】已知函数()[)()232,0,32,,0x x f x x a a x ⎧∈+∞⎪=⎨+-+∈-∞⎪⎩在区间(),-∞+∞上是增函数,则常数a 的取值范围是 ( )A .()1,2B .(][),12,-∞+∞C .[]1,2D .()(),12,-∞+∞【例7】已知函数()21,0,{log ,0,x x f x x x +≤=>则函数()()1y ff x =+的所有零点构成的集合为__________.【点评】(1)分段函数的零点问题,一般有三种方法,方法一:解方程,方法二:图像法,方法三:方程+图像法. 和一般函数的零点问题的处理方法是一样的. (2)本题由于函数()()1y f f x =+的图像不方便作出,所以选择解方程的方法解答. (3)在函数()()1y f f x =+中,由于没有确定x 的取值范围,所以要分类讨论.【例8()()g x f x k =-仅有一个零点,则k 的取值范围是________.【解析】函数()()22,1{91,1x xf x x x x >=-≤ ,若函数()()g x f x k =- 仅有一个零点,即()f x k = ,只有一个解,在平面直角坐标系中画出, ()y f x =的图象,结合函数图象可知,方程只有一个解时,)4,23⎛⎫ ⎪⎝⎭ )4,23⎛⎫⎪⎝⎭.【点评】(1)直接画()()g x f x k =-的图像比较困难,所以可以利用方程+图像的方法. 分离参数得到()f x k =,再画图数形结合分析. 学.科.网【例9】已知函数关于的方程,有不同的实数解,则的取值范围是( )A. B.C. D.【解析】【点评】本题考查了类二次方程实数根的相关问题,以及数形结合思想方法的体现,这种嵌入式的方程形式也是高考考查的热点,这种嵌入式的方程首先从二次方程的实数根入手,一般因式分解后都能求实根,得到和,然后再根据导数判断函数的单调性和极值等性质,画出函数的图象,若直线和函数的交点个数得到参数的取值范围.【检测9】已知函数()()1114{(1)x x f x lnx x +≤=>,则方程()f x ax =恰有两个不同的实根时,实数a 的取值范围是( )(注: e 为自然对数的底数)A. 10,e ⎛⎫ ⎪⎝⎭B. 10,4⎛⎫ ⎪⎝⎭C. 11,4e ⎡⎫⎪⎢⎣⎭D. 1,e 4⎡⎫⎪⎢⎣⎭高中数学常见题型解法归纳及反馈检测第15讲:分段函数中常见题型解法参考答案【反馈检测1答案】(Ⅰ)11t -<<(Ⅱ)()222,011,112,1m m m m m m m m ϕ⎧-+<≤⎪⎪=<≤+⎨⎪->⎪⎩方法二:不等式恒成立等价于恒成立 .即等价于对一切恒成立,即恒成立,得恒成立, 当时,,,因此,实数t 的取值范围是11t -<<.【反馈检测2答案】或1【反馈检测2详细解析】当时,,则,即 ;当时,,则,即。

高中数学数学干货|经典分段函数专题

高中数学数学干货|经典分段函数专题

高中数学数学干货|经典分段函数专题在高中数学中,分段函数是一个非常重要且常见的概念。

它由多个线性函数组成,每个函数在不同的区间上定义。

在本文中,我们将深入探讨分段函数的相关知识,并介绍一些经典的分段函数题目和解法。

1. 什么是分段函数?分段函数是由若干段不同的线性函数组成的函数。

它通常采用以下的形式表示:\[f(x) = \begin{cases}f_1(x), & x \in D_1\\f_2(x), & x \in D_2\\\cdots\\f_n(x), & x \in D_n\end{cases}\]其中,$f_i(x)$表示第$i$段线性函数,$D_i$表示第$i$段函数的定义域。

2. 分段函数的分类根据不同的特性和形式,分段函数可以分为以下几种类型:2.1 分段常值函数分段常值函数是由多个常值函数组成的函数。

在不同的区间内,函数的取值是不同的常数。

例如,考虑以下分段函数:\[f(x) = \begin{cases}1, & x < 0\\ 2, & x \geq 0\end{cases}\]在$x < 0$的区间内,函数的取值为1;在$x \geq 0$的区间内,函数的取值为2。

2.2 分段线性函数分段线性函数是由多个线性函数组成的函数。

在不同的区间内,函数的斜率和截距可能是不同的。

例如,考虑以下分段函数:\[f(x) = \begin{cases}2x, & x < 0\\ x^2, & x \geq 0\end{cases}\]在$x < 0$的区间内,函数的斜率为2;在$x \geq 0$的区间内,函数的斜率为$x$。

3. 经典分段函数题目与解法接下来,我们将介绍一些经典的分段函数题目,并给出相应的解法。

3.1 题目一已知函数$f(x)$满足以下条件:\[f(x) = \begin{cases}x+1, & x < 1\\ 2x, & x \geq 1\end{cases}\]求解方程$f(x) = 3$的解。

解读分段函数

解读分段函数

解读分段函数分段函数是一类特殊的函数,有着广泛的应用,课本中并没有进行大篇幅的介绍,但是它是高考的必考内容,下面就分段函数的有关知识进行拓展,供同学们学习时参考.一、分段函数解读在定义域中,对于自变量x 的不同取值范围,相应的对应关系不同,这样的函数称之为分段函数.分段函数是一个函数,而不是几个函数,它只是各段上的解析式(或对应关系)不同而已.二、常见的题型及其求解策略1.求分段函数的定义域、值域例1 求函数f (x )=⎩⎨⎧x 2+4x ,x ≤-2,x 2,x >-2的值域.解 当x ≤-2时,y =x 2+4x =(x +2)2-4,∴y ≥-4;当x >-2时,y =x 2,∴y >-22=-1.∴函数f (x )的值域是{y |y ≥-4}.解题策略 分段函数的定义域是各段函数解析式中自变量取值集合的并集;分段函数的值域是各段函数值集合的并集.2.求分段函数的函数值例2 已知f (x )=⎩⎪⎨⎪⎧x -2,x >10,f [f (x +6)],x <10,求f (5)的值. 解 ∵5<10,∴f (5)=f [f (5+6)]=f [f (11)],∵11>10,∴f [f (11)]=f (9),又∵9<10,∴f (9)=f [f (15)]=f (13)=11.即f (5)=11.解题策略 求分段函数的函数值时,关键是判断所给出的自变量所处的区间,再代入相应的解析式;另一方面,如果题目中含有多个分层的形式,则需要由里到外层层处理.3.画出分段函数的图象例3 已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥0,x 2,x <0,作出此函数的图象. 解 由于分段函数有两段,所以这个函数的图象应该由两条线组成,一条是抛物线的左侧,另一条是射线,画出图象如图所示.解题策略 分段函数有几段,其图象就由几条曲线组成,作图的关键是根据定义域的不同分别由表达式作出其图象,作图时一要注意每段自变量的取值范围,二要注意判断函数图象每段端点的虚实.4.求解分段函数的解析式例4 某移动公司采用分段计费的方法来计算话费,月通话时间x (分钟)与相应话费y (元)之间的函数图象如图所示.则:(1)月通话为50分钟时,应交话费多少元;(2)求y 与x 之间的函数关系式.解 (1)由题意可知当0<x ≤100时,设函数的解析式y =kx ,又因过点(100,40),得解析式为y =25x ,当月通话为50分钟时,0<50<100,所以应交话费y =25×50=20元.(2)当x >100时,设y 与x 之间的函数关系式为y =kx +b ,由图知x =100时,y =40;x =200时,y =60.则有⎩⎨⎧ 40=100k +b ,60=200k +b ,解得⎩⎪⎨⎪⎧ k =15,b =20,所以解析式为y =15x +20,故所求函数关系式为y =⎩⎨⎧25x ,0<x ≤100,15x +20,x >100.解题策略 以收费为题材的数学问题多以分段函数的形式出现在高考试题中,解决此类问题的关键是正确的理解题目(或图象)给出的信息,确定合适的数学模型及准确的自变量的分界点.。

