4_高分辨电子显微学
高分辨透射电子显微分析技术

(a)反映了晶体中 重原子或轻原子 列沿电子束方向 的势分布;(b) 是电子显微像上 强度的分 布,可 知 ( x, y) 具有比1小得多的 值。 由于重原子列具 有较大的势((a) 中心峰高),像 强度弱(负峰)。 可见(a)(b) 反映了由试样中 轻重原子的差异 所带来的像上衬 度的差异。
左上插图是结构原子 位置模型示意图。照 片上相应于重原子Tl 和Ba的位置出现大黑 点,而环绕它们的周 围则呈现亮的衬度。 插图中从最上一个Ba 原子到最下一个Ba原 子之间的4个Cu原子 和3个Ca原子和它们 的周围通道也呈亮衬 度。
Tl 系超导氧化物的高分辨电子显微像 TlBa2Ca3Cu4O11粉碎法制备,400kV电 子显微镜,沿[010]入射
7高分辨电子显微学
主要内容
7.1引言 7.2高分辨电子显微成像原理 7.3高分辨电子显微观察和拍摄图形的程序 7.4高分辨电子显微方法的实践和应用
7.1引言
概念:高分辨电子显微术是运用相位衬度成像 的一种直接观测晶体结构和缺陷的技术。 历史:1956年门特用分辨率为0.8nm的透射电 子显微镜直接观察到酞箐铜晶体的相位衬度像 这是高分辨电子显微学的萌芽;在20世纪70年 代,解释高分辨像成像理论和分析技术的研究 取得了重要进展;实验技术的进一步完善,以 及以J.M.Cowley的多片层计算分析方法为标志 的理论进展,宣布了高分辨电子显微学的成熟.
像模拟方法:此法先假设一种原子排列模型, 然后根据电子波成像的物理过程进行模拟计算, 以获得模拟的高分辨像。如果模拟像与实验像 相匹配,便得到了正确的原子排列结构像。
7.2高分辨电子显微成像原理
下面介绍几个基本概念 衬度传递函数T(H):是一个反映透射电子显微 像成像过程中物镜所起作用的函数,它是一个 与物镜球差、色差、离焦量和入射电子束发散 度有关的函数。一般来说,它是一个随着空间 频率的变化在+1与-1间来回震荡的函数。 相位体(phase object):电子波与物体作用后 如果只改变波的相位而波振幅不变,这种物体 成为相位体,反之称振幅体。
材料分析高分辨电子显微学

(2)经物镜作用在后焦面处形成衍射谱 Q(u,v)=F[q(x,y)] (3)像平面上形成高分辨电子显微像 当物平面与像平面严格地为一对共轭面时,像面波Ψ(r) 真实地放大了物面波q(r),而当物镜有像差时,像平面不严 格与物平面共轭,此时像面波不再真实地复现物面波。像面 波与物面波之间的这种偏差可用在物镜后焦面上给衍射波加 上一个乘子,就是衬度传递函数exp(iⅹ (u,v)) 。 同时考虑物镜光阑的作用C(U,V).因而像平面的电子散射 振幅为: Ψ(u,v)=F[C(U,V) Q(u,v) exp(iⅹ (u,v)) ] 像平面上像的强度为像平面上电子散射振幅的平方,即 振幅及其共轭的乘积: I(x,y)= Ψ*(u,v) · Ψ(u,v) =│1 +iF{C(U,V)F[σφ(x,y) Δz ] exp(iⅹ (u,v))} │2
(4)样品厚度对像衬度的影响 高分辨像实际上是所有参加成像的衍射束与透 射束之间因相位差而形成的干涉图像。因此,试样 厚度非直观地影响高分辨像的衬度。 图3-3所示为Nb2O5单晶在同一欠焦量下不同试 样厚度区域的高分辨照片。在照片上能看到由于试 样厚度不均匀等因素引起的图像衬度区域性变化, 即图像从试样边缘的非晶衬度过渡到合适厚度下的 晶胞单元结构像。
高分辨电子显微学
林鹏 081820022
目录
1.绪论
2.高分辨电子显微相位衬度像的成像原理 3.高分辨电子显微像衬度的影响因素 4.高分辨电子显微像的计算机模拟 5.高分辨电子显微观察和拍摄图像的程序 6.高分辨电子显微图像的类型和应用实例
1.绪论
不同材料有不同的使用性能;材料的性能 决定于材料的结构,特别是它的微观结构。 为了获得能满足人类生活和生产需要的材料, 必须研究材料的结构,首先要直接观察到结 构的细节。 1956年,门特用分辨率为0.8nm的透射 电子显微镜直接观察到酞菁铜晶体的相位衬 度像,这是高分辨电子显微学诞生的萌芽。
高分辨电子显微学进展及其在材料科学中的应用

显 微 学 ;2 原 子 分 辨 率 的 扫 描 透 射 电 子 显 微 学 ( 原 子 序 数 衬 度 成 像 ) () 或 。两 种 成 像 技 术 均 可 达 到 亚 埃 的 分 辨 率 。介 绍 了这 两 种 技 术 的各 自特 点 及 其 在 功 能 材 料 的 微 观 结 构 缺 陷 表 征 、 电 薄 膜 的极 性 确 定 等 方 面 的 应 铁 用 。随 着 亚 埃 分 辨 率 的 电子 显 微 学 的 发 展 , 它必 将 对 材 料 科 学 、 理 学 、 米 科 学 、 学 及 生 命 科 学 等 产 生 重 物 纳 化
Vo . 7 NO 3 M a . 2 0 12 . r O1
实验 技 术 与方 法
高分辨 电子显微学进展及其在材料科学 中的应用
王 乙潜 ,梁 文 双
( 岛大 学 国家 重 点 实验 室 培 育 基 地 ,山 东 青 岛 2 6 7 ) 青 60 1
摘
要 :简 要介 绍 了 高分 辨 电 子显 微学 的最 新 进 展 。 主要 表 现 在 两 个 方 面 : 1 球 差 校 正 的 高 分 辨 透 射 电 子 ()
a o i r s l t n s a n n r n miso lc r n mi r s o y ( TEM r Z c n r s ma ig t m c e o u i c n i g ta s s in ee to c o c p o S o - o ta ti g n ),c n r a h a s b a e c u —
( liain Baef rS aeKe a o ao y Cut t s o tt yL b rt r ,Qig a ie st ,Qig a 6 0 l,Chn ) v o n d o Unv riy n do2 6 7 ia
电子显微分析

