气体动力学基础2 (5)

合集下载

气体动力学基础答案

气体动力学基础答案

气体动力学基础答案1. 什么是气体动力学?气体动力学是研究气体在力的作用下及热力学条件下的运动规律和性质的学科。

它主要研究气体的物理性质、状态方程以及气体的运动、扩散和传热等过程。

2. 描述气体的状态有哪些基本参数?气体的状态可以由以下几个基本参数来描述:•压力(P):指气体分子对容器壁的撞击给容器壁单位面积上的力,通常以帕斯卡(Pascal)表示。

•体积(V):指气体所占据的空间大小,通常以立方米(m³)表示。

•温度(T):指气体的热度,通常以开尔文(Kelvin)表示。

•物质量(n):指气体中的物质量,通常以摩尔(mol)表示。

这些参数可以通过状态方程来描述气体的状态,常见的状态方程有理想气体状态方程(PV=nRT)和范德瓦尔斯状态方程。

3. 什么是理想气体状态方程?理想气体状态方程是描述理想气体状态的数学公式,由理想气体定律得到。

理想气体状态方程可以表示为PV=nRT,其中P表示气体的压力,V表示气体的体积,n表示气体的物质量(摩尔数),R表示气体常量,T表示气体的温度(开尔文)。

理想气体状态方程可以用于描述气体的状态和变化,例如计算气体的压力、体积和温度的关系以及计算气体的摩尔数等。

4. 理想气体状态方程适用的条件有哪些?理想气体状态方程适用于以下条件下的气体:•气体分子之间不存在相互作用力;•气体分子之间的体积可以忽略;•气体分子之间的碰撞是完全弹性碰撞;•气体分子之间的相互作用不会受到温度的影响。

在实际情况下,很多气体都可以近似看作是理想气体,特别是在低密度、高温度的条件下。

但在高密度、低温度的情况下,气体分子之间的相互作用力会变得更加显著,此时理想气体状态方程将不再适用,需使用修正的状态方程进行计算。

5. 范德瓦尔斯状态方程是什么?范德瓦尔斯状态方程是对理想气体状态方程的修正,考虑了气体分子之间的相互作用力和气体分子的体积。

范德瓦尔斯状态方程可以表示为: \[ (P + \frac{an2}{V2})(V - nb) = nRT \] 其中P表示气体的压力,V表示气体的体积,n表示气体的物质量(摩尔数),R表示气体常量,T表示气体的温度(开尔文),a和b是范德瓦尔斯常量。

空气动力学基础空气动力学课件PPT

空气动力学基础空气动力学课件PPT

(2)层流附面层和紊流附面层
前段附面层内层流附面层。 后段附面层紊流附面层。 附面层由层流状态转变为紊流状态叫转捩 转捩段 转换段是很窄的区域,可近似看成一点,称为“转捩
点”。
转捩原因
流动距离越长,附面层内的分层流动越不稳 机体表面对附面层施加扰动
在紊流附面层的底层,机体表面气流的阻滞作用要比 层流附面层大得多。
1. 气流在机体表面的流动状态
(1)附面层 (2)层流附面层和紊流附面层 (3)附面层的分离
(1)附面层
附面层
沿机体表面法向方向,流速由零逐渐增加到外界气流流速的 薄薄的一层空气层;机体表面到附面层边界(流速增大到外界 气流流速99% 处)的距离为附面层的厚度(δ)
附面层的厚度越来越厚
(2) 减小压差阻力的措施
①尽量减小飞机机体的迎风面积。 ②暴露在空气中的机体各部件外形应采用流线型。 ③飞行时,除了起气动作用的部件外,其他机体部件的铀钱
应尽量与气流方向平行。
4. 干扰阻力
(1)干扰阻力的产生
流过机体各部件的气流在部件结合处互相干扰而产生的阻力 干扰阻力与各部件组合时的相对位置有关,也和部件结合部
a平板翼型 b弯板翼型 c超临界翼型 d哥廷根398 e低亚音速翼型
f
g对称翼型,常用于尾翼 h i超音速菱形翼型
j超音速双弧形翼型
2.机翼平面形状和参数
机翼平面形状
机翼平面形状是飞机处于 水平状态时,机翼在水平 面上的投影形状
(a)矩形;(b)梯形; (c)椭圆形;
(d)后掠翼; (e)(f)和(g)为三角
在机翼的前缘有一点(A) , 气流速度减小到零,正压达到最大 值,此点你为驻点。
机翼上表面有一点(B) , 气流速度最大,负压达到最大值,称 为最低压力点。

