吉林省长春市2015年中学考试数学试卷解析汇报版

合集下载

吉林省长春市东北师范大学附属中学2023-2024学年七年级下学期期中数学试题(解析版)

吉林省长春市东北师范大学附属中学2023-2024学年七年级下学期期中数学试题(解析版)

2023-2024学年东北师大附中初中部初一年级数学学科试卷第二学期期中考试考试时长:120分钟试卷分值:120分一、选择题(共8小题,每题3分,共24分)1. 如图,下列四种通信标志中,其图案是轴对称图形的是( )A. B. C. D.【答案】C【解析】【分析】本题主要考查了轴对称图形的识别,根据轴对称图形的定义进行逐一判断即可:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.【详解】解:A 、不是轴对称图形,故此选项不符合题意;B 、不是轴对称图形,故此选项不符合题意;C 、是轴对称图形,故此选项符合题意;D 、不是轴对称图形,故此选项不符合题意;故选:C .2. 已知,下列不等式成立的是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了不等式的基本性质,易错在不等式的基本性质3,不等式两边同时乘以或除以同一个负数,不等号的方向改变.不等式性质:基本性质1.不等式两边同时加上或减去同一个整式,不等号的方向不变.基本性质2.不等式两边同时乘以或除以同一个正数,不等号的方向不变.基本性质3.不等式两边同时乘以或除以同一个负数,不等号的方向改变.根据性质逐一分析即可.【详解】解:A .∵,∴,故不符合题意;B . ∵,∴,a b >a b->-22a b -<-22a b <0a b -<a b >a b -<-a b >a b -<-∴,故符合题意;C .∵,∴,故不符合题意;D . ∵,∴,故不符合题意.故选:B .3. 一副三角板,按如图所示叠放在一起,则图中的度数为( )A. B. C. D. 【答案】C【解析】【分析】本题考查了与三角板有关的运算以及三角形内角和性质,先得出,再运用三角形内角和进行列式,计算即可作答.【详解】解:如图所示:由题意得出,∴,∵,∴,故选:C .4. 下列多边形材料中,不能单独用来铺满地面的是( )A. 三角形B. 四边形C. 正五边形D. 正六边形【答案】C【解析】【分析】一个多边形的镶嵌应该符合其内角度数可以整除360°【详解】A 、三角形内角和为180°,能整除360°,能密铺,故此选项不合题意;22a b -<-a b >22a b >a b >0a b ->α∠60︒65︒75︒85︒115ABD ABC ∠=∠-∠=︒6045ABD ABC ∠=︒∠=︒,1604515ABD ABC ∠=∠-∠=︒-︒=︒90D Ð=°180901575α∠=︒-︒-︒=︒B 、四边形内角和为360°,能整除360°,能密铺,故此选项不合题意;C 、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺,故此选项合题意;D 、正六边形每个内角为180°﹣360°÷6=120°,能整除360°,能密铺,故此选项不合题意;故选C .【点睛】本题主要考查图形的镶嵌问题,重点是掌握多边形镶嵌的原理.5. 已知是关于x ,y 的方程,x +ky =3的一个解,则k 的值为( )A. -1B. 1C. 2D. 3【答案】B【解析】【分析】把x 与y 的值代入方程计算即可求出k 的值.【详解】解:∵是关于x 、y 的方程x +ky =3的一个解,∴把代入到原方程,得1+2k =3,解得k =1,故选:B .【点睛】本题主要考查了二元一次方程的解的定义,解一元一次方程,熟知方程的解是使方程两边相等的未知数的值是解题的关键.6. 一个三角形两边的长分别是3和5,则这个三角形第三边的长可能是( )A. 1B. C. 2 D. 4【答案】D【解析】【分析】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.先根据三角形的三边关系求出x 的取值范围,再求出符合条件的x 的值即可.【详解】解:设三角形第三边的长为x ,则,即,只有选项D 符合题意.故选D .7. 不等式的解集在数轴上表示正确的是( )12x y =⎧⎨=⎩12x y =⎧⎨=⎩12x y =⎧⎨=⎩1.55353x -<<+28x <<53x -≥A.B.C.D.【答案】A【解析】【分析】本题考查的是解一元一次不等式,利用数轴表示不等式的解集.先求出不等式的解集,再在数轴上表示出来不等式的解集即可,注意大于小于用空心,大于等于小于等于用实心,大于大于等于开口向右,小于小于等于开口向左.【详解】解:,,数轴上表示:,故选:A .8. 某学校为学生配备物理电学实验器材,一个电表包内装有1个电压表和2个电流表.某生产线共60名工人,每名工人每天可生产14个电压表或20个电流表.若分配名工人生产电压表,名工人生产电流表,恰好使每天生产的电压、电流表配成套,则可列出方程组( )A. B. C. D. 【答案】D【解析】【分析】本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是得到电压表数量和电流表数量的等量关系.【详解】解:若分配名工人生产电压表,名工人生产电流表,由题意,得.故选:D .二、填空题(共6小题,每小题3分,共18分)9. 已知二元一次方程,用含x 的代数式表示y ,则______.为53x -≥∴2x ≤x y 6022014x y y x+=⎧⎨⨯=⎩6014202x y x y +=⎧⎪⎨=⎪⎩601420x y x y +=⎧⎨=⎩6021420x y x y+=⎧⎨⨯=⎩x y 6021420x y y y +=⎧⎨⨯=⎩327x y +=y =【答案】【解析】【分析】本题考查了解二元一次方程,根据,将x 看成已知数,进行移项,再系数化1,即可作答.【详解】解:∵∴故答案为:10. 在通过桥洞时,往往会看到如图所示标志:这是限制车高的标志,表示车辆高度不能超过,通过桥洞的车高应满足的不等式为_____________.【答案】##【解析】【分析】根据不等式的定义列不等式即可.【详解】解:∵车辆高度不能超过,∴.故答案为.【点睛】本题主要考查列不等式,掌握不等式的定义是解答本题的关键.11. 不等式组的最小整数解为_________.【答案】【解析】【分析】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集,根据“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【详解】解:解不等式组得:,∴最小整数解为,故答案为:.的7322x -327x y +=327x y +=273y x=-7322y x =-7322x -5m m x 5x ≤5x≥5m 5x ≤5x ≤10{212x x -<-≥210{212x x -<-≥32x ≥2212. 如图,正五边形ABCDE 和正六边形EFGHMN 的边CD 、FG 在直线l 上,正五边形在正六边形左侧,两个正多边形均在l 的同侧,则的大小是___度.【答案】48【解析】【分析】利用正多边形的内角和,求出其中一个角的度数,进一步求出三角形DEF 的两个内角,最后由三角形内角和定理来求解.【详解】解:正五边形内角和为且在直线上,,正六边形内角和为且在直线上,,在中,,,,,故答案是:.【点睛】本题考查了正多边形的内角、三角形的内角和定理,解题的关键是:掌握正多边形内角和的求法.13. 我国传统数学名著九章算术记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两问牛、羊各一直金几何?”译文问题:“假设有头牛、只羊,值两银子;头牛、只羊,值两银子,问一头牛、一只羊一共值多少两银子?”则头牛、只羊一共值 ______ 两银子.【答案】【解析】【分析】设每头牛值两银子,每只羊值两银子,根据“头牛、只羊,值两银子;头牛、只羊,值两银子”,可得出关于,的二元一次方程组,利用,即可求出结论.DEF ∠ 540︒CD l 5401085EDC ︒∴∠==︒ 720︒FG l 7201206EFG ︒∴∠==︒EDF 180DEF EDF EFD ∠=︒-∠-∠18010872EDF ∠=︒-︒=︒ 18012060EFD ∠=︒-︒=︒48DEF ∴∠=︒48《》.52192516115x y 52192516x y ()7+÷①②【详解】解:设每头牛值两银子,每只羊值两银子,根据题意得:,得:,∴头牛、只羊一共值两银子,故答案为:.【点睛】本题考查了二元一次方程组的应用以及数学文化,找准等量关系,正确列出二元一次方程组是解题的关键.14. 为了更好的开展大课间活动,某班级计划购买跳绳和呼啦圈两种体育用品,已知一个跳绳8元,一个呼啦圈12元.准备用120元钱全部用于购买这两种体育用品(两种都要买且钱全部用完),则该班级的购买方案有______种.【答案】4【解析】【分析】设购买个跳绳,个呼啦圈,利用总价单价数量,即可得出关于,的二元一次方程,结合,均为正整数,即可得出购买方案的数量.本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.【详解】解:设购买个跳绳,个呼啦圈,依题意得:,.,均为正整数,为3的倍数,或或或,该班级共有4种购买方案.故答案为:4.三、解答题(共10小题,共78分)15. 解方程组:(1)x y 52192516x y x y +=⎧⎨+=⎩①②()7+÷①②5x y +=1155x y =⨯x y x y x y 812120x y +=2103y x ∴=-x y x ∴∴38x y =⎧⎨=⎩66x y =⎧⎨=⎩94x y =⎧⎨=⎩122x y =⎧⎨=⎩∴23328y x x y =-⎧⎨+=⎩(2)【答案】(1) (2)【解析】【分析】本题主要考查了解二元一次方程组:(1)利用代入消元法解方程组即可;(2)利用加减消元法解方程组即可.【小问1详解】解:把①代入②得:,解得,把代入①得,∴方程组的解为;小问2详解】解:得:,解得,把代入①得:,解得,∴方程组解为.16. 解下列不等式(组):(1);(2)【的28452x y x y +=⎧⎨-=⎩21x y =⎧⎨=⎩32x y =⎧⎨=⎩23328y x x y =-⎧⎨+=⎩①②()32238x x +-=2x =2x =2231y =⨯-=21x y =⎧⎨=⎩28452x y x y +=⎧⎨-=⎩①②2⨯-①②714y =2y =2y =228x +=3x =32x y =⎧⎨=⎩()32723x +≥()313122x x x x ⎧->⎪⎨--≥⎪⎩【答案】(1) (2)无解【解析】【分析】本题考查了解一元一次不等式以及解一元一次不等式组,正确掌握相关性质内容是解题的关键.(1)先去括号,再移项合并同类项,系数化1,即可作答.(2)分别算出每个不等式组的解集,再取公共部分的解集,即可作答.【小问1详解】解:,,,;【小问2详解】解:,由,得,解得,由,得,解得,此时不等式组无解.17. 如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为顶点的,线段在网格线上.(1)画出边上的高线;(2)画出边上的中线;(3)在线段上任取一点P ,则的面积是______.【答案】(1)见详解 (2)见详解(3)513x ≥()32723x +≥62123x +≥62x ≥13x ≥()313122x x x x ⎧->⎪⎨--≥⎪⎩()31x x ->33x x ->32x >3122x x --≥243x x -≥-1x ≤ABC MN AB CD BC AE MN ABP【解析】【分析】本题考查了三角形的高,中线的定义,运用网格求面积,正确掌握相关性质内容是解题的关键.(1)过点C 作垂直于的延长线,交点为点,即可作答.(2)根据网格特征以及中线定义,进行作图即可;(3)根据平行线之间的距离处处相等的性质,得出与的距离为5,再结合三角形面积公式进行计算,即可作答.【小问1详解】解:边上的高线如图所示:【小问2详解】解: 边上的中线如图所示:【小问3详解】解:如图所示:∴的面积.CD BA D MN AB AB CD BC AE ABP 12552=⨯⨯=18. 如图,在中,是的角平分线,,,求的度数.【答案】【解析】【分析】根据三角形外角的性质,角平分线的定义以及三角形的内角和定理即可得到结论.此题主要考查了三角形外角的性质,角平分线的定义,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.【详解】解:∵.∴,∵是角平分线,∴,在中,.19.若一个多边形的内角和的比它的外角和多,那么这个多边形的边数是多少?【答案】12【解析】【分析】设这个多边形的边数是n ,根据题意,列方程求解即可.【详解】解:设这个多边形的边数是n ,由题意得:,解得:,答:这个多边形的边数是12.【点睛】本题考查了多边形的内角和和外角和定理,熟练掌握两个定理是解题的关键.20. 在长方形中,放入5个形状大小相同的小长方形(空白部分),其中,,求图中阴影部分图形的面积.ABC AN ABC 50B ∠=︒80ANC ∠=︒C ∠70︒5080ANC B BAN B ANC ∠=∠+∠∠=︒∠=︒,,805030BAN ANC B ∠∠∠=-=︒-︒=︒AN BAC ∠223060BAC BAN ∠=∠=⨯︒=︒ABC 180180506070C B BAC ∠=︒-∠-∠=︒-︒-︒=︒1490︒1(2)180360904n -⨯︒=︒+︒1(2)180360904n -⨯︒=︒+︒12n =ABCD 8cm AB =12cm BC =【答案】【解析】【分析】设小长方形的长为,宽为,根据图形中大长方形的长和宽列二元一次方程组,求出和的值,即可解决问题.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.【详解】解:设小长方形的长为,宽为,根据题意,得:,解得:,每个小长方形的面积为,阴影部分的面积.21. 阅读下列材料:小明同学在学习二元一次方程组时遇到了这样一个问题:解方程组.小明发现,如果用代入消元法或加减消元法求解,运算量比较大,容易出错.如果把方程组中的看成一个整体,把看成一个整体,通过换元,可以解决问题.以下是他的解题过程:令,.原方程组化为,解得,把代入,,得,解得,236cm xcm ycm x y xcm ycm 3128x y x y +=⎧⎨+=⎩62x y =⎧⎨=⎩∴()22612cm ⨯=∴()281251236cm =⨯-⨯=23237432323832x y x yx y x y +-⎧+=⎪⎪⎨+-⎪+=⎪⎩()23x y +()23x y -23m x y =+23n x y =-743832m nm n ⎧+=⎪⎪⎨⎪+=⎪⎩6024m n =⎧⎨=-⎩6024m n =⎧⎨=-⎩23m x y =+23n x y =-23602324x y x y +=⎧⎨-=-⎩914x y =⎧⎨=⎩原方程组的解为.(1)学以致用:运用上述方法解方程组:(2)拓展提升:已知关于x ,y 的方程组的解为,请直接写出关于m 、n 的方程组的解是______.【答案】(1) (2)【解析】【分析】本题主要考查了换元法解二元一次方程组:(1)结合题意,利用整体代入法求解,令,得,解得即即可求解;(2)结合题意,利用整体代入法求解,令,,则可化为,且解为则有,求解即可.【小问1详解】解:令,,原方程组化为,解得,∴914x y =⎧⎨=⎩()()()()213211224x y x y ⎧++-=⎪⎨+--=⎪⎩111222a xb yc a x b y c +=⎧⎨+=⎩34x y =⎧⎨=⎩()()1112222323a m b n c a m b n c ⎧+-=⎪⎨+-=⎪⎩11x y =⎧⎨=⎩143m n =⎧⎪⎨=-⎪⎩1m x =+2n y =-23124m n m n +=⎧⎨-=⎩21m n =⎧⎨=-⎩1221x y +=⎧⎨-=-⎩2x m =+3y n =-()()1212222323a m b n c a m b n c ⎧+-=⎪⎨+-=⎪⎩121222a x b y c a x b y c +=⎧⎨+=⎩34x y =⎧⎨=⎩2334m n +=⎧⎨-=⎩1m x =+2n y =-23124m n m n +=⎧⎨-=⎩21m n =⎧⎨=-⎩,解得:,∴原方程组的解为 ;【小问2详解】解:在中,令,,则可化为,∵方程组解为,∴,,故答案为:.22. “粮食生产根本在耕地、出路在科技”.为提高农田耕种效率,今年开春某农村合作社计划投入资金购进甲、乙两种农耕设备,已知购进2台甲种农耕设备和1台乙种农耕设备共需4.2万元;购进1台甲种农耕设备和3台乙种农耕设备共需5.1万元.(1)求甲种农耕设备和乙种农耕设备单价各是多少万元;(2)若该合作社决定购买甲、乙两种农耕设备共7台,且购进甲、乙两种农耕设备总资金不超过10万元,求最多可以购进甲种农耕设备多少台.【答案】(1)1台甲种农耕设备需1.5万元,1台乙种农耕设备需1.2万元; (2)5台【解析】【分析】(1)设购进1台甲种农耕设备需万元,1台乙种农耕设备需万元,根据“购进2台甲种农耕设1221x y +=⎧∴⎨-=-⎩11x y =⎧⎨=⎩11x y =⎧⎨=⎩()()1212222323a m b n c a m b n c ⎧+-=⎪⎨+-=⎪⎩2x m =+3y n =-()()1212222323a m b n c a m b n c ⎧+-=⎪⎨+-=⎪⎩121222a x b y c a x b y c +=⎧⎨+=⎩121222a x b y c a x b y c +=⎧⎨+=⎩34x y =⎧⎨=⎩2334m n +=⎧⎨-=⎩143m n =⎧⎪∴⎨=-⎪⎩143m n =⎧⎪⎨=-⎪⎩x y备和1台乙种农耕设备共需4.2万元;购进1台甲种农耕设备和3台乙种农耕设备共需5.1万元”,可得出关于,的二元一次方程组,解之即可得出结论;(2)设购进甲种农耕设备台,则购进乙种农耕设备台,利用总价单价数量,结合总价不超过10万元,可得出关于的一元一次不等式,解之可得出的取值范围,再取其中的最大整数值,即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.【小问1详解】解:设购进1台甲种农耕设备需万元,1台乙种农耕设备需万元,根据题意得:,解得:.答:购进1台甲种农耕设备需1.5万元,1台乙种农耕设备需1.2万元;【小问2详解】解:设购进甲种农耕设备台,则购进乙种农耕设备台,根据题意得:,解得:,又为正整数,的最大值为5.答:最多可以购进甲种农耕设备5台.23. 【探究】如图①,在中,点D 是延长线上一点,的平分线与的平分线相交于点P .则有,请补全下面证明过程:证明:平分,平分,,______(______).______(三角形的一个外角等于与它不相邻的两个内角的和),.x y m ()7m -=⨯m m x y 2 4.23 5.1x y x y +=⎧⎨+=⎩1.51.2x y =⎧⎨=⎩m ()7m -()1.5 1.2710m m +-≤153m ≤m m ∴ABC BC ABC ∠BP ACD ∠CP 12P A ∠=∠BP ABC ∠CP ACD ∠2ABC PBC ∴∠=∠2ACD ∠=∠ACD A ∠=∠+∠ 22PCD A PBC ∴∠=∠+∠(三角形的一个外角等于与它不相邻的两个内角的和),.【应用】如图②,在四边形中,设,,若,四边形的内角与外角的角平分线相交于点P .为了探究的度数与和的关系,小明同学想到将这个问题转化图①的模型,因此,延长了边与交于点A .如图③,若,,则,因此.【拓展】如图④,在四边形中,设,,若,四边形的内角与外角的角平分线所在的直线相交于点P ,请直接写出______.(用含有和的代数式表示)【答案】探究:;角平分线的定义;;;应用:;;拓展:【解析】【分析】本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义:探究:根据三角形外角的性质和角平分线的定义结合已给推理过程求解即可;应用:先利用平角的定义和三角形内角和定理求出的度数,再有探究的结论即可得到答案;拓展:延长交的延长线于A ,则由三角形内角和定理可得;再由题意可得分别平分,则.【详解】解:探究:证明:平分,平分,,(角平分线的定义).(三角形的一个外角等于与它不相邻的两个内角的和),._____PCD PBC ∠=∠+∠ 12P A ∴∠=∠MNCB M α∠=N β∠=180αβ+>︒MBC ∠NCD ∠BP CP ,P ∠αβBM CN 106BMN∠=︒124MNC ∠=︒______A ∠=︒______P ∠=︒MNCB M α∠=N β∠=180αβ+<︒MBC ∠NCD ∠P ∠=αβPCD PBC P 50︒25︒121902αβ︒--A ∠MB NC 180A αβ=︒--∠PB PC ,ABH ACB ∠,∠11190222P A αβ==︒--∠BP ABC ∠CP ACD ∠2ABC PBC ∴∠=∠2ACD PCD ∠=∠ACD A ABC ∠=∠+∠Q 22PCD A PBC ∴∠=∠+∠(三角形的一个外角等于与它不相邻的两个内角的和),,故答案为:;角平分线的定义;;;应用:延长了边与交于点A .如图③,∵,,∴,∴,∴,故答案:;.拓展:如图,延长交的延长线于A ,∵,,∴;∵四边形的内角与外角的角平分线所在的直线相交于点P ,∴分别平分,∴,故答案为:.24. 如图①,点O 为数轴原点,,正方形的边长为6,点P 从点O 出发,沿射线方向运动,速度为每秒2个单位长度,设运动时间为t 秒,请回答下列问题.为PCD P PBC ∠=∠+∠ 12P A ∴∠=∠PCD PBC P BM CN 106BMN∠=︒124MNC ∠=︒1807418056AMN BMN ANM MNC =︒-=︒=︒-=︒∠∠,∠∠18050A AMN ANM =︒--=︒∠∠∠1252P A ∠=∠=︒50︒25︒MB NC M α∠=N β∠=180180A M N αβ=︒--=︒--∠∠∠MBC ∠NCD ∠PB PC ,ABH ACB ∠,∠11190222P A αβ==︒--∠121902αβ︒--3OA =ABCD OA(1)点A 表示的数为______,点D 表示的数为______.(2)的面积为6时,求t 的值.(3)如图②,当点P 运动至D 点时,立即以原速返回,到O 点后停止.在点P 运动过程中,作线段,点E 在数轴上点P 右侧,以为边向上作正方形,当与面积和为16时,直接写出t 的值.【答案】(1)3,9(2)t的值为秒或秒 (3)或或或.【解析】【分析】(1)根据线段的长和正方形的边长可以求解.(2)根据点的运动速度与运动时间得出运动路程,对应数数轴得出结论.(3)根据点运动确定正方形的位置再去讨论与面积和为16时的值.本题考查了数轴与动点的结合,表示出点的运动距离是本题的解题关键.【小问1详解】解: ,且为数轴原点,在的右侧,表示的数为3,正方形的边长为6,,表示的数为9.故答案是3,9;【小问2详解】解:∵的面积为6,∴,解得,点从点开始运动且速度为每秒2个单位长度,,APC △3PE =PE PEFG DPF ABG 12521318t =23631614918OA P P DPF ABG t P 3OA = O O A ∴ 639OD ∴=+=D ∴APC △116622APC S AP CD AP =⨯=⨯⨯=△2AP =P O 2OP t ∴=∵,∴当点在之间时,则,解得,∴当点在的延长线上时,则,解得,∴的面积为6时,t 的值为秒或秒;【小问3详解】解:①当P 点在A 点左侧时,,由题意得:连接,如图所示:∵,∴,∵速度为每秒2个单位长度,设运动时间为t 秒,∴,∴,∴,,∵与面积和为16,∴,解得,当P 点在A 点右侧时,连接,如图所示:3OA =P AO 3322AP OP t =-=-=12t =P OA 3232AP OP t =-=-=52t =APC △12522OP t =BG AG PF FD ,,,36OA AD ==,9OD =902t ≤≤32PA OA OP t =-=-()11279233222DPF S PD EF t t =⨯⨯=-⨯=- ()116329622ABGS AB AP t t =⨯⨯=⨯⨯-=- DPF ABG 27396162DPF ABG S S t t +=-+-= 1318t =BG AG PF FD ,,,同理得,,∵与面积和为16,∴,解得,②点从向运动时,则,连接,如图所示:∴此时,,∵与面积和为16,∴,()11279233222DPF S PD EF t t =⨯⨯=-⨯=- ()116236922ABGS AB AP t t =⨯⨯=⨯⨯-=- DPF ABG 27369162DPF ABG S S t t +=-+-= 236t =P D O 9999222t <≤+=BG AG PF FD ,,,9926222PD t AP AD PD t ⎛⎫⎛⎫=⨯-=-=-- ⎪ ⎪⎝⎭⎝⎭,119272332222DPF S PD EF t t ⎛⎫=⨯⨯=⨯-⨯=- ⎪⎝⎭ 119662456222ABG S AB AP t t ⎡⎤⎛⎫=⨯⨯=⨯⨯--=- ⎪⎢⎥⎝⎭⎣⎦ DPF ABG 273456162DPF ABG S S t t +=-+-=解得,当P 点在A 点左侧时,由题意得:连接,如图所示:∴,此时,,∵与面积和为16,∴,解得,综上:或或或.316t =BG AG PF FD ,,,92292962152PD t t AP PD AD t t ⎛⎫=⨯-=-=-=--=- ⎪⎝⎭,119272332222DPF S PD EF t t ⎛⎫=⨯⨯=⨯-⨯=- ⎪⎝⎭ ()11621564522ABG S AB AP t t =⨯⨯=⨯⨯-=- DPF ABG 273645162DPF ABG S S t t +=-+-= 14918t =1318t =23631614918。

—长春市朝阳区九年级上期中考试数学试卷含答案.doc

—长春市朝阳区九年级上期中考试数学试卷含答案.doc

九年级数学期中考试参考答案阅卷说明:1.评卷采分最小单位为1分,每步标出的是累计分.2.考生若用本“参考答案”以外的解(证)法,可参照本“参考答案”的相应步骤给分.一、选择题(每小题3分,共24分)1.B 2.A 3.B 4.D 5.C 6.D 7.C 8.C二、填空题(每小题3分,共18分)9.20 10.4x = 11.6 12.4.5 13.(-1,1) 14.5.5评分说明:第10题写出两个根不给分,写成4可以给分.三、解答题(本大题10小题,共78分)15.原式=(3分)=(6分) 16.(1)二(1分) 等式的基本性质2用错(2分) (2)(2)(2)0x x x -+-=.(2)(1)0x x -+=.11x =-,22x =.(6分) 评分说明:第(1)题第2空写成“漏掉2x =的解”或者“等式的基本性质用错”均给分;意思表述正确,可以给分.17.由题意,得2340m ∆=->.(3分) 解得94m <.(5分) 所以m 的最大整数值为2.(6分) 18.设该县投入教育经费的年平均增长率为x .(1分) 由题意,得25 000(1) 5 000 2 200x +=+.(4分) 解得10.220%x ==,2 2.2x =-(不合题意,舍去).(6分) 答:该县投入教育经费的年平均增长率为20%.(7分) 19.答案不唯一,以下答案供参考,画对一个得4分,两个都画对得7分.20.(1)∵△ABC 是等边三角形, ∴AB =AC ,∠ABC =∠ACB =60°.(1分) ∵DE ∥AB , ∴∠ABC =∠ADE =60°,∠ACB =∠AED =60°.∴∠ADE =∠AED =60°. ∴△ADE 是等边三角形.(2分) ∴AD =AE .∴BD CE =.(3分) ∵M 、N 分别为DE 、BE 的中点, ∴12MN BD =.∵N 、P 分别为BE 、BC 的中点,∴12NP CE =.(4分) (第20题) P N M ED CB AP4P 3P2P 1AB CED (第19题)∴MN PN =. (5分)(2)120 (7分)21.(1)(324)m x -. (2分)(2)由题意,得(324)316x x -=⨯. (4分) 解得122,6x x ==. (6分) 当2x =时,324248x -=>,不合题意,舍去.当6x =时,3248x -=. (7分) 答:AB 的长是6m . (8分) 评分说明:(1)第(1)题不带单位可给分,带单位不加括号可给分.(2)第(2)题答不带单位可给分.22.探究:如图.∵四边形ABCD 是矩形,∴90D C ∠=∠=︒.(2分) ∴90DEP DPE ∠+∠=︒.(3分) ∵EF PE ⊥,∴90DEP CEF ∠+∠=︒.(4分) ∴DPE CEF ∠=∠.(5分) ∴PDE ∆∽ECF ∆.(6分) 应用:2(9分) 23.(1)1- 2(2分) (2)424225214x x x x -+=-++22(1)4x =-+(3分) ∵22(1)0x -≥,∴22(1)40x -+>.∴代数式4225x x -+的值一定是正数.(4分) 当1x =±时,这个代数式的值最小,最小值是4.(6分) (3)由题意,得21S a =,24(3)412S a a =-=-.(8分) 则22212(412)412(2)8S S a a a a a -=--=-+=-+. (9分) ∵2(2)0a ->,∴2(2)80a -+>.∴120S S ->.∴12S S >.(10分) 评分说明:第(3)题只写出12S S >,没有证明,可给1分.24.(1)如图①,∵DP AB ⊥,90C ∠=︒,∴90C ADP ∠=∠=︒.由勾股定理,得4AC ==.∵A A ∠=∠, ∴APD ∆∽ABC ∆. ∴AP ADAB AC =. ∴2 2.554t =. QPBA CD 图① (第22题) A BC D E F P∴2516t =. (2分) (2)如图②,当CPQ ∆∽CAB ∆时,则CP CQ CA CB=. ∴4243t t -=. ∴65t =. (3分)如图③,当CPQ ∆∽CBA ∆时,则CP CQ CB CA=. ∴4234t t -=. ∴1611t =. (4分) (3)如图④,当02t ≤≤时,分别过点P 、Q 作PE AB ⊥于点E ,QF AB ⊥于点F .∴DPQ ABC ADP CPQ BDQ S S S S S ∆∆∆∆∆=--- 11112222A CBC AD PE B D QF C P C Q =⋅-⋅-⋅-⋅ 11531541432(3)(42)22252252t t t t =⨯⨯-⨯⨯⨯-⨯⨯⨯--- ∴2532S t t =-+. (6分)如图⑤,当23t <≤时,分别过点P 、Q 作PE AB ⊥于点E ,QF AB ⊥于点F .∴DPQ ABC ADP CPQ BDQ S S S S S ∆∆∆∆∆=--- 11112222A CBC AD PE B D QF C P C Q =⋅-⋅-⋅-⋅ 1153154143(82)(3)(24)22252252t t t t =⨯⨯-⨯⨯--⨯⨯⨯--- ∴2932S t t =-+-. (8分) (4)1t =,32t =,t =,3t =. (12分) 【提示】如图⑥~⑨.Q P B A C D D Q P B A C (Q )DP B A CC A B P QD 图⑥ 图⑦ 图⑧ 图⑨ 图④ FE D C A B P Q 图⑤ Q P B A C D EF 图② D C A B P Q Q P B A C D 图③。

吉林省长春市中考数学试卷及答案(Word解析版)

吉林省长春市中考数学试卷及答案(Word解析版)

