MOS器件物理基础
第2章MOS器件物理基础
❖ 版图、电容、小信号模型等
第2章MOS器件物理基础
10
2.2 MOMSO的SI管/V工特作性-原工作理原理与阈值电压
当VG=0,MOS管相当于两个反偏的二极管,截止 当VG稍微增大时,在正的栅源电压作用下,产生电场,
这个电场排斥空穴而吸引电子,因此,使栅极附近的p型 衬底中的空穴被排斥,留下不能移动的受主离子(负离 子),截止。
第2章 MOS器件物理基础
2.1 基本概念
❖ 简化模型-开关 ❖ 结构
2.2 I/V特性
❖ 阈值电压 ❖ I-V ❖ 跨导
2.3 二级效应
❖ 体效应、沟道长度调制效应、亚阈值导电性
2.4 器件模型
❖ 版图、电容、小信号模型等
第2章MOS器件物理基础 1
2.1 基本概念-MOSFET开关
NMOS管三端器件,栅(G)、源(S)、 漏(D)。 通常作为开关使用,VG高 电平,MOS管导通,D、S连接。
nCox
W L
(VGS
Vth )VDS
1 2
VD2S
K N 2(VGS Vth )VDS VD2S
VGS-Vth:MOS管的“过驱动电压”
L:指沟道的有效长度
W/L称为宽长比,K N
1 2
nC,ox WL
称为NMOS管的导电因子,
μn载流子迁移率。
ID的值取决于工艺参数:μn、Cox、器件尺寸W和L、VDS及VGS。
第2章MOS器件物理基础 14
2.2 MOS的I/V特性-阈值电压
0 栅与衬底功函数差
COX
OX
TOX
单位面积栅氧化层电容
常通过沟道注入把VTH0调节到合适值 工艺确定后,VTH第02章就MO固S器定件物了理基,础 设计者无法改变
半导体物理基础 第六章 MOS
QS QB qNa xd
2 qNa xd S 2k s 0
(6-5)
和
(6-6)
6.2 理想MOS电容器
代入(6-44)式解出 x
d
Xd
kS 0 kS 0 2VG 1 C0 2 C0 C0 qkS 0 N a
2 0 12
(6-45)
C 2C 1 qN k VG C0 a S 0
6.2 理想MOS电容器
积累区( VG <0)
MOS系统的电容C基本上等于绝缘体电容 C0。当负偏压的数值逐渐减少时,空间电 荷区积累的空穴数随之减少,并且 QS 随 C也就变小。 平带情况( VG =0)
S
的变化也逐渐减慢, C S 变小。总电容
C FB C0
1 k 0 LD 1 k s x0
(6-1)
掌握载流子积累、耗尽和反型和强反型的概念。 正确画出流子积累、耗尽和反型和强反型四种情况的能带图。 导出反型和强反型条件
6.2 理想MOS电容器
6.2 理想MOS电容器
系统单位面积的微分电容
微分电容C与外加偏压 VG 的关系称为MOS系统的电容—电压特性。
dQM C dVG
(6-1)
S =半导体表面的电场
k0 =氧化物的相对介电常数
k S =半导体相对介电常数
xd =空间电荷区在半导体内部的边界亦即空间电荷区宽度。
外加电压 VG 为跨越氧化层的电压
V0和表面势 S 所分摊:
(6-2)
VG V0 S
6.1 理想MOS结构的表面空S结构内的电位分布
(6-22)
dV0 d s 1 dVG C dQM dQM dQM
mos 原理
mos 原理
MOS是金属-氧化物-半导体(Metal-Oxide-Semiconductor)的
缩写,是一种常见的半导体器件。
它的基本原理是利用金属-
半导体结构产生的场效应。
MOS器件有两个主要的区域,一个是金属-氧化物-半导体结构,另一个是半导体区域。
金属-氧化物-半导体结构包含有一
个金属电极、一层氧化物以及半导体基底。
半导体区域则是一个N型或P型的半导体材料。
MOS的工作原理可以简单地描述为:当两个电极之间施加电
压时,在金属-氧化物-半导体结构中会形成一个电场。
这个电
场会影响半导体区域的电子流动情况。
通过调整电压,可以控制电场强度,从而调节电子的流动。
当施加的电压为正向时,电场会吸引反向注入的电子流向金属-氧化物-半导体结构,这会增加半导体区域的导电性。
反之,
当施加的电压为反向时,电场会排斥电子,降低半导体区域的导电性。
通过这样的调节,可以实现MOS器件的开关功能。
MOS器件的特点是能耗低、速度快、尺寸小以及制造成本相
对较低。
因此,它在数字电路和集成电路中得到了广泛的应用。
它是现代电子技术中不可或缺的重要组成部分。
模拟cmos集成电路设计(拉扎维)第2章MOS器件物理基础PPT课件
Q d ( x ) W o ( V x G C V S ( x ) V T )H
西电微电子学院-董刚-模拟集成电路设计
16
I/V特性—推导I(VDS,VGS)
I D W o [ V G x C V S ( x ) V T ] v H
Givv E ea nn E (x d ) d(x V ) dx d(x V )
数字电路设计师一般不需要进入器件内 部,只把它当开关用即可
AIC设计师必须进入器件内部,具备器 件物理知识
❖MOS管是AIC的基本元件 ❖MOS管的电特性与器件内部的物理机制密
切相关,设计时需将两者结合起来考虑
器件级与电路级联系的桥梁?
