高二上学期期中考试文科数学试卷含答案(1)

合集下载

三好网上学期期中考试高二数学(文科)试题及答案1

三好网上学期期中考试高二数学(文科)试题及答案1

2022年上学期期中考试高二数学〔文科〕试题及答案时量:120分钟 分值:150分一、选择题〔每题5分,共45分〕1.集合}3,2,1{=A ,}4,3,2{=B ,那么B A 的元素个数是( )A .1个B .2个C .3个D .4个2.sin 42sin 72cos 42cos72+= ()A .cos30oB .cos 60C .sin114D .cos114 3.直线1x y +=与圆2220(0)x y ay a +-=>没有公共点,那么a 的取值范围是()A.1)+ B.1) C.(1) D.1)4.采用系统抽样从个体数为83的总体中抽取一个样本容量为10的样本,那么每个个体被抽取的概率为〔 〕A .8 B. 8.3 C . 8310 D. 81 5.点A 〔1,2〕与B 〔3,4〕,那么线段AB 的垂直平分线方程为〔 〕.〔A 〕50x y --= 〔B 〕50x y +-=〔C 〕10x y -+= 〔D 〕10x y +-=6.在等差数列{a n }中,a 1= 2, a 2+ a 3=13,那么a 4+ a 5+ a 6等于( )A.40B.42C.43D.457.有一个几何体的三视图及其尺寸如下〔单位cm 〕,那么该几何体的体积为:A.12πcm 3B.15πcm 2C.36πcm 3D.以上都不正确8.在算式4×□+△=30的□、△中,分别填入一个正整数使算式成立,并使它们的倒数之和最小,那么这两个数构成的数对〔□、△〕应为〔 〕A .〔4,14〕B .〔6,6〕C .〔3,18〕D .〔5,10〕9.从盛满20升纯酒精的容器里倒出1升,然后用水加满,再倒出1升混合溶液,再用水加满. 这样继续下去,建立所倒次数x 和酒精残留量y 之间的函数关系( ) A. x y )2019(20⋅= B.x y )2019(= C.x y )2019(2020-= D.x y )2019(20-= 二、填空题〔每题5分,共30分〕 10.假设1||=a , 2||=b ,且a b a ⊥-)(,那么a 与b 的夹角是.11.如图,一个边长为4的正方形及其内切圆,假设随机向正方形内丢一粒豆子,那么豆子落入圆内的概率是 .12.如图,该程序运行后输出的结果为.俯视图主视图 侧视图13.如果实数x y 、满足条件101010x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩,那么Z = 2x y -的最大值为 . 〔第13题〕 14. 在ABC ∆中,C C B A cos ,4:2:3sin :sin :sin 则=的值为. 15. 某次考试,班长算出了全班40人数学成绩的平均分M ,如果把M 当成一个同学的成绩与原来的40个分数加在一起,算出这41个分数的平均值为N ,那么:M N 为.三.解答题〔共6题,总分值7 5分〕16.(此题总分值12分〕{n a }是等差数列,14,552==a a〔I 〕求{n a }的通项公式;〔II 〕设{n a }的前n 项和155=n S ,求n 的值.17.(此题总分值12分〕函数x x x x x f 22cos 3cos sin 2sin )(+-=。