吉林省长春市中考数学试卷一、选择题(每小题3分,共24分)1.(3分)(•长春)的绝对值等于()A.B.4C.D.﹣4考点:绝对值.分析:根据负数的绝对值等于它的相反数解答.解答:解:﹣的绝对值等于,即|﹣|=.故选A.点评:本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(•长春)如图是由四个相同的小长方体组成的立体图形,这个立体图形的正视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有1个长方形,位于左边,第二层有2个长方形.故选D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(3分)(•长春)我国第一艘航空母舰辽宁航空舰的电力系统可提供14 000 000瓦的电力.14 000 000这个数用科学记数法表示为()A.14×106B.1.4×107C.1.4×108D.0.14×108考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于14 000 000有8位,所以可以确定n=8﹣1=7.解答:解:14 000 000=1.4×107.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(3分)(•长春)不等式2x<﹣4的解集在数轴上表示为()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式分析:首先解不等式求得不等式的解集,根据数轴上点的表示法即可判断.解答:解:解不等式得:x<﹣2.故选D.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)(•长春)如图,含30°角的直角三角尺DEF放置在△ABC上,30°角的顶点D 在边AB上,DE⊥AB.若∠B为锐角,BC∥DF,则∠B的大小为()A.30°B.45°C.60°D.75°考点:平行线的性质;直角三角形的性质.分析:首先根据垂直定义可得∠ADE=90°,再根据∠FDE=30°,可得∠ADF=60°,然后根据两直线平行同位角相等可得∠B的大小.解答:解:∵DE⊥AB,∴∠ADE=90°,∵∠FDE=30°,∴∠ADF=90°﹣30°=60°,∵BC∥DF,∴∠B=∠ADF=60°,故选:C.点评:此题主要考查了平行线的性质,关键是掌握两直线平行同位角相等.6.(3分)(•长春)如图,△ABC内接于⊙O,∠ABC=71°,∠CAB=53°,点D在AC 弧上,则∠ADB的大小为()A.46°B.53°C.56°D.71°考点:圆周角定理.分析:根据三角形内角和定理求出∠ACB,根据圆周角定理得出∠C,求出即可.解答:解:∵∠ABC=71°,∠CAB=53°,∴∠ACB=180°﹣∠ABC﹣∠BAC=56°,∵弧AB对的圆周角是∠ADB和∠ACB,∴∠ADB=∠ACB=56°,故选C.点评:本题考查了圆周角定理和三角形内角和定理的应用,关键是求出∠ACB的度数和得出∠ACB=∠ADB.7.(3分)(•长春)如图,∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,则CD的长为()A.B.C.2D.3考点:相似三角形的判定与性质.专题:探究型.分析:先根据题意判断出△ABD∽△BDC,再根据相似三角形的对应边成比例即可得出CD的长.解答:解:∵∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,∴△ABD∽△BDC,∴=,即=,解得CD=.故选B.点评:本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.8.(3分)(•长春)如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x 轴向右平移后得到△O′A′B′,点A的对应点在直线y=x上一点,则点B与其对应点B′间的距离为()A.B.3C.4D.5考点:一次函数图象上点的坐标特征;坐标与图形变化-平移分析:根据平移的性质知BB′=AA′.由一次函数图象上点的坐标特征可以求得点A′的坐标,所以根据两点间的距离公式可以求得线段AA′的长度,即BB′的长度.解答:解:如图,连接AA′、BB′.∵点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是3.又∵点A的对应点在直线y=x上一点,∴3=x,解得x=4.∴点A′的坐标是(4,3),∴AA′=4.∴根据平移的性质知BB′=AA′=4.故选C.点评:本题考查了一次函数图象上点的坐标特征、坐标与图形变化﹣﹣平移.根据平移的性质得到BB′=AA′是解题的关键.二、填空题(每小题3分,共18分)9.(3分)(•长春)计算:a2•5a=5a3.考点:单项式乘单项式专题:计算题.分析:利用单项式乘单项式法则计算即可得到结果.解答:解:原式=5a3.故答案为:5a3.点评:此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.10.(3分)(•长春)吉林广播电视塔“五一”假期第一天接待游客m人,第二天接待游客n人,则这2天平均每天接待游客人(用含m、n的代数式表示).考点:列代数式分析:用两天接待的游客总人数除以天数,即可得解.解答:解:2天平均每天接待游客.故答案为:.点评:本题考查了列代数式,比较简单,熟练掌握平均数的求法是解题的关键.11.(3分)(•长春)如图,MN是⊙O的弦,正方形OABC的顶点B、C在MN上,且点B是CM的中点.若正方形OABC的边长为7,则MN的长为28.考点:垂径定理;正方形的性质.分析:根据正方形性质得出BC=7,∠OCB=90°,根据垂径定理得出CM=2BC,推出MN=4BC,代入求出即可.解答:解:∵四边形OABC是正方形,∴BC=7,∠OCB=90°,∴OC⊥MN,∴由垂径定理得:MN=2CM,∵点B是CM的中点,∴CM=2BC,∴MN=4BC=4×7=28,故答案为:28.点评:本题考查了垂径定理和正方形性质的应用,关键是推出MN=4BC.12.(3分)(•长春)如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连结AD、CD.若∠B=65°,则∠ADC 的大小为65度.考点:全等三角形的判定与性质.分析:根据作法可得AB=CD,BC=AD,然后利用“边边边”证明△ABC和△CDA全等,再根据全等三角形对应角相等解答.解答:解:∵以点A为圆心,以BC长为半径作弧;以顶点C为圆心,以AB长为半径作弧,两弧交于点D,∴AB=CD,BC=AD,在△ABC和△CDA中,,∴△ABC≌△CDA,∴∠ADC=∠B=65°.故答案为:65.点评:本题考查了全等三角形的判定与性质,根据作法得到全等三角形相等的边是解题的关键.13.(3分)(•长春)如图,在平面直角坐标系中,边长为6的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上,点B在反比例函数位于第一象限的图象上,则k 的值为.考点:正多边形和圆;反比例函数图象上点的坐标特征.分析:连接OB,过B作BM⊥OA于M,得出等边三角形AOB,求出OB,根据锐角三角函数求出BM和OM,即可得出B的坐标,代入即可求出答案.解答:解:连接OB,过B作BM⊥OA于M,∵六边形ABCDEF是正六边形,∴∠AOB==60°,∵OA=OB,∴△AOB是等边三角形,∴OA=OB=AB=6,∴BM=OB•sin∠BOA=6×sin60°=3,OM=OB•COS60°=3,即B的坐标是(3,3),∵B在反比例函数位于第一象限的图象上,∴k=3×3=9,故答案为:9.点评:本题考查了正多边形性质,锐角三角函数,反比例函数的性质,等边三角形的性质和判定的应用,关键是求出B的坐标.14.(3分)(•长春)如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A与x轴平行的直线交抛物线y=于点B、C,则BC的长值为6.考点:二次函数图象上点的坐标特征.分析:先由y轴上点的横坐标为0求出A点坐标为(0,3),再将y=3代入y=,求出x的值,得出B、C两点的坐标,进而求出BC的长度.解答:解:∵抛物线y=ax2+3与y轴交于点A,∴A点坐标为(0,3).当y=3时,=3,解得x=±3,∴B点坐标为(﹣3,3),C点坐标为(3,3),∴BC=3﹣(﹣3)=6.故答案为6.点评:本题考查了二次函数图象上点的坐标特征,两函数交点坐标的求法,平行于x轴上的两点之间的距离,比较简单.三、解答题(本大题共10小题,共78分)15.(6分)(•长春)先化简,再求值:,其中x=.考点:分式的化简求值专题:计算题.分析:将的分子因式分解,然后约分;再将(x﹣2)2展开,合并同类项后再代入求值即可.解答:解:原式==4x+x2﹣4x+4=x2+4.当x=时,原式==11.点评:本题考查了分式的化简求值,熟悉因式分解及约分、通分是解题的关键.16.(6分)(•长春)甲、乙两人各有一个不透明的口袋,甲的口袋中装有1个白球和2个红球,乙的口袋中装有2个白球和1个红球,这些球除颜色外其他都相同.甲、乙两人分别从各自口袋中随机摸出1个球,用画树状图(或列表)的方法,求两人摸出的球颜色相同的概率.考点:列表法与树状图法专题:计算题.分析:列表得出所有等可能的情况数,找出两人摸出的求颜色相同的情况数,即可求出所求的概率.解答:解:列表如下:甲乙结果白红红白(白,白)(红,白)(红,白)白(白,白)(红,白)(红,白)红(白,红)(红,红)(红,红)所有等可能的情况有9种,其中颜色相同的情况有4种,则P(两人摸出的球颜色相同)=.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(6分)(•长春)某班在“世界读书日”开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍.求第一组的人数.考点:分式方程的应用.分析:首先设第一组有x人,则第二组人数是1.5x人,根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数﹣第二组同学共带图书27本÷第二组的人数=1,根据等量关系列出方即可.解答:解:设第一组有x人.根据题意,得=,解得x=6.经检验,x=6是原方程的解,且符合题意.答:第一组有6人.点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,不要忘记检验.18.(7分)(•长春)在△ABC中,AB=AC,点D、E、F分别是AC、BC、BA延长线上的点,四边形ADEF为平行四边形.求证:AD=BF.考点:平行四边形的性质专题:证明题.分析:根据平行四边形的对边平行且相等可得AD=EF,AD∥EF,再根据两直线平行,同位角相等可得∠ACB=∠FEB,根据等边对等角求出∠ACB=∠B,从而得到∠FEB=∠B,然后根据等角对等边证明即可.解答:证明:∵四边形ADEF为平行四边形,∴AD=EF,AD∥EF,∴∠ACB=∠FEB,∵AB=AC,∴∠ACB=∠B,∴∠FEB=∠B,∴EF=BF,∴AD=BF.点评:本题考查了平行四边形对边平行且相等的性质,平行线的性质,等角对等边的性质,熟练掌握各性质是解题的关键.19.(7分)(•长春)如图,岸边的点A处距水面的高度AB为2.17米,桥墩顶部点C距水面的高度CD为23.17米.从点A处测得桥墩顶部点C的仰角为26°,求岸边的点A与桥墩顶部点C之间的距离.(结果精确到0.1米)(参考数据:sin26°=0.44,cos26°=0.90,tan26°=0.49)考点:解直角三角形的应用-仰角俯角问题分析:在Rt△CAE中,利用CD、DE的长和已知的角的度数,利用正弦函数可求得AC的长.解答:解:由题意知,DE=AB=2.17,∴CE=CD﹣DE=12.17﹣2.17=10.在Rt△CAE中,∠CAE=26°,sin∠CAE=,∴AC===≈22.7(米).答:岸边的点A与桥墩顶部点C之间的距离约为22.7米.点评:本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.20.(7分)(•长春)某校学生会为了解学生在学校食堂就餐剩饭情况,随机对上周在食堂就餐的n名学生进行了调查,先调查是否剩饭的情况,然后再对其中剩饭的每名学生的剩饭次数进行调查.根据调查结果绘制成如下统计图.(1)求这n名学生中剩饭学生的人数及n的值.(2)求这n名学生中剩饭2次以上的学生占这n名学生人数的百分比.(3)按上述统计结果,估计上周在学校食堂就餐的1 200名学生中剩饭2次以上的人数.考点:条形统计图;用样本估计总体;扇形统计图专题:计算题.分析:(1)由条形统计图中的数据相加即可求出n名学生中剩饭的学生人数,除以剩饭学生所占的百分比即可求出学生的总数,即为n的值;(2)根据条形统计图得到剩饭2次以上的人数,除以n的值,即可求出结果;(3)根据(2)中求出的百分比,乘以1200即可得到结果.解答:解:(1)根据题意得:这n名学生中剩饭学生的人数为58+41+6=105(人),n的值为105÷70%=150,则这n名学生中剩饭的学生有105人,n的值为150;(2)根据题意得:6÷150×100%=4%,则剩饭2次以上的学生占这n名学生人数的4%;(3)根据题意得:1200×4%=48(人).则估计上周在学校食堂就餐的1200名学生中剩饭2次以上的约有48人.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.(8分)(•长春)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC﹣CD﹣DE,如图所示,从甲队开始工作时计时.(1)分别求线段BC、DE所在直线对应的函数关系式.(2)当甲队清理完路面时,求乙队铺设完的路面长.考点:一次函数的应用分析:(1)先求出乙队铺设路面的工作效率,计算出乙队完成需要的时间求出E的坐标,再由待定系数法就可以求出结论.(2)由(1)的结论求出甲队完成的时间,把时间代入乙的解析式就可以求出结论.解答:(1)设线段BC所在直线对应的函数关系式为y=k1x+b1.∵图象经过(3,0)、(5,50),∴∴线段BC所在直线对应的函数关系式为y=25x﹣75.设线段DE所在直线对应的函数关系式为y=k2x+b2.∵乙队按停工前的工作效率为:50÷(5﹣3)=25,∴乙队剩下的需要的时间为:(160﹣50)÷25=,∴E(,160),∴,解得:∴线段DE所在直线对应的函数关系式为y=25x﹣112.5.(2)由题意,得甲队每小时清理路面的长为 100÷5=20,甲队清理完路面的时间,x=160÷20=8.把x=8代入y=25x﹣112.5,得y=25×8﹣112.5=87.5.答:当甲队清理完路面时,乙队铺设完的路面长为87.5米.点评:本题考查了待定系数法求一次函数的解析式的运用,工作总量=工作效率×工作时间的运用,解答时求出函数的解析式是关键.22.(9分)(•长春)探究:如图①,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥CD于点E.若AE=10,求四边形ABCD的面积.应用:如图②,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E.若AE=19,BC=10,CD=6,则四边形ABCD的面积为152.考点:全等三角形的判定与性质;正方形的判定与性质.分析:探究:过点A作AF⊥CB,交CB的延长线于点F,先判定四边形AFCE为矩形,根据矩形的四个角都是直角可得∠FAE=90°,然后利用同角的余角相等求出∠FAB=∠EAD,再利用“角角边”证明△AFB和△AED全等,根据全等三角形对应边相等可得AE=AF,从而得到四边形AFCE是正方形,然后根据正方形的面积公式列计算即可得解;应用:过点A作AF⊥CD交CD的延长线于F,连接AC,根据同角的补角相等可得∠ABC=∠ADF,然后利用“角角边”证明△ABE和△ADF全等,根据全等三角形对应边相等可得AF=AE,再根据S四边形ABCD=S△ABC+S△ACD列式计算即可得解.解答:探究:如图①,过点A作AF⊥CB,交CB的延长线于点F,∵AE⊥CD,∠BCD=90°,∴四边形AFCE为矩形,∴∠FAE=90°,∴∠FAB+∠BAE=90°,∵∠EAD+∠BAE=90°,∴∠FAB=∠EAD,∵在△AFB和△AED中,,∴△AFB≌△AED(AAS),∴AF=AE,∴四边形AFCE为正方形,∴S四边形ABCD=S正方形AFCE=AE2=102=100;应用:如图,过点A作AF⊥CD交CD的延长线于F,连接AC,则∠ADF+∠ADC=180°,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADF,∵在△ABE和△ADF中,,∴△ABE≌△ADF(AAS),∴AF=AE=19,∴S四边形ABCD=S△ABC+S△ACD=BC•AE+CD•AF=×10×19+×6×19=95+57=152.故答案为:152.点评:本题考查了全等三角形的判定与性质,正方形的判定与性质,(1)作辅助线构造出全等三角形是解题的关键;(2)作辅助线构造出全等三角形并把四边形分成两个三角形是解题的关键.23.(10分)(•长春)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2 与x轴交于点A(﹣1,0)、B(4,0).点M、N在x轴上,点N在点M右侧,MN=2.以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°.设点M的横坐标为m.(1)求这条抛物线所对应的函数关系式.(2)求点C在这条抛物线上时m的值.(3)将线段CN绕点N逆时针旋转90°后,得到对应线段DN.①当点D在这条抛物线的对称轴上时,求点D的坐标.②以DN为直角边作等腰直角三角形DNE,当点E在这条抛物线的对称轴上时,直接写出所有符合条件的m值.(参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(,))考点:二次函数综合题分析:(1)将A(﹣1,0)、B(4,0)两点的坐标代入y=ax2+bx﹣2,运用待定系数法即可求出抛物线的解析式;(2)先根据等腰直角三角形的性质求出点C的坐标为(m,2),再将C的坐标代入y=x2﹣x﹣2,即可求出m的值;(3)①先由旋转的性质得出点D的坐标为(m,﹣2),再根据二次函数的性质求出抛物线y=x2﹣x﹣2的对称轴为直线x=,然后根据点D在直线x=上,即可求出点D的坐标;②以DN为直角边作等腰直角三角形DNE时,分别以D、N为直角顶点,在DN的两侧分别作出等腰直角三角形DNE,E点的位置分四种情况讨论.针对每一种情况,都可以先根据等腰直角三角形的性质求出点E的坐标,然后根据点E在直线x=上,列出关于m的方程,解方程即可求出m的值.解答:解:(1)∵抛物线经过点A(﹣1,0)、B(4,0),∴解得∴抛物线所对应的函数关系式为y=x2﹣x﹣2;(2)∵△CMN是等腰直角三角形CMN,∠CMN=90°,∴CM=MN=2,∴点C的坐标为(m,2),∵点C(m,2)在抛物线上,∴m2﹣m﹣2=2,解得m1=,m2=.∴点C在这条抛物线上时,m的值为或;(3)①∵将线段CN绕点N逆时针旋转90°后,得到对应线段DN,∴∠CND=90°,DN=CN=CM=MN,∴CD=CN=2CM=2MN,∴DM=CM=MN,∠DMN=90°,∴点D的坐标为(m,﹣2).又∵抛物线y=x2﹣x﹣2的对称轴为直线x=,点D在这条抛物线的对称轴上,∴点D的坐标为(,﹣2);②如图,以DN为直角边作等腰直角三角形DNE,E点的位置有四种情况:如果E点在E1的位置时,∵点D的坐标为(m,﹣2),MN=ME1=2,点N的坐标为(m+2,0),∴点E1的(m﹣2,0),∵点E1在抛物线y=x2﹣x﹣2的对称轴x=上,∴m﹣2=,解得m=;如果E点在E2的位置时,∵点D的坐标为(m,﹣2),点N的坐标为(m+2,0),∴点E2的(m+2,﹣4),∵点E2在抛物线y=x2﹣x﹣2的对称轴x=上,∴m+2=,解得m=﹣;如果E点在E3的位置时,∵点D的坐标为(m,﹣2),∴点E3的(m,2),∵点E3在抛物线y=x2﹣x﹣2的对称轴x=上,∴m=;如果E点在E4的位置时,∵点D的坐标为(m,﹣2),点N的坐标为(m+2,0),∴点E4的(m+4,﹣2),∵点E4在抛物线y=x2﹣x﹣2的对称轴x=上,∴m+4=,解得m=﹣;综上可知,当点E在这条抛物线的对称轴上时,所有符合条件的m的值为m=﹣或m=﹣或m=或m=.点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求抛物线的解析式,二次函数的性质,等腰直角三角形的性质,旋转的性质等知识,综合性较强,难度适中.其中(3)②要注意分析题意分情况讨论E点可能的位置,这是解题的关键.24.(12分)(•长春)如图①,在▱ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B﹣A﹣D﹣A运动,沿B﹣A运动时的速度为每秒13个单位长度,沿A ﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点 B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).(2)连结AQ,在点P沿B﹣A﹣D运动过程中,当点P与点B、点A不重合时,记△APQ的面积为S.求S与t之间的函数关系式.(3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.考点:四边形综合题.分析:(1)分情况讨论,当点P沿A﹣D运动时,当点P沿D﹣A运动时分别可以表示出AP的值;(2)分类讨论,当0<t<1时,当1<t<时,根据三角形的面积公式分别求出S 与t的函数关系式;(3)分情况讨论,当0<t<1时,当1<t<时,当<t<时,利用三角形的面积相等建立方程求出其解即可;(4)分情况讨论当P在A﹣D之间或D﹣A之间时,如图⑥,根据轴对称的性质可以知道四边形QCOC′为菱形,根据其性质建立方程求出其解,当P在D﹣A之间如图⑦,根据菱形的性质建立方程求出其解即可.解答:解:(1)当点P沿A﹣D运动时,AP=8(t﹣1)=8t﹣8.当点P沿D﹣A运动时,AP=50×2﹣8(t﹣1)=108﹣8t.(2分)(2)当点P与点A重合时,BP=AB,t=1.当点P与点D重合时,AP=AD,8t﹣8=50,t=.当0<t<1时,如图①.作过点Q作QE⊥AB于点E.S△ABQ==,∴QE===.∴S=﹣30t2+30t.当1<t≤时,如图②.S==,∴S=48t﹣48;(3)当点P与点R重合时,AP=BQ,8t﹣8=5t,t=.当0<t≤1时,如图③.∵S△BPM=S△BQM,∴PM=QM.∵AB∥QR,∴∠PBM=∠QRM,∠BPM=∠MQR,在△BPM和△RQM中,∴△BPM≌△RQM.∴BP=RQ,∵RQ=AB,∴BP=AB∴13t=13,解得:t=1当1<t≤时,如图④.∵BR平分阴影部分面积,∴P与点R重合.∴t=.当<t≤时,如图⑤.∵S△ABR=S△QBR,∴S△ABR<S四边形BQPR.∴BR不能把四边形ABQP分成面积相等的两部分.综上所述,当t=1或时,线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分.(4)如图⑥,当P在A﹣D之间或D﹣A之间时,C′D′在BC上方且C′D′∥BC 时,∴∠C′OQ=∠OQC.∵△C′OQ≌△COQ,∴∠C′OQ=∠COQ,∴∠CQO=∠COQ,∴QC=OC,∴50﹣5t=50﹣8(t﹣1)+13,或50﹣5t=8(t﹣1)﹣50+13,解得:t=7或t=.当P在A﹣D之间或D﹣A之间,C′D′在BC下方且C′D′∥BC时,如图⑦.同理由菱形的性质可以得出:OD=PD,∴50﹣5t+13=8(t﹣1)﹣50,解得:t=.∴当t=7,t=,t=时,点C、D关于直线PQ的对称点分别为C′、D′,且C′D′∥BC.点评:本题考查了平行四边形的性质的运用,菱形的性质的运用,全等三角形的判定及性质的运用,分类讨论的数学思想的运用,轴对称的性质的运用,三角形的面积公式的运用,解答时灵活运用动点问题的解答方法确定分界点是解答本题的关键和难点.。

2020年吉林省长春市中考数学试卷 (解析版)

2020年吉林省长春市中考数学试卷 (解析版)

2020年吉林省长春市中考数学试卷一、选择题(共8小题).1.(3分)如图,数轴上被墨水遮盖的数可能为()A.1-B. 1.5--C.3-D. 4.22.(3分)为了增加青少年的校外教育活动场所,长春市将建成面积约为79000平方米的新少年宫,预计2020年12月正式投入使用.79000这个数用科学记数法表示为() A.3⨯D.50.7910⨯7.9107910⨯B.47.910⨯C.53.(3分)下列图形是四棱柱的侧面展开图的是()A.B.C.D.x+的解集在数轴上表示正确的是()4.(3分)不等式23A.B.C.D.5.(3分)比萨斜塔是意大利的著名建筑,其示意图如图所示,设塔项中心点为点B,塔身中心线AB与垂直中心线AC的夹角为A∠,过点B向垂直中心线AC引垂线,垂足为点D.通过测量可得AB、BD、AD的长度,利用测量所得的数据计算A∠的三角函数值,进而可求A∠的大小.下列关系式正确的是()A.sinBDAAB=B.cosABAAD=C.tanADABD=D.sinADAAB=6.(3分)如图,AB是O的直径,点C、D在O上,20BDC∠=︒,则AOC∠的大小为()A.40︒B.140︒C.160︒D.170︒7.(3分)如图,在ABC∆中,90BAC∠=︒,AB AC>.按下列步骤作图:①分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N;②作直线MN,与边AB相交于点D,连结CD.下列说法不一定正确的是()A.BDN CDN∠=∠B.2ADC B∠=∠C.ACD DCB∠=∠D .290B ACD ∠+∠=︒8.(3分)如图,在平面直角坐标系中,点A 的坐标为(3,2),AB x ⊥轴于点B ,点C 是线段OB 上的点,连结AC .点P 在线段AC 上,且2AP PC =,函数(0)ky x x=>的图象经过点P .当点C 在线段OB 上运动时,k 的取值范围是( )A .02k <B .233k C .223k D .843k 二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m 张成人票和n 张儿童票,则共需花费 元. 10.(3分)分解因式:24a -= .11.(3分)若关于x 的一元二次方程220x x m -+=有两个相等的实数根,则实数m 的值为 .12.(3分)正五边形的一个外角的大小为 度.13.(3分)如图,在ABC ∆中,90ABC ∠=︒,2AB BC ==,以点C 为圆心,线段CA 的长为半径作AD ,交CB 的延长线于点D ,则阴影部分的面积为 (结果保留)π.14.(3分)如图,在平面直角坐标系中,点A 的坐标为(0,2),点B 的坐标为(4,2).若抛物线23()(2y x h k h =--+、k 为常数)与线段AB 交于C 、D 两点,且12CD AB =,则k 的值为 .三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:2(3)2(31)a a -+-,其中2a =.16.(6分)现有三张不透明的卡片,其中两张卡片的正面图案为“神舟首飞”,第三张卡片的正面图案为“保卫和平”,卡片除正面图案不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽出的卡片上的图案都是“保卫和平”的概率.(图案为“神舟首飞”的两张卡片分别记为1A 、2A ,图案为“保卫和平”的卡片记为)B17.(6分)图①、图②、图③均是33⨯的正方形网格,每个小正方形的边长为1,每个小正方形的顶点称为格点,线段AB 的端点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求以AB 为边画ABC ∆. 要求:(1)在图①中画一个钝角三角形,在图②中画一个直角三角形,在图③中画一个锐角三角形;(2)三个图中所画的三角形的面积均不相等; (3)点C 在格点上.18.(7分)在国家精准扶贫的政策下,某村企生产的黑木耳获得了国家绿色食品标准认证,绿标的认证,使该村企的黑木耳在市场上更有竞争力,今年每斤黑木耳的售价比去年增加了20元.预计今年的销量是去年的3倍,年销售额为360万元.已知去年的年销售额为80万元,问该村企去年黑木耳的年销量为多少万斤?19.(7分)如图,在ABCD中,O是对角线AC、BD的交点,BE AC⊥,DF AC⊥,垂足分别为点E、F.(1)求证:OE OF=.(2)若5∠的值.OF=,求tan OBEBE=,220.(7分)空气质量按照空气质量指数大小分为六个级别,分别为:一级优、二级良、三级轻度污染、四级中度污染、五级重度污染、六级严重污染.级别越高,说明污染的情况越严重,对人体的健康危害也就越大.空气质量达到一级优或二级良的天气为达标天气,如图是长春市从2014年到2019年的空气质量级别天数的统计图表.20142019-年长春市空气质量级别天数统计表优良轻度污染中度污染重度污染严重污染空气质量级别天数年份201430215732813620154319387191582016512375815502017652116216922018123202390102019126180381650根据上面的统计图表回答下列问题:(1)长春市从2014年到2019年空气质量为“达标”的天数最多的是年.(2)长春市从2014年到2019年空气质量为“重度污染”的天数的中位数为天,平均数为天.(3)长春市从2015年到2019年,和前一年相比,空气质量为“优”的天数增加最多的是 年,这一年空气质量为“优”的天数的年增长率约为 (精确到1%). (空气质量为“优”的天数的增长率100%)""-""=⨯""今年空气质量为优的天数去年空气质量为优的天数去年空气质量为优的天数(4)你认为长春市从2014年到2019年哪一年的空气质量好?请说明理由.21.(8分)已知A 、B 两地之间有一条长240千米的公路.甲车从A 地出发匀速开往B 地,甲车出发两小时后,乙车从B 地出发匀速开往A 地,两车同时到达各自的目的地.两车行驶的路程之和y (千米)与甲车行驶的时间x (时)之间的函数关系如图所示. (1)甲车的速度为 千米/时,a 的值为 . (2)求乙车出发后,y 与x 之间的函数关系式.(3)当甲、乙两车相距100千米时,求甲车行驶的时间.22.(9分)【教材呈现】如图是华师版八年级下册数学教材第121页的部分内容. 1.把一张矩形纸片如图那样折一下,就可以裁出正方形纸片,为什么?【问题解决】如图①,已知矩形纸片()ABCD AB AD >,将矩形纸片沿过点D 的直线折叠,使点A 落在边DC 上,点A 的对应点为A ',折痕为DE ,点E 在AB 上.求证:四边形AEA D '是正方形.【规律探索】由【问题解决】可知,图①中的△A DE '为等腰三角形.现将图①中的点A '沿DC 向右平移至点Q 处(点Q 在点C 的左侧),如图②,折痕为PF ,点F 在DC 上,点P 在AB 上,那么PQF ∆还是等腰三角形吗?请说明理由.【结论应用】在图②中,当QC QP =时,将矩形纸片继续折叠如图③,使点C 与点P 重合,折痕为QG ,点G 在AB 上.要使四边形PGQF 为菱形,则ADAB= .23.(10分)如图①,在ABC ∆中,90ABC ∠=︒,4AB =,3BC =.点P 从点A 出发,沿折线AB BC -以每秒5个单位长度的速度向点C 运动,同时点D 从点C 出发,沿CA 以每秒2个单位长度的速度向点A 运动,点P 到达点C 时,点P 、D 同时停止运动.当点P 不与点A 、C 重合时,作点P 关于直线AC 的对称点Q ,连结PQ 交AC 于点E ,连结DP 、DQ .设点P 的运动时间为t 秒.(1)当点P 与点B 重合时,求t 的值. (2)用含t 的代数式表示线段CE 的长.(3)当PDQ ∆为锐角三角形时,求t 的取值范围.(4)如图②,取PD 的中点M ,连结QM .当直线QM 与ABC ∆的一条直角边平行时,直接写出t 的值.24.(12分)在平面直角坐标系中,函数221(y x ax a =--为常数)的图象与y 轴交于点A .(1)求点A 的坐标.(2)当此函数图象经过点(1,2)时,求此函数的表达式,并写出函数值y 随x 的增大而增大时x 的取值范围.(3)当0x 时,若函数221(y x ax a =--为常数)的图象的最低点到直线2y a =的距离为2,求a 的值.(4)设0a <,Rt EFG ∆三个顶点的坐标分别为(1,1)E --、(1,1)F a --、(0,1)G a -.当函数221(y x ax a =--为常数)的图象与EFG ∆的直角边有交点时,交点记为点P .过点P 作y 轴的垂线,与此函数图象的另一个交点为(P P ''与P 不重合),过点A 作y 轴的垂线,与此函数图象的另一个交点为A '.若2AA PP '=',直接写出a 的值.参考答案一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)如图,数轴上被墨水遮盖的数可能为()A.1-B. 1.5-C.3-D. 4.2-解:由数轴上墨迹的位置可知,该数大于4-,-,且小于2因此备选项中,只有选项C符合题意,故选:C.2.(3分)为了增加青少年的校外教育活动场所,长春市将建成面积约为79000平方米的新少年宫,预计2020年12月正式投入使用.79000这个数用科学记数法表示为() A.30.7910⨯D.57.910⨯⨯C.57910⨯B.47.910解:79000这个数用科学记数法表示为:47.910⨯.故选:B.3.(3分)下列图形是四棱柱的侧面展开图的是()A.B.C.D.解:由四棱柱的特点可知:四棱柱的侧面展开图是矩形.故选:A.x+的解集在数轴上表示正确的是()4.(3分)不等式23A.B.C.D.解:32x-,1x,故选:D.5.(3分)比萨斜塔是意大利的著名建筑,其示意图如图所示,设塔项中心点为点B,塔身中心线AB与垂直中心线AC的夹角为A∠,过点B向垂直中心线AC引垂线,垂足为点D.通过测量可得AB、BD、AD的长度,利用测量所得的数据计算A∠的三角函数值,进而可求A∠的大小.下列关系式正确的是()A.sinBDAAB=B.cosABAAD=C.tanADABD=D.sinADAAB=解:在Rt ABD∆中,90ADB∠=︒,则sinBDAAB=,cosADAAB=,tanBDAAD=,因此选项A正确,选项B、C、D不正确;故选:A.6.(3分)如图,AB是O的直径,点C、D在O上,20BDC∠=︒,则AOC∠的大小为()A.40︒B.140︒C.160︒D.170︒解:222040BOC BDC ∠=∠=⨯︒=︒, 18040140AOC ∴∠=︒-︒=︒.故选:B .7.(3分)如图,在ABC ∆中,90BAC ∠=︒,AB AC >.按下列步骤作图:①分别以点B 和点C 为圆心,大于BC 一半的长为半径作圆弧,两弧相交于点M 和点N ; ②作直线MN ,与边AB 相交于点D ,连结CD . 下列说法不一定正确的是( )A .BDN CDN ∠=∠B .2ADC B ∠=∠ C .ACD DCB∠=∠D .290B ACD ∠+∠=︒解:由作图可知,MN 垂直平分线段BC , DB DC ∴=,MN BC ⊥,BDN CDN ∴∠=∠,DBC DCB ∠=∠, 2ADC B DCB B ∴∠=∠+∠=∠, 90A ∠=︒,90ADC ACD ∴∠+∠=︒, 290B ACD ∴∠+∠=︒,故选项A ,B ,D 正确, 故选:C .8.(3分)如图,在平面直角坐标系中,点A 的坐标为(3,2),AB x ⊥轴于点B ,点C 是线段OB 上的点,连结AC .点P 在线段AC 上,且2AP PC =,函数(0)ky x x=>的图象经过点P .当点C 在线段OB 上运动时,k 的取值范围是( )A .02k <B .233k C .223k D .843k 解:点A 的坐标为(3,2),AB x ⊥轴于点B , 3OB ∴=,2AB =,设(C c ,0)(03)c ,过P 作PD x ⊥轴于点D , 则3BC c =-,//PD AB ,OC c =, PCD ACB ∴∆∆∽, ∴PD CD CPAB CB CA==,2AP PC =, ∴1233PD CD c ==-, 23PD ∴=,113CD c =-, 213OD OC CD c ∴=+=+,2(13P c ∴+,2)3,把2(13P c +,2)3代入函数(0)ky x x =>中,得2439k c =+, 03c∴223k , 故选:C .二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m 张成人票和n 张儿童票,则共需花费 (3015)m n + 元. 解:根据单价⨯数量=总价得,(3015)m n +元, 故答案为:(3015)m n +.10.(3分)分解因式:24a -= (2)(2)a a +- . 解:24(2)(2)a a a -=+-.11.(3分)若关于x 的一元二次方程220x x m -+=有两个相等的实数根,则实数m 的值为 1 .解:关于x 的一元二次方程220x x m -+=有两个相等的实数根, ∴△0=,2(2)40m ∴--=,1m ∴=,故答案为:1.12.(3分)正五边形的一个外角的大小为 72 度. 解:正五边形的一个外角360725︒==︒. 故答案为:72.13.(3分)如图,在ABC ∆中,90ABC ∠=︒,2AB BC ==,以点C 为圆心,线段CA 的长为半径作AD ,交CB 的延长线于点D ,则阴影部分的面积为 2π- (结果保留)π.解:2AB CB ==,90ABC ∠=︒,22222222AC AB BC ∴=+=+=45C BAC ∴∠=∠=︒,245(22)12223602ACBCAD S S S ππ∆⋅⋅∴=-=-⨯⨯=-阴扇形,故答案为2π-.14.(3分)如图,在平面直角坐标系中,点A 的坐标为(0,2),点B 的坐标为(4,2).若抛物线23()(2y x h k h =--+、k 为常数)与线段AB 交于C 、D 两点,且12CD AB =,则k 的值为72.解:点A 的坐标为(0,2),点B 的坐标为(4,2), 4AB ∴=,抛物线23()(2y x h k h =--+、k 为常数)与线段AB 交于C 、D 两点,且122CD AB ==,∴设点C 的坐标为(,2)c ,则点D 的坐标为(2,2)c +,2212c h c +==+, ∴抛物线232[(1)]2c c k =--++,解得,72k =. 三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:2(3)2(31)a a -+-,其中2a =. 解:原式26962a a a =-++- 27a =+.当2a =时,原式2(2)79=+=.16.(6分)现有三张不透明的卡片,其中两张卡片的正面图案为“神舟首飞”,第三张卡片的正面图案为“保卫和平”,卡片除正面图案不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽出的卡片上的图案都是“保卫和平”的概率.(图案为“神舟首飞”的两张卡片分别记为1A 、2A ,图案为“保卫和平”的卡片记为)B解:根据题意画图如下:共有9种等可能的情况数,其中两次抽出的卡片上的图案都是“保卫和平”的有1种,则两次抽出的卡片上的图案都是“保卫和平”的概率是19.17.(6分)图①、图②、图③均是33⨯的正方形网格,每个小正方形的边长为1,每个小正方形的顶点称为格点,线段AB的端点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求以AB为边画ABC∆.要求:(1)在图①中画一个钝角三角形,在图②中画一个直角三角形,在图③中画一个锐角三角形;(2)三个图中所画的三角形的面积均不相等;(3)点C在格点上.解:如图所示:即为符合条件的三角形.18.(7分)在国家精准扶贫的政策下,某村企生产的黑木耳获得了国家绿色食品标准认证,绿标的认证,使该村企的黑木耳在市场上更有竞争力,今年每斤黑木耳的售价比去年增加了20元.预计今年的销量是去年的3倍,年销售额为360万元.已知去年的年销售额为80万元,问该村企去年黑木耳的年销量为多少万斤?解:设该村企去年黑木耳的年销量为x万斤,则今年黑木耳的年销量为3x万斤,依题意,得:36080203x x-=,解得:2x=,经检验,2x=是原方程的解,且符合题意.答:该村企去年黑木耳的年销量为2万斤.19.(7分)如图,在ABCD中,O是对角线AC、BD的交点,BE AC⊥,DF AC⊥,垂足分别为点E、F.(1)求证:OE OF=.(2)若5BE=,2OF=,求tan OBE∠的值.【解答】(1)证明:四边形ABCD是平行四边形,OB OD∴=,BE AC⊥,DF AC⊥,90OEB OFD∴∠=∠=︒,在OEB∆和OFD∆中,OEB OFDBOE DOF OB OD∠=∠⎧⎪∠=∠⎨⎪=⎩,() OEB OFD AAS∴∆≅∆,OE OF∴=;(2)解:由(1)得:OE OF =, 2OF =, 2OE ∴=, BE AC ⊥, 90OEB ∴∠=︒,在Rt OEB ∆中,2tan 5OE OBE BE ∠==. 20.(7分)空气质量按照空气质量指数大小分为六个级别,分别为:一级优、二级良、三级轻度污染、四级中度污染、五级重度污染、六级严重污染.级别越高,说明污染的情况越严重,对人体的健康危害也就越大.空气质量达到一级优或二级良的天气为达标天气,如图是长春市从2014年到2019年的空气质量级别天数的统计图表. 20142019-年长春市空气质量级别天数统计表根据上面的统计图表回答下列问题:(1)长春市从2014年到2019年空气质量为“达标”的天数最多的是 2018 年. (2)长春市从2014年到2019年空气质量为“重度污染”的天数的中位数为 天,平均数为 天.(3)长春市从2015年到2019年,和前一年相比,空气质量为“优”的天数增加最多的是 年,这一年空气质量为“优”的天数的年增长率约为 (精确到1%). (空气质量为“优”的天数的增长率100%)""-""=⨯""今年空气质量为优的天数去年空气质量为优的天数去年空气质量为优的天数(4)你认为长春市从2014年到2019年哪一年的空气质量好?请说明理由.解:(1)从折线统计图中“达标”天数的折线的最高点,相应的年份为2018年, 故答案为:2018;(2)将这6年的“重度污染”的天数从小到大排列,处在中间位置的两个数的平均数为5972+=,因此中位数是7天, 这6年的“重度污染”的天数的平均数为1315591586+++++=天,故答案为:7,8;(3)前一年相比,空气质量为“优”的天数增加量为: 2015年,433013-=天; 2016年,51438-=天; 2017年,655114-=天; 2018年,1236558-=天; 2019年,1261233-=天,因此空气质量为“优”的天数增加最多的是2018年,增长率为12365100%89%65-⨯≈, 故答案为:2018,89%;(4)从统计表中数据可知,2018年空气质量好,2018年“达标天数”最多,重度污染、中度污染、严重污染的天数最少.21.(8分)已知A 、B 两地之间有一条长240千米的公路.甲车从A 地出发匀速开往B 地,甲车出发两小时后,乙车从B 地出发匀速开往A 地,两车同时到达各自的目的地.两车行驶的路程之和y (千米)与甲车行驶的时间x (时)之间的函数关系如图所示. (1)甲车的速度为 40 千米/时,a 的值为 .(2)求乙车出发后,y 与x 之间的函数关系式.(3)当甲、乙两车相距100千米时,求甲车行驶的时间.解:(1)由题意可知,甲车的速度为:80240÷=(千米/时); 4062480a =⨯⨯=,故答案为:40;480;(2)设y 与x 之间的函数关系式为y kx b =+, 由图可知,函数图象经过(2,80),(6,480), ∴2806480k b k b +=⎧⎨+=⎩,解得100120k b =⎧⎨=-⎩, y ∴与x 之间的函数关系式为100120y x =-;(3)两车相遇前:80100(2)240100x +-=-,解得135x =; 两车相遇后:80100(2)240100x +-=+,解得235x =, 答:当甲、乙两车相距100千米时,甲车行驶的时间是135小时或235小时. 22.(9分)【教材呈现】如图是华师版八年级下册数学教材第121页的部分内容. 1.把一张矩形纸片如图那样折一下,就可以裁出正方形纸片,为什么?【问题解决】如图①,已知矩形纸片()ABCD AB AD >,将矩形纸片沿过点D 的直线折叠,使点A 落在边DC 上,点A 的对应点为A ',折痕为DE ,点E 在AB 上.求证:四边形AEA D '是正方形.【规律探索】由【问题解决】可知,图①中的△A DE '为等腰三角形.现将图①中的点A '沿DC 向右平移至点Q 处(点Q 在点C 的左侧),如图②,折痕为PF ,点F 在DC 上,点P 在AB 上,那么PQF ∆还是等腰三角形吗?请说明理由.【结论应用】在图②中,当QC QP=时,将矩形纸片继续折叠如图③,使点C与点P重合,折痕为QG,点G在AB上.要使四边形PGQF为菱形,则ADAB=35.【解答】(1)证明:如图①中,四边形ABCD是矩形,90A ADA∴∠=∠'=︒,由翻折可知,90DA E A∠'=∠=︒,90A ADA DA E∴∠=∠'=∠'=︒,∴四边形AEA D'是矩形,DA DA=',∴四边形AEA D'是正方形.(2)解:结论:PQF∆是等腰三角形.理由:如图②中,四边形ABCD是矩形,//AB CD ∴,QFP APF ∴∠=∠,由翻折可知,APF FPQ ∠=∠,QFP FPQ ∴∠=∠,QF QP ∴=,PFQ ∴∆是等腰三角形.(3)如图③中,四边形PGQF 是菱形,PG GQ FQ PF ∴===,QF QP =,PFQ ∴∆,PGA ∆都是等边三角形,设QF m =,60FQP ∠=︒,90PQD ∠'=︒,30DQD ∴∠'=︒,90D ∠'=︒,1122FD DF FQ m ∴'===,332QD D F '='=, 由翻折可知,32AD QD ='=,PQ CQ FQ m ===, 52AB CD DF FQ CQ m ∴==++=, ∴332552m AD AB m ==. 35. 23.(10分)如图①,在ABC ∆中,90ABC ∠=︒,4AB =,3BC =.点P 从点A 出发,沿折线AB BC -以每秒5个单位长度的速度向点C 运动,同时点D 从点C 出发,沿CA 以每秒2个单位长度的速度向点A 运动,点P 到达点C 时,点P 、D 同时停止运动.当点P 不与点A 、C 重合时,作点P 关于直线AC 的对称点Q ,连结PQ 交AC 于点E ,连结DP 、DQ .设点P 的运动时间为t 秒.(1)当点P 与点B 重合时,求t 的值.(2)用含t 的代数式表示线段CE 的长.(3)当PDQ ∆为锐角三角形时,求t 的取值范围.(4)如图②,取PD 的中点M ,连结QM .当直线QM 与ABC ∆的一条直角边平行时,直接写出t 的值.解:(1)当点P 与B 重合时,54t =,解得45t =. (2)在Rt ABC ∆中,90B ∠=︒,4AB =,3BC =,2222435AC AB BC ∴=+=+=,3sin 5A ∴=,4cos 5A =, 如图①中,当点P 在线段AB 上时,在Rt APE ∆中,cos 4AE AP A t ==, 54EC t ∴=-.如图③中,当点P 在线段BC 上时,在Rt PEC ∆中,75PC t =-,3cos 5C =, 321cos (75)355EC PC C t t ∴==-=-.(3)当PDQ ∆是等腰直角三角形时,则PE DE =,如图④中,当点P 在线段AB 上时,在Rt APE ∆中,sin 3PE PA A t ==,54256DE AC AE CD t t t =-----=-,PE DE =,356t t ∴=-,59t ∴=. 如图⑤中,当点P 在线段BC 上时,在Rt PCE ∆中,428sin (75)455PE PC C t t ==-=-, 3212(75)555DE CD CE t t t =-=--=-, ∴28214555t t -=-, 解得5945t =. 观察图象可知满足条件的t 的值为509t <<或497455t <<.(4)如图⑥中,当点P 在线段AB 上,//QM AB 时,过点Q 作QG AB ⊥于G ,延长QN 交BC 于N ,过点D 作DH BC ⊥于H . ////PB MN DH ,PM DM =,BN NH ∴=,在RtPQG 中,26PQ PE t ==,42455QG PQ t ∴==,在Rt DCH ∆中,3655HC DC t ==, 242463555BC BH CH t t t =+=++=, 解得518t =. 如图⑦中,当点P 在线段BC 上,//QM BC 时,点点D 作DH BC ⊥于H ,过点P 作PK QM ⊥于K .//QM BC ,DM PM =,2DH PK ∴=,在Rt PQK ∆中,82(75)5PQ PE t ==-, 324(75)525PK PQ t ∴==-, 在Rt DCH ∆中,4855DH DC t ==, 2DH PK =,∴8242(75)525t t =⨯-, 解得65t =, 综上所述,满足条件的t 的值为518或65. 24.(12分)在平面直角坐标系中,函数221(y x ax a =--为常数)的图象与y 轴交于点A .(1)求点A 的坐标.(2)当此函数图象经过点(1,2)时,求此函数的表达式,并写出函数值y 随x 的增大而增大时x 的取值范围.(3)当0x 时,若函数221(y x ax a =--为常数)的图象的最低点到直线2y a =的距离为2,求a 的值.(4)设0a <,Rt EFG ∆三个顶点的坐标分别为(1,1)E --、(1,1)F a --、(0,1)G a -.当函数221(y x ax a =--为常数)的图象与EFG ∆的直角边有交点时,交点记为点P .过点P 作y 轴的垂线,与此函数图象的另一个交点为(P P ''与P 不重合),过点A 作y 轴的垂线,与此函数图象的另一个交点为A '.若2AA PP '=',直接写出a 的值.解:(1)当0x =时,2211y x ax =--=-,∴点A 的坐标为:(0,1)-;(2)将点(1,2)代入221y x ax =--,得:2121a =--,解得:1a =-,∴函数的表达式为:221y x x =+-,2221(1)2y x x x =+-=+-,∴抛物线的开口向上,对称轴为1x =-,如图1所示:∴当1x >-时,y 随x 的增大而增大;(3)抛物线22221()1y x ax x a a =--=---的对称轴为:x a =,顶点坐标为:2(,1)a a --, 当0a >时,对称轴在y 轴右侧,如图2所示:0x ,∴最低点就是(0,1)A -,图象的最低点到直线2y a =的距离为2,2(1)2a ∴--=,解得:12a =; 当0a <,对称轴在y 轴左侧,顶点2(,1)a a --就是最低点, 如图3所示:22(1)2a a ∴---=,整理得:2(1)2a +=,解得:11a =--21a =-;综上所述,a 的值为12或1--; (4)0a <,Rt EFG ∆三个顶点的坐标分别为(1,1)E --、(1,1)F a --、(0,1)G a -, ∴直角边为EF 与FG ,抛物线22221()1y x ax x a a =--=---的对称轴为:x a =,(0,1)A -, 2AA a ∴'=-,当点P 在EF 边上时,如图4所示:则1p x =-,1EA OA ==,∴点P 在对称轴x a =的左侧,2(1)PP a ∴'=+,2AA PP '=',222(1)a a ∴-=⨯+, 解得:23a =-; 当点P 在FG 边上时,如图5所示:则1p y a =-,2211x ax a ∴--=-,解得:1x a =+,2x a =,(PP a a ∴'=+--= 2AA PP '=',224a a a∴-=+,解得:14 3a=-,20a=(不合题意舍去);综上所述,a的值为23-或43-.。

