1.4 转化与化归思想

合集下载

转化与化归思想

转化与化归思想

转化与化归思想数学问题的解答离不开转化与化归,它既是一种数学思想,又是一种数学能力,是高考重点考查的最重要的思想方法.在高中数学的学习中,它无个不在,比如:处理立体几何问题时,将空间问题转化到一个平面上解决;在解析几何中,通过建立坐标系将几何问题化归为代数问题;复数问题化归为实数问题等.1.转化与化归的原则(1)目标简单化原则:将复杂的问题向简单的问题转化.(2)和谐统一性原则:即化归应朝着使待解决问题在表现形式上趋于和谐,在量、形关系上趋于统一的方向进行,使问题的条件和结论更均匀和恰当.(3)具体化原则:即化归言论自由应由抽象到具体.(4)低层次原则:即将高维空间问题化归成低维空间问题.(5)正难则反原则:即当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解.2.转化与化归常用到的方法(1)直接转化法:把问题直接转化为基本定理、基本公式或基本图形问题.(2)换元法:运用“换元”把超越式转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径.(4)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.(5)坐标法:以坐标系为工具,用计算方法解决几何问题,是转化方法的一个重要途径.(6)类比法:运用类比推理,猜测问题的结论,易于确定转化途径.(7)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的结论适合原问题.(8)等价问题法:把原问题转化为一个易于解决的等价命题,达到转化目的.(9)加强命题法:在证明不等式时,原命题难以得证,往往把命题的结论加强,即命题的结论加强为原命题的充分条件,反而能将原命题转化为一个较易证明的命题,比如在证明不等式时:原命题往往难以得证,这时常把结论加强,使之成为原命题的充分条件,从而易证.(10)补集法:如果下面解决原问题有困难,可把原问题结果看作集合A ,而包含该问题的整体问题的结果类比为全集U ,通过解决全集U 及补集使原问题得以解决.角度一 函数、方程、不等式之间的转化例1 设函数f (x )=c bx ax ++232,若a+b+c=0,f (0)f (1)>0,求证: (Ⅰ)方程f (x )=0有实数根; (Ⅱ)-2<ab <-1; (Ⅲ)设x 1,x 2是方程f (x )=0的两个实根,则33≤|x 1-x 2|<32.角度二 正面与反面的转化例2 在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有____个。

转换与化归思想

转换与化归思想

浅谈转换与化归思想转化思想就是数学中的一种基本却很重要的思想。

深究起来,转化两字中包含着截然不同的两种思想,即转换与化归。

这两者其实表达了不同的思想方法,可以说就是思维方式与操作方法的区别。

一、 转换思想(1)转换思想的内涵转换思想就是指解决问题时策略、方法、指导思想的跳跃性变化,能跳出现有领域的局限,联系相关领域,并用相关领域的思维方式来解决现有领域内的问题。

要做到这一点,对思维能力的要求相对更高,必须对各个领域分别都有透彻的了解,更必须对各领域之间的联系有较多的研究,在关键时刻才能随心所欲地运用。

(2)转换思想在同一学科中的应用转换思想可以就是在同一学科的不同知识模块之间的变换,在解决问题时改变解题方向。

象数学学科中,数与式的互相转换、数与形的互相转换、文字语言与符号语言的互相转换。

比如,函数、方程、不等式就是代数中的三大重要问题,而它们之间完全可以用三个知识模块的不同方法解决其她模块的各类问题。

不等式恒成立问题可以转换到用函数图象解决,或者就是二次方程根的分布,也可以转换到二次函数与x 轴的交点问题。

再比如,数列问题用函数观点来解释,那更就是我们数学课堂中一再强调的问题了。

瞧这样一个问题:已知:11122=-+-a b b a ,求证:122=+b a 。

[分析] 这就是一个纯粹的代数证明问题,条件的变形就是比较艰难的,所以希望把条件变形从而得到结论这条思路也有点令人望而生畏。

再仔细观察本题的条件、结论中所出现的形式,稍加联系,我们完全可以想到:21a -、21b -、122=+b a 这些特殊形式在另一知识模块——三角函数中经常出现,它们呈现出完全类似的规律性。

[解答]由题意1≤a 、1≤b ,则可设αsin =a ,αcos =b ,πα<≤0 11122=-+-a b b a 即为1sin 1cos cos 1sin 22=-+-αααα化简得1cos cos sin sin =+αααα所以0sin ≥=αa ,0cos ≥=αb则 1cos sin 2222=+=+ααb a[小结] 本题的解决了就是发现了不同知识模块中的类似规律,加以利用得到新的思路,本题的题设与结论中都没有出现三角函数的形式,最终却必须引进三角函数加以解决,思维已经具有跳跃性,对一般学生来说解决起来还就是比较棘手的。

专题四转化与化归思想

专题四转化与化归思想

则a≥ x ,x∈(0, ]恒成立.
返回目录
模拟训练
【点评】 本题主要考查转化思想和分类整合思想,分类讨论实 质上也是一种转化思想. 解法1 采用的是分类讨论的方法, 将比较复杂问题通过分类转化 为一些较简单的问题进行求解, 而每一分类中又将恒成立的问题又转 化为最值问题.
1 (0,], 变为不等式一边为参数 , 另一边为含有x的代数式,a只要大 2 1 1 于或等于y= x ,x∈(0, ]的最大值就满足上式要求. x 2
消去x2得2 x12
2 1 x1 2 6m 1 0 , m m
返回目录
模拟训练
2 1 ∴x1∈R,∴Δ= 8 2 6m 1>0, m m 1 ∴(2m+1)(6m2-2m+1)<0,∴m< . 2 1 即当m< 时,抛物线上存在两点关于直线y=m(x-3)对称. 2
x12 满足 2 x1 x 1
2 x2 x1 x 2 m 3 , 2 2 2 x2 1 . x2 m
2 x12 x 2 m( x1 x 2 6), ∴ 1 x x . 1 2 m
行转化, 使问题逐次达到规范化、模式化,直至问题的解决.
返回目录
模拟训练
1. 函数f (x)=cos2x-2 3 sinxcosx的最小正周期是__________.
π 【解析】 ∵f(x) =cos2x-2 3 sinxcosx=cos2x- 3 sin2x=-2sin 2x ,
祝您高考成功!
作文成绩
语文作文课上, 老师布置了一篇500字的作文。
下课铃响了, 一学生发现自己只写了250字, 灵机一动,在