空气动力学基础知识

空气动力学基础知识

O
X
描述飞机的姿态运动
Xa 速度V
3.速度坐标系(气流轴系)S-oxayaza
Za
原点o —飞机质心
oxa — 飞机速度V的方向 oza —飞机对称平面,垂直于oxa,指向机腹 oya —垂直于oxaza平面,向右
描述飞机的速度(轨迹)运动,
气流方向—力的方向(如吹风数据)
坐标系间可以相互转换,转换矩阵
成激波,受扰区限于扰源下游的马赫锥内
六、激波
气流以超音速流经物体时,流场中的受扰区情况与物体的形 状有关,超音速—强扰动,产生激波
激波实际上就是气流各参数的不连续分界面 在激波之前,气流不受扰动,气流速度的大小和方向不变, 各状态参数也是常数; 气流通过激波,其流速突然变小,温度、压强、密度等也突 然升高
它是在流体力学的基础上,随着航空工业和喷气推 进技术的发展而成长起来的一个学科。还涉及飞行 器性能、稳定性和操纵性等问题。
包括外流、内流。
遵循基本规律:质量守恒、牛顿第二定律,能量守恒、热
力学第一、第二定律等。
发展简史:
18世纪流体力学开始创建:伯努利公式、欧拉方程 等。
19世纪流体力学全面发展;形成粘性流体动力学、 空气-气体动力学:NS方程、雷诺方程等。
钝头物体的激波是脱体波(正激波),产生大波阻 楔形物体的激波是倾斜的(附体波 ),波阻较小,用于超音
速飞机的机头
七 膨胀波
伯努利静态公式
p1V2 C(常数)
2
不适用于高速流动情况 ,由
于空气高速流动时密度不是常数
由导伯努利方程动态过程,得出考虑到空气的可压缩性的 能量守恒方程:
(M2 1)dV dA VA
鸭式导弹 鸭翼,不受气流下洗的影响,改变气动特性

空气动力学复习资料

空气动力学复习资料

空气动力学复习一、基本概念1 粘性施加于流体的应力和由此产生的变形速率以一定的关系联系起来的流体的一种宏观属性,表现为流体的内摩擦。

以气体为例,气体分子的速度是由平均速度和热运动速度两部分叠加而成,前者是气体团的宏观速度,后者决定气体的温度。

若相邻两部分气体团以不同的宏观速度运动,由于它们之间有许多分子相互交换,从而带来动量的交换,使气体团的速度有平均化的趋势,这便是气体粘性的由来。

2 压缩性流体的压缩性是流体质点在一定压力差或温度差的条件下,其体积或密度可以改变的性质。

其物理意义是:单位体积流体的体积对压强的变化率。

气体流速变化时,会引起气体的压强和密度发生变化。

在低速气流中,由于气流速度变化而引起的气体密度的相对变化量很小,可以把气体看作不可压缩流体来处理;高速气流压缩性的影响不能忽略,必须按可压流体来处理。

一般0.3Ma作为气体是否可压的分界点。

3 理想气体忽略气体分子的自身体积,将分子看成是有质量的几何点;假设分子间没有相互吸引和排斥,即不计分子势能,分子之间及分子与器壁之间发生的碰撞是完全弹性的,不造成动能损失。

