内蒙古呼伦贝尔市中考数学模拟试题二
内蒙古呼伦贝尔市2019-2020学年中考第二次模拟数学试题含解析
内蒙古呼伦贝尔市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列几何体中三视图完全相同的是( )A .B .C .D .2.数据3、6、7、1、7、2、9的中位数和众数分别是( )A .1和7B .1和9C .6和7D .6和93.3 1-的值是( ) A .1 B .﹣1 C .3 D .﹣3 4.化简221x -÷11x -的结果是( ) A .21x + B .2x C .21x - D .2(x +1)5.若一个正多边形的每个内角为150°,则这个正多边形的边数是( )A .12B .11C .10D .9 6.计算:()()223311a a a ---的结果是( ) A .()21a x - B .31a -. C .11a - D .31a + 7.如图,点A 、B 、C 在圆O 上,若∠OBC=40°,则∠A 的度数为( )A .40°B .45°C .50°D .55°8.若a 与5互为倒数,则a=( )A .15B .5C .-5D .15- 9.若分式有意义,则x 的取值范围是( ) A .x >3 B .x <3 C .x≠3 D .x=310.如图,四边形ABCD 中,AD ∥BC ,∠B=90°,E 为AB 上一点,分别以ED ,EC 为折痕将两个角(∠A ,∠B )向内折起,点A ,B 恰好落在CD 边的点F 处.若AD=3,BC=5,则EF 的值是( )A.15B.215C.17D.21711.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示sinα的值,错误的是()A.CDBCB.ACABC.ADACD.CDAC12.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC内部,且AD=CD,∠ADC=90°,连接BD,若△BCD的面积为10,则AD的长为_____.14.如图,在边长为3的正方形ABCD中,点E是BC边上的点,EC=2,∠AEP=90°,且EP交正方形外角的平分线CP于点P,则PC的长为_____.15.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件_____.16.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为.17.对于任意实数m、n,定义一种运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=1.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是_____.18.图中圆心角∠AOB=30°,弦CA∥OB,延长CO与圆交于点D,则∠BOD= .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.20.(6分)如图(1),P 为△ABC 所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P 叫做△ABC(1)如果点P 为锐角△ABC 的费马点,且∠ABC=60°.①求证:△ABP∽△BCP;②若PA=3,PC=4,则PB= .(2)已知锐角△ABC,分别以AB、AC 为边向外作正△ABE 和正△ACD,CE 和BD相交于P 点.如图(2)①求∠CPD 的度数;②求证:P 点为△ABC 的费马点.21.(6分)某市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品4件,乙种纪念品3件,需要550元,若购进甲种纪念品5件,乙种纪念品6件,需要800元.(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共80件,其中甲种纪念品的数量不少于60件.考虑到资金周转,用于购买这80件纪念品的资金不能超过7100元,那么该商店共有几种进货方案7(3)若销售每件甲种纪含晶可获利润20元,每件乙种纪念品可获利润30元.在(2)中的各种进货方案中,若全部销售完,哪一种方案获利最大?最大利利润多少元?22.(8分)解不等式组:()3x12x x1x132⎧-<⎪⎨+-<⎪⎩23.(8分)“食品安全”受到全社会的广泛关注,济南市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对食品安全知识达到“了解”程度的2个女生和2个男生中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.24.(10分)如图,已知O e 的直径10AB =,AC 是O e 的弦,过点C 作O e 的切线DE 交AB 的延长线于点E ,过点A 作AD DE ⊥,垂足为D ,与O e 交于点F ,设DAC ∠,CEA ∠的度数分别是α,β,且045α︒<<︒.(1)用含α的代数式表示β;(2)连结OF 交AC 于点G ,若AG CG =,求»AC 的长.25.(10分)在矩形ABCD 中,两条对角线相交于O ,∠AOB=60°,AB=2,求AD 的长.26.(12分)如图,以△ABC 的一边AB 为直径作⊙O , ⊙O 与BC 边的交点D 恰好为BC 的中点,过点D 作⊙O 的切线交AC 边于点E .(1) 求证:DE ⊥AC ;(2) 连结OC 交DE 于点F ,若3sin 4ABC ∠=,求OF FC 的值.27.(12分)某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.53m 的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理13m 污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x 件,每月纯利润y 元:(1)求出y 与x 的函数关系式.(纯利润=总收入-总支出)(2)当y=106000时,求该厂在这个月中生产产品的件数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】找到从物体正面、左面和上面看得到的图形全等的几何体即可.【详解】解:A、球的三视图完全相同,都是圆,正确;B、圆柱的俯视图与主视图和左视图不同,错误;C、圆锥的俯视图与主视图和左视图不同,错误;D、四棱锥的俯视图与主视图和左视图不同,错误;故选A.【点睛】考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.2.C【解析】【分析】如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数. 一组数据中出现次数最多的数据叫做众数.【详解】解:∵7出现了2次,出现的次数最多,∴众数是7;∵从小到大排列后是:1,2,3,6,7,7,9,排在中间的数是6,∴中位数是6故选C.【点睛】本题考查了中位数和众数的求法,解答本题的关键是熟练掌握中位数和众数的定义.3.B【解析】【分析】直接利用立方根的定义化简得出答案.【详解】因为(-1)3=-1,﹣1.故选:B .【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键.,4.A【解析】【分析】原式利用除法法则变形,约分即可得到结果.【详解】原式=211x x +-()()•(x ﹣1)=21x +. 故选A .【点睛】本题考查了分式的乘除法,熟练掌握运算法则是解答本题的关键.5.A【解析】【分析】根据正多边形的外角与它对应的内角互补,得到这个正多边形的每个外角=180°﹣150°=30°,再根据多边形外角和为360度即可求出边数.【详解】∵一个正多边形的每个内角为150°,∴这个正多边形的每个外角=180°﹣150°=30°,∴这个正多边形的边数=36030︒︒=1. 故选:A .【点睛】本题考查了正多边形的外角与它对应的内角互补的性质;也考查了多边形外角和为360度以及正多边形的性质.6.B【解析】根据分式的运算法则即可求出答案.【详解】解:原式=()23-31a a -=()23-11a a -() =31a - 故选;B【点睛】本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型. 7.C【解析】【分析】根据等腰三角形的性质和三角形内角和定理求得∠BOC=100°,再利用圆周角定理得到∠A=∠BOC .【详解】∵OB=OC , ∴∠OBC=∠OCB .又∠OBC=40°,∴∠OBC=∠OCB=40°,∴∠BOC=180°-2×40°=100°,∴∠A=∠BOC=50°故选:C .【点睛】考查了圆周角定理.在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半.8.A【解析】分析:当两数的积为1时,则这两个数互为倒数,根据定义即可得出答案.详解:根据题意可得:5a=1,解得:a=15, 故选A . 点睛:本题主要考查的是倒数的定义,属于基础题型.理解倒数的定义是解题的关键.9.C【详解】试题分析:∵分式13x有意义,∴x﹣3≠0,∴x≠3;故选C.考点:分式有意义的条件.10.A【解析】试题分析:先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC ﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=2,所以EF=.解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,∴AB=2EF,DC=DF+CF=8,作DH⊥BC于H,∵AD∥BC,∠B=90°,∴四边形ABHD为矩形,∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,在Rt△DHC中,DH==2,∴EF=DH=.故选A.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.11.D【解析】【分析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案.【详解】∵∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACB=90°,即∠BCD+∠ACD=90°,∴∠ACD=∠B=α,A、在Rt△BCD中,sinα=CDBC,故A正确,不符合题意;B、在Rt△ABC中,sinα=ACAB,故B正确,不符合题意;C、在Rt△ACD中,sinα=ADAC,故C正确,不符合题意;D、在Rt△ACD中,cosα=CDAC,故D错误,符合题意,故选D.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.12.B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2【解析】【分析】作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=10 a,AG=CH =a+10a,根据AM=AG+MG,列方程可得结论.,AG=CH=a+10a,根据AM=AG+MG,列方程可得结论.【详解】解:过D作DH⊥BC于H,过A作AM⊥BC于M,过D作DG⊥AM于G,设CM=a,∵AB=AC,∴BC=2CM=2a,∵tan∠ACB=2,∴AMCM=2,∴AM=2a,由勾股定理得:AC5,S△BDC=12BC•DH=10,12•2a•DH=10,DH=10a,∵∠DHM=∠HMG=∠MGD=90°,∴四边形DHMG为矩形,∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,∵∠ADC=90°=∠ADG+∠CDG,∴∠ADG=∠CDH,在△ADG和△CDH中,∵90AGD CHDADG CDHAD CD∠∠︒⎧⎪∠∠⎨⎪⎩====,∴△ADG≌△CDH(AAS),∴DG=DH=MG=10a,AG=CH=a+10a,∴AM=AG+MG,即2a=a+10a+10a,a2=20,在Rt△ADC中,AD2+CD2=AC2,∵AD=CD,∴2AD2=5a2=100,∴AD=52或−52(舍),故答案为52.【点睛】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、三角形面积的计算;证明三角形全等得出AG=CH是解决问题的关键,并利用方程的思想解决问题.14.2【解析】【分析】在AB上取BN=BE,连接EN,根据已知及正方形的性质利用ASA判定△ANE≌△ECP,从而得到NE=CP,在等腰直角三角形BNE中,由勾股定理即可解决问题.【详解】在AB上取BN=BE,连接EN,作PM⊥BC于M.∵四边形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°.∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°.∵PC平分∠DCM,∴∠PCM=45°,∴∠ECP=135°.∵AB=BC,BN=BE,∴AN=EC.∵∠AEP=90°,∴∠AEB+∠PEC=90°.∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴NE=CP.∵BC=3,EC=2,∴NB=BE=1,∴221122.【点睛】本题考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.15.AC=BD.【解析】试题分析:添加的条件应为:AC=BD,把AC=BD作为已知条件,根据三角形的中位线定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG和EF平行且相等,所以EFGH为平行四边形,又EH等于BD的一半且AC=BD,所以得到所证四边形的邻边EH与HG相等,所以四边形EFGH为菱形.试题解析:添加的条件应为:AC=BD.证明:∵E,F,G,H分别是边AB、BC、CD、DA的中点,∴在△ADC中,HG为△ADC的中位线,所以HG∥AC且HG=12AC;同理EF∥AC且EF=12AC,同理可得EH=12 BD,则HG∥EF且HG=EF,∴四边形EFGH为平行四边形,又AC=BD,所以EF=EH,∴四边形EFGH为菱形.考点:1.菱形的性质;2.三角形中位线定理.16.1 6【解析】试题分析:首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可.解:列表得:(1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (1,1)(2,1)(3,1)(4,1)(5,1)(6,1)∴一共有36种等可能的结果, 两个骰子的点数相同的有6种情况, ∴两个骰子的点数相同的概率为:=.故答案为.考点:列表法与树状图法. 17.45a ≤< 【解析】 【详解】解:根据题意得:2※x=2x ﹣2﹣x+3=x+1,∵a <x+1<7,即a ﹣1<x <6解集中有两个整数解, ∴a 的范围为45a ≤<, 故答案为45a ≤<. 【点睛】本题考查一元一次不等式组的整数解,准确理解题意正确计算是本题的解题关键. 18.30° 【解析】试题分析:∵CA ∥OB ,∠AOB=30°,∴∠CAO=∠AOB=30°. ∵OA=OC ,∴∠C=∠OAC=30°.∵∠C 和∠AOD 是同弧所对的圆周角和圆心角,∴∠AOD=2∠C=60°. ∴∠BOD=60°-30°=30°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)(1,﹣4a );(2)①y=﹣x 2+2x+3;②M (52,74)、N (32,154);③点Q 的坐标为(1,﹣6)或(1,﹣4﹣6). 【解析】分析: (1)将二次函数的解析式进行配方即可得到顶点D 的坐标.(2)①以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出△ACD 是个直角三角形,且∠ACD=90°,A点坐标可得,而C、D的坐标可由a表达出来,在得出AC、CD、AD的长度表达式后,依据勾股定理列等式即可求出a的值.②将△OBE绕平面内某一点旋转180°得到△PMN,说明了PM正好和x轴平行,且PM=OB=1,所以求M、N的坐标关键是求出点M的坐标;首先根据①的函数解析式设出M点的坐标,然后根据题干条件:BF=2MF作为等量关系进行解答即可.③设⊙Q与直线CD的切点为G,连接QG,由C、D两点的坐标不难判断出∠CDQ=45°,那么△QGD 为等腰直角三角形,即QD ²=2QG ²=2QB ²,设出点Q的坐标,然后用Q点纵坐标表达出QD、QB的长,根据上面的等式列方程即可求出点Q的坐标.详解:(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴D(1,﹣4a).(2)①∵以AD为直径的圆经过点C,∴△ACD为直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),则:AC2=9a2+9、CD2=a2+1、AD2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化简,得:a2=1,由a<0,得:a=﹣1,②∵a=﹣1,∴抛物线的解析式:y=﹣x2+2x+3,D(1,4).∵将△OBE绕平面内某一点旋转180°得到△PMN,∴PM∥x轴,且PM=OB=1;设M(x,﹣x2+2x+3),则OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;∵BF=2MF,∴x+1=2(﹣x2+2x+3),化简,得:2x2﹣3x﹣5=0解得:x1=﹣1(舍去)、x2=5 2 .∴M(52,74)、N(32,154).③设⊙Q与直线CD的切点为G,连接QG,过C作CH⊥QD于H,如下图:∵C (0,3)、D (1,4),∴CH=DH=1,即△CHD 是等腰直角三角形, ∴△QGD 也是等腰直角三角形,即:QD 2=2QG 2; 设Q (1,b ),则QD=4﹣b ,QG 2=QB 2=b 2+4; 得:(4﹣b )2=2(b 2+4),化简,得:b 2+8b ﹣8=0,解得:b=﹣4±26; 即点Q 的坐标为(1,426-+)或(1,426--).点睛: 此题主要考查了二次函数解析式的确定、旋转图形的性质、圆周角定理以及直线和圆的位置关系等重要知识点;后两个小题较难,最后一题中,通过构建等腰直角三角形找出QD 和⊙Q 半径间的数量关系是解题题目的关键. 20.(1)①证明见解析;②;(2)①60°;②证明见解析;【解析】试题分析:(1)①根据题意,利用内角和定理及等式性质得到一对角相等,利用两角相等的三角形相似即可得证;②由三角形ABP 与三角形BCP 相似,得比例,将PA 与PC 的长代入求出PB 的长即可;(2)①根据三角形ABE 与三角形ACD 为等边三角形,利用等边三角形的性质得到两对边相等,两个角为60°,利用等式的性质得到夹角相等,利用SAS 得到三角形ACE 与三角形ABD 全等,利用全等三角形的对应角相等得到∠1=∠2,再由对顶角相等,得到∠5=∠6,即可求出所求角度数;②由三角形ADF 与三角形CPF 相似,得到比例式,变形得到积的恒等式,再由对顶角相等,利用两边成比例,且夹角相等的三角形相似得到三角形AFP 与三角形CFD 相似,利用相似三角形对应角相等得到∠APF 为60°,由∠APD+∠DPC ,求出∠APC 为120°,进而确定出∠APB 与∠BPC 都为120°,即可得证.试题解析:(1)证明:①∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°, ∴∠PAB=∠PBC , 又∵∠APB=∠BPC=120°, ∴△ABP ∽△BCP , ②解:∵△ABP ∽△BCP ,∴,∴PB2=PA•PC=12,∴PB=2;(2)解:①∵△ABE与△ACD都为等边三角形,∴∠BAE=∠CAD=60°,AE=AB,AC=AD,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴∠1=∠2,∵∠3=∠4,∴∠CPD=∠6=∠5=60°;②证明:∵△ADF∽△CFP,∴AF•PF=DF•CF,∵∠AFP=∠CFD,∴△AFP∽△CDF.∴∠APF=∠ACD=60°,∴∠APC=∠CPD+∠APF=120°,∴∠BPC=120°,∴∠APB=360°﹣∠BPC﹣∠APC=120°,∴P点为△ABC的费马点.考点:相似形综合题21.(1)购进甲种纪念品每件需100元,购进乙种纪念品每件需50元.(2)有三种进货方案.方案一:甲种纪念品60件,乙种纪念品20件;方案二:甲种纪念品61件,乙种纪念品19件;方案三:甲种纪念品1件,乙种纪念品18件.(3)若全部销售完,方案一获利最大,最大利润是1800元.【解析】分析:(1)设购进甲种纪念品每件价格为x元,乙种纪念币每件价格为y元,根据题意得出关于x和y的二元一次方程组,解方程组即可得出结论;(2)设购进甲种纪念品a件,根据题意列出关于x的一元一次不等式,解不等式得出a的取值范围,即可得出结论;(3)找出总利润关于购买甲种纪念品a件的函数关系式,由函数的增减性确定总利润取最值时a的值,从而得出结论.详解:(1)设购进甲种纪念品每件需x元,购进乙种纪念品每件需y元.由题意得:,解得:答:购进甲种纪念品每件需100元,购进乙种纪念品每件需50元.(2)设购进甲种纪念品a(a≥60)件,则购进乙种纪念品(80﹣a)件.由题意得:100a+50(80﹣a)≤7100解得a≤1又a≥60所以a可取60、61、1.即有三种进货方案.方案一:甲种纪念品60件,乙种纪念品20件;方案二:甲种纪念品61件,乙种纪念品19件;方案三:甲种纪念品1件,乙种纪念品18件.(3)设利润为W,则W=20a+30(80﹣a)=﹣10a+2400所以W是a的一次函数,﹣10<0,W随a的增大而减小.所以当a最小时,W最大.此时W=﹣10×60+2400=1800答:若全部销售完,方案一获利最大,最大利润是1800元.点睛:本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,找到相应的数量关系是解决问题的关键,注意第二问应求整数解,要求学生能够运用所学知识解决实际问题.22.﹣9<x<1.【解析】【分析】先求每一个不等式的解集,然后找出它们的公共部分,即可得出答案.【详解】解不等式1(x﹣1)<2x,得:x<1,解不等式﹣<1,得:x>﹣9,则原不等式组的解集为﹣9<x<1.【点睛】此题考查了解一元一次不等式组,用到的知识点是解一元一次不等式组的步骤,关键是找出两个不等式解集的公共部分.23.(1)60,90°;(2)补图见解析;(3)300;(4)2 3 .【解析】分析:(1)根据了解很少的人数除以了解很少的人数所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)用总人数乘以“了解”和“基本了解”程度的人数所占的比例,即可求出达到“了解”和“基本了解”程度的总人数;(4)根据题意列出表格,再根据概率公式即可得出答案.详解:(1)60;90°.(2)补全的条形统计图如图所示.(3)对食品安全知识达到“了解”和“基本了解”的学生所占比例为1551603+=,由样本估计总体,该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数为1 9003003⨯=.(4)列表法如表所示,男生男生女生女生男生男生男生男生女生男生女生男生男生男生男生女生男生女生女生男生女生男生女生女生女生女生男生女生男生女生女生女生所有等可能的情况一共12种,其中选中1个男生和1个女生的情况有8种,所以恰好选中1个男生和1个女生的概率是82123 P==.点睛:本题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,根据题意求出总人数是解题的关键;注意运用概率公式:概率=所求情况数与总情况数之比. 24.