高中数学思想----转化与化归思想

高中数学思想----转化与化归思想

转化与化归思想[思想方法解读] 转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种数学方法.一般是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.转化与化归思想是实现具有相互关联的两个知识板块进行相互转化的重要依据,如函数与不等式、函数与方程、数与形、式与数、角与边、空间与平面、实际问题与数学问题的互化等,消去法、换元法、数形结合法等都体现了等价转化思想,我们也经常在函数、方程、不等式之间进行等价转化,在复习过程中应注意相近主干知识之间的互化,注重知识的综合性. 转化与化归思想的原则(1)熟悉已知化原则:将陌生的问题转化为熟悉的问题,将未知的问题转化为已知的问题,以便于我们运用熟知的知识、经验和问题来解决.(2)简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据.(3)和谐统一原则:转化问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐统一的形式;或者转化命题,使其推演有利于运用某种数学方法或符合人们的思维规律. (4)正难则反原则:当问题正面讨论遇到困难时,应想到问题的反面,设法从问题的反面去探讨,使问题获得解决.体验高考1.(2016·课标全国乙)已知等差数列{a n }前9项的和为27,a 10=8,则a 100等于( ) A .100 B .99 C .98 D .97 答案 C解析 由等差数列性质,知S 9=9(a 1+a 9)2=9×2a 52=9a 5=27,得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1,∴a 100=a 10+90d =98,故选C.2.(2016·课标全国丙)已知4213532,4,25,a b c ===则( ) A .b <a <c B .a <b <c C .b <c <aD .c <a <b答案 A解析 因为4243552,42,a b ===由函数y =2x 在R 上为增函数知b <a ;又因为24213,33324,255a c ====由函数23y x =在(0,+∞)上为增函数知a <c .综上得b <a <c .故选A.3.(2016·四川)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin Cc .(1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tan B .(1)证明 根据正弦定理,可设a sin A =b sin B =csin C =k (k >0),则a =k sin A ,b =k sin B ,c =k sin C . 代入cos A a +cos B b =sin C c 中,有cos A k sin A +cos B k sin B =sin C k sin C,变形可得 sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π-C )=sin C ,所以sin A sin B =sin C . (2)解 由已知,b 2+c 2-a 2=65bc ,根据余弦定理,有cos A =b 2+c 2-a 22bc =35,所以sin A =1-cos 2A =45.由(1)知,sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B .故tan B =sin B cos B=4.高考必会题型题型一 正难则反的转化例1 已知集合A ={x ∈R |x 2-4mx +2m +6=0},B ={x ∈R |x <0},若A ∩B ≠∅,求实数m 的取值范围.解 设全集U ={m |Δ=(-4m )2-4(2m +6)≥0}, 即U ={m |m ≤-1或m ≥32}.若方程x 2-4mx +2m +6=0的两根x 1,x 2均为非负,则⎩⎪⎨⎪⎧m ∈U ,x 1+x 2=4m ≥0,⇒m ≥32,x 1x 2=2m +6≥0所以使A ∩B ≠∅的实数m 的取值范围为{m |m ≤-1}.点评 本题中,A ∩B ≠∅,所以A 是方程x 2-4mx +2m +6=0①的实数解组成的非空集合,并且方程①的根有三种情况:(1)两负根;(2)一负根和一零根;(3)一负根和一正根.分别求解比较麻烦,我们可以从问题的反面考虑,采取“正难则反”的解题策略,即先由Δ≥0,求出全集U ,然后求①的两根均为非负时m 的取值范围,最后利用“补集思想”求解,这就是正难则反这种转化思想的应用,也称为“补集思想”.变式训练1 若对于任意t ∈[1,2],函数g (x )=x 3+⎝⎛⎭⎫m 2+2x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是__________. 答案 ⎝⎛⎭⎫-373,-5 解析 g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t,3)上总为单调函数,则①g ′(x )≥0在(t,3)上恒成立,或②g ′(x )≤0在(t,3)上恒成立. 由①得3x 2+(m +4)x -2≥0, 即m +4≥2x -3x 在x ∈(t,3)上恒成立,所以m +4≥2t -3t 恒成立,则m +4≥-1,即m ≥-5;由②得m +4≤2x -3x 在x ∈(t,3)上恒成立,则m +4≤23-9,即m ≤-373.所以使函数g (x )在区间(t,3)上总不为单调函数的m 的取值范围为-373<m <-5.题型二 函数、方程、不等式之间的转化 例2 已知函数f (x )=eln x ,g (x )=1e f (x )-(x +1).(e =2.718……)(1)求函数g (x )的极大值;(2)求证:1+12+13+…+1n >ln(n +1)(n ∈N *).(1)解 ∵g (x )=1ef (x )-(x +1)=ln x -(x +1),∴g ′(x )=1x -1(x >0).令g ′(x )>0,解得0<x <1; 令g ′(x )<0,解得x >1.∴函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减, ∴g (x )极大值=g (1)=-2.(2)证明 由(1)知x =1是函数g (x )的极大值点,也是最大值点,∴g (x )≤g (1)=-2,即ln x -(x +1)≤-2⇒ln x ≤x -1(当且仅当x =1时等号成立), 令t =x -1,得t ≥ln(t +1)(t >-1). 取t =1n (n ∈N *)时,则1n >ln ⎝⎛⎭⎫1+1n =ln ⎝⎛⎭⎫n +1n ,∴1>ln 2,12>ln 32,13>ln 43,…,1n >ln ⎝⎛⎭⎫n +1n ,叠加得1+12+13+…+1n >ln(2·32·43·…·n +1n )=ln(n +1).即1+12+13+…+1n >ln(n +1).点评 解决方程、不等式的问题需要函数帮助,解决函数的问题需要方程、不等式的帮助,因此借助于函数、方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值(值域)问题,从而求出参变量的范围. 变式训练2 设a 为实数,函数f (x )=e x -2x +2a ,x ∈R . (1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1. (1)解 由f (x )=e x -2x +2a ,x ∈R 知f ′(x )=e x -2,x ∈R . 令f ′(x )=0,得x =ln 2.于是当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,ln 2)ln 2 (ln 2,+∞)f ′(x ) - 0 + f (x )单调递减 ↘2-2ln 2+2a单调递增 ↗故f (x )的单调递减区间是(-∞,ln 2), 单调递增区间是(ln 2,+∞), f (x )在x =ln 2处取得极小值,极小值为f (ln 2)=e ln 2-2ln 2+2a =2-2ln 2+2a .(2)证明 设g (x )=e x -x 2+2ax -1,x ∈R , 于是g ′(x )=e x -2x +2a ,x ∈R . 由(1)知当a >ln 2-1时,g ′(x )取最小值为g ′(ln 2)=2(1-ln 2+a )>0. 于是对任意x ∈R ,都有g ′(x )>0, 所以g (x )在R 内单调递增.于是当a >ln 2-1时,对任意x ∈(0,+∞), 都有g (x )>g (0).而g (0)=0,从而对任意x ∈(0,+∞),都有g (x )>0. 即e x -x 2+2ax -1>0,故e x >x 2-2ax +1. 题型三 主与次的转化例3 已知函数f (x )=x 3+3ax -1,g (x )=f ′(x )-ax -5,其中f ′(x )是f (x )的导函数.对满足-1≤a ≤1的一切a 的值,都有g (x )<0,则实数x 的取值范围为________. 答案 ⎝⎛⎭⎫-23,1 解析 由题意,知g (x )=3x 2-ax +3a -5, 令φ(a )=(3-x )a +3x 2-5,-1≤a ≤1. 对-1≤a ≤1,恒有g (x )<0,即φ(a )<0,∴⎩⎪⎨⎪⎧ φ(1)<0,φ(-1)<0, 即⎩⎪⎨⎪⎧3x 2-x -2<0,3x 2+x -8<0, 解得-23<x <1.故当x ∈⎝⎛⎭⎫-23,1时,对满足-1≤a ≤1的一切a 的值,都有g (x )<0. 点评 主与次的转化法合情合理的转化是数学问题能否“明朗化”的关键所在,通过变换主元,起到了化繁为简的作用.在不等式中出现两个字母:x 及a ,关键在于该把哪个字母看成变量,哪个看成常数.显然可将a 视作自变量,则上述问题即可转化为在[-1,1]内关于a 的一次函数小于0恒成立的问题.变式训练3 设f (x )是定义在R 上的单调递增函数,若f (1-ax -x 2)≤f (2-a )对任意a ∈[-1,1]恒成立,则x 的取值范围为______________. 答案 (-∞,-1]∪[0,+∞) 解析 ∵f (x )是R 上的增函数, ∴1-ax -x 2≤2-a ,a ∈[-1,1].(*) (*)式可化为(x -1)a +x 2+1≥0对a ∈[-1,1]恒成立. 令g (a )=(x -1)a +x 2+1.则⎩⎪⎨⎪⎧g (-1)=x 2-x +2≥0,g (1)=x 2+x ≥0, 解得x ≥0或x ≤-1,即实数x 的取值范围是(-∞,-1]∪[0,+∞). 