《因式分解》复习课.ppt1
合集下载
人教版《因式分解》优秀课件ppt1
◆不论a、b为何数,代数式 a2+b2-2a+4b+5的值总是 ( D ) A.0 B.负数 C.正数 D.非负数
若n是任意正整数.试说明 3n+2-4×3n+1+10×3n能被7 整除.
思维再现
◆多项式9x2+1加上一个单项式后,使 它能成为一个整式的平方,则加上的单 项式可以是
_±__6_x__、_-_9_x_2__、__-_1_、__84_1_x_4(填上你认为
例4. 用简便方法计算:
(1)88281122 (2)19929399189918992 8
例5. 计算:
(1)x3y2z2 x3y2z2 (2)2a3b2 22a3b2a5b2a5b2
(3)当a3时,求代数式
a12a1a3a13a2a1的值 .
例6.
(1)已知 x 2 y 3 0, 试求值: x 2 4 y 2 4 xy 3 x 6 y 8 . ( 2 )已知 x y 2 a , y z 2 a , 且 a 2 7 , 试求 x 2 y 2 z 2 xy yz zx 的值 . (3)若 4 a 2 4 a b 2 6b 10 0, 则 a 3b b 3a的值是多少 ? ( 4 )已知 x 2 y 2 10 xy y 2 4 y 29 0 , 求 x 2 y 2 2 x 3 y 2 x 4 y 2的值 .
式:
sp (p a )(p b )(p c )(其 中 p a 2 b c ) ②
正确的一个即可,不必考虑所有的可能 情况).
例1. 对下列多项式因式分解:
(1) 2 x 2 y 2 4 y 3 z ( 2 ) 1 x 3 2 xy 2
2
( 3 )16 x 2 x 2 4 2
人教版教材《因式分解》ppt1
pq
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
十字相乘法(借助十字交叉线分解因式的方法)
例一:
步骤:
x2 6x 7 (x 7)(x 1) ①竖分二次项与常数项
x
7 7
或
x 1 1
②交叉相乘,和相加 ③检验确定,横写因式 顺口溜:竖分常数交叉验,
6
-5
2
-1
-1-10=-11
1
1
-5+6=1
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
练习:将下列各式分解因式 1、 7x 2-13x+6 答案(7x-6)(x-1) 2、 -y 2-4y+12 答案- (y+6)(y-2) 3、 15x2+7xy-4y 2 答案 (3x-y)(5x+4y) 4、 x 2-(a+1) x+a 答案 (x-1)(x-a)
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
练一练: 将下列各式分解因式
1x2 5x 6 3x2 7x 12
2x2 x 6 4x2 3x 10
x2
小结:用十字相乘法把形如
px q 二次三项式分解因式
q ab, p a b
当q>0时,q分解的因数a、b( 同号 )
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
你能对下列式子进行分解因式吗?
x y2 8x y 48
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
十字相乘法(借助十字交叉线分解因式的方法)
例一:
步骤:
x2 6x 7 (x 7)(x 1) ①竖分二次项与常数项
x
7 7
或
x 1 1
②交叉相乘,和相加 ③检验确定,横写因式 顺口溜:竖分常数交叉验,
6
-5
2
-1
-1-10=-11
1
1
-5+6=1
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
练习:将下列各式分解因式 1、 7x 2-13x+6 答案(7x-6)(x-1) 2、 -y 2-4y+12 答案- (y+6)(y-2) 3、 15x2+7xy-4y 2 答案 (3x-y)(5x+4y) 4、 x 2-(a+1) x+a 答案 (x-1)(x-a)
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
练一练: 将下列各式分解因式
1x2 5x 6 3x2 7x 12
2x2 x 6 4x2 3x 10
x2
小结:用十字相乘法把形如
px q 二次三项式分解因式
q ab, p a b
当q>0时,q分解的因数a、b( 同号 )
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
你能对下列式子进行分解因式吗?
x y2 8x y 48
人教版八年级上册数学14.3因式分解 十字相乘法分解因式 课件
(课件1)《整式的乘除与因式分解》复习
分清各类幂运算性质
重点知识 幂运算性质 同底数幂的乘法公式: m n m n a a a (m,n都是正整数) 幂的乘方公式: m n mn (a ) a (m,n都是正整数) 积的乘方公式:
(ab) a b (m是正整数)
m m m
同底数幂的除法公式: m n mn a a a (a≠0,m,n都是正 整数,并且m >n)
整式乘法
因式分解
整式除法
作业 1.计算:
(1)(2a) b 12a b
3 4
3 2
1 1 2 (2)2 x ( x 1) 3x( x ) 2 3 3
作业
2.先化简,再求值:
(2x y)
2
(2 x y)(2 x y) 4 xy
2x 1 其中 x 1, y 。 2
n
2 m 3n
逆用“积的乘方”、“幂的乘方”:
(ab) a b (m是正整数)
m m m
(a ) a
m n
mn
(m,n都是正整数)
典型例题
整式相关概念
)
例4.下列说法错误的是( A 0和 都是单项式; B C
D
3nxy的次数是3,系数是 3 ; 1 a 是整式; a 2 x 6 x 3是二次三项式。
3
yx
4
2x y
2
3x y ( x y) 3xy
2 2
(2)(6 xy 12 x y ) (4 x y) 4 x
2 2 2
2
重点知识
整式运算
整式加减
整式运算
整式乘除
配套练习 6.计算:
整式运算
人教版八年级数学上册1因式分解复习课件
例2:分解因式
(1) 8m2n+2mn= 2mn(4m 1) (2)-5a2+25a= 5a(a 5) (3)p(a+b)-q(a+b)= (a+b)(p-q) (4)2a(y-z)-3b(z-y)=( y z)(2a 3b)
例3:分解因式
(1) y2-1 = y2-12=(y+1)(y-1)
因式分解复习
一、因式分解 把一个多项式化成几个整式的积的形式
例1:以下从左到右的变形中,哪些是分解因式?