高二数学上学期期中文科试题

高二数学上学期期中文科试题

高二数学上学期期中文科试题可能对于很多文科生来说数学是很难的,大家不要放弃哦,今天小编就给大家分享一下高二数学,就给阅读哦高二数学上期中文科试题第I卷共60分一、选择题:本大题有12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求.1. 已知是等比数列, ( )A.4B.16C.32D. 642.若a>b>0,下列不等式成立的是( )A.a23. 在中,,则一定是( )A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形4.在△ABC内角A,B, C的对边分别是a,b,c,已知a= ,c= ,∠A= ,则∠C的大小为( )A. 或B. 或C.D.5.原点和点(1,1)在直线x+y﹣a=0两侧,则a的取值范围是( )A.0≤a≤2B.026.在中,已知 ,则角A等于( )A. B. C. D.7.若数列为等差数列且,则sin 的值为( )A. B. C. D.8.在中,分别是角的对边,且 , ,则的面积等于( )A. B. C. D.109.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为( )A. 尺B. 尺C. 尺D. 尺10.若不等式组表示的平面区域是一个三角形,则的取值范围是( )A. 或B.C. 或D.11.等比数列的前n项的和分别为, ,则 ( )A. B. C. D.12.已知单调递增数列{an}满足an=3n﹣λ•2n(其中λ为常数,n∈N+),则实数λ的取值范围是( )A.λ≤3B.λ<3C.λ≥3D.λ>3第Ⅱ卷共90分二、填空题:本大题有4小题,每小题5分,共20分,把答案填在答卷的相应位置.13.已知关于x的不等式ax2﹣(a+1)x+b<0的解集是{x|114.设且 ,则的最小值为15.若数列的前n项的和为,且,则的通项公式为_________.16.若数列为等差数列,首项,则使前项和的最大自然数n是_________________.三、解答题:本大题有6题,共70分,解答应写出文字说明、证明过程或演算步骤.17、(本题满分10分)(1)设数列满足,写出这个数列的前四项;(2)若数列为等比数列,且求数列的通项公式18.(本题满分12分)已知函数 .(1)当时,解不等式 ;(2)若不等式的解集为,求实数的取值范围.19.(本题满分12分)的内角的对边分别为 ,已知 .(1)求(2)若 , 面积为2,求20.(本题满分12分)在中,角所对的边分别为,设为的面积,满足(I)求角的大小;(II)若边长,求的周长的最大值.21.(本小题满分12分)已知实数满足不等式组 .(1)求目标函数的取值范围;(2)求目标函数的最大值.22.(本小题满分12分)已知等比数列满足 , ,公比(1)求数列的通项公式与前n项和 ;(2)设,求数列的前n项和 ;(3)若对于任意的正整数,都有成立,求实数m的取值范围. 高二数学(文科)参考答案一、选择题:本大题有12小题,每小题5分,共60分1-12:C C C D B C B C C A B B二、填空题:本大题有4小题,每小题5分,共20分13. 14.8 15. 16. 4034三、解答题:17.(本小题满分10分)(1) …………5分,(2)由已知得,联立方程组解得得,即…………10分18.(本小题满分12分).……4分(2)若不等式的解集为,则①当m=0时,-12<0恒成立,适合题意; ……6分②当时,应满足由上可知,……12分19. (1)由题设及得,故上式两边平方,整理得解得……………6分(2)由,故又,由余弦定理及得所以b=2……………12分20.解:(1)由题意可知,……………2分12absinC=34•2abcosC,所以tanC=3. 5分因为0所以,所以,当时,最大值为4,所以△ABC的周长的最大值为6其他方法请分步酌情给分21.(本小题满分12分)解:(1)画出可行域如图所示,直线平移到点B时纵截距最大,此时z取最小值;平移到点C时纵截距最小,此时z取最大值.由得由得∴C(3,4);当x=3,y=4时,z最大值2.………………………8分(2) 表示点到原点距离的平方,当点M在C点时,取得最大值,且………………12分22. 解:(1)由题设知,,又因为, ,解得:,故an=3 = ,前n项和Sn= - .……4分(2)bn= = = ,所以 = ,所以== < ,………8分(3)要使恒成立,只需,即解得或m≥1. ………………12分高二文科数学上学期期中试卷一、选择题:(本大题共12小题,每小题5分;在每小题给出的四个选项中,只有一项是符合题目要求的.)1.命题“若,则”的逆否命题是 ( )A. 若,则B. 若,则C. 若,则D. 若,则2 .命题“ ”的否定是 ( )A. B. C. D.3.若中心在原点的椭圆C的右焦点为F(1,0),离心率等于12,则C的方程是 ( )A. x23+y24=1B. x24+y23=1C. x24+y22=1D. x24+y23=14. 表示的曲线方程为 ( )[A. B.C. D.5.抛物线的准线方程是 ( )A. B. C. D.6.若k∈R则“k>5”是“方程x2k-5-y2k+2=1表示双曲线”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知是椭圆的两焦点,过点的直线交椭圆于点,若 ,则 ( )A.9B.10C.11D.128.已知双曲线的离心率为3,焦点到渐近线的距离为,则此双曲线的焦距等于 ( )A. B. C. D.9.双曲线的一个焦点为,椭圆的焦距为4,则A.8B.6C.4D.210.已知双曲线的两个顶点分别为,,点为双曲线上除,外任意一点,且点与点,连线的斜率分别为、,若,则双曲线的离心率为 ( )A. B. C. D.11.如果是抛物线的点,它们的横坐标依次为,是抛物线的焦点,若 ,则 ( )A. B. C. D.12.已知点,是椭圆上的动点,且,则的取值范围是 ( )A. B. C. D.二、填空题:(本大题共4小题,每小题5分)13.若命题“ ”是假命题,则实数的取值范围是 .14.已知直线和双曲线的左右两支各交于一点,则的取值范围是 .15.已知过抛物线的焦点,且斜率为的直线与抛物线交于两点,则 .16.已知是抛物线上的动点,点是圆上的动点,点是点在轴上的射影,则的最小值是 .三、解答题(本大题共6小题,共70分,解答题应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设命题函数在单调递增;命题方程表示焦点在轴上的椭圆.命题“ ”为真命题,“ ”为假命题,求实数的取值范围.18.(本小题满分12分)(Ⅰ)已知某椭圆过点,求该椭圆的标准方程.(Ⅱ)求与双曲线有共同的渐近线,经过点的双曲线的标准方程.19.(本小题满分12分)已知抛物线的顶点在原点,焦点在轴的正半轴且焦点到准线的距离为2.(Ⅰ)求抛物线的标准方程;(Ⅱ)若直线与抛物线相交于两点,求弦长 .20.(本小题满分12分)已知双曲线的离心率为,虚轴长为 .(Ⅰ)求双曲线的标准方程;(Ⅱ)过点,倾斜角为的直线与双曲线相交于、两点,为坐标原点,求的面积.21.(本小题满分12分)已知椭圆,过点,的直线倾斜角为,原点到该直线的距离为 .(Ⅰ)求椭圆的标准方程;(Ⅱ)斜率大于零的直线过与椭圆交于E,F两点,若,求直线EF的方程.22.(本小题满分12分)已知分别为椭圆C:的左、右焦点,点在椭圆上,且轴,的周长为6.