题型四 以换元为手段的转化与化归例4 是否存在实数a ,使得函数y =sin 2x +a cos x +58a -32在闭区间[0,π2]上的最大值是1?若存在,则求出对应的a 的值;若不存在,请说明理由. 解 y =sin 2x +a cos x +58a -32=1-cos 2x +a cos x +58a -32=-(cos x -a 2)2+a 24+58a -12.∵0≤x ≤π2,∴0≤cos x ≤1,令cos x =t ,则y =-(t -a 2)2+a 24+58a -12,0≤t ≤1.当a 2>1,即a >2时,函数y =-(t -a 2)2+a 24+58a -12在t ∈[0,1]上单调递增, ∴t =1时,函数有最大值y max =a +58a -32=1,解得a =2013<2(舍去);当0≤a2≤1,即0≤a ≤2时,则t =a2时函数有最大值,y max =a 24+58a -12=1,解得a =32或a =-4(舍去);当a2<0,即a <0时, 函数y =-(t -a 2)2+a 24+58a -12在t ∈[0,1]上单调递减,∴t =0时,函数有最大值y max =58a -12=1,解得a =125>0(舍去),综上所述,存在实数a =32,使得函数在闭区间[0,π2]上有最大值1.点评 换元有整体代换、特值代换、三角换元等情况.本题是关于三角函数最值的存在性问题,通过换元,设cos x =t ,转化为关于t 的二次函数问题,把三角函数的最值问题转化为二次函数y =-(t -a 2)2+a 24+58a -12,0≤t ≤1的最值问题,然后分类讨论解决问题.变式训练4 若关于x 的方程9x +(4+a )·3x +4=0有解,则实数a 的取值范围是____________. 答案 (-∞,-8]解析 设t =3x ,则原命题等价于关于t 的方程t 2+(4+a )t +4=0有正解,分离变量a ,得a +4=-⎝⎛⎭⎫t +4t , ∵t >0,∴-⎝⎛⎭⎫t +4t ≤-4, ∴a ≤-8,即实数a 的取值范围是(-∞,-8].高考题型精练1.若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值范围是( ) A .(-∞,518] B .(-∞,3]C .[518,+∞) D .[3,+∞)答案 C解析 f ′(x )=3x 2-2tx +3, 由于f (x )在区间[1,4]上单调递减, 则有f ′(x )≤0在[1,4]上恒成立,即3x 2-2tx +3≤0,即t ≥32(x +1x )在[1,4]上恒成立,因为y =32(x +1x )在[1,4]上单调递增,所以t ≥32(4+14)=518,故选C.2.已知函数f (x )=|log 12x |,若m <n ,有f (m )=f (n ),则m +3n 的取值范围是( )A .[23,+∞)B .(23,+∞)C .[4,+∞)D .(4,+∞) 答案 D解析 ∵f (x )=|log 12x |,若m <n ,有f (m )=f (n ),∴log 12m =-log 12n ,∴mn =1,∴0<m <1,n >1,∴m +3n =m +3m 在m ∈(0,1)上单调递减,当m =1时,m +3n =4,∴m +3n >4.3.过抛物线y =ax 2(a >0)的焦点F ,作一直线交抛物线于P ,Q 两点,若线段PF 与FQ 的长度分别为p ,q ,则1p +1q 等于( )A .2a B.12a C .4a D.4a答案 C解析 抛物线y =ax 2(a >0)的标准方程为x 2=1a y (a >0),焦点F (0,14a ),取过焦点F 的直线垂直于y 轴, 则|PF |=|QF |=12a ,所以1p +1q=4a .4.已知函数f (x )=(e 2x +1+1)(ax +3a -1),若存在x ∈(0,+∞),使得不等式f (x )<1成立,则实数a 的取值范围是( ) A .(0,e +23(e +1))B .(0,2e +1)C .(-∞,e +23(e +1))D .(-∞,1e +1)答案 C解析 因为x ∈(0,+∞),所以2x +1>1, 则e 2x +1+1>e +1,要使f (x )<1,则ax +3a -1<1e +1,可转化为:存在x ∈(0,+∞)使得a <e +2e +1·1x +3成立.设g (x )=e +2e +1·1x +3,则a <g (x )max , 因为x >0,则x +3>3, 从而1x +3<13,所以g (x )<e +23(e +1),即a <e +23(e +1),选C.5.已知f (x )=33x +3,则f (-2 015)+f (-2 014)+…+f (0)+f (1)+…+f (2 016)=________.答案 2 016解析 f (x )+f (1-x )=33x +3+331-x +3=33x +3+3x3+3x =3x +33x +3=1, ∴f (0)+f (1)=1,f (-2 015)+f (2 016)=1,∴f (-2 015)+f (-2 014)+…+f (0)+f (1)+…+f (2 016)=2 016.6.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少存在一个值c ,使得f (c )>0,求实数p 的取值范围是________. 答案 (-3,32)解析 如果在[-1,1]内没有值满足f (c )>0,则⎩⎪⎨⎪⎧f (-1)≤0,f (1)≤0⇒⎩⎨⎧p ≤-12或p ≥1,p ≤-3或p ≥32⇒p ≤-3或p ≥32,取补集为-3<p <32,即为满足条件的p 的取值范围.故实数p 的取值范围为(-3,32).7.对任意的|m |≤2,函数f (x )=mx 2-2x +1-m 恒为负,则x 的取值范围是________________. 答案 (7-12,3+12) 解析 对任意的|m |≤2,有mx 2-2x +1-m <0恒成立, 即|m |≤2时,(x 2-1)m -2x +1<0恒成立. 设g (m )=(x 2-1)m -2x +1,则原问题转化为g (m )<0恒成立(m ∈[-2,2]).所以⎩⎪⎨⎪⎧g (-2)<0,g (2)<0,即⎩⎪⎨⎪⎧2x 2+2x -3>0,2x 2-2x -1<0, 解得7-12<x <3+12, 即实数x 的取值范围为(7-12,3+12). 8.(2016·天津模拟)已知一个几何体的三视图如图所示,如果点P ,Q 在正视图中所示位置:点P 为所在线段的中点,点Q 为顶点,则在几何体侧面上,从P 点到Q 点的最短路径的长为________.答案 a 1+π2解析 由三视图,知此几何体是一个圆锥和一个圆柱的组合体,分别沿P 点与Q 点所在母线剪开圆柱侧面并展开铺平,如图所示.则PQ =AP 2+AQ 2=a 2+(πa )2=a 1+π2. 所以P ,Q 两点在侧面上的最短路径的长为a 1+π2.9.求使不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立的x 的取值范围. 解 将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0.令f (a )=(x -3)a +x 2-6x +9.因为f (a )>0在|a |≤1时恒成立,所以(1)若x =3,则f (a )=0,不符合题意,应舍去.(2)若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧ f (-1)>0,f (1)>0, 即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0, 解得x <2或x >4.即x 的取值范围为(-∞,2)∪(4,+∞).10.已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若m ,n ∈[-1,1],m +n ≠0时,有f (m )+f (n )m +n>0. (1)证明f (x )在[-1,1]上是增函数;(2)解不等式f (x 2-1)+f (3-3x )<0;(3)若f (x )≤t 2-2at +1对∀x ∈[-1,1],a ∈[-1,1]恒成立,求实数t 的取值范围. 解 (1)任取-1≤x 1<x 2≤1,则f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1)+f (-x 2)x 1-x 2(x 1-x 2). ∵-1≤x 1<x 2≤1,∴x 1+(-x 2)≠0,由已知f (x 1)+f (-x 2)x 1-x 2>0,x 1-x 2<0, ∴f (x 1)-f (x 2)<0,即f (x )在[-1,1]上是增函数.(2)因为f (x )是定义在[-1,1]上的奇函数,且在[-1,1]上是增函数,不等式化为f (x 2-1)<f (3x -3),所以⎩⎪⎨⎪⎧ x 2-1<3x -3,-1≤x 2-1≤1,-1≤3x -3≤1,解得x ∈(1,43]. (3)由(1)知,f (x )在[-1,1]上是增函数,所以f (x )在[-1,1]上的最大值为f (1)=1,要使f (x )≤t 2-2at +1对∀x ∈[-1,1],a ∈[-1,1]恒成立,只要t 2-2at +1≥1⇒t 2-2at ≥0,设g (a )=t 2-2at ,对∀a ∈[-1,1],g (a )≥0恒成立,所以⎩⎪⎨⎪⎧g (-1)=t 2+2t ≥0,g (1)=t 2-2t ≥0 ⇒⎩⎪⎨⎪⎧t ≥0或t ≤-2,t ≥2或t ≤0, 所以t ≥2或t ≤-2或t =0.11.已知函数f (x )=2|x -1|-a ,g (x )=-|2x +m |,a ,m ∈R ,若关于x 的不等式g (x )≥-1的整数解有且仅有一解-2.(1)求整数m 的值;(2)若函数y =f (x )的图象恒在函数y =12g (x )的图象的上方,求实数a 的取值范围. 解 (1)由g (x )≥-1,即-|2x +m |≥-1,|2x +m |≤1,得-m -12≤x ≤-m +12. ∵不等式的整数解为-2,∴-m -12≤-2≤-m +12, 解得3≤m ≤5.又∵不等式仅有一个整数解-2,∴m =4.(2)函数y =f (x )的图象恒在函数y =12g (x )的上方, 故f (x )-12g (x )>0对任意x ∈R 恒成立, ∴a <2|x -1|+|x +2|对任意x ∈R 恒成立.设h (x )=2|x -1|+|x +2|,则h (x )=⎩⎪⎨⎪⎧ -3x ,x ≤-2,4-x ,-2<x ≤1,3x ,x >1,则h(x)在区间(-∞,1)上是减函数,在区间(1,+∞)上是增函数,∴当x=1时,h(x)取得最小值3,故a<3,∴实数a的取值范围是(-∞,3).--。