吉林省长春市中考数学试卷及答案解析版

吉林省长春市中考数学试卷及答案解析版

2016年长春市初中毕业生学业考试数 学一、选择题(本大题共8小题,每小题3分,共24分) 1.5-的相反数是 (A )15-.(B )15. (C )5-. (D )5.2.吉林省在践行社会主义核心价值观活动中,共评选出各级各类“吉林好人”45 000多名.45 000这个数用科学记数法表示为(A )34510⨯ (B )44.510⨯. (C )54.510⨯. (D )50.4510⨯. 3.右图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是4.不等式组20260x x +⎧⎨-≤⎩> 的解集在数轴上表示正确的是5.把多项式269x x -+分解因式,结果正确的是(A )2(3)x -. (B )2(9)x -. (C )(3)(3)x x +-.(D )(9)(9)x x +-.6.如图,在Rt △ABC 中,∠BAC=90°.将Rt △ABC 绕点C 按逆时针 方向旋转48°得到Rt △''A B C ,点A 在边'B C 上,则∠'B 的大小为 (A )42°. (B )48°. (C )52°. (D )58°.7.如图,PA 、PB 是⊙O 的切线,切点分别为A 、B .若OA =2,∠P =60°, 则AB 的长为(A )23π. (B )π. (C )43π. (D )53π.8.P (1,4)在函数(0)ky x x=>的图象上, 当1m >时,过点P 分别作x 轴、y 轴的垂线,垂足为点A 、B ;过点Q 分别作x 轴、 y 轴的垂线,垂足 为点C 、D. QD 交PA 于点E ,随着m 的增大,四边形ACQE 的面积 (A )减小. (B )增大 (C )先减小后增大 (D )先增大后减小.二、填空题(本大题共6小题,每小题3分,共18分) 9.计算:3()ab = .10.关于x 的一元二次方程220x x m ++=有两个相等的实数根,则m 的值是 .11.如图,在△ABC 中,AB >AC .按以下步骤作图:分别以点B 和点C 为圆心,大于BC 一半的长为半径作圆弧,两弧相交于点M 和点N ;作直线MN 交AB 于点D ;连结CD .若AB =6,AC =4,则△ACD 的周长为 . 12.如图,在平面直角坐标系中,正方形ABCD 的对称中心与原点重合,顶点A 的坐标为(-1,1),顶点B 在第一象限.若点B 在直线3y kx =+上,则k 的值为 .13.如图,在⊙O 中,AB 是弦,C 是AB 上一点.若∠OAB=25°,∠OCA=40°,则∠BOC 的大小为 度. 14.如图,在平面直角坐标系中,菱形O A B C 的顶点A 在x 轴正半轴上,顶点C 的坐标为 (4,3).D 是抛物线26y x x =-+上一点,且在x 轴上方.则△BCD 的最大值为 . 三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:(2)(2)(4)a a a a +-+-,其中14a =.16.(6分)一个不透明的口袋中有三个小球,上面分别标有数字0,1,2.每个小球除数字不同外其余均相同.小华先从口袋中随机摸出一个小球,记下数字后放回并搅匀;再从口袋中随机摸出一个小球记下数字.用画树状图(或列表)的方法,求小华两次摸出的小球上的数字之和是3的概率.17.(6分)A 、B 两种型号的机器加工同一种零件,已知A 型机器比B 型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B 型机器加工300个零件所用时间相同.求A 型机器每小时加工零件的个数.18.(6分)某中学为了解该校学生一年的课外阅读量,随机抽取了n 名学生进行调查,并将调查结果绘制成如下条形统计图.根据统计图提供的信息解答下列问题:(1)求n 的值.(2)根据统计结果,估计该校1100名学生中一年的课外阅读量超过10本的人数.19.(7分)如图,为了测量长春解放纪念碑的高度AB ,在与纪念碑底部B 相距27米的C 处,用高1.5米的测角仪DC 测得纪念碑顶端A 的仰角为47°,求纪念碑的高度.(结果精确到0.1米.) 【参考数据:sin 470.731︒=,cos470.682︒=,tan 47 1.072︒=】20.(7分)如图.在□ABCD 中,点E 在边BC 上,点F 在边AD 的延长线上,且DF =BE .EF 与CD 交于点G . (1)求证:BD ∥EF . (2)若23DG GC =,BE =4,求EC 的长.21.(9分)甲、乙两车分别从A 、B 两地同时出发.甲车匀速前往B 地,到达B 地立即以另一速度按原路匀速返回到A 地;乙车匀速前往A 地.设甲、乙两车距A 地的路程为y (千米),甲车行驶的时间为x (时),y 与x 之间的函数图象如图所示. (1)求甲车从A 地到达B 地的行驶时间.(2)求甲车返回时y 与x 之间的函数关系式,并写出自变量x 的取值范围. (3)求乙车到达A 地时甲车距A 地的路程.22.(9分)感知:如图①,AD平分∠BAC,∠B+∠C=180°,∠B=90°.易知:DB=DC.探究:如图②,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°.求证:DB=DC.应用:如图③,四边形ABDC中,∠B=45°,∠C=135°,DB=DC=a,则AB-AC=____.(用含a的代数式表示)(第22题)23.(10分)如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°.点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFGH.设点E运动的时间为t秒.(1)求线段EF的长.(用含t的代数式表示)(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积为S平方单位,求S与t之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点'O.当'OO∥AD时,t的值为______;当'OO⊥AD时,t 的值为______.24.(12分)如图,在平面直角坐标系中.有抛物线2(3)4y a x =-+和2()y a x h =-.抛物 线2(3)4y a x =-+经过原点,与x 轴正半轴交于点A ,与其对称轴交于点B .P 是抛物线2(3)4y a x =-+上一点,且在x 轴上方.过点P 作x 轴的垂线交抛物线2()y a x h =-于点Q .过点Q 作PQ 的垂线交抛物线2()y a x h =-于点'Q (不与点Q 重合),连结'PQ .设点P 的横坐标为m . (1)求a 的值.(2)当抛物线2()y a x h =-经过原点时,设△'PQQ 与△OAB 重叠部分图形的周长为l .①求'PQQQ 的值. ②求l 与m 之间的函数关系式.(3)当h 为何值时,存在点P ,使以点O 、A 、Q 、'Q 为顶点的四边形是轴对称图形?直接写出h 的值.2016年长春市初中毕业生学业考试数 学一、选择题(本大题共8小题,每小题3分,共24分) 1.5-的相反数是 (A )15-.(B )15. (C )5-. (D )5.【解答】:D【考点】:考查相反数。

吉林省长春市德惠实验中学2025届高三下学期一模考试数学试题含解析

吉林省长春市德惠实验中学2025届高三下学期一模考试数学试题含解析

吉林省长春市德惠实验中学2025届高三下学期一模考试数学试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知等差数列{}n a 的公差为2-,前n 项和为n S ,1a ,2a ,3a 为某三角形的三边长,且该三角形有一个内角为120︒,若n m S S ≤对任意的*n ∈N 恒成立,则实数m =( ). A .6B .5C .4D .32.设不等式组2000x x y x y -≤⎧⎪+≥⎨⎪-≥⎩,表示的平面区域为Ω,在区域Ω内任取一点(),P x y ,则P 点的坐标满足不等式222x y +≤的概率为 A .π8B .π4C .12π+D .12π+3.一个几何体的三视图如图所示,则该几何体的表面积为( )A .48122+B .60122+C .72122+D .844.某人用随机模拟的方法估计无理数e 的值,做法如下:首先在平面直角坐标系中,过点1,0A 作x 轴的垂线与曲线x y e =相交于点B ,过B 作y 轴的垂线与y 轴相交于点C (如图),然后向矩形OABC 内投入M 粒豆子,并统计出这些豆子在曲线xy e =上方的有N 粒()N M <,则无理数e 的估计值是( )A .NM N-B .MM N-C .M NN- D .M N5.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,则ABC ∆的面积222221()42a b c S ab ⎡⎤⎛⎫+-⎢⎥=- ⎪⎢⎥⎝⎭⎣⎦根据此公式,若()cos 3cos 0a B b c A ++=,且2222a b c --=,则ABC ∆的面积为( )A 2B .22C 6D .236.已知双曲线2222x y 1(a 0,b 0)a b-=>>,过原点作一条倾斜角为π3直线分别交双曲线左、右两支P ,Q 两点,以线段PQ 为直径的圆过右焦点F ,则双曲线离心率为( ) A 21B 31C .2D 57.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,当该量器口密闭时其表面积为42.2(平方寸),则图中x 的值为( )A .3B .3.4C .3.8D .48.如图,在平面四边形ABCD 中,满足,AB BC CD AD ==,且10,8AB AD BD +==,沿着BD 把ABD 折起,使点A 到达点P 的位置,且使2PC =,则三棱锥P BCD -体积的最大值为( )A .12B .122C .1623D .1639.双曲线()221x y m c m-=>的一条渐近线方程为20x y +=,那么它的离心率为( )A .3B .5C .62D .5210.如图在直角坐标系xOy 中,过原点O 作曲线()210y x x =+≥的切线,切点为P ,过点P 分别作x 、y 轴的垂线,垂足分别为A 、B ,在矩形OAPB 中随机选取一点,则它在阴影部分的概率为( )A .16B .15C .14D .1211.某三棱锥的三视图如图所示,那么该三棱锥的表面中直角三角形的个数为( )A .1B .2C .3D .012.已知集合{}3|20,|0x P x x Q x x -⎧⎫=-≤=≤⎨⎬⎩⎭,则()R P Q 为( ) A .[0,2)B .(2,3]C .[2,3]D .(0,2]二、填空题:本题共4小题,每小题5分,共20分。

高一数学上学期期末考试试卷(含解析)-人教版高一全册数学试题

高一数学上学期期末考试试卷(含解析)-人教版高一全册数学试题

某某省某某第一中学2015-2016学年高一上学期期末考试数学一、选择题:共10题1.下列说法中,正确的是A.幂函数的图象都经过点(1,1)和点(0,0)B.当a=0时,函数y=xα的图象是一条直线C.若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大而增大D.幂函数y=xα,当a<0时,在第一象限内函数值随x值的增大而减小【答案】D【解析】本题主要考查幂函数的图象与性质.由幂函数的图象与性质可知,A错误;当x=0时,y=0,故B错误;令a=-1,则y=x-1,显然C错误;故D正确.2.如图所示,则这个几何体的体积等于A.4B.6C.8D.12【答案】A【解析】由三视图可知所求几何体为四棱锥,如图所示,其中SA⊥平面ABCD,SA=2,AB=2,AD=2,CD=4,且四边形ABCD为直角梯形,∠DAB=90°,∴V=SA×(AB+CD)×AD=×2××(2+4)×2=4,故选A.3.下列关于函数y=f(x),x∈[a,b]的叙述中,正确的个数为①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,f(x)=0的根也一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是根的近似值.A.0B.1C.3D.4【答案】B【解析】本题主要考查方程与根、二分法.由零点的定义知,零点是曲线与x轴交点的横坐标,故①错误;当f(a)=0时,无法用二分法求解,故②错误;显然,③正确;若f(x)=2x-x-1,在区间(-1,1)上的零点,用二分法,可得f(0)=0,显然,④错误.4.如图,在三棱锥S-ABC中,E为棱SC的中点,若AC=,SA=SB=SC=AB=BC=2,则异面直线AC与BE所成的角为A.30°B.45°C.60°D.90°【答案】C【解析】本题主要考查异面直线所成的角.取SA的中点D,连接BD、DE,则,是异面直线AC与BE所成的角或补角,由题意可得BD=BE=,DE=,即三角形BDE是等边三角形,所以5.如图,正方体ABCDA1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是A.AC⊥BEB.EF∥平面ABCDC.直线AB与平面BEF所成的角为定值D.异面直线AE、BF所成的角为定值【答案】D【解析】本题主要考查线面平行与垂直的判定定理、线面所成的角、异面直线所成的角,考查了空间想象能力.易证AC⊥平面BDD1B1,则AC⊥BE,A正确,不选;易知平面A1B1C1D1∥平面ABCD,则EF∥平面ABCD,B正确,不选;因为平面BEF即是平面BDD1B1,所以直线AB 与平面BEF所成的角为定值,故C正确,不选;故选D.6.若函数且)有两个零点,则实数a的取值X围是A. B. C. D.【答案】B【解析】本题主要考查函数的性质与零点.当时,函数是减函数,最多只有1个零点,不符合题意,故排除A、D;令,易判断函数在区间上分别有一个零点,故排除C,所以B正确.7.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则A.α∥β且l∥α B.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】D【解析】本题涉及直线与平面的基本知识,意在考查考生的空间想象能力、分析思考能力,难度中等偏下.由于m,n为异面直线,m⊥平面α,n⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m,n,又直线l满足l⊥m,l⊥n,则交线平行于l ,故选D.8.已知直线(1+k)x+y-k-2=0过定点P,则点P关于直线x-y-2=0的对称点的坐标是A.(3,﹣2)B.(2,﹣3)C.(3,﹣1)D.(1,﹣3)【答案】C【解析】本题主要考查直线方程、两条直线的位置关系.将(1+k)x+y-k-2=0整理为:k(x-1)+x+y-2=0,则x-1=0且x+y-2=0,可得P(1,1),设点P的对称点坐标为(a,b),则,则x=3,y=-1,故答案:C.9.如图,平面⊥平面与两平面所成的角分别为和.过分别作两平面交线的垂线,垂足为,则=A. B. C. D.【答案】A【解析】本题主要考查线面与面面垂直的判定与性质、直线与平面所成的角,考查了空间想象能力.根据题意,由面面垂直的性质定理可得,,则,则AB=2,则10.经过点P(1,4)的直线在两坐标轴上的截距都是正值,若截距之和最小,则直线的方程为A.x+2y-6=0 B.2x+y-6=0 C.x-2y+7=0 D.x-2y-7=0【答案】B【解析】本题主要考查直线方程、基本不等式.由直线的斜率为k(k<0),则y-4=k(x-1),分别令x=0、y=0求出直线在两坐标轴上的截距为:4-k,1-,则4-k+1-,当且仅当-k=-,即k=-2时,等号成立,则直线的方程为2x+y-6=0二、填空题:共5题11.已知直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,则经过点A(3,2)且与直线垂直的直线方程为________.【答案】2x-y-4=0【解析】本题主要考查直线方程、两条直线的位置关系.因为直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,所以(m+1)m-2=0,且8-(m-2),则m=1,直线: x+2y-1=0,根据题意,设所求直线方程为2x-y+t=0,将点A(3,2)代入可得t=-4,即:2x-y-4=012.用斜二测画法得到的四边形ABCD是下底角为45°的等腰梯形,其下底长为5,一腰长为,则原四边形的面积是________.【答案】8【解析】本题主要考查平面直观图.根据题意,直观图中,梯形的下底长为5,一腰长为,则易求上底为3,高为1,面积为,所以原四边形的面积是13.已知三棱锥A-BCD的所有棱长都为,则该三棱锥的外接球的表面积为________.【答案】3π【解析】本题主要考查空间几何体的表面积与体积,考查了空间想象能力.将正方体截去四个角可得到一个正四面体,由题意,可将该三棱锥补成一个棱长为1的正方体,所以该三棱锥的外接球的直径即为正方体的对角线,所以2r=,则该三棱锥的外接球的表面积为S=14.已知关于x的方程有两根,其中一根在区间内,另一根在区间内,则m的取值X围是________.【答案】【解析】本题主要考查二次函数的性质与二元一次方程的根.设,由题意可知:,求解可得15.甲、乙、丙、丁四个物体同时以某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,,,,有以下结论:①当时,甲走在最前面;②当时,乙走在最前面;③当时,丁走在最前面,当时,丁走在最后面;④丙不可能走在最前面,也不可能走在最后面;⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为_________(把正确结论的序号都填上,多填或少填均不得分).【答案】③④⑤【解析】①错误.因为,,所以,所以时,乙在甲的前面.②错误.因为,,所以,所以时,甲在乙的前面.③正确.当时,,的图象在图象的上方.④正确.当时,丙在甲乙前面,在丁后面,时,丙在丁前面,在甲、乙后面,时,甲、乙、丙、丁四人并驾齐驱.⑤正确.指数函数增长速度越来越快,x充分大时,的图象必定在,,上方,所以最终走在最前面的是甲.三、解答题:共5题16.如图(1)所示,在直角梯形中,BC AP,AB BC,CD AP,又分别为线段的中点,现将△折起,使平面平面(图(2)).(1)求证:平面平面;(2)求三棱锥的体积.【答案】证明:(1)分别是的中点,∵平面,AB平面.∴平面.同理,平面,∵,EF平面平面∴平面平面.(2)=.【解析】本题主要考查面面与线面平行与垂直的判定与性质、空间几何体的表面积与体积,考查了空间想象能力与等价转化.(1)根据题意,证明、,再利用线面与面面平行的判定定理即可证明;(2)由题意易知,则结果易得.17.已知两点,直线,求一点使,且点到直线的距离等于2.【答案】设点的坐标为.∵.∴的中点的坐标为.又的斜率.∴的垂直平分线方程为,即.而在直线上.∴.①又已知点到的距离为2.∴点必在于平行且距离为2的直线上,设直线方程为,由两条平行直线之间的距离公式得:∴或.∴点在直线或上.∴或②∴①②得:或.∴点或为所求的点.【解析】本题主要考查直线方程与斜率、两条直线的位置关系、中点坐标公式.设点的坐标为,求出统一线段AB的垂直平分线,即可求出a、b的一个关系式;由题意知,点必在于平行且距离为2的直线上, 设直线方程为,由两条平行直线之间的距离公式得:,求出m的值,又得到a、b的一个关系式,两个关系式联立求解即可.18.(1)已知圆C经过两点,且被直线y=1截得的线段长为.求圆C的方程;(2)已知点P(1,1)和圆过点P的动直线与圆交于A,B两点,求线段AB的中点M的轨迹方程.【答案】(1)设圆方程为.因为点O,Q在圆上,代入:又由已知,联立:解得:由韦达定理知:.所以:.即即:.即:.则.所以所求圆方程为:.(2)设点M (x ,y ), 圆的圆心坐标为C (0,2). 由题意:,又.所以: 化简:所以M 点的轨迹方程为【解析】本题主要考查圆的方程、直线与圆的位置关系、圆的性质、直线的斜率公式、方程思想.(1)设圆方程为,将y =1代入圆的方程,利用韦达定理,求出D 、E 、F 的一个关系式,再由点O 、Q 在圆上,联立求出D 、E 、F 的值,即可得到圆的方程;(2) 设点M (x ,y ), 圆的圆心坐标为C (0,2),由题意:,又,化简求解即可得到结论.19.如图,在四棱锥P —ABCD 中,PA ⊥底面ABCD , AB ⊥AD , AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.C A PB D E(1)求PB 和平面PAD 所成的角的大小;(2)证明:AE ⊥平面PCD ;(3)求二面角A-PD-C的正弦值.【答案】(1)在四棱锥P—ABCD中,∵PA⊥底面ABCD,AB⊂平面ABCD,∴PA⊥A B.又AB⊥AD,PA∩AD=A,从而AB⊥平面PAD,∴PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.在Rt△PAB中,AB=PA,故∠APB=45°.所以PB和平面PAD所成的角的大小为45°.(2)证明:在四棱锥P—ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴CD⊥PA.由条件CD⊥AC,PA∩AC=A∵CD⊥平面PA C.又AE⊂平面PAC,∴AE⊥C D.由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥P C.又PC∩CD=C,综上得AE⊥平面PCD.(3)过点E作EM⊥PD,垂足为M,连接AM,如图所示.由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD.因此∠AME是二面角A—PD—C的平面角.由已知,可得∠CAD=30°.设AC=a,可得PA=a,AD=a,PD=a,AE=在Rt△ADP中,∵AM⊥PD,∴AM·PD=PA·AD,则AM==.在Rt△AEM中,sin∠AME==.所以二面角A—PD—C的正弦值为.【解析】本题主要考查线面垂直的判定定理与性质定理、线面角与二面角,考查了空间想象能力.(1)根据题意,证明AB⊥平面PAD,即可得证∠APB为PB和平面PAD所成的角,则易求结果;(2)由题意,易证CD⊥平面PA C,可得AE⊥C D,由题意易知AC=PA,又因为E是PC 的中点,所以AE⊥P C,则结论易证;(3) 过点E作EM⊥PD,垂足为M,连接AM,如图所示,由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD,因此∠AME是二面角A—PD—C的平面角,则结论易求.20.诺贝尔奖的奖金发放方式为:每年一发,把奖金总额平均分成6份,分别奖励给在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半;另一半利息计入基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%.资料显示:1999年诺贝尔发放后基金总额约为19 800万美元.设f(x)表示第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依次类推)(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29≈1.32)【答案】(1)由题意知:f(2)=f(1)(1+6.24%)-f(1)·6.24%=f(1)×(1+3.12%),f(3)=f(2)×(1+6.24%)-f(2)×6.24%=f(2)×(1+3.12%)=f(1)×(1+3.12%)2,∴f(x)=19800(1+3.12%)x-1(x∈N*).(2)2008年诺贝尔奖发放后基金总额为f(10)=19800(1+3.12%)9=26136,故2009年度诺贝尔奖各项奖金为·f(10)·6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.【解析】本题主要考查指数函数、函数的解析式与求值,考查了分析问题与解决问题的能力、计算能力.(1)由题意知: f(2)=f(1)(1+6.24%)-f(1)·6.24%,f(3)=f(2)×(1+6.24%)-f(2)×6.24%,化简,即可归纳出函数f(x)的解析式;(2)根据题意,求出2008年诺贝尔奖发放后基金总额为f(10),再求出2009年度诺贝尔奖各项奖金为·f(10)·6.24%,即可判断出结论.。