(1)902βα=︒-;(2)103π【解析】 【分析】(1)连接OC ,根据切线的性质得到OC ⊥DE ,可以证明AD ∥OC ,根据平行线的性质可得DAC ACO ∠=∠,则根据等腰三角形的性质可得2DAE α∠=,利用90DAE E ∠+∠=︒,化简计算即可得到答案;(2)连接CF ,根据OA OC =,AG CG =可得OF AC ⊥,利用中垂线和等腰三角形的性质可证四边形AFCO 是平行四边形,得到△AOF 为等边三角形,由OA OC =并可得四边形AFCO 是菱形,可证AOF V 是等边三角形,有∠FAO=60°,120AOC ∠=︒再根据弧长公式计算即可. 【详解】解:(1)如图示,连结OC , ∵DE 是O e 的切线,∴OC DE ⊥. 又AD DE ⊥,∴90D OCE ∠=∠=︒, ∴AD OC P , ∴DAC ACO ∠=∠. ∵OA OC =,∴OCA OAC ∠=∠.∴2DAE α∠=. ∵90D ∠=︒,∴90DAE E ∠+∠=︒.∴290αβ+=︒,即902βα=︒-.(2)如图示,连结CF , ∵OA OC =,AG CG =, ∴OF AC ⊥, ∴FA FC =,∴FAC FCA CAO ∠=∠=∠, ∴CF OA ∥, ∵AF OC ∥,∴四边形AFCO 是平行四边形,∵OA OC =,∴四边形AFCO 是菱形,∴AF AO OF ==,∴AOF V 是等边三角形,∴260FAO α∠==︒,∴120AOC ∠=︒,∵10AB =,∴»AC 的长1205101803ππ⋅⋅==. 【点睛】本题考查的是切线的性质、菱形的判定和性质、弧长的计算,掌握切线的性质定理、弧长公式是解题的关键.25.【解析】试题分析:由矩形的对角线相等且互相平分可得:OA=OB=OD ,再由∠AOB=60°可得△AOB 是等边三角形,从而得到OB=OA=2,则BD=4,最后在Rt △ABD 中,由勾股定理可解得AD 的长.试题解析:∵四边形ABCD 是矩形,∴OA=OB=OD ,∠BAD=90°,∵∠AOB=60°,∴△AOB 是等边三角形,∴OB=OA=2,∴BD=2OB=4,在Rt △ABD 中∴=26.(1)证明见解析(2)87【解析】【分析】(1)连接OD ,根据三角形的中位线定理可求出OD ∥AC ,根据切线的性质可证明DE ⊥OD ,进而得证.(2)连接AD ,根据等腰三角形的性质及三角函数的定义用OB 表示出OF 、CF 的长,根据三角函数的定义求解.【详解】解:(1)连接OD . ∵DE是⊙O的切线,∴DE⊥OD,即∠ODE=90° .∵AB是⊙O的直径,∴O是AB的中点.又∵D是BC的中点,.∴OD∥AC .∴∠DEC=∠ODE= 90° .∴DE⊥AC .(2)连接AD . ∵OD∥AC,∴OF OD FC EC=.∵AB为⊙O的直径,∴∠ADB= ∠ADC =90° . 又∵D为BC的中点,∴AB=AC.∵sin∠ABC=ADAB=34,设AD= 3x , 则AB=AC=4x, OD= 2x.∵DE⊥AC,∴∠ADC= ∠AED= 90°.∵∠DAC= ∠EAD,∴△ADC∽△AED.∴AD AC AE AD=.∴2AD AE AC=⋅.∴94=AE x. ∴74=EC x.∴87== OF ODFC EC.27.(1)y=19x-1(x>0且x是整数) (2)6000件【解析】【分析】(1)本题的等量关系是:纯利润=产品的出厂单价×产品的数量-产品的成本价×产品的数量-生产过程中的污水处理费-排污设备的损耗,可根据此等量关系来列出总利润与产品数量之间的函数关系式;(2)根据(1)中得出的式子,将y的值代入其中,求出x即可.【详解】(1)依题意得:y=80x-60x-0.5x•2-1,化简得:y=19x-1,∴所求的函数关系式为y=19x-1.(x>0且x是整数)(2)当y=106000时,代入得:106000=19x-1,解得x=6000,∴这个月该厂生产产品6000件.【点睛】本题是利用一次函数的有关知识解答实际应用题,可根据题意找出等量关系,列出函数式进行求解.。
内蒙古呼伦贝尔市2019-2020学年中考数学二模试卷含解析
内蒙古呼伦贝尔市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若抛物线y=x2-(m-3)x-m能与x轴交,则两交点间的距离最值是()A.最大值2,B.最小值2 C.最大值22D.最小值222.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1 B.2 C.3 D.43.设0<k<2,关于x的一次函数y=(k-2)x+2,当1≤x≤2时,y的最小值是()A.2k-2 B.k-1 C.k D.k+14.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.1000100030x x-+=2 B.1000100030x x-+=2C.1000100030x x--=2 D.1000100030x x--=25.在同一坐标系中,反比例函数y=kx与二次函数y=kx2+k(k≠0)的图象可能为()A.B.C.D.6.cos30°=()A.12B.22C.32D37.下列各式计算正确的是()A .a 4•a 3=a 12B .3a•4a=12aC .(a 3)4=a 12D .a 12÷a 3=a 48.如图,△A′B′C′是△ABC 以点O 为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC 的面积比是4:9,则OB′:OB 为( )A .2:3B .3:2C .4:5D .4:99.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、1.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )A .14B .12C .34D .5610.估计32﹣16÷2的运算结果在哪两个整数之间( )A .0和1B .1和2C .2和3D .3和411.如图,矩形ABCD 中,12AB =,13BC =,以B 为圆心,BA 为半径画弧,交BC 于点E ,以D 为圆心,DA 为半径画弧,交BC 于点F ,则EF 的长为( )A .3B .4C .92D .512.如图,直线AB ∥CD ,∠A =70°,∠C =40°,则∠E 等于()A .30°B .40°C .60°D .70°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若使代数式212x x -+有意义,则x 的取值范围是_____. 14.设1x 、2x 是一元二次方程2510x x --=的两实数根,则2212x x +的值为 .15.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是.16.有一组数据:3,a,4,6,7,它们的平均数是5,则a=_____,这组数据的方差是_____.17.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是_____.18.如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC的三个顶点A,B,C,则ac的值是________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22º时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45º时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上).求教学楼AB的高度;学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数).20.(6分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D 是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.(1)求此抛物线的解析式及顶点D的坐标;(2)点M是抛物线上的动点,设点M的横坐标为m.①当∠MBA=∠BDE时,求点M的坐标;②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.21.(6分)已知△ABC 中,AD 是∠BAC 的平分线,且AD=AB,过点C 作AD 的垂线,交AD 的延长线于点H.(1)如图1,若∠BAC=60°.①直接写出∠B 和∠ACB 的度数;②若AB=2,求AC 和AH 的长;(2)如图2,用等式表示线段AH 与AB+AC 之间的数量关系,并证明.22.(8分)如图,在△ABC中,CD⊥AB于点D,tanA=2cos∠BCD,(1)求证:BC=2AD;(2)若cosB=34,AB=10,求CD的长.23.(8分)如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A、B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45°、木瓜B 的仰角为30°.求C处到树干DO的距离CO.(结果精确到1米)3 1.73,2 1.41)24.(10分)如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延长AM到点D,AE=AD,∠EAD=90°,CE交AB于点F,CD=DF.(1)∠CAD=______度;(2)求∠CDF的度数;(3)用等式表示线段CD和CE之间的数量关系,并证明.25.(10分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.2014年这种礼盒的进价是多少元/盒?若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?26.(12分)太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C 处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米.请你根据以上数据,计算舍利塔的高度AB.27.(12分)如图,△ABC中,点D在AB上,∠ACD=∠ABC,若AD=2,AB=6,求AC的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】设抛物线与x 轴的两交点间的横坐标分别为:x 1,x 2,由韦达定理得:x 1+x 2=m-3,x 1•x 2=-m ,则两交点间的距离d=|x 1-x 2|=2221212()4(3)429x x x x m m m m +-=-+=-+=2(1)8m -+ , ∴m=1时,d min =22.故选D.2.D【解析】【分析】由抛物线的对称轴的位置判断ab 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】①∵抛物线对称轴是y 轴的右侧,∴ab <0,∵与y 轴交于负半轴,∴c <0,∴abc >0,故①正确;②∵a >0,x=﹣2b a<1, ∴﹣b <2a ,∴2a+b >0,故②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选D.【点睛】本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.3.A【解析】【分析】先根据0<k<1判断出k-1的符号,进而判断出函数的增减性,根据1≤x≤1即可得出结论.【详解】∵0<k<1,∴k-1<0,∴此函数是减函数,∵1≤x≤1,∴当x=1时,y最小=1(k-1)+1=1k-1.故选A.【点睛】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时函数图象经过一、二、四象限是解答此题的关键.4.A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:1000100030x x-+=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.5.D【解析】【分析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k<0时,反比例函数y=kx,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;②当k>0时,反比例函数y=kx,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D.故选D.【点睛】本题主要考查二次函数、反比例函数的图象特点.6.C【解析】【分析】直接根据特殊角的锐角三角函数值求解即可.【详解】cos30︒=故选C.【点睛】考点:特殊角的锐角三角函数点评:本题属于基础应用题,只需学生熟练掌握特殊角的锐角三角函数值,即可完成.7.C【解析】【分析】根据同底数幂的乘法,可判断A、B,根据幂的乘方,可判断C,根据同底数幂的除法,可判断D.【详解】A.a4•a3=a7,故A错误;B.3a•4a=12a2,故B错误;C.(a3)4=a12,故C正确;D.a12÷a3=a9,故D错误.故选C.【点睛】本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减是解题的关键.8.A【解析】【分析】根据位似的性质得△ABC∽△A′B′C′,再根据相似三角形的性质进行求解即可得. 【详解】由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC,∵△A'B'C'与△ABC的面积的比4:9,∴△A'B'C'与△ABC的相似比为2:3,∴23OBOB'=,故选A.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.9.C【解析】【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.【详解】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率=123 164=,故选C.【点睛】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.10.D【解析】【分析】先估算出32的大致范围,然后再计算出16÷2的大小,从而得到问题的答案. 【详解】25<32<31,∴5<32<1.原式=32﹣2÷2=32﹣2,∴3<32﹣16÷2<2. 故选D .【点睛】本题主要考查的是二次根式的混合运算,估算无理数的大小,利用夹逼法估算出32的大小是解题的关键.11.B【解析】【分析】连接DF ,在Rt DCF △中,利用勾股定理求出CF 的长度,则EF 的长度可求.【详解】连接DF ,∵四边形ABCD 是矩形∴12,13AB CD BE AD BC DF ======在Rt DCF △中,90C ∠=︒222213125CF DF CD ∴-=-=13121EC BC BE =-=-=Q514EF CF EC ∴=-=-=故选:B .【点睛】本题主要考查勾股定理,掌握勾股定理的内容是解题的关键.12.A【解析】【详解】∵AB ∥CD ,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E ,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故选A .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x≠﹣2【解析】【分析】直接利用分式有意义则其分母不为零,进而得出答案.【详解】 ∵分式212x x -+有意义, ∴x 的取值范围是:x+2≠0,解得:x≠−2.故答案是:x≠−2.【点睛】本题考查了分式有意义的条件,解题的关键是熟练的掌握分式有意义的条件.14.27【解析】试题分析:根据一元二次方程根与系数的关系,可知1x +2x =5,1x ·2x =-1,因此可知2212x x +=212()x x +-212x x =25+2=27.故答案为27. 点睛:此题主要考查了一元二次方程根与系数的关系,解题时灵活运用根与系数的关系:12b x x a +=-,12c x x a ⋅=,确定系数a ,b ,c 的值代入求解,然后再通过完全平方式变形解答即可. 15.12. 【解析】【分析】【详解】根据题意可知,掷一次骰子有6个可能结果,而点数为奇数的结果有3个,所以点数为奇数的概率为12. 考点:概率公式.16.5 1.【解析】∵一组数据:3,a ,4,6,7,它们的平均数是5,∴346755a ++++=⨯,解得,5a =, ∴2222221[(35)(55)(45)(65)(75)]5s =-+-+-+-+-=1. 故答案为5,1.17.87【解析】分析:根据已知条件得到被墨汁覆盖的三个数为:10,13,13,根据方差公式即可得到结论. 详解:∵平均数是12,∴这组数据的和=12×7=84,∴被墨汁覆盖三天的数的和=84−4×12=36,∵这组数据唯一众数是13,∴被墨汁覆盖的三个数为:10,13,13,()()()()()()()222222221[1112121210121312131213121212],7S =-+-+-+-+-+-+- 8.7= 故答案为8.7点睛:考查方差,算术平均数,众数,根据这组数据唯一众数是13,得到被墨汁覆盖的三个数为:10,13,13是解题的关键.18.-1.【解析】【分析】设正方形的对角线OA 长为1m ,根据正方形的性质则可得出B 、C 坐标,代入二次函数y=ax 1+c 中,即可求出a 和c ,从而求积.【详解】设正方形的对角线OA 长为1m ,则B (﹣m ,m ),C (m ,m ),A (0,1m );把A ,C 的坐标代入解析式可得:c=1m ①,am 1+c=m ②,①代入②得:am 1+1m=m ,解得:a=-1m , 则ac=-1m⨯1m=-1. 考点:二次函数综合题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)2m (2)27m【解析】【分析】(1)首先构造直角三角形△AEM ,利用0AM tan22ME =,求出即可. (2)利用Rt △AME 中,0ME cos22AE=,求出AE 即可. 【详解】解:(1)过点E 作EM ⊥AB ,垂足为M .设AB 为x .在Rt △ABF 中,∠AFB=45°,∴BF=AB=x ,∴BC=BF +FC=x +1.在Rt △AEM 中,∠AEM=22°,AM=AB -BM=AB -CE=x -2,又∵0AM tan22ME =,∴x 22x 135-≈+,解得:x≈2. ∴教学楼的高2m .(2)由(1)可得ME=BC=x+1≈2+1=3.在Rt △AME 中,0ME cos22AE =, ∴AE=MEcos22°≈15252716⨯≈. ∴A 、E 之间的距离约为27m . 20.(1)(1,4)(2)①点M 坐标(﹣12,74)或(﹣32,﹣94);②m 的值为3172± 或1172± 【解析】 【分析】(1)利用待定系数法即可解决问题; (2)①根据tan ∠MBA=2233m m MG BG m-++=-,tan ∠BDE=BE DE =12,由∠MBA=∠BDE ,构建方程即可解决问题;②因为点M 、N 关于抛物线的对称轴对称,四边形MPNQ 是正方形,推出点P 是抛物线的对称轴与x 轴的交点,即OP=1,易证GM=GP ,即|-m 2+2m+3|=|1-m|,解方程即可解决问题.【详解】解:(1)把点B (3,0),C (0,3)代入y=﹣x 2+bx+c ,得到930{3b c c -++==,解得23b c ì=ïí=ïî, ∴抛物线的解析式为y=﹣x 2+2x+3,∵y=﹣x 2+2x ﹣1+1+3=﹣(x ﹣1)2+4,∴顶点D 坐标(1,4);(2)①作MG ⊥x 轴于G ,连接BM .则∠MGB=90°,设M (m ,﹣m 2+2m+3),∴MG=|﹣m 2+2m+3|,BG=3﹣m ,∴tan ∠MBA=2233m m MG BG m -++=-,∵DE ⊥x 轴,D (1,4),∴∠DEB=90°,DE=4,OE=1,∵B (3,0),∴BE=2,∴tan ∠BDE=BE DE =12, ∵∠MBA=∠BDE , ∴2233m m m -++-=12, 当点M 在x 轴上方时,2233m m m-++- =12, 解得m=﹣12或3(舍弃), ∴M (﹣12,74), 当点M 在x 轴下方时,2233m m m--- =12, 解得m=﹣32或m=3(舍弃), ∴点M (﹣32,﹣94),综上所述,满足条件的点M坐标(﹣12,74)或(﹣32,﹣94);②如图中,∵MN∥x轴,∴点M、N关于抛物线的对称轴对称,∵四边形MPNQ是正方形,∴点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,当﹣m2+2m+3=1﹣m时,解得m=3172±,当﹣m2+2m+3=m﹣1时,解得117±,∴满足条件的m 317±117±.【点睛】本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.21.(1)①45°,②3+32(2)线段AH 与AB+AC 之间的数量关系:2AH=AB+AC.证明见解析.【解析】【分析】(1)①先根据角平分线的定义可得∠BAD=∠CAD=30°,由等腰三角形的性质得∠B=75°,最后利用三角形内角和可得∠ACB=45°;②如图1,作高线DE,在Rt△ADE 中,由∠DAC=30°,AB=AD=2 可得DE=1,3在Rt△CDE 中,由∠ACD=45°,DE=1,可得EC=1,AC= 3,同理可得AH 的长;(2)如图2,延长AB 和CH 交于点F,取BF 的中点G,连接GH,易证△ACH≌△AFH,则AC=AF,HC=HF,根据平行线的性质和等腰三角形的性质可得AG=AH,再由线段的和可得结论.【详解】(1)①∵AD 平分∠BAC,∠BAC=60°,∴∠BAD=∠CAD=30°,∵AB=AD,∴∠B=180302︒︒-=75°,∴∠ACB=180°﹣60°﹣75°=45°;②如图1,过D 作DE⊥AC 交AC 于点E,在Rt△ADE 中,∵∠DAC=30°,AB=AD=2,∴DE=1,AE=3,在Rt△CDE 中,∵∠ACD=45°,DE=1,∴EC=1,∴AC=3+1,在Rt△ACH 中,∵∠DAC=30°,∴CH=12AC=3+1∴AH=222231(31)2AC CH⎛⎫+-=+- ⎪⎝⎭=33+;(2)线段AH 与AB+AC 之间的数量关系:2AH=AB+AC.证明:如图2,延长AB 和CH 交于点F,取BF 的中点G,连接GH.易证△ACH≌△AFH,∴AC=AF,HC=HF,∴GH∥BC,∵AB=AD,∴∠ABD=∠ADB,∴∠AGH=∠AHG,∴AG=AH,∴AB+AC=AB+AF=2AB+BF=2(AB+BG)=2AG=2AH.【点睛】本题是三角形的综合题,难度适中,考查了三角形全等的性质和判定、等腰三角形的性质和判定、勾股定理、三角形的中位线定理等知识,熟练掌握这些性质是本题的关键,第(2)问构建等腰三角形是关键.22.(1)证明见解析;(2)CD=.【解析】【分析】(1)根据三角函数的概念可知tanA=CDAD,cos∠BCD=CDBC,根据tanA=2cos∠BCD即可得结论;(2)由∠B的余弦值和(1)的结论即可求得BD,利用勾股定理求得CD即可.【详解】(1)∵tanA=CDAD,cos∠BCD=CDBC,tanA=2cos∠BCD,∴CDAD=2·CDBC,∴BC=2AD.(2)∵cosB=BDBC=34,BC=2AD,∴BDAD=32.∵AB=10,∴AD=25×10=4,BD=10-4=6,∴BC=8,∴CD.【点睛】本题考查了直角三角形中的有关问题,主要考查了勾股定理,三角函数的有关计算.熟练掌握三角函数的概念是解题关键.23.解:设OC=x,在Rt△AOC中,∵∠ACO=45°,∴OA=OC=x.在Rt△BOC中,∵∠BCO=30°,∴OB OC?tan30=︒=.∵AB=OA﹣OB=x,解得1+1.73=4.735≈≈.