8、场发射枪扫描透射电子显微镜 场发射扫描透射电镜STEM是由美国芝加哥大学的A.V.Crewe教授 在70年代初期发展起来的。试样后方的两个探测器分别逐点接收未散 射的透射电子和全部散射电子。弹性和非弹性散射电子信息都随原子 序数而变。环状探测器接收散射角大的弹性散射电子。重原子的弹性 散射电子多,如果入射电子束直径小于0.5nm,且试样足够薄,便可 得到单个原子像。实际上STEM也已看到了γ-alumina支持膜上的单个 Pt和Rh原子。透射电子通过环状探测器中心的小孔,由中心探测器接 收,再用能量分析器测出其损失的特征能量,便可进行成分分析。为 此,Crewe发展了亮度比一般电子枪高约5个量级的场发射电子枪FEG: 曲率半径仅为100nm左右的钨单晶针尖在电场强度高达100MV/cm的作 用下,在室温时即可产生场发射电子,把电子束聚焦到0.2—1.0nm而 仍有足够大的亮度。英国VG公司在80年代开始生产这种STEM。最近在 VGHB5 FEGSTEM上增加了一个电磁四极—八极球差校正器,球差系数 由原来的3.5mm减少到0.1mm以下。进一步排除各种不稳定因素后,可 望把100kV STEM的暗场像的分辨本领提高到0.1nm。利用加速电压为 300kV的VG-HB603U型获得了Cu†112‡的电子显微像:0.208nm的基本 间距和0.127nm200kV,300kV电镜的穿透能力分别为100kV的1.6和2.2倍, 成本较低、效益/投入比高,因而得到了很大的发展。场发射透射电 镜已日益成熟。TEM上常配有锂漂移硅Si(Li)X射线能谱仪(EDS),有 的还配有电子能量选择成像谱仪,可以分析试样的化学成分和结构。 原来的高分辨和分析型两类电镜也有合并的趋势:用计算机控制甚至 完全通过计算机软件操作,采用球差系数更小的物镜和场发射电子枪, 既可以获得高分辨像又可进行纳米尺度的微区化学成分和结构分析, 发展成多功能高分辨分析电镜。JEOL的200kV JEM-2010F和300kV JEM-3000F,日立公司的200kV HF-2000以及荷兰 飞利浦公司的200kV CM200 FEG和300kV CM300 FEG型都属于这种产品。 目前,国际上常规200kVTEM的点分辨本领为0.2nm左右,放大倍数约 为50倍—150万倍。 7、120kV,100kV分析电子显微镜 生物、医学以及农业、药物和食品工业等领域往往要求把电镜和 光学显微镜得到的信息联系起来。因此,一种在获得高分辨像的同时 还可以得到大视场高反差的低倍显微像、操作方便、结构紧凑,装有 EDS的计算机控制分析电镜也就应运而生。例如,飞利浦公司的CM120 Biotwin电镜配有冷冻试样台和EDS,可以观察分析反差低以及对电子 束敏感的生物试样。日本的JEM-1200电镜在中、低放大倍数时都具有 良好的反差,适用于材料科学和生命科学研究。目前,这种多用途 120kV透射电镜的点分辨本领达0.35nm左右。
第四章 电子显微镜分析基础

极靴小孔隙中。如图19.6(a)、(b)、(c)所示,(c)是一种强
磁透镜。由于透镜焦距与所采用的磁场相关 磁场越强 焦 距越短 放大倍数也就越大 电子显微镜的成像物镜大多采 用短焦距的强磁透镜
强磁透镜
2.3 电磁透镜的像差、分辨本领、景深和焦长
ro
2
理论上 电子显微镜的分辨率很高 但事实上 其分辨率远
2.4 电子显微镜与光学显微镜的对比 电子显微镜在分辨本领、放大倍数、景深、焦长等 许多方面有着明显的优点 它能把微区(几个微米)、
甚至超微区(10nm以下)把形貌、成分、结构三个主
要测试方面的内容密切结合起来进行研究
电子显微镜的发明及发展开拓了许多新的研究领
域 但电子显微镜也有一些局限性 需要光学显微镜和
第4章
电子显微镜分析基础
一、光学显微镜的分辨率
人眼分辨极限只有0.2mm 光学显微镜的分辨极限是
0.1μm 电子显微镜的分辨率普遍达到0.3nm 最好的电
子显微镜的分辨率已经达到0.07nm 一般原子、离子半
径大约在0.1nm左右
在电子显微镜下可以直接观察到分子 甚至原子的世界 这
个分辨能力比人眼高出了近100万倍 比最好的光学显微
2.3.2电磁透镜的分辨本领 分辨本领取决于透镜的像差和衍射效应所产生的 散焦斑(或称埃利斑)尺寸的大小 光学显微镜在最佳 情况下 分辨本领可以达到照明光波波长的二分之一 电子束波长比可见光波长小五个数量级 如果电磁透镜 像差(特别是球差)能得到较好的矫正 那么它的分辨 本领理应达到照明波的半波长0.002nm极限值(按加速
1 eV m 2 2
式中 e为电子电荷绝对值 V为加速电压(kV) ν为电子运动速 度 m为电子的质量 从上式可以得到电子运动的速率为:
高分辨电子显微技术与材料表征