吉林省长春市德惠市实验中学2015-2016学年高一上学期第一次月考数学试卷Word版含解析

吉林省长春市德惠市实验中学2015-2016学年高一上学期第一次月考数学试卷Word版含解析

2015-2016学年吉林省长春市德惠市实验中学高一(上)第一次月考数学试卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.一个非空集合A中的元素a满足:a∈N,且4﹣a∈A,则满足条件的集合A的个数有()A.6 B.7 C.8 D.52.若函数f(x)的定义域为[0,1],值域为[1,2],则函数f(x+2)的定义域,值域分别为()A.[0,1],[1,2]B.[2,3],[3,4]C.[﹣2,﹣1],[1,2]D.[﹣2,﹣1],[3,4]3.函数f(x)=x2对于任意的x,y∈R都有()A.f(x+y)=f(x)f(y) B.f(xy)=f(x)+f(y) C.f(xy)=f(x)f(y)D.f(x+y)=f(x)+f(y)4.函数y=的值域为()A.(0,+∞)B.C.D.(﹣2,2)5.若函数f(x)满足+1,则函数f(x)的表达式是()A.x2B.x2+1 C.x2﹣2 D.x2﹣16.已知函数y=使函数值为5的x的值是()A.﹣2 B.2或﹣C.2或﹣2 D.2或﹣2或﹣7.已知函数f(x)的定义域为{x∈R|x≠0},且对任意非零实数x,y都满足f(xy)=f(x)+f (y),则()A.f(1)=0且f(x)为偶函数B.f(﹣1)=0且f(x)为奇函数C.f(x)为增函数且为奇函数D.f(x)为增函数且为偶函数8.设奇函数f(x)在(0,+∞)上为减函数,且f(2)=0,则不等式<0的解集为()A.(﹣∞,﹣2)∪(0,2)B.(﹣∞,﹣2)∪(2,+∞)C.(﹣2,0)∪(0,2)D.(﹣2,0)∪(2,+∞)9.已知函数f(x)=,若对任意的实数x1,x2(x1≠x2)都有<0,则实数m的取值范围是()A.(﹣4,+∞) B.(﹣∞,﹣1)∪(3,+∞)C.(﹣∞,﹣1]∪[3,+∞)D.(﹣4,﹣1]∪[3,+∞)10.已知函数f(x)=,若实数a、b、c满足:a<b<c,且f(a)=f(b)=f(c),则的取值范围是()A.(10,12)B.(25,30)C.D.(25,+∞)二、填空题:请把答案填在题中横线上.11.已知集合A={﹣1,1},则集合B={a﹣b|a,b∈A}的真子集的个数有个.12.已知函数f(x)是定义在R上的偶函数,且对任意的x∈R都有f(x+4)=f(x)+f(2),若f(1)=2,则f(6)+f(﹣3)=.13.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.14.已知函数f(x)=(a≠1).(1)若f(x)在x=2处有意义,则实数a的取值范围是;(2)若f(x)在区间(0,1)上是减函数,则实数a的取值范围是.15.已知函数f(x)=,其中a,b∈R.若对任意的非零实数x1,存在唯一的非零实数x2(x1≠x2),使得f(x2)=f(x1)成立,则a+b的取值范围为.三、解答题:解答应写出文字说明、证明过程或演算步骤(共75分).16.已知函数f(x)=x2﹣4|x+1|+1.(1)去绝对值,把函数f(x)写成分段函数的形式,并作出其图象;(2)求函数f(x)的单调区间;(3)求函数f(x)的最小值.17.设常数a∈R,集合A={x|(x﹣1)(x﹣a)≥0},B={x|x≥a﹣1}.(1)若0∈A∩B,求a的取值范围;(2)若A∪B=R,求a的取值范围.18.设二次函数f(x)同时满足下列条件:①f(0)=8;②f(x﹣2)为偶函数;③关于x的方程f(x)=4有两个不等实根x1,x2,且.(1)求函数f(x)的表达式;(2)当x∈[﹣2,2]时,g(x)=f(x)﹣kx是单调函数,求实数k的取值范围.19.已知f(x)为R上的奇函数,且x>0时f(x)=﹣x2+(a+2)x﹣a2+5(其中a为实常数).(1)求f(0)的值;(2)求x<0时f(x)的解析式;(3)若f(x)在区间(0,2]上的最大值为2,求a的值.20.已知函数f(x)=.(1)证明对任意实数x,都有f(x)=f(|x|),说明f(x)在(0,+∞)上的单调性并证明之;(2)记A=f(1)+f(2)+f(3)+f(4)+…+f(100),,求A+B的值;(3)若实数x1,x2满足f(x1)+f(x2)>1.求证:|x1x2|>1.21.已知偶函数f(x),对任意x1,x2∈R,恒有f(x1+x2)=f(x1)+f(x2)+2x1x2+1.(1)f(0),f(1),f(2)的值;(2)f(x)的表达式;(3)是否存在实数a,使得不等式|f2(x)﹣af(x)+1|<2对任意的实数x∈(1,2)都成立?若不存在,说明理由;若存在,求实数a的取值范围.2015-2016学年吉林省长春市德惠市实验中学高一(上)第一次月考数学试卷参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.一个非空集合A中的元素a满足:a∈N,且4﹣a∈A,则满足条件的集合A的个数有()A.6 B.7 C.8 D.5【考点】集合中元素个数的最值.【专题】应用题;整体思想;定义法;集合.【分析】由条件列出集合的子集.【解答】解:一个非空集合A中的元素a满足:a∈N,且4﹣a∈A,当a=0时,4﹣a=4,当a=1时,4﹣1=3,当a=2时,4﹣2=2,当a=3时,4﹣3=1,当a=4时,4﹣4=0,集合A可以有:{0,4},{1,3},{2},{0,2,4},{1,2,3},{0,1,3,4},{0,1,2,3,4}共有7个集合故选:B.【点评】本题考查了集合的子集的列举方法,属于基础题.2.若函数f(x)的定义域为[0,1],值域为[1,2],则函数f(x+2)的定义域,值域分别为()A.[0,1],[1,2]B.[2,3],[3,4]C.[﹣2,﹣1],[1,2]D.[﹣2,﹣1],[3,4]【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】函数f(x+2)的图象是由函数f(x)的图象向左平移2个单位得到的,故定义域向左平移两个单位,值域不变,进而得到答案.【解答】解:函数f(x+2)的图象是由函数f(x)的图象向左平移2个单位得到的,∵函数f(x)的定义域为[0,1],值域为[1,2],∴函数f(x+2)的定义域为[﹣2,﹣1],值域为[1,2],故选:C.【点评】本题考查的知识点是函数图象的平移变换,正确理解左右平移变换,定义域和值域的变化规律是解答的关键.3.函数f(x)=x2对于任意的x,y∈R都有()A.f(x+y)=f(x)f(y) B.f(xy)=f(x)+f(y) C.f(xy)=f(x)f(y)D.f(x+y)=f(x)+f(y)【考点】抽象函数及其应用.【专题】函数思想;分析法;函数的性质及应用.【分析】对选项一一加以判断,求得函数式,比较它们是否恒等,即可得到A,B,D不成立,C恒成立.【解答】解:函数f(x)=x2,对于A,f(x+y)=(x+y)2=x2+y2+2xy,f(x)f(y)=x2y2,显然不等,故A不对;对于B,f(xy)=x2y2,f(x)+f(y)=x2+y2,显然不等,故B不对;对于C,f(xy)=(xy)2,f(x)f(y)=x2y2,显然恒等,故C对;对于D,f(x+y)=(x+y)2=x2+y2+2xy,f(x)+f(y)=x2+y2,显然不等,故D不对.故选C.【点评】本题考查函数的性质和运用,考查推理能力,属于基础题.4.函数y=的值域为()A.(0,+∞)B.C.D.(﹣2,2)【考点】函数的值域.【专题】函数的性质及应用.【分析】求出分母表达式的范围,即可求解函数的值域.【解答】解:因为∈[0,2].∴∈.函数的值域为:.故选:C.【点评】本题考查函数的值域的求法,考查计算能力.5.若函数f(x)满足+1,则函数f(x)的表达式是()A.x2B.x2+1 C.x2﹣2 D.x2﹣1【考点】函数解析式的求解及常用方法.【专题】函数的性质及应用.【分析】直接利用配方法求解函数的解析式即可.【解答】解:函数f(x)满足+1=.函数f(x)的表达式是:f(x)=x2﹣1.(x≥2).故选:D.【点评】本题考查函数的解析式的求法,考查计算能力.6.已知函数y=使函数值为5的x的值是()A.﹣2 B.2或﹣C.2或﹣2 D.2或﹣2或﹣【考点】分段函数的解析式求法及其图象的作法;函数的值.【分析】分x≤0和x>0两段解方程即可.x≤0时,x2+1=5;x>0时,﹣2x=5.【解答】解:由题意,当x≤0时,f(x)=x2+1=5,得x=±2,又x≤0,所以x=﹣2;当x>0时,f(x)=﹣2x=5,得x=﹣,舍去.故选A【点评】本题考查分段函数求值问题,属基本题,难度不大.7.已知函数f(x)的定义域为{x∈R|x≠0},且对任意非零实数x,y都满足f(xy)=f(x)+f (y),则()A.f(1)=0且f(x)为偶函数B.f(﹣1)=0且f(x)为奇函数C.f(x)为增函数且为奇函数D.f(x)为增函数且为偶函数【考点】抽象函数及其应用.【专题】函数的性质及应用.【分析】利用抽象函数的关系,通过赋值法求解判断即可.【解答】解:函数f(x)的定义域为{x∈R|x≠0},且对任意非零实数x,y都满足f(xy)=f(x)+f(y),x=y=1时,可得f(1)=f(1)+f(1),∴f(1)=0.x=y=﹣1,可得f(1)=f(﹣1)+f(﹣1),∴f(﹣1)=0令y=﹣1,﹣x换x,可得f(x)=f(﹣x)+f(﹣1)=f(﹣x).函数是偶函数.故选:A.【点评】本题考查抽象函数的应用,函数的奇偶性以及函数值的求法,考查计算能力.8.设奇函数f(x)在(0,+∞)上为减函数,且f(2)=0,则不等式<0的解集为()A.(﹣∞,﹣2)∪(0,2)B.(﹣∞,﹣2)∪(2,+∞)C.(﹣2,0)∪(0,2)D.(﹣2,0)∪(2,+∞)【考点】函数单调性的性质.【专题】函数的性质及应用.【分析】根据函数奇偶性和单调性之间的关系即可得到结论.【解答】解:∵奇函数f(x)在(0,+∞)上为减函数,且f(2)=0,∴函数f(x)在(﹣∞,0)上为减函数,且f(﹣2)=f(2)=0,作出函数f(x)的草图如图:∵f(x)是奇函数,∴不等式等价为,即>0,即或,则0<x<2或﹣2<x<0,故不等式>0的解集是(﹣2,0)∪(0,2),故选:C.【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系,利用数形结合是解决本题的关键.9.已知函数f(x)=,若对任意的实数x1,x2(x1≠x2)都有<0,则实数m的取值范围是()A.(﹣4,+∞) B.(﹣∞,﹣1)∪(3,+∞)C.(﹣∞,﹣1]∪[3,+∞)D.(﹣4,﹣1]∪[3,+∞)【考点】分段函数的应用;函数单调性的性质.【专题】函数的性质及应用;不等式的解法及应用.【分析】由对任意的实数x1,x2(x1≠x2)都有<0,可得f(x)在R上递减,由分段函数可得,解不等式即可得到所求m的范围.【解答】解:由对任意的实数x1,x2(x1≠x2)都有<0,可得f(x)在R上递减,由函数f(x)=,可得即为,解得m≥3或﹣4<m≤﹣1.故选:D.【点评】本题考查函数单调性的性质及其应用,理解“对任意的实数x1≠x2,都有<0成立⇔函数f(x)在定义域内单调递减”是关键,也是难点所在,考查解不等式组的能力,属于中档题.10.已知函数f(x)=,若实数a、b、c满足:a<b<c,且f(a)=f(b)=f(c),则的取值范围是()A.(10,12)B.(25,30)C.D.(25,+∞)【考点】分段函数的应用.【专题】数形结合;函数的性质及应用.【分析】画出图象得出,当f(a)=f(b)=f(c),a<b<c时,0<a<5<b<10<<c<12,+=,化简=c,即可求得范围.【解答】解:f(x)=,f(a)=f(b)=f(c),a<b<c,∴0<a<5<b<10<c<12,由﹣2=2﹣,可得+=,∴=c∈(25,30).故选:B.【点评】本题考查了函数的性质,运用图象得出a,b,c的范围,关键是得出+=,代数式的化简,属于中档题.二、填空题:请把答案填在题中横线上.11.已知集合A={﹣1,1},则集合B={a﹣b|a,b∈A}的真子集的个数有7个.【考点】子集与真子集.【专题】集合;排列组合.【分析】可以求出集合B={0,﹣2,2},从而从集合B的元素0,﹣2,2中取的个数分别为0,1,2便可得出集合B的真子集,从而真子集个数为,这样进行组合数的计算即可.【解答】解:a,b∈A;∴a=﹣1,或1,b=﹣1,或1;∴a﹣b=0,﹣2,或2;∴B={0,﹣2,2};∴集合B的真子集个数为:.故答案为:7.【点评】考查列举法、描述法表示集合,真子集的概念,用组合的知识求集合真子集个数的方法,以及组合数公式.12.已知函数f(x)是定义在R上的偶函数,且对任意的x∈R都有f(x+4)=f(x)+f(2),若f(1)=2,则f(6)+f(﹣3)=2.【考点】函数奇偶性的性质.【专题】综合题;函数的性质及应用.【分析】令x=﹣2,可求得f(﹣2)=f(2)=0,从而可得f(x)是以4为周期的函数,结合f(1)=2,即可求得f(6)+f(﹣3)的值.【解答】解:∵f(x+4)=f(x)+f(2),∴f(﹣2+4)=f(﹣2)+f(2),∴f(﹣2)=0,又函数f(x)是定义在R上的偶函数,∴f(2)=0.∴f(x+4)=f(x)+0=f(x),∴f(x)是以4为周期的函数,又f(1)=2,∴f(6)+f(﹣3)=f(2)+f(1)=2.故答案为:2【点评】本题考查抽象函数及其应用,考查赋值法,求得f(2)=0是关键,考查函数的周期性,属于中档题.13.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为12.【考点】交、并、补集的混合运算.【专题】应用题;集合.【分析】设两者都喜欢的人数为x人,则只喜爱篮球的有(15﹣x)人,只喜爱乒乓球的有(10﹣x)人,由此可得(15﹣x)+(10﹣x)+x+8=30,解之即可两者都喜欢的人数,然后即可得出喜爱篮球运动但不喜爱乒乓球运动的人数.【解答】解:设两者都喜欢的人数为x人,则只喜爱篮球的有(15﹣x)人,只喜爱乒乓球的有(10﹣x)人,由此可得(15﹣x)+(10﹣x)+x+8=30,解得x=3,所以15﹣x=12,即所求人数为12人,故答案为:12.【点评】本题考查了集合的混合运算,属于应用题,关键是运用集合的知识求解实际问题.14.已知函数f(x)=(a≠1).(1)若f(x)在x=2处有意义,则实数a的取值范围是;(2)若f(x)在区间(0,1)上是减函数,则实数a的取值范围是(﹣∞,0)∪(1,3].【考点】函数单调性的性质;函数的定义域及其求法.【专题】函数的性质及应用.【分析】(1)若f(x)在x=2处有意义,则x=2时,3﹣2a≥0,解得实数a的取值范围;(2)若f(x)在区间(0,1)上是减函数,则,或,解得实数a的取值范围.【解答】解:(1)若f(x)在x=2处有意义,则x=2时,3﹣2a≥0,解得:a∈;(2)若f(x)在区间(0,1)上是减函数,则,或,解得:a∈(﹣∞,0)∪(1,3],故答案为:;(﹣∞,0)∪(1,3]【点评】本题考查的知识点是函数的定义域,函数的单调性,熟练掌握复合函数的单调性,是解答的关键.15.已知函数f(x)=,其中a,b∈R.若对任意的非零实数x1,存在唯一的非零实数x2(x1≠x2),使得f(x2)=f(x1)成立,则a+b的取值范围为[1,5].【考点】函数与方程的综合运用.【专题】函数的性质及应用.【分析】利用分段函数,通过题意推出函数的单调性以及函数值的关系列出方程,求解即可.【解答】解:函数f(x)=,x≥0时,函数是增函数;因为对任意的非零实数x1,存在唯一的非零实数x2(x1≠x2),使得f(x2)=f(x1)成立,可知x<0时,函数是减函数,并且x=0时,两部分的函数值相等.可得:1=b,,解得a∈[0,4].a+b的取值范围为:[1,5].故答案为:[1,5].【点评】本题考查分段函数的应用,函数与方程的思想的应用,判断函数的单调性是解题的关键.三、解答题:解答应写出文字说明、证明过程或演算步骤(共75分).16.已知函数f(x)=x2﹣4|x+1|+1.(1)去绝对值,把函数f(x)写成分段函数的形式,并作出其图象;(2)求函数f(x)的单调区间;(3)求函数f(x)的最小值.【考点】函数的图象;函数解析式的求解及常用方法;函数单调性的判断与证明;函数的最值及其几何意义.【专题】函数的性质及应用.【分析】(1)化为分段函数,画出图象即可;(2)由图象得到函数的单调区间;(3)由图象求出最值.【解答】解:(1)=,其图象如右图所示.(2)f(x)的单调减区间为(﹣∞,﹣2),(﹣1,2);单调增区间为(﹣2,﹣1),(2,+∞)(3)由图象知,当x=2时,f(x)取得最小值﹣7.【点评】本题考查了函数图象的画法和识别,以及函数的单调性,最值,属于基础题.17.设常数a∈R,集合A={x|(x﹣1)(x﹣a)≥0},B={x|x≥a﹣1}.(1)若0∈A∩B,求a的取值范围;(2)若A∪B=R,求a的取值范围.【考点】并集及其运算;交集及其运算.【专题】集合.【分析】(1)由0∈A∩B,得到0属于A且0属于B,列出不等式组,求出解集即可确定出a 的范围;(2)分类讨论a的范围,表示出A中不等式的解集,根据A与B的并集为R,求出a的范围即可.【解答】解:(1)∵0∈A∩B,∴0∈A且0∈B,∴,解得0≤a≤1,则a的取值范围为[0,1];(2)当a≥1时,A={x|x≤1或x≥a},B={x|x≥a﹣1},∵A∪B=R,∴a﹣1≤1,即1≤a≤2满足条件;当a<1时,A={x|x≤a,或x≥1},B={x|x≥a﹣1},∵a﹣1<a,∴A∪B=R成立,即a<1满足条件,综上知a的取值范围为(﹣∞,2].【点评】此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.18.设二次函数f(x)同时满足下列条件:①f(0)=8;②f(x﹣2)为偶函数;③关于x的方程f(x)=4有两个不等实根x1,x2,且.(1)求函数f(x)的表达式;(2)当x∈[﹣2,2]时,g(x)=f(x)﹣kx是单调函数,求实数k的取值范围.【考点】二次函数的性质;函数单调性的性质;奇偶性与单调性的综合.【专题】函数的性质及应用.【分析】(1)利用待定系数法即可求函数f(x)的表达式;(2)求出函数的表达式,结合一元二次函数的单调性的性质进行求解即可.【解答】解:(Ⅰ)设f(x)=ax2+bx+c,∴f(0)=8,∴c=8因为f(x﹣2)=a(x﹣2)2+b(x﹣2)+8=ax2﹣(4a﹣b)x+4a2﹣2b+8为偶函数∴4a﹣b=0,即b=4a又方程f(x)=4⇔ax2+4ax+4=0由得,解得a=2,从而b=8∴f(x)=2x2+8x+8=2(x+2)2(Ⅱ)g(x)=f(x)﹣kx=2x2+(8﹣k)x+8,其对称轴为∵当x∈[﹣2,2]时,g(x)是单调函数∴或解得k≤0或k≥16,即实数k的取值范围是(﹣∞,0]∪[16,+∞).【点评】本题主要考查二次函数的解析式的求解以及一元二次函数单调性的性质的应用,考查学生的运算和推理能力.19.已知f(x)为R上的奇函数,且x>0时f(x)=﹣x2+(a+2)x﹣a2+5(其中a为实常数).(1)求f(0)的值;(2)求x<0时f(x)的解析式;(3)若f(x)在区间(0,2]上的最大值为2,求a的值.【考点】二次函数在闭区间上的最值;函数解析式的求解及常用方法.【专题】函数的性质及应用.【分析】(1)利用函数的奇偶性直接求出结果.(2)利用函数是奇函数的性质求解函数的解析式即可.(3)通过函数的对称轴以及函数的解析式通过最值求解a的值即可.【解答】解:(1)∵f(﹣0)=﹣f(0),∴f(0)=0.(2)当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[﹣(﹣x)2+(a+2)•(﹣x)﹣a2+5]=x2+(a+2)x+a2﹣5(3)x∈(0,2]时,f(x)=﹣x2+(a+2)x﹣a2+5,显然对称轴①当即﹣2<a<2时,则时取得最大值,则,解得(舍去)②当即a≥2时,则x=2时取得最大值,则﹣22+2(a+2)﹣a2+5=2,解得a=3(a=﹣1<2舍去)综上知或a=3.【点评】本题考查函数的奇偶性的应用,函数的解析式以及二次函数闭区间上的最值问题的求法,考查计算能力.20.已知函数f(x)=.(1)证明对任意实数x,都有f(x)=f(|x|),说明f(x)在(0,+∞)上的单调性并证明之;(2)记A=f(1)+f(2)+f(3)+f(4)+…+f(100),,求A+B的值;(3)若实数x1,x2满足f(x1)+f(x2)>1.求证:|x1x2|>1.【考点】数列的求和;函数单调性的判断与证明;数列的函数特性.【专题】综合题;方程思想;综合法;等差数列与等比数列.【分析】(1)对任意实数x ,有=,利用定义法能证明f (x )在(0,+∞)上的单调递增.(2)由已知得=1,由此能求出A+B 的值.(3)法一:由f (x 1)+f (x 2)>1,得到,由此能证明|x 1x 2|>1. 法二:当f (x 1)+f (x 2)>1时,x 1,x 2均不为0,由f (x 1)+f (x 2)>1得f (x 1)>1﹣f (x 2),由此能证明|x 1x 2|>1.【解答】(1)解:∵函数f (x )=,对任意实数x ,都有f (x )=f (|x|),∴对任意实数x ,有=,f (x )在(0,+∞)上的单调递增,证明如下:任取x 1,x 2∈(0,+∞),x 1<x 2,则f (x 1)﹣f (x 2)==,∵x 2>x 1>0,∴x 1﹣x 2<0,x 1+x 2>0而,∴,即f (x 1)<f (x 2),∴f (x )在(0,+∞)上的单调递增.(2)解:当x ≠0时,∴=100(3)证法一:∵f (x 1)+f (x 2)>1,∴,∴,∴,∴|x1x2|>1.证法二:当f(x1)+f(x2)>1时,x1,x2均不为0,否则,假设x1=0,则f(x1)=0,而f(x1)<1,则f(x1)+f(x2)<1,矛盾!由f(x1)+f(x2)>1得f(x1)>1﹣f(x2)由结论(2)知,所以又结合结论(1)有|x1x2|>1.∴|x1x2|>1.【点评】本题考查函数的单调性的判断与证明,考查函数值的求法,考查不等式的证明,综合性强,难度大,解题时要认真审题,注意挖掘题设中的隐含条件合理运用.21.已知偶函数f(x),对任意x1,x2∈R,恒有f(x1+x2)=f(x1)+f(x2)+2x1x2+1.(1)f(0),f(1),f(2)的值;(2)f(x)的表达式;(3)是否存在实数a,使得不等式|f2(x)﹣af(x)+1|<2对任意的实数x∈(1,2)都成立?若不存在,说明理由;若存在,求实数a的取值范围.【考点】抽象函数及其应用.【专题】函数的性质及应用.【分析】(1)直接令x1=x2=0得:f(0)=﹣1;同样x1=0,x2=1得:f(1)=0;令x1=x2=1得:f(2)=3;(2)直接根据f[x+(﹣x)]=f(x)+f(﹣x)+2x(﹣x)+1以及f(x)=f(﹣x),f(0)=﹣1即可求出f(x);(3)利用换元法设t=f(x),将不等式进行转化,利用参数分离法以及基本不等式进行求解即可.【解答】解:(1)直接令x1=x2=0得:f(0)=﹣1,令x1=1,x2=﹣1得:f(1﹣1)=f(1)+f(﹣1)﹣2+1=2f(1)﹣1,∵f(0)=﹣1∴f(1)=0,令x1=x2=1得:f(2)=3;(2)∵f[x+(﹣x)]=f(x)+f(﹣x)+2x(﹣x)+1,又f(x)=f(﹣x),f(0)=﹣1,∴f(x)=x2﹣1;(3)∵f(x)=x2﹣1,∴不等式|f2(x)﹣af(x)+1|<2等价为不等式|(x2﹣1)2﹣a(x2﹣1)+1|<2,即设t=f(x),则t=x2﹣1,当x∈(1,2)时,t∈(0,3),即不等式|t2﹣at+1|<2,在t∈(0,3)上恒成立.即﹣2<t2﹣at+1<2,在t∈(0,3)上恒成立.即,则,即∵y=t+≥2=2,当且仅当t=,即t=时,取等号,∴此时a<2,y=t﹣在(0,3)上为增函数,∴t﹣<3﹣=,此时a≥,综上≤a<2.即存在实数a,使得不等式|f2(x)﹣af(x)+1|<2对任意的实数x∈(1,2)都成立.【点评】本题主要考查抽象函数的应用以及不等式恒成立问题.解决第一问的关键在于赋值法的应用.一般在见到函数解析式不知道而要求具体的函数值时,多用赋值法来解决.。

吉林省长春市名校调研2015-2016学年八年级上第三次月考数学试卷含答案解析

吉林省长春市名校调研2015-2016学年八年级上第三次月考数学试卷含答案解析

2015-2016学年吉林省长春市名校调研八年级(上)第三次月考数学试卷一、选择题(每小题3分,共24分)1.下列实数中属于无理数的是( )A.B.C.D.2.设三角形的三边长分别等于下列各组数,能构成直角三角形的是( )A.1,2,3 B.4,5,6 C.6,8,10 D.7,12,133.如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,是( )A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧4.分解因式2x3+18x﹣12x2的结果正确的是( )A.2x(x+3)2B.2x(x﹣3)2C.2x(x2﹣9)D.2x(x+3)(x﹣3)5.若x+y=3且xy=1,则代数式(2﹣x)(2﹣y)的值等于( )A.2 B.1 C.0 D.﹣16.下列判断中错误的是( )A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等7.如图将4个长、宽分别均为a,b的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是( )A.a2+2ab+b2=(a+b)2B.a2﹣2ab+b2=(a﹣b)2C.4ab=(a+b)2﹣(a﹣b)2D.(a+b)(a﹣b)=a2﹣b28.如图,有一长、宽、高分别为12cm,4cm,3cm的木箱,在它里面放一根细木条(木条的粗细忽略不计)要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是( )A.13cm B.14cm C.15cm D.16cm二、填空题(每小题3分,共18分)9.计算:(6x2﹣xy)÷2x=__________.10.等腰三角形的两边长分别是3和7,则其周长为__________.11.命题“等腰三角形的两个底角相等”的逆命题是__________.12.若3×27m=316,则m的值是__________.13.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是__________.14.如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为__________cm.三、解答题(本大题共10小题,共78分)15.计算:.16.计算:a2(a﹣1)+(a﹣5)(a+7)17.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可).18.如图,AB=DE,AC=DF,BF=EC,△ABC和△DEF全等吗?请说明理由.19.如图,有一斜坡AB长170m,坡顶离地面的高度BC为80m,求此斜坡的水平距离AC 的长度.20.先化简,再求值:(3x+2)(3x﹣2)﹣(3﹣5x)(x﹣1)﹣(2x﹣1)2,其中x=﹣2.21.如图,在△ABC中,AB=AC,∠A=α.(1)直接写出∠ABC的大小(用含α的式子表示);(2)以点B为圆心、BC长为半径画弧,分别交AC、AB于D、E两点,并连接BD、DE.若α=30°,求∠BDE的度数.22.如图,△ABC是等边三角形,P为BC上一动点(不与B、C重合),以AP为边作等边△APE,连接CE.(1)求证:AB∥CE;(2)是否存在点P,使得AE⊥CE?若存在,指出点P的位置并证明你的结论;若不存,请说明理由.23.如图,已知△ABC的面积为16,BC=8.现将△ABC沿直线BC向右平移a(a<8)个单位到△DEF的位置.(1)求△ABC的BC边上的高;(2)连结AE、AD,设AB=5.①求线段DF的长;②当△ADE是等腰三角形时,求a的值.24.如图,已知△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,点D为AB 边上一点.(1)求证:△ACE≌△BCD;(2)求证:△ADE是直角三角形;(3)已知△ADE的面积为30cm2,DE=13cm,求AB的长.2015-2016学年吉林省长春市名校调研八年级(上)第三次月考数学试卷一、选择题(每小题3分,共24分)1.下列实数中属于无理数的是( )A.B.C.D.【考点】无理数.【分析】根据无理数的三种形式求解.【解答】解:=3,=﹣,无理数为:.故选B.【点评】本题考查了无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.设三角形的三边长分别等于下列各组数,能构成直角三角形的是( )A.1,2,3 B.4,5,6 C.6,8,10 D.7,12,13【考点】勾股数.【分析】判断是否可以作为直角三角形的三边长,则判断两小边的平方和是否等于最长边的平方即可.【解答】解:A、12+22≠32,不是直角三角形,故此选项错误;B、42+52≠62,不是直角三角形,故此选项错误;C、62+82=102,是直角三角形,故此选项正确;D、72+122≠132,不是直角三角形,故此选项错误.故选:C.【点评】此题主要考查了勾股定理逆定理,关键是掌握勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.3.如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,是( )A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧【考点】作图—基本作图.【专题】作图题.【分析】根据同位角相等两直线平行,要想得到CN∥OA,只要作出∠BCN=∠AOB即可,然后再根据作一个角等于已知角的作法解答.【解答】解:根据题意,所作出的是∠BCN=∠AOB,根据作一个角等于已知角的作法,是以点E为圆心,DM为半径的弧.故选D.【点评】本题考查了基本作图,根据题意,判断出题目实质是作一个角等于已知角是解题的关键.4.分解因式2x3+18x﹣12x2的结果正确的是( )A.2x(x+3)2B.2x(x﹣3)2C.2x(x2﹣9)D.2x(x+3)(x﹣3)【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】原式提取2x,再利用完全平方公式分解即可.【解答】解:原式=2x(x2﹣6x+9)=2x(x﹣3)2.故选B.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5.若x+y=3且xy=1,则代数式(2﹣x)(2﹣y)的值等于( )A.2 B.1 C.0 D.﹣1【考点】整式的混合运算—化简求值.【分析】先算乘法,再变形,最后整体代入求出即可.【解答】解:∵x+y=3,xy=1,∴(2﹣x)(2﹣y)=4﹣2y﹣2x+xy=4﹣2(x+y)+xy=4﹣2×3+1=﹣1,故选D.【点评】本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简是解此题的关键,用了整体代入得思想,难度适中.6.下列判断中错误的是( )A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等【考点】全等三角形的判定.【分析】要判断选项的正误一定要结合三角形全等的判定方法对选项逐一验证,其中B满足SSA是不能判定三角形全等的,SSA不能作为三角形全等的判定方法使用.【解答】解:∵两个三角形全等的一般方法有:SSS、SAS、AAS、ASA,HL.∴A、是AAS或ASA;可以判定三角形全等,故A选项正确.B、是SSA;是不能判定三角形全等的.故B选项错误.C、利用SSS;可以判定三角形全等.故C选项正确.D、利用SSS.可以判定三角形全等.故D选项正确.故选B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.如图将4个长、宽分别均为a,b的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是( )A.a2+2ab+b2=(a+b)2B.a2﹣2ab+b2=(a﹣b)2C.4ab=(a+b)2﹣(a﹣b)2D.(a+b)(a﹣b)=a2﹣b2【考点】完全平方公式的几何背景.【分析】根据图形的组成以及正方形和长方形的面积公式,知:大正方形的面积﹣小正方形的面积=4个矩形的面积.【解答】解:∵大正方形的面积﹣小正方形的面积=4个矩形的面积,∴(a+b)2﹣(a﹣b)2=4ab,即4ab=(a+b)2﹣(a﹣b)2.故选C.【点评】考查了完全平方公式的几何背景,能够正确找到大正方形和小正方形的边长是难点.解决问题的关键是读懂题意,找到所求的量的等量关系.8.如图,有一长、宽、高分别为12cm,4cm,3cm的木箱,在它里面放一根细木条(木条的粗细忽略不计)要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是( )A.13cm B.14cm C.15cm D.16cm【考点】勾股定理的应用.【分析】要判断能否放进去,关键是求得该木箱中的最长线段的长度,即AD的长,通过比较它们的大小作出判断.【解答】解:如图,连接AC、AD.在Rt△ABC中,有AC2=AB2+BC2=160,在Rt△ACD中,有AD2=AC2+CD2=169,∵AD==13cm,∴能放进去的木棒的最大长度为13.故选:A.【点评】此题主要考查了勾股定理的应用,解题的关键是求出木箱内木棒的最大长度.二、填空题(每小题3分,共18分)9.计算:(6x2﹣xy)÷2x=.【考点】整式的除法.【分析】我们应该利用多项式除以单项式的法则,用多项式的每一项除以单项式,再把所得的商相加即可.【解答】解:(6x2﹣xy)÷2x=.故答案为:.【点评】本题主要考查的是多项式除以单项式,我们根据多项式除以单项式的法则,用多项式的每一项除以单项,在把所得的商相加即可,解决此类问题的关键是掌握运算法则.10.等腰三角形的两边长分别是3和7,则其周长为17.【考点】等腰三角形的性质.【专题】分类讨论.【分析】因为边为3和7,没明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:分两种情况:当3为底时,其它两边都为7,3、7、7可以构成三角形,周长为17;当3为腰时,其它两边为3和7,3+3=6<7,所以不能构成三角形,故舍去,所以等腰三角形的周长为17.故答案为:17.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.11.命题“等腰三角形的两个底角相等”的逆命题是两个角相等三角形是等腰三角形.【考点】命题与定理.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.【解答】解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“两个角相等三角形是等腰三角形”.【点评】根据逆命题的概念来回答:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.12.若3×27m=316,则m的值是5.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据幂的乘方和积的乘方、同底数幂的乘法法则求解.【解答】解:3×27m=3×33m=33m+1,则3m+1=16,解得:m=5.故答案为:5.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.13.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是15.【考点】角平分线的性质.【分析】过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【解答】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是×DE×BC=×10×3=15,故答案为:15.【点评】本题考查了角平分线性质和三角形的面积的应用,注意:角平分线上的点到角两边的距离相等.14.如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为6cm.【考点】线段垂直平分线的性质.【专题】数形结合.【分析】根据中垂线的性质,可得DC=DB,继而可确定△ABD的周长.【解答】解:∵l垂直平分BC,∴DB=DC,∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=6cm.故答案为:6.【点评】本题考查了线段垂直平分线的性质,注意掌握线段垂直平分线上任意一点,到线段两端点的距离相等.三、解答题(本大题共10小题,共78分)15.计算:.【考点】实数的运算.【专题】计算题.【分析】原式第一项利用立方根定义计算,第二项利用绝对值的代数意义化简,最后一项利用平方根定义计算即可得到结果.【解答】解:原式=﹣2﹣3+1=﹣4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.计算:a2(a﹣1)+(a﹣5)(a+7)【考点】整式的混合运算.【分析】先算乘除,再算加减即可.【解答】解:原式=a3﹣a2+(a2+7a﹣5a﹣35)=a3﹣a2+a2+7a﹣5a﹣35=a3+2a﹣35.【点评】本题考查的是整式的混合运算,熟知整式混合运算的法则是解答此题的关键.17.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可).【考点】作图—应用与设计作图.【专题】作图题.【分析】(1)利用网格结构,过点A的竖直线与过点B的水平线相交于点C,连接即可,或过点A的水平线与过点B的竖直线相交于点C,连接即可;(2)根据网格结构,作出BD=AB或AB=AD,连接即可得解.【解答】解:(1)如图1,①、②,画一个即可;(2)如图2,①、②,画一个即可.【点评】本题考查了应用与设计作图,(1)中作直角三角形时根据网格的直角作图即可,比较简单,(2)中根据网格结构作出与AB相等的线段是解题的关键,灵活性较强.18.如图,AB=DE,AC=DF,BF=EC,△ABC和△DEF全等吗?请说明理由.【考点】全等三角形的判定.【分析】求出BC=EF,根据全等三角形的判定定理SSS推出即可.【解答】解:全等,理由是:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,在△ABC和△DEF中∴△ABC≌△DEF(SSS).【点评】本题考查了全等三角形的判定定理的应用,能正确运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.19.如图,有一斜坡AB长170m,坡顶离地面的高度BC为80m,求此斜坡的水平距离AC 的长度.【考点】解直角三角形的应用-坡度坡角问题.【分析】在Rt△ABC中,依据勾股定理求解即可.【解答】解:在Rt△ABC中,由勾股定理得:AC===150m.【点评】本题主要考查的是勾股定理的应用,掌握勾股定理是解题的关键.20.先化简,再求值:(3x+2)(3x﹣2)﹣(3﹣5x)(x﹣1)﹣(2x﹣1)2,其中x=﹣2.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用平方差公式,完全平方公式,多项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=9x2﹣4﹣3x+3+5x2﹣5x﹣4x2+4x﹣1=10x2﹣4x﹣2,当x=﹣2时,原式=40+8﹣2=46.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.21.如图,在△ABC中,AB=AC,∠A=α.(1)直接写出∠ABC的大小(用含α的式子表示);(2)以点B为圆心、BC长为半径画弧,分别交AC、AB于D、E两点,并连接BD、DE.若α=30°,求∠BDE的度数.【考点】等腰三角形的性质.【分析】(1)根据三角形内角和定理和等腰三角形两底角相等的性质即可求得∠ABC的大小;(2)根据等腰三角形两底角相等求出∠BCD=∠BDC,再求出∠CBD,然后根据∠ABD=∠ABC﹣∠CBD,求得∠ABD,再根据三角形内角和定理和等腰三角形两底角相等的性质计算即可得解.【解答】解:(1)∠ABC的大小为×(180°﹣α)=90°﹣α;(2)∵AB=AC,∴∠ABC=∠C=90°﹣α=90°﹣×30°=75°,由题意得:BC=BD=BE,由BC=BD得∠BDC=∠C=75°,∴∠CBD=180°﹣75°﹣75°=30°,∴∠ABD=∠ABC﹣∠CBD=75°﹣30°=45°,由BD=BE得.故∠BDE的度数是67.5°.【点评】本题考查了三角形内角和定理、等腰三角形的性质,主要利用了等腰三角形两底角相等,熟记性质是解题的关键.22.如图,△ABC是等边三角形,P为BC上一动点(不与B、C重合),以AP为边作等边△APE,连接CE.(1)求证:AB∥CE;(2)是否存在点P,使得AE⊥CE?若存在,指出点P的位置并证明你的结论;若不存,请说明理由.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)根据等边三角形的性质得出角相等、边相等,证出△A BP≌△ACE(SAS),得出对应角相等,证出∠BAC=∠ACF,从而证出结论.(2)由△ABP≌△ACE得出∠APB=∠AEC=90°,再由等边三角形的性质得出P为BC的中点.【解答】证明:(1)∵△ABC、△APE是等边三角形,∴∠BAC=∠PAE=∠B=60°,AB=AC,AF=AE,∴∠BAP=∠CAE,在△ABF和△ACE中,∴△ABP≌△ACE(SAS),∴∠B=∠ACP=60°,∴∠BAC=∠ACF,∴AB∥CE;(2)存在点P使得AE⊥CE.此时P为BC的中点;理由如下:∵AE⊥CE,∴∠AEC=90°,由(1)得:△ABP≌△A CE,∴∠APB=∠AEC=90°,∴AP⊥BC,∵AB=AC,∴P为BC的中点.∴存在点P,使得AE⊥CE.【点评】本题考查了等边三角形的性质以及全等三角形的判定与性质;由等边三角形证明三角形全等是关键.23.如图,已知△ABC的面积为16,BC=8.现将△ABC沿直线BC向右平移a(a<8)个单位到△DEF的位置.(1)求△ABC的BC边上的高;(2)连结AE、AD,设AB=5.①求线段DF的长;②当△ADE是等腰三角形时,求a的值.【考点】等腰三角形的判定与性质;勾股定理;平移的性质.【分析】(1)如图1过点A作AM⊥BC于点M,由三角形的面积公式求得△ABC的BC边上的高是8;(2)①在R t△AMB中,由勾股定理求得BM===3,得到CM=BC ﹣BM=8﹣3=5,在R t△AMC中,由勾股定理求得AC===,得到DF=AC=;②如图2当△ADE是等腰三角形时,分三种情况讨论:当AD=DE时,a=5,当AE=DE时,因为AB=DE,得到AB=AE,BE=2BM=6,求得a=6;当AE=AD时,在R t△AME中,AM=4,AE=a,ME=a﹣3,由勾股定理得:42+(a﹣3)2=a2,解得:a=,【解答】解:(1)如图1过点A作AM⊥BC于点M,∵△ABC的面积为16,BC=8,∴×8×AM=8,∴AM=4,∴△ABC的BC边上的高是8;(2)①在R t△AMB中,BM===3,∴CM=BC﹣BM=8﹣3=5,∴在R t△AMC中,AC===,∴DF=AC=,②如图2当△ADE是等腰三角形时,有三种情况:当AD=DE时,a=5,当AE=DE时,又∵AB=DE,∴AB=AE,∴BE=2BM=6,∴a=6;当AE=AD时,在R t△AME中,AM=4,AE=a,ME=a﹣3,由勾股定理得:42+(a﹣3)2=a2,解得:a=,综上所述,当△ADE是等腰三角形时,a的值为5或6或.【点评】本题考查了等腰三角形的判定和性质,平移的性质,勾股定理得应用,特别是(2)②要分类讨论否则容易漏解.24.如图,已知△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,点D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:△ADE是直角三角形;(3)已知△ADE的面积为30cm2,DE=13cm,求AB的长.【考点】全等三角形的判定与性质;勾股定理;等腰直角三角形.【分析】(1)由于△ABC和△ECD都是等腰直角三角形,那么∠B=∠BAC=45°,AC=BC,CE=CD,∠ACB=∠DCE=90°,结合等式性质易证∠1=∠2,那么利用SAS可证△ACE≌△BCD;(2)由(1)证得△ACE≌△BCD,△ABC和△ECD都是等腰直角三角形,于是可得∠CAE=∠B=45°,易求∠EAD=90°;求得结论;(3)由△ADE的面积为30,利用面积公式得到AD•AE=60,解直角三角形得到AD+AE=17,根据BD=AE,求得AB=AD+BD=AD+AE=17cm.【解答】解:(1)证明:∵△A BC和△ECD都是等腰直角三角形,∴∠B=∠BAC=45°,AC=BC,CE=CD,∠ACB=∠DCE=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,即∠1=∠2,在△ACE和△BCD中,∴△ACE≌△BCD;(2)由(1)证得△ACE≌△BCD,△ABC和△ECD都是等腰直角三角形,∴∠CAE=∠B=45°,∴∠EAD=∠EAC+∠CAB=45°+45°=90°,∴△ADE是直角三角形;(3)解:由题意得:AD•AE=30,即AD•AE=60,在R t△ADE中,由勾股定理得:AD2+AE2=DE2=132=169,∴(AD+AE)2=AD2+AE2+2AD•AE=289,∴AD+AE=17,由(1)得:△ACE≌△BCD,∴BD=AE,∴AB=AD+BD=AD+AE=17cm.【点评】本题考查了全等三角形的判定和性质、等腰直角三角形的性质、勾股定理,解题的关键是证明△ACE≌△BCD.。