分段函数的几种常见题型及解法

分段函数的几种常见题型及解法

函数的概念和性质
考点分段函数
分段函数是指自变量在两个或两个以上不同的范围内
, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数
; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集
. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用
, 时常在高考试题中“闪亮”登场, 本文就几种具体的题型做了
一些思考, 解析如下:1.求分段函数的定义域和值域
例1.求函数1
222[1,0];
()(0,2);
3[2,
);x x f x x x x 的定义域、值域. 2.求分段函数的函数值
例2.已知函数2|1|2,(||1)
()1
,(||1)1x x f x x x 求1
2[()]f f .
3.求分段函数的最值
例3.求函数43(0)()3(01)5(1)x x
f x x x
x x
的最大值. 4.求分段函数的解析式
例4.在同一平面直角坐标系中
, 函数()y f x 和()y g x 的图象关于直线y x 对称, 现将()y g x 的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的
图象是由两条线段组成的折线(如图所示)
, 则函数()f x 的表达式为()222(1
0).()2(02)
x
x x A f x x 222(10)
.()2(02)
x x x B f x x 222(12)
.()1(24)
x x x C f x x 226(12)
.()3(24)x
x x
D f x x -12131o -2y x。

分段函数的几种常见题型及解法

分段函数的几种常见题型及解法

函数的概念和性质考点 分段函数分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 本文就几种具体的题型做了一些思考, 解析如下:1.求分段函数的定义域和值域例1.求函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域.2.求分段函数的函数值例2.已知函数2|1|2,(||1)()1,(||1)1x x f x x x --≤⎧⎪=⎨>⎪+⎩求12[()]f f .3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.4.求分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)xx x A f x x +-≤≤⎧=⎨+<≤⎩ 222(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)x x x C f x x -≤≤⎧=⎨+<≤⎩226(12).()3(24)x x x D f x x -≤≤⎧=⎨-<≤⎩5.作分段函数的图像-12131o-2y x例5.函数|ln ||1|x y ex =--的图像大致是( )A11oyxByx11OCyxO11DyxO116.求分段函数得反函数例6已知()y f x =是定义在R 上的奇函数, 且当0x >时, ()31xf x =-, 设()f x 的反函数为()y g x =, 求()g x 的表达式.7.判断分段函数的奇偶性例7.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.8.判断分段函数的单调性例8.判断函数32(0)()(0)x x x f x xx ⎧+≥⎪=⎨-<⎪⎩的单调性.例9.写出函数()|12||2|f x x x =++-的单调减区间.9.解分段函数的方程例10.设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为10.解分段函数的不等式例11.设函数1221(0)()(0)x x f x x x -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则0x 得取值范围是( ).(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞例12.设函数2(1)(1)()41(1)x x f x x x ⎧+<⎪=⎨--≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃反馈练习1.(2013新课标全国Ⅰ,5分)已知函数f (x )=⎩⎨⎧-x 2+2x ,x ≤0,ln x +1,x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0] B.(-∞,1] C .[-2,1]D .[-2,0]2.(2013福建,4分)已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=________.3.(2013北京,5分)函数f (x )=⎩⎪⎨⎪⎧log 12x , x ≥1,2x , x <1的值域为________.4.(2012江西,5分)若函数f (x )=⎩⎨⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .05.(2011北京,5分)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧cx,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,166.(2012江苏,5分)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f (12)=f (32),则a +3b 的值为________.7.(2011江苏,5分)已知实数a ≠0,函数f (x )=⎩⎨⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.函数的概念和性质考点一 分段函数分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 本文就几种具体的题型做了一些思考, 解析如下:1.求分段函数的定义域和值域例1.求函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域. 【解析】作图, 利用“数形结合”易知()f x 的定义域为[1,)-+∞, 值域为(1,3]-.2.求分段函数的函数值例2.已知函数2|1|2,(||1)()1,(||1)1x x f x x x --≤⎧⎪=⎨>⎪+⎩求12[()]f f .【解析】因为311222()|1|2f =--=-, 所以312223214[()]()1()13f f f =-==+-.3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.【解析】当0x ≤时, max ()(0)3f x f ==, 当01x <≤时, max ()(1)4f x f ==,11o 322-1y x-1当1x >时, 5154x -+<-+=, 综上有max ()4f x =.4.求分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)xx x A f x x +-≤≤⎧=⎨+<≤⎩ 222(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)xx x C f x x -≤≤⎧=⎨+<≤⎩ 226(12).()3(24)xx x D f x x -≤≤⎧=⎨-<≤⎩ 【解析】当[2,0]x ∈-时, 121y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式为1122(2)111y x x =-+-=-, 所以()22([f x x x =+∈-, 当[0,1]x ∈时, 21y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式2(2)1124y x x =-+-=-, 所以12()2([0,2])f x x x =+∈, 综上可得222(10)()2(02)x x x f x x +-≤≤⎧=⎨+<≤⎩, 故选A .5.作分段函数的图像 例5.