高分辨电子显微技术与材料表征随着科学技术的不断发展,高分辨电子显微技术在材料表征领域取得了重大进展。
这种技术通过利用电子束对材料进行成像,能够突破传统光学显微镜的分辨率限制,实现对微观结构的高清观察和表征。
本文将从原理、应用和发展趋势三个方面来探讨这一技术。
首先,我们来看一下高分辨电子显微技术的原理。
所谓电子显微技术,就是利用电子束与样品相互作用的过程来获取样品的信息。
相比于光学显微镜,电子显微镜使用的是电子束而非光束,其波长要小于光的波长,从而能够达到更高的分辨率。
而高分辨电子显微技术在原理上又有所突破,它主要利用透射电子显微镜(TEM)和扫描电子显微镜(SEM)来对样品进行分析。
TEM通过电子束的透射来观察样品的内部结构,分辨率可以达到纳米级别。
而SEM通过电子束的扫描来观察样品的表面形貌,分辨率也可以达到纳米级别。
通过这两种技术,可以获取到材料在微观尺度上的结构和特性信息。
接下来,我们将来探讨高分辨电子显微技术在材料表征中的应用。
高分辨电子显微技术在材料科学、生物学、化学等领域都有广泛的应用。
在材料科学中,它可以对金属、陶瓷、聚合物等各类材料的晶体结构、晶体缺陷、表面形貌等进行观察和分析,为新材料的研发和制备提供重要的支持。
在生物学中,电子显微技术可以对生物细胞、组织等进行高清观察,揭示生物体内部结构和功能的微观细节。
在化学中,电子显微技术可以用于观察化合物的晶体结构、原子排列等,有助于解决一些化学反应机理等问题。
可以说,高分辨电子显微技术在各个学科领域都有重要的应用,对于科学研究和工程实践都具有重要的意义。
最后,我们来看一下高分辨电子显微技术在未来的发展趋势。
随着材料科学和纳米技术的发展,人们对于高分辨电子显微技术的要求也越来越高。
一方面,人们要求更高的分辨率,以便观察和研究更细致的结构和性质。
另一方面,人们也要求更高的空间分辨率,以便观察和分析更大范围的样品。
因此,未来的高分辨电子显微技术将会朝着更高分辨率、更高空间分辨率和更高样品适应能力的方向发展。
高分辨衬度原理与像计算

采用后文介绍的Cowley-Moodie多层法,将赝弱相位物分割,每层都可以 看做弱相位物。最终计算所得像强度为:
与弱相位物近似下的强度分布比较,赝弱相位物下峰被展宽,重轻 原子强度比下降,但峰的位置不变,用 代替晶 体的投影势函数。
可直接解释的高分辨晶体结构像
投影电荷密度近似
(忽略球差和光阑) (泰勒展开要求Δf很小) (相位物近似) 数学处理
位错的HREM像
Ni3(Al,Ti)中[100]带轴 倾侧晶界HREM像
高强Al-Mg-Mn合金中(Mg,Mn)3Al10 相的微孪晶HREM像
Mg15.4Gd1.6Nd 合金 β1相与 β 相接的高分辨像
Mg97Zn1Y2 合金中 14H 型 LPS 的高分辨像
可直接解释的高分辨晶体结构像
Cowley-Moodie多层法与高分辨像计算
Cowley-Moodie多层法
第一薄层内物质对入射波的作用:
1 ( x, y) 透射函数* 传播函数
q(x, y)* P(x,y)
以此迭代下去得到最终出射波函数为:
q( x, y) exp(i ( x, y)z )
其中,
Cowley-Moodie多层法计算物出射波振幅的程序框图
高分辨计算像模拟
计算出了物透函数
还要考虑成像系统衬度传递函 数对对后焦面上电子波的调制 作用。包括球差、离焦、色差、 束发散、照明孔径角等。
可直接解释的高分辨晶体结构像
相位物近似、相位栅近似及高压近似关系
相位栅近似是一种投影近似,物理上等价于将爱瓦尔德球用平面代替。 判据是对参与成像的所有衍射,爱瓦尔德球都能与形状函数的傅里叶变换 平方的分布的主极大相交。 对一二维无穷大的薄晶体,电子入射后获 得形状函数的傅里叶平方分布的主极大范围是 -1/t到1/t,倒易点被拉长成长为2/t的倒易棒。 满足近似的厚度要求与相位栅近似要求的 一致。
第六章-高分辨电子显微技术-2

(3)一维结构像实例
3、二晶格像
(1)成像原因:在衍射花样中,套取原点和单胞晶面的衍射束,使之干涉 成像,就可以获得显示单胞二维晶格的像,因为该像不包含原子尺度(单 胞内原子排列的信息),因此,称为二维晶格像。
(2)成像特点: i、为离散的或明、或暗的像点构成二维网格; ii、像点不能说明原子是否存在; iii、当试样中存在缺陷时,要使用薄试样和最佳的聚焦条件,否则缺陷 像发生错乱,很难解释。
5、特殊像
2、一维结构像
(3) 晶 格 条 纹 像 的 实 例
(1)成像原因:当入射束平行于某一晶带轴时,在最佳聚焦条件下,可以 获得包含晶体结构的一维条纹像,即像的衬度与原子排列存在对应关系。
(2)成像特点: i、由明暗相间的条纹组成,每条条纹对应于一个堆垛层面; ii、适于多层结构材料的分析,一般附带衍射花样。
(3)二维晶格像的实例
4、二维结构像
(1)成像原因:保证分辨率的前提下,在衍射花样中,套取原点和尽可能 多的单胞晶面的衍射束,使之干涉成像,就可以获得含有单胞内原子排列 信息的单胞二维结构像。
(2)成像特点: i、由明暗相间的图样周期排列组成; ii、像点对应于单胞内的原子; iii、对于原子序数高的试样,结构像只在薄区可以观察到。
位 错 线 必 须 是 直 的 !
可以观察到:位错分解、位错宽度
(2)电子束垂直于位错线 (沿b轴入射) (3)电子束垂直位错线 (沿c轴入射)
可以观察到:不全位错间层错的宽度或者不全位错线上的扭折。
可以观察:位错割阶和相关晶格缺陷的形态和特征。
2、晶界和相界 (1)晶界 (2)孪晶界
3、表面 (3)相界
(3)二维结构像的实例
5、特殊像
高分辨透射电子显微术.