∴OC=5米.答:C处到树干DO的距离CO为5米.【解析】解直角三角形的应用(仰角俯角问题),锐角三角函数定义,特殊角的三角函数值.【分析】设OC=x ,在Rt △AOC 中,由于∠ACO=45°,故OA=x ,在Rt △BOC 中,由于∠BCO=30°,故OB OC ?tan30=︒=,再根据AB=OA -OB=2即可得出结论. 24.(1)45;(2)90°;(3)见解析. 【解析】【分析】(1)根据等腰三角形三线合一可得结论;(2)连接DB ,先证明△BAD ≌△CAD ,得BD =CD =DF ,则∠DBA =∠DFB =∠DCA ,根据四边形内角和与平角的定义可得∠BAC+∠CDF =180°,所以∠CDF =90°;(3)证明△EAF ≌△DAF ,得DF =EF ,由②可知,CF =可得结论. 【详解】(1)解:∵AB =AC ,M 是BC 的中点,∴AM ⊥BC ,∠BAD =∠CAD ,∵∠BAC =90°,∴∠CAD =45°,故答案为:45(2)解:如图,连接DB .∵AB =AC ,∠BAC =90°,M 是BC 的中点,∴∠BAD =∠CAD =45°.∴△BAD ≌△CAD .∴∠DBA =∠DCA ,BD =CD .∵CD =DF ,∴BD =DF .∴∠DBA =∠DFB =∠DCA .∵∠DFB +∠DFA =180°,∴∠DCA +∠DFA =180°.∴∠BAC +∠CDF =180°.∴∠CDF =90°.(3))1CE CD =. 证明:∵∠EAD =90°,∴∠EAF =∠DAF =45°.∵AD =AE ,∴△EAF ≌△DAF .∴DF =EF . 由②可知,2CF CD =.∴()21CE EF CF DF CF CD CF CD =+=+=+=+.【点睛】此题考查等腰三角形的性质,全等三角形的判定与性质,直角三角形的性质,解题关键在于掌握判定定理及性质.25.(1)35元/盒;(2)20%.【解析】【详解】试题分析:(1)设2014年这种礼盒的进价为x 元/盒,则2016年这种礼盒的进价为(x ﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设年增长率为m ,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m 的一元二次方程,解之即可得出结论.试题解析:(1)设2014年这种礼盒的进价为x 元/盒,则2016年这种礼盒的进价为(x ﹣11)元/盒,根据题意得:3500240011x x =-,解得:x=35,经检验,x=35是原方程的解. 答:2014年这种礼盒的进价是35元/盒.(2)设年增长率为m ,2014年的销售数量为3500÷35=100(盒).根据题意得:(60﹣35)×100(1+a )2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).答:年增长率为20%.考点:一元二次方程的应用;分式方程的应用;增长率问题.26.55米【解析】【分析】由题意可知△EDC ∽△EBA ,△FHC ∽△FBA ,根据相似三角形的性质可得,GH FG DC EC AB FA BA EA ==,又DC=HG ,可得FG EC FA EA =,代入数据即可求得AC=106米,再由DC EC AB EA=即可求得AB=55米. 【详解】∵△EDC ∽△EBA ,△FHC ∽△FBA, ,GH FG DC EC AB FA BA EA∴==, DC HG =Q 又,FG EC FA EA∴=, 即64594AC AC=++, ∴AC=106米,又DC EC AB EA=, ∴244106AB =+, ∴AB=55米.答:舍利塔的高度AB 为55米.【点睛】本题考查相似三角形的判定和性质的应用,解题的关键是灵活运用所学知识解决问题,利用相似三角形的性质建立方程解决问题.27.【解析】试题分析:可证明△ACD ∽△ABC ,则AD AC AC AB=,即得出AC 2=AD•AB ,从而得出AC 的长. 试题解析:∵∠ACD=∠ABC ,∠A=∠A , ∴△ACD ∽△ABC . ∴AD AC AC AB =,∵AD=2,AB=6,∴26ACAC =.∴212AC =.∴AC=考点:相似三角形的判定与性质.。
内蒙古呼伦贝尔市中考数学二模试卷
内蒙古呼伦贝尔市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·罗湖期末) -2的绝对值是()A . 2B .C .D .2. (2分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分)用科学记数法表示660 000的结果是()A . 66×104B . 6.6×105C . 0.66×106D . 6.6×1064. (2分)如图,AD是⊙O的直径,弦AB∥CD,若∠BAD=35°,则∠AOC等于()A . 35°B . 45°C . 55°D . 70°5. (2分) (2018九上·阜宁期末) 下列统计量中,能够刻画一组数据的离散程度的是()A . 方差或标准差B . 平均数或中位数C . 众数或频率D . 频数或众数6. (2分)(2017·深圳模拟) 如图,在 ABC中,AD平分 BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于 AD的长为半径在AD两侧做弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是().A . 2B . 4C . 6D . 87. (2分)为迎接2011年“大运会”的到来,我市对20千米长的北环大道进行了改造,为了尽量减少施工对交通的影响,实际施工时平均每天比原计划多改造100米,结果提前10天完成改造工程,若原计划平均每天改造道路x千米,则可得方程为()A . -=10B . -=10C . -=10D . -=108. (2分) (2018八下·深圳月考) 如图,Rt△ACB中,∠ACB=90°,∠ABC的平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC和BC的延长线于E,D.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确的是()A . ①②③B . ①②④C . ②③④D . ①②③④9. (2分)如图,正方形BODC的顶点C的坐标是(3,3),以原点O为位似中心,将正方形BODC缩小后得到正方形B'ODC',点C的对应点C'的坐标为(﹣1,﹣1),那么点D的对应点D'的坐标为()A . (﹣1,0)B . (0,﹣1)C . (1,0)D . (0,1)10. (2分) (2019八下·天台期中) 如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2;以此进行下去…,则正方形A2019B2019C2019D2019的面积为()A . 52017B . 52018C . 52019D . 52020二、填空题 (共5题;共5分)11. (1分) (2017八下·荣昌期中) 计算:(﹣2)3+(﹣1)0=________.12. (1分) (2017八下·澧县期中) 已知点P(2﹣m,m)在第四象限,则m的取值范围是________.13. (1分)如图,在△ABC中,∠C=90,∠CAB=60°,按以下步骤作图:①分别以A、B为圆心,以大于AB 的长为半径作弧,两弧相交于点P和Q;②作直线PQ交AB于点D,交BC于点E.若BE=6,则线段CE的长为________ .14. (1分)(2017·延边模拟) 如图,线段OA=4,点C是OA的中点,以线段CA为对角线作正方形ABCD.将线段OA绕点O向逆时针方向旋转60°,得到线段OA′和正方形A′B′C′D′.在旋转过程中,正方形ABCD扫过的面积是________.(结果保留π)15. (1分)(2018·南宁模拟) 如图,在菱形纸片ABCD中,AB=3,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则tan∠EFG的值为________.三、解答题 (共8题;共76分)16. (10分)(2017·独山模拟) 计算题1、计算:﹣|﹣4|﹣2cos45°﹣(3﹣π)0 .(1)计算:﹣|﹣4|﹣2cos45°﹣(3﹣π)0.(2)先化简(﹣),然后从1、、﹣1中选取一个你认为合适的数作为a的值代入求值.17. (6分)(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.(1)求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是________18. (10分)(2017·安徽模拟) 如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠B AD的度数;(2)求证:∠1=∠2.19. (10分)(2017·日照模拟) 综合题。
内蒙古呼伦贝尔市数学中考模拟试卷(二)
内蒙古呼伦贝尔市数学中考模拟试卷(二)姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)计算8x3·x2的结果是()A . 8xB . 8x5C . 8x6D . x52. (2分)(2014·柳州) 如图,李师傅做了一个零件,请你告诉他这个零件的主视图是()A .B .C .D .3. (2分) (2019九下·萧山开学考) 下列事件中,属于必然事件的是()A . 旭日东升B . 守株待兔C . 大海捞针D . 明天放假4. (2分)若a<b,则下列各式中一定成立的是()A . ac<bcB .C . a+1<b+1D . >5. (2分) (2019九上·北京期中) 点A(x1 , y1),B(x2 , y2)都在反比例函数的图象上,若x1<x2<0,则()A . y2>y1>0B . y1>y2>0C . y2<y1<0D . y1<y2<06. (2分)(2019·余姚会考) 袋中有五个小球,3个红球,2个白球,它们除了颜色外其余完全一样.现从中任意摸一个球.摸出红球的概率为()A .B .C .D .7. (2分)(2019·杭锦旗模拟) 小敏上月在某文具店正好用30元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小敏只比上次多用了6元钱,却比上次多买了8本,若设她上月买了x本笔记本,则根据题意可列方程为()A . =1B . =1C . =1D . =18. (2分) (2019九上·石家庄月考) 把一元二次方程化为一般形式,正确的是()A .B .C .D .9. (2分)若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A . m>1B . m>0C . m>﹣1D . ﹣1<m<010. (2分)(2017·宜昌模拟) 如图,函数y= 与y=﹣kx+1(k≠0)在同一直角坐标系中的图象大致为()A .B .C .D .二、填空题 (共8题;共8分)11. (1分) (2017七下·嘉兴期中) 用科学记数法表示:-0.0000419=________.12. (1分)因式分解:3a2﹣3=________13. (1分)甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.8环,方差分别是:S甲2=1,S 乙2=0.8,则射击成绩较稳定的是________.(填“甲”或“乙”)14. (1分) (2018八上·武汉月考) 如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为________度.15. (1分)如图,四边形ABCD中,AD∥BC,AB=DC,∠ABC=60°.若其四边满足:长度的众数为5,平均数为,上、下底之比为1∶2,则BD=________.16. (1分)(2016·毕节) 若a2+5ab﹣b2=0,则的值为________.17. (1分)如图,菱形ABCD中,E是AD的中点,将△CDE沿CE折叠后,点A和点D恰好重合.若AB=4,则菱形ABCD的面积为________.18. (1分) (2020九上·建华期末) 在平面直角坐标系中,解析式为的直线、解析式为的直线如图所示,直线交轴于点,以为边作第一个等边三角形,过点作轴的平行线交直线于点,以为边作第二个等边三角形,……顺次这样做下去,第2020个等边三角形的边长为________.三、解答题 (共8题;共78分)19. (5分)(2020·哈尔滨模拟) 先化简,再求代数式的值,其中.20. (6分)(2018·肇庆模拟) 如图,四边形ABCD是平行四边形,E,F是对角线BD上的点,∠1=∠2.求证:(1) BE=DF;(2)AF∥CE.21. (7分)(2018·丹江口模拟) 某市高中招生体育考试前教育部门为了解全市九年级男生考试项目的选择情况(每人限选一项),对全市部分九年级男生进行了调查,将调查结果分成五类:A、实心球(2kg);B、立定跳远;C、50米跑;D、半场运球;E、其它.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)将上面的条形统计图补充完整;(2)假定全市九年级毕业学生中有5500名男生,试估计全市九年级男生中选“50米跑”的人数有多少人?(3)甲、乙两名九年级男生在上述选择率较高的三个项目:B、立定跳远;C、50米跑;D、半场运球中各选一项,同时选择半场运球和立定跳远的概率是多少?请用列表法或画树形图的方法加以说明并列出所有等可能的结果.22. (10分)(2017·安顺模拟) 如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)23. (10分)(2018·肇源模拟) 如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接DE,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=60°,∠C=45°,DE= ,求BC的长.24. (15分) (2017·柘城模拟) 某批发市场有中招考试文具套装,其中A品牌的批发价是每套20元,B品牌的批发价是每套25元,小王需购买A、B两种品牌的文具套装共1000套.(1)若小王按需购买A、B两种品牌文具套装共用22000元,则各购买多少套?(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000套文具套装,共用了y元,设A品牌文具套装买了x包,请求出y与x之间的函数关系式.(3)若小王购买会员卡并用此卡按需购买1000套文具套装,共用了20000元,他计划在网店包邮销售这两种文具套装,每套文具套装小王需支付邮费8元,若A品牌每套销售价格比B品牌少5元,请你帮他计算,A品牌的文具套装每套定价不低于多少元时才不亏本(运算结果取整数)?25. (15分) (2019八上·和平期中) 已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.26. (10分) (2017九上·拱墅期中) 平面内,如图,在平行四边形中,,,,点为边上任意一点,连接,将绕点逆时针旋转得到线段.(1)当时,求的大小.(2)当时,求点与点间的距离(结果保留根号).(3)若点恰好落在平行四边形的边所在的条直线上,直接写出旋转到所扫过的面积(结果保留).参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共78分)19-1、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、。
内蒙古呼伦贝尔市数学中考二模试卷
内蒙古呼伦贝尔市数学中考二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列运算正确的是()A . 2x2-x2=2B . (x3)2 = x5C . x3·x6=x9D . (x+y)2=x2+y22. (2分) (2018·罗平模拟) 如图所示的几何体的俯视图是()A .B .C .D .3. (2分)(2019·沾化模拟) 如图,已知AB∥DE,∠ABC=75°,∠CDE=145°,则∠BCD的值为()A . 20°B . 30°C . 40°D . 70°4. (2分) (2019七上·港闸期末) 下列运算正确的是()A . 2a+6b=8abB . 4x2y﹣5xy2=﹣x2yC . a2b﹣3ba2=﹣2a2bD . ﹣(﹣a﹣b)=a﹣b5. (2分)(2019·二道模拟) 若k>4,则关于x的一元二次方程x2+4x+k=0的根的情况是()A . 没有实数根B . 有两个相等的实数根C . 有两个不相等的实数根D . 无法判断6. (2分) (2017八下·罗山期中) 已知△ABC的三边分别为a.b、c,则下列条件中不能判定△ABC是直角三角形的是()A . b2=a2﹣c2B .C . ∠C=∠A﹣∠BD . ∠A:∠B:∠C=3:4:57. (2分)已知:a2+a+1=5,则(2+a)(1﹣a)的值为()A . -4B . -3C . -2D . 78. (2分)如图,EF是△ABC的中位线,将△AEF沿中线AD方向平移到△A1E1F1的位置,使E1F1与BC边重合,已知△AEF的面积为7,则图中阴影部分的面积为()A . 7B . 14C . 21D . 289. (2分) (2019八下·郑州月考) 如图,已知正比例函数y1=ax与一次函数y2= x+b的图象交于点P.下面有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2.其中正确的是()A . ①②B . ②③C . ①③D . ①④10. (2分) (2015九下·义乌期中) 如图,在△ABC中,AD是中线,DE⊥BC交AB于E,AH∥DE交BC于H,且∠DAH=∠CAH,连接CE交AD于F,交AH于G.下列结论:①△AEF∽△CEA;②FH∥AC;③若CE⊥AB,则tan∠BAC=2;④若四边形AEDG是菱形,则∠ACB=60°.其中正确的是()A . ①②③B . ②③④C . ①②D . ①②③④二、填空题 (共8题;共10分)11. (1分) (2020八上·香洲期末) 分式有意义的条件是________.12. (1分)全班同学去春游,准备租船游玩,如果比计划减少一条船,则每条船正好坐9个同学,如果比计划增加一条船,每条船正好坐6个同学,则这个班有________个同学,计划租用________条船。
内蒙古呼伦贝尔市中考数学二模考试试卷
内蒙古呼伦贝尔市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七上·丰台期中) 下列各式中结果为负数的是().A .B .C .D .2. (2分)某大型广场要举办一次能容纳10万人的演出,假设每把椅子所占面积相当于一张单人的学生课桌面积,则这个大型广场的面积约为()A . 2.5×106m2B . 2.5×105m2C . 2.5×104m2D . 2.5×103m23. (2分)(2020·云南模拟) 下列运算正确的是()A . (xm)2=xm+2B . (﹣2x2y)3=﹣8x5y3C . x6÷x3=x2D . x3•x2=x54. (2分)(2020·淮南模拟) 如图所示为家用热水瓶,其左视图是()A .B .C .D .5. (2分)对于非零的两个实数a、b,规定a⊗b=−.若1⊗(x+1)=1,则x的值为()A .B .C .D . -6. (2分) (2019九上·灌云月考) 数据4,3,5,3,6,3,4的众数和中位数是()A . 3,4B . 3,5C . 4,3D . 4,57. (2分)在下列如果是七次单项式,则n的值为()A . 4B . 3C . 2D . 18. (2分)如图,点E,F分别在矩形ABCD的两条边上,且EF⊥EC,EF=EC,若该矩形的周长为16,AE=3,则DE的长为()A .B . 2C .D . 39. (2分)甲、乙两车沿同一平直公路由A地匀速行驶(中途不停留)前往终点B地,甲、乙两车的距离y (千米)与甲车行驶的时间t(小时)之间的函数关系如图所示,小红通过图象得出以下4个信息:①甲车速度为60千米/小时;②A、B两地相距240千米;③乙车行驶2小时追上甲车;④乙车由A地到B地共用3小时.上述信息正确的有()个.A . 1B . 2C . 3D . 410. (2分)如图,在平面直角坐标系中,正方形OACB的顶点O、C的坐标分别是(0,0),(2,0),则顶点B的坐标是()A . (1,1)B . (﹣1,﹣1)C . (1,﹣1)D . (﹣1,1)二、填空题 (共4题;共5分)11. (1分)不等式的解集是________.12. (1分)分解因式:ab3﹣ab=________ .13. (2分)如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O为圆心,以OA为半径的圆与CB相切于点E,与AB相交于点F,连接OE、OF,则图中阴影部分的面积是________.14. (1分) (2020八下·惠州月考) 如图,数轴上点A所表示的数为________,点B所表示的数为________.三、解答题 (共9题;共76分)15. (5分) (2020七下·滨湖期中) 计算:(1);(2);(3);(4) .16. (5分) (2018七上·北部湾期末) 某工厂今年6,7,8三个月份的利润共37万元,其中,7月份的利润比6月份的利润少5万元,8月份的利润是6月份的利润的1.5倍. 6月份的利润是多少万元?17. (10分) (2020八下·姜堰期末) 如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).( 1 )将△ABC以点C为旋转中心顺时针旋转90°,得到△A1B1C,请画出△A1B1C的图形.( 2 )平移△A1B1C,使点A1的对应点A2坐标为(2,0),请画出平移后对应的△A2B2C2的图形.( 3 )若将△ABC绕某一点旋转可得到△A2B2C2 ,请直接写出旋转中心的坐标.18. (10分)(2020·梧州模拟) 观察下列各式规律:① 52-22=3×7;② 72-42=3×11;③ 92-62=3×15;…;根据上面等式的规律:(1)写出第6个和第n个等式;(2)证明你写的第n个等式的正确性。
内蒙古呼伦贝尔市2019-2020学年中考数学模拟试题(2)含解析