函数|ln ||1|x y ex =--的图像大致是( )-12131o-2y xA11oyxByx11OCyxO11DyxO11解析:在定义范围讨论,当0<x<1时,11y x x=+-;当x>1时1y =,故选D 6.求分段函数得反函数例6已知()y f x =是定义在R 上的奇函数, 且当0x >时, ()31xf x =-, 设()f x 的反函数为()y g x =, 求()g x 的表达式.【解析】设0x <, 则0x ->, 所以()31xf x --=-, 又因为()f x 是定义在R 上的奇函数,所以()()f x f x -=-, 且(0)0f =, 所以()13xf x -=-, 因此31(0)()0(0)13(0)x x x f x x x -⎧->⎪==⎨⎪-<⎩, 从而可得33log (1)(0)()0(0)log (1)(0)x x g x x x x +>⎧⎪==⎨⎪--<⎩.7.判断分段函数的奇偶性例7.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.【解析】当0x >时, 0x -<, 22()()(1)(1)()f x x x x x f x -=---+=-=, 当0x =时,(0)(0)0f f -==, 当0x <, 0x ->, 22()()(1)(1)()f x x x x x f x -=---=-+=因此, 对于任意x R ∈都有()()f x f x -=, 所以()f x 为偶函数.8.判断分段函数的单调性例8.判断函数32(0)()(0)x x x f x xx ⎧+≥⎪=⎨-<⎪⎩的单调性.【解析】显然()f x 连续. 当0x ≥时, '2()311f x x =+≥恒成立, 所以()f x 是单调递增函数, 当0x <时, '()20f x x =->恒成立, ()f x 也是单调递增函数, 所以()f x 在R 上是单调递增函数; 或画图易知()f x 在R 上是单调递增函数.例9.写出函数()|12||2|f x x x =++-的单调减区间.【解析】121231()()3(2)31(2)x x f x x x x x -+≤-⎧⎪=+-<<⎨⎪-≥⎩, 画图易知单调减区间为12(,]-∞-.9.解分段函数的方程例10.(01年上海)设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为【解析】 若142x-=, 则222x--=, 得2(,1]x =∉-∞, 所以2x =(舍去), 若1814log x =,则1481x =, 解得3(1,)x =∈+∞, 所以3x =即为所求.10.解分段函数的不等式例11.设函数1221(0)()(0)x x f x xx -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则0x 得取值范围是( )yx52o -1252.(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞【解析1】首先画出()y f x =和1y =的大致图像, 易知0()1f x >时, 所对应的0x 的取值范围是(,1)(1,)-∞-⋃+∞.【解析2】因为0()1f x >, 当00x ≤时, 0211x -->, 解得01x <-, 当00x >时,1201x >, 解得01x >, 综上0x 的取值范围是(,1)(1,)-∞-⋃+∞. 故选D.例12.设函数2(1)(1)()41(1)x x f x x x ⎧+<⎪=⎨--≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃ 【解析】当1x <时, 2()1(1)120f x x x x ≥⇔+≥⇔≤-≥或, 所以21x x ≤-≤<或0, 当1x ≥时, ()14111310f x x x x ≥⇔--≥⇔-≤⇔≤, 所以110x ≤≤, 综上所述, 2x ≤-或010x ≤≤, 故选A 项.【点评:】以上分段函数性质的考查中, 不难得到一种解题的重要途径, 若能画出其大致图像, 定义域、值域、最值、单调性、奇偶性等问题就会迎刃而解, 方程、不等式等可用数形结合思想、等价转化思想、分类讨论思想及函数思想来解, 使问题得到大大简化, 效果明显.反馈练习1.(2013新课标全国Ⅰ,5分)已知函数f (x )=⎩⎨⎧-x 2+2x ,x ≤0,ln x +1,x >0.若|f (x )|≥ax ,则xy1-11a 的取值范围是( )A .(-∞,0]B.(-∞,1] C .[-2,1] D .[-2,0]解析:本题考查一次函数、二次函数、对数函数、分段函数及由不等式恒成立求参数的取值范围问题,意在考查考生的转化能力和利用数形结合思想解答问题的能力.当x ≤0时,f (x )=-x 2+2x =-(x -1)2+1≤0,所以|f (x )|≥ax 化简为x 2-2x ≥ax ,即x 2≥(a +2)x ,因为x ≤0,所以a +2≥x 恒成立,所以a ≥-2;当x >0时,f (x )=ln(x +1)>0,所以|f (x )|≥ax 化简为ln(x +1)>ax 恒成立,由函数图象可知a ≤0,综上,当-2≤a ≤0时,不等式|f (x )|≥ax 恒成立,选择D.答案:D2.(2013福建,4分)已知函数f (x )=⎩⎪⎨⎪⎧ 2x 3,x <0,-tan x ,0≤x <π2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=________. 解析:本题主要考查分段函数的求值,意在考查考生的应用能力和运算求解能力.∵f ⎝ ⎛⎭⎪⎫π4=-tan π4=-1,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=f (-1)=2×(-1)3=-2. 答案:-23.(2013北京,5分)函数f (x )=⎩⎪⎨⎪⎧ log 12x , x ≥1,2x , x <1的值域为________.解析:本题主要考查分段函数的概念、性质以及指数函数、对数函数的性质,意在考查考生对函数定义域、值域掌握的熟练程度.分段函数是一个函数,其定义域是各段函数定义域的并集,值域是各段函数值域的并集.当x ≥1时,log 12x ≤0,当x <1时,0<2x<2,故值域为(0,2)∪(-∞,0]=(-∞,2).答案:(-∞,2)4.(2012江西,5分)若函数f (x )=⎩⎨⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( ) A .lg 101B .2C .1D .0 解析:f (10)=lg 10=1,故f (f (10))=f (1)=12+1=2.答案:B5.(2011北京,5分)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧ c x ,x <A ,c A ,x ≥A (A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16 解析:因为组装第A 件产品用时15分钟,所以c A =15(1),所以必有4<A ,且c 4=c 2=30(2),联立(1)(2)解得c =60,A =16.答案:D 6.(2012江苏,5分)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f (12)=f (32),则a +3b 的值为________. 解析:因为f (x )是定义在R 上且周期为2的函数,所以f (32)=f (-12),且f (-1)=f (1),故f (12)=f (-12),从而12b +212+1=-12a +1,3a +2b =-2. ① 由f (-1)=f (1),得-a +1=b +22,故b =-2a . ②由①②得a =2,b =-4,从而a +3b =-10.答案:-107.(2011江苏,5分)已知实数a ≠0,函数f (x )=⎩⎨⎧ 2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________. 解析:①当1-a <1,即a >0时,此时a +1>1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,计算得a =-32(舍去);②当1-a >1,即a <0时,此时a +1<1,由f (1-a )=f (1+a ),得2(1+a )+a =-(1-a )-2a ,计算得a =-34,符合题意,所以综上所述,a =-34. 答案:-34。