这种气体称为理想气体。

严格遵从气体状态方程的气体,叫做理想气体(Ideal gas.有些书上,指严格符合气体三大定律的气体。

)从微观角度来看是指:气体分子本身的体积和气体分子间的作用力都可以忽略不计,不计分子势能的气体称为是理想气体。

4 焓热力学中表征物质系统能量的一个重要状态参量,焓的物理意义是体系中热学能(内能)再附加上PV(压能)这部分能量的一种能量。

5理想流体不可压缩、不计粘性(粘度为零)的流体。

欧拉在忽略粘性的假定下,建立了描述理想流体运动的基本方程。

理想流体和理想气体是两个不同的概念,前者指流体没有粘性,后者指气体状态参量满足气体状态方程的气体。

6 音速音速是介质中弱扰动的传播速度,其大小因媒质的性质和状态而异。

在流动的气体中,相对于气流而言,微弱扰动的传播速度也是声速。

气体动力学基础

气体动力学基础

气体动力学基础气体动力学是研究气体运动规律以及与其他物体之间相互作用的学科。

它的研究对象包括气体的压力、体积、温度和分子速度等特性,以及这些特性之间的相互关系。

本文将介绍气体动力学的基础概念、理论模型和重要定律。

一、气体分子模型气体分子模型是气体动力学研究的基础,它假设气体是由大量极小的分子组成的。

这些分子之间几乎没有相互作用力,它们以高速不规则运动,并且具有各向同性的特性。

二、理想气体状态方程理想气体状态方程是描述气体状态的基本定律之一。

根据理想气体状态方程,气体的压力(P)、体积(V)和温度(T)之间存在着下列关系:P * V = n * R * T其中,n代表气体的摩尔数,R代表气体常数。

这个方程表明,在一定温度和摩尔数的条件下,气体的压力和体积成反比,而与气体的物理性质(例如分子大小和形状)无关。

三、气体的压强气体分子在容器壁上会产生压力,这种压力被称为气体的压强。

根据气体分子的运动特性,我们可以得到气体的压强与分子速度和撞击频率之间的关系。

通常情况下,气体的压强与气体分子的速度平方成正比。

四、气体的温度气体的温度是指气体分子的平均动能。

根据气体分子模型,气体分子的速度与其温度之间呈正相关关系。

在绝对温标上,温度与气体分子的平均动能之间存在着线性关系。

五、气体的体积气体的体积是气体占据的空间大小。

根据观察和实验结果,气体的体积与其分子数量和分子碰撞的频率有关。

当温度不变时,气体的体积与其压强成反比。

六、亚音速和超音速流动亚音速流动是指气体在流动过程中,流速小于音速的情况。

这种流动模式下,气体能够传递信息,且压力和温度分布相对均匀。

超音速流动则是指气体的流速大于音速。

在超音速流动中,气体的压力和温度存在明显的不均匀分布。

七、伯努利定理根据伯努利定理,沿着气体流动的方向,气体的总能量保持不变。

这意味着当气体流速增大时,气体的压强会降低,从而产生较低的静压力。

八、霍金定理霍金定理是描述亚音速气体流动的基本原理。

气体动力学基础

气体动力学基础
ห้องสมุดไป่ตู้
连续介质 分子间隙
§1.2 流体的粘性
虚拟演示 粘性演示 PLAY
定义:在流动的流体中, 定义:在流动的流体中,如果各流体层的流速 不相等, 不相等,那么在相邻的两流体层之间的接触面 就会形成一对等值而反向的内摩擦力( 上,就会形成一对等值而反向的内摩擦力(或 粘性阻力)来阻碍两气体层作相对运动。 粘性阻力)来阻碍两气体层作相对运动。即流 体质点具有抵抗其质点作相对运动的性质, 体质点具有抵抗其质点作相对运动的性质,就 称为流体的粘性。 称为流体的粘性。
例2 续
于是作用在轴表面的阻力矩为 M= τAr= V/ δ πdl d/2 消耗的功率 N=Mω=V/δ πdld/2 2πn/60 ω δ π π =0.72 3.77/(0.2 10-3) π 0.36 1 0.36/2 2π π π 200/60 =57.9(kw)
第二阶段( 第二阶段(可压缩流体动力学 的发展阶段) 的发展阶段)
1908年普朗特和迈耶提出了激波和膨胀 年普朗特和迈耶提出了激波和膨胀 波理论 1910年瑞利和泰勒研究得出了激波的不 年瑞利和泰勒研究得出了激波的不 可逆性; 可逆性; 1933年泰勒和马科尔提出了圆锥激波的 年泰勒和马科尔提出了圆锥激波的 数值解
粘性举例
譬如看看河中的流水, 譬如看看河中的流水 , 观察水面上漂浮的树叶等物的 速度差别可以发现靠岸处的水流就比河中心的水流慢 这是典型的粘性影响. 些。这是典型的粘性影响 摩擦盘也是粘性力在起作用。 摩擦盘也是粘性力在起作用。
粘性产生的物理原因
分子不规则运动的动量 交换 分子间的吸引力
y
v≈v ∞ v ∞
=(F/A) (h/V)=0.004 N s/ m2
【例2】转轴直径d=0.36m,轴承长度l=1m,轴与轴承之间的缝 转轴直径d=0.36m,轴承长度l=1m, d=0.36m l=1m 隙宽度δ=0.2mm其中充满 =0.72Pas的油, 其中充满 s的油 隙宽度δ=0.2mm其中充满=0.72Pas的油,若轴的转速 n=200r/min, 求克服油的粘性阻力所消耗的功率。 n=200r/min, 求克服油的粘性阻力所消耗的功率。 【解】由驱动力矩=阻力力矩得到 由驱动力矩 阻力力矩得到 τ1(2πr1l)r1= τ2 (2πr2l)r2 π π 再由 τ=dV/dy (dV/dy)1=(dV/dy)2 (r2/r1)2 则得 因为缝隙很小,近似认为r 因为缝隙很小,近似认为 1=r2,速度成线性分布 即速度梯度为 dV/dy=V/ δ 其中,粘附于轴表面的油的运动速度V等于轴表面的周向速度 等于轴表面的周向速度, 其中,粘附于轴表面的油的运动速度 等于轴表面的周向速度, 即 V= πdn/60= π 0.36 200/60=3.77m/s

气体动力学基础试题与答案

气体动力学基础试题与答案

一、 解释下列各对名词并说明它们之间的区别与联系 1. 轨线和流线2. 马赫数M 和速度系数λ 5.膨胀波和激波二、 回答下列问题1. 膨胀波在自由表面上反射为什么波为什么4.收敛喷管的三种流动状态分别是什么各有何特点 三、(12分)已知压气机入口处的空气温度T1=280K,压力P1=1.0bar ,在经过压气机进行可逆绝热压缩以后,使其压力升高了25倍,即增压比P2/P1=25,试求压气机出口处温度和比容,压气机所需要的容积功。

设比热容为常数,且比热比k=。

四、空气沿如图1所示的扩散管道流动,在截面1-1处空气的压强5110033.1⨯=p N/m 2,温度ο151=t C,速度2721=V 米/秒,截面1-1的面积1A =10厘米2,在截面2-2处空气速度降低到2V =米/秒。

设空气在扩散管中的流动为绝能等熵流动,试求:(1)进、出口气流的马赫数1M 和2M ;(2)进、出口气流总温及总压;(3)气流作用于管道内壁的力。

六、(15分)在超声速风洞的前室中空气的滞止温度为T *=288K,在喷管出口处空气的速度V 1=530米/秒,当流过试验段中的模型时产生正激波(如图1所示),求激波后空气的速度。

图 1 第四题示意图图2 第五题示意图一、解释下列各对名词并说明它们之间的区别与联系(共20分,每题4分)1.轨线和流线答:轨线是流体质点运动的轨迹;流线是一条空间曲线,该曲线上任一点的切线与流体在同一点的速度方向一致。