内蒙古呼伦贝尔市2019-2020学年中考数学模拟试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( )A .主视图B .俯视图C .左视图D .一样大2.一组数据1,2,3,3,4,1.若添加一个数据3,则下列统计量中,发生变化的是( ) A .平均数B .众数C .中位数D .方差3.二次函数y=(2x -1)2+2的顶点的坐标是( ) A .(1,2)B .(1,-2)C .(12,2) D .(-12,-2) 4.图中三视图对应的正三棱柱是( )A .B .C .D .5.已知等腰三角形的周长是10,底边长y 是腰长x 的函数,则下列图象中,能正确反映y 与x 之间函数关系的图象是( )A .B .C . D6.若代数式3xx 的值为零,则实数x 的值为( ) A .x =0B .x≠0C .x =3D .x≠37.现有三张背面完全相同的卡片,正面分别标有数字﹣1,﹣2,3,把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片正面数字之和为正数的概率是( ) A .12B .59C .49D .238.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF 保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为()A.12m B.13.5m C.15m D.16.5m9.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子()A.1颗B.2颗C.3颗D.4颗10.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF 的面积与△ABC的面积之比等于()A.1∶3 B.2∶3 C3 2 D3∶311.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A.310B.15C.12D.71012.满足不等式组21010xx-≤⎧⎨+>⎩的整数解是()A.﹣2 B.﹣1 C.0 D.1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.ABCD为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向D移动,P、Q两点从出发开始到__________秒时,点P和点Q的距离是10 cm.14.分式12x-有意义时,x 的取值范围是_____.15.中国古代的数学专著《九章算术》有方程组问题“五只雀,六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重.”设每只雀、燕的重量各为x 两,y 两,则根据题意,可得方程组为___. 16.如图,将三角形AOC 绕点O 顺时针旋转120°得三角形BOD ,已知OA=4,OC=1,那么图中阴影部分的面积为_____.(结果保留π)17.分解因式8x 2y ﹣2y =_____.18.对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[43x +]=5,则x 的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在ABC ∆中,90ACB ∠=︒,点P 在AC 上运动,点D 在AB 上,PD 始终保持与PA 相等,BD 的垂直平分线交BC 于点E ,交BD 于F ,判断DE 与DP 的位置关系,并说明理由;若6AC =,8BC =,2PA =,求线段DE 的长.20.(6分)如图,已知△ABC ,请用尺规作图,使得圆心到△ABC 各边距离相等(保留作图痕迹,不写作法).21.(6分)如图,▱ABCD中,点E,F分别是BC和AD边上的点,AE垂直平分BF,交BF于点P,连接EF,PD.求证:平行四边形ABEF是菱形;若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.22.(8分)化简,再求值:222x-3231,211121x xxxx x x--÷+=+--++23.(8分)计算:27÷3+8×2﹣1﹣(2015+1)0+2•sin60°.24.(10分)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为»BD的中点,且BD=8,AC=9,sinC=13,求⊙O的半径.25.(10分)抛物线y=﹣3x2+bx+c(b,c均是常数)经过点O(0,0),A(4,43),与x轴的另一交点为点B,且抛物线对称轴与线段OA交于点P.(1)求该抛物线的解析式和顶点坐标;(2)过点P作x轴的平行线l,若点Q是直线上的动点,连接QB.①若点O关于直线QB的对称点为点C,当点C恰好在直线l上时,求点Q的坐标;②若点O关于直线QB的对称点为点D,当线段AD的长最短时,求点Q的坐标(直接写出答案即可).26.(12分)某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整的统计图.请你根据图中信息,回答下列问题:(1)求本次调查的学生人数,并补全条形统计图;(2)在扇形统计图中,求“歌曲”所在扇形的圆心角的度数;(3)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?27.(12分)如图,四边形AOBC是正方形,点C的坐标是(42,0).正方形AOBC的边长为,点A的坐标是.将正方形AOBC绕点O顺时针旋转45°,点A,B,C旋转后的对应点为A′,B′,C′,求点A′的坐标及旋转后的正方形与原正方形的重叠部分的面积;动点P从点O出发,沿折线OACB 方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时同时停止运动,当△OPQ为等腰三角形时,求出t的值(直接写出结果即可).参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】如图,该几何体主视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图,故选C.2.D【解析】A. ∵原平均数是:(1+2+3+3+4+1) ÷6=3;添加一个数据3后的平均数是:(1+2+3+3+4+1+3) ÷7=3; ∴平均数不发生变化.B. ∵原众数是:3;添加一个数据3后的众数是:3;∴众数不发生变化;C. ∵原中位数是:3;添加一个数据3后的中位数是:3;∴中位数不发生变化;D. ∵原方差是:()()()()() 22222 313233234355=63 -+-+-⨯+-+-;添加一个数据3后的方差是:()()()()()22222 3132333343510=77-+-+-⨯+-+-;∴方差发生了变化.故选D.点睛:本题主要考查的是众数、中位数、方差、平均数的,熟练掌握相关概念和公式是解题的关键.3.C【解析】试题分析:二次函数y=(2x-1)+2即21222y x⎛⎫=-+⎪⎝⎭的顶点坐标为(,2)考点:二次函数点评:本题考查二次函数的顶点坐标,考生要掌握二次函数的顶点式与其顶点坐标的关系4.A 【解析】 【分析】由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,从而求解 【详解】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A 选项正确. 故选A . 【点睛】本题考查由三视图判断几何体,掌握几何体的三视图是本题的解题关键. 5.D 【解析】 【分析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x 的取值范围,然后选择即可. 【详解】由题意得,2x+y=10, 所以,y=-2x+10, 由三角形的三边关系得,()2210210x x x x x -+--+⎧⎨⎩>①<②,解不等式①得,x >2.5, 解不等式②的,x <5,所以,不等式组的解集是2.5<x <5,正确反映y 与x 之间函数关系的图象是D 选项图象. 故选:D . 6.A 【解析】 【分析】根据分子为零,且分母不为零解答即可. 【详解】 解:∵代数式3xx -的值为零, ∴x =0,此时分母x-3≠0,符合题意.故选A.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.7.D【解析】【分析】先找出全部两张卡片正面数字之和情况的总数,再先找出全部两张卡片正面数字之和为正数情况的总数,两者的比值即为所求概率.【详解】任取两张卡片,数字之和一共有﹣3、2、1三种情况,其中和为正数的有2、1两种情况,所以这两张卡片正面数字之和为正数的概率是23.故选D.【点睛】本题主要考查概率的求法,熟练掌握概率的求法是解题的关键.8.D【解析】【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.【详解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴BC DC EF DE=,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴20 0.30.4 BC=,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案为16.5m.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.9.B【解析】试题解析:由题意得25134x x y x x y ⎧⎪+⎪⎨⎪⎪++⎩==,解得:23x y ⎧⎨⎩==.故选B . 10.A 【解析】∵DE ⊥AC ,EF ⊥AB ,FD ⊥BC , ∴∠C+∠EDC=90°,∠FDE+∠EDC=90°, ∴∠C=∠FDE ,同理可得:∠B=∠DFE ,∠A=DEF , ∴△DEF ∽△CAB ,∴△DEF 与△ABC 的面积之比=2DE AC ⎛⎫ ⎪⎝⎭,又∵△ABC 为正三角形, ∴∠B=∠C=∠A=60° ∴△EFD 是等边三角形, ∴EF=DE=DF ,又∵DE ⊥AC ,EF ⊥AB ,FD ⊥BC , ∴△AEF ≌△CDE ≌△BFD , ∴BF=AE=CD ,AF=BD=EC , 在Rt △DEC 中, DE=DC×sin ∠C=2DC ,EC=cos ∠C×DC=12DC ,又∵DC+BD=BC=AC=32DC ,∴232DCDE AC DC ==, ∴△DEF 与△ABC的面积之比等于:221:3DE AC ⎛⎫== ⎪⎝⎭⎝⎭故选A .点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边DEAC之比,进而得到面积比. 11.A 【解析】 【分析】让黄球的个数除以球的总个数即为所求的概率. 【详解】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是310. 故选:A . 【点睛】本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比. 12.C 【解析】 【分析】先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可. 【详解】21010x x -≤⎧⎨+⎩①>② ∵解不等式①得:x≤0.5, 解不等式②得:x >-1, ∴不等式组的解集为-1<x≤0.5, ∴不等式组的整数解为0, 故选C . 【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集找出不等式组的解集是解此题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.85或245 【解析】 【分析】作PH ⊥CD ,垂足为H ,设运动时间为t 秒,用t 表示线段长,用勾股定理列方程求解. 【详解】设P ,Q 两点从出发经过t 秒时,点P ,Q 间的距离是10cm ,作PH ⊥CD ,垂足为H ,则PH=AD=6,PQ=10,∵DH=PA=3t ,CQ=2t ,∴HQ=CD−DH−CQ=|16−5t|,由勾股定理,得222(165)610t -+=,解得124.8, 1.6.t t ==即P ,Q 两点从出发经过1.6或4.8秒时,点P ,Q 间的距离是10cm. 故答案为85或245. 【点睛】考查矩形的性质,勾股定理,解一元二次方程等,表示出HQ=CD−DH−CQ=|16−5t|是解题的关键. 14.x <1【解析】【分析】 2x-有意义时,必有1﹣x >2,可解得x 的范围. 【详解】根据题意得:1﹣x >2,解得:x <1.故答案为x <1.【点睛】考查了分式和二次根式有意义的条件.二次根式有意义,被开方数为非负数,分式有意义,分母不为2.15.561645x y x y y x +=⎧⎨+=+⎩【解析】设每只雀、燕的重量各为x 两,y 两,由题意得:5616{45x y x y y x+++== 故答案是:5616{45x y x y y x +++==或5616{34x y x y+== . 16.5π【解析】【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积,利用扇形的面积公式计算即可求解.【详解】∵△AOC ≌△BOD ,∴阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积2212041201360360ππ⨯⨯⨯⨯=-=5π. 故答案为:5π.【点睛】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积是解题的关键.17.2y (2x+1)(2x ﹣1)【解析】【分析】首先提取公因式2y ,再利用平方差公式分解因式得出答案.【详解】8x 2y-2y=2y (4x 2-1)=2y (2x+1)(2x-1).故答案为2y (2x+1)(2x-1).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.18.11≤x <1【解析】【分析】根据对于实数x 我们规定[x]不大于x 最大整数,可得答案.【详解】由[43x +]=5,得:453463x x +⎧≥⎪⎪⎨+⎪<⎪⎩ , 解得11≤x <1,故答案是:11≤x <1.【点睛】考查了解一元一次不等式组,利用[x]不大于x 最大整数得出不等式组是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)DE DP ⊥.理由见解析;(2)194DE =. 【解析】【分析】(1)根据PD PA =得到∠A=∠PDA ,根据线段垂直平分线的性质得到EDB B ∠=∠,利用90A B ∠+∠=︒,得到90PDA EDB ∠+∠=︒,于是得到结论;(2)连接PE ,设DE=x ,则EB=ED=x ,CE=8-x ,根据勾股定理即可得到结论.【详解】(1)DE DP ⊥.理由如下,∵90ACB ∠=︒,∴90A B ∠+∠=︒,∵PD PA =,∴PDA A ∠=∠,∵EF 垂直平分BD ,∴ED EB =,∴EDB B ∠=∠,∴90PDA EDB ∠+∠=︒,∴18090PDE PDA EDB ∠=︒-∠-∠=︒,即DE DP ⊥.(2)连接PE ,设DE x =,由(1)得BE DE x ==,8CE BC BE x =-=-,又2PD PA ==,624PC CA PA =-=-=, ∵90PDE C ∠=∠=︒,∴22222PC CE PD DE PE +=+=,∴()2222248x x +=+-, 解得194x =,即194DE =. 【点睛】本题考查了线段垂直平分线的性质,直角三角形的性质,勾股定理,正确的作出辅助线解题的关键. 20.见解析【解析】【分析】分别作∠ABC 和∠ACB 的平分线,它们的交点O 满足条件.【详解】解:如图,点O 为所作.【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).21.(1)详见解析;(2)tan ∠ADP =.【解析】【分析】(1)根据线段垂直平分线的性质和平行四边形的性质即可得到结论;(2)作PH ⊥AD 于H ,根据四边形ABEF 是菱形,∠ABC =60°,AB =4,得到AB =AF =4,∠ABF =∠ADB =30°,AP ⊥BF ,从而得到PH =,DH =5,然后利用锐角三角函数的定义求解即可. 【详解】(1)证明:∵AE 垂直平分BF ,∴AB =AF ,∴∠BAE =∠FAE ,∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠FAE =∠AEB ,∴∠AEB =∠BAE ,∴AB =BE ,∴AF =BE .∵AF ∥BC ,∴四边形ABEF 是平行四边形.∵AB =BE ,∴四边形ABEF 是菱形;(2)解:作PH ⊥AD 于H ,∵四边形ABEF 是菱形,∠ABC =60°,AB =4,∴AB =AF =4,∠ABF =∠AFB =30°,AP ⊥BF ,∴AP =AB =2,∴PH =,DH =5,∴tan ∠ADP ==.【点睛】本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大. 222【解析】试题分析:把分式化简,然后把x 的值代入化简后的式子求值就可以了.试题解析:原式=23(1)1(1)(1)(1)(3)1x x x x x x x -+⨯++-+-- =21x - 当21x =时,原式2211=+-. 考点:1.二次根式的化简求值;2.分式的化简求值.23.6+3. 【解析】 【分析】利用负整数指数幂、零指数幂的意义和特殊角的三角函数值进行计算.【详解】解:原式=273÷+8×12﹣1+2×3=3+4﹣1+3=6+3. 【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.24.⊙O 的半径为256. 【解析】【分析】如图,连接OA .交BC 于H .首先证明OA ⊥BC ,在Rt △ACH 中,求出AH ,设⊙O 的半径为r ,在Rt △BOH 中,根据BH 2+OH 2=OB 2,构建方程即可解决问题。
内蒙古呼伦贝尔市2019-2020学年中考数学二月模拟试卷含解析
内蒙古呼伦贝尔市2019-2020学年中考数学二月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.等腰三角形的两边长分别为5和11,则它的周长为( )A .21B .21或27C .27D .252.用配方法解下列方程时,配方有错误的是( )A .22990x x --=化为()2 1100x -=B .2890x x ++=化为()2425x += C .22740t t --=化为2781416t ⎛⎫-= ⎪⎝⎭ D .23420x x --=化为221039x ⎛⎫-= ⎪⎝⎭ 3.二次函数y =a(x ﹣m)2﹣n 的图象如图,则一次函数y =mx+n 的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限4.如图,AB 是⊙O 的直径,点C 、D 是圆上两点,且∠AOC =126°,则∠CDB =( )A .54°B .64°C .27°D .37° 5.方程23x 1x =-的解是 A .3 B .2 C .1 D .06.已知一个多边形的内角和是外角和的2倍,则此多边形的边数为 ( )A .6B .7C .8D .97.如图,在圆O 中,直径AB 平分弦CD 于点E ,且3AC ,OD,若∠A 与∠DOB 互余,则EB 的长是( )A.23B.4 C.3D.28.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.9.如图,在⊙O中,直径AB⊥弦CD,垂足为M,则下列结论一定正确的是()A.AC=CD B.OM=BM C.∠A=12∠ACD D.∠A=12∠BOD10.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=5,AC=5 ,则∠B 的度数是()A.30°B.45°C.50°D.60°11.已知正方形ABCD的边长为4cm,动点P从A出发,沿AD边以1cm/s的速度运动,动点Q从B出发,沿BC,CD边以2cm/s的速度运动,点P,Q同时出发,运动到点D均停止运动,设运动时间为x (秒),△BPQ的面积为y(cm2),则y与x之间的函数图象大致是()A .B .C .D .12.点A (a ,3)与点B (4,b )关于y 轴对称,则(a+b )2017的值为( )A .0B .﹣1C .1D .72017二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,把正方形铁片OABC 置于平面直角坐标系中,顶点A 的坐标为(3,0),点P (1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P 的坐标为____________________.14.函数y 1x -x 的取值范围是________.15.如图,圆锥底面半径为r cm ,母线长为10cm ,其侧面展开图是圆心角为216°的扇形,则r 的值为 .16.分解因式:32816a a a -+=__________.17.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.18.已知点P 是线段AB 的黄金分割点,PA >PB ,AB =4 cm ,则PA =____cm .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某农场用2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷?20.(6分)为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?21.(6分)先化简,再求值:(221121a a a a a a +----+)÷1a a -,其中3. 22.(8分)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:每台甲型收割机的租金每台乙型收割机的租金A地区1800 1600B地区1600 1200(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y 与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.23.(8分)如图,四边形ABCD是边长为2的正方形,以点A,B,C为圆心作圆,分别交BA,CB,DC的延长线于点E,F,G.(1)求点D沿三条圆弧运动到点G所经过的路线长;(2)判断线段GB与DF的长度关系,并说明理由.24.(10分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=mx的图象的两个交点.求反比例函数和一次函数的解析式;求直线AB与x轴的交点C的坐标及△AOB的面积;直接写出一次函数的值小于反比例函数值的x的取值范围.25.(10分)如图,在ABC∆中,D是BC的中点,过点D的直线GF交AC于点F,交AC的平行线BG于点G,ED DF⊥交AB于点E,连接EG、EF.求证:BG CF =;请你判断BE CF +与EF 的大小关系,并说明理由.26.(12分)如图,某地方政府决定在相距50km 的A 、B 两站之间的公路旁E 点,修建一个土特产加工基地,且使C 、D 两村到E 点的距离相等,已知DA ⊥AB 于A ,CB ⊥AB 于B ,DA=30km ,CB=20km ,那么基地E 应建在离A 站多少千米的地方?27.(12分)实践体验:(1)如图1:四边形ABCD 是矩形,试在AD 边上找一点P ,使△BCP 为等腰三角形;(2)如图2:矩形ABCD 中,AB=13,AD=12,点E 在AB 边上,BE=3,点P 是矩形ABCD 内或边上一点,且PE=5,点Q 是CD 边上一点,求PQ 得最值;问题解决:(3)如图3,四边形ABCD 中,AD ∥BC ,∠C=90°,AD=3,BC=6,DC=4,点E 在AB 边上,BE=2,点P 是四边形ABCD 内或边上一点,且PE=2,求四边形PADC 面积的最值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:分类讨论:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系;当腰取11,则底边为5,根据等腰三角形的性质得到另外一边为11,然后计算周长.解:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;当腰取11,则底边为5,则三角形的周长=11+11+5=1.故选C .考点:等腰三角形的性质;三角形三边关系.2.B【解析】【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】解:A 、22990x x --=Q ,2299x x ∴-=,221991x x ∴-+=+,2(1)100x ∴-=,故A 选项正确.B 、2890x x ++=Q ,289x x ∴+=-,2816916x x ∴++=-+,2(4)7x ∴+=,故B 选项错误.C 、22740t t --=Q ,2274t t ∴-=,2722t t ∴-=,274949221616t t ∴-+=+,2781()416t ∴-=,故C 选项正确.D 、23420x x --=Q ,2342x x ∴-=,24233x x ∴-=,244243939x x ∴-+=+,2210()39x ∴-=.故D 选项正确.故选:B .