(完整word版)分段函数专题非常全面

(完整word版)分段函数专题非常全面

分段函数的性质与应用分段函数是函数中比较复杂的一种函数,其要点在于自变量取不相同范围的值时所使用的 解析式不相同,所以在解决分段函数的问题时要时辰盯着自变量的范围可否在发生变化。

即“分段函数——分段看” 一、基础知识:1、分段函数的定义域与值域——各段的并集2、分段函数单调性的判断:先判断每段的单调性,若是单调性相同,则需判断函数是连续 的还是断开的, 若是函数连续, 则单调区间可以合在一起,若是函数不连续,则要依照函数 在两段分界点出的函数值(和临界值)的大小确定可否将单调区间并在一起。

3、分段函数对称性的判断:若是可以将每段的图像作出,则优先采用图像法,经过观察图 像判断分段函数奇偶性。

若是不便作出,则只能经过代数方法比较 f x , f x 的关系,要注意 x, x 的范围以代入到正确的解析式。

4、分段函数解析要注意的几个问题( 1)分段函数在图像上分为两类,连续型与断开型,判断的方法为将界线值代入每一段函数(其中一段是函数值,别的一段是临界值),若两个值相等,那么分段函数是连续的。

否2x 1,x3 3代入两段解析式,计算结果相同,那则是断开的。

比方: f x4, x,将 xx 2 32 x 1,x3 么此分段函数图像即为一条连续的曲线,其性质便于解析。

再比方 f x1,x中,x 2 3两段解析式结果不相同,进而分段函数的图像是断开的两段。

(2)每一个含绝对值的函数,都可以经过绝对值内部的符号谈论,将其转变成分段函数。

x 1 3,x 1 比方: fx x 1 3,可转变成: f x1 x 3,x 15、遇到分段函数要时辰盯住变量的范围,并依照变量的范围选择合适的解析式代入,若变 量的范围其实不完幸亏某一段中,要注意进行分类谈论6、若是分段函数每一段的解析式便于作图,则在解题时建议将分段函数的图像作出,以便必要时进行数形结合。

二、典型例题例 1:已知函数 f ( x)2x1 x 1f 04a ,则实数 a _____x 2 ax x,若 f1思路:从里向外一层层求值,f 0 20 1 2f f 0f 24 2a所以 4 2a 4a a2答案: a2例 2:设函数 fxcos x, x 0 ,则 f10 的值为 _________f x 11,x3思路:由f x 解析式可知,只有 x 0 ,才能获取详尽的数值,x 0 时只能依靠f xf x 11向 x 0 正数进行靠拢。

分段函数知识点及例题解析

分段函数知识点及例题解析

分段函数知识点及例题解析分段函数常见题型例析所谓“分段函数”是指在定义域的不同部分,有不同对应关系的函数,因此分段函数不是几个函数而是一个函数,它在解题中有着广泛的应用,不少同学对此认识不深,解题时常出现错误.现就分段函数的常见题型例析如下:1.求分段函数的定义域、值域例1.求函数)(x f =->-≤+)2(,2)2(,42x x x x x 的值域.解:当x ≤-2时,4)2(422-+=+=x x x y ,∴ y ≥-4.当x >-2时,y =2x ,∴y >22-=-1.∴ 函数)(x f 的值域是{y ∣y ≥-4,或y >-1}={y ∣y ≥-4}.评注:分段函数的定义域是各段函数解析式中自变量取值集合的并集;分段函数的值域是各段函数值集合的并集.2.作分段函数的图象例2已知函数2(2)()3[22)3[2)x f x x x x -∈-∞-??=+∈-??∈+∞?,,,,,,,画函数(f x 解:函数图象如图1所示.评注:分段函数有几段,其图象就由几条曲线组成,作图的关键是根据定义域的不同,分别由表达式做出其图象.作图时,一要注意每段自变量的取值范围;二要注意间断函数的图象中每段的端点的虚实.3.求分段函数的函数值例3.已知)(x f =??<=>+)0.(0)0(,)0(,1x x x x π 求(((3)))f f f -的值.解:∵ -3<0∴ f (-3)=0,∴ f (f (-3))=f (0)=π又π>0∴(((3)))f f f -=f (π)=π+1.评注:求分段函数的函数值时,首先应确定自变量在定义域中所在的范围,然后按相应的对应关系求值.4.求分段函数的最值x 图1例4.已知函数)(x f =22(0)(0)x x x ??<?,≥,求出这个函数的最值.解:由于本分段函数有两段,所以这个函数的图象由两部分组成,其中一部分是一段抛物线,另一部分是一条射线,如图2所示.因此易得,函数最小值为0,没有最大值.5.表达式问题例5.如图3,动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B C D ,,再回到A ,设x 表示P 点的行程,y 表示PA 的长度,求y 关于x 的表达式.解:如图3所示,当P 点在AB 上运动时,PA x =;当P 点在BC 上运动时,由PBA △Rt ,求得PA =;当P 点在CD 上运动时,由PDA Rt △求出PA =;当P 点在DA 上运动时,4PA x =-,所以y 关于x的表达式是01122343 4.x x x y x x x ?<=<-≤,≤,,≤ 在此基础上,强调“分段”的意义,指出分段函数的各段合并成一个整体,必须用符号“{”来表示,以纠正同学们的错误认识. A BP 图3。