第三节 高分辨电子显微术的应用
六、高分辨像的计算机模拟 图12-10为沿和-Si3N4相c轴方向的高分辨结构像,照 片中的暗点对应于原子的位置
图12-10 氮化硅的高分辨结构像 a) -Si3N4和b) -Si3N4
18
第三节 高分辨电子显微术的应用
六、高分辨像的计算机模拟 如图12-11,大暗点对应Tl、Ba重原子位置,小暗点对应Cu 原子位置
图12-11 Tl2Ba2CuO6超导氧化物的高分辨结构像
19
第三节 高分辨电子显微术的应用
六、高分辨像的计算机模拟 如图12-12所示,在InAs和InAsSb界面处可明显观察到 有刃型位错存在,位置见图中箭头处
界面
界面
图12-12 半导体材料InAs和InAsSb界面的高分辨像
20
第三节 高分辨电子显微术的应用
高分辨型
上述三类电镜主要因物镜极靴结构的差别, 从而使物镜球 差系数CS不同,减小CS是提高分辨率的途径之一 4
第二节 高分辨电子显微像的原理
一、样品透射函数 用样品透射函数q(x,y),以描述样品对入射电子波的散射 q(x, y) = A(x, y)exp[iφt(x, y)] (12-2) 式中,A(x, y)是振幅,且 A(x, y) = 1为单一值; φt(x, y)是相 位,样品足够薄时,有 V ( x, y , z ) dz Vt ( x, y ) (12-8) 式中, = /E为相互作用常数。上式表明,总的相位移动 仅依赖于晶体的势函数V(x, y, z)。忽略极小的吸收效应,则 q(x, y) = 1 + i Vt(x, y) (12-10) 这就是弱相位体近似, 弱相位体近似表明, 对于非常薄 的 样品, 透射函数与晶体的投影势呈线性关系, 且仅考虑 晶
TEM参考书籍

《薄晶体电子显微学》刘安生李永洪译《电子衍射图在晶体学中的应用》郭可信叶恒强吴玉琨著《电子衍射分析方法》黄孝瑛著《高空间分辨分析电子显微学》朱静叶恒强王仁卉等编著《材料评价的分析电子显微方法》(日)进藤大辅, 及川哲夫合著刘安生译《高分辨电子显微学在固体科学中的应用》郭可信, 叶恒强主编《材料评价的高分辨电子显微方法》(日)进藤大辅,平贺贤二等合著刘安生译《电子衍射物理教程》王蓉著《晶体学中的对称群》王仁卉郭可信著《透射电子显微学进展》叶恒强王元明主编黄孝瑛的那本《透射电子显微学》也是不错的。
如果是操作:吴杏芳柳得橹编得《电子显微分析使用方法》和一本叫《实验高分辨电子显微学》的也可以看看。
《材料结构电子显微分析》天津大学出版社电镜类书目电镜相关图书目录扫描电子显微镜与电子探针类:《扫描电镜图象的形成处理和显微分析》作者:朱宜汪裕苹陈文雄出版日期:1991年9月第1版《扫描电镜原理及应用技术》作者:廖乾初蓝芬兰出版日期:1990年7月第1版《扫描电镜分析技术与应用》作者:廖乾初蓝芬兰编著出版日期:1990年03月第1版《扫描电子显微术(1979年会议资料选编)》作者:姚骏恩出版日期:1983年2月第1版《扫描电镜在石油地质上的应用》作者:陈丽华缪昕魏宝和出版日期:1990年8月第1版《扫描电子显微镜及其在地质学中的应用》作者:翟淑芬李端编著出版日期:1991年07月第1版《金花茶组(Sect,Chrysantha Chang)各个种叶片微形态的扫描电镜研究(摘要)》出版日期:1986年12月《中国主要木材构造——扫描电子显微镜》作者:腰希申编著出版日期:1988年08月第1版《扫描电子显微镜在植物学上的应用》作者:中国科学院植物研究所形态学及细胞学研究室情报资料室出版日期:1974年1月第1版《扫描电子显微镜和X射线微区分析》作者:张清敏徐濮编译出版日期:1988年1月第1版《扫描电子显微技术与X射线显微分析》作者:[美]J·I·戈尔茨坦等出版日期:1988年8月第1版《电子探针分析原理》作者:徐萃章出版日期:1990年10月第1版《电子探针分析》作者:周剑雄毛水和等编著出版日期:1988年11月第1版《电子探针X射线显微分析仪》作者:[日]内山郁渡辺融纪本静雄出版日期:1982年2月第1版《电子探针显微分析》作者:S·J·B·里德出版日期:1980年9月第1版《电子探针X射线显微分析》作者:刘永康叶先贤林卓然李德忍出版日期:1973年4月第1版《电子探针波谱及能谱分析在石油地质上的应用》作者:陈丽华魏宝和何锦发出版日期:1991年11月第1版《电子探针X射线微区分析技术在生物学中的应用》作者:刘发义出版日期:1990年3月第1版透射电镜与电镜理论类《透射电子显微学进展》作者:叶恒强王元明主编出版日期:2003年08月第1版《透射电子显微学》作者:孟庆昌出版日期:1998年7月第1版《电子显微镜图像分析原理与应用》作者:黄孝瑛出版日期:1989年9月第1版《电子显微镜技术》作者:[日本]坂田茂雄出版日期:1988年9月第1版《电子显微镜的原理和设计》作者:西门纪业葛肇生出版日期:1979年12月第1版《电子显微镜的原理及应用》作者:孙钱勇出版日期:1956年3月第1版《电子显微镜的世界》作者:[日]东昇出版日期:1977年2月第1版《电子显微镜技术现状》作者:M.E.海因出版日期:1965年8月第1版《材料评价的分析电子显微方法》作者:[日]进藤大辅[日]及川哲夫著刘安生译出版日期:2001年10月第1版《材料分析测试技术—材料X射线衍射与电子显微分析》作者:周玉武高辉出版日期:1998年8月第1版《研究生教材材料电子显微分析实验技术》作者:洪班德崔约贤出版日期:1990年12月第1版《薄晶体电子显微学》作者:[英]P.赫什 A.豪伊R.B.尼科尔森 D.W.帕施利M.J.惠兰出版日期:1983年11月第1版《金属X射线衍射与电子显微分析技术》作者:中南矿冶学院李树棠出版日期:1980年11月第1版《电子显微分析实用方法》作者:吴杏芳柳得橹编出版日期:1998年10月第1版《电子显微学新进展—钱临照教授九十华诞纪念文集》作者:汤洪高出版日期:1996年7月第1版《X射线衍射与电子显微分析基础》作者:马咸尧出版日期:1993年8月第1版《材料电子显微分析实验技术》作者:洪班德崔约贤主编出版日期:1990年12月第1版《材料结构电子显微分析》作者:刘文西等著出版日期:1989年12月第1版《实验高分辩电子显微学》作者:司潘斯出版日期:1988年4月第1版《电子显微术基础》作者:王世中臧鑫士编著出版日期:1987年9月第1版《高分辨电子显微学在固体科学中的应用》作者:郭可信叶恒强出版日期:1985年10月第1版《矿物的电子显微镜研究》作者:李林周剑雄张家云出版日期:1984年5月第1版《中国粘土矿物的电子显微镜研究》作者:张天乐王宗良著出版日期:1978年12月第1版《粘土的电子显微镜研究》作者:М.Ф.维库洛娃著许冀泉译出版日期:1957年01月第1版《医用电子显微学基础》作者:孙树勋出版日期:1992年10月第1版《生物医学电子显微镜技术》作者:程时彭学敏出版日期:1997年7月第1版《生物学中的电子显微镜技术》作者:朱丽霞程乃乾等编著出版日期:1983年10月第1版《肿瘤电子显微镜诊断学》作者:黄文清出版日期:1993年8月第1版《肿瘤电镜诊断与鉴别诊断(表选)》作者:黄文清主编译出版日期:1992年07月第1版《电子显微镜组织化学技术》作者:刘斌出版日期:1983年10月第1版《浅谈电子显微镜和亚细胞技术》作者:傅湘琦编著出版日期:1980年8月第1版《生物医学超微结构与电子显微镜技术》作者:洪涛主编出版日期:1980年10月第1版《机能电镜组织学》作者:帕里斯·康斯坦丁尼德斯著陆振山主译出版日期:1980年6月第1版《电镜故障及对策》作者:李统平出版日期:1983年10月第1版图谱类《铸铁石墨图谱—光学与扫描电子显微镜照片》作者:李春立柳百成吴德海出版日期:1983年01月第1版《肿瘤病理学电镜图谱》作者:刘复生主编出版日期:1995年11月第1版《中国昆虫病毒电子显微镜图谱》作者:张立人主编出版日期:1988年7月第1版《医学生物学电子显微镜图谱》作者:中国医学科学院主编出版日期:1978年6月第1版《组织和细胞扫描电镜图谱》作者:王仲涛雷建章等主编出版日期:1986年5月第1版《眼组织电镜图谱》作者:宋琛等编著出版日期:1988年12月第1版《组织细胞冷冻复型电镜图谱》作者:李文镇主编出版日期:1981年12月第1版样品制备方法类《生物医学电镜样品制备方法》作者:戴大临张清敏出版日期:1993年12月第1版《切片材料的染色方法电镜技术》作者:严共华译出版日期:1981年9月第1版《图解扫描电子显微镜—生物样品制备》作者:[日]田中敬一永谷等编辑李文镇等译出版日期:1984年5月第1版荧光类《环境样品X射线荧光光谱分析》作者:刘彬黄衍初贺晓华出版日期:1992年6月第1版《X射线荧光分析译文集—数学校正法及新技术的应用》出版日期: 1981年01月第1版《X射线荧光探矿技术》。
高分辨透射电子显微术优秀课件.ppt