【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3.A【解析】【分析】由抛物线的顶点坐标在第四象限可得出m >0,n >0,再利用一次函数图象与系数的关系,即可得出一次函数y =mx+n 的图象经过第一、二、三象限.【详解】解:观察函数图象,可知:m >0,n >0,∴一次函数y =mx+n 的图象经过第一、二、三象限.故选A.【点睛】本题考查了二次函数的图象以及一次函数图象与系数的关系,牢记“k>0,b>0⇔y=kx+b的图象在一、二、三象限”是解题的关键.4.C【解析】【分析】由∠AOC=126°,可求得∠BOC的度数,然后由圆周角定理,求得∠CDB的度数.【详解】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=12∠BOC=27°故选:C.【点睛】此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.A【解析】试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解:去分母得:2x=3x﹣3,解得:x=3,经检验x=3是分式方程的解.故选A.6.A【解析】试题分析:根据多边形的外角和是310°,即可求得多边形的内角的度数为720°,依据多边形的内角和公式列方程即可得(n﹣2)180°=720°,解得:n=1.故选A.考点:多边形的内角和定理以及多边形的外角和定理7.D【解析】【分析】连接CO,由直径AB平分弦CD及垂径定理知∠COB=∠DOB,则∠A与∠COB互余,由圆周角定理知∠A=30°,∠COE=60°,则∠OCE=30°,设OE=x,则CO=2x,利用勾股定理即可求出x,再求出BE即可. 【详解】连接CO,∵AB平分CD,∴∠COB=∠DOB,AB⊥CD,CE=DE=23∵∠A与∠DOB互余,∴∠A+∠COB=90°,又∠COB=2∠A,∴∠A=30°,∠COE=60°,∴∠OCE=30°,设OE=x,则CO=2x,∴CO2=OE2+CE2即(2x)2=x2+(23)2解得x=2,∴BO=CO=4,∴BE=CO-OE=2.故选D.【点睛】此题主要考查圆内的综合问题,解题的关键是熟知垂径定理、圆周角定理及勾股定理.8.D【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意.故选D.本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.D【解析】【分析】根据垂径定理判断即可.【详解】连接DA.∵直径AB⊥弦CD,垂足为M,∴CM=MD,∠CAB=∠DAB.∵2∠DAB=∠BOD,∴∠CAD=12∠BOD.故选D.【点睛】本题考查的是垂径定理和圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.10.D【解析】根据圆周角定理的推论,得∠B=∠D.根据直径所对的圆周角是直角,得∠ACD=90°.在直角三角形ACD中求出∠D.则sinD=∠D=60°∠B=∠D=60°.故选D.“点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边.11.B【解析】【分析】根据题意,Q点分别在BC、CD上运动时,形成不同的三角形,分别用x表示即可.(1)当0≤x≤2时,BQ =2x 14242y x x =⨯⨯=当2≤x≤4时,如下图()()()()211144448242428222y x x x x x x =-+⨯-⨯---⨯⨯-=-++由上可知故选:B.【点睛】本题是双动点问题,解答时要注意讨论动点在临界两侧时形成的不同图形,并要根据图形列出函数关系式. 12.B【解析】【分析】根据关于y 轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【详解】解:由题意,得a=-4,b=1.(a+b )2017=(-1)2017=-1,故选B .【点睛】本题考查了关于y 轴对称的点的坐标,利用关于y 轴对称的点的纵坐标相等,横坐标互为相反数得出a ,b 是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(6053,2).。
内蒙古呼伦贝尔中考数学模拟试题二
内蒙古呼伦贝尔市中考数学模拟试题二一、选择题(共10小题,每题3分,共30分) 一、计算|-2| -(-3)的值是 ( )A . 5B .1C .-5D .-1 二、以下运算正确的选项是( ) A .235xx x += B .222()x y x y +=+C .2336(2)6xy x y = D .()x y x y --=-+3、以下说法正确的选项是( )A .要了解一批节能灯的利用寿命,采纳普查方式B .一组数据2,3,3,6,8,5的众数与中位数都是3.C .“打开电视,正在播放新闻联播”是必然事件.D .假设甲组数据的方差31.02=甲S ,乙组数据的方差02.02=乙S ,那么乙组数据比甲组数据稳固. 4、已知两圆的半径别离为3cm,和5cm, 圆心距是8cm,那么两圆的位置关系( ) A .相离 B .外切 C .相交 D .内切五、函数112-+=x x y 的自变量x 的取值范围是( )A .21-≥xB .1≠xC .121-≠-≥x x 且D .121≠-≥x x 且六、关于反比例函数2y x=,以下说法不正确...的是( ) A .点(21)--,在它的图象上B .它的图象在第一、三象限 C .当0x>时,y 随x 的增大而增大 D .当0x <时,y 随x 的增大而减小7、如图,直线a b ∥,那么A ∠的度数是( ) A.28B.31C.39D.42八、如图, 为测量学校旗杆的高度,小东用长为的竹竿做测量工具.移动竹竿、旗杆顶端的影子恰好落在地面的同一点,现在,竹竿与这一点相距8m ,与旗杆相距22m ,那么旗杆的高为( )m . A .10 C. 12 D. 13 九、如图,正三角形ABC 内接于圆O ,动点P 在圆周的劣弧AB 上,且不与A B ,重合,那么BPC ∠等于( )A.30° B.60°(第7题图) (第8题图) 10、一个几何体的三视图如下图,那个几何体是() A. 正方体 B. 球 C. 圆锥D.圆柱二、填空题(共7小题,每题3分,共21分)1一、据中新社报导:2020年我国粮食产量将达到0000千克,用科学记数法表示那个粮食产量为___ 千克.1二、因式分解:32a ab -= . 13、当x=2020时,化简293x x -++2 = .14、不等式组2752312x x x x -<-⎧⎪⎨++>⎪⎩的整数解是.1五、某书店把一本新书按标价的九折出售,仍可获利20%.假设该书的进价为21元,那么标价为 . 1六、将一个底面半径为3cm ,高为4cm 圆锥形纸筒沿一条母线剪开,所得的侧面展开图的面积为_______________.(结果用含π的式子表示)17、将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按一样的方式剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n = (用含n 的代数式表示). 三、解答题(共4小题,每题6分,共24分) 1八、计算:1022sin 60--︒++九、先化简再求值2111x x x x⎛⎫-÷ ⎪--⎝⎭,其中2x =.20、如图,AD =BC ,请添加一个条件,使图中存在全等三角形并给予证明. 你所添加的条件为: ;2一、AB 是⊙O 的直径,PA 切⊙O 于A ,OP 交⊙O 于C ,连BC .假设30P∠=,求B ∠的度数.四、(此题总分值7分)2二、某中学某班的学生对本校学生会提倡的“抗震救灾,众志成城”志愿捐钱活动进行抽样调查,取得了一组学生捐钱情形的数据.以下图是依照这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:8:6,又知这次调查中捐钱25元和30元的学生一共42人. (1)他们一共调查了多少人?(2)这组数据的众数、中位数各是多少?(3)假设该校共有1560名学生,估量全校学生捐钱多少元?PA C D BP(第9题)ABDab70°31° 主视图左视图俯视图五、(此题总分值7分) 23、如图,E F ,是平行四边形ABCD 的对角线AC 上的点,CE AF =. 请你猜想:BE 与DF 有如何的位置..关系和数量..关系?并对你的猜想加以证明. 猜想: 证明:六、(此题总分值8分)24、一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同. (1)从箱子中任意摸出一个球是白球的概率是多少?(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.七、(此题总分值10分)2五、地震发生后,一支专业搜救队驱车前去灾区救援.如图,汽车在一条南北走向的公路上向北行驶,当在A 处时,车载GPS (全世界卫星定位系统)显示村落C 在北偏西25方向,汽车以35km/h 的速度前行2h 抵达B 处,GPS 显示村落C 在北偏西52方向.(1)求B 处到村落C 的距离;(2)求村落C 到该公路的距离.(结果精准到) (参考数据:sin 260.4384≈ ,cos 260.8988≈ ,sin520.7880≈ ,cos520.6157≈ )八、(此题总分值12分)2六、如图,已知直线1l 的解析式为63+=x y ,直线1l 与x 轴、y 轴别离相交于A 、B 两点,直线2l 通过B 、C 两点,点C 的坐标为(8,0),又已知点P 在x 轴上从点A 向点C 移动,点Q 在直线2l 从点C 向点B 移动.点P 、Q 同时动身,且移动的速度都为每秒1个单位长度,设移动时刻为t 秒(101<<t).(1)求直线2l 的解析式.(2)设△PCQ 的面积为S ,请求出S 关于t 的函数关系式. (3)试探讨:当t 为何值时,△PCQ 为等腰三角形?内蒙古呼伦贝尔市中考数学模拟试题二一、选择题题 号1 2 3 4 5 6 7 8 9 10 答 案ADDBDCCCBD二、填空题1一、×10111二、a(a+b)(a-b)13. 2020,14.2, 15.28元;1六、15∏,17. 13+n三、解答题 18.解:1022sin 60(75)3--︒+-+-1321321192=-⨯++=--------分 ……………………………(8分) AN BC(第25题图)ABCDE F白1白2红白1白2红红白2白1第二次摸出 的球第一次摸出 的球开始1九、111(1)1(1)1x xx x xx xxx--=÷---=--=-解原式.--------6分当2x=时,原式2=-.--------9分20.解:所添加条件为PA=PB·······························2分取得的一对全等三角形是△PAD≌△PBC ·························4分证明:∵PA=PB ····································5分∴∠A=∠B ······································6分又∵AD=BC ·····································7分∴△PAD≌△PBC ····································9分所添加条件,只要能证明三角形全等,按上面评分标准给分.21PA切⊙O于A AB,是⊙O的直径,∴90PAO∠=.30P∠=,∴60AOP∠=.∴1302B AOP∠=∠=.四、(此题总分值7分)22..解:(1)设捐钱30元的有6x人,那么8x+6x=42.∴x=3.…………………………………………………………2分∴捐钱人数共有:3x+4x+5x+8x+6x=78(人).……………………3分(2)由图象可知:众数为25(元);由于本组数据的个数为78,按大小顺序排列处于中间位置的两个数都是25(元),故中位数为25(元).…………………6分(3) 全校共捐钱:(9×10+12×15+15×20+24×25+18×30)×781560=34200(元).……………8分五、(此题总分值7分)23.猜想:BE DF∥,BE DF=证明:证法一:如图19-1四边形ABCD是平行四边形.BC AD∴=12∠=∠又CE AF=BCE DAF∴△≌△BE DF∴=34∠=∠BE DF∴∥证法二:如图19-2连结BD,交AC于点O,连结DE,BF.四边形ABCD是平行四边形BO OD∴=,AO CO=又AF CE=AE CF∴=EO FO∴=∴四边形BEDF是平行四边形BE DF∴∥六、24、解:(1)从箱子中任意摸出一个球是白球的概率是23P=(2)记两个白球别离为白1与白2,画树状图如右所示:从树状图可看出:事件发生的所有可能的结果总数为6,两次摸出球的都是白球的结果总数为2,因此其概率2163P==.七、2五、解:过C作CD AB⊥,交AB于D.(1)52CBD∠=,26A∠=,26BCA∴∠=,70BC AB∴==,即B处到村落C的距离为70km.(2)在Rt CBD△中,sin52CD CB=⨯700.7880=⨯55.2≈.即村落C到该公路的距离约为.八、2六、解:(1)由题意知B(0,6),C(8,0)8k+b=0设直线l2的解析式为y=kx+b,那么b=6解得k=-3/4,b=6.∴l2的解析式为y=-3/4x+6(2)解法一:如图过P作P D⊥l2于D则△PD C∽△BOC∴PD/BO=PC/BC由题意知OA=2,OB=6,OC=8.∴BC=10,PC=10-t.∴PD/6=10-t./10∴PD=3/5(10-t)∴S△PCQ=1/2C Q·PD=1/2t·3/5(10-t)=-3/10t2+3tAB CDEF图19-2OAB CDEF图19-123 41ANBC解法二如图过Q作QD⊥x轴于D,则△CQD∽△CBO∴QD/BO=QC=BC由题意知OA=2,OB=6,OC=8.∴BC=10∴QD/6=t/10∴QD=3/5t∴S△PCQ=1/2PC·QD=1/2(10-t) ·3/5 t=-3/10t2+3t(3)要想使△PCQ为等腰三角形,需知足CP=CQ或QC=QP或PC=PQ ①当CP=CQ时,得(10-t)= t,那么t=5,②当QC=QP时,过Q作QD⊥x轴于D,那么CD=1/2PC=1/2(10-t)∵△PD C∽△BOC∴CD/CO=CQ/CB即1/2(10-t)/8= t/10则t=50/13③当PC=PQ时过P作PD⊥l2于D,那么CD=1/2CQ=1/2 t,∵△CDP∽△COB, ∴CD/CO=CP/CB∴1/2 t/8=(10-t)/10,则t=80/13.。
呼伦贝尔市中考数学模拟试卷(二)
呼伦贝尔市中考数学模拟试卷(二)姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七上·武威月考) 下列关于0的说法中,正确的个数是()①0既不是正数,也不是负数;②0既是整数也是有理数;③0没有倒数;④0没有绝对值.A . 1B . 2C . 3D . 42. (2分)(2018·郴州) 如图是由四个相同的小正方体搭成的立体图形,它的主视图是()A .B .C .D .3. (2分)若,则xy的值为()A . 5B . 6C . -6D . -84. (2分)下列说法中正确的是()A . 如果同一平面内的两条线段不相交,那么这两条线所在直线互相平行B . 不相交的两条直线一定是平行线C . 同一平面内两条射线不相交,则这两条射线互相平行D . 同一平面内有两条直线不相交,这两条直线一定是平行线5. (2分)(2017·资中模拟) 函数y= 的自变量x的取值范围是()A . x≠﹣2B . x≥﹣2C . x>﹣2D . x<﹣26. (2分)(2016·葫芦岛) 九年级两名男同学在体育课上各练习10次立定跳远,平均成绩均为2.20米,要判断哪一名同学的成绩比较稳定,通常需要比较这两名同学立定跳远成绩的()A . 方差B . 众数C . 平均数D . 中位数7. (2分)设x1 , x2是一元二次方程 -2x-3=0的两根,则=()A . 6B . 8C . 10D . 128. (2分)某班在布置新年联欢会会场时,需要将直角三角形彩纸裁成长度不等的矩形彩条,如图,在Rt△ABC 中,∠C=90°,AC=30cm,AB=50 cm,依次裁下宽为1 cm的矩形彩条a1、a2、a3…….若使裁得的矩形纸条的长都不小于5 cm,则每张直角三角形彩纸能裁成的矩形纸条总数是()A . 24B . 25C . 26D . 279. (2分)(2012·海南) 星期六,小亮从家里骑自行车到同学家去玩,然后返回,图是他离家的路程y(千米)与时间x(分钟)的函数图象,根据图象信息,下列说法不一定正确的是()A . 小亮到同学家的路程是3千米B . 小亮在同学家逗留的时间是1小时C . 小亮去时走上坡路,回家时走下坡路D . 小亮回家时用的时间比去时用的时间少10. (2分)如图,AB为⊙O的直径,P为AB延长线上一点,PT切⊙O于T,若PT=6,PB=2,则⊙O的直径为()A . 8B . 10C . 16D . 18二、填空题 (共5题;共5分)11. (1分)计算:()﹣2+ ﹣(π﹣3.14)0=________12. (1分) (2017九上·仲恺期中) 抛物线y=2(x﹣3)2+1的顶点坐标是________13. (1分)九年级(1)班现要从A、B两位男生和D、E两位女生中,选派学生代表本班参加全校“中华好诗词”大赛.(1)如果选派一位学生代表参赛,那么选派到的代表是A的概率是________(2)如果选派两位学生代表参赛,求恰好选派一男一女两位同学参赛的概率.________14. (1分)一个扇形的圆心角为150o ,半径为2 ,则此扇形的面积为________.15. (1分) (2018九上·惠山期中) 如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠EFG的值为________.三、解答题 (共8题;共75分)16. (5分)先化简,再求值:÷ ,其中a=﹣3.17. (11分) (2017九下·沂源开学考) 为了了解家长关注孩子成长方面的状况,学校开展了针对学生家长的“您最关心孩子哪方面成长”的主题调查,调查设置了“健康安全”、“日常学习”、“习惯养成”、“情感品质”四个项目,并随机抽取甲、乙两班共100位学生家长进行调查,根据调查结果,绘制了如图不完整的条形统计图.(1)补全条形统计图.(2)若全校共有3600位学生家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?18. (6分)(2019·大同模拟) 阅读下列材料,并完成相应的任务.托勒密定理:托勒密(Ptolemy)(公元90年~公元168年),希腊著名的天文学家,他的要著作《天文学大成》被后人称为“伟大的数学书”,托勒密有时把它叫作《数学文集》,托勒密从书中摘出并加以完善,得到了著名的托勒密(Ptolemy)定理.托勒密定理:圆内接四边形中,两条对角线的乘积等于两组对边乘积之和.已知:如图1,四边形ABCD内接于⊙O,求证:AB•CD+BC•AD=AC•BD下面是该结论的证明过程:证明:如图2,作∠BAE=∠CAD,交BD于点E.∵∴∠ABE=∠ACD∴△ABE∽△ACD∴∴AB•CD=AC•BE∵∴∠ACB=∠ADE(依据1)∵∠BAE=∠CAD∴∠BAE+∠EAC=∠CAD+∠EAC即∠BAC=∠EAD∴△ABC∽△AED(依据2)∴AD•BC=AC•ED∴AB•CD+AD•BC=AC•(BE+ED)∴AB•CD+AD•BC=AC•BD任务:(1)上述证明过程中的“依据1”、“依据2”分别是指什么?(2)当圆内接四边形ABCD是矩形时,托勒密定理就是我们非常熟知的一个定理:________.(请写出)(3)如图3,四边形ABCD内接于⊙O,AB=3,AD=5,∠BAD=60°,点C为的中点,求AC的长.19. (6分)如图,AC是某市坏城路的一段,AE、BF、CD都是南北方向的街道,其与环城路AC的交叉口分别是A、B、C经测量花卉世界D位于点A的北偏东45°方向,点B的北偏东30°方向上,AB=2km,∠DAC=15°.(1)求∠ADB的大小;(2)求B、D之间的距离;(3)求C、D之间的距离.20. (15分)某工厂计划生产A、B两种产品共50件,需购买甲、乙两种材料.生产一件A产品需甲种材料30千克、乙种材料10千克;生产一件B产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B产品不少于28件,问符合条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费200元,生产一件B产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费)21. (6分) (2018七上·天河期末) 根据图中情景信息,解答下列问题:(1)购买8根跳绳需________元,(2)购买11根跳绳需________元;(3)小红比小明多买2根,付款时小红反而比小明少7元,你认为有这种可能吗?请结合方程知识说明理由.22. (11分)(2016·贵港) 如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.①求证:△AGE≌△AFE;②若BE=2,DF=3,求AH的长.(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.23. (15分)(2017·高青模拟) 如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似(不包括全等)?若存在,求点P的坐标;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共75分)16-1、17-1、17-2、17-3、18-1、18-2、18-3、19-1、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、。
内蒙古呼伦贝尔市九年级中考数学全真模拟试卷(二)