高三艺术生数学一轮复习-分段函数解析式讲义

高三艺术生数学一轮复习-分段函数解析式讲义

【例】(1)已知函数⎩⎨⎧-≥+=0),4(0),4()(<x x x x x x x f ,求)3()1(-f f ,的值. 【解析】5411)1(=+⨯=)(f ,21433)3(=--⨯-=-)()(f (2)函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,x 2,-1<x <2,若f (x )=3,则x 的值是________. 【解析】 当x ≤-1时,x +2=3,得x =1舍去,当-1<x <2时,x 2=3得x =3或x =-3(舍去)【变式探究】(1)若函数234(0)()(0)0(0)x xf x x x π⎧->⎪==⎨⎪<⎩,则((0))f f = .(2)设则的值为( )A .10B .11C .12D .13(3)已知f (x )=⎩⎪⎨⎪⎧ 10,x <0,10x ,x ≥0,则f (f (-7))的值为( )A .100B .10C .-10D .-100(4)设f (x )=⎪⎩⎪⎨⎧≥--≤--)2(3)21()1(32x x x x x x <<,若f (x )=9,则x=( )A.-12B.±3C.-12或±3D.-12或3(5)已知函数y =⎩⎪⎨⎪⎧ x 2+1,x ≤0,-2x ,x >0,使函数值为5的x 的值是( )A .-2B .2或-52C .2或-2D .2或-2或-52(6)设f (x )=()⎩⎨⎧≥-1,1210,x x x x <<,若f (a )=f (a+1),则f (a 1)=( )A.2B.4C.6D.8⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f )5(f1、设()(),0121,1x x f x x x ⎧<<⎪=⎨-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭( ) A .2 B .4 C .6 D .8 2、设1,0()2,0x x x f x x ⎧≥⎪=⎨<⎪⎩,则((2))f f -=( ) A .1- B .14 C .12 D .32 3、设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f ,则)5(f 的值为( ) A .10 B .11 C .12 D .134、设f (x )=⎩⎪⎨⎪⎧ 1,x >0,0,x =0,-1,x <0,g (x )=⎩⎨⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为( ) A .1 B .0 C .-1 D .π5、已知函数232(1)()(1)x x f x x ax x +<⎧=⎨+≥⎩,若((0))4f f a =,则实数a =_______. 6、已知函数)(x f = ,则 )1()0(-+f f =( ) A . 9 B . C . 3 D .7、24,02(),(2)2,2x x f x f x x ⎧-≤≤==⎨>⎩已知函数则 若00()8,f x x ==则( ) A .23 B. 2 C .4 D .18、已知函数f (x )=⎩⎨⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于( ) A .-3 B .-1 C .1 D .39、设函数则不等式的解集是( ) A . B . C .D .267,0,100,,x x x x x ++<≥⎧⎪⎨⎪⎩71101110⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f )1()(f x f >),3()1,3(+∞⋃-),2()1,3(+∞⋃-),3()1,1(+∞⋃-)3,1()3,(⋃--∞10、设函数10221,0,()()1,0x x f x f x x x -⎧-≤⎪=>⎨⎪>⎩若,则0x 的取值范围是( ) A .)1,1(- B .),1-(+∞C .),0()2,(+∞--∞D .),1()1,(+∞--∞11、设函数224,0()4,0x x x f x x x x ⎧+≥=⎨-<⎩,若2(2)()f a f a ->,则实数a 的取值范围是( ) A .(,1)(2,)-∞-+∞ B .(1,2)- C .(2,1)- D .(,2)(1,,)-∞-+∞12、已知实数a ≠0,函数f (x )=⎩⎨⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为( ) A 、-32 B 、-34 C 、-32或-34 D 、32或-34。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点4 分段函数以及应用一、 知识储备汇总与命题规律展望 1.知识储备汇总:(1)分段函数概念:若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数定义域与值域:分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数. (3)分段函数的图像:分段函数有几段它的图像就由几条曲线组成,作图的关键就是根据每段函数的定义区间和表达式在同一坐标系中作出其图像,作图时要注意每段曲线端点的虚实,而且横坐标相同之处不可有两个以上的点。