❖器件的电路模型
西电微电子学院-董刚-模拟集成电路设计
5
本讲
基本概念
I D n C o W L ( x V G V T S ) V D H , V D S 2 S ( V G V T S )
等效为一个线性电阻
RONnCoxW L(V 1GSVTH)
在AIC设计中会用到
西电微电子学院-董刚-模拟集成电路设计
深三极管区
19
I/V特性—当VDS>VGS-VTH时?
与电源无关、与温度无关、PTAT电流、 恒Gm、速度与噪声
西电微电子学院-董刚-模拟集成电路设计
2
上一讲
研究模拟电路的重要性 模拟电路设计的难点 研究AIC的重要性 研究CMOS AIC的重要性 电路设计一般概念
❖抽象级别 ❖健壮性设计 ❖符号
西电微电子学院-董刚-模拟集成电路设计
3
上一讲
数字电路无法完全取代模拟电路,模拟 电路是现代电路系统中必不可少的一部 分
提供载流子的端口为源,收集载流子的端口为漏
半导体器件物理7章MOS原理
第7章MOSFET原理7.1 金属、半导体的功函数在绝对零度时,金属中的电子填满了费米能级EF以下的所有能级,而高于费米能级E的所有能级全部F是空的。
温度升高时,只有费米能级E附近的少数电F子受到热激发,由低于E的能级跃迁到高于F E的能级F上,但大部分电子仍不能脱离金属而逃逸出体外。
这意味着金属中的电子虽然能够在金属中自由运动,但绝大多数电子所处的能级都低于体外(真空)的能级。
要使金属中的电子从金属中逸出,必须由外界给它以足够的能量。
从量子力学的观点看,金属中的电子是在一个势阱运动。
用E表示真空中静止电子的能量。
如图7.1所示。
定义某种材料的功函数为:真空电子能量E与材料的费米能级E的差值。
F则金属的功函数为()07.1m FmW E E =- 半导体的功函数为()07.2s Fs W E E =-功函数的物理意义:表示电子从起始能量等于F E 由金属内逸出(跳到真空)需要的最小能量。
注意:半导体的费米能级随掺杂浓度改变,因而其功函数也随掺杂浓度变化。
图7.1 还显示了从0c E E 的能量间隔χ,χ称谓电子亲和能,表示使处于半导体导带底的电子逃逸出体外(跳到真空能级)需要的最小能量。
即()07.3c E E χ=-利用电子的亲和能,半导体的功函数又可以表示为 []()[]7.4()S c FS n c FS n W E E e E E e N semiconductor χχφφ=+-=+-=-表7.1 列出了硅在不同掺杂浓度下对应的功函数 ()()()331415161415167.11010101010104.37 4.31 4.25 4.87 4.93 4.99S d a W eV n type N cm p type N cm Si ----表硅的功函数与掺杂浓度的关系(计算值)半导体材料功函数7.2金属-氧化物-半导体场效应晶体管(MOSFET) 引言:MOS 器件的发明先于双极器件,但由于加工工艺条件的限制,双极器件的商品化要早于MOS 器件。
MOS器件物理(3)
无源器件
在模拟集成电路中的无源器件主要是指 电阻、电容等,精密的电阻、电容是 电阻、电容等,精密的电阻、电容是MOS模 模 拟电路设计所要求的主要基本元件,电阻或电 拟电路设计所要求的主要基本元件, 容在电路应用中最关键的是要提供精确的元件 值,但在大多数情况下,电阻或电容的绝对值 但在大多数情况下, 不如它们的比值那么重要。 不如它们的比值那么重要。
有源电阻
2)考虑衬底偏置效应 ) 如果考虑体效应,如下图( )所示, 如果考虑体效应,如下图(a)所示,由于衬底接地电 则有: =-V, =-V, 位,则有:V1=- ,Vbs=- ,其等效电路如下图 (b)所示。 )所示。
(a)
(b)
有源电阻
根据KCL定理,由上图(b)可以得到: 定理,由上图( )可以得到: 根据 定理
有源电阻
1)漏输出,源极交流接地 )漏输出,
VGS是固定的,当MOS管的漏源电压大于栅极的 是固定的, 管的漏源电压大于栅极的 过驱动电压时, 管工作于饱和区, 过驱动电压时,MOS管工作于饱和区,忽略沟道 管工作于饱和区 调制效应时,其阻值为无穷大, 调制效应时,其阻值为无穷大,但实际阻值应考 虑沟道调制效应,可用饱和萨氏方程求出: 虑沟道调制效应,可用饱和萨氏方程求出:
MOS管交流小信号模型 高频 管交流小信号模型---高频 管交流小信号模型
在高频应用时, 在高频应用时,MOS管的分布电容就不能 管的分布电容就不能 忽略。 忽略。即在考虑高频交流小信号工作时必须 考虑MOS管的分布电容对电路性的影响, 管的分布电容对电路性的影响, 考虑 管的分布电容对电路性的影响 所以MOS管的高频小信号等效电路可以在 管的高频小信号等效电路可以在 所以 其低频小信号等效电路的基础上加入MOS 其低频小信号等效电路的基础上加入 管的级间电容实现,如图所示。 管的级间电容实现,如图所示。