区别:轨线的是同一质点不同时刻的位置所连成的曲线;流线是同一时刻不同质点运动速度矢量所连成的曲线。

联系:在定常流动中轨迹线和流线重合。

2.马赫数M和速度系数λ答:马赫数M是气体运动速度与当地声速的比值;速度系数λ是气体运动速度与临界声速的比值。

区别:速度相同时气体的马赫数与静温有关,最大值为无限大,而速度系数于总温有关,其最大值为有限值。

联系:已知马赫数可以计算速度系数,反之亦然。

3.膨胀波和激波答:膨胀波是超声速绕外钝角偏转或加速时所产生的压力扰动波;激波是超音速气流流动方向向内偏转所产生强压缩波。

气体动力学的基本原理

气体动力学的基本原理

气体动力学的基本原理气体动力学是研究气体在运动中的物理性质和行为的学科,其基本原理涉及气体的压力、体积、温度以及分子运动等方面。

本文将介绍气体动力学的基本原理,包括理想气体状态方程、分子速度分布和碰撞等相关内容。

一、理想气体状态方程理想气体状态方程是描述气体状态的基本关系式,表达为PV = nRT,其中P表示气体的压力,V表示气体的体积,n表示气体的摩尔数量,R表示气体常量,T表示气体的温度。

根据理想气体状态方程,可以推导出布尔定律、盖-吕萨克定律以及查理定律等气体性质和规律。

二、分子速度分布气体分子在运动中具有不同的速度分布,其分子速度与温度有关。

根据麦克斯韦分布定律(麦分布),分子速度分布可以用麦克斯韦-玻尔兹曼速度分布函数来描述。

该函数表示各个速度分量的分布概率密度,可以用于计算气体中分子的平均速度、最概然速度和均方根速度等重要参数。

三、碰撞气体分子之间的碰撞是气体动力学中重要的研究内容。

分子之间的碰撞导致气体分子的运动方向和速度发生变化,从而实现了气体的传导、散射和扩散等现象。

碰撞模型可通过玻尔兹曼方程进行描述,该方程反映了气体分子数密度随时间和空间变化的关系,是研究气体动力学的重要工具。

四、气体扩散气体扩散是气体动力学的重要研究内容之一,涉及气体分子的运动和传播过程。

根据菲克定律,气体在压力差驱动下会自然地由高压区向低压区扩散。

扩散速率与温度、压力以及气体分子的大小和形状等因素有关,可通过斯托克斯-爱因斯坦方程进行定量计算。

总结:本文介绍了气体动力学的基本原理,包括理想气体状态方程、分子速度分布和碰撞以及气体扩散等方面。

这些原理为我们理解和解释气体的运动和行为提供了基础,也为相关领域的应用提供了理论支持。

理解气体动力学的基本原理对于工程技术和科学研究都具有重要意义。

空气动力学基础原理与应用

空气动力学基础原理与应用

空气动力学基础原理与应用空气动力学是研究空气流动对物体运动和空间结构影响的学科,它是现代工程学和航空航天工程的重要组成部分。

在工程和技术应用中,空气动力学被用于设计和优化飞行器、汽车、摩托车、建筑物、桥梁等结构。

本文将介绍空气动力学的基础原理和应用。

一、气体动力学基础气体动力学是空气动力学的基础,研究气体的流动和力学特性。

气体的动力学性质包括压力、密度、速度和温度等参数,这些参数随着空气流动而发生变化。

气体的流动可以分为层流和湍流两种状态。

在层流状态下,气体流动沿着一条直线或曲线运动,并具有稳定和预测性。

在湍流状态下,气体流动呈现为混沌状态,具有不可预测性和不规则性。

二、空气动力学的基本原理空气动力学的基本原理包括如下几个方面:1、伯努利定理伯努利定理是空气动力学的核心原理之一,它描述了气体在不同速度下的压力变化规律。

伯努利定理认为,在气体流动过程中,流速越大,压力越低,反之亦然。

在翼型表面上,气流在表面上方流动的速度比表面下方流动的速度快,因此表面上方的压力低于表面下方的压力。

这种压力差产生的升力是翼型飞行的基础。

2、牛顿定律牛顿定律是描述力学系统的基本原理之一。

在空气动力学中,牛顿定律用于分析物体在气流中运动的动力学行为。

牛顿第一定律认为,除非受到外力的作用,物体将保持匀速直线运动或静止状态。

牛顿第二定律则描述了物体在受到外力作用下的加速度。

在空气动力学中,牛顿定律用于分析物体在气流中所受的阻力和升力。

3、概率论及分布函数在空气动力学中,概率论和分布函数应用十分广泛。

概率论和统计学方法被用于研究气体流动的随机过程和不确定性。

分布函数则用于描述气体动力学参数的变化情况,如速度、压力、密度等参数的空间和时间分布情况。

三、空气动力学的应用空气动力学的应用范围十分广泛,包括下列几个方面:1、航空航天工业航空航天工业是空气动力学的主要应用领域之一。

在飞行器设计和优化中,空气动力学可以帮助设计师选择和优化翼型和飞行速度等参数,以达到最佳的升阻比和燃料效率。

《空气动力学基础》第5章图文模板

《空气动力学基础》第5章图文模板
收缩喷管的工作状态
亚临界流态
Mae 1 pe pb
pb p0 cr 完全膨胀
出口外扰动可向管内传播。
14:25
22
第五章 一维定常可压缩管内流动 §5-2 收缩喷管 收缩喷管的工作状态
——气流在喷管内的膨胀加速程度取决于总压和背压。
亚临界流态
特点
判别
Mae 1 pe pb
pb p0 cr
T0
K p0 A q
T0
14:25
17
第五章 一维定常可压缩管内流动 §5-1 理想气体在变截面管道中的流动
流量函数q(λ)
1
q
1 2
1
( )
q(λ) 1.0
0.8
空气γ =1.4
q(λ)不是一个单调函数 ;
y(λ) 临 界 状 态 (λ=1) 下 , q(λ) 最
5.0
4.0 大值;
§5-4 内压式超声速进气道及其他变截面管流
14:25
11
第五章 一维定常可压缩管内流动 §5-2 收缩喷管 喷管的分类
——使气流不断加速的管道。
气流参数
dp d dTMa<1 Ma<1 pT
Ma 1
M a< 1 M a< 1
Ma 1
M a>1 M a>1
扩 压 M a>1 M a>1