转化与化归思想

转化与化归思想
如图,台风中心位于点 ,并沿东北方向 PQ移动,已知台风移动的速度为 千米 时, 移动, 千米/时 移动 已知台风移动的速度为40千米 受影响区域的半径为260千米,B市位于点 千米, 市位于点 市位于点P 受影响区域的半径为 千米 的北偏东75°方向上,距离P点 千米. 的北偏东 °方向上,距离 点480千米. 千米 (1)说明本次台风是否会影响 市; )说明本次台风是否会影响B市 2)若这次台风会影响B市 B市受台风 (2)若这次台风会影响B市,求B市受台风 影响的时间. 影响的时间.
例1 已知 x + x + 1 = 0, 求 x + 2 x + 2010 的的。
2 3 2
例2 解方解 2( x − 1) − 5( x − 1) + 2 = 0.
2
1 1 4 例3 已知 x + = 2, 则 x + 4 的的为 __________ . x x
已知正方形的边长为a, 例4 已知正方形的边长为 ,以各边为直径 在正方形内画半圆,求所围成的图形( 在正方形内画半圆,求所围成的图形(阴影 部分)的面积。 部分)的面积。
如图,在梯形 在梯形ABCD中,AD//BC,AB=CD, 例6 如图 在梯形 中 对角线AC,BD交于点 且AC⊥BD.已知 交于点O,且 ⊥ 对角线 交于点 已知 AD=3,BC=5,求AC的长 的长. 求 的长
如图, 分别是正三角形ABC、正 例7 如图,点E、D分别是正三角形 、 分别是正三角形 、 四边形ABCM、正五边形 中以C点为 四边形 、正五边形ABCMN中以 点为 中以 顶点的一边延长线和另一边反向延长线上的 延长线交AE于点 点,且BE=CD,DB延长线交 于点 . , 延长线交 于点F. 1))若将条件“正三角形、正四边形、正 求图1中∠AFB度数,并证明 , 、 中 度数, ((3)若将条件“正三角形、正四边形图3中 )求图2中∠AFB的度数为 中 度数 并证明CD2=BD•EF 2)图 中 的度数为______, 的度数为 五边形”改为“ 边形” 其它条件不变, 度数为_______,在图 、图3中, 五边形”改为 边形 在图2、 ∠AFB度数为“正n边形”,其它条件不变, 度数为 , 中 ;(填 可用含n的代数式 成立” 则∠AFB度数为 (1)中的等式 _______. 填“成立”或“不成 )中的等式_____ ;( (可用含 的代数式 度数为 表示,不必证明) 表示,不必证明) 不必证明) 立”,不必证明)

转化与化归思想

转化与化归思想

第1讲 第4课时 转化与化归思想
[解析] g′(x)=3x2+(m+4)x-2, 若 g(x)在区间(t,3)上总为单调函数, 则①g′(x)≥0 在(t,3)上恒成立, 或②g′(x)≤0 在(t,3)上恒成立. 由①得 3x2+(m+4)x-2≥0, 即 m+4≥2x-3x,当 x∈(t,3)时恒成立, 所以 m+4≥2t -3t 恒成立, 则 m+4≥-1,
首页 上页 下页 末页
第1讲 第4课时 转化与化归思想
应用二 函数、方程、不等式之间的转化
1.函数与方程、不等式联系密切,解决方程、不等式的问题需要函数帮助. 2.解决函数的问题需要方程、不等式的帮助,因此借助函数与方程、不等式进行转化 与化归可以将问题化繁为简,一般可将不等关系转化为最值(值域)问题,从而求出参变 量的范围.
第1讲 第4课时 转化与化归思想
首页 上页 下页 末页
第1讲 第4课时 转化与化归思想
即 m≥-5; 由②得 3x2+(m+4)x-2≤0, 即 m+4≤2x-3x,当 x∈(t,3)时恒成立, 则 m+4≤23-9, 即 m≤-337. 所以函数 g(x)在区间(t,3)上总不为单调函数的 m 的取值范围为-337,-5.
第1讲 第4课时 转化与化归思想
首页 ] 若对于任意 t∈[1,2],函数 g(x)=x3+m2 +2x2-2x 在区间(t,3)上总不为单调函数,则 实数 m 的取值范围是________.
第1讲 第4课时 转化与化归思想
首页 上页 下页 末页
首页 上页 下页 末页
第1讲 第4课时 转化与化归思想
[解析] 因为当 t∈[-1,+∞)且 x∈[1,m]时,x+t≥0, 所以 f(x+t)≤3ex⇔ex+t≤ex⇔t≤1+ln x-x. 所以原命题等价转化为:存在实数 t∈[-1,+∞),使得不等式 t≤1+ln x-x 对任意 x∈[1,m]恒成立. 令 h(x)=1+ln x-x(x≥1). 因为 h′(x)=1x-1≤0, 所以函数 h(x)在[1,+∞)上为减函数, 又因为 x∈[1,m],所以 h(x)min=h(m)=1+ln m-m.