(Ⅰ)求椭圆的标准方程;(Ⅱ)E,F是椭圆C上异于点的两个动点,如果直线PE与直线PF的倾斜角互补,证明:直线EF的斜率为定值,并求出这个定值.数学(文科)学科参考答案第Ⅰ 卷 (选择题共60分)一、选择题:(本大题共12小题,每小题5分;在每小题给出的四个选项中,只有一项是符合题目要求的.)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B D D C A A C D C B B A第Ⅱ 卷 (非选择题共90分)二、填空题:(本大题共4小题,每小题5分. )(13) ; (14) ; (15) ; (16) .三、解答题:(解答应写出必要的文字说明,证明过程或演算步骤.)(17)(本小题满分10分)解:命题p:函数在单调递增命题q:方程表示焦点在轴上的椭圆……4分“ ”为真命题,“ ”为假命题,命题一真一假……6 分① 当真假时:② 当假真时:综上所述:的取值范围为……10分(18)(本小题满分12分)解:(Ⅰ)设椭圆方程为,解得,所以椭圆方程为. ……6分(Ⅱ)设双曲线方程为,代入点,解得即双曲线方程为. ……12分(19)(本小题满分12分)解:(Ⅰ) 抛物线的方程为:……5分(Ⅱ)直线过抛物线的焦点,设,联立,消得,……9分或……12分(20)(本小题满分12分)解:(Ⅰ)依题意可得,解得双曲线的标准方程为. ……4分(Ⅱ)直线的方程为联立,消得,设,,由韦达定理可得 , ,……7分则……9分原点到直线的距离为……10分的面积为……12分(21)(本小题满分12分)解:(Ⅰ)由题意,,,解得,所以椭圆方程是:……4分(Ⅱ)设直线:联立,消得,设,,则 ,……① ……② ……6分,即……③ ……9分由①③得由②得……11分解得或 (舍)直线的方程为:,即……12分(22)(本小题满分12分)解:(Ⅰ)由题意,,,的周长为,,椭圆的标准方程为. ……4分(Ⅱ)由(Ⅰ)知,设直线方程:,联立,消得……5分设,点在椭圆上,……7分又直线的斜率与的斜率互为相反数,在上式中以代,,……9分……10分即直线的斜率为定值,其值为. ……12分高二数学上期中文科联考试题第Ⅰ卷(共100分)一、选择题(本大题共11个小题,每小题5分,共55分)1.已知sin α=25,则cos 2α=A.725B.-725C.1725D.-17252.已知数列1,3,5,7,…,2n-1,…,则35是它的A.第22项B.第23项C.第24项D.第28项3.在△ABC中,角A,B,C的对边分别为a,b,c,若b=c=2a,则cos B=A.18B.14C.12D.14.△ABC中,角A,B,C所对的边分别为a,b,c,若cbA.钝角三角形B.直角三角形C.锐角三角形D.等边三角形5.已知点(a,b) a>0,b>0在函数y=-x+1的图象上,则1a+4b 的最小值是A.6B.7C.8D.96.《九章算术》中“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则从上往下数第6节的容积为A.3733B.6766C.1011D.23337.设Sn为等比数列{an}的前n项和, 27a4+a7=0,则S4S2=A.10B.9C.-8D.-58.已知数列{an}满足an+1+an=(-1)n•n,则数列{an}的前20项的和为A.-100B.100C.-110D.1109.若x,y满足约束条件x≥0,x+y-3≤0,x-2y≥0,则z=x+2y的最大值为A.3B.4C.5D.610.已知0A.13B.12C.23D.3411.已知等差数列{an}的公差d≠0,前n项和为Sn,若对所有的n(n∈N*),都有Sn≥S10,则A.an≥0B.a9•a10<0C.S2第Ⅰ卷选择题答题卡题号 1 2 3 4 5 6 7 8 9 10 11 得分答案二、填空题(本大题共3小题,每小题5分,共15分)12.在等比数列{an}中,a4•a6=2 018,则a3•a7= ________ .13.在△ABC中,a=3,b=1,∠A=π3,则cos B=________.14.对于实数a、b、c,有下列命题:①若a>b,则acbc2,则a>b;③若a ab>b2;④若c>a>b>0,则ac-a>bc-b;⑤若a>b,1a>1b,则a>0,b<0.其中正确的是________.(填写序号)三、解答题(本大题共3小题,共30分)15.(本小题满分8分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(acos B+bcos A)=c.(1)求角C;(2)若c=7,△ABC的面积为332,求△ABC的周长.16.(本小题满分10分)某厂拟生产甲、乙两种适销产品,每件销售收入分别为3 000元、2 000元. 甲、乙产品都需要在A、B两种设备上加工,在A、B设备上加工一件甲产品所需工时分别为1 h,2 h,加工一件乙产品所需工时分别为2 h,1 h,A、B两种设备每月有效使用台时数分别为400 h 和500 h,分别用x,y表示计划每月生产甲、乙产品的件数.(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问每月分别生产甲、乙两种产品各多少件,可使月收入最大?并求出最大收入.17.(本小题满分12分)已知公差不为零的等差数列{an}满足:a3+a8=20,且a5是a2与a14的等比中项.(1)求数列{an}的通项公式;(2)设数列{bn}满足bn=1anan+1,求数列{bn}的前n项和Sn.第Ⅱ卷(共50分)一、选择题18.(本小题满分6分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点.若FP→=4FQ→,则|QF|等于( )A.72B.52C.3D.2二、填空题19.(本小题满分6分)如图,F1,F2是椭圆C1:x24+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是__________.三、解答题20.(本小题满分12分)在等腰梯形ABCD中,E、F分别是CD、AB的中点,CD=2,AB=4,AD=BC=2.沿EF将梯形AFED折起,使得∠AFB=60°,如图.(1)若G为FB的中点,求证:AG⊥平面BCEF;(2)求二面角C-AB-F的正切值.21.(本小题满分13分)已知二次函数f(x)=x2-16x+q+3.(1)若函数f(x)在区间[-1,1]上存在零点,求实数q的取值范围;(2)是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且区间D的长度为12-t(视区间[a,b]的长度为b-a).22.(本小题满分13分)已知中心在坐标原点,焦点在x轴上的椭圆过点P(2,3),且它的离心率e=12.(1)求椭圆的标准方程;(2)与圆(x-1)2+y2=1相切的直线l:y=kx+t交椭圆于M,N两点,若椭圆上一点C满足OM→+ON→=λOC→,求实数λ的取值范围.参考答案第Ⅰ卷(共100分)一、选择题题号 1 2 3 4 5 6 7 8 9 10 11答案 C B B A D A A A B B D1.C 【解析】cos 2α=1-2sin2α=1-2×252=1725.故选C.2.B 【解析】由数列前几项可知an=2n-1,令an=2n-1=35得n=23.故选B.3.B4.A 【解析】由正弦定理可得sin C5.D 【解析】a+b=1,∴1a+4b=1a+4b(a+b)=5+ba+4ab≥9,当且仅当b=2a=23时取等号.