(1) a(a+1)=a2+a
√(3) a2-b2=(a+b)(a-b) √(5) a2-a-2=(a+1)(a-2)
√(2)ax–bx =x(a–b) √(4) x2+2xy+y2=(x+y)2
解:(1)原式=(2a+6b)-(3am+9bm)=2(a+3b)-3m(a+3b)=(a+ 3b)(2-3m); 或原式=(2a-3am)+(6b-9bm)=a(2-3m)+3b(2-3m)=(2-3m)(a +3b); (2) ∵a2-ac-ab+bc=0, ∴(a2-ac)-(ab-bc)=0, ∴a(a-c)-b(a-c)=0, ∴(a-c)(a-b)=0, ∴a-c=0 或 a-b=0, ∴a=c 或 a=b, ∴△ABC 是等腰三角形.
例6.分解因式:
(1)4x3-16x2+16x =4x(x2-4x+4) =4x(x-2)2
ቤተ መጻሕፍቲ ባይዱ(2)2ab2-2a =2a(b2-1) =2a(b+1)(b-1)
(3)x4-2x2+1 =(x2-1)2 =[(x+1)(x-1)]2 =(x+1)2(x-1)2
因式分解ppt(共22张PPT)
3.(随堂练习p31、2)
规律总结
• 对多项式分解因式与整式乘法是方向相反的两种恒等变 形.
• 整式的乘法运算是把几个整式的积变为多项式的形式,
特征是向着积化和差的形式发展;
• 多项式的分解因式是把一个多项式化为几个整式乘积的
形式,特征是向着和差化积的形式发展.
• 因式分解要注意以下几点: 1.分解的对象必须是多项式.
• 把一个多项式化成几个整式的积的形式,这 种变形叫做因式分解。
• 因式分解也可称为分解因式。
因分解的结果要以积的形式表示
2.每个因式必须是整式,且每个因式的次数 都要低于原多项式的次数。
3.必须分解到每个多项式不能分解为止(具 体由所在的数集决定)。
想一想: 因式分解与整式乘法有什么联系?
2.分解的结果一定是几个整式的乘积的形式.
2:计算
(1) 8728713 (2) 1012992
=87(87+13) =8700
=(101+99)(101-99) =200×2 =400
3.若 x101,y99则 x22xyy2_ 4_
动脑筋
n2+n是奇数还是偶数?
2517-532能被120整除吗? 若n是整数,证明 (2n+1)2-(2n-1)2是8的倍数.
多项式的因式分解与整式乘法是方向相反的恒等式.
整式乘法
3x(x-1)= _____
(3).(5a-1) =25a -10a+1 解: ab-ac=a(b-c)
a(a+1)(a-1) a3-a=a(a+1)(a-1)
2
2
整式乘法
答: 由a(a+1)(a-1)得到a3-a的变形是整式乘法,由a3-a得到a(a+1)(a-1)的变形是把一个多项式化成几个整式的积的形式.
规律总结
• 对多项式分解因式与整式乘法是方向相反的两种恒等变 形.
• 整式的乘法运算是把几个整式的积变为多项式的形式,
特征是向着积化和差的形式发展;
• 多项式的分解因式是把一个多项式化为几个整式乘积的
形式,特征是向着和差化积的形式发展.
• 因式分解要注意以下几点: 1.分解的对象必须是多项式.
• 把一个多项式化成几个整式的积的形式,这 种变形叫做因式分解。
• 因式分解也可称为分解因式。
因分解的结果要以积的形式表示
2.每个因式必须是整式,且每个因式的次数 都要低于原多项式的次数。
3.必须分解到每个多项式不能分解为止(具 体由所在的数集决定)。
想一想: 因式分解与整式乘法有什么联系?
2.分解的结果一定是几个整式的乘积的形式.
2:计算
(1) 8728713 (2) 1012992
=87(87+13) =8700
=(101+99)(101-99) =200×2 =400
3.若 x101,y99则 x22xyy2_ 4_
动脑筋
n2+n是奇数还是偶数?
2517-532能被120整除吗? 若n是整数,证明 (2n+1)2-(2n-1)2是8的倍数.