思想方法第4讲转化与化归思想

思想方法第4讲转化与化归思想

思想方法第4讲转化与化归思想第4讲转化与化归思想思想概述转化与化归思想方法适用于在研究、解决数学问题时,思维受阻或试图寻求简单方法或从一种情形转化到另一种情形,也就是转化到另一种情形使问题得到解决,这种转化是解决问题的有效策略,同时也是获取成功的思维方式.方法一特殊与一般的转化一般问题特殊化,使问题处理变得直接、简单,也可以通过一般问题的特殊情形找到一般思路;特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果;对于某些选择题、填空题,可以把题中变化的量用特殊值代替,得到问题答案.例1(1)(2020·青岛模拟)“蒙日圆”涉及几何学中的一个著名定理,该定理的内容为:椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,该圆称为原椭圆的蒙日圆,若椭圆C:+=1(a>0)的离心率为,则椭圆C的蒙日圆的方程为()A.x2+y2=9B.x2+y2=7C.x2+y2=5D.x2+y2=4答案B解析因为椭圆C:+=1(a>0)的离心率为,所以=,解得a=3,所以椭圆C的方程为+=1,所以椭圆的上顶点A(0,),右顶点B(2,0),所以经过A,B两点的切线方程分别为y=,x=2,所以两条切线的交点坐标为(2,),又过A,B的切线互相垂直,由题意知交点必在一个与椭圆C同心的圆上,可得圆的半径r==,所以椭圆C的蒙日圆方程为x2+y2=7.(2)在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等差数列,则等于()A.B.C.D.思路分析求→考虑正三角形ABC的情况答案A解析令a=b=c,则△ABC为等边三角形,且cosA=cosC=,代入所求式子,得==.一般问题特殊化,使问题处理变得直接、简单,特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果.方法二命题的等价转化将题目已知条件或结论进行转化,使深奥的问题浅显化、繁杂的问题简单化,让题目得以解决.一般包括数与形的转化、正与反的转化、常量与变量的转化、图形形体及位置的转化.例2(1)由命题“存在x0∈R,使-m≤0”是假命题,得m的取值范围是(-∞,a),则实数a的值是()A.(-∞,1)B.(-∞,2)C.1D.2思路分析命题:存在x0∈R,使-m≤0是假命题→任意x∈R,e|x-1|-m>0是真命题→m可知它的否定形式“任意x∈R,e|x-1|-m>0”是真命题,可得m的取值范围是(-∞,1),而(-∞,a)与(-∞,1)为同一区间,故a=1.(2)若对于任意t∈[1,2],函数g(x)=x3+x2-2x在区间(t,3)上总不为单调函数,则实数m的取值范围是________.思路分析gx在t,3上总不为单调函数→先看gx在t,3上单调的条件→补集法求m的取值范围答案解析g′(x)=3x2+(m+4)x-2,若g(x)在区间(t,3)上为单调函数,则①g′(x)≥0在(t,3)上恒成立,或②g′(x)≤0在(t,3)上恒成立.由①得3x2+(m+4)x-2≥0,即m+4≥-3x在x∈(t,3)上恒成立,所以m+4≥-3t恒成立,则m+4≥-1,即m≥-5;由②得m+4≤-3x在x∈(t,3)上恒成立,则m+4≤-9,即m≤-.所以使函数g(x)在区间(t,3)上总不为单调函数的m的取值范围为-“补集法”;含两个变量的问题可以变换主元.方法三函数、方程、不等式之间的转化函数与方程、不等式紧密联系,通过研究函数y=f(x)的图象性质可以确定方程f(x)=0,不等式f(x)>0和f(x)<0的解集.例3(2020·全国Ⅱ)若2x-2y<3-x-3-y,则()A.ln(y-x+1)>0B.ln(y-x+1)<0C.ln|x-y|>0D.ln|x-y|<0答案A解析∵2x-2y<3-x-3-y,∴2x-3-x<2y-3-y.∵y=2x-3-x=2x -x在R上单调递增,∴x1,∴ln(y-x+1)>ln1=0.例4已知函数f(x)=elnx,g(x)=f(x)-(x+1).(e=2.718……)(1)求函数g(x)的极大值;(2)求证:1+++…+>ln(n+1)(n∈N).思路分析gx的极值→lnx明结论(1)解∵g(x)=f(x)-(x+1)=lnx-(x+1),∴g′(x)=-1(x>0).令g′(x)>0,解得0<1;令g′(x)<0,解得x>1.∴函数g(x)在(0,1)上单调递增,在(1,+∞)上单调递减,∴g(x)极大值=g(1)=-2.(2)证明由(1)知x=1是函数g(x)的极大值点,也是最大值点,∴g(x)≤g(1)=-2,即lnx-(x+1)≤-2?lnx≤x-1(当且仅当x=1时等号成立),令t=x-1,得t≥ln(t+1)(t>-1).取t=(n∈N)时,则>ln=ln,∴1>ln2,>ln,>ln,…,>ln,∴叠加得1+++…+>ln=ln(n+1).即1+++…+>ln(n+1)(n∈N).借助函数、方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值值域问题,从而求出参变量的范围.高考高中资料无水印无广告不加密word版群559164877;高考数学高中数学探究群562298495。

高中数学思想之转化与化归的思想(非常重要)

高中数学思想之转化与化归的思想(非常重要)

⾼中数学思想之转化与化归的思想(⾮常重要)【⾼考展望】解决数学问题时,常遇到⼀些问题直接求解较为困难,通过观察、分析、类⽐、联想等思维过程,选择运⽤恰当的数学⽅法进⾏变换,将原问题转化为⼀个新问题(相对来说,对⾃⼰较熟悉的问题),通过新问题的求解,达到解决原问题的⽬的,这⼀思想⽅法我们称之为“转化与化归的思想⽅法”转化与化归思想在⾼考中占有相当重要的地位,可以说⽐⽐皆是,如未知向已知的转化、新知识向旧知识的转化、复杂问题向简单问题的转化、不同数学问题之间的互相转化、实际问题向数学问题转化等等.各种变换、具体解题⽅法都是转化的⼿段,转化的思想⽅法渗透到所有的数学教学内容和解题过程中.⾼考对本讲的考查为:(1)常量与变量的转化:如分离变量,求范围等。

(2)数与形的互相转化:若解析⼏何中斜率、函数中的单调性等。

(3)数学各分⽀的转化:函数与⽴体⼏何、向量与解析⼏何等的转化。

(4)出现更多的实际问题向数学模型的转化问题。

【知识升华】转化与化归思想⽅法,就是在研究和解决有关数学问题时采⽤某种⼿段将问题通过变换使之转化,进⽽得到解决的⼀种⽅法.⼀般总是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题变换转化为已解决的问题.解题的过程就是“化归”的过程,不断地改变待解决的问题,重新叙述它,变换它,直到最后成功地找到某些有⽤的东西为⽌.1.转化与化归应遵循的原则(1)熟悉化原则:将陌⽣的问题转化为熟悉的问题,以利于我们运⽤熟知的知识、经验和⽅法来解决.(2)简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的⽬的,或获得某种解题的启⽰和依据.(3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所呈现的和谐统⼀的形式,或者转化命题,使其有利于运⽤某种数学⽅法或符合⼈们的思维规律.(4)直观化原则:将⽐较抽象的问题转化为⽐较直观的问题来解决.(5)正难则反原则:当问题正⾯讨论遇到困难时,可考虑问题的反⾯,设法从问题的反⾯去探求,使问题获解.2.转化与化归的基本类型(1)正与反、⼀般与特殊的转化,即正难则反,特殊化原则.(2)常量与变量的变化,即在处理多元问题时,选取其中的变量(或参数)当“主元”,其他的变量看作常量.(3)数与形的转化,即利⽤对数量关系的讨论来研究图形性质,也可利⽤图形直观提供思路,直观地反映函数或⽅程中的变量之间的关系.(4)数学各分⽀之间的转化,如利⽤向量⽅法解⽴体⼏何问题,⽤解析⼏何⽅法处理平⾯⼏何、代数、三⾓问题等.(5)相等与不等之间的转化,如利⽤均值不等式、判别式等.(6)实际问题与数学模型的转化.3.常见的转化⽅法(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题.(2)换元法:运⽤“换元”把超越式转化为有理式或使整式降幂等,把较复杂的函数、⽅程、不等式问题转化为易于解决的基本问题.(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换、获得转化途径.(4)参数法:引进参数,使原问题的变换具有灵活性,易于转化.(5)构造法:“构造”⼀个合适的数学模型,把问题变为易于解决的问题.(6)坐标法:以坐标系为⼯具,⽤计算⽅法解决⼏何问题.(7)类⽐法:运⽤类⽐推理,猜测问题的结论.(8)特殊化⽅法:把原问题的形式向特殊化形式转化,并证明特殊化后的结论适合原问题.(9)⼀般化⽅法:当原问题是某个⼀般化形式问题的特殊形式且⼜较难解决时,可将问题通过⼀般化的途径进⾏转化.(10)等价问题法:把原问题转化为⼀个易于解决的等价命题,达到转化⽬的.(11)加强命题法:在证明不等式时,原命题难以得证,往往把命题的结论加强,即把命题的结论加强为原命题的充分条件,反⽽能将原命题转化为⼀个较易证明的命题,加强命题法是⾮等价转化⽅法.(12)补集法:如果正⾯解决原问题有困难,可把原问题结果看作集合A,⽽把包含该问题的整体问题的结果类⽐为全集U,通过解决全集U及补集获得原问题的解决.以上所列的⼀些⽅法是互相交叉的,不能截然分割.4.利⽤转化与化归的思想解决问题的模式可图⽰如下:注:本⽂节选⾃⾼中数学归纳总结精析。