dv dMMa<1a v Ma
超临界流态
Mae 1 pe pb
pb p0 cr 不完全膨胀
出口外扰动无法影响喷管内部流动;
且存在膨胀波。
14:25
26
第五章 一维定常可压缩管内流动 §5-2 收缩喷管
收缩喷管的工作状态

气体动力学基础(2)

气体动力学基础(2)

1
*u*A* A**a* A* p00 2 1 2( 1)
(7.66)′
堵塞流量是给定滞止参数下,变截面管流中气体等熵流动可能达到的最
大流量。就是说,当滞止参数给定后,管道出口压强降低时,通过管道的
气体流量不断增加;当流量达到堵塞流量后,再降低出口压强,通过管道
的流量不会再增加。根据变截面气体的等熵流动原理,这时在管道的最小 截面上,气体流速达到当地声速,而这一速度是气流在最小截面上的最大 速度,无论怎样减小出口压强,都不会使最小截面上的速度增大。
2 普朗特-迈耶(P-M)流动关系式
我们来分析连续转折的超声速气流运动。均匀气流在某一直线上开始发 生膨胀转折,而后超声速气流绕凸角的平面流动,它通过一系列连续转折的 马赫波完成等熵膨胀,因此连续转折的马赫波又称马赫线或膨胀波。根据上 述分析我们首先导出超声速气流通过一道马赫线微弱膨胀的 P-M关系式。
亚声速定常等熵流在收缩通道中将加速,但始终保持亚声速;超声 速定常等熵流在收缩通道中将减速,但始终保持超声速。如图7.24所 示。
(2)扩张通道流动 亚声速定常等熵流在扩张通道中将减速,并保持亚声速;超声速定常 等熵流在扩张通道中将加速,且始终保持超声速。如图7.25所示。
(3)收缩扩张管流 收缩扩张通道中气体等熵流动情况较简单收缩或扩张通道中流动复杂。
主流速度远远大于横向速度,准一维假定是很好的近似。从几何边界条件
来说:如果通道截面的变化率很小,就能满足一维近似的要求。具体来说
,准一维近似要求: L A 1 ,其中L是通道的特征长度。 A x
如果外界没有热量输入,气体流动过程也没有化学反应、蒸发等内部
生成热,气体的粘度又很小,气体流动可以认为是理想绝热的。下面我们