多项式的因式分解与整式乘法是方向相反的恒等式.
整式乘法
3x(x-1)= _____
(3).(5a-1) =25a -10a+1 解: ab-ac=a(b-c)
a(a+1)(a-1) a3-a=a(a+1)(a-1)
2
2
整式乘法
答: 由a(a+1)(a-1)得到a3-a的变形是整式乘法,由a3-a得到a(a+1)(a-1)的变形是把一个多项式化成几个整式的积的形式.
因式分解ppt课件
识别多项式的系数
观察多项式的系数,可以发现其中的规律和特点,有助于因式分解的进行。
ห้องสมุดไป่ตู้
寻找公因式或公因子
提取公因式
通过观察多项式的各项,可以发现其 中的公因式,提取公因式是因式分解 的一种常用方法。
寻找公因子
在某些情况下,多项式中可能存在公 因子,通过寻找公因子可以简化因式 分解的过程。
灵活运用公式和分组方法
利用公式进行因式分解
在数学中存在许多公式可以用于因式分解,如平方差公式、 完全平方公式等,利用这些公式可以简化因式分解的过程。
分组方法
对于一些复杂的多项式,可以将其分组进行因式分解,这样 可以更好地理解和处理多项式。
04
因式分解的应用实例分析
代数式的化简与求值
代数式的化简
通过因式分解,可以将复杂的代数式 化简为简单的形式,便于计算和理解 。
$ax^n + bx^{n-1} + \ldots + y = a(x^m)^n + b(x^m)^{n-1} + \ldots + y$
因式分解的意义
01
02
03
简化计算
因式分解可以简化多项式 的计算过程,提高计算效 率。
便于应用
因式分解在解决实际问题 中具有广泛应用,如解方 程、求根、不等式等。
分组分解法
总结词
将多项式分组进行因式分解
详细描述
分组分解法是将多项式中的某些项进行分组,然后对每组进行因式分解的方法。这种方法可以简化多项式的结构 ,使其更容易进行因式分解。
03
因式分解的技巧与策略
观察多项式的结构特点
识别多项式的项数和各项的次数
观察多项式的项数和各项的次数,有助于确定因式分解的策略。
观察多项式的系数,可以发现其中的规律和特点,有助于因式分解的进行。
ห้องสมุดไป่ตู้
寻找公因式或公因子
提取公因式
通过观察多项式的各项,可以发现其 中的公因式,提取公因式是因式分解 的一种常用方法。
寻找公因子
在某些情况下,多项式中可能存在公 因子,通过寻找公因子可以简化因式 分解的过程。
灵活运用公式和分组方法
利用公式进行因式分解
在数学中存在许多公式可以用于因式分解,如平方差公式、 完全平方公式等,利用这些公式可以简化因式分解的过程。
分组方法
对于一些复杂的多项式,可以将其分组进行因式分解,这样 可以更好地理解和处理多项式。
04
因式分解的应用实例分析
代数式的化简与求值
代数式的化简
通过因式分解,可以将复杂的代数式 化简为简单的形式,便于计算和理解 。
$ax^n + bx^{n-1} + \ldots + y = a(x^m)^n + b(x^m)^{n-1} + \ldots + y$
因式分解的意义
01
02
03
简化计算
因式分解可以简化多项式 的计算过程,提高计算效 率。
便于应用
因式分解在解决实际问题 中具有广泛应用,如解方 程、求根、不等式等。
分组分解法
总结词
将多项式分组进行因式分解
详细描述
分组分解法是将多项式中的某些项进行分组,然后对每组进行因式分解的方法。这种方法可以简化多项式的结构 ,使其更容易进行因式分解。
03
因式分解的技巧与策略
观察多项式的结构特点
识别多项式的项数和各项的次数
观察多项式的项数和各项的次数,有助于确定因式分解的策略。
因式分解复习课(公开课)ppt课件
6
公因式
提
解
的
方
平方差公式:
法 公式法
完全平方公式:
可编辑ppt
7
1.下列各式的因式分解是否正确?如果不正确, 应怎样改正?
可编辑ppt
8
2.把下列各式分解因式:
可编辑ppt
9
思考: 1.通过上面的练习,你认为因式分解时要注意
哪些问题?
可编辑ppt
10
三、因式分解的应用
a2b a2c b3 b2c 0 ,试判断三角形的形状.
A
解:a(2 b c) b(2 b c) 0
c
b
(b c)(a2 b2 ) 0
B
a
C 所以b c 0或者a2 b2 0 因为a2 b2不可能为0
所以b c 0
所以b c
所以三角形是等腰三角形
可编辑ppt
14
可编辑ppt
4.已知a、b为有理数,且 a2+b2+2a+2b+2=0,试求a、b的值.
5.n是整数,说明(n+14)2-n2能被28整除.
可编辑ppt
17
可编辑ppt
18
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!感谢你的观看!