内蒙古呼伦贝尔市九年级中考数学全真模拟试卷(二)姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)如图,矩形ABCD的对角线相交于点O,AE平分∠BAD交BC于E,若∠CAE=15°,则∠BOE=()A . 30°B . 45°C . 60°D . 75°2. (2分)下列几何体各自的三视图中,只有两个视图相同的是()A . ①③B . ②④C . ③④D . ②③3. (2分)(2018·潮州模拟) 广东省进出口总额在“十二五”末达到71400亿元,将数据71400亿用科学记数法表示为()A . 7.1400×1012B . 0.7140×1012C . 71.400×1011D . 7.140×10114. (2分) (2019八下·嘉兴期中) 对于实数a、b,定义一种运算“U”为:aUb=a2+ab-2,有下列命题:①1U3=2;②方程xU1=0的根为:x1=-2,x2=1;③不等式组的解集为:-1<x<4;其中正确的是()A . ①②③;C . ①②;D . ②③.5. (2分)(2016·文昌模拟) 不等式组的解集是()〉A . x>1B . 1<x<3C . x>﹣1D . x<36. (2分)温州市某木材加工厂2004~2007年的年产值统计图如图所示,则年产值在25万元以上的年份是().A . 只有2005年B . 2005年、2006年和2007年C . 2005年与2007年D . 以上都不对7. (2分) (2019七下·南京月考) 如图,给出下列几个条件:①∠1=∠4;②∠3=∠5;③∠2+∠5=180°;④∠2+∠4=180°,能判断直线a∥b的有()个.A . 1B . 2C . 3D . 48. (2分)在抛一枚均匀硬币的实验中,如果没有硬币,则作为实验替代物的是()A . 同一副扑克中的任意两张B . 图钉D . 一个小长方体9. (2分) (2019九上·临沧期末) 已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为()A .B . 2πC . 3πD . 12π10. (2分)(2017·含山模拟) 某公司为增加员工收入,提高效益.今年提出如下目标,和去年相比,在产品的出厂价增加10%的前提下,将产品成本降低20%,使产品的利润率(利润率= ×100%)较去年翻一番,则今年该公司产品的利润率为()A . 40%B . 80%C . 120%D . 160%11. (2分) (2017七下·东港期中) 如图,要修建一条公路,从A村沿北偏东75°方向到B村,从B村沿北偏西25°方向到C村.若要保持公路CE与AB的方向一致,则∠ECB的度数为()A . 80°B . 90°C . 100°D . 105°12. (2分)(2019·梧州模拟) 已知A(﹣1,y1),B(1,y2),C(2,y3)三点在抛物线y=x2﹣2x+m上,则y1、y2、y3的大小关系为()A . y1<y2<y3B . y3<y2<y1C . y2<y1<y3D . y2<y3<y1二、填空题 (共6题;共9分)13. (3分) (2019七上·咸阳期中) 的相反数是________,绝对值是________,倒数是________.14. (1分) (2018九上·青海期中) 小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球3000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是________.15. (1分)不等式组的最小整数解是________16. (1分)(2017·武汉) 如图,在△ABC中,AB=AC=2 ,∠BAC=120°,点D,E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为________.17. (1分) (2018八上·合肥期中) 在平面直角坐标系中,对于点,我们把点叫做点的衍生点.已知点的衍生点为,点的衍生点为,点的衍生点为这样依次得到点若点的坐标为,若点在第四象限,则范围分别为________.18. (2分) (2016九上·北京期中) 如图,菱形ABCD中,AB=2,∠C=60°,我们把菱形ABCD的对称中心O 称作菱形的中心.菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过1次这样的操作菱形中心O所经过的路径长为________;经过3n(n为正整数)次这样的操作菱形中心O所经过的路径总长为________.(结果都保留π)三、解答题 (共7题;共60分)19. (5分)计算:|﹣4|+(2﹣π)0﹣8×4﹣1+÷20. (5分)先化简,再求值:﹣(a2﹣2ab)+[a2﹣(ab+2)],其中a=﹣,b= .21. (5分)如图,矩形中,,,点分别在,边上,,求证:矩形矩形.22. (10分)(2018·毕节模拟) 在北海市创建全国文明城活动中,需要30名志愿者担任“讲文明树新风”公益广告宣传工作,其中男生18人,女生12人.(1)若从这30人中随机选取一人作为“展板挂图”讲解员,求选到女生的概率;(2)若“广告策划”只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁担任,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲担任,否则乙担任.试问这个游戏公平吗?请用树状图或列表法说明理由.23. (10分) 2016年2月,某市首条绿道免费公共自行车租赁系统正式启用.市政府在2016年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.24. (10分) (2016九上·沁源期末) 如图,AB为⊙O直径,C、D为⊙O上的点,CD=CA,CE⊥DB交DB的延长线于点E.(1)判断直线CE与⊙O的位置关系,并说明理由;(2)若AC=4,AB=5,求CE的长.25. (15分) (2016九上·孝南期中) 如图,已知二次函数图象的顶点在原点,直线y= x+4的图象与该二次函数的图象交于点A(m,8),直线与x轴的交点为C,与y轴的交点为B.(1)求这个二次函数的解析式与B点坐标;(2)P为线段AB上的一个动点(点P与A,B不重合),过P作x轴的垂线与这个二次函数的图象的交于点D,与x 轴交于点E,设线段PD长为h,点P的横坐标为t,求h与t之间的函数关系式,并写出自变量t的取值范围;(3)在(2)的条件下,在线段AB上是否存在点P.使得以点P,E,B为顶点的三角形为等腰三角形?若存在,请直接写P点坐标;若不存在,请说明理由.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共9分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共60分)19-1、20-1、21-1、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、第11 页共11 页。
呼伦贝尔市数学中考全真模拟试卷(二)
呼伦贝尔市数学中考全真模拟试卷(二)姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)三个数的大小关系是()A .B .C .D .2. (2分) (2019九上·香坊期末) 在中,,,则()A .B .C .D .3. (2分)下列计算正确的是()A . ﹣=B . a6÷a3=a2C . (a+b)2=a2+b2D . 2a+3b=5ab4. (2分) (2017八上·上城期中) 已知,则下列四个不等式中,不正确的是().A .B .C .D .5. (2分)圆锥的三视图是()A . 主视图和俯视图是三角形,侧视图是圆。
B . 主视图和侧视图是三角形,俯视图是圆。
C . 主视图和侧视图是三角形,俯视图是圆和圆心。
D . 主视图和俯视图是三角形,侧视图是圆和圆心。
6. (2分)(2018·嘉兴模拟) 某兴趣小组有6名男生,4名女生,在该小组成员中选取1名学生作为组长,则选取女生为组长的概率是()A .B .C .D .7. (2分)已知一个多边形的内角和与外角和的比是2∶1,则它的边数为()A . 9B . 8C . 7D . 68. (2分) (2017七下·永春期中) 已知8元刚好买到1支百合和2朵玫瑰花,17元刚好买到4支百合和3朵玫瑰花,则买1支百合和1朵玫瑰花需要()A . 4元B . 5元C . 6元D . 7元9. (2分)如图,⊙ 与正方形的两边相切,且与⊙ 相切于点 .若,,则⊙ 的半径为()A .B .C .D .10. (2分)(2019·秀洲模拟) 已知反比例函数的图象,在每一象限内,的值随值的增大而减少,则一次函数的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限二、填空题 (共8题;共8分)11. (1分) (2017八下·官渡期末) 当x________时,在实数范围内有意义.12. (1分)(2017·天门模拟) 将2x2﹣8分解因式的结果是________.13. (1分)(2017·巴中) 若a、b、c为三角形的三边,且a、b满足 +(b﹣2)2=0,第三边c为奇数,则c=________.14. (1分)(2018·官渡模拟) 人体内某种细胞的直径为0.00000156m,0.00000156用科学记数法表示为________.15. (1分) (2020九上·桂林期末) 如图,是的中线,是上一点,的延长线交于,的面积与的面积之比是,且,则 ________.16. (1分)(2017·顺义模拟) 如图,一张三角形纸片ABC,其中∠C=90°,AC=6,BC=8.小静同学将纸片做两次折叠:第一次使点A落在C处,折痕记为m;然后将纸片展平做第二次折叠,使点A落在B处,折痕记为n.则m,n的大小关系是________.17. (1分) (2015七上·深圳期末) 一条船停留在海面上,从船上看灯塔位于北偏东30°,那么从灯塔看船位于灯塔的西偏南________°.18. (1分)(2017·应城模拟) 如图,直线l⊥x轴于点P,且与反比例函数y1= (x>0)及y2= (x >0)的图象分别交于A、B,若△AOB的面积为2,则k=________.三、解答题 (共8题;共79分)19. (5分)(2016·菏泽) 计算:2﹣2﹣2cos60°+|﹣ |+(π﹣3.14)0 .20. (5分)先化简,再求值:,其中m满足一元二次方程 .21. (13分)(2018·吉林模拟) 据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有________名,扇形统计图中“基本了解”部分所对应扇形的圆心角为________;请补全条形统计图________;(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数;(3)“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只比赛一局,请用树状图或列表法求两人打平的概率.22. (15分) (2018九下·新田期中) 如图,在△ABC中,∠ACB= ,以点A为圆心,AC为半径,作⊙A,交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF,交⊙A于点F,连接AF,BF,DF.(1)求证:BF是⊙A的切线;(2)当∠CAB等于多少度时,四边形ADFE为菱形?请给与证明.(3)若EF=1,AE=2,求cos∠CBA的值.23. (5分)要在燃气管道L上修建一个泵站P,分别向A,B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?在图上画出P点位置,不写作法,保留痕迹.24. (10分)(2019·福州模拟) 某汽车销售公司销售某厂家的某款汽车,该款汽车现在的售价为每辆27万元,每月可售出两辆.市场调查反映:在一定范围内调整价格,每辆降低0.1万元,每月能多卖一辆.已知该款汽车的进价为每辆25万元.另外,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.5万元:销售量在10辆以上,超过的部分每辆返利1万元.设该公司当月售出x辆该款汽车.(总利润=销售利润十返利)(1)设每辆汽车的销售利润为y万元,求y与x之间的函数关系式;(2)当x>10时,该公司当月销售这款汽车所获得的总利润为20.6万元,求x的值.25. (11分) (2019九上·衢州期中) 如图,四边形ABCD内接于 .(1)连接AC、BD,若∠BAC=∠CAD=60°,则的形状为________.(2)在(1)的条件下,试探究线段AD,AB,AC之间的数量关系,并证明你的结论;(3)若 = ,∠DAB=∠ABC=90°,点P为上的一动点,连接PA,PB,PD,求证:PD=PB+ PA。
呼伦贝尔市中考数学二模试卷
呼伦贝尔市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2019·滨州) 下列各数中,负数是().A .B .C .D .2. (2分)下列选项中正确的是()A . ﹣x(x2﹣x+1)=x3﹣x2﹣xB . (﹣2x)3•x2=﹣8x6C . m(m+n)﹣n(m+n)=m2﹣n2D . ﹣xm(xn﹣x3+3)=﹣xmn+x3m﹣3xm3. (2分)下列几何体中,正视图是矩形的是()A .B .C .D .4. (2分)如图:下列四个图案中既是轴对称图形,又是中心对称图形的是()A .B .C .D .5. (2分)如图,直线l∥m∥n,等边△ABC的顶点B、C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为()A . 25°B . 45°C . 35°D . 30°6. (2分) (2018九上·宁江期末) 下列事件是必然事件的是()A . 乘坐公共汽车恰好有空座B . 同位角相等C . 打开手机就有未接电话D . 三角形内角和等于180°7. (2分)(2014·扬州) 如图,已知正方形的边长为1,若圆与正方形的四条边都相切,则阴影部分的面积与下列各数最接近的是()A . 0.1B . 0.2C . 0.3D . 0.48. (2分) (2019八下·淅川期末) 八年级某同学6次数学小测验的成绩分别为95分,80分,85分,95分,95分,85分,则该同学这6次成绩的众数和中位数分别是()A . 95分,95分B . 95分,90分C . 90分,95分D . 95分,85分9. (2分) (2019八上·禅城期末) 已知点,,都在直线上,则,,的大小关系是()A .B .C .D .10. (2分)如图,在▱ABCD中,AE⊥BC于E,AF⊥CD于F,若AE=2,AF=3,▱ABCD的周长为20,则▱ABCD 的面积为()A . 24B . 16C . 8D . 12二、填空题 (共8题;共8分)11. (1分) (2016七上·武汉期中) 中国的领水面积约为370 000km2 ,请用科学记数法表示:________ km2 .12. (1分)(2019·曲靖模拟) 在实数范围内因式分解:2x3+8x2+8x=________13. (1分)(2016·百色) 如图,⊙O的直径AB过弦CD的中点E,若∠C=25°,则∠D=________14. (1分)(2019·本溪) 如果关于x的一元二次方程x2﹣4x+k=0有实数根,那么k的取值范围是________.15. (1分) (2018八上·东城期末) 如果实数满足 ________;16. (1分) (2019八上·黄陂期末) 甲、乙二人做某种机械零件,己知甲每小时比乙多做6个,甲做90个零件所用的时间与乙做60个零件所用的时间相等.设甲每小时做x个零件,依题意列方程为________.17. (1分)(2020·长沙模拟) 如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B 沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为________.18. (1分)观察下列等式:第1个等式:x1= ;第2个等式:x2= ;第3个等式:x3= ;第4个等式:x4= ;则xl+x2+x3+…+x10=________.三、解答题 (共8题;共75分)19. (5分)(2017·和平模拟) 先化简,再求值:,其中.20. (15分)(2019·平房模拟) 云峰中学为了解学生上学的交通方式,提高学生交通安全意识,开展了以“我上学的主要交通方式”为主题的调查活动,围绕“在乘公交车、乘私家车、乘送子车、步行、骑自行车共五种方式中,你上学的主要交通方式是哪种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图.请你根据统计图的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若云峰中学共有1200名学生,请你估计该中学步行上学的学生有多少名?21. (10分)如图,与的斜边相切于点,与直角边相交于两点,连接, .(1)求证: ;(2)若,,,求线段的长度.22. (10分)(2017·绍兴) 如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶中D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(结果精确到0.1m。
内蒙古呼伦贝尔市中考数学二模试卷
内蒙古呼伦贝尔市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)的倒数是()A .B .C .D . -2. (2分)(2017·吉林模拟) 用6个完全相同的小正方体组合成如图所示的立体图形,它的左视图为()A .B .C .D .3. (2分) (2018七下·余姚期末) 已知1纳米等于0.000 000 001米,那么2纳米用科学记数法表示为()A . 2×10-9米B . 0.2×10-8米C . 20×108米D . 2×109米4. (2分) (2019八上·城厢月考) 图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A . 2mnB . (m+n)2C . (m-n)2D . m2-n25. (2分)有4个数的平均数是10,还有8个数的平均数是13,则这12个数的平均数是()A . 11B . 12C . 13D . 146. (2分)下图是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是()A .B .C .D .7. (2分) (2019八上·天台期中) 设四边形的内角和等于,五边形的外角和等于,则与的关系是()A .B .C .D .8. (2分) (2020八下·越城期中) 如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个实数根,那么k的取值范围是()A . k>﹣B . k>﹣且k≠0C . k<﹣D . k 且k≠09. (2分)解不等式组:的解集是()A . x≤﹣2B . ﹣2≤x<2C . x<2D . x≥﹣210. (2分) (2019八上·利辛月考) 用固定的速度向容器里注水,水面的高度h和注水时间t的函数关系的大致图象如图,则该容器可能是()A .B .C .D .二、填空题 (共6题;共7分)11. (1分)(2016·邵阳) 将多项式m3﹣mn2因式分解的结果是________.12. (1分) (2020七上·德江期末) 超市某商品标价元,开业期间按标价的八折出售,这时任然可以获利,设这种商品进价为元,由题意列出方程为________;13. (2分) (2016七上·黄冈期末) “皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为S=a+ ﹣1,孔明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是________,并运用这个公式求得图2中多边形的面积是________.14. (1分)(2020·枣阳模拟) 把1枚质地均匀的普通硬币重复掷三次,落地后三次都是正面朝上的概率是________.15. (1分)如图,△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,已知AD=10cm,小明准备用剪刀沿着与⊙O相切的任意一条直线MN剪下一块三角形(△AMN),则剪下的△AMN 的周长为________cm.16. (1分)(2017·响水模拟) 如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和是________.三、解答题(一) (共3题;共30分)17. (10分) (2018七下·明光期中) 计算:(1) - +(π-3)0+|1- |;(2)(-4x2y)2•(-xy2)÷(-2x5y3).18. (10分) (2019八下·长春月考) 化简求值:(1)先化简,再求值:,其中;(2)先化简:,然后再从的范围内选取一个合适的的整数值代入求值.19. (10分)(2019·宝鸡模拟) 如图,△ABC内接于⊙O,AB是⊙O的直径,⊙O的切线AP与OC的延长线相交于点P,∠P=∠BCO.(1)求证:AC=PC;(2)若AB=6 ,求AP的长.四、解答题(二) (共3题;共27分)20. (7分)(2017·徐州模拟) 为了提高科技创新意识,我市某中学举行了“2016年科技节”活动,其中科技比赛包括“航模”、“机器人”、“环保”“建模”四个类别(每个学生只能参加一个类别的比赛),各类别参赛人数统计如图:请根据以上信息,解答下列问题:(1)全体参赛的学生共有________人;(2)将条形统计图补充完整;(3)“建模”在扇形统计图中的圆心角是________°.21. (10分) (2020七下·定兴期末) 为了更好地保护环境,治理水质,我县某治污公司决定购买12台污水处理设备,现有A、B两种型号设备,A型每台m万元;B型每台n万元,经调查买一台A型设备比买一台B型设备多3万元,购买2台A型设备比购买3台B型设备少5万元.(1)求m、n的值.(2)经预算,该治污公司购买污水处理器的资金不超过158万元.该公司A型设备最多能买多少台?22. (10分) (2020八下·长沙期中) 如图1,□ABCD的对角线AC,BD相交于点O,且AE∥BD,BE∥A C,OE=CD.(1)求证:四边形 ABCD 是菱形;(2)若∠ADC=60°,BE=2,求BD的长.五、解答题(三) (共3题;共35分)23. (10分)如图,在平面直角坐标系xOy中,一次函数y=k1x+b与反比例函数y= 的图象交于点A(﹣3,2)和点B(1,m),连接BO并延长与反比例函数y= 的图象交于点C.(1)求一次函数y=k1x+b和反比例函数y= 的表达式;(2)是否在双曲线y= 上存在一点D,使得以点A、B、D、C为顶点的四边形成为平行四边形?若存在,请直接写出点D的坐标,并求出该平行四边形的面积;若不存在,请说明理由.24. (10分)(2018·武汉) 如图,PA是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC交AB 于点E,且PA=PB.(1)求证:PB是⊙O的切线;(2)若∠APC=3∠BPC,求的值.25. (15分) (2020八下·东湖月考) 如图,菱形ABCD中,已知∠BAD=120°,∠EGF=60°,∠EGF的顶点G在菱形对角线AC上运动,角的两边分别交边BC、CD于E、F.(1)如图甲,当顶点G运动到与点A重合时,求证:EC+CF=BC;(2)知识探究:①如图乙,当顶点G运动到AC的中点时,请直接写出线段EC、CF与BC的数量关系(不需要写出证明过程);②如图丙,在顶点G运动的过程中,若,探究线段EC、CF与BC的数量关系;(3)问题解决:如图丙,已知菱形的边长为8,BG=7,CF= ,当>2时,求EC的长度.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(一) (共3题;共30分)17-1、17-2、18-1、18-2、19-1、19-2、四、解答题(二) (共3题;共27分) 20-1、20-2、20-3、21-1、21-2、22-1、22-2、五、解答题(三) (共3题;共35分) 23-1、23-2、24-1、24-2、25-1、25-2、25-3、。
【6套打包】呼伦贝尔市中考第二次模拟考试数学试题