2015-2016学年吉林省长春市德惠三中八年级(上)期中数学试卷含答案解析

2015-2016学年吉林省长春市德惠三中八年级(上)期中数学试卷含答案解析

2015-2016学年吉林省长春市德惠三中八年级(上)期中数学试卷一、选择题(每小题3分,共24分) 1.5的算术平方根是( ) A .5B .√5C .±√5D .252. 在实数√−13、0、√3、225中,无理数是( )A .√−13B .0C .√3D .2253.下列计算正确的是( ) A .m 3+m 2=m 5B .m 6÷m 2=m 3C .(m 3)2=m 9D .m 3•m 2=m 54.下列命题是假命题的是( ) A .对顶角相等B .两直线平行,内错角相等C .同角的余角相等D .两个锐角的和等于直角5.如图,数轴上点N 表示的数可能是( )A .√10B .√6C .√3D .√26.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB 是一个任意角,在边OA 、OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度与M 、N 重合,过角尺顶点C 作射线OC .那么判定△MOC ≌△NOC 的依据是( )A .边角边B .边边边C .角边角D .角角边7.若a =1.6×109,b =4×103,则a ÷b 等于( ) A .4×105B .4×106C .6.4×106D .6.4×10128.如图,已知AD 是△ABC 的BC 边上的高,下列能使△ABD ≌△ACD 的条件是( )A .AB =ACB .∠BAC =90°C .BD =ACD .∠B =45°二、填空题(每小题3分,共18分) 9.化简:√83═ . 10.分解因式:ab +a = .11.若(x +2)•(x +m )=x 2﹣3x ﹣10,则m = . 12.如图,在△ABD 和△CDB 中,AD =CB ,AB 、CD 相交于点O ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是 .13.将图甲中阴影部分的小长方形变换到图乙位置,你能根据两个图形的面积关系得到的数学公式是 .14.计算:20152﹣2014×2016= . 三、解答题(本大题共10小题,共78分)15.计算:√4+√183+√9.16.计算:﹣2x •(3x 2+x ﹣4) 17.计算:(4x 2y +3xy 2﹣xy )÷xy .18.如图,∠3、∠4分别为△ABC 与△ABD 的外角.已知∠1=∠2,∠3=∠4.求证:AC =AD .19.先化简,再求值:x(x+3)﹣(x+1)2,其中x=√2+1.20.如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD≌△AEC.21.如图,在4×3的正方形网格中,△ABC的顶点都在小正方形顶点上.请你在图①和图②中分别画出一个三角形,同时满足以下两个条件:(1)以点B为一个顶点,另外两个顶点也在小正方形顶点上;(2)与△ABC全等,且不与△ABC重合.22.(9分)两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2(x﹣1)(x﹣9),另一位同学因看错了常数项分解成2(x﹣2)(x﹣4).(1)求原来的二次三项式.(2)将(1)中的二次三项式分解因式.23.(10分)如图,正方形ABCD与正方形EFGC的边长分别为a、b,B、C、G三点在同一直线上,连结BD、BF.(1)求阴影部分图形的面积(用含a、b的代数式表示).(2)若a+b=8,ab=15,则阴影部分图形的面积为.24.(12分)感知:如图①.AB=AD,AB⊥AD,BF⊥AF于点F,DG⊥AF于点G.求证:△ADG≌△BAF.拓展:如图②,点B、C在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD 上,∠1、∠2分别是△ABE、△CAF的外角,已知AB=AC,∠1=∠2=∠BAC.应用:如图③,在△ABC中,AB=AC,AB>BC,点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为12,则△ABE与△CDF的面积之和为.2015-2016学年吉林省长春市德惠三中八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)(2015秋•渠县期末)5的算术平方根是( ) A .5B .√5C .±√5D .25解:5的算术平方根是√5, 故选:B .2.(3分)(2015秋•德惠市校级期中)在实数√−13、0、√3、225中,无理数是( )A .√−13B .0C .√3D .225解:√−13、0、225是有理数,√3是无理数.故选:C .3.(3分)(2015秋•德惠市校级期中)下列计算正确的是( ) A .m 3+m 2=m 5B .m 6÷m 2=m 3C .(m 3)2=m 9D .m 3•m 2=m 5解:A 、不是同底数幂的乘法指数不能相加,故A 错误; B 、同底数幂的除法底数不变指数相减,故B 错误; C 、幂的乘方底数不变指数相乘,故C 错误; D 、同底数幂的乘法底数不变指数相加,故D 正确; 故选:D .4.(3分)(2015秋•德惠市校级期中)下列命题是假命题的是( ) A .对顶角相等B .两直线平行,内错角相等C .同角的余角相等D .两个锐角的和等于直角 解:A .对顶角相等,是真命题; B .两直线平行,内错角相等,是真命题; C .同角的余角相等,是真命题;D .两个锐角的和不一定等于直角,故本选项错误;5.(3分)(2017秋•盐田区校级期中)如图,数轴上点N 表示的数可能是( )A .√10B .√6C .√3D .√2解:∵N 在2和3之间, ∴√4<N <√9, ∵√10>√9, ∴可排除A ; ∵√3<√4,√2<√4, ∴可排除C 、D . 故选:B .6.(3分)(2015秋•德惠市校级期中)工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB 是一个任意角,在边OA 、OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度与M 、N 重合,过角尺顶点C 作射线OC .那么判定△MOC ≌△NOC 的依据是( )A .边角边B .边边边C .角边角D .角角边解:在△MOC 与△NOC 中, {OM =ON CM =CN OC =OC, ∴△MOC ≌△NOC (SSS ). 故选:B .7.(3分)(2018秋•定安县期中)若a =1.6×109,b =4×103,则a ÷b 等于( ) A .4×105B .4×106C .6.4×106D .6.4×1012解:∵a =1.6×109,b =4×103,∴a ÷2b =(1.6×109)÷(4×103)=0.4×106=4×105.8.(3分)(2012•巴中)如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD 的条件是()A.AB=AC B.∠BAC=90°C.BD=AC D.∠B=45°解:添加AB=AC,符合判定定理HL;添加BD=DC,符合判定定理SAS;添加∠B=∠C,符合判定定理AAS;添加∠BAD=∠CAD,符合判定定理ASA;选其中任何一个均可.故选:A.二、填空题(每小题3分,共18分)3═2.9.(3分)(2016•连云港)化简:√8解:∵23=83=2.∴√8故填2.10.(3分)(2015秋•德惠市校级期中)分解因式:ab+a=a(b+1).解:原式=a(b+1),故答案为:a(b+1)11.(3分)(2012秋•德化县期中)若(x+2)•(x+m)=x2﹣3x﹣10,则m=﹣5.解:∵(x+2)•(x+m)=x2﹣3x﹣10,∴x2+(m+2)x+2m=x2﹣3x﹣10,∴m+2=﹣3,解得m=﹣5.故答案为:﹣5.12.(3分)(2015秋•德惠市校级期中)如图,在△ABD和△CDB中,AD=CB,AB、CD 相交于点O,请你补充一个条件,使得△AOD≌△COB.你补充的条件是∠A=∠C.解:∠A =∠C ,理由是:∵在△AOD 和△COB 中 {∠AOD =∠COB ∠A =∠C AD =BC∴△AOD ≌△COB (AAS ), 故答案为:∠A =∠C .13.(3分)(2010•湖州)将图甲中阴影部分的小长方形变换到图乙位置,你能根据两个图形的面积关系得到的数学公式是 (a ﹣b )(a +b )=a 2﹣b 2 .解:如图;图甲:大矩形的面积可表示为: ①(a ﹣b )(a +b );②a (a ﹣b )+b (a ﹣b )=a 2﹣ab +ab ﹣b 2=a 2﹣b 2; 故(a ﹣b )(a +b )=a 2﹣b 2; 图乙:大正方形的面积可表示为: ①a (a ﹣b +b )=a 2;②a (a ﹣b )+b (a ﹣b )+b 2=(a +b )(a ﹣b )+b 2; 故a 2=b 2+(a +b )(a ﹣b ),即a 2﹣b 2=(a +b )(a ﹣b ).所以根据两个图形的面积关系,可得出的公式是a 2﹣b 2=(a +b )(a ﹣b ).14.(3分)(2018春•涟源市期末)计算:20152﹣2014×2016=1.解:20152﹣2014×2016=20152﹣(2015﹣1)×(2015+1)=20152﹣(20152﹣1)=20152﹣20152+1=1.故答案是:1.三、解答题(本大题共10小题,共78分)15.(6分)(2015秋•德惠市校级期中)计算:√4+√1 83+√9.解:原式=2+12+3=512.16.(6分)(2015秋•德惠市校级期中)计算:﹣2x•(3x2+x﹣4)解:原式=﹣6x3﹣2x2+8x.17.(6分)(2015秋•德惠市校级期中)计算:(4x2y+3xy2﹣xy)÷xy.解:原式=4x+3y﹣1.18.(7分)(2015秋•德惠市校级期中)如图,∠3、∠4分别为△ABC与△ABD的外角.已知∠1=∠2,∠3=∠4.求证:AC=AD.证明:∵∠3+∠ABC=180°,∠4+∠ABD=180°,∠3=∠4,∴∠ABC=∠ABD,∵∠1=∠2,AB=AB,在△ABC与△ABD中,{∠1=∠2AB =AB ∠ABC =∠ABD , ∴△ABC ≌△ABD , ∴AC =AD .19.(7分)(2014•吉林)先化简,再求值:x (x +3)﹣(x +1)2,其中x =√2+1. 解:原式=x 2+3x ﹣x 2﹣2x ﹣1 =x ﹣1, 当x =√2+1时, 原式=√2+1﹣1=√2.20.(7分)(2014•吉林)如图,△ABC 和△DAE 中,∠BAC =∠DAE ,AB =AE ,AC =AD ,连接BD ,CE ,求证:△ABD ≌△AEC .证明:∵∠BAC =∠DAE ,∴∠BAC ﹣∠BAE =∠DAE ﹣∠BAE , 即∠BAD =∠CAE , 在△ABD 和△AEC 中, {AD =AC∠BAD =∠EAC AB =AE, ∴△ABD ≌△AEC (SAS ).21.(8分)(2009•瑞安市校级自主招生)如图,在4×3的正方形网格中,△ABC 的顶点都在小正方形顶点上.请你在图①和图②中分别画出一个三角形,同时满足以下两个条件: (1)以点B 为一个顶点,另外两个顶点也在小正方形顶点上; (2)与△ABC 全等,且不与△ABC 重合.解:以下答案供参考:画对一个得(3分),画对两个得(6分).22.(9分)(2015秋•德惠市校级期中)两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2(x﹣1)(x﹣9),另一位同学因看错了常数项分解成2(x ﹣2)(x﹣4).(1)求原来的二次三项式.(2)将(1)中的二次三项式分解因式.解:(1)∵2(x﹣1)(x﹣9)=2x2﹣20x+18,2(x﹣2)(x﹣4)=2x2﹣12x+16,∴原来的二次三项式为2x2﹣12x+18;(2)原式=2(x2﹣6x+9)=2(x﹣3)2.23.(10分)(2015秋•德惠市校级期中)如图,正方形ABCD与正方形EFGC的边长分别为a、b,B、C、G三点在同一直线上,连结BD、BF.(1)求阴影部分图形的面积(用含a、b的代数式表示).(2)若a+b=8,ab=15,则阴影部分图形的面积为192.解:(1)S阴影=S正方形ABCD+S正方形EFGC﹣S△ABD﹣S△BGF=a2+b2−12a2−12b(a+b)=a2+b2−12a2−12ab−12b2=12a2+12b2−12ab;(2)∵a +b =8,ab =15,∴阴影部分的面积为12[(a +b )2﹣3ab ]=12×(64﹣45)=192, 故答案为:19224.(12分)(2015秋•德惠市校级期中)感知:如图①.AB =AD ,AB ⊥AD ,BF ⊥AF 于点F ,DG ⊥AF 于点G .求证:△ADG ≌△BAF .拓展:如图②,点B 、C 在∠MAN 的边AM 、AN 上,点E 、F 在∠MAN 内部的射线AD 上,∠1、∠2分别是△ABE 、△CAF 的外角,已知AB =AC ,∠1=∠2=∠BAC .应用:如图③,在△ABC 中,AB =AC ,AB >BC ,点D 在边BC 上,CD =2BD ,点E 、F 在线段AD 上,∠1=∠2=∠BAC .若△ABC 的面积为12,则△ABE 与△CDF 的面积之和为 8 .解:感知:∵AB ⊥AD ,BF ⊥AF ,DG ⊥AF ,∴∠DGA =∠BF A =∠DAB =90°,∴∠DAG +∠F AB =90°,.∠B +∠F AB =90°,∴∠B =∠DAG ,在△ADG 和△BAF 中,{∠B =∠DAG ∠AFB =∠DGA AB =AD∴△ADG ≌△BAF .拓展:如图②,:∵∠1=∠2,∴∠BEA =∠AFC ,∵∠1=∠ABE +∠3,∠3+∠4=∠BAC ,∠1=∠BAC , ∴∠BAC =∠ABE +∠3,∴∠4=∠ABE ,在△ABE 和△CAF 中,{∠AEB =∠AFC ∠ABE =∠4AB =AC,∴△ABE ≌△CAF (AAS ).应用如图③,∵在等腰三角形ABC 中,AB =AC ,CD =2BD , ∴△ABD 与△ADC 等高,底边比值为:1:2, ∴△ABD 与△ADC 面积比为:1:2,∵△ABC 的面积为12,∴△ABD 与△ADC 面积分别为:4,8;∵∠1=∠2,∴∠BEA =∠AFC ,∵∠1=∠ABE +∠3,∠3+∠4=∠BAC ,∠1=∠BAC , ∴∠BAC =∠ABE +∠3,∴∠4=∠ABE ,∴在△ABE 和△CAF 中,{∠AEB =∠AFC ∠ABE =∠4AB =AC,∴△ABE ≌△CAF (AAS ),∴△ABE 与△CAF 面积相等,∴△ABE 与△CDF 的面积之和为△ADC 的面积, ∴△ABE 与△CDF 的面积之和为8,故答案为:8.。

吉林省长春市第一五三中学2024-2025学年七年级上学期第一次月考数学试题

吉林省长春市第一五三中学2024-2025学年七年级上学期第一次月考数学试题

吉林省长春市第一五三中学2024-2025学年七年级上学期第一次月考数学试题一、单选题1.某小学六年级1班上学期期末考试数学科的平均成绩是82分,小明得了90分,记作+8分.若小亮的成绩记作4-分,表示小亮实际分数是( )A .74分B .76分C .78分D .80分 2.2024的相反数是( )A .2024-B .12024-C .2024D .120243.在-1,-6,2,0这四个数中,最小的数是( )A .-1B .-6C .2D .04.把()()()7352--+--+写成省略加号和的形式为( )A .7352---B .7352+--C .7352++-D .7352+-+ 5.下列各式计算结果为负数的是( )A .()1--B .()1-+C .12-D .1-- 6.如图,将刻度尺放在数轴上,让3cm 和5cm 刻度线分别与数轴上表示2和4的两点重合对齐,则数轴上与0cm 刻度线对齐的点表示的数为( )A .2-B .0C .1-D .17.温度4C -︒比9C -︒高( )A .5C -︒B .5C ︒ C .13C -︒D .13C ︒ 8.如图所示的计算程序图,当输入1-时,输出的结果是( )A .9-B .9C .7D .7-二、填空题9.12024-的绝对值是. 10.比较大小:34-45-(填“>”或“<”) 11.若a b 、互为相反数,则20241a b +++=.12.比132-大而比123小的所有整数的和为. 13.如图,在数轴上,注明了四段范围,若某段内有两个整数,则这段是 .14.点A 、B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论: ①0b a -<;②0a b +>;③0a b -<;④0ab <(ab 表示a b ⨯).其中正确的是.(在横线上只写正确的答案序号)三、解答题15.把下列9个数填在相应的大括号里:31-,3.14,253-,0,0.6+,100,5-,227,95%- 正有理数集合:{ }负有理数集合:{ }整数集合:{ }正分数集合:{ }自然数集合:{ }负整数集合:{ }16.数轴上点A ,B ,C 的位置如图所示.请回答下列问题:(1)表示有理数3-的点是点_______,将点C 向左移动4个单位长度得到点C ',则点C '表示的有理数是_______;(2)在数轴上标出点D 、E ,其中点D 、E 分别表示有理数52-和1.5; (3)将3-,0,52-,1.5这四个数用“<”号连接的结果是_________. 17.直接写出计算结果:(1)()()96-+-=_________ (2)1123⎛⎫-+= ⎪⎝⎭___________ (3)()3.14 3.14-+=__________(4)()100-+=________(5)()76--=___________(6)()68-⨯=_________18.计算(1)()()()235817-+++-(2)()()()()41285972---+---19.计算:(1)()()()()6.2 4.6 3.6 2.8+-+++--;(2)()310.53 2.75742⎛⎫⎛⎫--++-- ⎪ ⎪⎝⎭⎝⎭20.若定义一种新的运算“*”,规定有理数*2a b a b =-,如2*32231=⨯-=.(1)求()3*5-的值;(2)求()()2*2*1-的值.21.已知:15a =,9=b ,回答下列问题:(1)填空:a =______,b =______;(2)若0a b +>,求a b -的值.22.某水果超市购进8箱苹果,以每箱25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称重后的记录如下:1.5,3-,2,0.5-,1,2-,2-, 2.5-. 回答下列问题:(1)在这8箱苹果中最接近标准重量的是________千克;(2)与标准重量比较,求这8箱苹果总计超过或不足多少千克?(3)若苹果每千克售价10元,则出售这8箱苹果预计可卖多少元?23.外卖送餐为我们生活带来了许多便利,某学习小组调查了一名外卖小哥一周的送餐情况,规定送餐量超过50单(送一次外卖称为一单)的部分记为“+”,低于50单的部分记为“-”,下表是该外卖小哥一周的送餐量:(1)在这一周中,该外卖小哥送餐量最少的一天是____________单;(2)在这一周中,该外卖小哥送餐量最多的一天比最少的一天多____________单;(3)求该外卖小哥这一周平均每天送餐量是多少单?(4)外卖小哥每天的工资由底薪60元再加上送单外贴构成,送单补贴的方案如下:每天送餐量不超过50单的部分,每单补贴2元;超过50单但不超过60单的部分,每单补贴4元;超过60单的部分,每单补贴6元,求该外卖小哥这一周工作收入多少元?24.在一张纸条上有一数轴(如图所示).【操作与尝试】(1)操作一:折叠纸条,使数轴上表示数1的点与表示数1-的点重合,则此时数轴上表示数4的点与数轴上表示数___________的点重合;【探究与应用】(2)操作二:现打开这张条后,再次折叠纸条,使数轴上表示数6的点与表示数2-的点重合.回答下列问题:①数轴上表示数9的点与数轴上表示数_______的点重合;②若这样折叠纸条后,数轴上的点A和点B重合,且A、B两点之间的距离为10(点A在点B的左侧),求点A、点B所表示的数分别是多少?③在②的条件下,在数轴上找到一点P,设点P表示的数为x.当点P到点A、点B的距离之和为12时,直接写出x的值.。

吉林省东北师范大学附属中学2024-2025学年高二上学期开学验收考试数学试卷(解析版)

吉林省东北师范大学附属中学2024-2025学年高二上学期开学验收考试数学试卷(解析版)

2024—2025学年(上)高二年级“诚信自觉、反思提升”开学验收考试数学学科试卷1. 若()1i 2i 考试时间:90分钟满分:120分一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.z +=−,则在复平面内z 对应的点位于( )A 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】D 【解析】【分析】求出z ,求出其在复平面内对应的点的坐标,求出在复平面内z 对应的点位于的象限.【详解】因为()1i 2i z +=−,所以2i (2i)(1i)13i 1i (1i)(1i)22−−−===−++−z , 所以其在复平面内对应的点为13(,)22−, 则其对应的点位于第四象限. 故选:D.2. 若样本数据1210,,,x x x 的方差为3,则121032,32,,32x x x −−− 的方差为( ) A. 7 B. 9C. 27D. 25【答案】C 【解析】【分析】根据方差的性质结合已知条件直接求解. 【详解】因为样本数据1210,,,x x x 的方差为3, 所以121032,32,,32x x x −−− 的方差23327×=. 故选:C.3. 在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos c b A <,则ABC 的形状是( ) A. 钝角三角形 B. 直角三角形 C. 锐角三角形 D. 等边三角形【答案】A 【解析】.【分析】利用余弦定理可以判断出B 为钝角,则ABC 的形状为钝角三角形.【详解】由cos c b A <,可得2222b c a c b bc+−<,即222a c b +<则222cos 02a c b B ac+−=<,又BB ∈(0,π),则π<π2B < 则ABC 的形状为钝角三角形 故选:A4. 已知,αβ是两个不重合的平面,,m n 是两条不同的直线,则下列命题正确的是( ) A. 若m α⊥,m n ⊥,则//n αB. 若m α⊥,n β⊥,m n ⊥,则αβ⊥C. 若//m α,n β⊂,//αβ,则//m nD. 若//m α,//n β,αβ⊥,则m n ⊥ 【答案】B 【解析】【分析】由线面位置关系即可逐一判断各个选项.【详解】对于A ,若m α⊥,m n ⊥,则//n α或n ⊂α,故A 错误; 对于B ,若m α⊥,m n ⊥,则//α或n ⊂α, 若n β⊥,n ⊂α,则αβ⊥,若//n α,则存在1n α⊂,使得1//n n ,因为n β⊥,所以1n β⊥,又1n α⊂,所以αβ⊥, 所以无论如何,只要m α⊥,n β⊥,m n ⊥,就有αβ⊥,故B 正确;对于C ,若//m α,n β⊂,//αβ,则//m n 或,m n 相交或,m n 异面,故C 错误; 对于D ,若//m α,//n β,αβ⊥,则//m n 或,m n 相交或,m n 异面,故D 错误. 故选:B.5. 已知圆锥的底面半径为1,则该圆锥内切球的体积为( )A.B.C.D.【答案】D【解析】【分析】作出组合体的轴截面,利用体积求出圆锥的高,然后再利用三角形相似即可求出内切球的半径,结合求得体积公式,即可求解.【详解】如图,圆锥与内切球的轴截面图,设圆锥高为h ,根据圆锥的底面半径为1,可知,VV =13π×12×ℎ=2√23π,解得h =AAAA =��2√2�2+12=3,设内切球的半径为r ,则OOOO =OOOO =rr ,AAOO =AAOO −OOOO =2√2−rr , 由轴截面三角形相似得△AAOOOO ∼△AABBOO ,所以AAAAAAAA =AAOOAABB ,即2√2−rr 3=rr1,解得内切球半径为r , 所以内切球的体积为VV =43πrr 3=43π×�√22�3=√23π,故选:D.6. 已知向量a 与向量b 夹角为π6,||||a b = ,则2b a − 在a 上的投影向量为( )A. 32a −B. 12a −C. 12aD. 32a【答案】A 【解析】【分析】根据投影向量的定义结合已知条件直接求解即可【详解】因为向量a 与向量b夹角为π6,||||a b = , 所以2πco 3s ||62a b a b b ⋅== , 则2b a − 在a上的投影向量为()22222||b a a b a a a a a a−⋅⋅−⋅=⋅2223||6||3223||b b a a b −=⋅=−, 故选:A.7. 四名同学各投骰子5次,分别记录每次骰子出现的点数,根据四名同学的统计结果,可以判断出一定没有出现点数6的是( ) A. 平均数为4.4,极差为4 B. 中位数为4,众数为3 C. 平均数为3,方差为3.2 D. 平均数为3,中位数为4【答案】D 【解析】【分析】举反例可以逐一判断A 、B 、C 是错误的,逻辑推理即可判断D 选项. 【详解】对于A ,数据为2,4,5,5,6,A 错误; 对于B ,数据为3,3,4,5,6,B 错误; 对于C ,数据为1,2,2,4,6,C 错误;对于D ,所有数据和为15,中位数为4,如果出现6,那么其余三个数的和为5,且其中有一个数至少为4,这组数据不可能,D 正确; 故选:D.8. 费马点是指位于三角形内且到三角形三个顶点距离之和最小的点.当三角形三个内角都小于23π时,费马点与三角形三个顶点的连线构成的三个角都为23π.如图,已知ABC 和 ADE 都是正三角形,6AB =,3AE =,且,,B A D 三点共线,设点P 是ACE △内的 任意一点,则PA PC PE ++的最小值为( )A.B.C. D. 12【答案】A 【解析】【分析】在ACE △中,利用余弦定理求出CE ,然后利用勾股定理逆定理可得ACE △为直角三角形,由题意可知PA PC PE ++取得最小值时,点P 为费马点,设PA a =,PE b =,PC c =,在,,APC APE EPC △△△中分别使用余弦定理,三式相加,再结合三角形面积公式化简可求出a b c ++,从而可得答案.【详解】由题可知,π3EAC ∠=,在ACE △中,由余弦定理得 222π12cos 3692632732CE AC AE AC AE =+−⋅=+−×××=,所以CE =,所以222279CE AE AC ++,所以ACE △为直角三角形, 由定义可知PA PC PE ++取得最小值时,点P 为费马点,设PA a =,PE b =,PC c =,且2π3APC APE EPC ∠=∠=∠=,3AE =,6AC =,CE =,在,,APC APE EPC △△△中分别使用余弦定理可得22222292736a b ab b c bc a c ac +=− +=− +=−,相加得()2221362a b c ab bc ac ++=−++)ab bc ac ++18ab bc ac ++=, 所以22213618272a b c ++=−×=, 所以22222()()22263PA PC PE a b c a b c ab bc ac ++=++=+++++=PA PC PE ++,所以PA PC PE ++的最小值为 故选:A.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知复数i1iz =−(i 为虚数单位),则下列结论正确的是( ) A. z 的虚部为12B. z 的共轭复数为i 1i+C. 1||2z =D. 12z z ⋅=【答案】AD 【解析】【分析】复数z 化简为11i 22z =−+,再依次判断即可. 【详解】解:()()()i 1i i 1i 11i 1i 1i 1i 222z +−+====−+−−+, 则z 的虚部为12,A 项正确; z 的共轭复数为11i 22−−,而()()()i 1i i 1i 11i 1i1i 1i 222−+===+++−,故B 项错误;z =,故C 项错误;11111i i 22222z z ⋅=−+⋅−−=,故D 项正确;故选:AD10. 某学校为了解本校学生上学的交通方式,在全校范围内随机抽样调查部分学生,了解到上学的交通方式主要有:A 为家人接送,B 为乘坐地铁,C 为乘坐公交,D 为其他方式.学校把收集到的数据整理绘制成条形图和扇形图,如图只给出了其中部分信息,则下列结论中正确的是( )A. 此次抽查的样本量为240B. 若该校有学生2000人,则约有500人是家人接送上学C. 扇形图中B 的占比为38%D. 估计该校学生上学交通方式为乘坐地铁或者其他方式的人数占全校学生的一半 【答案】ABD 【解析】【分析】根据公交的人数和比例即可求解样本量,进而判断A ,根据条形图可得家人接送所占比重,即可求解B ,根据乘坐地铁的人数与样本量的比即可求解CD.【详解】因为乘坐公交的调查人数为60,所占比例为25%,所以调查的总人数为6025%240÷=,故A 正确,对于B,家人接送的学生所占的比例为24084603612404−−−=,故120005004×=,所以B 正确;对于C :扇形图中B 的占比为84100%35%240×=,所以C 错误; 对于D :8436100%50%240+×=,所以D 正确. 故选:ABD11. 在直三棱柱111ABC A B C −中,90ABC ∠=°,且12AB BC CC ===,M 为线段BC 上的动点,则下列结论中正确的是( )A. 11AB A M ⊥B. 异面直线1A B 与1B M 所成角的取值范围为ππ[,]43C. 11||||A M C M +的最小值为3+D. 当M 是BC 的中点时,过11,,A M C 三点的平面截三棱柱111ABC A B C −外接球所得的截面面积为26π9【答案】ABD 【解析】【分析】构造正方体模型,即可判断A 、B ,展开为平面图形,两点间直线最短,即可求出最小值,从而判断C ,构造正方体模型,求出外接球半径,然后计算得到球心到截面的距离,然后结合勾股定理即可求解D 选项.【详解】对于A ,如图,将几何体补为正方体,易知,11AB A BC ⊥平面,又11A A BC M ⊂平面,所以11AB A M ⊥,故A 正确;对于B ,如图,将几何体补为正方体,当动点M 运动到点B 时,此时直线1A B 与1B M 所成角最小,为π4,但此时直线1A B 与1B M 相交,不满异面; 当动点M 由点B 向点C 运动时,直线1A B 与1B M 所成角慢慢变大,当动点M 运动到点C 时,此时直线1A B 与1B M 所成角最大,易知 11D B C △是等边三角形,所以直线1B M 与1D C 所成的角为π3,而11//A B D C ,即此时直线1A B 与1B M 所成角为π3;所以,异面直线1A B 与1B M 所成角的取值范围为ππ,43,故B 错误;对于C ,如图,将平面1A BC 与平面11BB C C 展为同一平面,则111||||3A M C M AC +≥=≠+,故C 错误对于D ,如图,补为正方体,三棱柱111ABC A B C −外接球即为正方体的外接球,所以外接球半径2R =R =,11113A M A C MC ,======11cos C AM ∠=,所以11sinC A M ∠=所以111111111=sin 3322C A M S A C A M C A ⋅∠=⨯⨯=, 取正方体的中心点O ,1CC 的中点N ,连接ON ,易知11//ON AC M 平面,所以111111O A C M N A C M A NC M V V V ---==,设正方体的中心点O 到截面11A C M 的距离为h ,11111111111=3112333323C A M C NM S h S A B h h ⋅⇒⨯⨯=⨯⨯⨯⨯⇒= 即球心到截面的距离为13,根据勾股定理可得截面圆半径为r = 所以截面面积26π9,故D 正确. 故选:AD三、填空题:本大题共3小题,每小题5分,共15分.12. 已知水平放置的四边形ABCD 的斜二测直观图为矩形A B C D ′′′′,已知2A B′′=,1B C ′′=,则四边形ABCD 的周长为____________.为【答案】10 【解析】【分析】根据直观图与原图形的关系结合已知可得,OC OB ,从而可求出BC ,进而可求出四边形ABCD 的周长.【详解】由题意可得1O C OB BC ′′′′′′===,所以原图形中212OC O C OB AB A B ===′′′′=,,所以3BC =,所以四边形ABCD 的周长为2(32)10×+=. 故答案:1013. 已知向量(1,2)a = ,(2,2)b λλ=− ,若a 与b的夹角为锐角,则实数λ的取值范围为____________.【答案】()2,11,3∞−∪+【解析】【分析】由题意列出关于λ的不等式组即可求解.【详解】由题可知0a b ⋅> 且a 与b 不共线,即240422λλλλ−+>−≠ ,得2(,1)(1,)3λ∈−+∞ . 故答案为:2(,1)(1,)3−+∞ . 14. 某工厂的三个车间生产同一种产品,三个车间的产量分布如图所示,现在用分层随机抽样方法从三个车间生产的该产品中,共抽取60件做使用寿命的测试,则C 车间应抽取的件数为________;若A ,B ,C 三个车间产品的平均寿命分别为220,240,230小时,方差分别为20,20,30,则总样本的方差为为____________.【答案】 ①. 18 ②. 84【解析】【分析】第一空,根据分层抽样的定义即可求解;第二空,根据分层抽样的方差公式即可求解【详解】由分层抽样方法可得:抽取C 车间应抽取的件数为60×30%=18; 总样本平均值22205240323023310x×+×+×=, 总样本方差为 22222[20(220233)]5[20(240233)]3[30(230233)]8410s ×+−+×+−+×+−=. 四、解答题:本大题共4小题,共47分.解答应写出文字说明、证明过程或演算步骤. 15. 已知复数2i z =+是一元二次方程20x ax b ++=(,a b ∈R )的根.(1)求,a b 的值;(2)若复数(i)(2i)a b m +⋅−(其中m ∈R )为纯虚数,求复数(21)(42)i m m ω=++−的模.【答案】(1)45a b =− =(2)10【解析】【分析】根据2i z =+是一元二次方程20x ax b ++=的根得到2i −也是一元二次方程20x ax b ++=的根,代入列方程组求解即可;(2)求出(i)(2i)a b m +⋅−,根据复数(i)(2i)a b m +⋅−为纯虚数求出m 即可求出||ω.【小问1详解】因为2i z =+是一元二次方程20x ax b ++=的根,所以2i −也是一元二次方程20x ax b ++=的根,故(2i)(2i)(2i)(2i)a b ++−=− +⋅−=,解得45a b =− = ; 【小问2详解】因为复数(i)(2i)(104)(58)i a b m m m +⋅−=−++为纯虚数,所以1040m −=,且580m +≠, 即52m =,所以复数(21)(42)i 68i m m ω=++−=+,故||10ω=.16. 有两位射击运动员在一次射击测试中各射靶10次,每次命中的环数如下:甲:7 8 7 9 5 4 9 10 7 4乙:9 5 7 8 7 6 8 6 7 7 设甲、乙两名运动员射击平均环数分别记为x 和y ,方差分别记为21s 和22s .(1)求x ,y ,21s ,22s ;(2)如果你是教练,你如何对这次射击情况作出评价?如果这是一次选拔性考核,你应当如何作出选择?【答案】(1)7;7;4;1.2(2)答案见解析【解析】【分析】(1)根据平均数和方差公式计算即可;(2)由(1)的结论,平均数一样,则通过方差判断其稳定性即可得结果.【小问1详解】 78795491074710x+++++++++=, 9578768677710y+++++++++=, ()()()()()()()()()()2222222222211[778777975747971077747]10S =−+−+−+−+−+−+−+−+−+− 4=,()()()()()()()()()()2222222222221[97577787776787677777]10S =−+−+−+−+−+−+−+−+−+− 1.2=.【小问2详解】由(1)知,甲乙射击的平均成绩一样,但乙比甲射击的成绩更稳定,所以选择乙.17. 在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2cos cos cos 0c B b A a B −−=. (1)求B ;(2)若ABC外接圆的周长为π3,求ABC 周长的取值范围. 【答案】(1)π3B =(2)(]4,6【解析】 【分析】(1)运用正弦定理即可求出B ;(2)先求出b ,在运用余弦定理和基本不等式即可.【小问1详解】因为2cos cos cos 0c B b A a B −−=,由正弦定理得2sin cos sin cos cos sin sin C B B A B A C =+=,因为sin 0C ≠,所以1cos 2B =, 因()0,πB ∈.所以π3B =; 【小问2详解】因为ABCπ,所以ABC由正弦定理得sin b B =2b ==, 由余弦定理得()22242cos 3a c ac B a c ac =+−=+−,因为()223432a c ac a c + +−≤× ,所以()2144a c +≤,即4a c +≤, 当且仅当a c =时,等号成立,又因为2a c b +>=,所以24a c <+≤,则46a b c <++≤.故ABC 周长的取值范围为(]4,6; 综上,π3B =,ABC 周长的取值范围为(]4,6. 18. 在ABC 中,90C ∠=°,3BC =,6AC =,D ,E 分别是AC ,AB 上的点,满足//DE BC ,且DE 经过ABC 的重心.将ADE 沿DE 折起到1A DE △的位置,使1A C CD ⊥,M 是1A D 的中点,如图为所示.(1)求证:1A C ⊥平面BCDE ; (2)求直线CM 和平面1A BE 所成的角; (3)在线段1AC 上是否存在点F ,使二面角1A BE F −−的余弦值78?若存在,求CF 的长度;若不存在,请说明理由.(要求用几何法解答)【答案】(1)证明过程见解析 (2)π4(3)存在,CF =【解析】【分析】(1)根据DE ⊥平面1ACD ,得到DE ⊥1AC ,故BC ⊥1AC ,结合1AC CD ⊥,从而得到线面垂直;(2)作出辅助线,得到RQ 与平面1A BE 的夹角即为MC 与平面1A BE 的夹角,利用等体积法求出C 到平面1A EB 的距离,进而得到点Q 平面1A EB 的距离为23h = (3)作出辅助线,找到二面角1A BE F −−的平面角为1A HF ∠,利用余弦定理和勾股定理求出各边长,并求出1tan A HC ∠tan FHC ∠,得到方程,求出CF 的长度.【小问1详解】因为90C ∠=°,所以AC ⊥BC , 因为//DE BC ,所以AC ⊥DE , 将ADE 沿DE 折起到1A DE △的位置,故始终有DE ⊥1AC ,DE ⊥CD , 因为1A C CD C ∩=,1,A C CD ⊂平面1ACD ,所以DE ⊥平面1ACD , 因为1A C ⊂平面1ACD ,所以DE ⊥1AC ,故BC ⊥1AC ,因为1A C CD ⊥,CD BC C ∩=,,CD BC ⊂平面BCDE , 所以1A C ⊥平面1A BC ;【小问2详解】由(1)可知,1,,AC CD CB 两两垂直,因为DE 经过ABC 的重心,所以2AD CD =,故12,4CD A D ==, 223DE BC ==,由勾股定理得1A C , 连接CE ,取1A E 的中点R ,在BC 上取点Q ,使得1CQ =,连接,MR RQ , 则112MR DE ==,//MR DE , 又//CQ DE ,CQ DE =,故四边形CQRM 为平行四边形,故//MC RQ ,1122RQ MC A D ===, RQ 与平面1A BE 的夹角即为MC 与平面1A BE 的夹角, 其中1132322BCE S BC CD =⋅=××= ,而1A C ⊥平面1A BC ,故1111333A BCE BCE V S A C −=⋅=××= ,由勾股定理得1A B =ABC中,AB13BE AB ==,CE,1A E =故由余弦定理得22211111cos 2A B A E BE EA B A B A E +−∠==⋅故1sin EA B ∠则111111sin 22A EB S A E A B EA B =⋅∠=× ,设C 到平面1A EB 的距离为h ,由于11C A BE A BCEV V −−==,故13×,解得h =故点Q 平面1A EB 的距离为23h =,设直线CM 和平面1A BE 所成角的大小为θ,则sin θ=, 故直线CM 和平面1A BE 所成的角为π4 【小问3详解】存在,CF = 连接CE ,过点C 作CH ⊥BE 于点H ,连接1,A H FH , 因为1A C ⊥平面BCDE ,BE ⊂平面BCDE , 所以1A C ⊥BE ,又1CH A C C = ,1,CH AC ⊂平面1ACH , 所以BE ⊥平面1ACH , 又1,A H FH ⊂平面1ACH ,所以BE ⊥1A H ,BE ⊥FH , 故二面角1A BE F −−的平面角为1A HF ∠,设CF t =,0t ≤≤BCE 中,由余弦定理得222cos 2CE BE BC CEB CE BE +−∠==⋅, 在故sin CEB∠,则sinCH CE CEB=∠=,11tanA CA HCCH∠=,其中11FHC A HC A HF∠=∠−∠,17cos8A HF∠=,故1sin A HF∠,1tan A HF∠则()111111tan tantan tan1tan tanA HC A HFFHC A HC A HFA HC A HF∠−∠∠=∠−∠=+∠∠故CFCH=t=.存在,CF=。