可编辑ppt
11
可编辑ppt
12
2.求值
当 x y 3, xy 2,求 x2 y xy2 的值. 解 : x 2y xy 2 xy(x y ) 当x y 3,xy 2时,
原式 3 2 6
巩固练习: 教科书17页复习题第6,11题
可编辑ppt
13
3.几何应用 已知:a,b,c是△ABC的三边长,且满足
人教版《因式分解》(完整版)课件
(2)3mx 6my;
(3) 8m2n 2mn ;
(4)12xyz 9x2 y2 ;
(5) 2a( y z) 3b(z y) ; (6)p(a2 b2) q(a2 b2) .
人教版《因式分解》教学实用课件(P PT优秀 课件)
人教版《因式分解》教学实用课件(P PT优秀 课件)
强化训练
人教版《因式分解》教学实用课件(P PT优秀 课件)
例题解析
说出下列多项式各项的公因式: (1)ma + mb ; (m)
(2)4kx- 8ky ; (4k )
(3)5y3+20y2 ;
(5 y 2)
(4)a2b-2ab2+ab . (ab)
人教版《因式分解》教学实用课件(P PT优秀 课件)
人教版《因式分解》教学实用课件(P PT优秀 课件)
(3) (5a-1)2=25a2-10a+1 ; ( 整式乘法 )
(4) x2+4x+4=(x+2)2.
( 因式分解 )
人教版《因式分解》教学实用课件(P PT优秀 课件)
人教版《因式分解》教学实用课件(P PT优秀 课件)
提公因式法
怎样分解因式: pa pb pc ?
公因式:多项式中各项都有的因式,叫做这个多 项式的公因式.
3.什么是提公因式法?用提公因式法分解因式时 要注意什么问题?
人教版《因式分解》教学实用课件(P PT优秀 课件)
人教版《因式分解》教学实用课件(P PT优秀 课件)
布置作业
教科书第119页习题14.3第1题.
人教版《因式分解》教学实用课件(P PT优秀 课件)
由 p(a b c) pa pb pc ,可得 pa pb pc p(a b c)
2-4《因式分解法》课件(共35张PPT)
(1)提取公因式法: am+bm+cm=m(a+b+c).
(2)公式法:
a2-b2=(a+b)(a-b), a2±2ab+b2=(a±b)2.
(3)十字相乘法:
1 a
x2+(a+b)x+ab= (x+a)(x+b). 1 b
实际问题
根据物理学规律,如果把一 个物体从地面 10 m/s 的速度竖 直上抛,那么经过 x s 物体离地 面的高度(单位:m)为
3. 分别解两个一元一次方程,它们的根就 是原方程的根.
AB = 0
A=0或B=0
( A、B 表示两个因式)
用因式分解法解一元二次方程的步骤
1. 方程右边化为_零_____。
2. 将方程左边分解成两个__一__次___因__式__的乘积。 3. 至少_有___一__个__因式为零,得到两个一元一次
⑴ 5x2-3 2 x=0 (运用因式分解法)
⑵ 3x2-2=0
(运用直接开平方法)
⑶ x2-4x=6
(运用配方法)
⑷ 2x2-x-3=0
(运用公式法)
⑸ 2x2+7x-7=0 (运用公式法)
② 公式法虽然是万能的,对任何一元二次方程都适用, 但不一定是最简单的,因此在解方程时我们首先考虑能 否应用“直接开平方法”、“因式分解法”等简单方法, 若不行,再考虑公式法(适当也可考虑配方法)
① x2-3x+1=0 ② 3x2-1=0
③ -3t2+t=0
④ x2-4x=2
⑤ 2x2-x=0
⑥ 5(m+2)2=8
⑦ 3y2-y-1=0 ⑧ 2x2+4x-1=0
(2)公式法:
a2-b2=(a+b)(a-b), a2±2ab+b2=(a±b)2.
(3)十字相乘法:
1 a
x2+(a+b)x+ab= (x+a)(x+b). 1 b
实际问题
根据物理学规律,如果把一 个物体从地面 10 m/s 的速度竖 直上抛,那么经过 x s 物体离地 面的高度(单位:m)为
3. 分别解两个一元一次方程,它们的根就 是原方程的根.
AB = 0
A=0或B=0
( A、B 表示两个因式)
用因式分解法解一元二次方程的步骤
1. 方程右边化为_零_____。
2. 将方程左边分解成两个__一__次___因__式__的乘积。 3. 至少_有___一__个__因式为零,得到两个一元一次
⑴ 5x2-3 2 x=0 (运用因式分解法)
⑵ 3x2-2=0
(运用直接开平方法)
⑶ x2-4x=6
(运用配方法)
⑷ 2x2-x-3=0
(运用公式法)
⑸ 2x2+7x-7=0 (运用公式法)
② 公式法虽然是万能的,对任何一元二次方程都适用, 但不一定是最简单的,因此在解方程时我们首先考虑能 否应用“直接开平方法”、“因式分解法”等简单方法, 若不行,再考虑公式法(适当也可考虑配方法)
① x2-3x+1=0 ② 3x2-1=0
③ -3t2+t=0
④ x2-4x=2
⑤ 2x2-x=0
⑥ 5(m+2)2=8
⑦ 3y2-y-1=0 ⑧ 2x2+4x-1=0
因式分解初中数学复习教材课件PPTppt课件市公开课金奖市赛课一等奖课件
第8页
六: 普通环节与注意点
1 普通环节: 先提公因式,再利用公式或十字相乘,后分组分 解,最后是重新整理再分解.