【6套打包】呼伦贝尔市中考第二次模拟考试数学试题中学数学二模模拟试卷一、选择题(每小题3分,共30分)1.下列各组数的大小比较中,正确的是( * ).(A )21> (B )23->- (C )10-> (D )22> 2.下列计算正确的是( * ).(A )x x 1248=+ (B )y y =-44 (C )y y y =-34 (D )33=-x x 3.如图,如果︒=∠+∠18021,那么( * ). (A ) ︒=∠+∠18042 (B )︒=∠+∠18043(C ) ︒=∠+∠18031 (D )41∠=∠4. 图中各硬纸片,不可以沿虚线折叠成长方体纸盒的是( * ).① ② ③ ④ (A )①② (B )②③ (C )③④ (D )①④ 5.甲、乙两名同学在参加体育中考前各作了5次投掷实心球的测试,甲所测的成绩分别为10.2m ,9m ,9.4m ,8.2m ,9.2m ,乙所测得的成绩的平均数与甲相同且所测成绩的方差为0.72,那么( * ).(A )甲、乙成绩一样稳定 (B ) 甲成绩更稳定 (C )乙成绩更稳定 (D )不能确定谁的成绩更稳定 6. 若b a <,下列各式中不成立的是( * ).(A )b a 22< (B )b a 22-<- (C )22+<+b a (D )22-<-b a 7.下列函数的图象中,不经过第一象限的是( * ).(A )3+=x y (B )3-=x y (C ) 1+-=x y (D )1--=x y 8. 函数222++-=x x y 的顶点坐标是( * ).(A )(1,3) (B )(1-,3) (C )(1,-2) (D )(-1,2)9.如果点E ,F ,G ,H 分别是菱形ABCD 四边AB ,BC ,CD ,DA 上的中点,那么四边形EFGH 是( * ).(A )菱形 (B )矩形 (C )正方形 (D )以上都不是 10. 边长分别等于6 cm 、8 cm 、10cm 的三角形的内切圆的半径为( * )cm .(A) 3 (B )2 (C) 23 (D )6第二部分 非选择题(共120分)第3题二、填空题(本大题共6题,每小题3分,满分18分) 11.若代数式1-x 有意义,则实数x 的取值范围是= * .12.2015年4月8日,广东省扶贫基金会收到了88家爱心企业合计217000000元的捐赠.将217000000用科学记数法表示为 * . 13.分解因式:2ab a -= * .14. 在Rt △ABC 中,∠C =90°CB =8cm ,若斜边AB 的垂直平分线交CB 于点D ,CD =2cm ,则AD= * cm .15.已知命题“如果一个四边形是平行四边形,那么这个四边形是旋转对称图形.”,写出它的逆命题是 * ,该逆命题是 * 命题(填“真”或“假”). 16. 反比例函数xk y 11=与一次函数b x k y +=22的图象交于A (-2,-1)和B 两点,点B 的纵坐标为-3,若21y y <,则x 的取值范围是 * .三、解答题(本大题共9小题,共102 分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分) 解方程:213-=x x 18.(本小题满分9分)在□ABCD 中,点E ,F 分别在AB ,CD 上,且AE =CF . 求证:∠AED =∠BFC . 19.(本小题满分10分) 已知xy 2=,求22)5()y x y x y x -+-+(的值. 20.为测山高,在点A 处测得山顶D 的仰角为31°,从点A 向山方向前进140米到达点B ,在B 处测得山顶D 的仰角为62°(如图).(1)在所给的图②中尺规作图:过点D 作DC ⊥AB ,交AB 的延长线于点C ; (2)山高DC 是多少(结果取整数)?21.(本小题满分12分)第18题第20题图①图②31︒AD62︒B某校九年级在母亲节倡议“感恩母亲,做点家务”活动.为了解同学们在母亲节的周末做家务情况,年级随机调查了部分同学,并用得到的数据制成如下不完整的统计表.(1)统计表中的=x ,=y ; (2)被调查同学做家务时间的中位数是 小时,平均数是 小时;(3)年级要组织一次"感恩母亲“的主题级会,级长想从报名的4位同学中随机抽取2位同学在会上谈体会.据统计,报名的4人分别是母亲节的周末做家务1小时的1人、做家务1.5小时的2人、做家务2小时的1人.请你算算选上的2位同学恰好是一位做家务2小时和一位做家务1.5小时的概率. 22.(本小题满分12分) 已知关于x 的方程-2xmx 3-x 4-+m =0(m 为常数).(1)求证:方程有两个不相等的实数根;(2)设1x ,2x 是方程的两个实数根,且1x +2x =6.请求出方程的这两个实数根.23.(本小题满分12分)直线l 经过(2,3)和(-2,-1)两点,它还与 x 轴交于A 点,与y 轴交于C 点,与经过原点的直线OB 交于第三象限的B 点,且∠ABO =30°.求: (1)点A 、C 的坐标; (2)点B 的坐标.24.(本小题满分14分)已知关于x 的二次函数k x k k x y 2)43(22+--+=的图象与x 轴从左到右交于A ,B 两点,且这两点关于原点对称. (1)求k 的值;(2)在(1)的条件下,若反比例函数xmy =的图象与二次函数k x k k x y 2)43(22+--+=的图象从左到右交于Q ,R ,S 三点,且点Q 的坐标为(-1,第23题xy-1),点R (R x ,R y ),S (S x ,S y )中的纵坐标R y ,S y 分别是一元二次方程012=-+my y 的解,求四边形AQBS 的面积AQBS S 四边形;(3)在(1),(2)的条件下,在x 轴下方是否存在二次函数k x k k x y 2)43(22+--+=图象上的点P 使得PAB S ∆=2RAB S ∆,若存在,求出点P 的坐标;若不存在,请说明理由.25.(本小题满分14分)如图,正三角形ABC 内接于⊙O ,P 是BC 上的一点,且PC PB <,PA 交BC 于E ,点F 是PC 延长线上的点,PB CF =,13=AB ,4=PA . (1)求证ABP ∆≌ACF ∆; (2)求证AE PA AC ⋅=2; (3)求PB 和PC 的长.数学参考答案一.选择题(每小题3分,共30分) CCCCB BDABB二.填空题(本大题共6题,每小题3分,满分18分) 11.1≥x 12.8102.17⨯ 13.)1)(1(b b a +-14.615. 如果一个四边形是旋转对称图形,那么这个四边形是平行四边形. 假 16.2-<x 或032<<-x (说明:只答对2-<x 中学数学二模模拟试卷一、选择题(每小题3分,共30分)1.下列各组数的大小比较中,正确的是( * ).F第25题(A )21> (B )23->- (C )10-> (D )22> 2.下列计算正确的是( * ).(A )x x 1248=+ (B )y y =-44 (C )y y y =-34 (D )33=-x x 3.如图,如果︒=∠+∠18021,那么( * ). (A ) ︒=∠+∠18042 (B )︒=∠+∠18043(C ) ︒=∠+∠18031 (D )41∠=∠4. 图中各硬纸片,不可以沿虚线折叠成长方体纸盒的是( * ).① ② ③ ④ (A )①② (B )②③ (C )③④ (D )①④ 5.甲、乙两名同学在参加体育中考前各作了5次投掷实心球的测试,甲所测的成绩分别为10.2m ,9m ,9.4m ,8.2m ,9.2m ,乙所测得的成绩的平均数与甲相同且所测成绩的方差为0.72,那么( * ).(A )甲、乙成绩一样稳定 (B ) 甲成绩更稳定 (C )乙成绩更稳定 (D )不能确定谁的成绩更稳定 6. 若b a <,下列各式中不成立的是( * ).(A )b a 22< (B )b a 22-<- (C )22+<+b a (D )22-<-b a 7.下列函数的图象中,不经过第一象限的是( * ).(A )3+=x y (B )3-=x y (C ) 1+-=x y (D )1--=x y 8. 函数222++-=x x y 的顶点坐标是( * ).(A )(1,3) (B )(1-,3) (C )(1,-2) (D )(-1,2)9.如果点E ,F ,G ,H 分别是菱形ABCD 四边AB ,BC ,CD ,DA 上的中点,那么四边形EFGH 是( * ).(A )菱形 (B )矩形 (C )正方形 (D )以上都不是 10. 边长分别等于6 cm 、8 cm 、10cm 的三角形的内切圆的半径为( * )cm .(A) 3 (B )2 (C) 23 (D )6第二部分 非选择题(共120分)二、填空题(本大题共6题,每小题3分,满分18分) 11.若代数式1-x 有意义,则实数x 的取值范围是= * .12.2015年4月8日,广东省扶贫基金会收到了88家爱心企业合计217000000元的捐赠.将217000000用科学记数法表示为 * . 13.分解因式:2ab a -= * .第3题14. 在Rt △ABC 中,∠C =90°CB =8cm ,若斜边AB 的垂直平分线交CB 于点D ,CD =2cm ,则AD= * cm .15.已知命题“如果一个四边形是平行四边形,那么这个四边形是旋转对称图形.”,写出它的逆命题是 * ,该逆命题是 * 命题(填“真”或“假”). 16. 反比例函数xk y 11=与一次函数b x k y +=22的图象交于A (-2,-1)和B 两点,点B 的纵坐标为-3,若21y y <,则x 的取值范围是 * .三、解答题(本大题共9小题,共102 分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分) 解方程:213-=x x 18.(本小题满分9分)在□ABCD 中,点E ,F 分别在AB ,CD 上,且AE =CF . 求证:∠AED =∠BFC . 19.(本小题满分10分) 已知xy 2=,求22)5()y x y x y x -+-+(的值. 20.为测山高,在点A 处测得山顶D 的仰角为31°,从点A 向山方向前进140米到达点B ,在B 处测得山顶D 的仰角为62°(如图).(1)在所给的图②中尺规作图:过点D 作DC ⊥AB ,交AB 的延长线于点C ; (2)山高DC 是多少(结果取整数)?21.(本小题满分12分)某校九年级在母亲节倡议“感恩母亲,做点家务”活动.为了解同学们在母亲节的周末做家务情况,年级随机调查了部分同学,并用得到的数据制成如下不完整的统计表. (1)统计表中的=x ,=y ; (2)被调查同学做家务时间的中位数是 小时,平均数是 小时; (3)年级要组织一次"感恩母亲“的主题级会,级长想从报名的4位同学中随机抽取2位同学在会上谈体会.据统计,报名的4人分别是母亲节的周末第18题第20题图①图②31︒AD62︒B做家务1小时的1人、做家务1.5小时的2人、做家务2小时的1人.请你算算选上的2位同学恰好是一位做家务2小时和一位做家务1.5小时的概率. 22.(本小题满分12分) 已知关于x 的方程-2xmx 3-x 4-+m =0(m 为常数).(1)求证:方程有两个不相等的实数根;(2)设1x ,2x 是方程的两个实数根,且1x +2x =6.请求出方程的这两个实数根.23.(本小题满分12分)直线l 经过(2,3)和(-2,-1)两点,它还与 x 轴交于A 点,与y 轴交于C 点,与经过原点的直线OB 交于第三象限的B 点,且∠ABO =30°.求: (1)点A 、C 的坐标; (2)点B 的坐标.24.(本小题满分14分)已知关于x 的二次函数k x k k x y 2)43(22+--+=的图象与x 轴从左到右交于A ,B 两点,且这两点关于原点对称. (1)求k 的值;(2)在(1)的条件下,若反比例函数xmy =的图象与二次函数k x k k x y 2)43(22+--+=的图象从左到右交于Q ,R ,S 三点,且点Q 的坐标为(-1,-1),点R (R x ,R y ),S (S x ,S y )中的纵坐标R y ,S y 分别是一元二次方程012=-+my y 的解,求四边形AQBS 的面积AQBS S 四边形;(3)在(1),(2)的条件下,在x 轴下方是否存在二次函数k x k k x y 2)43(22+--+=图象上的点P 使得PAB S ∆=2RAB S ∆,若存在,求出点P 的坐标;若不存在,请说明理由.25.(本小题满分14分)第23题xy如图,正三角形ABC 内接于⊙O ,P 是BC 上的一点,且PC PB <,PA 交BC 于E ,点F 是PC 延长线上的点,PB CF =,13=AB ,4=PA . (1)求证ABP ∆≌ACF ∆; (2)求证AE PA AC ⋅=2; (3)求PB 和PC 的长.数学参考答案一.选择题(每小题3分,共30分) CCCCB BDABB二.填空题(本大题共6题,每小题3分,满分18分) 11.1≥x 12.8102.17⨯ 13.)1)(1(b b a +-14.615. 如果一个四边形是旋转对称图形,那么这个四边形是平行四边形. 假 16.2-<x 或032<<-x (说明:只答对2-<x 中学数学二模模拟试卷一.选择题(每小题3分,共30分 1.(3分)﹣的绝对值是( ) A .2B .C .﹣D .﹣22.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm 的小洞,则0.000000039用科学记数法可表示为( ) A .3.9×10﹣8B .﹣3.9×10﹣8C .0.39×10﹣7D .39×10﹣93.(3分)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,F第25题则该几何体的左视图是()A.B.C.D.4.(3分)下列运算正确的是()A.a2+a2=a4B.a6÷a2=a3C.(﹣2a)3=﹣8a3D.(a+1)2=a2+15.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°6.(3分)在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是157.(3分)如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°8.(3分)若函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,则m的值为()A.﹣2或3B.﹣2或﹣3C.1或﹣2或3D.1或﹣2或﹣3 9.(3分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE 交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2B.C.D.10.(3分)如图,点A在x轴上,点B,C在反比例函数y=(k>0,x>0)的图象上.有一个动点P从点A出发,沿A→B→C→O的路线(图中“→”所示路线)匀速运动,过点P作PM⊥x轴,垂足为M,设△POM的面积为S,点P的运动时间为t,则S关于t 的函数图象大致为()A.B.C.D.二.填空题(每题3分,共15分)11.(3分)计算:+(﹣1)0﹣()﹣2=.12.(3分)如图,随机闭合开关S1,S2,S3中的两个,能够让灯泡发光的概率为.13.(3分)不等式组的解集是.14.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为.15.(3分)如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC 上,当△DCM为直角三角形时,折痕MN的长为.三.解答题16.(8分)先化简,再求值:(﹣)÷,其中x满足x2﹣2x﹣2=0.17.(9分)某校在一次社会实践活动中,组织学生参观了虎园、烈士陵园、博物馆和植物园,为了解本次社会实践活动的效果,学校随机抽取了部分学生,对“最喜欢的景点”进行了问卷调查,并根据统计结果绘制了如下不完整的统计图.其中最喜欢烈士陵园的学生人数与最喜欢博物馆的学生人数之比为2:1,请结合统计图解答下列问题:(1)本次活动抽查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是度;(4)该校此次参加社会实践活动的学生有720人,请求出最喜欢烈士陵园的人数约有多少人?18.(9分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=时,四边形AOCP是菱形;②连接BP,当∠ABP=时,PC是⊙O的切线.19.(9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)20.(9分)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.21.(10分)“京东电器”准备购进A、B两种品牌台灯,其中A每盏进价比B每盏进价贵30元,A售价120元,B售价80元已知用1040元购进的A数量与用650元购进B的数量相同.(1)求A、B的进价;(2)超市打算购进A、B台灯共100盏,要求A、B的总利润不得少于3400元,不得多于3550元,问有多少种进货方案?(3)在(2)的条件下,该超市决定对A台灯进行降价促销,A台灯每盏降价m(8<m <15),B的售价不变,超市如何进货获利最大?22.(10分)(1)问题发现在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC交AB于点F,将AD绕点D顺时针旋转α得到ED,连接BE.如图(1),当α=90°时,试猜想:①AF与BE的数量关系是;②∠ABE=;(2)拓展探究如图(2),当0°<α<90°时,请判断AF与BE的数量关系及∠ABE的度数,并说明理由.(3)解决问题如图(3),在△ABC中,AC=BC,AB=8,∠ACB=α,点D在射线BC上,将AD绕点D顺时针旋转α得到ED,连接BE,当BD=3CD时,请直接写出BE的长度.23.(11分)如图,已知直线y=﹣3x+c与x轴相交于点A(1,0),与y轴相交于点B,抛物线y=﹣x2+bx+c经过点A,B,与x轴的另一个交点是C.(1)求抛物线的解析式;(2)点P是对称轴的左侧抛物线上的一点,当S△P AB=2S△AOB时,求点P的坐标;(3)连接BC抛物线上是否存在点M,使∠MCB=∠ABO?若存在,请直接写出点M的坐标;否则说明理由.参考答案与试题解析一.选择题(每小题3分,共30分1.(3分)﹣的绝对值是()A.2B.C.﹣D.﹣2【分析】根据绝对值的定义进行计算.【解答】解:||=,故选:B.【点评】本题考查了绝对值.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为()A.3.9×10﹣8B.﹣3.9×10﹣8C.0.39×10﹣7D.39×10﹣9【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000039=3.9×10﹣8.故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得左视图为:.故选:A.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.(3分)下列运算正确的是()A.a2+a2=a4B.a6÷a2=a3C.(﹣2a)3=﹣8a3D.(a+1)2=a2+1【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则、完全平方公式分别计算得出答案.【解答】解:A、a2+a2=2a2,故此选项错误;B、a6÷a2=a4,故此选项错误;C、(﹣2a)3=﹣8a3,正确;D、(a+1)2=a2+2a+1,故此选项错误;故选:C.【点评】此题主要考查了积的乘方运算以及同底数幂的乘除运算、完全平方公式,正确掌握相关运算法则是解题关键.5.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°【分析】根据两直线平行,内错角相等求出∠3,再求解即可.【解答】解:∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.故选:C.【点评】本题考查了两直线平行,内错角相等的性质,熟记性质是解题的关键.6.(3分)在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是15【分析】根据众数、中位数、平均数、方差的定义和统计图中提供的数据分别列出算式,求出答案.【解答】解:A、众数是90分,人数最多,正确;B、中位数是90分,错误;C、平均数是分,错误;D、方差是=19,错误;故选:A.【点评】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、方差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、方差.7.(3分)如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°【分析】由P A与PB都为圆O的切线,利用切线的性质得到OA垂直于AP,OB垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2倍,由已知∠C 的度数求出∠AOB的度数,在四边形P ABO中,根据四边形的内角和定理即可求出∠P 的度数.【解答】解:∵P A、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选:C.【点评】本题主要考查了切线的性质,四边形的内角与外角,以及圆周角定理,熟练运用性质及定理是解本题的关键.8.(3分)若函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,则m的值为()A.﹣2或3B.﹣2或﹣3C.1或﹣2或3D.1或﹣2或﹣3【分析】根据m=1和m≠1两种情况,根据一次函数的性质、二次函数与方程的关系解答.【解答】解:当m=1时,函数解析式为:y=﹣6x+是一次函数,图象与x轴有且只有一个交点,当m≠1时,函数为二次函数,∵函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,∴62﹣4×(m﹣1)×m=0,解得,m=﹣2或3,故选:C.【点评】本题考查的是抛物线与x轴的交点问题,掌握二次函数与一元二次方程的关系、灵活运用分情况讨论思想是解题的关键.9.(3分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE 交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2B.C.D.【分析】如图,设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;【解答】解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF==,∴AK=OK==,∴OA=,由△FOC∽△OBA,可得==,∴==,∴OB=,AB=,∴A(,),∴k=.故选:B.【点评】本题考查作图﹣复杂作图,反比例函数图象上的点的坐标特征,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.(3分)如图,点A在x轴上,点B,C在反比例函数y=(k>0,x>0)的图象上.有一个动点P从点A出发,沿A→B→C→O的路线(图中“→”所示路线)匀速运动,过点P作PM⊥x轴,垂足为M,设△POM的面积为S,点P的运动时间为t,则S关于t 的函数图象大致为()A.B.C.D.【分析】结合点P的运动,将点P的运动路线分成A→B、B→C、C→O三段位置来进行分析三角形OMP面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案.【解答】解:设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,S==a2•cosα•sinα•t2,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故选:D.【点评】本题考查了动点问题的函数图象,解答此类题目并不需要求出函数解析式,只要判断出函数的增减性,或者函数的性质即可,注意排除法的运用.二.填空题(每题3分,共15分)11.(3分)计算:+(﹣1)0﹣()﹣2=0.【分析】直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案.【解答】解:原式=3+1﹣4=0.故答案为:0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,随机闭合开关S1,S2,S3中的两个,能够让灯泡发光的概率为.【分析】根据题意可得:随机闭合开关S1,S2,S3中的两个,有3种方法,其中有两种能够让灯泡发光,故其概率为.【解答】解:P(灯泡发光)=.故本题答案为:.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.(3分)不等式组的解集是﹣1≤x<3.【分析】分别解每一个不等式,再求解集的公共部分.【解答】解:,解不等式①得:x≥﹣1,解不等式②得:x<3,所以不等式组的解集是:﹣1≤x<3,故答案为:﹣1≤x<3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.14.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为π﹣2.【分析】空白处的面积等于△ABC的面积减去扇形BCD的面积的2倍,阴影部分的面积等于△ABC的面积减去空白处的面积即可得出答案.【解答】解:∵∠ACB=90°,AC=BC=2,∴S△ABC=×2×2=2,S扇形BCD==π,S空白=2×(2﹣π)=4﹣π,S阴影=S△ABC﹣S空白=2﹣4+π=π﹣2,故答案为π﹣2.