MOS器件物理(3)
MOS管交流小信号模型---低频
G
+
VGS(a) -
D gmVGS
S
G
+
VGS -
gmVGS ro (b)
-S
VBS
VB
+
D gmbVBS
MOS管交流小信号模型---低频
其中〔a〕为理想的小信号模型。 实际的模拟集成电路中MOS管存在着二阶效应,而由于
沟道调制效应等效于漏源之间的电阻ro;而衬底偏置效 应那么表达为背栅效应,即可用漏源之间的等效压控电 流源gmbVBS表示,因此MOS管在饱和时的小信号等 效模型如图 (b)所示。 上图所示的等效电路是最根本的,根据MOS管在电路中 不同的接法可以进一步简化。
无源器件--多晶电阻
NMOS与CMOS硅栅工艺,与源/漏同 时扩散。
金属 汽相淀积氧化 多晶硅Ⅰ或Ⅱ
场氧 p
无源器件--多晶电阻
方块电阻为R□=30~200Ω。制作大电阻时,可另外
再加上一次光刻,用离子注入较小剂量来实现,其阻 值可达10千欧/方块。但多晶硅电阻的薄层电阻大小, 除与离子注入剂量有关外,还与多晶硅的厚度,多晶 硅的淀积质量等有关,因此难以用来制作精密电阻。
外一次离子注入来形成底板的n+重掺杂区,以多晶硅 为上极板,二氧化硅为介质,n+为下极板构成电容。
多晶硅
金属
n+
薄热氧化层
p
n+ n+重掺杂
无源器件--电容
衬底必须接一个固定电位,此时多晶与体硅 间的电容可认为是一无极性的电容,但存在 底板pn结寄生电容〔15%~30%〕。
无源器件---电阻
在某些设计中,要求精确的电阻比值,对称 叉指式设计布局用来补偿薄层电阻与条宽范 围的梯度变化。
第3章-MOS集成电路器件基础
第三章 MOS集成电路器件基础
假定有一NMOS管, W=3 μm, L=2 μm, 在恒流区则有:
UGS 2V
ID
K 2
W L
(U
GS
UTH
)2
1 2
73A /V
2
3m 2m
(2V
0.7V
)2
93A
若UGS=5 V, 则
ID
1 2
73A/V
2
3m 2m
(5V
0.7V
)2
1.0mA
第三章 MOS集成电路器件基础
由于源漏结的横向扩散, 栅源和栅漏有一重叠长度为 LD, 所以导电沟道有效长度(Leff)将小于版图中所画的 导电沟道总长度。 我们将用L表示导电沟道有效总长 度Leff, 图3 - 1中W表示沟道宽度。 在今后的学习中, 我们将会发现, 宽长比(W/L)和氧化层厚度tox这两个参 数对MOS管的性能是多么重要。 而MOS技术发展中的 主要推动力就是在保证电性能参数不下降的前提下, 一代一代地缩小沟道长度L和氧化层厚度tox。
第三章 MOS集成电路器件基础
G 多晶硅 D
S
氧化 层
W
N+ P型 衬 底
Leff
N+
Ldra wn
LD
图3 - 1 NMOS管的简化结构
第三章 MOS集成电路器件基础
3.1.2 N阱及PMOS 为了使MOS管的电流只在导电沟道中沿表面流动
而不产生垂直于衬底的额外电流, 源区、 漏区以及沟 道和衬底间必须形成反偏的PN结隔离, 因此, NMOS 管的衬底B必须接到系统的最低电位点(例如“地”), 而PMOS管的衬底B必须要接到系统的最高电位点(例如 正电源UDD)。 衬底的连接如图3 - 2(a)、 (b)所示。
器件物理MOSFET ppt课件
6.1 理想MOS结构的表面空间电荷区
Q S Q I Q B Q I qa x N dm
n型MOS电容的不同偏置下的能带图和对应的电荷块图
6.1 理想MOS结构的表面空间电荷区
结论
n型衬 底
INV(反型) DEPL(耗尽) ACC(积累)
VG
VT
0
ACC(积累) DEPL(耗尽) INV(反型)
xd
(2ss
qNA
1
)2
最大耗尽层宽度
xdm(4qsNAFp)12
6.2 理想MOS电容器
6.2 理想MOS电容器
教学要求 1.导出公式(6-2-24)、(6-2-25)。 2..了解电荷QI的产生机制 3.了解积累区、耗尽区、反型区和强反型情况下,MOS电容的变 化规律及影响MOS电容的主要因素
P型
0
VT
6.1 理想MOS结构的表面空间电荷区
结论
耗尽-反型过渡点 平带
n型(F<0) INV(反型) DEPL(耗尽) ACC(积累)
s
2 F
0
P型(F>0)
ACC(积累) DEPL(耗尽) INV(反型)
s
0
2 F
6.1 理想MOS结构的表面空间电荷区
例题:两个理想MOS电容的电荷块图分布如下图所示,对每 一种情况:完成以下三个问题:
表面势
s
1 q
Ei (体内)
Ei (表面)
费米势
F
1 q
Ei (体内)
EF