转化与化归思想

转化与化归思想

转化与化归思想转化与化归思想转化与化归思想是中学数学中四种重要的数学思想之一,它是在处理问题时,把那些待解决的问题,通过某种转化过程,归结为一类已经解决或比较容易解决的问题,最终求得原问题,是一种把未知问题转化为熟知可解问题的一种重要的思想方法。

高中阶段,几乎每一个题目都要用到这一思想方法,而重视对化归与转化思想的考查,已是高考数学命题多年来所坚持的方向,并以各种不同的层次融入试题中,通过对转化与化归思想方法的运用,对考生的数学能力进行区分。

常见的转化方法:(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题。

(2)换元法:运用“换元”把超越式转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题。

(3)数形结合法:研究原问题中的数量关系(解析式)与空间形式(图形)关系,通过互相变换,获得转化途径。

(4)参数法:引进参数,使原问题的变换具有灵活性,易于转化。

(5)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题。

(6)坐标法:以坐标系为工具,用计算方法解决几何问题,是转化方法的一个重要途径。

(7)类比法:运用类比推理,猜测问题的结论,确定转化途径。

(8)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的结论适合原问题。

(9)一般化方法:若原问题是某个一般化形式问题的特殊形式且又较难解决,可将问题通过一般化的途径进行转化。

(10)等价问题法:把原问题转化为一个易于解决的等价命题,达到转化目的。

(11)补集法:如果正面解决原问题有困难,可把原问题的结果类比集合A,而把包含该问题的整体问题的结果类比为全集U,通过解决全集U及补集C U A使原问题获得解决。

以上所列的一些方法是互相交叉的,不能截然分割。

一、等与不等的相互转化等与不等是数学中两个重要的关系,也是常见的两种关系,把不等问题转化成相等问题,可以减少运算量,提高正确率;把相等问题转化为不等问题,能突破难点找到解题的突破口。

转化与化归的数学思想

转化与化归的数学思想

转化与化归的数学思想一、转化与化归思想的含义化归指的是转化与归结.简单的化归思想就是把不熟悉的问题转化成熟悉问题的数学思想.即把数学中待解决或未解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换、转化,归结到某个或某些已经解决或比较容易解决的问题上,最终解决原问题的这种解决问题的思想,称为化归思想.化归思想是解决数学问题的基本思想,解题的过程实际上就是转化的过程.数学中的转化比比皆是,比如将未知向已知转化;复杂问题向简单问题转化;命题间的转化;数与形的转化;空间向平面的转化;高次向低次的转化;多元向少元的转化;无限向有限的转化等都是化归思想的体现.化归思维模式:问题→新问题→解决新问题→解决原问题.化归与转化应遵循的基本原则:(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决;(2)简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据;(3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律;(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决;(5)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。

二、化归思想的解题途径1、一般与特殊的转化21(0)11,2.243y ax a F P Q PF FQ p q p q A a B a C a D a =>+例 过抛物线的焦点作一直线与抛物线交于、两点,若线段、的长分别为、则的值为( )2.具体与抽象的转化.把抽象问题具体化是在数学解题中常有的化归途径,它是对抽象问题的理解和再认识,在抽象.例2、设函数 的定义域为D ,若所有点 构成一个正方形区域,则a 的值为A .-2B .-4C .-8D .不能确定3. 正面与反面的转化在处理某一问题时,按习惯思维从正面思考比较困难,这时用逆向思维的方式从反面去考虑,往往使问题变得比较简单。

转化与化归思想

转化与化归思想
返回
3.直观化原则 将比较抽象的问题转化为比较直观的问题来解决. 4.正难则反原则 当问题正面讨论遇到困难时,应想到考虑问题的反面, 设法从问题的反面去探求,使问题获得解决,或证明问题的 可能性. 总之,化归与转化是高中数学的一种重要思想方法,掌 握好化归与转化的思想方法的特点、题型、方法、要素、原 则对我们学习数学是非常有帮助的.
返回
返回
等与不等是数学解题中矛盾的两个方面,但是它们 在一定的条件下可以相互转化,例如本例,表面看来似 乎只具有相等的数量关系,且根据这些相等关系很难解 决,但是通过挖掘其中的不等量关系,转化为不等式(组) 来求解,则显得非常简捷有效.
返回
正向与逆向的转化
[例3] 某射手射击1次击中目标的概率是0.9他连续射击4 次且他各次射击是否击中目标是相互独立的,则他至少击中 目标1次的概率为 ________.
返回
2.转化与化归的常见方法 (1)直接转化法:把原问题直接转化为基本定理、基本公式 或基本图形问题. (2)换元法:运用“换元”把式子转化为有理式或使整式降幂 等,把较复杂的函数、方程、不等式问题转化为易于解决的基 本问题. (3)数形结合法:研究原问题中数量关系(解析式)与空间形 式(图形)关系,通过互相变换获得转化途径. (4)等价转化法:把原问题转化为一个易于解决的等价问题, 以达到化归的目的.
同一区间,故a=1.
返回
“化归与转化”还有“数与形的转化、数学各分支之间的转 化”等,应用时还应遵循以下四条原则:
1.熟悉化原则 将陌生的问题转化为熟悉的问题,以利于运用熟知的知识 和经验来解答问题. 2.简单化原则 将复杂的问题转化为简单的问题,通过对简单问题的解决, 达到解决复杂问题的目的,或获得某种解题的启示和依据.

§4 转化与化归思想

§4 转化与化归思想

变式训练 3 已知定义在实数集 R 上的函数 y=f(x)恒不为 零,同时满足 f(x+y)=f(x)· f(y),且当 x>0 时,f(x)>1,
④ 那么当 x<0 时,一定有________(填序号).
①f(x)<-1;②-1<f(x)<0;③f(x)<1;④0<f(x)<1.
解析 设 f(x)=2x, ,则符合题意,结合图象知④正确.
§4 转化与化归思想 方法解读
1.转化与化归思想 所谓转化与化归思想,就是将待解决的问题和未解决的 问题,采取某种策略,转化归结为一个已经能解决的问 题;或者归结为一个熟知的具有确定解决方法和程序的 问题;归结为一个比较容易解决的问题,最终求得原问 题的解. 2.转化与化归思想的原则 (1)熟悉已知化原则:将陌生的问题转化为熟悉的问题, 将未知的问题转化为已知问题,以便于我们运用熟知的 知识、经验和问题来解决.
归纳拓展 本题如果从已知条件 a2=a1·9⇒(a1+2d)2=a1(a1 a 3 a1+a3+a9 +8d),解得 a1 与 d 的关系后,代入所求的式子: a2+a4+a10 a1+(a1+2d)+(a1+8d) = ,也能求解,但计算较繁锁, (a1+d)+(a1+3d)+(a1+9d) 易错. 因此, 把抽象数列转化为具体的简单的数列进行分析, 可以很快得到答案.
(6)类比法:运用类比推理,猜测问题的结论,易于确定转 化途径. (7)特殊化方法:把原问题的形式向特殊化形式转化,并证 明特殊化后的结论适合原问题. (8)等价问题法:把原问题转化为一个易于解决的等价命题, 达到转化的目的. (9)加强命题法:在证明不等式时,原命题难以得证,往往 把命题的结论加强,即命题的结论加强为原命题的充分条 件,反而能将原命题转化为一个较易证明的命题,比如在证 明不等式时,原命题往往难以得证,这时常把结论加强,使 之成为原命题充分条件,从而易证. (10)补集法:如果正面解决问题有困难,可把原问题结果看 作集合 A,而包含问题的整体问题的结果类比为全集 U,通 过解决全集 U 及补集∁ UA 使原问题得以解决.