(4)分段函数的求值:先确定要求值的自变量属于哪一段区间,然后按该段的表达式去求值,直到求出值为止.(5)分段函数的奇偶性:先看定义域是否关于原点对称,不对称就不是奇(偶)函数,再由x >0,x -<0 ,分别代入各段函数式计算)(x f 与)(x f -的值,若有)(x f =)(x f --,当x =0有定义时0)0(=f ,则)(x f 是奇函数;若有f(x)=)(x f -,则)(x f 是偶函数.(6)分段函数的单调性:分别判断出各段函数在其定义区间的单调性结合图象处理分段函数的问题.(7)分段函数的周期性:对分段函数的周期性问题,利用周期函数定义、性质或图像进行判定或解决.(8)分段函数求值:先确定要求值的自变量属于哪一段区间,然后按该段的表达式去求值,直到求出值为止.(9)分段函数的最值:先求出每段函数的最值,再求这几个最值的最值,或利用图像求最值.(10)求分段函数某条件下自变量的范围:先假设所求的解在分段函数定义域的各段上,然后相应求出在各段定义域上的范围,再求它们并集即可.(11)分段函数的不等式问题:利用分类整合思想,化为若干个不等式组问题,解出各个不等式组的解集,其并集就是所求不等式的解集.(12)分段函数的解析式:利用待定系数法,求出各段对应函数的解析式,写成分段函数形式,每个解析式后边标上对应的范围.2.命题规律展望:分段函数是高考考查的重点和热点,主要考查分段函数求值、分段函数值域与最值、分段函数的图像与性质、分段函数方程、分段函数不等式等,考查分类整合、转化与化归、函数与方程、数形结合等数学思想与方法,考题多为选择填空题,难度为容易或中档题.将本考点近五年内的命题规律从题型、考题类型、难度、分值等方面作以总结,对今后考题规律作以展望.二、题型与相关高考题解读 1.分段函数求值 1.1考题展示与解读例1 【2017山东,文9】设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭A. 2B. 4C. 6D. 8【命题意图探究】本题考查了分段函数求值及分类整合思想是中档试题. 【答案】C【解题能力要求】分析问题能力、分类整合思想【方法技巧归纳】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围. 1.2【典型考题变式】1.【变式1:改编条件】已知函数)(x f =⎩⎨⎧≥+-<<+2,8220,2x x x x x ,若)2()(+=a f a f ,则)1(a f =( ) A.165 B. 2 C.6 D.217【答案】B【解析】由2x ≥时()28f x x =-+是减函数可知,若2a ≥,则()()2f a f a ≠+,所以02a <<,由()(+2)f a f a =得22(2)8a a a +=-++,解得1a =,则21(1)112f f a ⎛⎫==+= ⎪⎝⎭,故选B.2. 【变式2:改编结论】设()()121,1x f x x x <<=-≥⎪⎩,若()12f a =,则a = ( )B.41 B. 45 C. 41或45D. 2 【答案】C【解析】由题意知,⎪⎩⎪⎨⎧=<<2110a a 或⎪⎩⎪⎨⎧=-≥21)1(21a a ,解得14a =或45=a ,故选C 3.【变式3:改编问法】已知)(x f 是定义域为R 的奇函数,⎪⎩⎪⎨⎧>-≤≤2)4(2120,sin x x x x ,π,则)431(f =( ) A44 .B.82 C.44- D.82- 【答案】D 【解析】由题意知)41(41)41(41)415(21)431(f f f f -=-===4sin 41π-=82-,故选D. 2.分段函数的最值与值域 2.1考题展示与解读例2【2016年高考北京理数】设函数33,()2,x x x af x x x a⎧-≤=⎨->⎩.①若0a =,则()f x 的最大值为______________; ②若()f x 无最大值,则实数a 的取值范围是________.【命题意图探究】本题主要考查分段函数的最值及分类整合思想、数形结合思想. 【答案】2,(,1)-∞-.【解题能力要求】分类整合思想、数形结合思想、运算求解能力.【方法技巧归纳】先根据各段函数的图象与性质求出各段函数在相应区段上的值域,这些值域的并集就是函数的值域. 2.2【典型考题变式】【变式1:改编条件】已知函数)(x f =⎩⎨⎧>+-≤-+ax ax a x x x ,4,242.(1)当1-=a 时,求)(x f 的最小值.(2)若函数)(x f 无最小值,求实数a 的取值范围. 【答案】(1)-6;(2)),0()3,(+∞⋃-∞.【解析】(1)当1-=a 时,)(x f =⎩⎨⎧->+-≤-+1,41,242x x x x x ,当1-≤x 时,)(in x f m =)2(-f =-6,当1->x 时,3)1()(=->f x f ,所以)(x f 的最小值为-6.(2)当2-≤a 时,要使)(x f 无最小值,由)(x f 的图象知,42422+->-+a a a ,解得3-<a ;当02<<-a 时,要使)(x f 无最小值,由)(x f 的图象知,462+->-a ,无解; 当0=a 时,由)(x f 的图象知,min )(x f =-6; 当0>a 时,由)(x f 的图象知,)(x f 无最小值; 综上所述,实数a 的取值范围为),0()3,(+∞⋃-∞.【变式2:改编结论】设函数33,()2,x x x af x x x a⎧-≤=⎨->⎩,b x f x g -=)()(,若存在实数b ,使得函数)(x g 恰有3个零点,则实数a 的取值范围为______________. 【答案】(0,1).【变式3:改编问法】设函数33,()2,x x x af x x x a⎧-≤=⎨->⎩,讨论)(x f 的值域.【答案】当1-<a 时,函数)(x f 的值域为)2,(a --∞; 当21≤≤-a 时,所以函数)(x f 的值域为]2,(-∞; 当2>a 时,所以函数)(x f 的值域为]3,(3a a --∞.【解析】如图作出函数3()3h x x x =-与直线2y x =-的图象,它们的交点是(1,2)A -,(0,0)O ,(1,2)B -,由2'()33h x x =-,知1x =-是函数()h x 的极大值点,1=x 是函数()h x 的极小值点,当1-<a 时,函数x x y 33-=在],(a -∞上的值域为]3,(3a a --∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为)2(33a a a ---=0)1)(1(<-+a a a ,所以a a a 233-<-,所以函数)(x f 的值域为)2,(a --∞;当21≤≤-a 时,函数x x y 33-=在],(a -∞上的值域为]2,(-∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为22≤-a ,所以函数)(x f 的值域为]2,(-∞;当2>a 时,函数x x y 33-=在],(a -∞上的值域为]3,(3a a --∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为a a a 323-<-,所以函数)(x f 的值域为]3,(3a a --∞;综上所述,当1-<a 时,函数)(x f 的值域为)2,(a --∞; 当21≤≤-a 时,所以函数)(x f 的值域为]2,(-∞; 当2>a 时,所以函数)(x f 的值域为]3,(3a a --∞.3.分段函数的解析式 3.1考题展示与解读例3【2015高考天津,理8】已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是( ) (A )7,4⎛⎫+∞⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫⎪⎝⎭【解题能力要求】本题主要考查分段函数、函数零点、数形结合思想、转化与化归思想,是难题. 【答案】D【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩,所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩, 即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩()()()(2)y f x g x f x f x b =-=+--,所以()()y f x g x =-恰有4个零点等价于方程()(2)0f x f x b +--=有4个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知724b <<.