气体动力学基础笔记手写

气体动力学基础笔记手写

气体动力学基础笔记手写一、气体动力学基本概念1. 气体:由大量分子组成的混合物,其分子在不断地运动和碰撞。

2. 温度:气体分子平均动能的量度,与分子平均动能成正比。

3. 压力:气体对容器壁的压强,由大量气体分子对容器壁的碰撞产生。

4. 密度:单位体积内的气体质量,与分子数和分子质量有关。

5. 流场:描述气体流动的空间和时间的函数,由速度、压力、密度等物理量描述。

二、理想气体状态方程1. 理想气体状态方程:pV = nRT,其中p为压力,V为体积,n为摩尔数,R为气体常数,T为温度。

2. 实际气体与理想气体的关系:实际气体在一定条件下可以近似为理想气体,但在某些情况下需要考虑分子间相互作用和分子内能等效应。

三、气体流动的基本方程1. 连续性方程:质量守恒方程,表示单位时间内流入流出控制体的质量流量相等。

2. 动量守恒方程:牛顿第二定律,表示单位时间内流入流出控制体的动量流量等于作用在控制体上的外力之和。

3. 能量守恒方程:热力学第一定律,表示单位时间内流入流出控制体的热量流量等于控制体内能的变化率加上作用在控制体上的外力所做的功。

四、一维定常流1. 一维流:流场中所有点的流速方向都在同一直线上。

2. 定常流:流场中各物理量不随时间变化而变化的流动。

3. 声速:气体中声速与温度和气体种类有关,是气体的特征速度。

4. 马赫数:流场中任意一点上流速与当地声速之比,是描述流动状态的重要参数。

五、膨胀波与压缩波1. 膨胀波:由于流体受压缩而产生的波,传播方向与流体运动方向相反,波前压力低于波后压力。

2. 压缩波:由于流体受扩张而产生的波,传播方向与流体运动方向相同,波前压力高于波后压力。

空气动力学复习资料

空气动力学复习资料

空气动力学复习一、基本概念1 粘性施加于流体的应力和由此产生的变形速率以一定的关系联系起来的流体的一种宏观属性,表现为流体的内摩擦。

以气体为例,气体分子的速度是由平均速度和热运动速度两部分叠加而成,前者是气体团的宏观速度,后者决定气体的温度。

若相邻两部分气体团以不同的宏观速度运动,由于它们之间有许多分子相互交换,从而带来动量的交换,使气体团的速度有平均化的趋势,这便是气体粘性的由来。

2 压缩性流体的压缩性是流体质点在一定压力差或温度差的条件下,其体积或密度可以改变的性质。

其物理意义是:单位体积流体的体积对压强的变化率。

气体流速变化时,会引起气体的压强和密度发生变化。

在低速气流中,由于气流速度变化而引起的气体密度的相对变化量很小,可以把气体看作不可压缩流体来处理;高速气流压缩性的影响不能忽略,必须按可压流体来处理。

一般0.3Ma作为气体是否可压的分界点。

3 理想气体忽略气体分子的自身体积,将分子看成是有质量的几何点;假设分子间没有相互吸引和排斥,即不计分子势能,分子之间及分子与器壁之间发生的碰撞是完全弹性的,不造成动能损失。

这种气体称为理想气体。

严格遵从气体状态方程的气体,叫做理想气体(Ideal gas.有些书上,指严格符合气体三大定律的气体。

)从微观角度来看是指:气体分子本身的体积和气体分子间的作用力都可以忽略不计,不计分子势能的气体称为是理想气体。

4 焓热力学中表征物质系统能量的一个重要状态参量,焓的物理意义是体系中热学能(内能)再附加上PV(压能)这部分能量的一种能量。

5理想流体不可压缩、不计粘性(粘度为零)的流体。

欧拉在忽略粘性的假定下,建立了描述理想流体运动的基本方程。

理想流体和理想气体是两个不同的概念,前者指流体没有粘性,后者指气体状态参量满足气体状态方程的气体。

6 音速音速是介质中弱扰动的传播速度,其大小因媒质的性质和状态而异。

在流动的气体中,相对于气流而言,微弱扰动的传播速度也是声速。

空气动力学基础

空气动力学基础

我读书只是蜻蜓点水,对一些公式的理解可能有错误;写的只是大致的推导过程,难免有不细致严谨之处;对一些英文的翻译可能不标准,同时可能输入有误。

希望大家批评指正、私下交流。

真心希望我们共同为之润色添彩,使其更加准确无误。

同时,大家有什么学习资料都记得共享啊,让我们共同进步!大家可以再看看领域导论书,看了这个总结,再看书就比较简单了。

看书最好也看看例题,例题不仅是对公式的简单应用,而且有些还包含新的知识,能增进我们对公式的理解。

这些内容只能算是一些变来变去的简单代数问题,大家不要有压力。

不过有几条注意事项:1、注意公式的限定条件,避免错误地加以应用。

2、大物书上的理想气体方程是Pv=RT,其中的R是普适气体常量(universal gas constant),领域导论书上的P=ρRT是经过变换的等价形式,其中的R是个别气体常量(specific gas constant),等于普适气体常量R普适/M,大家变一下马上就懂了。

2、谈谈我的一个理解:本书中的研究好像不太强调质量和体积,可能是因为空气动力学研究没必要也不方便强调。

在一、基本方程——7、能量方程的推导中,v=1/ρ,这里的1应理解为单位质量,后面的能量方程中的V2也包含单位质量1,不然与h的量纲就不统一了;在二、公式应用——3、空速测定——C、高速亚声速流中,我们可以看出在本书中,Pv=RT,同样把大物书上的状态方程Pv=R普适T中的m当成单位质量1,并利用普适气体常量和个别气体常量的关系R个别=R普适/M,即可推出Pv=RT。

3、本书中涉及到比热(specific heat),用c v (对于等体过程)和c p(对于等压过程)在表示。

我们在大物中也学有c v和c p,不过它们不一样,不要混淆。

大物中那两个是摩尔热容(molar heat capacity),分别为定体摩尔热容(molar heat capacity at constant volume)和定压摩尔热容(molar heat capacity at constant pressure)。

气体动力学基础试题与答案

气体动力学基础试题与答案

一、 解释下列各对名词并说明它们之间的区别与联系 1. 轨线和流线2. 马赫数M 和速度系数λ 5.膨胀波和激波二、 回答下列问题1. 膨胀波在自由表面上反射为什么波为什么4.收敛喷管的三种流动状态分别是什么各有何特点三、(12分)已知压气机入口处的空气温度T1=280K,压力P1=1.0bar ,在经过压气机进行可逆绝热压缩以后,使其压力升高了25倍,即增压比P2/P1=25,试求压气机出口处温度和比容,压气机所需要的容积功。

设比热容为常数,且比热比k=。

四、空气沿如图1所示的扩散管道流动,在截面1-1处空气的压强5110033.1⨯=p N/m 2,温度 151=t C,速度2721=V 米/秒,截面1-1的面积1A =10厘米2,在截面2-2处空气速度降低到2V =米/秒。

设空气在扩散管中的流动为绝能等熵流动,试求:(1)进、出口气流的马赫数1M 和2M ;(2)进、出口气流总温及总压;(3)气流作用于管道内壁的力。

六、(15分)在超声速风洞的前室中空气的滞止温度为T *=288K,在喷管出口处空气的速度V 1=530米/秒,当流过试验段中的模型时产生正激波(如图1所示),求激波后空气的速度。

图 1 第四题示意图图2 第五题示意图一、解释下列各对名词并说明它们之间的区别与联系(共20分,每题4分)1.轨线和流线答:轨线是流体质点运动的轨迹;流线是一条空间曲线,该曲线上任一点的切线与流体在同一点的速度方向一致。