数学思想之一转化与化归思想(概述)

数学思想之一转化与化归思想(概述)

数学思想之一:转化与化归思想(概述)
1、转化与化归的思想方法
转化与化归的思想方法是数学中最基本的思想方法,数学中一切
问题的解决(当然包括解题)都离不开转化与化归,数形结合思想体现了数与形的相互转化;函数与方程思想体现了函数、方程、不等式间的相互转化;分类讨论思想体现了局部与整体的相互转化,以上三种思想方法都是转化与化归思想的具体体现。

各种变换方法、分析法、反证法、待定系数法、构造法等都是转化的手段。

所以说,转化与化归是数学思想方法的灵魂。

2、转化包括等价转化和非等价转化
等价转化要求在转化过程中的前因后果既是充分的又是必要的,这样的转化能保证转化的结果仍为原问题所需要的结果,不等价转化其过程则是充分的或必要的,这样的转化能给人带来思维的启迪,找到解决问题的突破口,不等价变形要对所得结论进行必要的修改。

3、转化与化归的原则
将不熟悉和难解的问题转化为熟知的易解的或已经解决的问题,将抽象的问题转化为具体的直观的问题,将复杂的问题转化为简单的问题,将一般性的问题转化为直观的特殊的问题;将实际问题转化为数学问题,使问题便与解决。

4、转化与化归的基本类型
(1)正与反、一般与特殊的转化;
(2)常量与变量的转化;
(3)数与形的转化;
(4)数学各分支之间的转化;
(5)相等与不相等之间的转化;
(6)实际问题与数学模型的转化。

学案4转化与化归思想

学案4转化与化归思想

解 原方程即是(x2+4x+4)a=2x+7,
∵x=-2不是原方程的解,∴
a

2x 7 (x 2)2
.
又∵a为正整数,

2x 7 (x 2)2
1 ,即x2+2x-3≤0,
解得-3≤x≤1. 又∵x是整数且x≠-2, ∴x=-3,-1,0,1, 把它们分别代入原方程得 a x 1 3, a x 5 1, a x 0 7 4, a x 1 1, 又因为a为正常数, 故当a=1或a=5时,原方程至少有一个整数根.
变式训练1 已知三实数a,b,c成等比数列,且a+b+c=m
(m是正常数),求b的取值范围.
解 方法一 设三个实数为 b , b, bx ,
x
由a+b+c=m,得
b (1
x
1) x
m
, 从而
b
1
m x
1
.
x
当 x 0时 , x 1 2;当 x 0时 , x 1 2 ,
则a、c是关于x的方程x2-(m-b)x+b2=0的两个实数根, 所以Δ =[-(m-b)]2-4b2≥0,
解之,得 mbm(m0),又b0, 3
所以 bm,00,

m 3
题型二 正与反的转化与化归
【例2】试求常数m的范围,使曲线y=x2的所有弦都不
能被直线y=m(x-3)垂直平分.
m x1
1 m

x2

6
, 消去
x2得
:
2x1 2m 2x1m 126m10.
因为存在x1∈R使上式恒成立,
(m 2)242(m 126m 1 )0

4、转化与化归思想

4、转化与化归思想

4 转化与化归思想主线—基础—方法—应用—例题—注意—总结知识清单:知识1 转化与化归思想概述知识2 转化与化归的原则知识1 转化与化归思想概述所谓化归思想就是通过转化,使所要解决的问题由难变易或变为已经解决的问题,以有利于解决的一种数学思想。

化归思想常常以变换题目的结构形状、变更问题、从反面探究结论等方式出现,前面所介绍的函数思想、方程思想、数形结合、分类讨论等都是重要的化归方法。

知识2 转化与化归的原则(1)目标简化原则将复杂的问题向简单的问题转化。

(2)和谐统一性原则即化归应朝着使待解决问题在表现形式上趋于和谐,在量、形关系上趋于统一的方向进行,使问题的条件和结论更均匀和恰当。

(3)具体化原则即化归方向应由抽象到具体。

(4)低层次原则即将高维空间问题化归成低维空间问题。

(5)正难则反原则即当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。

方法清单:方法1 直接转化法方法2 换元转化法方法3 数形结合法转化方法4 构造法转化方法5 坐标法转化方法6 补集法转化方法7 空间与平面间的转化方法8 几何条件转化为向量关系的方法方法9 变更主元的转化法方法10一般式转化为标准式方法1 直接转化法把原问题转化为基本定理、基本公式或基本图形问题。

例1函数y=1+a x(0<a<1)的反函数的图象大致是()方法2 换元转化法运用“换元”把超越式转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题。

例2 设20≤≤x ,求函数523421+⋅-=-x x y 的最大值和最小值。

方法3 数形结合法转化研究原问题中数量关系(解析式)与空间形式(图形)的关系,通过互相变化获得转化途径。

例3 已知1,0,0=+≥≥b a b a ,求证225)2()2(22≥+++b a 方法4 构造法转化 “构造”一个合适的数学模型,把问题变为易于解决的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方法二
(*)式可化为:a(x-1)+x2+1≥0, 式可化为: 1)+x +1≥0,
对a∈[-1,1]恒成立. 恒成立. 令g(a)=(x-1)a+x2+1. )=(x 1)a +1.
g (−1) = x − x + 2 ≥ 0, 则当且仅当 2 g (1) = x + x ≥ 0,
变式训练2 变式训练2 一个自动报警器由雷达和计算机两部 分组成,两部分有任何一个失灵, 分组成,两部分有任何一个失灵,这个报警器就 失灵.若使用100小时后, 100小时后 失灵.若使用100小时后,雷达部分失灵的概率为 0.1,计算机失灵的概率为0.3 0.3, 0.1,计算机失灵的概率为0.3,且两部分失灵与 否是独立的,求这个报警器使用100 100小时后失灵的 否是独立的,求这个报警器使用100小时后失灵的 概率. 概率. 先考虑报警器不失灵的概率, 解 先考虑报警器不失灵的概率,即求雷达和计 算机均不失灵的概率. 使用100 100小时后雷达失 算机均不失灵的概率.记“使用100小时后雷达失 使用100小时后计算机失灵” 100小时后计算机失灵 灵”为A,记“使用100小时后计算机失灵”为B, 由于A 相互独立,则报警器使用100 100小时后失灵 由于A与B相互独立,则报警器使用100小时后失灵 的概率为
(8)类比法:运用类比推理,猜测问题的结论, 类比法:运用类比推理,猜测问题的结论, 易于确定. 易于确定. 参数法:引进参数, (9)参数法:引进参数,使原问题转化为熟悉的 形式进行解决. 形式进行解决. 10)补集法:如果正面解决原问题有困难, (10)补集法:如果正面解决原问题有困难,可把 原问题的结果看做集合A 原问题的结果看做集合A,而把包含该问题的整体 问题的结果类比为全集U 通过解决全集U 问题的结果类比为全集U,通过解决全集U及补集 获得原问题的解决,体现了正难则反的原则. UA获得原问题的解决,体现了正难则反的原则. 3.转化与化归的指导思想 转化与化归的指导思想 3.转化与化归的指导思想 把什么问题进行转化,即化归对象. (1)把什么问题进行转化,即化归对象. 化归到何处去,即化归目标. (2)化归到何处去,即化归目标. 如何进行化归,即化归方法. (3)如何进行化归,即化归方法. 化归与转化思想是一切数学思想方法的核心. 化归与转化思想是一切数学思想方法的核心.
∆1 = (4a ) 2 − 4(3 − 4a ) < 0 =0, 令y=0,由 ∆ = (a − 1) 2 − 4a 2 < 0 , 2 ∆ 3 = (2a ) 2 + 8a < 0
解得−
3 < a < −1, 2
3 满足题意的a ∴满足题意的a的取值范围是 a ≤ − 或a ≥ −1. 2
2