故选D.6.A 【解析】根据题意,设该竹子自上而下各节的容积为等差数列{an},设其公差为d,且d>0,由题意可得:a1+a2+a3+a4=3,a7+a8+a9=4,则4a1+6d=3,3a1+21d=4,解可得a1=1322,d=766,则第6节的容积a6=a1+5d=7466=3733.故答案为A.7.A 【解析】由27a4+a7=0,得q=-3,故S4S2=1-q41-q2=1+q2=10.故选A.8.A 【解析】由an+1+an=(-1)n•n,得a2+a1=-1,a3+a4=-3,a5+a6=-5,…,a19+a20=-19.∴an的前20项的和为a1+a2+…+a19+a20=-1-3-…-19=-1+192×10=-100,故选A.9.B 【解析】由x,y满足约束条件x≥0,x+y-3≤0,x-2y≥0.作出可行域如图,由z=x+2y,得y=-12x+z2.要使z最大,则直线y=-12x+z2的截距最大,由图可知,当直线y=-12x+z2过点A时截距最大.联立x=2y,x+y=3解得A(2,1),∴z=x+2y的最大值为2+2×1=4.故答案为B.10.B 【解析】∵0∴x(3-3x)=3x(1-x)≤3•x+1-x22=34,当且仅当x=12时取等号.∴x(3-3x)取最大值34时x的值为12.故选B.11.D 【解析】由?n∈N*,都有Sn≥S10,∴a10≤0,a11≥0,∴a1+a19=2a10≤0,∴S19=19(a1+a19)2≤0,故选D.二、填空题12.2 01813.32 【解析】∵a=3,b=1,∠A=π3,∴由正弦定理可得:sin B=bsin Aa=1×323=12,∵b14.②③④⑤【解析】当c=0时,若a>b,则ac=bc,故①为假命题;若ac2>bc2,则c≠0,c2>0,故a>b,故②为真命题;若a ab且ab>b2,即a2>ab>b2,故③为真命题;若c>a>b>0,则cabc-b,故④为真命题;若a>b,1a>1b,即bab>aab,故a•b<0,则a>0,b<0,故⑤为真命题.故答案为②③④⑤.三、解答题15.【解析】(1)∵在△ABC中,0已知等式利用正弦定理化简得:2cos C(sin AcosB+sin Bcos A)=sin C,整理得:2cos Csin(A+B)=sin C,即2cos Csin(π-(A+B))=sin C,2cos Csin C=sin C,∴cos C=12,∴C=π3.4分(2)由余弦定理得7=a2+b2-2ab•12,∴(a+b)2-3ab=7,∵S=12absin C=34ab=332,∴ab=6,∴(a+b)2-18=7,∴a+b=5,∴△ABC的周长为5+7.8分16.【解析】(1)设甲、乙两种产品月产量分别为x,y件,约束条件是2x+y≤500,x+2y≤400,x≥0,y≥0,由约束条件画出可行域,如图所示的阴影部分.5分(2)设每月收入为z千元,目标函数是z=3x+2y,由z=3x+2y可得y=-32x+12z,截距最大时z最大.结合图象可知,直线z=3x+2y经过A处取得最大值由2x+y=500,x+2y=400可得A(200,100),此时z=800.故安排生产甲、乙两种产品的月产量分别为200,100件可使月收入最大,最大为80万元.10分17.【解析】(1)设等差数列{an}的公差为d,∵a3+a8=20,且a5是a2与a14的等比中项,∴2a1+9d=20,(a1+4d)2=(a1+d)(a1+13d),解得a1=1,d=2,∴an=1+2(n-1)=2n-1.6分(2)bn=1(2n-1)(2n+1)=1212n-1-12n+1,∴Sn=b1+b2+b3+…+bn=121-13+13-15+…+12n-1-12n+1=121-12n+1=n2n+1.12分第Ⅱ卷(共50分)一、选择题18.C 【解析】∵FP→=4FQ→,∴|FP→|=4|FQ→|,∴|PQ||PF|=34.如图,过Q作QQ′⊥l,垂足为Q′,设l与x轴的交点为A,则|AF|=4,∴|QQ′||AF|=|PQ||PF|=34,∴|QQ′|=3,根据抛物线定义可知|QF|=|QQ′|=3,故选C.二、填空题19.62 【解析】|F1F2|=23.设双曲线的方程为x2a2-y2b2=1.∵|AF2|+|AF1|=4,|AF2|-|AF1|=2a,∴|AF2|=2+a,|AF1|=2-a.在Rt△F1AF2中,∠F1AF2=90°,∴|AF1|2+|AF2|2=|F1F2|2,即(2-a)2+(2+a)2=(23)2,∴a=2,∴e=ca=32=62.三、解答题20.【解析】(1)因为AF=BF,∠AFB=60°,△AFB为等边三角形.又G为FB的中点,所以AG⊥FB.2分在等腰梯形ABCD中,因为E、F分别是CD、AB的中点,所以EF⊥AB.于是EF⊥AF,EF⊥BF,则EF⊥平面ABF,所以AG⊥EF.又EF与FB交于一点F,所以AG⊥平面BCEF.5分(2)连接CG,因为在等腰梯形ABCD中,CD=2,AB=4,E、F分别是CD、AB中点,G为FB的中点,所以EC=FG=BG=1,从而CG∥EF.因为EF⊥平面ABF,所以CG⊥平面ABF.过点G作GH⊥AB于H,连结CH,据三垂线定理有CH⊥AB,所以∠CHG为二面角C-AB-F的平面角.8分因为Rt△BHG中,BG=1,∠GBH=60°,所以GH=32.在Rt△CGB中,CG⊥BG,BG=1,BC=2,所以CG=1.在Rt△CGH中,tan∠CHG=233,故二面角C-AB-F的正切值为233.12分21.【解析】(1)∵函数f(x)=x2-16x+q+3的对称轴是x=8,∴f(x)在区间[-1,1]上是减函数.∵函数在区间[-1,1]上存在零点,则必有f(1)≤0,f(-1)≥0,即1-16+q+3≤0,1+16+q+3≥0,∴-20≤q≤12.6分(2)∵0≤t<10,f(x)在区间[0,8]上是减函数,在区间[8,10]上是增函数,且对称轴是x=8.①当0≤t≤6时,在区间[t,10]上,f(t)最大,f(8)最小,∴f(t)-f(8)=12-t,即t2-15t+52=0,解得t=15±172,∴t=15-172;9分②当6∴f(10)-f(8)=12-t,解得t=8;11分③当8∴f(10)-f(t)=12-t,即t2-17t+72=0,解得t=8,9,∴t=9.综上可知,存在常数t=15-172,8,9满足条件.13分22.【解析】(1)设椭圆的标准方程为x2a2+y2b2=1(a>b>0),由已知得:4a2+3b2=1,ca=12,c2=a2-b2,解得a2=8,b2=6,所以椭圆的标准方程为x28+y26=1.4分(2)因为直线l:y=kx+t与圆(x-1)2+y2=1相切,所以|t+k|1+k2=1?2k=1-t2t(t≠0),6分把y=kx+t代入x28+y26=1并整理得:(3+4k2)x2+8ktx+4t2-24=0,设M(x1,y1),N(x2,y2),则有x1+x2=-8kt3+4k2,y1+y2=kx1+t+kx2+t=k(x1+x2)+2t=6t3+4k2, 8分因为λOC→=(x1+x2,y1+y2),所以C-8kt(3+4k2)λ,6t(3+4k2)λ,又因为点C在椭圆上,所以,8k2t2(3+4k2)2λ2+6t2(3+4k2)2λ2=1?λ2=2t23+4k2=21t22+ 1t2+1,11分因为t2>0,所以1t22+1t2+1>1,所以0<λ2<2,所以λ的取值范围为(-2,0)∪(0,2).13分。