2022-2023学年吉林省长春市实验中学高二上学期期中数学试题(解析版)

2022-2023学年吉林省长春市实验中学高二上学期期中数学试题(解析版)

2022-2023学年吉林省长春市实验中学高二上学期期中数学试题一、单选题1.在平行六面体1111ABCD A B C D -中,设1AA a =,AB b =,AD c =,M ,P 分别是1AA ,11C D 的中点,则MP =( )A .313222a b c ++B .12a c +C .1122a b c ++D .311222a b c ++【答案】C【分析】根据空间向量的基底表示以及线性运算表示向量MP . 【详解】由题意,M ,P 分别是1AA ,11C D 的中点,如图,所以()11111111111122222⎛⎫=+=++=++=++ ⎪⎝⎭MP MA A P AA A D D P AA AD AB a b c . 故选:C2.设a ∈R ,则“直线10ax y +-=与直线50x ay ++=平行”是“1a =-”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B【分析】根据充分条件和必要条件的定义结合两直线的位置关系分析判断. 【详解】当直线10ax y +-=与直线50x ay ++=平行时, 21a =,得=1a 或1a =-,所以“直线10ax y +-=与直线50x ay ++=平行”是“1a =-”的必要不充分条件, 故选:B3.已知直线2230-+=x m 和圆22650+-+=x y x 相交,则实数m 的取值范围为( )A .(),3∞--B .()3,1-C .[]3,1-D .()1,∞+【答案】B【分析】求出圆心到直线的距离与半径比较,解不等式,即可求解.【详解】圆22650+-+=x y x 可化为22(3)4x y -+=,圆心为(3,0),半径为2 圆心到直线的距离3313m d m +==+由直线与圆相交可知12m +<,解得31m -<< 所以实数m 的取值范围为()3,1- 故选:B4.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .22B .32C .52D .72【答案】C【分析】利用正方体1111ABCD A B C D -中,//CD AB ,将问题转化为求共面直线AB 与AE 所成角的正切值,在ABE ∆中进行计算即可.【详解】在正方体1111ABCD A B C D -中,//CD AB ,所以异面直线AE 与CD 所成角为EAB ∠, 设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以5BE a =, 则55tan 22BE a EAB AB a ∠===.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.5.已知双曲线的上、下焦点分别为1(0,4)F ,2(0,4)F -,P 是双曲线上一点且126PF PF -=,则双曲线的标准方程为( ) A .22179x y -=B .22197x y -=C .22197y x -=D .22179y x -=【答案】C【分析】由焦点坐标特征设出双曲线方程,根据双曲线定义得到3a =,得到27b =,求出双曲线方程. 【详解】由题意得:双曲线的焦点在y 轴上,设双曲线方程为22221y xab-=,1226PF PF a -==,故3a =,又4c =,故2221697b c a =-=-=,故双曲线的标准方程为:22197y x -=.故选:C6.O 为坐标原点,F 为抛物线2:4C y x =的焦点,P 为C 上一点,若4PF =,则POF 的面积为AB C .2 D .3【答案】B【分析】由抛物线的标准方程24y x =可得抛物线的焦点坐标和准线方程,设出(,)P x y ,由PF =4以及抛物线的定义列式可得(1)4x --=,即3x =,再代入抛物线方程可得点P 的纵坐标,再由三角形的面积公式1||2S y OF =可得. 【详解】由24y x =可得抛物线的焦点F (1,0),准线方程为=1x -,如图:过点P 作准线=1x - 的垂线,垂足为M ,根据抛物线的定义可知PM =PF =4,设(,)P x y ,则(1)4x --=,解得3x =,将3x = 代入24y x =可得y =±,所以△POF 的面积为1||2y OF ⋅=112⨯=故选B .【点睛】本题考查了抛物线的几何性质,定义以及三角形的面积公式,关键是①利用抛物线的定义求P 点的坐标;②利用OF 为三角形的底,点P 的纵坐标的绝对值为高计算三角形的面积.属中档题. 7.在直角坐标系内,已知()3,3A 是以点C 为圆心的圆上的一点,折叠该圆两次使点A 分别与圆上不相同的两点(异于点A )重合,两次的折痕方程分别为10x y -+=和70x y +-=,若圆C 上存在点P ,使得90MPN ∠=,其中点(,0)-M m 、(,0)N m ,则m 的最大值为A .7B .6C .5D .4【答案】B【详解】由题意,33A ∴(,)是C 上一点,折叠该圆两次使点A 分别与圆上不相同的两点(异于点A )重合,两次的折痕方程分别为10x y -+=和70x y +-=,∴圆上不相同的两点为B 244433D A BA DA BD ⊥∴(,,),(,),(,), 的中点为圆心34C (,),半径为1,C 的方程为22341x y -+-=()(). 过P M N ,,的圆的方程为222x y m +=,∴两圆外切时,m 224316+=, 故选B .8.已知12F F ,是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则21e 2e 2+的最小值为( ) A 6B .3C .6D 3【答案】C【分析】利用椭圆和双曲线的性质,用椭圆双曲线的焦距长轴长表示21e 2e 2+,再利用均值不等式得到答案.【详解】设椭圆长轴12a ,双曲线实轴22a ,由题意可知:1222F F F P c ==,又1211222,2F P F P a F P F P a +=-=,111222,22F P c a F P c a ∴+=-=,两式相减,可得:122a a c -=,22112122242222e a a a c ce c a ca ++=+=, ()222222222122242842422222c a a c e ca a c a ce ca ca c a ++++∴+===++. , 2222222222a a cc c a c a +≥⋅,当且仅当2222a c c a =时取等号,21e 2e 2∴+的最小值为6, 故选:C .【点睛】本题考查了椭圆双曲线的性质,用椭圆双曲线的焦距长轴长表示21e 2e 2+是解题的关键,意在考查学生的计算能力.二、多选题9.下列说法错误的是( )A .直线2(1)(3)750m x m y m ++-+-=必过定点()1,3B .过点()2,3A --且在两坐标轴上的截距相等的直线l 的方程为5x y +=-C .经过点()1,1P ,倾斜角为θ的直线方程为()1tan 1y x θ-=-D .已知直线10kx y k ---=和以()3,1M -,()3,2N 为端点的线段相交,则实数k 的取值范围为1322k -≤≤ 【答案】BCD【分析】A 选项由含参直线方程过定点的求法计算即可;B 选项没有考虑直线过原点的情况,故错误;C 选项,由倾斜角与斜率的关系即可判断;D 选项计算出端点值后,由线段MN 与y 轴相交判断斜率的范围应取端点值两侧,故错误.【详解】A 选项,直线方程变形为(25)2370x y m x y +-+-+=,令2502370x y x y +-=⎧⎨-+=⎩,解得1,3x y ==,即原直线必过定点(1,3),A 正确;B 选项,当直线l 过原点时,也满足在两坐标轴上的截距相等,此时直线l 的方程为320x y -=,B 不正确;C 选项,当π2θ=时,tan θ无意义,故C 不正确; D 选项,直线10kx y k ---=经过定点(1,1)-,当直线经过M 时,斜率为1(1)1312k --==---,当直线经过N 点时,斜率为2(1)3312k --==-,由于线段MN 与y 轴相交,故实数k 的取值范围为12k ≤-或32k ≥,D 不正确. 故选:BCD.10.下列结论正确的是( )A .若圆1C :222310x y x y ++++=,圆2C :224320x y x y ++++=,则圆1C 与圆2C 的公共弦所在直线的方程是12x =-B .圆224x y +=上有且仅有3个点到直线l :0x y -的距离都等于1C .曲线1C :2220x y x ++=与曲线2C :22480x y x y m +--+=恰有三条公切线,则m =4D .已知圆C :222x y +=,P 为直线0x y ++=上一动点,过点P 向圆C 引条切线P A ,其中A 为切点,则P A 的最小值为4 【答案】ABC【分析】将两圆的方程相减即可得出两圆公共弦所在直线的方程,进而判断选项A ;根据直线与圆心的距离与半径的大小关系即可判断选项B ;根据两圆的的位置关系即可判断选项C ;结合圆上动点到定直线距离的最值即可判断选项D.【详解】对于A ,显然两圆相交,且两方程相减可得:210x +=,也即12x =-,故选项A 正确;对于B ,圆224x y +=的圆心到直线l:0x y -的距离112d r ===,所以圆224x y +=上有且仅有3个点到直线l:0x y -的距离都等于1,故选项B 正确;对于C ,曲线1C :2220x y x ++=可化为22(1)1x y ++=,曲线2C :22480x y x y m +--+=可化为22(2)+(4)20x y m --=-,若曲线2C 表示圆,则有20m <,因为曲线1C :2220x y x ++=与曲线2C :22480x y x y m +--+=恰有三条公切线,所以两圆相外切,则1251C C ==4m =,满足20m <, 故选项C 正确;对于D ,根据题意,显然222PA r PC +=,当PA 最小时,则PC 最小,其最小值为(0,0)到直线0x y ++的距离,即d = 所以P A 的最小值为2,故选项D 错误, 故选:ABC.11.双曲线C 的方程为2212y x -=,左、右焦点分别为12,F F ,过点2F 作直线与双曲线C 的右半支交于点A ,B ,使得190F AB ∠=︒,则( ) A.21AF B .点AC .直线AB或 D .1ABF1【答案】BCD【分析】根据双曲线的定义得到方程组,求出1AF 、2AF ,即可判断A ,再由等面积法求出A y ,代入双曲线方程求出A x ,即可判断B ,再求出直线的斜率,即可判断C ,利用等面积法求出内切圆的半径,即可判断D ;【详解】解:如图所示,由题意知12122221212=2=2=2+=AF AF a F F c AF AF F F ⎧-⎪⎪⎨⎪⎪⎩,解得121AF AF ⎧⎪⎨⎪⎩,故A 不正确;在12Rt AF F △中,由等面积法知12121122A AF AF F F y =,解得A y =代入双曲线方程得225123A Ay x =+=,又因为点A 在双曲右支上,故153A x =,故B 正确; 由图知121215135tan 251AF AF k AF F AF --=∠===+,1352AB AF k k +=-=-, 由对称性可知,若点A 在第四象限,则352AB k +=,故C 正确; 1ABF 的内切圆半径()1112r AF AB BF =+- ()122111(51512)5122AF AF BF BF =++-=++--=-,故D 正确.故选:BCD .12.如图,已知P 为棱长为1的正方体对角线1BD 上的一点,且()()10,1BP BD λλ=,下面结论中正确结论的有( )A .11A D C P ⊥;B .当1A P PD +取最小值时,23λ=; C .若()0,1λ∈,则7,312APC ππ⎛⎫∠∈ ⎪⎝⎭;D .若P 为1BD 的中点,四棱锥11P AA D D -的外接球表面积为94π. 【答案】ABD【分析】以D 为坐标原点建立如图空间直角坐标系,利用向量关系可判断ABC ;根据几何体外接球关系建立方程求出球半径即可判断D.【详解】以D 为坐标原点建立如图空间直角坐标系, 则()1,1,0B ,()10,0,1D ,设(),,P x y z ,()()10,1BP BD λλ=,1BP BD λ∴=,即()()1,1,1,1,1x y z λ--=--,则可解得()1,1,P λλλ--, 对A ,()()()111,0,1,0,0,0,0,1,1A D C ,()11,0,1A D ∴=--,()11,,1C P λλλ=---,则()()()()11110110A D C P λλλ⋅=-⨯-+⨯-+-⨯-=,则11A D C P ⊥,故A 正确;对B ,()()()()()2222221111111A P PD λλλλλλ+=--+-+--+-+222223422333λλλ⎛⎫=-+-+ ⎪⎝⎭则当23λ=时,1A P PD +取最小值,故B 正确; 对C ,()()1,0,0,0,1,0A C ,(),1,PA λλλ∴=--,()1,,PC λλλ=--,则222321cos 1321321PA PCAPC PA PC λλλλλλ⋅-∠===--+-+⋅, 01λ<<,则2232123λλ≤-+<,则2111123212λλ-≤-<-+, 即11cos 22APC -≤∠<,则2,33APC ππ⎛⎤∠∈ ⎥⎝⎦,故C 错误;对于D ,当P 为1BD 中点时,四棱锥11P AA D D -为正四棱锥,设平面11AA D D 的中心为O ,四棱锥11P AA D D -的外接球半径为R ,所以222122R R ⎛⎫-+= ⎪⎝⎭⎝⎭,解得34R =, 故四棱锥11P AA D D -的外接球表面积为94π,所以D 正确. 故选:ABD.【点睛】关键点睛:本题考查空间相关量的计算,解题的关键是建立空间直角坐标系,利用向量建立关系进行计算.三、填空题13.若()1,2,3a =,()3,2,1b =,则()a ab ⋅-=______. 【答案】4【分析】根据空间向量数量积的坐标运算即可求解. 【详解】由题可知, (2,0,2)a b -=-, 所以()1(2)20324a a b ⋅-=⨯-+⨯+⨯=, 故答案为:4.14.直线l 过(1,2)-且与圆222220x y x y +---=相切,则直线l 的方程为___________ 【答案】1x =-或34110x y -+=.【分析】根据圆的一般方程求出圆心坐标和半径,当直线斜率不存在时直线=1x -符合题意;当直线斜率存在时,利用圆心到直线的距离为半径求出直线斜率即可. 【详解】由圆的方程222220x y x y +---=,得22(1)(1)4x y -+-=, 则圆心坐标为(1,1),半径为2r =,当直线l 的斜率不存在时,直线l :=1x -,与圆相切,符合题意; 当直线l 的斜率存在时,设直线l :2(1)y k x -=+,即20kx y k -++=, 由直线l 与圆相切,得圆心到直线l 的距离d r =,即2d ==,解得34k =,所以l :34110x y -+=; 综上,直线l 的方程为=1x -或34110x y -+=. 故答案为:=1x -或34110x y -+=. 15.对抛物线C :24x y =,有下列命题:①设直线l :1y kx =+,则直线l 被抛物线C 所截得的最短弦长为4;②已知直线l :1y kx =+交抛物线C 于A 、B 两点,则以AB 为直径的圆一定与抛物线的准线相切; ③过点()()2,P t t R ∈与抛物线有且只有一个交点的直线有1条或3条;④若抛物线C 的焦点为F ,抛物线上一点()2,1Q 和抛物线内一点()()2,1R m m >,过点Q 作抛物线的切线1l ,直线2l 过点Q 且与1l 垂直,则2l 平分RQF ∠;其中你认为是正确命题的所有命题的序号是______.【答案】①②④【分析】①将抛物线与直线联立消去y ,利用根与系数关系求出12x x +,12x x ,再由弦长公式即可求出弦长,进而可求出弦长的最小值,即可判断①的正误;②利用中点坐标公式,求出以AB 为直径的圆的圆心的纵坐标,判断圆心到直线的距离121y y ++与半径||2AB r =的大小关系,即可判断②的正误; ③将2x =代入24x y =,可得()2,1P 在抛物线上,此时当直线的斜率不存在时,只有一个交点,当直线与抛物线相切时,也只有一个交点,故与抛物线只有一个交点的直线有可能有2条,可判断③错误;④设1l 的方程为()12y k x -=-,将直线与抛物线联立消去y ,利用判别式即可求出k ,进而可求出直线1l 的倾斜角,即可判断④的正误.【详解】①联立方程241x y y kx ⎧=⎨=+⎩,消去y 可得2440x kx --=,216160k ∆=+>恒成立, 设两交点坐标分别为()11,A x y ,()22,B x y ,所以由根与系数的关系得124x x k +=,124x x ⋅=-,故AB ==2444k =+≥, 当0k =时,AB 取得最小值4,所以最短弦长为4,故①正确,②由①可知124x x k +=,则21212242y y kx kx k +=++=+,故以AB 为直径的圆的圆心坐标为()22,21k k +,半径2222AB r k ==+, 抛物线24x y =的准线方程为1y =-,故圆心到准线1y =-的距离2221122d k k r =++=+=,所以以AB 为直径的圆一定与抛物线的准线相切,故②正确,③将2x =代入24x y =,解得1y =,所以当1t =时,即()2,1P 在抛物线上,当直线的斜率不存在时,方程为2x =,此时只有一个交点()2,1,当直线斜率存在且只与抛物线只有一个交点时,当且仅当该直线为切线时满足条件,所以过点()2,P t 只与抛物线只有一个交点的直线有可能有2条,故③错误,④因为抛物线的焦点为()0,1F ,又()2,1Q ,()2,R m ,所以三角形FQR 为直角三角形且过()2,1Q 的切线斜率一定存在,设1l 的方程为()12y k x -=-,代入24x y =,可得24840x k k -+-=,由()2164840k k ∆=--=可得1k =,即直线1l 的倾斜角为45︒,因为直线2l 过点Q 且与1l 垂直,所以一定平分RQF ∠,故④正确.故答案为:①②④【点睛】思路点睛:直线与抛物线交点问题的解题思路:(1)求交点问题,通常解直线方程与抛物线方程组成的方程组;(2)与交点相关的问题通常借助根与系数的关系或用向量法解决.16.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,P 是椭圆上任意一点,直线2F M 垂直于OP 且交线段1F P 于点M ,若12F M MP =,则该椭圆的离心率的取值范围是______.【答案】1,12⎛⎫ ⎪⎝⎭ 【分析】设(,)P m n ,||m a <,又1(,0)F c -,2(,0)F c ,运用向量共线的坐标表示,可得M 的坐标,再由向量垂直的条件:数量积为0,由P 的坐标满足椭圆方程,化简整理可得m 的方程,求得m ,由||m a <,解不等式结合离心率公式即可得到范围.【详解】解:设(,)P m n ,||m a <,又1(,0)F c -,2(,0)F c ,1||2||F M MP =,∴12MF PM =,可得(M c x --,)2(M M y x m -=-,)M y n -,可得2(3m c M -,2)3n ,又(,)OP m n =,22(3m c MF c -=-,2)3n -, 由2·0MF OP =, 可得222()033m c n m c ---=, 化为2(2)n m c m =-,由P 在椭圆上,可得22221m n a b+=, 即有2222(1)m n b a =-, 可得222(2)(1)m m c m b a -=-, 化为2222220c m mc a c a-+-=, 解得2a m a c =-,或2a m a c=+(舍去), 由2a a a c-<, 可得2c a >,即有12c e a =>,又01e <<, 可得112e <<, ∴该椭圆的离心率的取值范围是1(,1)2, 故答案为:1(2,1).【点睛】本题考查椭圆的离心率的范围,注意运用向量的坐标表示和向量垂直的条件:数量积为0,考查椭圆的范围,以及化简整理的运算能力.四、解答题17.已知圆C 的圆心在第一象限且在直线30x y -=上,与x 轴相切,被直线0x y -=截得的弦长为27 (1)求圆C 的方程; (2)由直线40x y ++=上一点P 向圆C 引切线,A ,B 是切点,求四边形P ACB 面积的最小值.【答案】(1)()()22139x y -+-=(2)323【分析】(1)设出圆心坐标(),3,0a a a >,判断出圆的半径,利用直线0x y -=截圆所得弦长列方程来求得a ,从而求得圆C 的方程.(2)先求得22PACB S PA r PC r r =⋅=-⋅,通过求PC 的最小来求得PACB S 的最小值. 【详解】(1)依题意,设圆C 的圆心坐标为(),3,0a a a >,半径为3a ,(),3a a 到直线0x y -=的距离为322a a d a -==, 所以()()2227232a a=-,解得=1a , 所以圆C 的方程为()()22139x y -+-=.(2)由(1)得,圆C 的圆心为()1,3C ,半径=3r ,22PACB S PA r PC r r =⋅=-⋅,所以当PC 最小时,PACB S 最小.()1,3C 到直线40x y ++=的距离为134422++=, 所以PC 的最小值为42,所以四边形P ACB 面积的最小值为()224233323-⨯=.18.如图,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,PCD 为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,CD =2,AD =3,棱PC 的中点为N ,连接DN .(1)求证:PA ⊥平面PCD ;(2)求直线AD 与平面P AC 所成角的正弦值.【答案】(1)证明见解析 (2)33【分析】(1)取棱PC 的中点N ,连接DN ,可得DN ⊥PC ,利用面面垂直的性质定理可得DN ⊥平面P AC ,从而得到DN ⊥P A ,利用线面垂直的判定定理证明即可;(2)连接AN ,由线面角的定义可得,∠DAN 为直线AD 与平面P AC 所成的角,在三角形中,利用边角关系求解即可. 【详解】(1)证明:取棱PC 的中点N ,连接DN ,由题意可知,DN ⊥PC ,又因为平面P AC ⊥平面PCD ,平面P AC ∩平面PCD =PC ,所以DN ⊥平面P AC ,又P A ⊂平面P AC ,故DN ⊥P A ,又P A ⊥CD ,CD ∩DN =D ,CD ,DN ⊂平面PCD ,则P A ⊥平面PCD ;(2)连接AN ,由(1)可知,DN ⊥平面P AC ,则∠DAN 为直线AD 与平面P AC 所成的角,因为PCD 为等边三角形,CD =2且N 为PC 的中点,所以DN 3DN ⊥AN ,在Rt DAN △中,sin ∠DAN =3=DN AD 故直线AD 与平面P AC 3 19.已知双曲线C :22221x y a b-=(a > 0,b > 03 2. (1)求双曲线的焦点到渐近线的距离;(2)若直线y =x +m 被双曲线C 截得的弦长为42m 的值.【答案】2(2)1m =±【分析】(1)根据已知计算双曲线的基本量,得双曲线焦点坐标及渐近线方程,再用点到直线距离公式得解.(2)直线方程代入双曲线方程,得到关于x 的一元二次方程,运用韦达定理弦长公式列方程得解.【详解】(1)双曲线离心率为3,实轴长为2, 3c a ∴=,22a =,解得1a =,3c =, 2222b c a ∴=-=,∴所求双曲线C 的方程为2212y x -=; ∴双曲线C 的焦点坐标为()3,0±,渐近线方程为2y x =±,即为20x y ±=, ∴双曲线的焦点到渐近线的距离为23221d ⨯==+.(2)设()11,A x y ,()22,B x y , 联立2212y x m y x =+⎧⎪⎨-=⎪⎩,22220x mx m ---=,210m =+>, 122x x m ∴+=,2122x x m =--.()()222121224244242AB x x x x m m ⎡⎤⎡⎤∴=+-=++=⎣⎦⎣⎦, 21m ∴=,解得1m =±.20.在四棱锥P -ABCD 中,侧面P AD ⊥ 底面ABCD ,底面ABCD 为直角梯形,//BC AD ,∠ADC =90°,BC =CD =12AD =1,P A =PD ,E ,F 分别为AD ,PC 的中点.(1)求证://PA 平面BEF ;(2)若PC 与AB 所成角为45°,求二面角F -BE -A 的余弦值.【答案】(1)证明见解析;(2)33-. 【分析】(1)连接AC 交BE 于O ,并连接FO ,根据条件可证//OF PA ,从而可证明结论. (2)由ABCE 为平行四边形可得//EC AB ,PCE ∠为PC 与AB 所成角,即45PCE ∠=︒,又由条件可得PE ABCD ⊥平面,可得2PE EC ==,取PD 中点M ,连,ME MA MF ,,可得MEA ∠为F BE A --的平面角,可得答案.【详解】(1)证明:连接AC 交BE 于O ,并连接FO ,1,2BC AD BC AD =∥,E 为AD 中点,∴//AE BC ,且AE =BC . ∴四边形ABCE 为平行四边形,∴O 为AC 中点,又F 为AD 中点,//OF PA ∴,OF ⊂平面,BEF PA ⊄平面BEF ,//PA ∴平面BEF .(2)由BCDE 为正方形可得22EC BC ==由ABCE 为平行四边形可得//EC AB .PCE ∴∠为PC 与AB 所成角,即45PCE ∠=︒.PA PD =E 为AD 中点,所以PE AD ⊥.侧面PAD ⊥底面,ABCD 侧面PAD ⋂底面,ABCD AD PE =⊂平面PAD ,PE ∴⊥平面ABCD ,PE EC ∴⊥,2PE EC ∴==取PD 中点M ,连,ME MA MF ,,由M F ,,分别为,PD PC 的中点,所以//,MF CD又//CD BE ,所以//MF BE ,所以,,,B E M F 四点共面.因为平面PAD ⊥平面ABCD ,且平面PAD ⋂平面,ABCD AD BE AD =⊥,BE ∴⊥平面PAD ,,EM AE ⊂平面PAD所以,BE AE BE EM ⊥⊥,则MEA ∠为F BE A --的平面角. 又311,1,22EM AE AM ===,3cos 3MEA ∴∠=-. 所以二面角F BE A --的余弦值为33-. 【点睛】本题考查证明线面平行和求二面角的平面角,解答本题的关键是取PD 中点M ,连,ME MA MF ,,证明出,BE AE BE EM ⊥⊥,得到MEA ∠为F BE A --的平面角,属于中档题.21.如图,F 为抛物线()220y px p =>的焦点,直线():0l y kx m m >=+与抛物线交于P 、Q 两点,PQ 中点为R ,当1k =-,2m =时,R 到y 轴的距离与到F 点距离相等.(1)求p 的值;(2)若存在正实数k ,使得以PQ 为直径的圆经过F 点,求m 的取值范围.【答案】(1)8p =(2)08m <<【分析】(1)设点()11,P x y ,()22,Q x y ,将直线l 的方程与抛物线的方程联立,列出韦达定理,求出点R 的坐标,根据已知条件可得出关于p 的等式,即可解出p 的值;(2)将直线PQ 的方程与抛物线的方程联立,列出韦达定理,由已知可得0FP FQ ⋅=,可得出221624640k km m ++-=,令22()162464f k k km m =++-,根据二次函数的零点分布可得出关于m 的不等式,结合0m >可求得m 的取值范围.【详解】(1)解:当1k =-,2m =时,设点()11,P x y ,()22,Q x y ,联立222y x y px=-+⎧⎨=⎩,可得2(24)40x p x -++=,22(24)164160p p p ∆=+-=+>, 由韦达定理可得1224x x p +=+, 所以,1222x x p +=+,()12124(2)222x x y y p p -+++==-++=-, 即点()2,R p p +-,已知R 到y 轴的距离与到F 点距离相等,2p ∴+8p =. (2)解:因为存在正实数k ,使得以PQ 为直径的圆经过F 点,且0m >,联立216y kx m y x=+⎧⎨=⎩,可得2222(8)0k x km x m +-+=, 2224(8)40km k m ∆=-->,可得4km <, 由韦达定理可得1222(8)km x x k -+=,2122m x x k=, 易得(4,0)F ,()()11114,4, FP x y x kx m =-=-+,同理可得()224,FQ x kx m =-+,因为()()()()1212440FP FQ x x kx m kx m ⋅=--+++=,所以()()2212121(4)160kx x km x x m +--+++=, 所以()222222(8)1(4)160m km k km m k k-+--++=, 化简得221624640k km m ++-=,令22()162464f k k km m =++-,则函数()f k 的对称轴为直线304m k =-<,若方程()0f k =有正根,则2(0)640f m =-<,又因为0m >,解得08m <<.22.已知椭圆()2222:10x y C a b a b +=>>过点()22,2P ,A 、B 为左右顶点,且8AB =. (1)求椭圆C 的方程;(2)过点A 作椭圆内的圆()222:0O x y r r +=>的两条切线,交椭圆于C 、D 两点,若直线CD 与圆O相切,求圆O 的方程;(3)过点P 作(2)中圆O 的两条切线,分别交椭圆于两点Q 、R ,求证:直线QR 与圆O 相切.【答案】(1)221164x y += (2)22169x y += (3)证明见解析【分析】(1)根据椭圆的基本量可得4a =,代入()22,2P 即可得椭圆的方程;(2)根据对称性可得直线CD 与x 轴垂直,再根据相切的性质,结合三角函数的关系列式求解半径r 即可;(3)设圆O 的切线方程为()222y k x -=-,根据切线到圆心的距离可得k 的二次方程,进而得到,PQ PR 的斜率12,k k ,再联立,PQ PR 的方程与椭圆方程可得,Q R 的横坐标,进而表达出QR 的方程,求解圆心到QR 的距离表达式,代入数据求解得43d =即可证明. 【详解】(1)依题意,8AB =则4a =,代入()22,2P 可得282116b+=,解得24b =,故椭圆方程为221164x y += (2)由椭圆与圆的对称性可得,直线,AC AD 关于x 轴对称,故直线CD 与x 轴垂直.代入x r =到221164x y +=,不妨设21,162C r r ⎛⎫- ⎪⎝⎭,设E 为AC 与圆O 的切点,F 为CD 与圆O 的切点.第 21 页 共 21 页则由切线的性质,CE CF =OE OF r ==,故AEAC AE EC =+=故1sin 34CF OE r CAF AC OA ∠====,故43r =. 故圆O 的方程为22169x y +=. (3)设圆O的切线方程为(y k x -,即0kx y -=.43=,故()2212819k k -=+,化简得2283610k k -+=. 则该方程两根分别为,PQ PR 的斜率12,k k,则1k =,2k =.联立(221164y k x x y ⎧-⎪⎨⎪+=⎩,则()()()222141284410k x k x k k ++-+--=.设()()1122,,,Q x y R x y,则()211121844114k k k--=+,即)21112144114k k x k--==+)22222244114k k x k --==+故11k x =,22k x =((121122y y k x k x -=---)112212k x k x k k =---=又1212QR y y k x x -=-,故直线QR 的方程为()121112y y y y x x x x --=--,即 ()()121212210y y x x x y x y x y ---+-=,故O 到直线QR 的距离d==,代入数据可得43d =,故直线QR 与圆O 相切. 【点睛】本题主要考查了根据直线与圆和直线与椭圆的位置关系问题,需要根据题意设直线方程,联立椭圆方程得出对应的点坐标,从而得出直线方程,根据点到直线的距离公式化简求解.计算量较大,属于难题.。