【点评】本题考查了扇形的面积公式,正确理解公式是关键.15.(3分)如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC 上,当△DCM为直角三角形时,折痕MN的长为或.【分析】依据△DCM为直角三角形,需要分两种情况进行讨论:当∠CDM=90°时,△CDM是直角三角形;当∠CMD=90°时,△CDM是直角三角形,分别依据含30°角的直角三角形的性质以及等腰直角三角形的性质,即可得到折痕MN的长.【解答】解:分两种情况:①如图,当∠CDM=90°时,△CDM是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,∴∠C=30°,AB=AC=,由折叠可得,∠MDN=∠A=60°,∴∠BDN=30°,∴BN=DN=AN,∴BN=AB=,∴AN=2BN=,∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴AN=MN=;②如图,当∠CMD=90°时,△CDM是直角三角形,由题可得,∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=DN=AN,BN=BD,又∵AB=,∴AN=2,BN=,过N作NH⊥AM于H,则∠ANH=30°,∴AH=AN=1,HN=,由折叠可得,∠AMN=∠DMN=45°,∴△MNH是等腰直角三角形,∴HM=HN=,∴MN=,故答案为:或.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三.解答题16.(8分)先化简,再求值:(﹣)÷,其中x满足x2﹣2x﹣2=0.【分析】先根据分式的混合运算顺序和运算法则化简原式,再由x2﹣2x﹣2=0得x2=2x+2=2(x+1),整体代入计算可得.【解答】解:原式=[﹣]÷=•=,∵x2﹣2x﹣2=0,∴x2=2x+2=2(x+1),则原式==.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.17.(9分)某校在一次社会实践活动中,组织学生参观了虎园、烈士陵园、博物馆和植物园,为了解本次社会实践活动的效果,学校随机抽取了部分学生,对“最喜欢的景点”进行了问卷调查,并根据统计结果绘制了如下不完整的统计图.其中最喜欢烈士陵园的学生人数与最喜欢博物馆的学生人数之比为2:1,请结合统计图解答下列问题:(1)本次活动抽查了60名学生;(2)请补全条形统计图;(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是36度;(4)该校此次参加社会实践活动的学生有720人,请求出最喜欢烈士陵园的人数约有多少人?【分析】(1)由虎园人数及其所占百分比可得总人数;(2)设最喜欢博物馆的学生人数为x,则最喜欢烈士陵园的学生人数为2x,根据各参观项目人数和等于总人数求得x的值,据此即可补全图形;(3)用360°乘以最喜欢植物园的学生人数占被调查人数的比例可得;(4)用总人数乘以样本中最喜欢烈士陵园的人数所占比例.【解答】解:(1)本次活动调查的学生人数为18÷30%=60人,故答案为:60;(2)设最喜欢博物馆的学生人数为x,则最喜欢烈士陵园的学生人数为2x,则x+2x=60﹣18﹣6,解得:x=12,即最喜欢博物馆的学生人数为12,则最喜欢烈士陵园的学生人数为24,补全条形图如下:(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是360°×=36°,故答案为:36;(4)最喜欢烈士陵园的人数约有720×=288人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=120°时,四边形AOCP是菱形;②连接BP,当∠ABP=45°时,PC是⊙O的切线.【分析】(1)由AAS证明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出结论;(2)①证出OA=OP=P A,得出△AOP是等边三角形,∠A=∠AOP=60°,得出∠BOP =120°即可;②由切线的性质和平行线的性质得出∠BOP=90°,由等腰三角形的性质得出∠ABP=∠OPB=45°即可.【解答】(1)证明:∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵点M是OP的中点,∴OM=PM,在△CPM和△AOM中,,∴△CPM≌△AOM(AAS),∴PC=OA.∵AB是半圆O的直径,∴OA=OB,∴PC=OB.又PC∥AB,∴四边形OBCP是平行四边形.(2)解:①∵四边形AOCP是菱形,∴OA=P A,∵OA=OP,∴OA=OP=P A,∴△AOP是等边三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;故答案为:120°;②∵PC是⊙O的切线,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答案为:45°.【点评】本题是圆的综合题目,考查了全等三角形的判定与性质、平行四边形的判定、切线的性质、菱形的判定与性质、等边三角形的判定与性质等知识;本题综合性强,熟练掌握切线的性质和平行四边形的判定是解题的关键.19.(9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)【分析】延长CA交BE于点D,得CD⊥BE,设AD=x,得BD=x米,CD=(20+x)米,根据=tan∠DCB列方程求出x的值即可得.【解答】解:如图,延长CA交BE于点D,。
呼伦贝尔市中考数学二模考试试卷
呼伦贝尔市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题有16个小题,共42分.1~10小题各3分,1 (共16题;共42分)1. (3分)实数a在数轴上对应的点如图所示,则a、-a、1的大小关系正确的是()A . -a<a<1B . a<-a<1C . 1<-a<aD . a<1<-a2. (3分)(2013·来宾) 已知图形:①等边三角形,②平行四边形,③菱形,④圆.其中既是轴对称图形,又是中心对称图形的有()A . 1个B . 2个C . 3个D . 4个3. (3分)下列各组运算,结果正确的是().A . 3a +3b =6aB . -2x -2x =0C . 9x-6x =3D . 3y2-y2=2y24. (3分)中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()A . 6.75×104吨B . 6.75×103吨C . 0.675×105吨D . 67.5×103吨5. (3分)下面关于正六棱柱的视图(主视图、左视图、俯视图)中,画法错误的是()A .B .C .D .6. (3分) (2019八下·正定期末) 已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A . k>1,B . ,C . ,D . ,7. (3分)下列各对数值,是方程2x﹣3y=6的解是()A .B .C .D .8. (3分) (2019八上·潮州期中) 如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()去配.A . ①B . ②C . ③D . ①和②9. (3分)如图,在▱ABCD中,E是BC的中点,且∠AEC=∠DCE,下列结论不正确的是()A . BF=DFB . 四边形AECD是等腰梯形C . S△FAD=2S△FBED . ∠AEB=∠ADC10. (3分)(2020·上城模拟) 已知扇形弧AB的半径为r1 ,圆心角为a,弧长为l1 ,面积为S1 ,扇形弧CD的半径为r2 ,圆心角为,弧长为l2 ,面积为S2 ,则以下结论错误的是()A . 若l1>l2 ,则ar1> r2B . 若r1>r2 ,则C . 若a>,则D . 若S1>S2 ,则l1r1>l2r211. (2分)已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A . 6cm²B . 8cm²C . 10cm²D . 12cm²12. (2分) (2019·宜昌) 李大伯前年在驻村扶贫工作队的帮助下种了一片果林,今年收货一批成熟的果子.他选取了5棵果树,采摘后分别称重.每棵果树果子总质量(单位:kg)分别为:90,100,120,110,80.这五个数据的中位数是()A . 120B . 110C . 100D . 9013. (2分) (2018七上·瑶海期中) 方程 2x﹣4=3x+6 的解是()A . ﹣2B . 2C . ﹣10D . 1014. (2分)正三角形的内切圆与外接圆的面积的比为()A . 1:3B . 1:4C . 1:2D . 3:415. (2分)如右图,△ABC≌△FDE,∠C=40°,∠F=110°,则∠B等于()A . 20°B . 30°C . 40°D . 150°16. (2分) (2019九上·宜春月考) 对于抛物线,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(-1,3);④x>1时,y随x的增大而减小,其中正确结论的个数为()A . 1B . 2C . 3D . 4二、填空题(本大题有3个小题,共12分,17-18小题各3分;1 (共3题;共12分)17. (3分)(2011·遵义) 计算: =________.18. (3分)(2019七下·汽开区期末) 如图,六边形ABCDEF内部有一点G,连结BG、DG. 若,则∠BGD的大小为________度.19. (6分)(2017·蜀山模拟) 如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm,且tan∠EFC=0.75,则矩形ABCD的周长为________.三、解答题(本大题有7个小题,共66分,解答应写出文字说明、证明 (共7题;共65分)20. (8分) (2019七上·榆树期中) 小明同学准备化简:(2x2-3x-1)-(x2-2x□3),算式中“□”是“+,-,×,÷中的某一种运算符号(1)若“□”是“×”,请你化简:(2x2-3x-1)-(x2-2x□3)(2)当x=1时,(2x2-3x-1)-(x2-2x□3)的结果是2,请你通过计算说明“□”所代表的运算符号21. (9.0分) (2019八下·平昌期末) 八年级(1)班开展了为期一周的“孝敬父母,帮做家务”社会活动,并根据学生帮家长做家务的时间来评价学生在活动中的表现,把结果划分成A,B,C,D,E五个等级.老师通过家长调查了全班50名学生在这次活动中帮父母做家务的时间,制作成如下的频数分布表和扇形统计图.(1)求a,b的值;(2)根据频数分布表估计该班学生在这次社会活动中帮父母做家务的平均时间;(3)该班的小明同学这一周帮父母做家务2小时,他认为自己帮父母做家务的时间比班级里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计量说明理由.22. (8.0分)(2019·郴州) 计算:.23. (9分)(2018·青岛) 已知:如图,四边形ABCD,AB∥DC,CB⊥AB,AB=16cm,BC=6cm,CD=8cm,动点P 从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2cm/s.点P和点Q同时出发,以QA、QP为边作平行四边形AQPE,设运动的时间为t(s),0<t<5.根据题意解答下列问题:(1)用含t的代数式表示AP;(2)设四边形CPQB的面积为S(cm2),求S与t的函数关系式;(3)当QP⊥BD时,求t的值;(4)在运动过程中,是否存在某一时刻t,使点E在∠ABD的平分线上?若存在,求出t的值;若不存在,请说明理由.24. (9分)已知,函数y=(1﹣3k)x+2k﹣1,试回答:(1) k为何值时,图象过原点?(2) k为何值时,y随x增大而增大?25. (11.0分) (2016九上·常熟期末) 在一场2015亚洲杯赛B组第二轮比赛中,中国队凭借吴曦和孙可在下半场的两个进球,提前一轮小组出线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内蒙古呼伦贝尔市中考数学模拟试题二一、选择题(共10小题,每小题3分,共30分) 1、计算|-2| -(-3)的值是 ( )A . 5B .1C .-5D .-1 2、下列运算正确的是( ) A .235xx x += B .222()x y x y +=+C .2336(2)6xy x y = D .()x y x y --=-+3、下列说法正确的是( )A .要了解一批节能灯的使用寿命,采用普查方式B .一组数据2,3,3,6,8,5的众数与中位数都是3.C .“打开电视,正在播放新闻联播”是必然事件.D .若甲组数据的方差31.02=甲S ,乙组数据的方差02.02=乙S ,则乙组数据比甲组数据稳定. 4、已知两圆的半径分别为3cm,和5cm, 圆心距是8cm,则两圆的位置关系( ) A .相离 B .外切 C .相交 D .内切5、函数112-+=x x y 的自变量x 的取值范围是( )A .21-≥xB .1≠xC .121-≠-≥x x 且D .121≠-≥x x 且 6、对于反比例函数2y x=,下列说法不正确...的是( ) A .点(21)--,在它的图象上B .它的图象在第一、三象限 C .当0x>时,y 随x 的增大而增大 D .当0x <时,y 随x 的增大而减小7、如图,直线a b ∥,则A ∠的度数是( ) A.28oB.31oC.39oD.42o8、如图, 为测量学校旗杆的高度,小东用长为3.2m 的竹竿做测量工具.移动竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m ,与旗杆相距22m ,则旗杆的高为( )m . A .10 B.11 C. 12 D. 13 9、如图,正三角形ABC 内接于圆O ,动点P 在圆周的劣弧AB 上,且不与重合,则BPC ∠等于( ) A.30° B.60°(第7题图) (第8题图) 10、一个几何体的三视图如图所示,这个几何体是( ) A. 正方体 B. 球 C. 圆锥D. 圆柱二、填空题(共7小题,每小题3分,共21分)11、据中新社报道:2010年我国粮食产量将达到540000000000千克,用科学记数法表示这个粮食产量为___ 千克.(第9题)A BDab70°31°主视图左视图12、因式分解:32a ab -= . 13、当x=2009时,化简293x x -++2 = .14、不等式组2752312x x x x -<-⎧⎪⎨++>⎪⎩的整数解是.15、某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为 . 16、将一个底面半径为3cm ,高为4cm 圆锥形纸筒沿一条母线剪开,所得的侧面展开图的面积为_______________.(结果用含π的式子表示)17、将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n = (用含n 的代数式表示). 三、解答题(共4小题,每小题6分,共24分) 18、计算:1022sin 60--︒++ 19、先化简再求值2111x x x x⎛⎫-÷ ⎪--⎝⎭,其中2x =.20、如图,AD =BC ,请添加一个条件,使图中存在全等三角形并给予证明. 你所添加的条件为: ; 21、AB 是⊙O 的直径,PA 切⊙O 于A ,OP 交⊙O 于C ,连BC .若30P ∠=o,求B ∠的度数.四、(本题满分7分)22、某中学某班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:8:6,又知此次调查中捐款25元和30元的学生一共42人. (1)他们一共调查了多少人?(2)这组数据的众数、中位数各是多少?(3)若该校共有1560名学生,估计全校学生捐款多少元?PA C D BP/元五、(本题满分7分)23、如图,E F ,是平行四边形ABCD 的对角线AC 上的点,CE AF =. 请你猜想:BE 与DF 有怎样的位置..关系和数量..关系?并对你的猜想加以证明. 猜想: 证明:六、(本题满分8分)24、一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同. (1)从箱子中任意摸出一个球是白球的概率是多少?(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.七、(本题满分10分)25、地震发生后,一支专业搜救队驱车前往灾区救援.如图,汽车在一条南北走向的公路上向北行驶,当在A处时,车载GPS (全球卫星定位系统)显示村庄C 在北偏西25o方向,汽车以35km/h 的速度前行2h 到达B 处,GPS 显示村庄C 在北偏西52o方向.(1)求B 处到村庄C 的距离;(2)求村庄C 到该公路的距离.(结果精确到0.1km ) (参考数据:sin 260.4384o≈ ,cos 260.8988o ≈ ,sin520.7880o ≈ ,cos520.6157o≈ )八、(本题满分12分)26、如图,已知直线1l 的解析式为63+=x y ,直线1l 与x 轴、y 轴分别相交于A 、B 两点,直线2l 经过B 、C 两点,点C 的坐标为(8,0),又已知点P 在x 轴上从点A 向点C 移动,点Q 在直线2l 从点C 向点B 移动.点P 、Q 同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t 秒(101<<t).AN BC(第25题图)ABCDE F(1)求直线2l 的解析式.(2)设△PCQ 的面积为S ,请求出S 关于t 的函数关系式. (3)试探究:当t 为何值时,△PCQ 为等腰三角形?内蒙古呼伦贝尔市中考数学模拟试题二一、选择题题 号 1 2 3 4 5 6 7 8 9 10 答 案ADDBDCCCBD二、填空题11、5.4×101112、a(a+b)(a-b)13. 2008,14.2, 15.28元;16、15∏,17. 13+n 三、解答题 18.解:1022sin 60(75)3--︒+-+-13213221192=-⨯++=--------分 ……………………………(8分) 19、111(1)1(1)1x x x x x x x x x--=÷---=--=-g 解原式.--------6分当2x=时,原式2=-.--------9分20.解:所添加条件为PA =PB ································································································································ 2分 得到的一对全等三角形是△PAD ≌△PBC ········································································································ 4分 证明:∵PA =PB ···················································································································································· 5分 ∴∠A =∠B ·························································································································································· 6分 又∵AD =BC ······················································································································································· 7分白1白2红白1白2红红白2白1第二次摸出 的球第一次摸出 的球开始∴△PAD≌△PBC ················································································································································· 9分所添加条件,只要能证明三角形全等,按上面评分标准给分.21PAQ切⊙O于A AB,是⊙O的直径,∴90PAO∠=o.30P∠=oQ,∴60AOP∠=o.∴1302B AOP∠=∠=o.四、(本题满分7分)22..解:(1)设捐款30元的有6x人,则8x+6x=42.∴x=3.…………………………………………………………2分∴捐款人数共有:3x+4x+5x+8x+6x=78(人).……………………3分(2)由图象可知:众数为25(元);由于本组数据的个数为78,按大小顺序排列处于中间位置的两个数都是25(元),故中位数为25(元).…………………6分(3) 全校共捐款:(9×10+12×15+15×20+24×25+18×30)×781560=34200(元).……………8分五、(本题满分7分)23.猜想:BE DF∥,BE DF=证明:证法一:如图19-1Q四边形ABCD是平行四边形.BC AD∴=12∠=∠又CE AF=QBCE DAF∴△≌△BE DF∴=34∠=∠BE DF∴∥证法二:如图19-2连结BD,交AC于点O,连结DE,BF.Q四边形ABCD是平行四边形BO OD∴=,AO CO=又AF CE=QAE CF∴=EO FO∴=∴四边形BEDF是平行四边形BE DF∴∥六、24、解:(1)从箱子中任意摸出一个球是白球的概率是23P=(2)记两个白球分别为白1与白2,画树状图如右所示:从树状图可看出:事件发生的所有可能的结果总数为6,两次摸出球的都是白球的结果总数为2,AB CDEF图19-2OAB CDEF图19-12341因此其概率2163P ==. 七、25、解:过C 作CD AB ⊥,交AB 于D .(1)52CBD ∠=oQ ,26A ∠=o,26BCA ∴∠=o,70BC AB ∴==,即B 处到村庄C 的距离为70km . (2)在Rt CBD △中,sin52CD CB =⨯o 700.7880=⨯55.2≈.即村庄C 到该公路的距离约为55.2km . 八、26、解:(1)由题意知B(0,6),C(8,0)8k+b=0设直线l 2的解析式为y=kx+b,则 b=6 解得k=-3/4,b=6. ∴l 2的解析式为y=-3/4x+6 (2)解法一: 如图过P 作PD ⊥l 2于D 则△PDC ∽△BOC ∴PD/BO=PC/BC由题意知OA=2,OB=6,OC=8. ∴BC=10,PC=10-t. ∴PD/6=10-t./10 ∴PD=3/5(10-t)∴S △PCQ=1/2CQ ·PD=1/2t ·3/5(10-t)=-3/10t 2+3t 解法二如图过Q 作QD ⊥x 轴于D, 则△CQD ∽△CBO ∴QD/BO=QC=BC由题意知OA=2,OB=6,OC=8. ∴BC=10 ∴QD/6=t/10 ∴QD=3/5t∴S △PCQ =1/2PC ·QD=1/2(10-t) ·3/5 t=-3/10t 2+3t(3)要想使△PCQ 为等腰三角形,需满足CP=CQ 或QC=QP 或PC=PQ ①当CP=CQ 时,得(10-t)= t,则t=5,②当QC=QP 时,过Q 作QD ⊥x 轴于D,则CD=1/2PC=1/2(10-t) ∵△PDC ∽△BOC∴CD/CO=CQ/CB 即1/2(10-t)/8= t/10则t=50/13③当PC=PQ 时过P 作PD ⊥l 2于D,则CD=1/2CQ=1/2 t,ANBC∵△CDP∽△COB, ∴CD/CO=CP/CB ∴1/2 t/8=(10-t)/10,则t=80/13.。