2 注意点:
在分解因式时要注意各个因式是否还能继续分解, 直到每一个因式都不能继续分解为止.
第9页
七、基本题型练习一
1) 8x3 ym1 2xym 2) 2(x y)2 3( y x) 3) 81a4 1 4) 4(m n)3 9(m n) 5) 5a4 1 b2
因式分解期末复习
第1页
一、知识点回顾
1.什么叫因式分解?
把一个多项式写成几种整式乘积形式,叫 做把这个多项式分解因式.
例 下列变形是否是因式分解.
A ( x 1)( x 1) x2 1,
B x3 2x 1 x( x2 2) 1
C 2 x2 2 y2 2( x2 y2 ),
D
第4页
三、因式分解基本办法二:利用公式法 1 熟记公式及其特点 (1)平方差公式,:a2-b2=(a+b)(a-b) (2)完全平方公式: a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2
第5页
例 下列多项式哪些能用乘法公式分解因式 A x2 4 B x2 4xy y2 C 2xy x2 y2 D 9(a b)2 6(a b) 1 E 121a4 1 4 F 4(m n)2 4(m n)(m n) (m n)2
第6页
四、因式分解基本办法三:十字相乘法
要点: 一拆(拆常数项),
二乘(十字相乘),
三验(验证十字相乘后和是否等于一次项.x2 px qxax
b
x2+Px+q=(x+a)(x+b),其中p=a+b,q=ab
六: 普通环节与注意点
1 普通环节: 先提公因式,再利用公式或十字相乘,后分组分 解,最后是重新整理再分解.
2 注意点:
在分解因式时要注意各个因式是否还能继续分解, 直到每一个因式都不能继续分解为止.
第9页
七、基本题型练习一
1) 8x3 ym1 2xym 2) 2(x y)2 3( y x) 3) 81a4 1 4) 4(m n)3 9(m n) 5) 5a4 1 b2
因式分解期末复习
第1页
一、知识点回顾
1.什么叫因式分解?
把一个多项式写成几种整式乘积形式,叫 做把这个多项式分解因式.
例 下列变形是否是因式分解.
A ( x 1)( x 1) x2 1,
B x3 2x 1 x( x2 2) 1
C 2 x2 2 y2 2( x2 y2 ),
D
第4页
三、因式分解基本办法二:利用公式法 1 熟记公式及其特点 (1)平方差公式,:a2-b2=(a+b)(a-b) (2)完全平方公式: a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2
第5页
例 下列多项式哪些能用乘法公式分解因式 A x2 4 B x2 4xy y2 C 2xy x2 y2 D 9(a b)2 6(a b) 1 E 121a4 1 4 F 4(m n)2 4(m n)(m n) (m n)2
第6页
四、因式分解基本办法三:十字相乘法
要点: 一拆(拆常数项),
二乘(十字相乘),
三验(验证十字相乘后和是否等于一次项.x2 px qxax
b
x2+Px+q=(x+a)(x+b),其中p=a+b,q=ab
《因式分解》ppt课件人教版初中数学1
第5课时 一元二次方程的解法(4) 第二十一章 一元二次方程
(2)4(2x-1) =8x-4. 2 第二十一章 一元二次方程
第5课时 一元二次方程的解法(4) 第二十一章 一元二次方程 第5课时 一元二次方程的解法(4) 第二十一章 一元二次方程 第5课时 一元二次方程的解法(4)
1 第二十一章 一元二次方程 x =1,x = 1 2 第二十一章 一元二次方程 2 第5课时 一元二次方程的解法(4)
第二十一章 一元二次
方程
第5课时 一元二次方程的解法 (4)
——因式分解法
学习目标
1.了解因式分解法的概念. 2.掌握因式分解法解一元二次方程的步骤,体会“降次” 的数学思想方法.
知识要点
知识点一:回顾因式分解的概念
(1)提公因式法 ma+mb= m(a+b) ; (a+b)m+(a+b)n= (a+b)(m+n). (2)公式法 完全平方公式:a2±2ab+b2= (a±b)2; 平方差公式:a2-b2= (a+b)(a-b).
7.【例4】三角形的两边长分别为3和6,第三边长为方程x2- 7x+10=0的一个根,求这个三角形的周长.
解:解方程x2-7x+10=0,可化为(x-2)(x-5)=0,得x=2 或5, ∴第三边长为2或5.
∵边长为2,3,6不能构成三角形, 而3,5,6能构成三角形, ∴三角形的周长为3+5+6=14.