6.1 理想MOS结构的表面空间电荷 区
F的正负和大小与Si衬底的导电类型和掺杂浓度有关
p型半导体 n型半导体
F
KT q
第二章 CMOS器件基础
MOS管的电流方程
2. Cox单位面积栅电容 Cox=ɛ0ɛsio2/tox ɛ0:真空介电常数,8.854x10-12 F/m Ɛsio2:栅氧化层(SiO2)的相对介电常数 3.9 tox:栅氧化层厚度 可以计算:当tox=50A(1A=0.1nm)时, Cox=(8.854x10-12x3.9x10-6)/5x10-3 =6.9fF/μm2 (1fF=10-15F) (学会如何计算,注意单位统一)
同一衬底上的NMOS和PMOS器件
MOS管所有pn结 必须反偏: *N-SUB必须接最 高电位VDD! *P-SUB必须接最 低电位VSS! *阱中MOSFET衬 底常接源极S
寄生二极管
MOS管符号
G
G
(a)
四端器件,一般在模拟电 路设计中采用。
(b)
省去了衬底,默认为 衬底与源 管。只区分管子类 型。常用于数字电 路
在集成电路设计中,在同一硅片衬底上做许多管子,为
二级效应1:体效应
保证它们正常工作,一般N管衬底要全部接最低点位,P 管衬底接最高点位,因此,有些管子源极与衬底之间存在 电位差。 为了保证沟道与衬底之间的隔离,PN结必须反偏,图中 T2管的Vbs<0 当Vbs<0时,导致阈值电压Vth增大,沟道变窄,沟道电 阻变大,ID减小,称此效应为体效应,或者背栅效应, 衬底调制效应。
L=4µ
L=6µ
∂ID/∂VDS∝λ/L∝1/L2
二级效应3:亚阈值导电性
当VGSVTH时和略小于VTH ,“弱”反型层依然存在, 与VGS呈现指数关系。当VDS大于200mV时,
这里ζ>1,VT=kT/q
MOS管亚阈值电流ID一般为几十~几百 nA, 常用于低功耗放大器、带隙基准设计。
模拟CMOS
21()ds on ds n gs th V R I K V V ==-12()ds on ds n gs th V R I K V V ==-12()ds on dsn gs th dsVR I K V V V ==--第二章:MOS 器件物理1.概念:熟悉增强型NMOS 管的工作原理,画出NMOS 输出特性曲线并指出线性区和饱和区NMOS 漏电流随V GS 的变化曲线:当Vgs 小于Vth 时,NMOS 管截止;当Vgs 大于Vth 时,在NMOS 管漏极和源极间形成反型层,即导电沟道。
这时在Vds 的正向电压的作用下,NMOS 管漏极和源极间有电流产生。
当Vds<Vgs-Vth 时, NMOS 管工作在线性区;当Vds ≧Vgs-Vth 时, NMOS 管工作在饱和区。
画出NMOS 截止区,线性区和饱和区的实际物理结构图:2.直流导通电阻:⑴ 线性区的直流导通电阻(Vgs>Vth, Vds<Vgs-Vth ):⑵ 深线性区的直流导通电阻(Vgs>Vth, Vds<<2(Vgs-Vth ):⑶ 饱和区的直流导通电阻 (Vgs>Vth, Vds ≧Vgs-Vth ):3.衬底效应:由于V bs 不为0而引起阈值电压的变化的效应。
)|2||2|(0f BS f th th V V V Φ--Φ+=γ 4.沟道调制效应:在MOS 管工作于饱和状态时,MOS 管的导电沟道会发生夹断,且夹断点的位置随栅漏间的电压差的增加而向源极移动,既有效沟道、长度实际上是Vds 的函数。
这一效应称为“沟道调制效应”。
21()(1)2n ox gs th ds WId C V V V L μλ≈-+ , 211()ds o ds n gs th d V r I K V V I λλ∂===∂- 5.亚阈值效应:当MOS 管的Vgs 略小于Vth 时,在实际中MOS 管已开始导通,仍会在MOS 管的导电沟道产生一个弱反型层,从而产生由漏极向源极的电流,该现象称为NMOS 管的亚阈值效应,且Id 与Vgs 呈指数关系。
第二章 MOS器件的物理基础
22
2.2 MOS的I/V特性
2.2.4 I/V特性总结:
VDS < VGS − VTH 线性区
红色部分:沟道在源 漏之间连续存在
VDS ≥ VGS − VTH 饱和区
灰色部分:沟道在某点被夹 断,用作恒流源
MOS的I/V特性曲线
CMOS模拟集成电路设计 第二章 MOS器件物理基础
VDS << 2(VGS − VTH ) 深线性区
VG
S
VD
n+ 0 P型衬底
x=L' L
n+
V ( x) = VGS − VTH
V DS ≥ VGS − VTH 时, 反型层在沟道中某点x处被夹断
CMOS模拟集成电路设计 第二章 MOS器件物理基础
Copyright 2011 Zhengran
21
2.2 MOS的I/V特性