波的干涉
Yi
底片
高分辨透射电子显微术优秀课件
高分辨透射电子显微术:是材料原子级别显微组织结构的相 位衬度显微术。它能使大多数晶体材料中的原子成串成像。
高分辨透射电子显微术优秀课件
)首次用电子显微镜拍摄了 Ti2Nb10O29 的二维像,并指出高分辨像中一个亮点对应于 晶体结构中电子束入射方向的一个通道。这是由于通道与周 围相比对电子的散射较弱,因此在像中呈现为亮点。在弱相 位体近似成立的条件下,高分辨电子显微像就是晶体结构在 电子束方向的投影,因此将晶体结构与电子显微像结合起来。 这种直观地显示晶体结构的高分辨像就称为结构像。
高分辨透射电子显微术优秀课件
阿贝成像原理
成像系统光路图如图所示。 当来自照明系统的平行电子束投射
到晶体样品上后,除产生透射束外 还会产生各级衍射束,经物镜聚焦 后在物镜背焦面上产生各级衍射振 幅的极大值。 每一振幅极大值都可看作是次级相 干波源,由它们发出的波在像平面 上相干成像,这就是阿贝光栅成像 原理。
在此期间,人们还致力于发展超高压电镜、扫描 透射电镜、环境电镜以及电镜的部件和附件等, 以扩大电子显微分析的应用范围和提高其综合分 析能力。
高分辨透射电子显微术优秀课件
高分辨电镜可用来观察晶体的点阵像或单原子像等所谓的高 分辨像。这种高分辨像直接给出晶体结构在电子束方向上的 投影,因此又称为结构像(图4-86)。
高分辨TEM
用物镜光阑选择透射波,观察到的象为明场象; 用物镜光阑选择一个衍射波,观察到的是暗场像; 在后焦平面上插上大的物镜光阑可以获得合成象,即高分辨
电子显微像
高分辨透射电子显微术优秀课件
高分辨显微像
高分辨显微像的衬度是由合成的透射波与衍射波的相位差所 形成的。
高分辨电子显微术

•物镜球差(cs)和失焦量(△f)的影响
考虑球差和失焦量的影响,衍射波函数G(h、k)还要 乘上一个修正项即“衬度传递函数”又称相位衬度 传递函数,表示物镜引起的电子相位变化。 g exp[iX( )]记作‘CTF’
g G(h、k)=F{A(x、y)}· exp[ix( )]
F-表示傅立叶变换
图 15
通过物镜后在背焦面上形成衍射波
物镜对试样下表面的透镜波A(x,y)进行傅立叶变换得到后焦面上的衍射波 函数(衍射谱)G(h,k) 记作:F{A(x,y)}=G(h,k)=G( g ) 这是一个从正空间转换为倒空间的过程,也是一个傅立叶转换的过程, g 倒空间也可以称为傅立叶空间。正空间的透射函数转换到后焦面的衍射 谱。正空间位置矢量 r 是长度的因次 ,坐标(x、y)具有方向分量的含 义,而与频率相联系的 和坐标(h、k)是倒易矢和二维倒易矢的分量, 它们具有长度倒数的量纲。如果(考虑到电子束振幅的吸收衰减下表面 的透射波函数表达式中还应引入一个衰减因子exp{ix( g )})
图 14
如果只有相位的变化而振幅几乎无变化 时是显示不出衬度的。因为银光屏或照 相底版只能反映电子能量和电子密度的 差异,不能对电子相位有任何反映。因 此只有将相位的不同转化为振幅的不同 或者是强度的不同才能显示出衬度来, 可望在物镜具有一定失焦量、球差以及 适当光圈尺寸的综合处理条件下就得衬 度。
一、基本概念
球差、欠焦量、单色光、 相位体、振幅衬度、阿贝成像原理
1. 球差
在电磁透镜的磁场中,远轴区比近 轴区对电子的折射能力大,因而由同一 物点散射的电子经过透镜后不交在一点 上而是在象平面上变成了一个漫散圆斑。 把这种现象称为球差。
图1 球差、色差、象散
高分辨扫描电子显微镜技术在材料研究中的应用