【方法技巧归纳】较复杂的函数零点个数问题,常转化为对应方程解得个数问题,再通过移项、局部分离等方法转化为两边都是熟悉函数的方程解得个数问题,再转化为这两个函数的交点个数问题,画出对应函数的函数的图象,利用数形结合思想求解. 3.2【典型考题变式】【变式1:改编条件】已知)(x f =⎩⎨⎧<-+≥-0,1|1|0,22x x x x x ,函数)(x g =)1(+-x f b ,若函数)()(x g x f y -=恰有2个零点,则实数b 的取值范围为( )A ),1(+∞- .B.)1,23(-- C.),1(}23{+∞-⋃- D.]23,(--∞ 【答案】C【解析】由题知,)1(+x f =⎩⎨⎧-<-+-≥-1,1|2|1,12x x x x ,所以)1()(++=x f x f y =⎪⎪⎩⎪⎪⎨⎧-<---<≤--<≤--+≥--2,5212,101,10,12222x x x x x x x x x ,函数)()(x g x f y -=恰有2个零点,即方程b x f x f -++)1()(=0恰有两个不同的解,即函数)1()(++=x f x f y 与b y =恰有两个交点,)1()(++=x f x f y 的图象如图所示,由图知,1->b 或23-=b ,故选C.【变式2:改编结论】已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若方程()()=0f x g x - 恰有2个不同的解,则b 的取值范围是( ) (A )()72,{}4+∞⋃ (B )()2,+∞ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫ ⎪⎝⎭【答案】A【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩, 即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩()(2)0f x f x b +--=有2个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知2b >或47=b ,故选.A.【变式3:改编问法】已知)(x f 是定义在R 上的奇函数,当0≥x 时,)(x f =x x 42-,则方程2)(-=x x f 解的个数为 . 【答案】3【解析】当0<x 时,0>-x ,所以x x x f 4)()(2+-=-, 因为)(x f 是定义在R 上的奇函数,所以)()(x f x f -=-=x x 42+, 所以x x x f 4)(2--=,所以⎪⎩⎪⎨⎧≥-<--=0,404)(22x x x x x x x f ,,所以2)()(+-=x x f x g =⎪⎩⎪⎨⎧≥+-<+--0,250,2522x x x x x x ,由)(x g y =的图象知,)(x g y =有3个零点, 所以方程2)(-=x x f 解的个数为3.4.分段函数图像 4.1考题展示与解读例4【2017天津,文8】已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩,设a ∈R ,若关于x 的不等式()||2xf x a ≥+在R 上恒成立,则a 的取值范围是( ) (A )[2,2]-(B)[2]-(C)[2,-(D)[-【命题意图探究】本题主要考查利用分段函数图像解含参数不等式恒成立问题,是难题.【答案】A【解题能力要求】数形结合思想、转化思想、分类整合思想、运算求解能力【方法技巧归纳】一般不等式恒成立求参数1.可以选择参变分离的方法,转化为求函数最值的问题;2.也可以画出两边的函数图象,根据临界值求参数取值范围;3.也可转化为()0F x >的问题,转化讨论求函数的最值求参数的取值范围.4.2【典型考题变式】【变式1:改编条件】已知函数()22,0,{ ,0x x f x x x ≤=>,若函数()()()1g x f x k x =--恰有两个零点,则实数k 的取值范围是A. ()(),14,-∞-⋃+∞B. ][(),14,-∞-⋃+∞C. [)()1,04,-⋃+∞D.[)[)1,04,-⋃+∞【答案】C【解析】()()()1g x f x k x =--恰有两个零点,等价于()y f x =与()1y k x =-有两个交点,同一坐标系,画出()y f x =与()1y k x =-的图象,直线过()0,1时, 1k =-,直线与()20y xx =≥,相切时4k =,由图知, [)()1,04,k ∈-⋃+∞时,两图象有两交点,即k 的取值范围是[)()1,04,-⋃+∞,故选C.【变式2:改编结论】已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩,则函数||)(x x f y -=零点个数为 ( )(A )0 (B )1 (C )2 (D )3 【答案】A【解析】函数||)(x x f y -=零点个数,即为方程||)(x x f =解得个数,即为函数)(x f y =与函数||x y =交点个数,画出函数()f x 的图象与函数||x y =,由图像知,函数)(x f y =与函数||x y =交点个数0, 所以函数||)(x x f y -=零点个数为0,故选A.【变式3:改编问法】定义在1,ππ⎡⎤⎢⎥⎣⎦上的函数()f x ,满足()1f x f x ⎛⎫= ⎪⎝⎭,且当1,1x π⎡⎤∈⎢⎥⎣⎦时, ()ln f x x =,若函数()()g x f x ax =-在1,ππ⎡⎤⎢⎥⎣⎦上有零点,则实数a 的取值范围是( )A. ln ,0ππ⎡⎤-⎢⎥⎣⎦ B. []ln ,0ππ- C. 1ln ,e ππ⎡⎤-⎢⎥⎣⎦ D. 1,2e π⎡⎤--⎢⎥⎣⎦【答案】B【解析】设[]1,x π∈,则11,1x π⎡⎤∈⎢⎥⎣⎦, 因为()1f x f x ⎛⎫=⎪⎝⎭且当1,1x π⎡⎤∈⎢⎥⎣⎦时,()ln f x x =, 所以()1ln f x f x x ⎛⎫==- ⎪⎝⎭,则()[]1ln ,,1ln ,1,{x x x x f x ππ⎡⎤∈⎢⎥⎣⎦-∈= ,在坐标系中画出函数()f x 的图象如图: 因为函数()()g x f x ax =- 与x 轴有交点, 所以直线y ax = 与函数()f x 的图象有交点, 由图得,直线y ax =与()f x 的图象相交于点1,ln ππ⎛⎫- ⎪⎝⎭, 即有ln ln aa ππππ-=⇒=- ,由图象可得,实数a 的取值范围是: []ln ,0ππ- 故选:B.5.分段函数性质 5.1考题展示与解读例5【2016高考天津理数】已知函数f (x )=2(4,0,log (1)13,03)a x a x a x x x ⎧+<⎨++≥-+⎩(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( ) (A )(0,23] (B )[23,34] (C )[13,23]{34}(D )[13,23){34}【命题意图探究】本题主要考查分段函数的性质及函数方程解的个数问题,考查数形结合思想、运算求解能力,是中档题.【答案】C【解题能力要求】数形结合思想、分类整合思想、运算求解能力.【方法技巧归纳】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.5.2【典型考题变式】【变式1:改编条件】已知函数()()21(1)21ax xf x xx x x⎧++>⎪=⎨⎪-+≤⎩在R上单调递增,则实数a的取值范围是A. []0,1 B. (]0,1 C. []1,1- D. (]1,1-【答案】C【解析】当x⩽1时,f(x)=−(x−1)2+1⩽1,当x>1时, ()()21,'10a af x x f xx x=++=-…在(1,+∞)恒成立,故a⩽x2在(1,+∞)恒成立,故a⩽1,而1+a+1⩾1,即a⩾−1,综上,a∈,故选C.【变式2:改编结论】已知()2243,0,23,0,x x xf xx x x⎧-+≤=⎨--+>⎩不等式()()2f xa f a x+>-在上恒成立,则实数的取值范围是()A. B. C. D.