当 VDS > VGS − VTH 时,则 VGD = VGS − VDS < VTH ,也就意味着沟道在 漏端不存在。 沟道在x点被夹断,将式(课本2.7)的积分区间换 VGS − VTH ],得到: 为[0,
CMOS模拟集成电路设计
Design of Analog CMOS Integrated Circuits
Feb.2011 郑然 zhengran@
西北工业大学航空微电子中心 教育部嵌入式系统集成工程研究中心
第二章 MOS器件的物理基础
CMOS模拟集成电路设计 第二章 MOS器件物理基础
13
2.2 MOS的I/V特性
四个合理的假设: 一、电流的大小由沟道内移动的电荷决定。 二、沟道中某点垂直于沟道的电场决定了该点移动电荷的 数量。 三、载流子的运动速率与横向电场大小成正比 v = µE。 四、认为 VGS = VTH 时反型层开始形成。 注意:栅极电势和沟道中某点的电势之差决定了该点 垂直于沟道的电场
MOS器件物理基础
gmN = 2 350 10-4 3.83 10-15/10-12 100 5 10-4 3.6mA/V
23
MOS管的开启电压VT及体效应
VTH = ΦMS + 2ΦF + Qdep , where Cox
ΦMS = Φgate - Φsilicon
ΦF = kT q ln
Nsub ni
Qdep = 4qεsi ΦF Nsub
Cox:单位面积栅氧化层电容
ΦMS:多晶硅栅与硅衬底功函数之差
- VTH )VDS
-
1 2
VDS 2
]
ID
=
nCox
W L
(VGS
- VTH )VDS
VDS << 2(VGS - VTH )
Ron
=
nCox
W L
1 (VGS
- VTH )
等效为一个压控 电阻
2019/11/15
13
I/V特性的推导(3)
ID
=
nCox
W L
[(VGS
- VTH )VDS
5
例:判断制造下列电路的衬底类型
2019/11/15
6
NMOS器件的阈值电压VTH
(a)栅压控制的MOSFET (c)反型的开始
(b)耗尽区的形成 (d)反型层的形成
2019/11/15
7
NMOS管VGS>VT、VDS=0时的示意图
2019/11/15
8
NMOS管VGS>VT、 0<VDS< VGS-VT时的示意图
MOS器件物理--转移特性曲线
饱和区MOS管的跨导与导纳
讨论2:
• 双极型三极管的跨导为:
,两种
跨导相比可得到如下结论:
• 对于双极型,当IC确定后,gm就与几何形状无 关,而MOS管除了可通过IDS调节跨导外,gm还 与几何尺寸有关;双极型三极管的跨导与电流
成正比,而MOS管的跨导与成正比,所以在同
样工作电流情况下,MOS管的跨导要比双极型
• 即有:
• 所以KN即为转移特性曲线的斜率。
MOS管的直流导通电阻
• 定义:MOS管的直流导通电阻是指漏源电压与漏源电 流之比。
• 饱和区:
• 线性区:
• 深三极管区:
MOS管的最高工作频率
• 定义:当栅源间输入交流信号时,由源极 增加(减小)流入的电子流,一部分通过 沟道对电容充(放)电,一部分经过沟道 流向漏极,形成漏源电流的增量,当变化 的电流全部用于对沟道电容充放电时, MOS管就失去了放大能力,因此MOS管的 最高工作频率定义为:对栅输入电容的充 放电电流和漏源交流电流值相等时所对应 的工作频率。
沟道调制效应
• 不考虑沟道调制效应时,MOS管工作于饱和区 时的漏源之间的交流电阻为无穷大,是一理想的 电流源。
• 考虑沟道调制效应后,由于漏电流随漏源电压变 化而变化,其值为一有限值。这个电流源的电流 值与其电压成线性关系,
可以等效为一个连接在
漏源之间的线性电阻,
这个电阻值为:
沟道调制效应
• 一般ro也称为MOS管的输出阻抗,它会限制大部分放 大器的最大电压增益,影响模拟电路的性能。
开启电压
• 注意
,Vth0为无衬偏时的开启电压,
而 是在与VGS特性曲线中与VGS轴的交点
电压,实际上为零电流的栅电压
MOS器件物理
有源器件-MOS管
MOS管的工作原理及表示符号(5)
NMOS D G S B G S PMOS D B G S NMOS D G D PMOS S G S NMOS D G S PMOS D G S NMOS D G D PMOS S
MOS管的高频小信号电容
MOS管的电容(1)
G S
Cbs
d
C1
的交叠电容记为Col):
包括栅源交叠电容C1=WdCol与栅漏交叠电容C4=WdCol: 由于是环状的电场线, C1与C4不能简单地写成WdCox, 需通过更复杂的计算才能得到,且它的值与衬底偏置有关。
MOS管的高频小信号电容
MOS管的电容(3):
源漏区与衬底间的结电容:Cbd、Cbs