第一学期期中考试高二数学试题及答案(文科)-精选教育文档

第一学期期中考试高二数学试题及答案(文科)-精选教育文档

第一学期期中考试高二数学试题及答案(文科)高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理了第一学期期中考试高二数学,希望大家喜欢。

一、填空题:本大题共14小题,每小题5分,共70分。

请把答案填写在答题卡相应的位置上.1.已知命题,则 : .2.已知函数的导函数为,且满足,则 = .3.已知,,,为实数,且 .则是 - - 的条件.( 充分而不必要、必要而不充分、充要、既不充分也不必要)4. 有下列四个命题:(1)若,则的逆命题;(2)全等三角形的面积相等的否命题;(3)若,则有实根的逆命题;(4)若,则的逆否命题。

其中真命题的个数是_______.5.若是纯虚数,则的值是。

6.已知数列{an}的前n项和,则数列{an}成等比数列的充要条件是r= .7.计算8.函数,的单调递增区间是 .9.已知复数满足 =2,则的最大值为 .10.已知函数在处有极大值,则 = 。

11. 右图是函数的导函数的图象,给出下列命题:① 是函数的极值点;② 是函数的极小值点;③ 在处切线的斜率小于零;④ 在区间上单调递增.则正确命题的序号是 .12.观察下列等式: ,,根据上述规律,第五个等式为____________.13.已知扇形的圆心角为 (定值),半径为 (定值),分别按图一、二作扇形的内接矩形,若按图一作出的矩形面积的最大值为,则按图二作出的矩形面积的最大值为 .14.若存在过点的直线与曲线和都相切,则等于 .二、解答题15.(本小题满分14分)已知为复数,和均为实数,其中是虚数单位.(Ⅰ)求复数 ;(Ⅱ)若复数在复平面上对应的点在第一象限,求实数的取值范围.16.(本小题满分14分)已知 p:,q: .⑴ 若p是q充分不必要条件,求实数的取值范围;⑵ 若非p是非q的充分不必要条件,求实数的取值范围.17.(本题满分15分) 已知二次函数在处取得极值,且在点处的切线与直线平行.(1)求的解析式;(2)求函数的单调递增区间.18. (本题满分15分) 已知a、b(0,+),且a+b=1,求证:(1) ab (2) + (3) + . (5分+5分+5分)19.(本小题满分16分)两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065.(1)按下列要求建立函数关系式:(i)设 (rad),将表示成的函数;并写出函数的定义域. (5分)(ii)设 (km),将表示成的函数;并写出函数的定义域. (5分)(2)请你选用(1)中的一个函数关系确定垃圾处理厂的位置,使建在此处的垃圾处理厂对城A和城B的总影响度最小? (6分)20.(本小题满分16分)已知函数的图象过点,且在点处的切线与直线垂直.(1) 求实数的值;(6分)(2) 求在 ( 为自然对数的底数)上的最大值;(10分) 2019~2019学年度第一学期期中考试高二数学试题(文科)参考答案一、填空题:本大题共14小题,每小题5分,共70分。

上高二文科数学期中考试试题答案.doc

上高二文科数学期中考试试题答案.doc

广东仲元中学201X 学年第一学期期中考试高二数学(文科)答案1-5 BDCCA 6-10 DCBBC11、 2,2390x R x ax ∀∈-+≥ 12、17 13、41 14、21-或115、解:由于关于x 的方程0422=++ax x 无解故2201642<<-∴<-=∆a a ,………………………………………………3分 又因为x a x f )()(23-=是增函数,所以23023<∴>-a a ,………………6分 又由于q p ∨为真,q p ∧为假,可知p 和q 一真一假……………………7分(1)若p 真q 假,则2232322<≤∴⎪⎩⎪⎨⎧≥<<-a a a ,……………………………9分(2)若p 假q 真,则22322-≤∴⎪⎩⎪⎨⎧<≥-≤a a a a ,或……………………………11分 综上可知,实数a 的取值范围为2223-≤<≤a a 或………………………12分16、解:(Ⅰ)因为54cos =B ,所以53sin =B .………………………………2分 由正弦定理B b A a sin sin =,可得10sin 303a =. 所以35=a .………………5分(Ⅱ)因为ABC ∆的面积1sin 2S ac B =,53sin =B ,所以3310ac =,10=ac . ……………………………………………………7分由余弦定理B ac c a b cos 2222-+=,得165842222-+=-+=c a ac c a ,即2022=+c a .……………………10分所以2()220a c ac +-=,2()40a c +=,所以,102=+c a .………………………………………………………12分17、解:(y x ,)可能出现的结果有16种,分别为6分 (1)设事件A 为“出现点数之和大于3”,则事件A 包含的基本事件有13个, 分别为: (1,3)、(1,4)、(2,2)、(2,3)、(2,4)、(3,1)、(3,2)、(3,3)、(3,4)、(4,1)、(4,2)、(4,3)、(4,4),…………………………8分1613=∴)(A P ……………………………………………………………………10分 (2)设事件B 为“出现点数相等”,则事件B 包含的基本事件有4个, 分别为: (1,1)、(2,2)、(3,3)、(4,4)……………………………12分41164==∴)(B P …………………………………………………………………14分18、解:(I )在所给数据中,降雨量为110毫米的有3个,为160毫米的有7 6分(II )由题意得46051070+⋅-=X Y …………………………………………8分("132320202010P ++=发电量低于490万千瓦时或超过530万千瓦时")=P(Y<490或Y>530)=P(X<130或X>210)=…………………………13分故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为310.……………………………………………………………14分19、解: (1)………………………………4分(2)由散点图可知y 与x 线性相关,设回归直线方程为y bx a =+.列表:2777456209.637.1522056b -⨯⨯==-⨯∴,209.637.15613.3a =-⨯=-∴.∴回归直线方程为37.1513.3y x =-.……………………………………11分(3)当9x =时,37.15913.3321.05y =⨯-=.……………………………14分20、解:(1)当1=n 时,611==S a ,………………………………………1分当2≥n 时,5121112121121221+=-+--+=-=-n n n n n S S a n n n )]()([)()(*N n n a n ∈+=∴5………………………………………………………………3分又0212=+-++n n n b b b ,即n n n n b b b b -=-+++112,所以数列}{n b 是等差数列…………………………………………………………4分 又153119213=+++=b b b b ,,解得:351==d b ,,)(*N n n b n ∈+=∴23 ……………………………………………………………………………………5分 (2)由(1)可得,)())(())((1211212112121121123+--=+-=--=n n n n b a c n n n……………………………………………………………………………………7分12121121513131121321+=+--++-+-=++++=∴n n n n c c c c T n n )]()()[( ……………………………9分 012321123211>++=+-++=-+))((n n n n n n T T n n ,n T ∴单调递增……………10分 故311==T T n min )(,令5731k>,得19<k ,所以18=max k ……………………11分(3)⎩⎨⎧∈=∈-==),(),()(**N l l n b N l l n a n f n n 212 ①当m 为奇数时,m+15为偶数,1155473=+=+∴m m m , ②当m 为偶数时,m+15为奇数,*,N m m m ∉=+=+∴75101520(舍去) 综上所述,存在唯一正整数11=m 使得)()(m f m f 55=+成立……………………14分。