对点训练
(a+b)(m+n)
第5课时 一元二次方程的解法(4)
第5课时 一元二次方程的解法(4)
第二十一章 一元二次方程
1.把下列各式进行因式分解: 第5课时 一元二次方程的解法(4)
第二十一章 一元二次方程
第5课时 一元二次方程的解法(4)
(2)4(2x-1) =8x-4. 2 第二十一章 一元二次方程
第5课时 一元二次方程的解法(4) 第二十一章 一元二次方程 第5课时 一元二次方程的解法(4) 第二十一章 一元二次方程 第5课时 一元二次方程的解法(4)
1 第二十一章 一元二次方程 x =1,x = 1 2 第二十一章 一元二次方程 2 第5课时 一元二次方程的解法(4)
第二十一章 一元二次
方程
第5课时 一元二次方程的解法 (4)
——因式分解法
学习目标
1.了解因式分解法的概念. 2.掌握因式分解法解一元二次方程的步骤,体会“降次” 的数学思想方法.
知识要点
知识点一:回顾因式分解的概念
(1)提公因式法 ma+mb= m(a+b) ; (a+b)m+(a+b)n= (a+b)(m+n). (2)公式法 完全平方公式:a2±2ab+b2= (a±b)2; 平方差公式:a2-b2= (a+b)(a-b).
7.【例4】三角形的两边长分别为3和6,第三边长为方程x2- 7x+10=0的一个根,求这个三角形的周长.
解:解方程x2-7x+10=0,可化为(x-2)(x-5)=0,得x=2 或5, ∴第三边长为2或5.
∵边长为2,3,6不能构成三角形, 而3,5,6能构成三角形, ∴三角形的周长为3+5+6=14.
对点训练
(a+b)(m+n)
第5课时 一元二次方程的解法(4)
第5课时 一元二次方程的解法(4)
第二十一章 一元二次方程
1.把下列各式进行因式分解: 第5课时 一元二次方程的解法(4)
第二十一章 一元二次方程
第5课时 一元二次方程的解法(4)
因式分解_ppt1
x
3
x -7
x -3
x5
因式分解_ppt1
计算:(x+2)(3x+5) =3x2+11x+10 反过来:3x2+11x+10 =(x+2)(3x+5) 我们可以发现,二次项3x2分解成 x、3x 的积; 常数项10分解成 2、5 的积;
x
2
x ·5+2 ·3x = 11x
3x
5
这个例子启发我们,如何把二次三项式
ax2+bx+c进行分解
因式分解_ppt1
因式分解_ppt1
例2、把下列各式分解因式:
(1)2x 2-7x+3
(2)6x 2-7x-5
(3)5x 2+6xy-8y2 (4)ab2+4abc+3ac 2
解:(1)原式=(x-3)(2x-1)
x
-3
2x -1
(2)原式=(2x+1)(3x-5)
2x 1 3x -5
因式分解_ppt1
x2 px q
因式分解_ppt1
1、(x+3)(x-4) =x2-x-12 2、(a-6)(a-5)=a2-11a+30 3、(y+1)(y-3) =y2-2y-3
(x a)(x b) x2 (a b)x ab
能分解x 2 5x 6吗?
(x a)(x b) x2 (a b)x ab
x2 x2 5x 6 (2) a2 2a 3 (3) x2 2x 8 (4) (x y)2 3(x y) 2
x 2 px q 分解方法
(1)找出a,b使a+b=p且ab=q (先分解q再考虑p)
(2)把q分解成两个整数的积的符号规律: q>0则a,b同号, 若p>0,a,b同正,若p<0,a,b同负; q<0则a,b异号, 若p>0,a,b中正数绝对值大, 若p<0,a,b中负数的绝对值大。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解: ( x -y)3 - ( x -y) ) ) = ( x -y) ( x -y + 1) ( x -y - 1) ) ) ) a2 - x2y2 =(a +xy)( a - xy ) ( )(
1、对下列多项式进行因式分解: 对下列多项式进行因式分解: (1)-5a2+25a;(2)3a2-9ab; (3)25x2-16y2; (4)x2+4xy+4y2. 2、把下列各式分解因式: 、把下列各式分解因式: (1)-15ax-20a; (1)-15ax-20a; (2)(2)-25x8+125x16; (3)(3)-a3b2+a2b3; (4)xy; (4)-x3y3-x2y2-xy; (5)12ma; (5)-3ma3+6ma2-12ma;结束寄语下源自了!• 形成天才的决定因素
应该是勤奋. 应该是勤奋.