即为漏源对衬底的PN结势垒电容,这种电容一般由两部分组成:一个 是垂直方向(即源漏区的底部与衬底间)的底层电容Cj,另一个是横 向即源漏的四周与衬底间构成的圆周电容Cjs,因为不同三极管的几何 尺寸会产生不同的源漏区面积和圆周尺寸值,一般分别定义Cj与Cjs为 单位面积的电容与单位长度的电容。而每一个单位面积PN结的势垒电 容为:
也存在导电沟道。
这两类MOS管的基本工作原理一致,都是利用 栅源电压的大小来改变半导体表面感生电荷的 多少,从而控制漏极电流的大小 。
有源器件-MOS管
MOS管的工作原理及表示符号(2):
当栅源电压VGS=0时,源区(n+型)、衬底(p型)和漏区(n+型)
形成两个背靠背的PN结,不管VDS的极性如何,其中总有一个PN结 是反偏的,所以源漏之间的电阻主要为PN结的反偏电阻,基本上无 电流流过,即漏电流ID为0,此时漏源之间的电阻很大,没有形成导 电沟道。 当栅源之间加上正向电压,则栅极和p型硅片之间构成了以二氧化硅 为介质的平板电容器,在正的栅源电压作用下,介质中便产生了一 个垂直于半导体表面的由栅极指向p型衬底的电场(由于绝缘层很薄, 即使只有几伏的栅源电压VGS,也可产生高达105~106V/cm数量 级的强电场),这个电场排斥空穴而吸引电子,因此,使栅极附近 的p型衬底中的空穴被排斥,留下不能移动的受主离子(负离子),
MOS器件物理(2)
W 1 2 I D = µ n C ox (VGS − Vth )V DS − V DS L 2 2 = K N 2(VGS − Vth )V DS − V DS
[
]
VGS-Vth:MOS管的“过驱动电压” 管的“ 管的 过驱动电压” L:指沟道的有效长度 : W/L称为宽长比 称为宽长比 1 W K N = µ n C ox 称为NMOS管的导电因子 ,称为 管的导电因子 2 L ID的值取决于工艺参数:µnCox、器件尺寸 和L、VDS及VGS。 的值取决于工艺参数: 器件尺寸W和 、
MOS管的最高工作频率 管的最高工作频率 管的
gm ω m Cv g = g m v g ⇒ f m = 2πC C表示栅极输入电容,该电容正比于 表示栅极输入电容, 表示栅极输入电容 该电容正比于WLCox 。
µn fm ∝ (VGS − Vth ) 2 2πL
MOS管的最高工作频率与沟道长度的平方成 管的最高工作频率与沟道长度的平方成 反比,因此,减小MOS管的沟道长度就能很 反比,因此,减小 管的沟道长度就能很 显著地提高工作频率 。
器件物理(续 第二讲 MOS器件物理 续) 器件物理
MOS管的电特性 管的电特性
主要指: 主要指: 阈值电压 I/V特性 特性 输入输出转移特性 跨导等电特性
MOS管的电特性 -阈值电压(NMOS) 管的电特性 阈值电压( )
在漏源电压的作用下刚开始有电流产生时的V 为阈值电压V 在漏源电压的作用下刚开始有电流产生时的 G为阈值电压 th :
∆I DS gd = ∆VDS
VGS ,VSB =C
MOS管的最高工作频率 管的最高工作频率 管的
定义:当栅源间输入交流信号时, 定义:当栅源间输入交流信号时,由源极增 减小)流入的电子流, 加(减小)流入的电子流,一部分通过沟道 对电容充( 对电容充(放)电,一部分经过沟道流向漏 形成漏源电流的增量, 极,形成漏源电流的增量,当变化的电流全 部用于对沟道电容充放电时, 部用于对沟道电容充放电时,MOS管就失去 管就失去 了放大能力,因此MOS管的最高工作频率定 了放大能力,因此 管的最高工作频率定 义为: 义为:对栅输入电容的充放电电流和漏源交 流电流值相等时所对应的工作频率。 流电流值相等时所对应的工作频率。
MOS管知识
MOS管知识MOS管知识-一文彻底区分MOS NMOS PMOS CMOS(从原理的视角)从原理的视角,一文彻底区分MOS NMOS PMOS CMOS,详细请查看下文。
mos管学名是场效应管,是金属-氧化物-半导体型场效应管,属于绝缘栅型,MOS又分N型、P型MOS管。
(一)由基础说起半导体的基础材料是硅晶体,硅这种材料,在化学元素周期表里是四族元素,硅从微观上看每个原子最外层有4个电子,我们知道,外层4个电子的物质处于稳定状态。
硅晶体里,两个电子结合形成更为稳定的共价键。
当然这种共价键并不是牢不可破的,在绝对0度以上,总会有少数的电子摆脱共价键的束缚在晶格里游荡,会表现出很小的导电性,半导体的名字就这么来了。
如果硅晶体里掺入了三族元素,比如硼,会是什么状况的呢?三族元素最外层3个电子,跟硅结合的时候,共价键上就会缺一个电子,我们叫它空穴。
由于电子的热力学运动,某个共价键上的电子可能摆脱束缚移动到空穴位置上来,宏观上看好像是空穴产生了移动,由于空穴表现正电荷,空穴的英文称为positive holes,这种半导体就称之为P型半导体。