吉林省长春市(市命题)七年级数学上学期第一次月考试卷(含解析)新人教版

吉林省长春市(市命题)七年级数学上学期第一次月考试卷(含解析)新人教版

2016-2017学年吉林省长春市名校调研七年级(上)第一次月考数学试卷(市命题)一、选择题(共8小题,每小题3分,满分24分)1.如果向右走5步记为+5,那么向左走3步记为()A.+3 B.﹣3 C.+ D.﹣2.四个数﹣3,0,1,2,其中负数是()A.﹣3 B.0 C.1 D.23.下列各对数互为相反数的是()A.4和﹣(﹣4)B.﹣3和C.﹣2和﹣D.0和04.下列算式正确的是()A.(﹣14)﹣5=﹣9 B.0﹣(﹣3)=3 C.(﹣3)﹣(﹣3)=﹣6 D.|5﹣3|=﹣(5﹣3)5.如图,数轴上点M所表示的数可能是()A.1.5 B.﹣1.6 C.﹣2.6 D.﹣3.46.一个数的绝对值是3,则这个数可以是()A.3 B.﹣3 C.3或﹣3 D.7.点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:甲:b﹣a<0;乙:a+b>0;丙:|a|<|b|;丁:ab>0,其中正确的是()A.甲、乙B.丙、丁C.甲、丙D.乙、丁8.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成如图图案,则第8个图案中有n个白色纸片,则n的值为()A.23 B.24 C.25 D.26二、填空题(共6小题,每小题3分,满分18分)9.比较大小(用“>,<,=”表示):﹣|﹣2| ﹣(﹣2).10.的相反数是,倒数是.11.计算(﹣2)×3×(﹣1)的结果是.12.绝对值小于2的整数是.13.比﹣3大5的数是.14.如图是一个数值转换机,若输入的x为﹣5,则输出的结果是.三、解答题(共10小题,满分78分)15.计算:(﹣12)+(+3).16.计算:10+5×(﹣3).17.+(﹣14)+(﹣16)+(+8).18.计算:(﹣18)×(﹣+).19.将下列各数在数轴上表示,再用“<”把各数连接起来:﹣3,﹣|﹣|,﹣(﹣2),﹣1<<<.20.把下列各数填入表示一些数集合的相应的大括号里:﹣0.1,,325,0,0.6,﹣20,10.1,﹣5%整数集:{ …};分数集:{ …};有理数集:{ …}.21.已知a,b互为相反数,x的绝对值为1,求2016(a+b)+2017﹣x的值.22.如表是一种股票星期一至星期五收盘价的变化情况,星期一前一个交易日的收盘价为8.8(单位:元).星期一二三四五收盘价变化(与前一个交易日比较)+0.3 ﹣0.5 ﹣0.7 +1.4 +0.4(1)请计算这五日的收盘价;(2)这五日内哪一天的收盘价最高?是多少?23.某公路检修组乘汽车沿公路检修,约定前进为正,后退为负,某天自A地出发到收工时所走的路程(单位:千米)为+10,﹣3,+4,﹣2,﹣8,+13,﹣2,﹣11,+7,+5.(1)问收工时相对A地是前进了还是后退了?距A地多远?(2)若检修组最后回到了A地且每千米耗油0.2升,问共耗油多少升?24.如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C到点A、点B的距离相等,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t大于0)秒.(1)点C表示的数是.(2)求当t等于多少秒时,点P到达点A处?(3)点P表示的数是(用含字母t的式子表示)(4)求当t等于多少秒时,P、C之间的距离为2个单位长度.2016-2017学年吉林省长春市名校调研七年级(上)第一次月考数学试卷(市命题)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.如果向右走5步记为+5,那么向左走3步记为()A.+3 B.﹣3 C.+ D.﹣【考点】正数和负数.【分析】此题主要用正负数来表示具有意义相反的两种量:向右记为正,则向左就记为负,据此解答即可.【解答】解:如果向右走5步记为+5,那么向左走3步记为﹣3;故选:B.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.四个数﹣3,0,1,2,其中负数是()A.﹣3 B.0 C.1 D.2【考点】正数和负数.【专题】计算题.【分析】﹣3小于零,是负数,0既不是正数也不是负数,1和2是正数.【解答】解:∵﹣3<0,且小于零的数为负数,∴﹣3为负数.故选:A.【点评】题目考查了正负数的定义,解决此类问题关键是熟记正负数的定义,需要注意的是,0既不是正数也不是负数.3.下列各对数互为相反数的是()A.4和﹣(﹣4)B.﹣3和C.﹣2和﹣D.0和0【考点】相反数.【分析】根据只有符号不同的两个数叫做相反数对各选项分析判断即可得解.【解答】解:A、4和﹣(﹣4)=4,是相同的两个数,不是互为相反数,故本选项错误;B、﹣3和,不是互为相反数,故本选项错误;C、﹣2和﹣,不是互为相反数,故本选项错误;D、0和0是互为相反数,故本选项正确.故选D.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.4.下列算式正确的是()A.(﹣14)﹣5=﹣9 B.0﹣(﹣3)=3 C.(﹣3)﹣(﹣3)=﹣6 D.|5﹣3|=﹣(5﹣3)【考点】有理数的减法;绝对值.【分析】根据有理数的减法运算法则和绝对值的性质对各选项分析判断利用排除法求解.【解答】解:A、(﹣14)﹣5=﹣19,故本选项错误;B、0﹣(﹣3)=0+3=3,故本选项正确;C、(﹣3)﹣(﹣3)=﹣3+3=0,故本选项错误;D、|5﹣3|=2,﹣(5﹣3)=﹣2,故本选项错误.故选B.【点评】本题考查了有理数的减法,绝对值的性质,熟记运算法则和性质并准确计算是解题的关键.5.如图,数轴上点M所表示的数可能是()A.1.5 B.﹣1.6 C.﹣2.6 D.﹣3.4【考点】数轴.【分析】由数轴可知:M所表示的数在﹣3与﹣2之间.【解答】解:设M表示的数为x,由数轴可知:﹣3<x<﹣2,M可能是﹣2.6,故选(C)【点评】本题考查利用数轴表示数的大小,属于基础题型.6.一个数的绝对值是3,则这个数可以是()A.3 B.﹣3 C.3或﹣3 D.【考点】绝对值.【专题】计算题.【分析】此题根据绝对值的性质进行求解即可.【解答】解:∵一个数的绝对值是3,可设这个数位a,∴|a|=3,∴a=±3故选C.【点评】此题主要考查绝对值的性质,比较简单.7.点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:甲:b﹣a<0;乙:a+b>0;丙:|a|<|b|;丁:ab>0,其中正确的是()A.甲、乙B.丙、丁C.甲、丙D.乙、丁【考点】绝对值;数轴.【专题】推理填空题.【分析】根据图示,可得b<﹣3,0<a<3,据此逐项判断即可.【解答】解:∵b<a,∴b﹣a<0;∵b<﹣3,0<a<3,∴a+b<0;∵b<﹣3,0<a<3,∴|b|>3,|a|<3,∴|a|<|b|;∵b<0,a>0,∴ab<0,∴正确的是:甲、丙.故选:C.【点评】此题主要考查了绝对值的含义和求法,以及数轴的特征和应用,要熟练掌握,解答此题的关键是判断出a、b的取值范围.8.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成如图图案,则第8个图案中有n个白色纸片,则n的值为()A.23 B.24 C.25 D.26【考点】规律型:图形的变化类.【分析】观察图形,发现:白色纸片在4的基础上,依次多3个;根据其中的规律得出第n个图案中有白色纸片,求出n=8的值即可.【解答】解:∵第1个图案中有白色纸片3×1+1=4张第2个图案中有白色纸片3×2+1=7张,第3图案中有白色纸片3×3+1=10张,∴第n个图案中有白色纸片3n+1张,当n=8时,3n+1=25,故选:C.【点评】此题主要考查图形的变化规律,此题的关键是注意发现前后图形中的数量之间的关系.二、填空题(共6小题,每小题3分,满分18分)9.比较大小(用“>,<,=”表示):﹣|﹣2| <﹣(﹣2).【考点】有理数大小比较.【分析】先求出各数的值,再根据负数小于一切正数即可得出结论.【解答】解:∵﹣|﹣2|=﹣2<0,﹣(﹣2)=2>0,∴﹣|﹣2|<﹣(﹣2).故答案为:<.【点评】本题考查的是有理数的大小比较,熟知负数小于一切正数是解答此题的关键.10.的相反数是,倒数是.【考点】倒数;相反数.【分析】两数互为相反数,和为0;两数互为倒数,积为1.【解答】解:设的相反数为x,倒数为y.依题意得: +x=0, y=1,所以x=,y=.则的相反数是,倒数是﹣.【点评】本题考查的是相反数和倒数的概念.两数互为相反数,和为0;两数互为倒数,积为1.11.计算(﹣2)×3×(﹣1)的结果是 6 .【考点】有理数的乘法.【专题】计算题;实数.【分析】原式利用乘法法则计算即可得到结果.【解答】解:原式=6,故答案为:6【点评】此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.12.绝对值小于2的整数是﹣1,0,1 .【考点】绝对值.【分析】可以根据数轴得到答案,到原点距离小于2的整数只有三个:﹣1,1,0.【解答】解:绝对值小于2的整数是:﹣1,0,1.【点评】本题考查了绝对值的概念.13.比﹣3大5的数是 2 .【考点】有理数的加法.【分析】比﹣3大5的数是﹣3+5,根据有理数的加法法则即可求解.【解答】解:﹣3+5=2.故答案是:2.【点评】本题考查了有理数加法运算,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.14.如图是一个数值转换机,若输入的x为﹣5,则输出的结果是21 .【考点】有理数的乘法.【专题】图表型.【分析】根据转换机的设置,结合有理数的混合运算法则求出即可.【解答】解:如图所示:若输入的x为﹣5,则输出的结果是:(﹣5﹣2)×(﹣3)=﹣7×(﹣3)=21.故答案为:21.【点评】此题主要考查了有理数的混合运算,熟练掌握运算法则是解题关键.三、解答题(共10小题,满分78分)15.计算:(﹣12)+(+3).【考点】有理数的加法.【专题】计算题;实数.【分析】原式利用异号两数相加的法则计算即可得到结果.【解答】解:原式=﹣12+3=﹣9.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.16.计算:10+5×(﹣3).【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘法运算,再计算加减运算即可得到结果.【解答】解:原式=10﹣15=﹣5.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.(+26)+(﹣14)+(﹣16)+(+8).【考点】有理数的加法;正数和负数.【专题】计算题.【分析】根据有理数的加法法则对式子进行计算.把同号的先相加,得出的结果再相加,得出最后结果.【解答】解:原式=(+26)+(+8)+(﹣14)+(﹣16)=34+(﹣30)=4.【点评】本题主要考查了有理数加法法则:(1)同号相加,取相同符号,并把绝对值相加.(2)绝对值不相等的异号两数加减,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数.18.计算:(﹣18)×(﹣+).【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式利用乘法分配律计算即可得到结果.【解答】解:原式=﹣9+10﹣15=﹣14.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.将下列各数在数轴上表示,再用“<”把各数连接起来:﹣3,﹣|﹣|,﹣(﹣2),﹣1﹣3 <﹣1 <﹣|﹣| <﹣(﹣2).【考点】有理数大小比较;数轴;绝对值.【分析】结合有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.进行求解即可.【解答】解:数轴如图所示:∴﹣3<﹣1<﹣|﹣|<﹣(﹣2).故答案为:﹣3,﹣1,﹣|﹣|,﹣(﹣2).【点评】本题考查了有理数大小的比较,解答本题的关键在于熟练掌握有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.20.把下列各数填入表示一些数集合的相应的大括号里:﹣0.1,,325,0,0.6,﹣20,10.1,﹣5%整数集:{ 325,﹣20,0 …};分数集:{ ﹣0.1,,0.6,10.1,﹣5% …};有理数集:{ ﹣0.1,,325,0,0.6,﹣20,10.1,﹣5% …}.【考点】有理数.【分析】根据有理数的分类,可得答案.【解答】解:整数集:{ 325,﹣20,0…};分数集:{﹣0.1,,0.6,10.1,﹣5%…};有理数集:{﹣0.1,,325,0,0.6,﹣20,10.1,﹣5%…},故答案为:325,﹣20,0;﹣0.1,,0.6,10.1,﹣5%;﹣0.1,,325,0,0.6,﹣20,10.1,﹣5%.【点评】本题考查了有理数,熟记有理数的分类是解题关键.21.已知a,b互为相反数,x的绝对值为1,求2016(a+b)+2017﹣x的值.【考点】代数式求值.【专题】计算题;实数.【分析】利用相反数,绝对值的代数意义求出各自的值,代入原式计算即可得到结果.【解答】解:由题意得:a+b=0,|x|=1,则原式=2017﹣x=2017±1=2016或2018【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.22.如表是一种股票星期一至星期五收盘价的变化情况,星期一前一个交易日的收盘价为8.8(单位:元).星期一二三四五收盘价变化(与前一个交易日比较)+0.3 ﹣0.5 ﹣0.7 +1.4 +0.4(1)请计算这五日的收盘价;(2)这五日内哪一天的收盘价最高?是多少?【考点】正数和负数.【分析】(1)根据有理数的加法,可得每天股票的价格;(2)比较(1)中计算结果即可求解.【解答】解:(1)这五日的收盘价分别是:周一8.8+0.3=9.1(元),周二9.1﹣0.5=8.6(元),周三8.6﹣0.7=7.9(元),周四7.9+1.4=9.3(元),周五9.3+0.4=9.7(元);(2)∵9.7>9.3>9.1>8.6>7.9,∴这五日内星期五的收盘价最高,是9.7元.【点评】本题考查了正数和负数,利用了有理数的加法运算,有理数的大小比较进行解题,此题难度不大.23.某公路检修组乘汽车沿公路检修,约定前进为正,后退为负,某天自A地出发到收工时所走的路程(单位:千米)为+10,﹣3,+4,﹣2,﹣8,+13,﹣2,﹣11,+7,+5.(1)问收工时相对A地是前进了还是后退了?距A地多远?(2)若检修组最后回到了A地且每千米耗油0.2升,问共耗油多少升?【考点】正数和负数.【分析】(1)约定前进为正,后退为负,依题意列式求出和即可;(2)要求耗油量,需求他共走了多少路程,这与方向无关.【解答】解:(1)10﹣3+4﹣2﹣8+13﹣2﹣11+7+5=13(千米).故收工时相对A地是前进了,距A地13千米;(2)自A地出发到收工时所走的路程:|+10|+|﹣3|+|+4|+|﹣2|+|﹣8|+|+13|+|﹣2|+|﹣11|+|+7|+|+5|=65(千米),自A地出发到回到A地时所走的路程:65+13=78(千米),78×0.2=15.6(升).答:若检修组最后回到了A地且每千米耗油0.2升,共耗油15.6升.【点评】此题考查了有理数的加减混合运算,以及正数与负数,弄清题意是解本题的关键.正负数是表示相反意义的量,如果规定一个量为正,则与它相反的量一定为负.24.如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C到点A、点B的距离相等,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t大于0)秒.(1)点C表示的数是 1 .(2)求当t等于多少秒时,点P到达点A处?(3)点P表示的数是2t﹣4 (用含字母t的式子表示)(4)求当t等于多少秒时,P、C之间的距离为2个单位长度.【考点】一元一次方程的应用;数轴;列代数式.【分析】(1)根据题意得到点C是AB的中点;(2)、(3)根据点P的运动路程和运动速度列出方程;(4)分两种情况:点P在点C的左边有右边.【解答】解:(1)依题意得,点C是AB的中点,故点C表示的数是: =1.故答案是:1;(2)[6﹣(﹣4)]÷2=10÷2=5(秒)答:当t=5秒时,点P到达点A处.(3)点P表示的数是2t﹣4.故答案是:2t﹣4;(4)当点P在点C的左边时,2t=3,则t=1.5;当点P在点C的右边时,2t=7,则t=3.5.综上所述,当t等于1.5或3.5秒时,P、C之间的距离为2个单位长度.【点评】本题考查了一元一次方程的应用,列代数式和数轴.解题时,利用了数形结合的数学思想.。

2023-2024学年吉林省长春市东北师范大学附属中学高一下学期期末数学试题+答案解析

2023-2024学年吉林省长春市东北师范大学附属中学高一下学期期末数学试题+答案解析

2023-2024学年吉林省长春市东北师范大学附属中学高一下学期期末数学试题❖一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知i为虚数单位,复数,则()A. B. C. D.2.已知两条不同的直线m,n和两个不同的平面,,下列四个命题中正确的为()A.若,,则B.若,,则C.若,,则D.若,,则3.高一年级某位同学在五次考试中的数学成绩分别为105,90,104,106,95,这位同学五次数学成绩的方差为()A. B.C.50D.4.在直三棱柱中,,且,则异面直线与所成角的余弦值是()A. B. C. D.5.数据1,2,5,4,8,10,6的第60百分位数是()A. B.C.6D.86.已知圆台的上、下底面圆的半径分别为1和3,高为1,则圆台的表面积为()A. B.C. D.7.某学校高一年级学生有900人,其中男生500人,女生400人,为了获得该校高一全体学生的身高信息,现采用样本量按比例分配的分层随机抽样方法抽取了容量为180的样本,经计算得男生样本的均值为170,女生样本的均值为161,则抽取的样本的均值为是()A. B.166C. D.1688.棱长为2的正方体内有一个棱长为a的正四面体,且该正四面体可以在正方体内任意转动,则a的最大值为()A.1B.C.D.2二、多选题:本题共3小题,共15分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.某单位为了解员工参与一项志愿服务活动的情况,从800位员工中抽取了100名员工进行调查,根据这100人的服务时长单位:小时,得到如图所示的频率分布直方图.则()A.a的值为B.估计员工平均服务时长为45小时C.估计员工服务时长的中位数为小时D.估计本单位员工中服务时长超过50小时的有45人10.正六边形ABCDEF的边长为2,G为正六边形边上的动点,则的值可能为()A. B. C.12 D.1611.如图,正三棱锥和正三棱锥的侧棱长均为,若将正三棱锥绕BD旋转,使得点A,C分别旋转至点M,N处,且M,B,D,E四点共面,点M,E分别位于BD两侧,则()A. B.C.MC的长度为D.点C与点A旋转运动的轨迹长度之比为三、填空题:本题共3小题,每小题5分,共15分。

高一数学下学期期末考试试卷(含解析)-人教版高一全册数学试题

高一数学下学期期末考试试卷(含解析)-人教版高一全册数学试题

某某省某某市长安区第一中学2015-2016学年高一下学期期末考试数学一、选择题:共12题1.不等式的解集为A. B.C. D.【答案】C【解析】本题考查一元二次不等式的解法.,即,解得.即不等式的解集为.选C.2.数列,,,,,,,则是这个数列的A.第10项B.第11项C.第12项D.第21项【答案】B【解析】本题考查数列的通项.由题意得,令,解得.选B.3.在数列中,,,则的值为A.52B.51C.50D.49【答案】A【解析】本题考查等差数列的性质.由得,所以为等差数列,所以==,所以.选A.4.=A. B. C. D.【答案】A【解析】本题考查同角三角函数的诱导公式及两角和的正弦公式.====.选A.【备注】.5.已知角的终边经过点,则的值等于A. B. C. D.【答案】D【解析】本题考查三角函数的定义.由题意得所以=,=,所以=.选D.6.若数列是等差数列,且,则A. B. C. D.【答案】B【解析】本题考查等差数列的性质,诱导公式.因为是等差数列,所以=,又所以,,所以===.选B.【备注】若,等差数列中.7.设,若是与的等比中项,则的最小值为A.8B.4C.1D.【答案】B【解析】本题考查等比数列性质,基本不等式.因为是与的等比中项,所以,即.所以===4(当且仅当时等号成立),即的最小值为4.选B.【备注】若,等比数列中.8.已知是等比数列,,则=A.16()B.16()C.)D.)【答案】C【解析】本题考查等比数列的通项与求和.由题意得的公比=,所以=,所以,令,则是以8为首项,为公比的等比数列,所以的前n项和=).选C.【备注】等比数列中,.9.在△中,已知,,若点在斜边上,,则的值为A.48 B.24 C.12 D.6【答案】B【解析】本题考查平面向量的线性运算和数量积.因为,,所以==,所以==+0=24.选B.【备注】.10.函数,,的部分图象如图所示,则A. B.C. D.【答案】D【解析】本题考查三角函数的性质和图象,解析式的求解.由图可得,,,即,即,所以,又过点,所以=2,由可得=.所以.选D.【备注】知图求式.11.已知向量,,且∥,则= A. B. C. D.【答案】C【解析】本题考查向量的坐标运算与线性运算,二倍角公式.因为∥,所以,即,即=-3,所以=====.选C.【备注】二倍角公式:,.12.设函数,若存在使得取得最值,且满足,则m的取值X围是A. B.C. D.【答案】C【解析】本题考查三角函数的性质与最值,一元二次不等式.由题意得,且=,解得,(),所以转化为,而,所以,即,解得或.选C.二、填空题:共6题13.不等式的解集是 .【答案】【解析】本题考查分式不等式,一元二次不等式.由题意得且,所以或.所以不等式的解集是.【备注】一元高次不等式的解法:穿针引线法.14.已知,,则的值为_______.【答案】3【解析】本题考查两角和与差的正切角公式.由题意得=== 3.【备注】=是解题的关键.15.已知向量a=,b=, 若m a+n b=(),则的值为______. 【答案】-3【解析】本题考查平面向量的坐标运算.由题意得===,即,解得,,所以.16.江岸边有一炮台高30m,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得两船的俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距 m.【答案】【解析】本题考查解三角形的应用.画出图形,为炮台,为两船的位置;由题意得m,,,;在△中,=m.在Rt△中,,所以m;在△中,由余弦定理得=300.即,两条船相距m.【备注】余弦定理:.17.若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.【答案】【解析】本题主要考查三角函数图象平移、函数奇偶性及三角运算.解法一f(x)=sin(2x+)的图象向右平移φ个单位得函数y=sin(2x+-2φ)的图象,由函数y=sin(2x+-2φ)的图象关于y轴对称可知sin(-2φ)=±1,即sin(2φ-)=±1,故2φ-=kπ+,k∈Z,即φ=+,k∈Z,又φ>0,所以φmin=.解法二由f(x)=sin(2x+)=cos(2x-)的图象向右平移φ个单位所得图象关于y轴对称可知2φ+=kπ,k∈Z,故φ=-,又φ>0,故φmin=.【备注】解题关键:解决三角函数的性质问题,一般化为标准型后结合三角函数的图象求解,注意正余弦函数的对称轴过曲线的最低点或最高点是解题的关键所在.18.已知分别为△的三个内角的对边,,且,则△面积的最大值为 . 【答案】【解析】本题考查正、余弦定理,三角形的面积公式.由正弦定理得=,又所以,即,所以=,所以.而,所以;所以≤=(当且仅当时等号成立).即△面积的最大值为.【备注】余弦定理:.三、解答题:共5题19.在△中,已知,,.(1)求的长;(2)求的值.【答案】(1)由余弦定理知,==,所以.(2)由正弦定理知,所以,因为,所以为锐角,则,因此【解析】本题考查二倍角公式,正、余弦定理.(1)由余弦定理知.(2)由正弦定理知,,因此.20.设是公比为正数的等比数列,,.(1)求的通项公式;(2)设是首项为1,公差为2的等差数列,求数列的前n项和.【答案】(1)设q为等比数列{a n}的公比,则由a1=2,a3=a2+4得2q2=2q+4,即q2-q-2=0,解得q=2或q=-1(舍去),因此q=2.所以{a n}的通项为a n=2·2n-1=2n(n∈N*)(2)S n=+n×1+×2=2n+1+n2-2.【解析】本题考查等差、等比数列的通项与求和.(1)求得q=2,所以a n=2n(n∈N*);(2)分组求和得S n=2n+1+n2-2.21.已知向量,,函数,且的图象过点.(1)求的值;(2)将的图象向左平移个单位后得到函数的图象,若图象上各最高点到点的距离的最小值为,求的单调递增区间.【答案】(1)已知,过点,解得(2)由(1)知,左移个单位后得到,设的图象上符合题意的最高点为,,解得,,解得,,由得,的单调增区间为【解析】本题考查平面向量的数量积,三角函数的图像与性质,三角恒等变换.(1)由向量的数量积求得,过点,解得;(2),求得,,其单调增区间为.22.某种汽车的购车费用是10万元,每年使用的保险费、养路费、汽油费约为0.9万元,年维修费用第一年是0.2万元,第二年是0.4万元,第三年是0.6万元,……,以后逐年递增0.2万元. 汽车的购车费用、每年使用的保险费、养路费、汽油费、维修费用的总和平均摊到每一年的费用叫做年平均费用.设这种汽车使用x(x∈N*)年的维修总费用为g(x),年平均费用为f(x).(1)求出函数g(x),f(x)的解析式;(2)这种汽车使用多少年时,它的年平均费用最小?最小值是多少?【答案】(1)由题意,知使用x年的维修总费用为g(x)==0.1x+0.1x2,依题意,得f(x)=[10+0.9x+(0.1x+0.1x2)]=(10+x+0.1x2).(2)f(x)=++1≥2+1=3,当且仅当,即x=10时取等号.所以x=10时,y取得最小值3.所以这种汽车使用10年时,它的年平均费用最小,最小值是3万元.【解析】无23.把正奇数数列中的数按上小下大、左小右大的原则排成如下三角形数表:设是位于这个三角形数表中从上往下数第行、从左往右数第个数.(1)若,求,的值;(2)已知函数,若记三角形数表中从上往下数第行各数的和为,求数列的前项和.【答案】(1)三角形数表中前m行共有个数,所以第m行最后一个数应当是所给奇数列中的第项.故第m行最后一个数是.因此,使得的m是不等式的最小正整数解.由得,, 于是,第45行第一个数是,(2)第n行最后一个数是,且有n个数,若将看成第n行第一个数,则第n行各数成公差为的等差数列,故..故.因为,两式相减得..【解析】本题考查数列的概念,数列的通项与求和.(1)找规律得第m行最后一个数是.可得,求出第45行第一个数是,(2)..错位相减可得.。

2014-2015年吉林省长春市名校调研八年级上学期期中数学试卷和答案

2014-2015年吉林省长春市名校调研八年级上学期期中数学试卷和答案

2014-2015学年吉林省长春市名校调研八年级(上)期中数学试卷一、选择题:每小题3分,共24分。

1.(3.00分)|﹣4|的算术平方根是()A.16 B.4 C.±2 D.22.(3.00分)将整式a3﹣16a分解因式,结果正确的是()A.a(a2﹣16) B.a(a+16)(a﹣1)C.a(a+16)(a﹣16)D.a(a+4)(a ﹣4)3.(3.00分)实数x、y、z在数轴上的位置如图所示,则下列关系正确的是()A.x+y+z>0 B.x+y+z<0 C.xy<yz D.xy<xz4.(3.00分)若()•3ab2=6a2b3,则括号内应填的代数式是()A.2a B.ab C.2ab D.3ab5.(3.00分)边长为(x+a)的正方形如图所示,则这个正方形的面积不能表示为()A.(x+a)(x+a)B.x2+a2+2ax C.4(x+a)D.(x+a)a+(x+a)x 6.(3.00分)如图,△AOC≌△BOD,∠C与∠D是对应角,AC与BD是对应边,AC=8cm,AD=10cm,OD=OC=2cm,那么OB的长是()A.8cm B.10cm C.2cm D.无法确定7.(3.00分)若m+n=3,则2m2+4mn+2n2﹣6的值为()A.12 B.6 C.3 D.08.(3.00分)如图,已知∠BAC=∠DAC那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.AB=AD B.CB=CD C.∠BCA=∠DCA D.∠B=∠D=90°二、填空题:每小题3分,共18分。

9.(3.00分)计算:a8÷a5=.10.(3.00分)有边长为5厘米的正方形和长为18厘米,宽为8厘米的长方形,要做一个面积为这两个图形的面积之和的正方形,则这个正方形的边长为厘米.11.(3.00分)的值在a和b这两个连续的整数之间,即a<b,则=.12.(3.00分)若(mx﹣6y)与(x+3y)的积中不含xy项,则m的值为.13.(3.00分)命题“如果两个三角形的两边分别相等,那么这两个三角形全等.”是命题.(填“真”或“假”)14.(3.00分)如图所示,在△ABC中,∠C=90°,D为边AB上一点,且BD=BC,ED⊥AB,垂足为D,如果AC=10,那么AE+DE=.三、解答题:本大题共10小题,共78分。

吉林省长春市第二实验中学2024-2025学年高二上学期学科竞赛数学试题

吉林省长春市第二实验中学2024-2025学年高二上学期学科竞赛数学试题

长春二实验中学高二年级学科竞赛数学试卷考生注意:1.满分150分,考试时间120分钟.2.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.3.本卷命题范围:人教A 版选择性必修第一册第三章~第三章3.1.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线的倾斜角为( )A.B.C.D.2.若方程表示圆,则实数的取值范围为( )A.B.C.D.3.直线被圆所截得的弦长为( )B.C.5D.104.已知直线经过两条直线的交点,且的一个方向向量为,则直线的方程为( )A. B.C.D.5.若椭圆的两个焦点为,点在椭圆上,且,则( )A.B. C. D.6.已知点,过点的直线与线段有公共点,若点在直线上,则实数的取值范围为( )A. B. C. D.7.已知圆和两点,若圆上存在点,使得0x y +=45 45- 60 1352242x y x y m +-+=m (),5∞--()0,∞+()5,∞-+(),0∞-30x y -+=22240x y x y ++-=l 12:2,:21l x y l x y +=-=l (3,2)v =-l 2350x y +-=2310x y -+=3250x y --=2310x y +-=22:196x y C +=12,F F P C 12PF =12F PF ∠=π6π32π35π6()()2,33,2A B -、()0,2P -l AB (),3Q m l m (]15,2,4∞∞⎡⎫--⋃+⎪⎢⎣⎭15,24⎡⎤--⎢⎥⎣⎦152,4⎡⎤⎢⎥⎣⎦152,4⎡⎤-⎢⎥⎣⎦22:(6)(8)1C x y -+-=()()(),0,,00A m B m m ->C P,则的最大值为( )A.9B.10C.11D.128.若圆上恰有2个点到直线的距离为1,则实数的取值范围为( )A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线,下列选项正确的是( )A.过点且垂直于直线的直线方程为B.直线过定点C.当时,D.当时,10.已知椭圆的左、右两焦点分别是,其中.过左焦点的直线与椭圆交于两点.则下列说法中正确的有( )A.的周长为B.若的中点为所在直线斜率为,则C.若的最小值为,则椭圆的离心率D.若,则椭圆的离心率的取值范围是11.已知动点的轨迹方程为,其中不同时为0,则()A.该轨迹关于直线对称B.该轨迹围成的图形面积为C.若点在该轨迹上,则90APB ∠= m ()2221:(1)(2)0C x y rr ++-=>:43100l x y --=r ()3,∞+()5,∞+()3,5[]3,5()()()12:4340,:21250l x y l m x m y m m -+=+-+++=∈R ()1,2-1l 3450x y +-=2l ()3,1-1m =12l l ⊥2m =1l ∥2l ()2222:10x y C a b a b+=>>12F F 、122F F c =,A B 2ABF V 4aAB ,M AB k 22OMc k k a⋅=-AB 3c 13e =2123AF AF c ⋅= 12⎤⎥⎦E 22x y x y +=+,x y y x =π2+()00,x y 0x …D.若圆能覆盖该轨迹,则三、填空题:本题共3小题,每小题5分,共15分.12.已知圆和圆内切,则__________.13.如图,已知,从点射出的光线经直线反射后再射到直线上,最后经直线反射后又回到点,则光线所经过的路程是__________.14.在平面直角坐标系中,已知椭圆,点是椭圆内一点,,若椭圆上存在一点,使得,则的取值范围是__________;当取得最大值时,椭圆的焦距为__________.(第一空2分,第二空3分)四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.(本小题满分13分)(1)已知点,求线段的垂直平分线的方程;(2)求经过点,且在两坐标轴上的截距相等的直线方程.16.(本小题满分15分)已知圆与圆相交于、两点.(1)求公共弦所在直线方程;(2)求过两圆交点,且过原点的圆的方程.17.(本小题满分15分)如图所示的折纸又称“工艺折纸”,是一种把纸张折成各种不同形状物品的艺术活动,在我国源远流长.某些折纸活动蕴含丰富的数学内容,例如,用圆形纸片按如下步骤折纸:步骤1:设圆心是,在圆内(除去圆心)取一点,标记为;步骤2:把纸片折叠,使圆周正好通过;步骤3:把纸片展开,于是就留下一条折痕;步骤4:不停重复步骤2和3,能得到越来越多条的折痕.()2220x y r r +=>r ()222:(3)0C x y r r -+=>22:870D x y y +-+=r =()()4,0,0,4A B ()2,0P AB OB OB P xOy ()22:144y x C m m m +=>-(2,2)A -()0,2B -P 8PA PB +=m m ()()2,1,6,3A B --AB ()3,2P 221:230C x y x +--=222:4230C x y x y +-++=A B AB A B 、O F F这些折痕围成的图形是一个椭圆.若取半径为4的圆形纸片,设定点到圆心的距离为2,按上述方法折纸,如图所示.(1)以所在的直线为轴,的中点为原点建立平面直角坐标系,求折痕围成的椭圆的标准方程;(2)求经过点,且与直线夹角为的直线交椭圆于两点,求的面积.18.(本小题满分17分)如图,已知圆和点,由圆外一点向圆引切线为切点,且有.(1)求点的轨迹方程,并说明点的轨迹是什么样的几何图形;(2)求的最小值;(3)以为圆心作圆,使它与圆有公共点,试在其中求出半径最小的圆的方程.19.(本小题满分17分)已知是椭圆的右焦点,为坐标原点,为椭圆上任意一点,的最大值为,当时,的面积为.(1)求的值;(2)为椭圆的左、右顶点,点满足,当与不重合时,射线交椭圆于点F O FO x FO M F FO π4,C D OCD V 22:4O x y +=()6,8A O P O ,PQ Q PQ PA =P P PQ P O F ()2222:10x y C a b a b+=>>O M MF 2+OM OF =MOF V 12baA B 、P 3AP PB =M ,A B MP C,直线交于点,求的最大值.N ,AM BN T ATB长春二实验中学高二年级学科竞赛数学试卷参考答案、提示及评分细则一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.题号12345678答案DCBABDCC二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.题号91011答案ADADABC1.D 根据直线方程可知其斜率为,设直线倾斜角为,则,可得.故选D.2.C 方程化为标准方程为,有.3.B 圆即,故圆心为,显然圆心在直线上,故直线被圆所截得的弦即为圆的直径,长为B.4.A 联立,解得,即直线的交点为,又直线的一个方向向量,所以直线的斜率为,故直线的方程为,即,故选A.5.B 由题意得,则,在中,由余弦定理可得,所以,故选B.6.D 如图所示,是直线与直线交点的横坐标,当与重合时,取最大值,当与重合时,取最小值,所以的取值范围是.0x y +=1k =-θtan 1θ=-135θ= 22(2)(1)5x y m -++=+5m >-22240x y x y ++-=22(1)(2)5x y ++-=()1,2-30x y -+=221x y x y +=⎧⎨-=⎩11x y =⎧⎨=⎩12:2,:21l x y l x y +=-=()1,1l ()3,2v =-l 23-l ()2113y x -=--2350x y +-=3,a c ==24PF =12F PF V 121cos 2F PF ∠==12π3F PF ∠=m l 3y =l BP m 154l AP m 2-m 152,4⎡⎤-⎢⎥⎣⎦7.C,记中点为,则,故点的轨迹是以原点为圆心,为半径的圆,又在圆上,所以两圆有交点,则,而,得.8.C 如图所示.设与直线平行且与直线之间的距离为1的直线方程为,,解得或,圆心到直线的距离为,圆到直线的距离为,由图可知,圆与直线相交,与直线相离,所以,即.9.AD 对于A ,垂直于直线的直线方程为,将点代入得,故所求直线方程为,A 正确;对于B ,直线化为:,由,求得直线过定点,故B 错误;90APB ∠= AB O OP m =P m P C 11m OC m -+……10OC==911m ……l l 430x y c -+=1=5c =-15c =-()11,2C -4350x y --=13d ()11,2C -43150x y --=25d 1C 4350x y --=43150x y --=12d r d <<35r <<4340x y -+=340x y m ++=()1,2-5m =-3450x y +-=2l ()()2250m x y x y -++-+=20250x y x y -+=⎧⎨-+=⎩2l ()3,1--对于C ,时有:,解得,故C 错误;对于D ,当时,,解得,故D 正确.故选AD.10.AD直线过左焦点的周长为,A 正确;设,则,点.由①-②得,故B 错误;当轴时,最小,令,解得,,整理得,即,解得或(舍去),故C 错误;,,,即,即,可得,则椭圆的离心率的取值范围是,D 正确.故选AD.11.ABC 对于A ,轨迹上任意一点满足,该点关于直线的对称点也满足,即轨迹上任意一点关于直线的对称点仍在该轨迹上,A 正确;12l l ⊥()()42310m m +++=117m =-1l ∥2l ()1225434m m m -+++=≠-2m = AB 12,F ABF ∴V 12124AF AF BF BF a +++=()()1122,,,A x y B x y 1212y y k x x -=-12121212,,22OM x x y y y y M k x x +++⎛⎫∴= ⎪+⎝⎭2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①②()()()()()()2221212121212122222212121,,QM QMx x x x y y y y x x b y y b b k k abx x y y a k a a+-+-+-=-∴=-=-⋅∴⋅=--+AB x ⊥AB 2222,1c y x c a b =-+=2by a=±223b c a∴=222320c ac a +-=22320e e +-=12e =2-()111,AF c x y =--- ()211,,AF x y =--()()22222222212*********c AF AF c x c x y x y c x a c c a ∴⋅=---+=+-=+-= 22222222221120,,22c x a a c x a c a c a⎡⎤∈∴-+--⎣⎦ (2)222223a c c a c -- (2211)54c a ……12c e a ⎤=∈⎥⎦12⎤⎥⎦(),x y 22x y x y +=+y x =(),y x 22y x y x +=+(),x y y x =对于B ,点在该轨迹上,点也都在该轨迹上,则该轨迹关于轴,轴对称,当不同时为0时,该轨迹的方程为,表示以点为圆为半径的圆在直线上方的半圆(含端点),因此,该轨迹是四个顶点为,的正方形各边为直径向正方形外所作半圆围成,如图,所以该轨迹围成的图形面积是,B 正确;对于C ,点在该轨迹上,则,则有,即,解得,C 正确;对于D ,该轨迹上的点到原点距离最大值为,圆能覆盖该轨迹,则不正确.故选ABC.三、填空题:本题共3小题,每小题5分,共15分.12.8圆,圆心,半径为,圆,圆心,半径,因为两圆内切,所以,解得.易得所在直线方程为,由于点关于直线的对称点坐标为,点关于轴的对称点坐标为,则光线所经过的路程即为与两点间的距离,于是14.; 因为点是椭圆内一点,所以,由,可得(),x y ()()(),,,,,x y x y x y ----x y 0,0,,x y x y (22)111222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭11,22⎛⎫ ⎪⎝⎭1x y +=()()1,0,0,1--()()1,0,0,1211224ππ222⨯⨯+⨯⨯=+()00,x y 2222000000111222x y x y x y ⎛⎫⎛⎫+=+⇔-+-= ⎪ ⎪⎝⎭⎝⎭201122x ⎛⎫- ⎪⎝⎭…0x …0x …=()2220x y r r +=>min D r =()222:(3)0C x y r r -+=>()3,0C r 22:870D x y y +-+=()0,4D 3R =3CD r ==-8r =AB 4x y +=P AB ()14,2P P y ()22,0P -()14,2P ()22,0P -12PP ==(625⎤+⎦4()2,2A -4414m m +<-44144m m m ⎧+<⎪-⎨⎪>⎩.易知为椭圆的下焦点,设椭圆的上焦点为,则.又,当且仅当三点共线时等号成立,所以,所以,所以,故.当取得最大值25时,椭圆的方程为,故其焦距为4.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.解:(1)线段的中点为,故线段的垂直平分线的方程为,即.(2)①当直线过原点时,所求直线方程为,②当直线不过原点时,斜率为,所求直线方程为:,即,由①②知所求直线方程为或.16.解:(1)①,②①-②得即公共弦所在直线方程为.(2)设圆的方程为,即.因为圆过原点,所以,所以所求圆的方程为17.解:(1)如图,设为椭圆上一点,由题意可知且,所以分别为椭圆的左、右焦点,长轴长,所以,所以椭圆的标准方程为.6m >+()0,2B -F PA PB PA PF +=+-||||||||2PA PF AF -=…,,P A F 22PA PB -++……282-……925m ……625m +<…m 2212521y x +=AB ()1312,1,262AB C k --==--AB ()122y x -=--250x y +-=23y x =1-()23y x -=--5y x =-+23y x =5y x =-+22230x y x +--=224230x y x y +-++=2260x y --=AB 30x y --=()2222234230x y x x y x y λ+--++-++=()()()2211242330x y x y λλλλλ+++-++-+=330,1λλ-+==2230x y x y +-+=P 4PF PO AO +==24FO =<,F O 24,22a c ==2222,1,3a c b a c ===-=22143x y +=(2)经过且与直线夹角为的直线的倾斜角为或,由对称性,不妨取倾斜角为,即,显然,直线.设,联立,消去得.解法1:解得上述值的互换不影响结果,不妨取,将的值分别代入,得,所以,所以.点到直线即的距离,故的面积.(也可以按此解法算得的坐标后,得,F FOπ4π43π4π41k =()1,0F -:1CD y x =+()()1122,,,C x y D x y 221143y x x y =+⎧⎪⎨+=⎪⎩y 27880x x +-=124477x x =-=-124477x x =-=-12,x x 124477x x =-=--12,x x 1y x =+123377y y =+=-4343,7777C D ⎛⎛-+- ⎝⎝247CD ==()1,0O :1CD y x =+10x y -+=d OCD V 12427OCD S =⨯=V 12y y 、12y y -=故.解法2:,且,所以.点到直线即的距离,故的面积.(也可以按此解法算得后,得,,故.18.解:(1)设点的坐标为,,由题意有,整理为:,故点的轨迹方程为,点的轨迹是斜率为,在轴上的截距为的直线.(2)由和(1),的最小值为点到直线的距离,最小值为.(3)由圆的性质可知,当直线与直线垂直时,以此时的点为圆心,且与圆相外切的圆为所求,此时的方程为,1211222OCD S FO y y =-=⨯=V 2Δ84782880=+⨯⨯=>121288,77x x x x +=-=-2247CD x =-===()1,0O :1CD y x =+10x y -+=d OCD V 12427OCD S =⨯=V 121288,77x x x x +=-=-12x x -===()()12121211y y x x x x -=+-+=-=1211222OCD S FO y y =-=⨯=V P (),x y 2222||44PA OP x y ==-=+-2222(6)(8)4x y x y -+-=+-34260x y +-=P 34260x y +-=P 34-y 132PQ PA =PQ A 34260x y +-=245=OP 34260x y +-=P O OP 43y x =联立方程解得点到直线的距离为,可得所求圆的半径为,故所求圆的标准方程为.19.解:(1)因为设椭圆的左焦点为,因为,所以.即,又,所以,所以,所以,所以,因为,所以,所以②,又③,由①②③,解得,所以.(2)由(1)可知椭圆的方程为,因为点满足,所以,设直线的方程为,联立,得,设,易得,则,直线的方程为,直线的方程为,4,334260,y x x y ⎧=⎪⎨⎪+-=⎩78,25104,25x x ⎧=⎪⎪⎨⎪=⎪⎩O 34260x y +-=2652616255-=2278104256252525x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭max ||2MF a c =+=+E 12OM OF EF ==90EMF ∠= 2222||||4ME MF EF c +==2ME MF a +=222||24ME MF ME MF a ++=2222444ME MF a c b =-=22ME MF b =212MEF S ME MF b ==V 12MOF S =V 1MEF S =V 21b =222a b c =+224,3a c ==12b a =C 2214x y +=P 3AP PB = ()1,0P MN 1x my =+22114x my x y =+⎧⎪⎨+=⎪⎩()224230m y my ++-=()()1122,,,M x y N x y Δ0>12122223,44m y y y y m m +=-=-++AM ()1122y y x x =++BN ()2222y y x x =--联立得,因为,所以,解得所以动点的轨迹方程为.由椭圆的对称性不妨设,直线的倾斜角分别为,因为,所以,因为,所以,当且仅当时,等号成立,此时,所以的最大值为.()()()()12121212121122212222123y x y my my y y x x y x y my my y y -+---===+++++()121232my y y y =+()()121121221231321222339233222y y y y y x x y y y y y +-+-===++++4,x =T ()40x y =≠()4,,0T t t >,TA TB ,αβATB ∠βα=-()tan tan tan tan 1tan tan ATB βα∠βαβα-=-=+tan ,tan 62TA TB t t k k αβ====24426tan 1212126t t t ATB t t t t t∠-====++⋅+…t =(π4,,6T ATB ∠=ATB ∠π6。