区别:轨线的是同一质点不同时刻的位置所连成的曲线;流线是同一时刻不同质点运动速度矢量所连成的曲线。

联系:在定常流动中轨迹线和流线重合。

2.马赫数M和速度系数λ答:马赫数M是气体运动速度与当地声速的比值;速度系数λ是气体运动速度与临界声速的比值。

区别:速度相同时气体的马赫数与静温有关,最大值为无限大,而速度系数于总温有关,其最大值为有限值。

联系:已知马赫数可以计算速度系数,反之亦然。

3.膨胀波和激波答:膨胀波是超声速绕外钝角偏转或加速时所产生的压力扰动波;激波是超音速气流流动方向向内偏转所产生强压缩波。

(仅供参考)气体动力学基础王新月1-6章答案

(仅供参考)气体动力学基础王新月1-6章答案

y
y
t=0 时 x/y=1
② dx x 积分得x (1 t)C dt 1 t
t=0 时,x=1 带入得 C=3
dy y积分得y e(tC) dt
t=0 时,y=1 带入得 C=0
x 1t
迹线方程
y ex1(t 0时的迹线)
y et
3.5 解: dx dy y 2 2 y 2tx 0 1 y t
by
3 AE
(二)作用点计算 yD1 yC
JC yC AAE
h1C sin
12 yC AAE
0.7695 m
hD1 yD1 sin 0.666m
by
2 EB
3 2
hDBE
hCEB
J C sin a yC2 AEB
1
12 yC2 AEB
yC2
h1 h2 / 2 (h h / 2) * sin a
2 3
4/
3 2.309
AEB
LEB
b
h2 b sin a
4/
3 2.309
板 BE 的几何中心 y 的坐标为 yC2
by
3 BE
y
' D
2
yC' 2
JC2 yC 2 ABE
yEC 2
JC2 yEC 2 LBE
h2 / 2 sin a
12 yEC 2 LBE
距点 E:
h2 1.1547 sin a 1.1547 0.16667 1.32137
当 t=1;x=0;y=0 时 y 2 2y 2x 0
3.6 解:Vx x2 y ;Vy 4 y; Vz 3z 2
由式
3.10
得到
a
(2x3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有重力,即:X 0, Y 0, Z g 。则,绝对静止流体的等压面
方程为:
gdz 0 dz 0 z C
z p0
o
即:静止流体中的水平面为等压面。 但是,这一结论有一定的限定条件:
y m
x h
同种相连通的绝对静止流体的 水平面为等压面。
图2-4 重力作用下的静止流体
际液柱高度 h 及液面压力等效高度
p
p0

组成——压力水头的几何
意义为:静止流体中某点上方的等效液柱高度 若液面上方有其他液层覆盖,此时h为非真实的 液体的液柱高 度,应以该点所在位置的环境液体为依据转化等效液柱高度。 第二章 流体静力学
液面上方有其他液层覆盖的情 况下:
Pa
若液面上方有其他液层覆 盖,此时h为非真实的
衡状态。根据达朗伯原理,给流体施加以与加速度方向相反、大小为
F ma
的惯性力,可将流体运动学问题转化为静力学问题求解。
研究依据:流体平衡微分方程 dp ( Xdx Ydy Zdz ) 。 第二章 流体静力学
掌握
一、等加速水平运动容器中流体的相对平衡
如图,盛有液体的容器沿水平面以 加速度a作匀速直线前进,容器中的 流体也处于匀加速直线运动之中。
dp ( Xdx Ydy Zdz ) gdz dz
得出结论:对于不可压缩流体γ=Const 时,可积分上式得:
dz
z
dp

0
水静力学 基本方程
z p0
p

C
I
y
o
x h m
A 说明:水静力学基本方程的适用条 件:γ=Const,即不可压缩静止流体。
p0 o H
z
zs x
α
m
坐标固定在容器上,坐标原点 o 在
自由液面的中心, z 轴竖直向上。 其中: zs 为自由液面上点的 z 坐标, h为液体中任意一点m离自由液面的 垂直深度。
h
a
图2-7 等加速直线运动容器
第二章 流体静力学
流体平衡微分方程:作用在相对静止
流体中任一质点m上的质量力包括重
A 关于压力水头及等效液柱高度的说明:
p p0 h 。以表压计算: 由静力学基本方程,有: p p0 h
若液面敞口, p0 0,
p
流体中某点上方的液柱高度h;