二、正难则反的转化与化归 已知三条抛物线: +4ax ax- +3,y +(a 例2 已知三条抛物线:y=x2+4ax-4a+3,y=x2+(a1)x +2ax ax- 中至少有一条与x轴相交, 1)x+a2,y=x2+2ax-2a中至少有一条与x轴相交,求 实数a的取值范围. 实数a的取值范围. 思维启迪 三条抛物线中至少有一条与x 三条抛物线中至少有一条与x轴相交 的情况比较多,反面为三条抛物线与x 的情况比较多,反面为三条抛物线与x轴都不相 交,只有一种情况. 只有一种情况. 解
1 − P ( A • B ) = 1 − P ( A) P ( B )
= 1 − [1 − P( A)][1 − P( B)] = 1 − 0.63 = 0.37.
三、以换元为手段的转化与化归 已知a 求函数y )(a 例3 已知a∈R,求函数y=(a-sin x)(a- 的最小值. cos x)的最小值. 思维启迪 本题考查函数的最值问题、 本题考查函数的最值问题、化归思想 及运算能力.观察到等式右边是关于sin 及运算能力.观察到等式右边是关于sin x·cos x 的三角式,可设t x,则 与sin x+cos x的三角式,可设t=sin x+cos x,则 原问题可转化为二次函数在闭区间上的最值问题. 原问题可转化为二次函数在闭区间上的最值问题. 函数可化为y )+a 解 函数可化为y=sin x·cos x-a(sin x+cos x)+a2. 设t=sin x+cos x, 则 t = 2 sin( x +
(log 2 x) 2 − 4 log 2 x + 3 > 0 f (−2) > 0, 则由 , 即 , 2 (log 2 x) − 1 > 0 f ( 2) > 0
解得log 解得log2x<-1或log2x>3,∴ 0 < x < 1 或x > 8,
2
∴x的取值范围是 (0, 1 ) ∪ (8,+∞).
之间的互相转化、实际问题向数学问题转化等. 之间的互相转化、实际问题向数学问题转化等.各种 变换、具体解题方法都是转化的手段, 变换、具体解题方法都是转化的手段,转化的思想 方法渗透到所有的数学教学内容和解题过程中. 方法渗透到所有的数学教学内容和解题过程中. 1.转化与化归的原则 1.转化与化归的原则 转化与化归的原则 (1)熟悉化原则:将陌生的问题转化为熟悉的问 熟悉化原则: 题,以利于我们运用熟知的知识、经验来解决. 以利于我们运用熟知的知识、经验来解决. (2)简单化原则:将复杂问题化归为简单问题, 简单化原则:将复杂问题化归为简单问题, 通过对简单问题的解决, 通过对简单问题的解决,达到解决复杂问题的目 的,或获得某种解题的启示和依据. 或获得某种解题的启示和依据. (3)直观化原则:将比较抽象的问题化为比较直 直观化原则: 观的问题来解决. 观的问题来解决.
一、 常量与变量的转化与化归 是定义在R上的单调增函数, 例1 设f(x)是定义在R上的单调增函数,若 对任意a f(1-ax-x2)≤f(2-a)对任意a∈[-1,1]恒成 ax立,求x的取值范围. 的取值范围. 思维启迪 本题为抽象函数的单调性的应用问 题,应转化为大家熟悉的一元二次不等式(或一 应转化为大家熟悉的一元二次不等式( 元一次不等式来解决) 元一次不等式来解决). 解 方法一 (*)式可化为:a(1-x)≤x2+1. 式可化为: (1- )≤x ① 因为f 因为f(x)是R上的增函数, 上的增函数, (*) 所以1 ax- ≤2所以1-ax-x2≤2-a,a∈[-1,1].
或使整式降幂等,把较复杂的函数、方程、 或使整式降幂等,把较复杂的函数、方程、不等 式问题转化为易于解决的基本问题. 式问题转化为易于解决的基本问题. (3)数形结合法:研究原问题中数量关系(解析 数形结合法:研究原问题中数量关系( 与空间形式(图形)关系, 式)与空间形式(图形)关系,通过互相变换获 得转化途径. 得转化途径. 等价转化法: (4)等价转化法:把原问题转化为一个易于解决 的等价命题,达到化归的目的. 的等价命题,达到化归的目的. (5)特殊化方法:把原问题的形式向特殊化形式 特殊化方法: 转化,并证明特殊化后的问题、结论适合原问题. 转化,并证明特殊化后的问题、结论适合原问题. (6)构造法:“构造”一个合适的数学模型,把 构造法: 构造”一个合适的数学模型, 问题变为易于解决的问题. 问题变为易于解决的问题. (7)坐标法:以坐标系为工具,用计算方法解决 坐标法:以坐标系为工具, 几何问题是转化方法的一个重要途径. 几何问题是转化方法的一个重要途径.
π
), 故t ∈ − 2 , 2 .
4 而 sin x • cos x = 1 (sin x + cos x )2 2
[
[
] 1 − 1] = (t 2
2
− 1),
1 1 1 = a 2 − at + (t 2 − 1) = t 2 − at + a 2 − 于是, 于是,y=f(t) 2 2 2 1 1 1 = (t − a) 2 + a 2 − . 2 2 2 1 1 2 1 2 原问题化归为求二次函数 f (t ) = 2 (t − a) + 2 a − 2
对任意a∈[-1,1]恒成立, 对任意a 恒成立, 只要
1 − x < 0, x 2 + 1, − 1 ≥ 1− x
∴x>1. >1.
(3)当1-x=0,①式显然成立. =0,①式显然成立. 综上所述,实数x的取值范围是: 综上所述,实数x的取值范围是: x≤-1或x≥0. ≥0.
(1)当1-x>0时,①式变为 >0时
x2 +1 . a≤ 1− x
x2 +1 , 1 ≤ 1− x 1 − x > 0,
对任意a 对任意a∈[-1,1]恒成立,只要 恒成立, ∴0≤x<1或x≤-1. 0≤x 1.
x2 +1 式变为: (2)当1-x<0,①式变为: ≥ a . 1− x
2
解之, ≥0或 解之,得x≥0或x≤-1. 1. 即实数x的取值范围是x≤-1或x≥0. 即实数x的取值范围是x 探究提高 通过以上两种方法的比较可以看出, 通过以上两种方法的比较可以看出, 若按常规方法求解,问题较麻烦; 若按常规方法求解,问题较麻烦;若将变量与参 数变更关系, 为主元,转换思考的角度, 数变更关系,a为主元,转换思考的角度,使解答 变得容易. 变得容易.这种处理问题的思想即为转化与化归的 思想. 思想.
(4)正难则反原则:当问题正面讨论遇到困难 正难则反原则: 时,可考虑问题的反面,设法从问题的反面去探 可考虑问题的反面, 讨,使问题获解. 使问题获解. 2.常见的转化与化归的方法 2.常见的转化与化归的方法 常见的转化与化归的方法 转化与化归思想方法用在研究、 转化与化归思想方法用在研究、解决数学问题 时,思维受阻或寻求简单方法或从一种状况转化 到另一种情形,也就是转化到另一种情境使问题 到另一种情形, 得到解决,这种转化是解决问题的有效策略, 得到解决,这种转化是解决问题的有效策略,同 时也是成功的思维方式.常见的转化方法有: 时也是成功的思维方式.常见的转化方法有: (1)直接转化法:把原问题直接转化为基本定理、 直接转化法:把原问题直接转化为基本定理、 基本公式或基本图形问题. 基本公式或基本图形问题. (2)换元法:运用“换元”把式子转化为有理式 换元法:运用“换元”
相关文档
最新文档