同样,在硅晶体里掺杂五族元素后,共价键上就会多出一个电子,这个电子可以在半导体内自由移动,形成导电的电子,即negative electrons。
掺杂五族元素的半导体称为N型半导体。
我们从宏观上看,N型半导体里面有很多可以导电的电子。
P型半导体里面有很多不可移动的空穴。
此处特别强调不可移动,我们说空穴的移动,实际上是其它位置的电子填充了空穴的位置,看上去像是空穴在移动。
N型半导体和P型半导体宏观上看都是不带电的!正负电荷量相等。
(二)MOS假如我们把P型半导体放在一个电场中会有什么现象呢?根据最基本的物理知识,同电荷排斥,异电荷相吸,电场中的P型半导体如下图所见。
左右两侧为电极板,电子会被吸引到正电极测,空穴被吸引到负电极测。
这里正负只是普通的物理定义,其实在电路中,严格的说法应该是高电平测、低电平测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I D ( x ) WCox VGS V ( x ) VTH n ( dV ( x ) dx) WCox VGS V ( x ) VTH n (dV ( x ) dx)
边界条件
V (0) 0,V ( L) VDS
VDS
两边积分可得
2014-11-23 9
gm与rds的求法
2014-11-23
10
二、基本共源放大电路的动态分析
g U R U I R m gs d o d d A g m Rd u U U gs U gs i Ri Ro Rd
2014-11-23 11
2.1 MOSFET的基本概念
沟道从s-d逐渐变窄
uDS uGD UGS (th)
沟道预夹断
uDS 夹断区延长
i D 几乎不变 恒流区
2014-11-23
6
3. 特性曲线与电流方程
uGS i D I DO 1 ,其中,I DO 是uGS 2UGS ( th)时的iD。 U GS ( th)
● 电荷漂移速度
E
(2.5)
:漂移速度 drift speed
E :电场强度 electric field
2014-11-23
:迁移率 mobility E( x ) dV ( x ) dx
24
综合(2.2)-(2.5)有
I D ( x) Qd ( x) v( x) Qd ( x) E( x)
DS
2(VGS VTH )
W I D nC ox (VGS VTH )VDS L
(2.8)表明 I D ~ VDS为直线关系,如图(2.12)所示.
2014-11-23
(2.8)
27
此时 D, S间体现为一个电阻,其阻值为:
VDS 1 Ron W ID nCox (VGS VTH ) L
I D 0 ,求得各抛物线的极 令 VDS
1 2 (VGS VTH )VDS 2 VDS
大值在 VDS (VGS VTH )点上, 且相应各峰值电流为:
I D ,max
1 W nC ox (VGS VTH ) 2 (2.7) 2 L
VGS-VTH为过驱动(overdrive)电压,只有过驱动电压
2014-11-23
(b) VGS>0
(c)
19
●( d )当 VG 继续增加,界面电 势达到一定值时,就有电子从源 极流向界面并最终到达漏极,导 电沟道形成,晶体管打开。如图 ( d )所示。这时,这个电压值 就是“阈值电压”- . V
TH
VTH ms 2F
Qdep C ox
(2.1)
的增大向源端移动。
2014-11-23
0 X2 V ( X 2 ) (VGS VTH )
31
由
L
x 0
I D ( x )dx
VDS
V 0
WnCox VGS V ( x ) VTH dV ( x )
L'
x 0
I D ( x )dx
VGS VTH
V 0
2014-11-23
(2.9)
28
(2.9)式表示: a:在满足 VDS 2(VGS VTH ) 的条件下,MOS管体现 出线性电阻的特性,其直流电阻与交流动态电阻相等。 b:该线性电阻大小取决与VGS,即调节VGS,可调节电
阻的大小。因此我们常常把工作在这种区域的晶体管
称为“压控晶体管”。
Chapter 2 MOS器件物理基础
本章内容
Hale Waihona Puke MOSFET 的I-V 特性 MOSFET 的二级效应
MOSFET 的结构电容
MOSFET 的小信号模型
2014-11-23
2
绝缘栅型场效应管
Insulated Gate Field Effect Transistor
MOS管:Metal Oxide Semiconductor
WnCox VGS V ( x ) VTH dV ( x )
1 W I D nC ox (VGS VTH ) 2 2 L'
若
L' L ,则 I D 与 VDS 无关.