♦ ① 对任意多项式分解因式,都必须首先考虑提 对任意多项式分解因式,
取公因式。 取公因式。
♦ ② 对于二次二项式,考虑应用平方差公式分解。 对于二次二项式,考虑应用平方差公式分解。 ♦ ③ 对于二次三项式,考虑应用完全平方公式分 对于二次三项式,
解。
练习题
练习题: 练习题:
♦ 把下列各式分解因式: 把下列各式分解因式: ♦ ( x -y)3 - ( x -y) ) ) ♦ a2 - x2y2
=(a+ )( )(a- ) ① a2-b2=( +b)( -b) ② a2 +2ab+ b2 =( +b)2 + =(a+ ) a2 -2ab- b2 =( -b)2 - =(a- ) [ 平方差公式 ] [ 完全平方和公式 ] [ 完全平方差公式 ]
练习 练习
(三)分解因式的一般步骤: 分解因式的一般步骤:
《分解因式》复习课 分解因式》
一、知识要点
(一)、分解因式的定义 (二)、分解因式的方法 (三)、分解因式的一般步骤
(一)分解因式的定义: 分解因式的定义:
把一个多项式化成几个整式的积的形式, 把一个多项式化成几个整式的积的形式, 叫做多项式的分解因式。
即:一个多项式 →几个整式的积 几个整式的积
练习题: )-q 练习题: 分解因式 p(y-x)-q(y-x)
)-q( - ) 解: p(y-x)- (y-x) ( - )- = (y-x)( p -q) - )( )
(2)运用公式法: )运用公式法:
如果把乘法公式反过来应用, 如果把乘法公式反过来应用,就可以把多 项式写成积的形式,达到分解因式目的。 项式写成积的形式,达到分解因式目的。这种 方法叫做运用公式法。 方法叫做运用公式法。 运用公式法中主要使用的公式有如下几个: 运用公式法中主要使用的公式有如下几个:
a2-b2=( +b)( -b) =(a+ )( )(a- )
[ 平方差公式 ]
练习题: 练习题: 分解因式
-(2y) 解: x2-( )2
-(2y 2y) x2-(2y)2
=(x+2y)( -2y) ( + )( )(x- )
1.把下列各式因式分解: 把下列各式因式分解: (1)(m +n)2-n2; (2)169(a(2)169(a-b)2-196(a+ b)2; (3)(2x+y)2-(x+2y)2; (a+b(4)(a+ b+c)2-(a+b-c)2; (3p(5)4(2p+3q)2 -(3p-q)2; (6)(x2+y2)2-x2y2. 分解因式: 2.分解因式: (1)81a4-b4; (2)8y4-2y2; (3)3ax2-3ay4; (4)m4-1.
② a2 +2ab+ b2 =( +b)2 + =(a+ ) a2 -2ab- b2 =( -b)2 - =(a- )
练习题: 练习题:
下列各式能用完全平方公式分解因式的是( D ) 下列各式能用完全平方公式分解因式的是( A、x2+x+2y2 、 + C、x2+4xy+y2 、 + B、 x2 +4x-4 、 - D、 y2 -4xy+4 x2 、 +
1.将下列各式因式分解: 将下列各式因式分解: +2x+1; (1)x2+2x+1; +4a+1; (2)4a2+4a+1; 将下列各式分解因式: 2.将下列各式分解因式: (1)x2-12xy+36y2; (2)a2-14ab+49b2; (3)16a4+24a2b2+9b4; (4)49a2-112ab+64b2.
三、小结
♦ 1、分解因式的定义:
把一个多项式化成几个整式的积的形式, 把一个多项式化成几个整式的积的形式,叫 做多项式的分解因式。 做多项式的分解因式。
♦ 2、分解因式的方法: 、分解因式的方法:
)、提取公因式法 (1)、提取公因式法 )、 )、运用公式法 (2)、运用公式法 )、
(1)x4-9x2; (2)+10x; (2)-5x3+5x2+10x; (3)(a+b)(c-d)-2(a+b)·(c+d) (c+d); (3)(a+b)(c-d)-2(a+b) (c+d); (4)(a-b)(a-c)+(b-a)·(b c); (b(4)(a-b)(a-c)+(b-a) (b-c); (5)8x2-2y2; (6)x5-x3; (x(7)9(x+y)2-(x-y)2; (8)4b2c2-(b2+c2-a2)2; (9)(x2+4)2-16x2; (m(10)m2(m+n)2-n2(m-n)2; (11)2a2(a+b)2-3(a+b)3.
(二)分解因式的方法: 分解因式的方法:
♦ (1)、提取公因式法 )、提取公因式法 )、 ♦ (2)、运用公式法 )、运用公式法 )、
)、提取公因式法 (1)、提取公因式法: )、提取公因式法:
如果多项式的各项有公因式, 如果多项式的各项有公因式,可以 把这个公因式提到括号外面, 把这个公因式提到括号外面,将多项式 写成乘积的形式。 写成乘积的形式。这种分解因式的方法 叫做提公因式法。 叫做提公因式法。 即: ma + mb + mc = m(a+b+c) ( )
1、对下列多项式进行因式分解: 对下列多项式进行因式分解: (1)-5a2+25a;(2)3a2-9ab; (3)25x2-16y2; (4)x2+4xy+4y2. 2、把下列各式分解因式: 、把下列各式分解因式: (1)-15ax-20a; (1)-15ax-20a; (2)(2)-25x8+125x16; (3)(3)-a3b2+a2b3; (4)xy; (4)-x3y3-x2y2-xy; (5)12ma; (5)-3ma3+6ma2-12ma;结束寄语下源自了!• 形成天才的决定因素
应该是勤奋. 应该是勤奋.