高分辨扫描电子显微镜技术在材料研究中的应用近年来,材料科学领域的快速发展,越来越多的材料需要更高分辨率和更高保真度的显微镜技术来观测和分析。
高分辨扫描电子显微镜技术作为一种极其重要的材料分析方法,成为了当前最受欢迎的分析工具之一。
本文将介绍高分辨扫描电子显微镜技术在材料研究中的应用,并简单介绍这项技术的基本原理。
高分辨扫描电子显微镜技术的基本原理高分辨扫描电子显微镜 (HRSEM) 技术是一种基于电子束的显微镜技术,可以实现对材料的高分辨率成像和微观结构及形貌分析。
HRSEM 技术利用高能电子束照射样品表面后,通过控制电子束的扫描,将样品表面的电信号转换为图像,可对样品表面的精细结构进行高分辨成像与分析。
与普通扫描电子显微镜相比,HRSEM 技术具有更高的分辨率和更好的表面成像能力,可以对样品微观结构的形貌、晶体结构、界面形貌、颗粒形貌等方面进行高清晰度成像和分析。
在材料科学研究中,HRSEM 技术可以用于实现对材料微观结构及形貌的研究。
以下主要介绍了 HRSEM 技术在材料研究中的几个重要应用方面:(1)微纳米结构的形貌分析HRSEM 技术可以有效地用于对电子集成电路、纳米材料、晶体等微观结构的形貌分析。
如,在研究超细颗粒材料时,可以使用 HRSEM 对其精细的微观结构和界面形貌进行观察和分析。
同样,在研究晶体衍射中的定量分析时,也可以使用HRSEM 技术实现获得高质量的晶体成像,并进行晶体学定量分析和表征。
(2)微观结构和组织形貌的表征在材料科学领域,材料的微观结构和组织定义了它的物理和化学特性。
HRSEM 技术可以被广泛地应用于对复杂材料的微观结构和组织形貌进行表征。
例如,在材料腐蚀方面,HRSEM 可以显示出表面腐蚀和亚表面腐蚀的结构和形貌,同时对深层细节的分析也变得更加简单和准确。
(3)界面分析材料的界面对大多数物理和化学过程至关重要。
HRSEM 技术可以实现对大多数材料界面的显微成像。
电子显微镜技术的分类及其应用

电子显微镜技术的分类及其应用随着科技的不断发展,电子显微镜技术成为现代科学研究中经常使用的一种技术。
当今电子显微镜技术已经成为研究微观世界不可缺少的工具。
它具有分辨率高,倍率大,成像清晰等优势,使得科学家们可以更加清晰地观察到微观物质的形态、构造以及性质等,进而深入理解各种物质现象。
本文将对电子显微镜技术的分类及其应用进行分析和探讨。
一、电子显微镜技术的分类电子显微镜技术可以基于设备性质和成像原理等不同方面进行分类。
目前市面上常见的电子显微镜,一般包括透射电子显微镜技术(Transmission Electron Microscopy,TEM)、扫描电子显微镜技术(Scanning Electron Microscopy,SEM)和场发射扫描电子显微镜技术(Field Emission Scanning Electron Microscopy,FE-SEM)等多种类型。
1. 透射电子显微镜技术透射电子显微镜技术,是一种通过将电子束穿过样品来形成图像的高级显微技术。
TEM 在分辨大分子、蛋白质、纳米片层等领域具有特殊的地位。
这是因为它能够提供高分辨率的原子级图像,还可以精确测量纳米尺度颗粒的大小和空间分布,并且可以通过选择不同类型的检测器和技术来检测一系列样品特性信息,例如晶体学、电子能谱、选区电子探针(Selected Area Electron Probe,SAED)和高分辨动态显微学等技术。
2. 扫描电子显微镜技术扫描电子显微镜技术是应用最为广泛的一种电子显微镜技术之一,主要通过扫描试样表面来获得一个放大的图像。
该技术已经被广泛应用于纳米科技、生物技术、材料科学和医学等领域。
SEM 具有复杂的坚硬层的穿透能力,这使得它对于研究纤维、珠子、表面的荷电情况以及微小的瑕疵和裂缝等异常情况具有重要意义。
此外,扫描电镜可以通过能谱分析仪等设备实现样品的化学成分分析和电子衍射分析等技术,提供更加丰富的数据来源。
中南大学-透射电镜-高分辨显微术 共51页

h 2meE
(1)
式中,h-普朗克常数,m-电子质量,e-电子电荷。晶体由原子作
三维周期排列,原子由原子核和周围的轨道电子组成。因此晶体
中存在着一个周期分布的势场V(x,y,z),电子束通过试样的过
程,必然同时受到E和V的作用,使波长由λ变成λ’
( ' x, y, z)
h
2m e[EV(x,y,z)]
结构像:既可以反映晶格周期,也可反映晶体结构的更小的细 节,如原子或原子团的位置。金属原子在像上表现为黑点, 原子间的通道则呈亮色。
单个原子像:它可以反映出孤立存在的原子。
孪晶
Si在蓝宝石膜上 外延生长的界面 HREM结构像
<001>Si//B
相界面完全处于非共 格状态。
由于它们体弹性模量 不同,TiC在析出后长大过 程中,仍然在基体中引 起一定程度的应变〔如 简头所示的暗区)。左侧 白色虚线区域为层错
φ(x,y)是试样中势场在z方向的 投影。试样起着一个“纯”相位的作 用。这时到达下表面(x,y)处的 透射波可以用一个透射波函数A(x ,y)来表示。
(5)
它已是一个携带了晶体结构信息的透射波。如果考虑试样对电子 束振幅的吸收衰减.则(5)式的指数项中,还应引人一个衰减因子
exp{-μ(x,y)},于是(5)式变成:
引入附加相位位移的最常用方法是利用物镜的球 差和散焦
左图是球差产生相位位移示意图。 从靠近物镜前焦面A点,与光轴成 倾角离开试样下表面的电子束, 经物镜作用后本应交物镜后焦面 于C点,但由于物镜球差的缘故, 使其偏离原路径角,交后焦面于D 点。C、D两点相距为dR。这样, 由于路径的改变,出现了光程差
d ( x , y , z ) 2d z '' 2d z ' V ( x E ,y ,z )d z (3)
第三章 高分辨电子显微学