(2.10)
VDS (VGS VTH ) 时 , I D 相对恒定,器件工作在饱和区。
2014-11-23
开启电压 UGS (th):沟道形成的栅-源电压。 5
(2) uGS UGS ( th)时uDS 对 i D 的影响. ① uDS uGS UGS ( th) ② uDS uGS UGS ( th) ③ uDS uGS UGS ( th)
uDS i D 线性增大
L
x 0
I D ( x )dx
V 0
WnCox VGS V ( x ) VTH dV ( x )
沟道中电流是连续的恒量,即有:
W I D nCox L
2014-11-23
1 2 (VGS VTH )VDS 2 VDS
(2.6)
25
W *分析: I D nCox L
VTH ms 2F Qdep C ox
KT N sub F ln n i q
Qdep 4q si F N sub
2014-11-23
21
2.2.2 I/V特性推导
我们用一个电流棒来辅助理解电流的概念. v
I
当沿电流方向的电荷密度为Qd (C/m)的电荷以速度v沿电流 方向移动时,产生的电流为
漏相对于源的电位之间的关系.
2014-11-23 33
若 L' L ,可以得到 不同VGS下漏电流曲线为:
VGS 8 VGS 7 ...... VGS 1
2014-11-23 34
对于PMOS器件,其在三极管区和饱和区的电流方程分
别表示为
W I D pC ox L
32
*式(2.6),(2.10) 为analog CMOS design 的最基本的方程
式.
W I D nCox L
1 2 (VGS VTH )VDS 2 VDS
(2.6)
1 W I D nC ox (VGS VTH ) 2 2 L'
(2.10)
它们描述了ID与工艺常数 nCox ,器件尺寸W和L以及栅和
2014-11-23 7
2
FET放大电路的动态分析
一、FET的低频小信号等效模型
i D f uGS , uDS
令 i D uGS i D uDS
U DS
i D diD uGS
i D U DS du GS uDS
UGS
duDS
gm 1 rds
1 I d gmU gs U ds rds
可以形成反型层电荷。
VDS VGS VTH 时,器件工作在“三极管区”.
2014-11-23 26
2.2.3 MOS器件深Triode区时的导通电阻
MOS 器件作为逻辑工作和模拟开关,或小值线性电阻运 用时,都会工作于深Triode区。此时VGS较大,MOS管的 VDS很小,若满足: V 此时(2.6)简化为:
Qd WCox (VGS VTH )
(2.3)
式中Cox为栅极单位面积电容,WCox为单位长度栅电容.
2014-11-23 23
如果从S到D有一电压差VDS,假设平板电容在L方向上x点的
电位为V(x), 如上图所示 则有:
Qd ( x) WCox (VGS VTH V ( x))
(2.4)
利用栅源电压的大小控制半导体表面的感生电荷的多
少,从而改变沟道电阻,控制漏极电流的大小。
N沟道
增强型(常闭型) MOSFET 绝缘栅型 耗尽型(常开型)
2014-11-23
P沟道 N沟道 P沟道
3
N沟道增强型MOSFET
1. 结构
2014-11-23
4
2. 工作原理
① uGS 0 ② uDS 0, uGS 0
LD:S/D side diffusion length
W/L: aspect ratio
2014-11-23
S,D,G,B: source,drain,gate,body(bulk)
16
3. MOS FET 的四种电路符号
NMOS D G B G
PMOS S B
S
(d)
2014-11-23
D
17
I Qd * v
2014-11-23
(2.2)
量纲 C
m* m s A
22
● NMOS
沟道的平板电容近似与沟道电荷分布
若将MOS结构等效为一个由poly-Si和反型沟道构成的平板电 容。对均匀沟道,当 VD=VS=0 时,宽度为 W 的沟道中,单位 长度上感应的可移动电荷量为
2.2 MOS的I/V特性
2.2.1.阈值电压
先看MOS器件的工作原理:以NMOS为例来分析阈值电压 产生的原理.
(a) VGS=0
2014-11-23 18
●在 (a) 图中, G 极没有加入 电压时, G 极和 sub 表面之间, 由于 Cox 的存在,构成了一个 平板电容, Cox 为单位面积的 栅氧电容; ●在栅极加上正电压后,如 图 (b) 所示, P-sub 靠近 G 的空 穴就被排斥,留下了不可动 的负离子。这时没有导电沟 道的形成,因为没有可移动 的载流子,G和衬底间仅形成 了氧化层电容和耗尽层电容 的串连,如图(c)所示。