高二上学期期中考试数学(文科)试卷及参考答案

高二上学期期中考试数学(文科)试卷及参考答案

上学期期中考试卷 高二数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|10A x x =+>,{}2,1,0,1B =--,则()A B R 等于( ). A .{}2,1-- B .{}2- C .{}1,0,1- D .{}0,1 2.已知命题:p x ∀∈R ,2210x +>,则p ⌝是( ). A .x ∀∈R ,2210x +≤B .x ∃∈R ,2210x +>C .x ∃∈R ,2210x +<D .x ∃∈R ,2210x +≤3.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(,)(1,2,,)i i x y i n =,用最小二乘法建立的回归方程为0.8585.71y x =-,则下列结论中不正确的是( ).A .y 与x 有正的线性相关关系B .回归直线过样本点的中心(,)x yC .若该大学某女生身高增加1cm ,则其体重约增加0.85kgD .若该大学某女生身高为170cm ,则可断定其体重必为58.79kg4.设α,β是两个不同的平面,l 是一条直线,下列命题中:①若l α⊥,αβ⊥,则l β∥;②若l α∥,αβ∥,则l β∥;③若l α⊥,αβ∥,则l β⊥;④若l α∥,αβ⊥,则l β⊥.其中正确命题的个数是( ). A .1B .2C .3D .45.已知两条直线2y ax =-和3(2)10x a y -++=互相平行,则a 等于( ). A .1或3-B .1-或3C .1或3D .1-或3-6.已知θ为第一象限角,设(3,sin )a θ=-,(cos ,3)b θ=,且a b ⊥,则θ一定为( ). A .ππ()3k k +∈Z B .π2π()6k k +∈Z C .π2π()3k k +∈Z D .ππ()6k k +∈Z 7.已知数列}{n a 为等比数列,n S 是它的前n 项和,若2312a a a ⋅=,且4a 与72a 的等差中项为54,则5S =( ). A .35B .33C .31D .298.若正三棱锥的正视图与俯视图如右图所示,底面是正三角形,则它的侧视图的面积为( ).A 3B .34C 3D .329.已知a ,b ,c 为集合{}1,2,3,4,5A =中三个不同的数,通过如图所示算法框图给出的一个算法输出一个整数a ,则输出的数5a =的概率是( ).否a=ca=b 是a >b ?开始结束输入a ,b ,c 输出a a >c ?是否A .15B .25 C .35D .4510.已知实数x ,y 满足约束条件10,40,,x y x y y m +-⎧⎪+-⎨⎪⎩≥≤≥,若目标函数2z x y =+的最大值与最小值的差为2,则实数m 的值为( ). A .4B .3C .2D .12-11.函数()sin f x x =在区间(0,10π)上可找到n 个不同数1x ,2x ,,n x ,使得1212()()()n nf x f x f x x x x ===,则n 的最大值等于( ).A .8B .9C .10D .1112.已知奇函数4()f x x t x =++(t 为常数)和函数1()2xg x a ⎛⎫=+ ⎪⎝⎭,若对11,12x ⎡⎤∀∈⎢⎥⎣⎦,2[1,0]x ∃∈-,使得12()()f x g x ≥,则a 实数的取值范围是( ).A .(,4]-∞B .(,3]-∞C .[4,)+∞D .[3,)+∞第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.如果角α的终边过点(4sin30,4cos30)︒-︒,则sin α=__________.14.如图是甲、乙两人在5次综合测评中的成绩的茎叶图,其中一个数字被污损;则甲平均成绩超过乙的平均成绩的概率为__________.甲乙3388991207915.设13log 5a =,5log 9b =,0.315c ⎛⎫= ⎪⎝⎭,a ,b ,c 的大小关系(用“<”连接)是__________.16.已知点(,)P x y 是直线4(0)y kx k =-->上的一个动点,PA ,PB 是圆22:20C x y y +-=的两条切线,A ,B 是切点,若四边形PACB 的面积的最小值为2,则实数k 的值为__________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知ABC △的内角A ,B ,C 所对的边分别为a ,b ,c ,且222b c a bc +=+. (1)求角A 的大小.(2)若1b =,ABC △,求c . 18. 已知各项为正数的数列}{n a 的前n 项和为n S ,并且满足:n S ,n a ,2成等差数列. (1)求数列}{n a 的通项公式.(2)若n n c n a =⋅,求数列}{n c 的前n 项和n T .19. 某校高二文科分四个班,各班人数恰好成等差数列,高二数学调研测试后,对四个文科班的学生试卷按每班人数进行分层抽样,对测试成绩进行统计,人数最少的班抽取了22人,抽取的所有学生成绩分为6组:[70,80),[80,90),[90,100),[100,110),[110,120),[120,130),得到如图所示的频率分布直方图,其中第六组分数段的人数为5人.(1)求a 的值,并求出各班抽取的学生数各为多少人?(2)在抽取的学生中,任取一名学生,求分数不小于90分的概率(视频率为概率).(3)估计高二文科四个班数学成绩的平均分20.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,PA AB =,点E 是PD 的中点,四面体E ACD -的体积为163. ECBAPD(1)求证:PB ∥平面ACE . (2)若四面体E ACD -的体积为23.