吉林省长春市第二中学2024-2025学年高一上学期9月月考数学试卷

吉林省长春市第二中学2024-2025学年高一上学期9月月考数学试卷

吉林省长春市第二中学2024-2025学年高一上学期9月月考数学试卷一、单选题1.下列各对象可以组成集合的是( )A .与1非常接近的全体实数B .某校2015-2016学年度第一学期全体高一学生C .高一年级视力比较好的同学D .与无理数π相差很小的全体实数2.有限集合S 中元素个数记作()card S ,设A B 、 都为有限集合,给出下列命题∶ ①()()()A B card A B card A card B =∅⇔=+I U ;②()()A B card A card B ⊆⇒≤;③()()A B card A card B ⊆⇐≤;④()()A B card A card B =⇔=;其中真命题的个数是( )A .1个B .2个C .3个D .4个3.设01a b <<<,R c ∈,则下列结论一定成立的是( )A .33a b >B .11a b < C .ac bc > D .2()0a b c -≤4.已知a ,b 均为非零实数,集合a b ab A x x a b ab ⎧⎫⎪⎪==--⎨⎬⎪⎪⎩⎭,则集合A 的真子集的个数为() A .2 B .4 C .3 D .85.定义集合运算:()2,,2xA B x y A B y ⎧⎫⊕=∈∈⎨⎬⎩⎭.若集合{}14A B x x ==∈<<N ,()15,63C x y y x ⎧⎫==-+⎨⎬⎩⎭,则()A B C ⊕⋂=( )A .∅B .(){}4,1C .31,2⎧⎫⎛⎫⎨⎬ ⎪⎝⎭⎩⎭D .()24,1,6,3⎧⎫⎛⎫⎨⎬ ⎪⎝⎭⎩⎭6.下列说法错误的是( )A .命题“x ∃∈R ,210x x ++<”,则p ⌝:“x ∀∈R ,210x x ++≥”B .已知a ,b ∈R ,“1a >且1b >”是“1ab >”的充分而不必要条件C .“1x =”是“2320x x -+=”的充要条件D .若p 是q 的充分不必要条件,则q 是p 的必要不充分条件7.若A =a 2+3ab ,B =4ab -b 2,则A 、B 的大小关系是( )A .A ≤BB .A ≥BC .A <B 或A >BD .A >B 8.已知0a b >>,114a b a b +=-+,且54a b m -≥恒成立,则m 的取值范围为( ) A .5,2⎛⎤-∞ ⎥⎝⎦ B .(],2-∞ C .9,8⎛⎤-∞ ⎥⎝⎦D .(],4∞-二、多选题9.若2:60p x x +-=是:10q ax +=的必要不充分条件,则实数a 的值可以为( ) A .2 B .12- C .13 D .310.由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足Q M N ⋃=,M N ⋂=∅,M 中的每一个元素都小于N 中的每一个元素,则称(),M N 为戴德金分割.试判断,对于任一戴德金分割(),M N ,下列选项中,可能成立的是( )A .M 没有最大元素,N 有一个最小元素B .M 没有最大元素,N 也没有最小元素C .M 有一个最大元素,N 有一个最小元素D .M 有一个最大元素,N 没有最小元素三、填空题11.已知14a -<<,12b <<,则a b +的取值范围是.12.已知命题“p :x ∃∈R ,21ax ax -≥”,若p 是假命题,则实数a 的取值范围是.13.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为.四、解答题14.比较下列各题中两个代数式值的大小.(1)()221x +与421x x ++; (2)2222a b a b-+与()0a b a b a b ->>+. 15.已知集合{}28150A x x x =++≤,{}3222B x m x m =-<<+. (1)若A B ⋂≠∅,求实数m 的取值范围;(2)若将题干中的集合B 改为{}2132B x m x m =+≤≤-,是否有可能使命题p :“x A ∀∈,都有x B ∈”为真命题,请说明理由.16.利用基本不等式求下列式子的最值:(1)若0x >,求4x x+的最小值,并求此时x 的值;(2)已知x ,y >0,且x +4y =1,求xy 的最大值;(3)若302x <<,求4(32)x x -的最大值. 17.已知关于x 的方程23340mx px q ++=(其中,,m p q 均为实数)有两个不等实根()1212,x x x x <.(1)若1p q ==,求m 的取值范围;(2)若12,x x 为两个整数根,p 为整数,且1,34p p m q -=-=,求12,x x ; (3)若12,x x 满足2212121x x x x +=+,且1m =,求p 的取值范围.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实用文档2015年吉林长春中考数学试卷解析版24分)小题,每小题3分,共一、选择题(本大题共8 )3的绝对值是((3分)(2015?长春)﹣1.DCB﹣33A....绝对值.考点:分析:根据一个负数的绝对值等于它的相反数得出.﹣(﹣﹣3|=3解答:)=3.解:| 故选:A.考查绝对值的概念和求法.点评:绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2m632000某工程队做了面积为“暖房子工程”?长春)在长春市实施过程中,2.(3分)(2015 )的外墙保暖.632000这个数用科学记数法表示为(4566DBC A 10××××63.2106.32100.632100.632 ....科学记数法—表示较大的数.考点:n a分析:≤1其中×10的形式,用科学记数法表示,科学记数法的表示形式为anna时,小数点移,10为整数.确定的值时,要看把原数变成<||n1动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>nn时,是正数;当原数的绝对值<是负数.1时,5解答:632000=6.32解:×,10 B故选.a×此题主要考查了科学记数法的表示方法.科学记数法的表示形式为点评的形式,其1为整数,表示时关键要正确确1值以的值.实用文档23a))的结果是(20153.(3分)(?长春)计算(2563aaaa DBC A 3 ....幂的乘方与积的乘方.考点:根据幂的乘方计算即可.分析:623aa解答:,解:()= .故选C 点评:此题考查幂的乘方,关键是根据法则进行计算.长春)图中的两个圆柱体底面半径相同而高度不同,关于这两个圆柱体(?(3分)20154.)的视图说法正确的是(A.主视图相同俯视图相同B.. C 左视图相同俯视D主视图、.图、左视图都相同考点:简单组合体的三视图.根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,分析从上面看得到的图形是俯视图,可得答案错误解答解、主视图的宽不同,故实用文档BB正确;、俯视图是两个相等的圆,故CC错误;、主视图的宽不同,故DD错误;、俯视图是两个相等的圆,故B.故选:本题考查了简单组合体的三视图,从正面看得到的视图是主视图,从点评:左边看得到的图形是左视图,从上面看得到的图形是俯视图.2xx﹣2)+3=0的根的情况是(分)5.(3(2015?长春)方程只有一个实A有两个相等B数根..的实数根有两个不相CD没有实数根等的实数根..根的判别式.考点:2accbab分析:进行计算,然后根据计算结果判断﹣==1,4=﹣2,代入△把=3 方程根的情况.cab =32,解:∵,=1,=﹣解答:22acb 0,1×3=﹣8∴△=<﹣4=(﹣2)﹣4×所以方程没有实数根..故选C2cbaaxbxca点评:为常数)的根的,+=0(,≠0,本题考查了一元二次方程+2ab=00=4﹣时,方程有两个不相等的实数根;当△C.当△>判别式△时,方程没有实数根.0时,方程有两个相等的实数根;当△<BADABACAABC°,则∠1=70作∥.若∠C?(3.6(分)2015长春)如图,在△中,=,过点BAC)的大小为(实用文档°D7040°C50°30 A°B ....平行线的性质.考点:BC∠分析:,根据等腰三角形的性质得出∠=根据平行线的性质求出∠C°,根据三角形内角和定理求出即可.=70ACAB =解答:解:∵,CB∠∴∠,=BCAD°,∵,∠∥1=70C 1=70∴∠°,=∠B =70∴∠°,CBACB =40°,°﹣70=180°﹣∠﹣∠°=180°﹣∴∠70 B.故选本题考查了三角形内角和定理,等腰三角形的性质,平行线的性质的点评:CBC三角形∠应用,解此题的关键是求出∠注意:的度数和得出∠,= °,两直线平行,内错角相等.内角和等于180 ABCOOABCD是平行四边形,则?长春)如图,四边形内接于⊙,若四边形37.(分)(2015ADC∠)的大小为(°75D°60C°50B°A 45....考点:圆内接四边形的性质;平行四边形的性质;圆周角定理.分析ADAB 设的度的度由题意可,实用文档β即可解决问题.求出βαABCADC;的度数解答:解:设∠的度数==,∠OADC是平行四边形,∵四边形AOCADC;=∠∴∠βαβAOCαADC,∠+==180∵∠;而=°,∴,ADCβα=120°,=60=60°,∠解得:°,C.故选应牢固掌握该定理并能灵该题主要考查了圆周角定理及其应用问题;点评:活运用.xyAm上,=2)在直线3分)(2015?长春)如图,在平面直角坐标系中,点+3(﹣1,8.(bAOByxOAOA 则°,点的对应点上,恰好落在直线+连结将线段,=绕点﹣顺时针旋转90b的值为()B21ACD﹣....-考点:一次函数图象上点的坐标特征;坐标与图形变化旋转.BmxAy的坐标,再代,得出先把点坐标代入直线的值,然后得出点分析:=2+3byx入直线=﹣+解答即可.mAymx =,﹣解:把(﹣1,)代入直线=2+3,可得:2+3=1解答O°,所以因为线绕顺时针旋9的坐标为1代入直把,可得=1,实用文档.故选D 此题考查一次函数问题,关键是根据代入法解解析式进行分析.点评:分)6小题,每小题3分,共18二、填空题(本大题共)“1.长春)比较大小:(填“>”、=”或“<”>?9.(3分)(2015实数大小比较.:考点分析:两个数的平方的大小故选,根据实数大小比较的方法,判断出即可判断出两个数的大小关系.解答:,解:1∵2>,∴.故答案为:>.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键点评:是判断出两个数的平方的大小关系.xx 4 的解集为.≥2015分)(?长春)不等式30﹣12≥(10.3解一元一次不等式.考点:即可求得1利用不等式的基本性质,把12分析:移到不等号的右边,系数化为原不等式的解集.x,≥解答:解:移项得,312x 4解得,≥x.故答案为≥4解答这类题学以及解简单不等式的能力,本题考查了解一元一次不等式,点评:生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质)不等式的两边同时加上或减去同一个数或整式不等号的方向不变)不等式的两边同时乘以或除以同一个正数不等号的方向不变2实用文档)不等式的两边同时乘以或除以同一个负数不等号的方向改变.(3OOP ABP AO的交点.若∠为切点,与⊙(3分)(2015?长春)如图,是为⊙的切线,11.ππPOA)(结果保留=20°,=3,则的长为切线的性质;弧长的计算.考点:POAOAP度数,根据弧长公式求出即根据切线性质得出∠分析:°,求出∠=90 可.AOP A于解答:解:∵,切⊙P AO∴∠°,=90P∵∠°,=20POA°,=70∴∠π=,∴π故答案为:.能正确运用弧长公式进行计本题考查了弧长公式,切线的性质的应用,点评:算是解此题的关键,注意:圆的切线垂直于过切点的半径.xyP过)0=(的图象上.>长春)分)12.(3(2015?如图,在平面直角坐标系中,点在函数xCOBPCByPxA并延长交的中点、,取线段,连结点分别作轴、轴的垂线,垂足分别为APD.D 轴于点.则△的面积为6实用文档k的几何意义;全等三角形的判定与性质.反比例函数系数考点:kPBCDOC的几何意分析:≌△再根据反比例函数系数,根据已知条件证得△义即可得到结论.xyP APB轴,解答:解:∵轴,⊥⊥kS =|,|=6∴APBO矩形DOCPBC与△中,在△,DOCPBC≌△,∴△SS.∴=6=APBOAPD矩形△6.故答案为:k过双曲线上的任意一点分的几何意义,点评:本题考查了反比例函数系数k,全等|别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|DOCPBC三角形的判定和性质,证明△≌△是解题的关键.CECDABEEABCD,8点,在正方形的边若△上.=3的面积为如图,?(3.13(分)2015长春)BE.则线段5 的长为正方形的性质;三角形的面积;勾股定理.:考点实用文档BCEMBCCDABAD,根据=,得出==4分析:根据正方形性质得出,根据面积求出= 勾股定理求出即可.解答:解:MABEME于⊥,过作ABCD是正方形,∵四边形ABBCCDAD =,=∴=CEADBMEM,,∴==ABE∵△,的面积为8EMAB =8×∴×,EM =4,解得:ABADDCBC ==4即=,=CE =3∵,BE ==由勾股定理得:=5,.故答案为:5解此题的关键是本题考查了三角形面积,点评:正方形性质,勾股定理的应用,BC的长,难度适中.求出2xAxy过在平面直角坐标系中,2015(14.3分)(?长春)如图,点+2在抛物线=2﹣上运动.BDACAxABCDCACBD 1 .则对角线以点作⊥轴于点,为对角线作矩形,连结,的最小值为二次函数图象上点的坐标特征;垂线段最短;矩形的性质考::专题计算题.实用文档,再根据矩形的性质得1)先利用配方法得到抛物线的顶点坐标为(1,分析:AACABDAC在抛物线的顶点时,的长等于点=的纵坐标,所以当点,由于BDxA 1,从而得到点到的最小值.轴的距离最小,最小值为22xxxy解答:+1(,﹣解:∵1=﹣2)+2= ,)∴抛物线的顶点坐标为(1,1ABCD∵四边形为矩形,ACBD =∴,xAC⊥而轴,AAC的长等于点∴的纵坐标,xAA到1当点轴的距离最小,最小值为在抛物线的顶点时,点,BD的最小值为1.∴对角线故答案为1.二次函数图象上点的坐标满足点评:本题考查了二次函数图象上点的坐标特征:其解析式.也考查了矩形的性质.小题,共78分)三、解答题(本大题共102xxxx 2=)(2015?长春)先化简,再求值:(+1)+,其中(.﹣615.(分):整式的混合运算—化简求值.考点专题:计算题.第二项利用单项式乘以多项式法原式第一项利用完全平方公式化简,分析:x则计算,去括号合并得到最简结果,把的值代入计算即可求出值.222xxxxx解答:+1+﹣2,=2=解:原式+2+1x =.时,原式=6+1=7当熟练掌握运算法则是解本题点评:此题考查了整式的混合运算﹣化简求值,的关键.ba,,?(6.16(分)2015长春)一个不透明的盒子中有三张卡片,卡片上面分别标有字母c,每张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡片,记下字母后放实用文档回并搅匀;再从盒子中随机抽出一张卡片并记下字母,用画树状图(或列表)的方法,求小玲两次抽出的卡片上的字母相同的概率.考点:列表法与树状图法.计算题.专题:先画树状图展示所有9种等可能的结果数,再找出两次抽出的卡片上的分析:字母相同的结果数,然后根据概率公式求解.解答:解:画树状图为:共有9种等可能的结果数,其中两次抽出的卡片上的字母相同的结果数为3种,所有小玲两次抽出的卡片上的字母相同的概率==.点评:本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能nABm,然后根据概或的结果求出的结果数目,再从中选出符合事件AB的概率.或率公式求出事件2km为的土地进行绿化.长春)为了美化环境,某地政府计划对辖区内60(17.6分)(2015?个月完成任务,倍.结果提前2了尽快完成任务.实际平均每月的绿化面积是原计划的1.5 求原计划平均每月的绿化面积.分式方程的应用.考点:2xkm分析:,实际平均每月的绿化面积是设原计划平均每月的绿化面积为2xkm 1.5,根据结果提前2个月完成任务列出方程解答即可.2xkm解答:实际平均每月的绿化面积是设原计划平均每月的绿化面积为解:,2xkm 1.5,由题意得=2﹣x=10解得:x=10是原方程的解,经检验实用文档2km.答:原计划平均每月的绿化面积为10找到原计划所用时间和实际所用时间的此题考查分是方程的实际运用,点评:等量关系是解决问题的关键.FGF AFCDCEABCCEACD,∥外角∠于点的平分线,718.(分)(2015?长春)如图,交是△ACGFCDACG∥.求证:四边形交于点是菱形.菱形的判定.考点:证明题.:专题,从而根据角平分线的性质得到32=∠首先根据平行线的性质得到∠分析:ACAF从而利用邻边相等的平行四边形是菱形证得结,得到,=3∠1=∠论.ACCDFGAF∥解答:证明:∵,∥,ACGF,∠3∴四边形是平行四边形,∠2=ACDCE,∵平分∠2,∴∠1=∠,1=∠3∴∠AF AC∴,=ACGF∴四边形是菱形.本题考查了菱形的判定,解题的关键是了解菱形的几种判定方法,点评:实用文档度不大.ACB岛的正东和正北方向.一艘、分)(2015?长春)如图,海面上两岛分别位于19.(7CBAC 岛在小时到达海里/时的速度向正北方向航行2船从岛,此时测得岛出发,以18BA海里)°.求(结果精确到、0.1两岛之间的距离.岛的南偏东43tancossin =0.93°=0.73,【参考数据:】43°=0.68,4343°-方向角问题.考点:解直角三角形的应用ABCACRt中,利2=36海里,在=根据路程速度×时间,可得△分析:=18×ACBACtanAB∠用正切函数的定义可得将数值代入计算即可求解.=,?ACBAC海里,∠°.解:由题意得,=43=18×2=36解答:AABCRt在°,△=90中,∵∠ACBtanABAC 33.5海里.=36∴×=0.93?∠≈BA 33.5、海里.故两岛之间的距离约为本题考查了解直角三角形的应用﹣方向角问题,正切函数的定义,路点评:程、速度与时间自己的关系,难度一般.理解方向角的定义,将实际问题转化为数学问题是解决问题的关键.n名本校学生,对长春)在“世界家庭日”前夕,某校团委随机抽取了20157分)(?(20.“世界家庭日”当天所喜欢的家庭活动方式进行问卷调查.问卷中的家庭活动方式包括:.进行其他活动C.到公园游玩;D.在家里聚餐;A B.去影院看电影;该校团委收回全部问卷每位学生在问卷调查时都按要求只选择了其中一种喜欢的活动方式,解答下列问将收集到的数据整理并绘制成如图所示的统计图,根据统计图提供的信息,后,题:n)求(1的值;实用文档CABCD作答)、、、(2)四种方式中最受学生喜欢的方式为;选择该种方式的学生(用人数占被调查的学生人数的百分比为35% .CB方式的学生多的人方式的学生比喜欢根据统计结果,估计该校1800名学生中喜欢(3)数.考点:条形统计图;用样本估计总体.ABCD的人数加起来,即可解答;,(1)根据条形图,把分析:,,CC的)的学生人数最多,即为四种方式中最受学生喜欢的方式;用(2人数÷总人数,即可得到百分比;CB方式的学生的人数,作)分别计算出喜欢方式的学生人数、喜欢(3差即可解答.n=30+40+70+60=200.解:(1)解答:C的学生人数最多,)∵(2C,∴四种方式中最受学生喜欢的方式为×100%=35%,C,35%.故答案为:(3)1800×=270(人),CB方式的学生多的人数名学生中喜欢方式的学生比喜欢1800答:该校为270人.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.实用文档21.(8分)(2015?长春)甲、乙两台机器共同加工一批零件,在加工过程中两台机器均改变了一次工作效率.从工作开始到加工完这批零件两台机器恰好同时工作6小时.甲、乙两yxOAAB﹣台机器各自加工的零件个数(时)之间的函数图象分别为折线(个)与加工时间OCC D.如图所示.﹣与折线(1)求甲机器改变工作效率前每小时加工零件的个数.yx之间的函数关系式.与(2)求乙机器改变工作效率后(3)求这批零件的总个数.考点:一次函数的应用.(1分析:)甲改变工作效率前的工作效率为改变前加工的总件数,除以加工的总时间即可;(2)利用待定系数法求一次函数解析式即可;(3)利用函数解析式求出甲、乙两机器6小时加工的总件数,求其和即可.解答:解:(1)80÷4=20(件);CD(5,110),),(2)∵图象过2(,80ykxbk≠0)(,∴设解析式为=+∴,解得:,yxx≤6);=10 +60(2≤∴乙A过8)11ABymxnm≠0)=∴设的解析式为+(,甲实用文档∴,解得:,xyx)(4≤,≤∴=306﹣40甲yxy 6+60=12040=140,,=10当时,=6×=30×6﹣乙甲.∴这批零件的总个数是140+120=260根据题意得出函数关系式以及数形结此题主要考查了一次函数的应用,点评:合是解决问题的关键.ABEADAADAEABCD,连>,使B中,已知.在边=上取点922.(分)(2015?长春)在矩形FEEFCEABCE作或其延长线交于点,过点⊥.,与边结DEAFDEAFF AB与的大小关系为猜想:如图①,当点.在边上时,线段=DEGAFF ABEFBC的大与探究:如图②,当点在边交于点的延长线上时,.与边判断线段小关系,并加以证明.BGADAB =5,利用探究得到的结论,求线段应用:如图②,若的长.=2,考点:四边形综合题.DCEAEF≌△①根据题意证明△分析:即可;②证明方法与①相同可以证明结论;③根据平行线分线段成比例定理列出比例式,计算得到答案.DEAF解答:=解:①;DEAF,②=DAFEC证明:∵∠°,=∠=∠=90DCEAEF∠=,∴DCAE中在和△实用文档,DCEAEF≌△,∴△DEAF =∴.DCEAEF≌△③∵△,ABDEFBF AAECDABAF,∴=1====2,,=﹣=3ADBG∵,∥∴=,BG∴.=本题考查的是矩形的性质、全等三角形的判定和性质、相似三角形的点评:性质和判定,灵活运用相关的定理和性质是解题的关键.ABBCP ABCABAD上于点D,.点⊥.23(10分)(2015?长春)如图,在等边△中,在边=6PEDFEDPEBCACEEDPEPEDFP?∥.,与边交于点为邻边作作,连结?,以、设运动,过点xABCyAPx与△.重叠部分图形的面积为<,线段6的长为(0<)xPE的代数式表示)(1)求线段(用含的长.xPEDF(2)当四边形为菱形时,求的值.xy与之间的函数关系式.(3)求ADABPEAA相交时,的对称点为点′,当线段的垂直平分线与直线′(4)设点关于直线xQQPBCBCQ上)时,直接写出同侧(不包括点在直线设其交点为,当点与点位于直线的取值范围.考点四边形综合题.:实用文档APE)证明△是等边三角形,即可求解;分析:(1ACECEDEPEDF AEDE是(2)四边形即可得到为菱形时,==,然后证明ABP的中点,则的中点,据此即可求解;是xBABPEBCFxP30=<,则(3)当≤=3,即与是重合,当的中点时,PEDBxPEDF,6时,,当3<重合部分是梯形≤时,重合部分就是平行四边形根据平行四边形和梯形的面积公式即可求解;xDAB 4)首先求得当时'的值,据此即可求解.的中垂线正好经过点(BCPE∥解:(1)∵,解答:ABCAPE∽△∴△,ABC又∵△是等边△,APE∴△是等边三角形,xPEAPx)0<;∴<==6(PEDF为菱形,(2)∵四边形xPEDE =,=∴PEAPEAE是等边三角形,则,=又∵△DEAE =∴,ADEDAC =∠,∴∠CDACADEEDC∠+∠°,=∠=90+又∵∠CEDC =∠∴∠,ECDE =∴,ABACDEECAE =3∴==.==x =3即;BFBCxP ABPE与的中点时,=重合.(3)当=3,即是,则PEDFx.时,重合部分就是平行四边形,如图1则当0<≤3AP ABABCADsinAPEAM?==3=6等边△中,=?60°×,等边△中,xsin°60=,实用文档xDM =3﹣,则2xxxxyy(3+3﹣=﹣则;=),即PEDBx,如图2<6时,重合部分是梯形3当<.yxBDyPEDMx =﹣﹣),+3)?(则3=(+即)?;=(BCA所示,)情形一:当(4上方时,如图′在3BDADABD =,当时,′′的中垂线正好经过点=3AA.=3﹣3则′AAAM3′=则=3﹣),(APx ==3﹣∴=.xx﹣0<.<3则的取值范围是:ADPQABC,如图情形二:当4′在所示,上时,∥ABAAPPBP =6=3==.=′×BCA′在下方时,如图5情形三:当所示,BDADDAB =′=3当,′的中垂线正好经过点时,AA =3+3.则′AAAM3,+3)则=′=(APx.==3+∴=xx<3+.<3则的取值范围是:xxx﹣<3或<0的取值范围为综上所示,.3+ <<3实用文档BF重合以本题是等边三角形的性质以及菱形的性质的综合应用,求得与点评:tABD及的值是关键.'时,两种情况下的中垂线正好经过点2xaxy轴交(与﹣=1)分)24.(12(2015?长春)如图,在平面直角坐标系中,抛物线+4PBAByC 在这条抛物线上,且不与的坐标为(3于点,、0两点,与)轴交于点,且点,点PQFPQyBCQRtPQFPBC°,轴的垂线与射线=90交于点,作以,为边作使∠、过点两点重合.△mPPQdQFFQ的长度为.,点=1.设线段点的横坐标为在点的下方,且1)求这条抛物线所对应的函数表达式.(md与之间的函数关系式.(2)求dRtPQFyPF(3)当△轴平分时,求的边被的值.OBDOBDOBFm的边上时304()以为边作等腰直角三角形,当<<时,直接写出点落在△m的值.实用文档二次函数综合题.考点:2axBya分析:)+4=,求出(的值即可;﹣1(1)把点)代入抛物线(3,0PQQBC,即可的解析式,由点)先求出直线(2的纵坐标求出横坐标,求出得出结果;yQP关于(3)由题意得出点轴对称,得出方程,解方程即可;与点GOBFOBDQF,落在△交)分两种情况:①当点的直角边上时,延长于(4QFFGFGQGOFGOG,得出方程,解方,由﹣=证出△=是等腰直角三角形,得出程即可;QFOBDBQFBFF,证出△=是等腰直角三角形,得出②当点落在△=1的斜边上时,OF,得出方程,解方程即可.=22xyaB解答:+4,﹣)把点1(3,0)代入抛物线)=(解:(1a +4=0得:4,a,解得:=﹣122xxyx +3﹣1)+4=﹣+2∴抛物线的函数表达式为:=﹣(,2xxy +2;=﹣+3即抛物线解析式为:2xyx,+2(2)对于抛物线+3=﹣yx时,=3当;=0xyx当=3=0时,=﹣1,或,BAC,03,),∴0(,3),(﹣10),(bBCykx的解析式为:=,+设直线,根据题意得:bk =3,,﹣解得:=1xBCy﹣=∴直线的解析式为:+3,实用文档2mmPm +3的坐标为:(),﹣+2∵点,2mQm的纵坐标坐标为:﹣+3∴点+2,22mxmmxm +3=﹣,+2则﹣﹣+3,2=22mmmQm,﹣)+2的坐标为(,﹣2∴点+3m∴当﹣1≤,<0时,如图122mmmmmd﹣2,﹣﹣=3=x时,如图20当<,<322mmmmdm)=2﹣=+3﹣(﹣dmd之间的函数关系式为:与=∴;yPPQFPFyQRt的边轴对称,被△轴平分时,点关于与点)当(3 ∴横坐标互为相反数,2mmm﹣2∴,+=0mm =1,或=0(不合题意,舍去)解得:,m =1∴,d 1=2;∴=3﹣)分四种情况:(4①情形一:如所示点的坐标为)实用文档2xxxyyx(舍去),=﹣,+2=2+3将得=3代入函数=021mP点的横坐标;=2∴NQFDDGCO点作与所示:过交⊥点,②情形二:如图522B)0,∵3(D)∴,(,2COQFQFCO =1,,,∵∥=3∴=,ND∴=,2Q,)1,∴2(2xxyyxx,,=1﹣+3得将=1+=2代入函数=﹣(舍去)+221m∴;=1+OBGDD点作所示:过⊥,②情形三:如图622B 3)∵0(,D,,)∴(2COQFQFBG∥,=,=1∵,∴,BF =1,∴Q,1∴(1,)2 xxxyyx,=1﹣+3得=1+(舍去),将=1代入函数=﹣+221m;∴=1+ 7④情形四:如图所示:CDQFCDBCQF∥,,=6∵,=1=3,且22,∴BQ,∴=Q点纵坐标为∴,即点纵坐标,实用文档2xxxxyy +3得,=,=将(舍去)=代入函数=﹣+221m∴=.mFmOBD,0<<3时,点落在△1+的边上时的值为:2,或综上所述:当或1+,或.本题是二次函数综合题目,考查了二次函数解析式的求法、轴对称的性质、点评:用待定系数法求一次函数解析式、等腰直角三角形的判定与性质、一元二次)中,需要进行分方程的解法等知识;本题难度较大,综合性强,特别是(4 类讨论,画出图形,证明等腰直角三角形和解一元二次方程才能得出结果.。

相关文档
最新文档