【答案】A【变式3:改编问法】已知函数是定义在上的偶函数,当时,,则函数的零点个数为( )个A. 6B. 2C. 4D. 8 【答案】A【解析】∵函数)(x f 是定义在上的偶函数,当 时,,函数的零点就是函数)(x f 的图象与直线的交点的横坐标,作出函数在的图象,如图,由图可得:函数)(x f 图象与直线 有6个交点,故答案为:6.6.分段函数的综合应用 6.1考题展示与解读例6 【2017课标3,理15】设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是_________.【命题意图探究】本题主要考查分段函数不等式及分类整合思想,是中档题. 【答案】1,4⎛⎫-+∞ ⎪⎝⎭【解题能力要求】分类整合思想、运算求解能力.【方法技巧归纳】分段函数的不等式问题:利用分类整合思想,化为若干个不等式组问题,解出各个不等式组的解集,其并集就是所求不等式的解集. 6.2【典型考题变式】【变式1:改编条件】已知函数()21,0,{1,0,x x f x x +≥=<则满足不等式()()212f x f x ->的x的范围是( )A. ()1B. ()1-C. (D. ()1- 【答案】D【解析】()210{10x x f x x +≥=<,,,的图象如下图所示,不等式()()212f x f x ->等价于210{20x x ->≤,或2210{2012x x x x ->>->,,,解得11x -<<,故选D .【变式2:改编结论】.已知函数(),0{2,lnx x e f x lnx x e<≤=->,若正实数,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围为( )A. ()2,e e B. ()21,e C. 1,e e ⎛⎫ ⎪⎝⎭ D. 21,e e ⎛⎫ ⎪⎝⎭【答案】A【解析】作出)(x f 的图像,不妨设c b a <<,由图知,201a b e c e <<<<<<,由题知,|ln ||ln |b a =,即b a ln ln =-,所以0)l n (ln ln ==+ab b a ,所以ab =1,则c abc =),(2e e ∈,故选A.【变式3:改编问法】已知定义在R 上的函数()f x 满足()()22f x f x +=,且当[]2,4x ∈时, ()224,232,34x x x f x x x x-+≤≤=+<≤⎧⎪⎨⎪⎩,()1g x ax =+,对[][]122,0,2,1x x ∀∈-∃∈-,使得()()21g x f x =,则实数a 的取值范围为( )A. 11,,88⎛⎫⎡⎫-∞-⋃+∞ ⎪⎪⎢⎝⎭⎣⎭B. 11,00,48⎡⎫⎛⎤-⋃⎪ ⎢⎥⎣⎭⎝⎦ C.(]0,8 D.][11,,48⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】D【解析】因为[]()224,232,4,2,34x x x x f x x x x-+≤≤∈=+<≤⎧⎪⎨⎪⎩ , 23x ≤≤ 时, ()34f x ≤≤ ,34x <≤ 时,()11932f x <≤ ,所以[]()92,4,32x f x ∈≤≤()()22f x f x +=,20x ∴-≤≤ 时, ()[]39,2,148f x x ≤≤∈-- 时,若0a > ,则()211a g x a -+≤≤+ ,因为对 [][]122,0,2,1x x ∀∈-∃∈-,使得()()21g x f x =, ,()()2g x f x = ,3214918a a ⎧-+≤⎪⎪∴⎨⎪+≥⎪⎩,解得18a ≥,若0a < ,则()121a g x a +≤≤-+ ,[]12,0x ∀∈- ,[]22,1x ∃∈-,使得()()21g x f x =, ∴9218918a a ⎧-+≥⎪⎪⎨⎪+≤⎪⎩,解得14a ≤-,所以a 取值范围是][11,,48⎛⎫-∞-⋃+∞ ⎪⎝⎭. 三、课本试题探源必修1 P39页习题1.3 A 第6题:已知函数)(x f 是定义域在R 上的奇函数,当0≥x 时,)(x f =)1(x x +.画出函数)(x f 的图象,并求出函数的解析式.【解析】当0<x 时,0>-x ,所以)1()(x x x f --=-, 因为函数)(x f 是定义域在R 上的奇函数, 所以)1()()(x x x f x f --=-=-, 所以)1()(x x x f -=, 所以函数的解析式⎩⎨⎧≥+<-=0),1(0),1()(x x x x x x x f ,函数图象如下图所示:四.典例高考试题演练1.【2017届湖北枣阳市3模】设函数()()121{ 1(1)x x f x lnx x -≤=->,则满足()2f x ≤的x 的取值范围是( ) A.,2] B. C.【答案】B9.【2017届江西省赣中南五校下学期期中联考】已知函数关于的方程,有不同的实数解,则的取值范围是A. B. C. D.【答案】C【解析】设,,解得,当时,,函数单调递增,,,函数单调递减,当时函数取得最大值,方程化简为,解得:或,如图画出函数的图象,当时,方程有5个实根,故选C.10.【2017届湖南省岳阳市三模】已知函数是定义在上的偶函数,当时,,则函数的零点个数为()个A. 6B. 2C. 4D. 8【答案】A【解析】∵函数是定义在上的偶函数,当时,,函数的零点就是函数的图象与直线的交点的横坐标,作出函数在的图象,如图,由图可得:函数图象与直线有6个交点,故答案为:6.11.【2017届天津市十二重点中学二联考】已知函数()()()2101,{1(1)x x f x f x m x -≤≤=-+>在定义域[)0,+∞上单调递增,且对于任意0a ≥,方程()f x a =有且只有一个实数解,则函数()()g x f x x =-在区间0,2n⎡⎤⎣⎦(*n N ∈)上的所有零点的和为( ) A.()12n n + B. 21122n n +-+ C.()2122n+ D. 21n -【答案】B【解析】函数()()()2101,{1(1)x x f x f x m x -≤≤=-+>在定义域[)0,+∞上单调递增,且对于任意0a ≥,方程()f x a =有且只有一个实数解,则()f x 是连续函数,可得1m = ,画出()y f x = 与y x = 的图象,图象交点横坐标就是函数()()g x f x x =-的零点,由图知,在区间0,2n ⎡⎤⎣⎦(*n N ∈)上的所有零点的和为()2111+2+3...21222n n n n +-+-+=+ ,故选B.12.【2017届四川外语学院重庆第二外国语学校3月考】已知函数()()1,0{11,02ln x x f x x x +>=+≤,若m n <,且()()f m f n =,则n m -的取值范围是( ) A. [)32ln2,2- B. []32ln2,2- C. []1,2e - D. [)1,2e - 【答案】A【解析】作出函数f (x )的图象如图, 若m <n ,且f (m )=f (n ),则当ln (x +1)=1时,得x +1=e ,即x =e −1, 则满足0<n ⩽e −1,−2<m ⩽0,则ln (n +1)=12m +1,即m =2ln (n +1)−2, 则n −m =n +2−2ln (n +1),设h (n )=n +2−2ln (n +1),0<n ⩽e −1 则()2121'1111n n h n n n n +--=-==+++ , 当h ′(x )>0得1<n ⩽e −1, 当h ′(x )<0得0<n <1,即当n =1时,函数h (n )取得最小值h (1)=1+2−2ln 2=3−2ln 2, 当n =0时,h (0)=2−2ln 1=2,当n =e −1时,h (e −1)=e −1+2−2ln (e −1+1)=1+e −2=e −1<2, 则3−2ln 2⩽h (n )<2,即n −m 的取值范围是,值域为,则实数a 的取值范围是_____. 【答案】a ≥1【解析】仅考虑函数f (x )在x >0时的情况,可知()3312,{12,x x x f x x x x -<=-≥函数f (x )在x=2时,取得极大值16.令x 3-12x =16,解得,x =4.作出函数的图象(如右图所示).函数f (x )的定义域为,值域为,分为以下情况考虑: ①当0<m <2时,函数的值域为,有m (12-m 2)=am 2,所以a =12m-m ,因为0<m <2,所以a >4; ②当2≤m ≤4时,函数的值域为,有am 2=16,所以a =216m,因为2≤m ≤4,所以1≤a ≤4; ③当m >4时,函数的值域为,有m (m 2-12)=am 2,所以a =m -12m,因为m >4,所以a >1. 综上所述,实数a 的取值范围是a ≥1.。

相关文档
最新文档