求AB 的长. 21.已知⊙M 的半径为1,圆心M 的坐标为(,0)m ,其中24m ≤≤.OA ,OB 为该圆的两条切线,O 为坐标原点,A ,B 为切点,A 在第一象限,B 在第四象限. (1)若2m =时,求切线OA ,OB 的斜率. (2)若4m =时,求AMB △外接圆的标准方程.(3)当M 点在x 轴上运动时,将MA MB ⋅表示成m 的函数()m ϕ,并求函数()m ϕ的最小值. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.已知函数22||,2,()(2), 2.x x f x x x -<⎧=⎨-⎩≥. (1)在给定的平面直角坐标系中,画出函数()f x 的草图,并写出函数()f x 的单调区间(不必写作图过程,单调性不必证明).(2)当2x ≥时,不等式()f x kx ≥恒成立,求实数k 的取值范围.上学期期中考试卷 高二数学(文科)答案一、选择题1-5:ADDAA 6-10:BCBCC 11、12:CB 二、填空题13. 14.45 15. a c b << 16.2三、解答题17.(1)在ABC △中,2222cos b c a bc A +-=, 又222b c a bc +=+, ∴1cos 2A =, ∵0πA <<, ∴π3A =. 综上所述:π3A =.(2)由1sin 2S bc A =,得3bc =, ∵1b =, ∴3c =. 综上所述:3c =.18.(1)∵2,n a ,n S 成等差数列, ∴22n n a S =+,∴1n =,1122a a =+,计算得出12a =. 当2n ≥时,1122n n a S --=+, ∴122n n n a a a --=,化为12n n a a -=,∴数列{}n a 成等比数列,首项为2,公比为2, ∴2n n a =.(2)2n n n c n a n =⋅=⋅, ∴数列{}n c 的前n 项和 22222322n n T n =+⨯+⨯++⋅,2312222(1)22n n n T n n +=+⨯++-⋅+⋅,∴231112(21)222222(1)2221n n n n n n T n n n +++--=++++-⋅=-⋅=-⋅--,∴1(1)22n n T n +=-⋅+.19.(1)由频率分布条形图知,抽取的学生总数为51000.05=人. ∵各班被抽取的学生人数成等差数列,设其公差为d , 由4226100d ⨯+=,解得2d =.∴各班被抽取的学生人数分别是22人,24人,26人,28人.(2)在抽取的学生中,任取一名学生,则分数大小于90分的概率为0.350.250.10.050.75+++=.(3)750.05850.20950.351050.251150.101250.0598⨯+⨯+⨯+⨯+⨯+⨯=,平均成绩为98分.20.(1)证明:连接BD 交AC 于点O ,连接EO , ∵ABCD 是正方形, ∴点O 是BD 的中点, 又∵点E 是PD 的中点, ∴EO 是DPB △的中位线, ∴PB EO ∥,又∵EO ⊂平面ACE ,PB ⊄平面ACE , ∴PB ∥平面ACE .(2)取AD 的中点H ,连接EH , ∵点E 是PD 的中点, ∴EH PA ∥,又∵PA ⊥平面ABCD , ∴EH ⊥平面ABCD .设AB x =,则PA AD CD x ===,且1122EH PA x ==,所以3111111233262123E ACD ACD V S EH AD CD EH x x x x -=⨯=⨯⨯⨯⨯=⋅⋅⋅==△,解得2x =, 故AB 的长为221.(1)2m =时,圆M 为:22(2)1x y -+=.由题意设过O 点,圆M 的切线方程为y kx =,(k 不存在不成立),1=,解得k =. 所以OA,OB(2)由题意AMB △外接圆,圆心在x 轴上,设(,0)xP t , 由题意QM AM AM OM =,得14QM =,AQ =. 所以:222PQ AQ PM +=, 解得2t =.所以AMB △外接圆圆心为(2,0)P , 半径为2PM =.所以圆22:(2)4P x y -+=.(3)由(2)知2AM QM OM =得1QM m =,AQ =,所以1A m m ⎛-⎝⎭,1,B m m ⎛- ⎝⎭,(,0)M m ,所以222111(1),m MA MB m m m m ⎛⎛-⋅=-⋅-=- ⎝⎝⎭221m =-+. 所以22()1(24)m m m ϕ=-+≤≤, 所以当4m =时,()m ϕ取得最小值为78-.22.(1)()f x 在(,0)-∞和(2,)+∞上单调递增, 在(0,2)上单调递减.(2)由题意2(2)x kx -≥,在2x ≥上恒成立, 即kx 图像在2(2)x -下方(2)x ≥, 由题意得0k ≤.(3)∴22|2|,0(2),0x x f x x x --⎧-⎨<⎩≥,∵函数()()y f x g x =-恰好有四个零点, ∴方程()()0f x g x -=有四个解, 即()(2)0f x f x b +--=有四个解,即函数()(2)y f x f x =+-与y b =的图象有四个交点,222,0()(2)2,0258,2x x x y f x f x x x x x ⎧++<⎪=+-=⎨⎪-+>⎩≤≤,作函数()(2)y f x f x =+-与y b =的图象如下:115572222224f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+-=+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,结合图象可知,724b <<.。