c' c expikr0 / r0
u s / r0
v t / r0
上式右侧与傅里叶变换的形式一样,说明,(u,v)能用q(x,y)的 傅里叶变换来得到。
(1)入射电子在物质内散射 试样很薄,忽略试样内电子的吸收,只引起入射电子的相位变 化(相位体近似),可以用透射函数来表示试样的作用:
-40nm -30nm -20nm -10nm 0nm 10nm
20nm
30nm
40nm
50nm
60nm
70nm
氮化硅高分辨电子显微像相对于离焦量的变化 (按400kv),试样厚度3nm计算)
(5)特殊的像 在后焦面的衍射花样上,插入光 栏只选择特定的波成像,可观察到对 应于特定结构信息衬度的像。例如有 序结构中,使用让原子有序排列产生 的衍射波和透射波成像时,能得到反 映有序排列的像。 例如Au3Cd在[100]方向投影的原子 排列。以fcc结构为基础,在c轴上重 复四次的结构为单胞,Cd原子在其中 有序排列。 在衍射谱上,020,008为基体的强 反射,其他为弱的有序晶格反射,用 光栏选择有序排列产生的衍射波和透 射波成像,只有Cd原子以亮点或暗点 在像上出现
(3 )
F 表示傅里叶变换,exp(i(u,v)) 称为相位衬度传递函数, 表示物镜引起的电子相位的变化,公式右边的第一项和第二 相分别对应于透射波和衍射波。
(u,v)= {f(u2+v2)-0.5Cs3(u2+v2)2} f 和 Cs 分别为物镜的离焦量和球差系数。
(4)
(3)在像平面上形成高分辨电子显微像 像平面上的电子散射振幅由后焦面上散射振幅的傅里叶变换给 出:
n-1 2 1 1 2 n-1
(12)
高分辨透射电子显微学 基本原理和应用技术-天津大学

电子波
• 理想的电子光源是完全相干的 • 实际的电子光源是部分相干(partial coherent) • 判断相干性的准则:
-空间相干性(平行度),相干宽度 -时间相干性(单色性),相干长度
• 由样品的散射/衍射,即从入射束分离出的电子束也是 部分相干的 相干性决定了干涉条纹的质量
电子波
• 电子源的相干性
相位衬度
两束或以上,干涉成像晶粒小 的样品
明场像
暗场像
明、暗场像
质厚衬度
催化剂C-Pt
CNT
质厚衬度
衍射衬度
衍衬像(Diffraction Contrast Image)
利用晶体试样中由于不同取向的产生衍 射差异产生衍衬像, 透射束成明场像, 选择 不同的衍射束成暗场像 。
二维晶格像
• 晶体在某低指数带轴 • 使用较大的物镜光阑或根本不使用光阑 • 二维晶格像 晶体二维平移周期信息
晶体
HRTEM images from the SrTiO3 bi-crystal boundary.
波
• 电子束是波故具有振幅和相位(amplitude and phase) • 波的周期是波长(如200kV下0.0025nm)或以2π相位为单位 2π • 平面波表达为 A exp[−i r]
• 像差函数的虚部,即sin (χ(u, v)) • 它反映了薄样品(弱相位物体)的像衬变化 ⊗ I(x,y)=1+2iσφp(x,y) F-1{sin(χ (u,v)} • 零衬度传递函数=零像衬 • 常数衬度传递函数=均匀相位板=结构像
衬度传递函数
• 如果△f=0, χ(u,v)会在很大一段范围内接近于0 I(x,y)=1+2iσφp(x,y) F-1{sin(χ(u,v)} • 最小(相位)衬度 • 电镜的聚焦标准
高分辨扫描透射电子显微镜原理及其应用_贾志宏