♦ ① 对任意多项式分解因式,都必须首先考虑提 对任意多项式分解因式,
取公因式。 取公因式。
♦ ② 对于二次二项式,考虑应用平方差公式分解。 对于二次二项式,考虑应用平方差公式分解。 ♦ ③ 对于二次三项式,考虑应用完全平方公式分 对于二次三项式,
解。
练习题
练习题: 练习题:
♦ 把下列各式分解因式: 把下列各式分解因式: ♦ ( x -y)3 - ( x -y) ) ) ♦ a2 - x2y2
=(a+ )( )(a- ) ① a2-b2=( +b)( -b) ② a2 +2ab+ b2 =( +b)2 + =(a+ ) a2 -2ab- b2 =( -b)2 - =(a- ) [ 平方差公式 ] [ 完全平方和公式 ] [ 完全平方差公式 ]
练习 练习
(三)分解因式的一般步骤: 分解因式的一般步骤:
《分解因式》复习课 分解因式》
一、知识要点
(一)、分解因式的定义 (二)、分解因式的方法 (三)、分解因式的一般步骤
(一)分解因式的定义: 分解因式的定义:
把一个多项式化成几个整式的积的形式, 把一个多项式化成几个整式的积的形式, 叫做多项式的分解因式。
即:一个多项式 →几个整式的积 几个整式的积
练习题: )-q 练习题: 分解因式 p(y-x)-q(y-x)
)-q( - ) 解: p(y-x)- (y-x) ( - )- = (y-x)( p -q) - )( )
(2)运用公式法: )运用公式法:
如果把乘法公式反过来应用, 如果把乘法公式反过来应用,就可以把多 项式写成积的形式,达到分解因式目的。 项式写成积的形式,达到分解因式目的。这种 方法叫做运用公式法。 方法叫做运用公式法。 运用公式法中主要使用的公式有如下几个: 运用公式法中主要使用的公式有如下几个:
a2-b2=( +b)( -b) =(a+ )( )(a- )
[ 平方差公式 ]
练习题: 练习题: 分解因式
-(2y) 解: x2-( )2
-(2y 2y) x2-(2y)2
=(x+2y)( -2y) ( + )( )(x- )
1.把下列各式因式分解: 把下列各式因式分解: (1)(m +n)2-n2; (2)169(a(2)169(a-b)2-196(a+ b)2; (3)(2x+y)2-(x+2y)2; (a+b(4)(a+ b+c)2-(a+b-c)2; (3p(5)4(2p+3q)2 -(3p-q)2; (6)(x2+y2)2-x2y2. 分解因式: 2.分解因式: (1)81a4-b4; (2)8y4-2y2; (3)3ax2-3ay4; (4)m4-1.
② a2 +2ab+ b2 =( +b)2 + =(a+ ) a2 -2ab- b2 =( -b)2 - =(a- )
练习题: 练习题:
下列各式能用完全平方公式分解因式的是( D ) 下列各式能用完全平方公式分解因式的是( A、x2+x+2y2 、 + C、x2+4xy+y2 、 + B、 x2 +4x-4 、 - D、 y2 -4xy+4 x2 、 +
1.将下列各式因式分解: 将下列各式因式分解: +2x+1; (1)x2+2x+1; +4a+1; (2)4a2+4a+1; 将下列各式分解因式: 2.将下列各式分解因式: (1)x2-12xy+36y2; (2)a2-14ab+49b2; (3)16a4+24a2b2+9b4; (4)49a2-112ab+64b2.
三、小结
♦ 1、分解因式的定义:
把一个多项式化成几个整式的积的形式, 把一个多项式化成几个整式的积的形式,叫 做多项式的分解因式。 做多项式的分解因式。
♦ 2、分解因式的方法: 、分解因式的方法:
)、提取公因式法 (1)、提取公因式法 )、 )、运用公式法 (2)、运用公式法 )、
(1)x4-9x2; (2)+10x; (2)-5x3+5x2+10x; (3)(a+b)(c-d)-2(a+b)·(c+d) (c+d); (3)(a+b)(c-d)-2(a+b) (c+d); (4)(a-b)(a-c)+(b-a)·(b c); (b(4)(a-b)(a-c)+(b-a) (b-c); (5)8x2-2y2; (6)x5-x3; (x(7)9(x+y)2-(x-y)2; (8)4b2c2-(b2+c2-a2)2; (9)(x2+4)2-16x2; (m(10)m2(m+n)2-n2(m-n)2; (11)2a2(a+b)2-3(a+b)3.
(二)分解因式的方法: 分解因式的方法:
♦ (1)、提取公因式法 )、提取公因式法 )、 ♦ (2)、运用公式法 )、运用公式法 )、
)、提取公因式法 (1)、提取公因式法: )、提取公因式法:
如果多项式的各项有公因式, 如果多项式的各项有公因式,可以 把这个公因式提到括号外面, 把这个公因式提到括号外面,将多项式 写成乘积的形式。 写成乘积的形式。这种分解因式的方法 叫做提公因式法。 叫做提公因式法。 即: ma + mb + mc = m(a+b+c) ( )