h——压力水头的几何意义为:静止
p
h′为等效液柱高度,由实 若液面封闭, p0 0, 0 h h。
际液柱高度 h 及液面压力等效高度
p
p0

组成——压力水头的几何
意义为:静止流体中某点上方的等效液柱高度。
第二章 流体静力学
液面封闭时: p0 0
p0>0 p 0
液面计
p0<0

p
h

1
压力 水头
p0

h
p
压力

z
水头
位置 水头
z
位置 水头
1 0
0
0
基准面
0
基准面
p0 0
p0 0
第二章 流体静力学
静止流体中的压强分布,由两部分组成——等值传递的液面压力
p0以及由该点上方高度为h 的液柱产生的压力(重量)γh。 静止流体中的压力随深度按线性规律变化。 第二章 流体静力学
A 说明:绝对静止流体中的等压面
由等压面方程:Xdx Ydy Zdz 0,对于绝对静止流体,质量力只
图2-7 等加速直线运动容器
第二章 流体静力学
dp (adx gdz )
等压面方程:对于不可压缩流体ρ=Const,令dp=0,积分平衡微分 方程得: ax gz C z 结论:a. 等压面是一簇平行斜面。 b. 等压面与x轴夹角=质量力与z轴夹角 arc tan( ) 。 c. 等压面与质量力(重力和惯性力的合力)R 相正交。 自由液面方程:在自由液面上,x=0时z=0,则C=0,因此有:
a xC g
a g
a a z x C zs x g g
第二章 流体静力学
压强分布特性: 对于不可压缩流体ρ=Const,积分平衡微分方程:
时,产生真空的程度,即: p绝 pa , p p p 0 时, a 表 绝
p真 p a p绝 p表 。定义真空高度(真空压力对应的液柱
高度)为:h


p真

pa p绝 。

第二章 流体静力学
A 说明:
绝对压强、相对压强及真空压强之 间的关系如图。 绝对压强永为正值,最小值为0,
第二章 流体静力学
§2.4 几种质量力作用下的流体平衡
掌握
几种质量力作用下的流体相对平衡
第二章 流体静力学
研究对象:装在容器中的流体随容器相对于地球在运动,但流体各部 分之间以及流体与容器之间没有相对运动,即相对静止流体。 研究内容:相对静止流体的压强分布规律、等压面方程及其特性。
研究方法:坐标建立在运动着的容器上,此时容器中的流体为相对平
图2-4 重力作用下的静止流体
第二章 流体静力学

已知在自由表面上,有: z 0, p p0 ,且以静止液体中某点离自由 液面的深度 h 代替 -z。由式
p z C p p0 z
dz
dp
,又可得: 0
p p0 h
A 说明:
水静力学 基本方程 II
A 关于压力水头及等效液柱高度的说明:
p p0 h 。以表压计算: 由静力学基本方程,有: p p0 h
若液面敞口, p0 0,
p
流体中某点上方的液柱高度h;

h——压力水头的几何意义为:静止
p
h′为等效液柱高度,由实 若液面封闭, p0 0, 0 h h。
第二章 流体静力学
§2.3 重力作用下的流体平衡
重点 掌握
静力学基本方程及其应用 各种压强表示方法
第二章 流体静力学
重点掌握
研究对象:流体相对于地球没有运动的静止状态,即绝对静止状态。
是工程中最为常见的流体平衡状态,此时质量力只有重力。
一、静力学基本方程式(重力作用下的流体平衡方程)
取重力作用下的静止流体为研究对象,


液体的液柱高度,应以该
点所在位置的环境液体为 依据转化等效液柱高度。
δ=0.8 h

1
p
z
压力 水头
位置
水头
0
0 基准面
第二章 流体静力学
重点掌握
四、测压计——静力学基本方程应用二
根据适用范围、适用条件的不同,测压计通常有液式测压计和金属
测压计。
金属测压计 原理:弹性元件在压力作用下弹性变形。 分类:弹簧管式压力表、薄膜式压力表。 液式测压计
水银
U形水银测压计
pA h1 Hg h2
第二章 流体静力学
i 求A点的压强 p
A h1 等压面1 空气
工作原理:
h2
p
h3
1。选取等压面1、2
2。在等压面上应用水静力 学基本方程,应满足:
等压面2
水银
组合水银测压计
p A h1 p Hg h2 p Hg h3 p A Hg (h2 h3 ) h1
第二章 流体静力学
i 求A、B两点的压强差 工作原理:
p2 p1 等压面2
1。选取等压面1、2 2。在等压面上应用水静力
h2
等压面1 h1 A
△h
学基本方程,应满足:
B
水银比压计
p A h1 p1 pB h2 p2 p p h 2 Hg 1 p A pB Hg h (h1 h2 )
A 气体的密度、重度很小,通常可以忽略空气柱的重量,认为整 个充气空间压力相等。 第二章 流体静力学
比压计、压差计:将测压管两端接在两个不同测压点上,比较
其压差。
i 求A、B两点的压强差
p
空气
工作原理: 因充气空间压力相等,有以 下关系:
h2 B
p
h1
A
空气比压计
p h1 p A p h2 pB p A pB (h1 h2 )
A 0
z
等压面 0
学基本方程,应满足:
测压管
pA p0 h hA
第二章 流体静力学
水银测压计、组合水银测压计:U形管中,以水银、空气等
作为工作液,一端接测压点,一端通大气。
i 求A点的压强 工作原理:
A
h1
1。选取等压面
h2
等压面
2。在等压面上应用水静力 学基本方程,应满足:
A 说明:
压强的度量单位: 应力表示形式:N/m2、Pa 大气压表示形式:atm(标准大气压)、at(工程大气压)
液柱高度表示形式:mH2o、mHg
换算公式:
1atm 1.013 105 Pa 760mmHg 10.336mH 2o 1at 9.8 104 Pa 735mmHg 10mH 2o
图2-6 弹簧管式测压计
工作原理:
• 静力学基本方程: z
p

C 及 p p0 h。
• 等压面:同种相连通的绝对静止流体的水平面为等压面。 第二章 流体静力学
测压管:同种液体引出液柱高度以测量压力,一端与测压点相
相关文档
最新文档