一次实验中可以同时对样品的化学成分、原子结
构、电子结构进行分析[7]。
3 扫描透射电子显微术成像
3.1 原子分辨率 HAADF 像
获得高分辨 Z 衬度像的两个必要条件是原 子尺度的高亮度电子束斑和环形探测器。电子 束的束斑只有小于或等于 0.2 nm 时才能获得原 子分辨率的图像,因此将电子束聚焦为小而亮 的束斑对于提高扫描透射电镜的分辨率至关重 要。由于透射电子显微镜的电磁透镜存在很大的 像差,限制了可形成的最小束斑及其电流强度, 从而直接影响像的分辨率和信噪比。利用球差校 正技术,可以使得电镜获得更小的电子束斑及更 高的束斑电流强度。配备球差校正器的电镜在 200 kV 电压下可获得至少 0.1 nm 的电子束斑,同 时电子束电流密度提高 10 倍以上,使得 Z 衬度像 的分辨率和探测敏感度进一度提高,电镜的分辨 率进入亚埃尺度,可以获得单个原子的成像 。 [8] 高分辨率 Z 衬度像可以从原子尺度来研究界面、 纳米相和缺陷结构成分以及元素偏聚等复杂的 材料结构[9]。2011 年,FEI 公司推出了配有 ChemiSTEM 技术的球差校正 Titan G2 80-200 电镜,将 超稳定的高亮度 Schottky FEG 源与探针校正技 术结合,实现了 0.08 nm 的原子分辨成像。2014 年 5 月,日本电子株式会社(JEOL)发布了其新一 代球差校正电镜 JEM-ARM300F,HRTEM 的分辨 率 可 以 达 到 0.05 nm, HAADF-STEM 分 辨 率 达 到 0.063 nm,将商业化的透射电镜推向了一个新 极限。
Keywords scanning transmission electron microscopy, high angle annular dark field imaging, X-ray energy-dispersive spectrometry, electron energy loss spectrometry
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FT[g(x) ⊗ h(x)] = G(u)H (u)
二个函数的卷积的傅氏变换等于它们各自傅氏变换的乘积
Fourier Transform of δ(t)
∞
∫ δ (t) exp(−iωt) dt = exp(−iω[0]) =1
−∞δ (t) FFourier Transform and Structure Analysis
In structure analysis a crystal can be seen as a kind of wave of matter, which is a sum of sine waves with different spatial frequencies.
惠更斯-费涅耳原理
Huygens‐Fresnel Principal
(Christian Huygens 1629-1695)
/history/person/psn048.html
• 1690年,惠更斯提出惠更斯原理,认为波前上的每一点都可以 看作是发出球面子波的新的波源,这些子波的包络面就是下一时 刻的波前。
• 1971,S.Iijima(ASU),Ti2Nb10O29 1977年美国晶体学会奖
• 70年代,Hashimoto, Crewe
观察单个原子、原子跳动
• 80年代末,实验观察和模拟基本成熟普及
• 90年代: QHREM 提高分辨率 @ 降低Cs
球差校正器
图像处理
氯化铜-酞花青燃料分子中原子像
δ函数
电子波的传播
Kirchhoff 衍射:波的球面波传播 — Fresnel 衍射:光源和观察点距障碍物有限远的衍射
近场传播 q(x,y) ⊗ p(x,y) Fresnel 传播因子:p(x,y)=exp{-ik(x+y)/2R}
(二次曲面代替球面)
— Fraunhofer衍射:光源和观察点距障碍物无限远
3、微分
FT
[
d
ng(x) dxn
]
=
(iu)n
FT
[
g
(
x)]
Fourier transform and convolution
• Fourier Transform 傅立叶变换 • Convolution 卷积
δ function
J.W. Goodman, “Introduction to Fourier Optics”, 2nd Ed. 1996.
振幅项 相位项
衬度传递函数
物镜衬度传递函数
Propagation of the scattered electron wave
I(r)= 1- 2σϕ (x,y) ∗F (Sin χ(u,v))
d,(nm) 1
1.000
0.500
0.33 3
0.2 50
0.200
0.167
0 .143 0.125
Es
The reverse FT of G(u) is defined as:
∫ FT−1(G(u)) = ∞ G(u)exp(2πiux)du = g(x) −∞
Operation Law
1、Linear
FT [c1g1 + c2 g2 ] = c1FT [g1] + c2 FT[g2 ]
2、相移
FT [g(x − x0)] = exp{−iux0}FT [g( x)]
高分辨电子显微学
1、理论 2、应用 3、模拟 4、实验
Fourier Transform
The FT of g(x) is defined as:
plane wave 平面波
∫ FT (g(x)) = ∞ g( x) exp( −2πiux )dx = G(u) −∞
g(x): complex function, x: independent variable G(u): complex function, u: independent variable x: spatial coordinates, u: spatial frequency
• 定义:
•
δ( x
−
x0
)
=
⎧∞
⎨ ⎩
0
x = x0 x ≠ x0
∞
∫ δ ( x − x0)dx = 1
−∞
Convolution and δ function
The identity operation is the convolution with the Dirac delta function:
1. g(x) = f(x) ⊗ δ(x) = f(x)
f(x) convolutes with δ(x), remains the same.
2. g(x) = f(x) ⊗ δ (x-a) = f(x-a)
f(x) convolutes with δ(x-a), then the independent variable x in f(x) shifts a.
• 1818年,费涅耳以波的干涉的思想,赋予了惠更斯原理中各元 波包络面以物理意义,即各元波的相互干涉,在包络面上合成波 具有显著的强度。他认为从同一波面上各点发出的子波,在传播 到空间某一点时,各个子波之间也可以相互叠加而产生干涉现象。 这就是惠更斯-菲涅耳原理。
Augustin-Jean Fresnel, 1788-1827
Crystal sample
Diffraction pattern
卷积 Convolution
∞
g(x) = ∫ f (t)ϕ(x − t)dt = f (x) ⊗ϕ(x) −∞
Image
Object Point spread function
f(x)
g(x)
⊗
Blurring
Convolution theorem 卷积定理
电子波函数
电子波函数
Ψ(r) = A(r)e−iϕ (r)
平面波 球面波
Ψ(r) = e−ik⋅r Ψ(r) = e−ik⋅r
r
电子运动规律具有波动性
• 电子波是一种几率波(德布罗意波) 电子波波长:
λ=
h
2meeV
(1
+
eV mec
2
)
电子波的物理光学
• 惠更斯-费涅尔(Huygens-Fresnel)原理 • 远场衍射(Fraunhofer Diffraction) • 近场衍射(Fresnel Diffraction) • 电子显微镜中的远场和近场衍射 • Abbe成像原理
Parallel Beam and image plane is at a distance, R, much larger compared to the size of the diffracting object (X,Y).
R >>(X2+Y2)max/λ, the observed wave is Fraunhofer Diffraction
0.111
0.10 0
0.0 91
0.083
0.077
0 .071
0.0 67 1
( ) ∫∫ ( ) Qexit k
= 1 eik⋅r u,v r
qexit x, y
eiϕ (x, y)dxdy
∞
∫ Convolution g (x) = f (t )ϕ(x − t)dt = f (x) ⊗ϕ (x) −∞
Abbe theory of image formation
• Abbe 成像原理
1
t And the Fourier Transform of 1 is:
1
F
w
∞
∫ 1 exp(−iωt) dt = 2π δ (ω)
−∞
2π δ (ω)
t
w
高分辨电子显微学发展历史
实验高分辨电子显微学
• 1956,Menter,1.2nm酞箐铜和钛菁铂的条纹像
• 1957,Menter,0.69nm的条纹像(MoO3)
• 样品出射波:
qexit (x, y)
• 第一次傅里叶变化(样品出射波远场衍射, 物镜会聚衍射在后
焦面)
( ) Q(u, v) =
∫∫ 1
2π
qSexit( x, y)(eφxpk−x2,πkiy( xu + yv))dxdy
• 第二次傅里叶变化(后焦面波的远场衍射)
qimage (x',
y')
=
0.0 83 0.077 0.071
0.0 67 1
Es
Et
dInfo
0
0
sin χ (r)
dSch
-1
k,(nm-1)
1
2
3
4
5
-1
6
7
8
9
10
11
12
13
14
15
Contrast Transfer Function (CTF)
V = 300 kV CS = 0.002 mm CC = 1.5 mm ΔE = 0.8 eV HT Ripple = 0.25 ppm OL Instability = 0.5 ppm Δ = 2.14 nm α = 0.1 mrad
In electron microscope the sample transforms to diffraction by objective lens, namely, the wave of matter is transformed to spatial frequency spectrum at back focal plane of objective lens.