2021-2022学年四川省遂宁中学高二年级上册学期期中考试数学(文)试题

2021-2022学年四川省遂宁中学高二年级上册学期期中考试数学(文)试题

2021~2022学年度上期半期高二文科数学注意事项:1.答卷前,考生务必将自己的班级、姓名和准考证号填写在试卷和答题卡上。

2.选择题用2B 铅笔在对应的题号涂黑答案。

主观题用0.5毫米黑色签字笔答在答题卡上对应的答题区域内。

3.考生必须保持答题卡的整洁。

结束后,请将答题卡上交。

第Ⅰ卷(选择题 共60分)一.选择题(本大题共12个小题,每小题5分,共60分)1.直线的倾斜角为( )10x y +-=A . B . C .D .30°60︒120︒135︒2.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( )A .若m ⊥α,n ⊂α,则m ⊥nB .若m ∥α,n ∥α,则m ∥nC .若m ⊥α,m ⊥n ,则n ∥αD .若m ∥α,m ⊥n ,则n ⊥α3.直线与直线平行,则的值为( )10ax y ++=420x ay +-=a A . B .2 C .D .02-2±4.无论取任何实数,直线恒过一定点,则该定点坐标为m :120l mx y m +-+=( )A. B. C. D.()-21,()2,1--()2,1()2,1-5.如果a c <0且bc <0,那么直线ax +b y +c =0不通过( )A .第一象限B .第三象限C .第二象限D .第四象限6.已知实数x ,y 满足,则z =2x -y 的最小值是( )210,10,2,x y x y x -+≥⎧⎪+-≥⎨⎪<⎩A .5B .C .0D .-1527.与直线3x -4y +5=0关于x 轴对称的直线方程为( )A .3x +4y -5=0B .3x +4y +5=0C .-3x +4y -5=0D .-3x +4y +5=08.如图,在三棱锥P ﹣ABC 中,△ABC 为等边三角形,△PAC 为等腰直角三角形,PA =PC =4,平面PAC ⊥平面ABC ,D 为AB 的中点,则异面直线AC 与PD 所成角的余弦值为( )A .B 14C ..129.已知直线ax +y+1=0, x +ay+1=0 和 x +y+a =0 能构成三角形,则a 的取值范围是 ( )A .a ≠ - 2B .a ≠1± C .a ≠ - 2且a ≠ D .a ≠ - 2且a ≠ 11±10.已知平面上一点若直线l 上存在点P 使则称该直线为点(5,0)M ||4PM =的“相关直线”,下列直线中不是点的“相关直线”的是( (5,0)M (5,0)M )A .B .C .D .3y x =-2y =210x y -+=430x y -=11. 过定点的直线与过定点的直线交于点,则M 20ax y +-=N 420x ay a -+-=P 2的最大值为( )·PM PN A .1B .3C .4 D. 212.如图,正方体的棱长为1,P ,Q 分别是线段和上的1111ABCD A B C D -1AD 1B C 动点,且满足,则下列命题错误的是( )1AP B Q =A .的面积为定值BPQ B .当时,直线与是异面直线0PA >1PB AQ C .存在P ,Q 的某一位置,使//AB PQ D .无论P ,Q 运动到任何位置,均有BC PQ⊥第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分.)13.直线5x +12y+3=0与直线10x +24y+5=0的距离是________________;14.若A (a ,0),B (0,b ),C (,)三点共线,则________;2-2-11a b +=15. 如图所示,正方体ABCD-A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则O 到平面ABC 1D 1的距离为___ _____;(15题图) (16题图)16.在棱长为1的正方体中,点是对角线上的动点1111ABCD A B C D -M 1AC (点与不重合),则下列结论正确的是_______.M 1A C 、①; ②存在点,使得平面;1A DM ∆M DM //11B CD ③存在点,使得平面平面;M 1A DM ⊥1BC D ④若分别是在平面与平面的正投影的面积,则存12,S S 1A DM ∆1111A B C D 11BB C C 在点,使得.M 12S S =三.解答题:(本大题共6小题,满分70分。

【试卷】高二上期中考试数学(文科)试题及答案

【试卷】高二上期中考试数学(文科)试题及答案

高二上期中考试数学(文科)试题(考试时间:120分钟;满分150分)第Ⅰ卷(选择题 共60分)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在等比数列}{n a 中,已知11=a ,5=9a ,则3=a BA .-3B .3C .±3D .52.椭圆x 216+y 28=1的离心率为A .13B .12C .33D .223.0>x 若,则14++x x 的最小值为 D A .2 B .3 C .4D .5 5.对于实数a ,b ,c ,“a >b ”是“ac 2>bc 2”的 ( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件1.数列11×3,13×5,15×7,…,1(2n -1)(2n +1)…的前n 项和为 B A .n 2n -1 B .n 2n +1 C .2n 2n +1 D .2n 2n -14.椭圆x 2m +y 24=1的焦距为2,则m 的值为 A .5 B .3 C .5或3 D .811.已知F 1,F 2是椭圆 x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点.在△AF 1B 中,若有两边之和是10,则第三边的长度为A .6B .5C .4D .39.命题“对任意的32,10x R x x ∈-+≤”的否定是A .不存在32,10x R x x ∈-+≤B .存在32,10x R x x ∈-+≤C .存在32,10x R x x ∈-+>D .对任意的32,10x R x x ∈-+>5.已知命题p :a 2≥0(a ∈R ),命题q :函数f (x )=x 2-x 在区间[0,+∞)上单调递增,则下列命题为真命题的是 ( A )A .p ∨qB .p ∧qC .(⌝p )∧(⌝q )D .(⌝p )∨q3.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于 ( C )A .4 2B .8 3C .24D .48第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置.10.已知数列}{n a 满足a n =(-1)n(2n -1),其前n 项和为S n ,则S n =_______⎩⎨⎧-为偶数,为奇数n n n n ,. 14.等比数列}{n a 的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则}{n a 的公比为= ▲13. 16.若不等式022>++bx ax 的解集是⎪⎭⎫ ⎝⎛-31,21,则b a +的值为 ▲ . 20.若点P 在区域⎪⎩⎪⎨⎧≥+-≤-+≥-02202012y x y x y 内,求点P 到直线3x -4y -12=0距离的最大值为 ▲ .15.命题:“若a b ⋅不为零,则,a b 都不为零”的逆否命题是 ▲ .15.若“23x <<”是“x m <”的充分不必要条件,则m 的取值范围为 ▲ 3m ≥ .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)求实轴长为12,离心率为32,焦点在x 轴上的椭圆的标准方程. 解:设椭圆的标准方程为)0(12222>>=+b a by a x ……………………2分 由已知,122=a ,32==a c e ……………………………………………6分 ,6=∴a 4=c20222=-=c a b …………………………………………………………8分 所以椭圆的标准方程为1203622=+y x .……………………………………10分 18.(本小题满分12分)已知c >0,设命题p :函数y =c x 为减函数.命题q :当x ∈⎣⎡⎦⎤12,2是,函数f (x )=x +1x >1c恒成立.如果p 或q 为真命题,p 且q 为假命题.求c 的取值范围.解:由命题p 知:0<c <1.由命题q 知:2≤x +1x ≤52要使此式恒成立,则2>1c ,即c >12. 又由p 或q 为真,p 且q 为假知,p 、q 必有一真一假,当p 为真,q 为假时,c 的取值范围为0<c ≤12. 当p 为假,q 为真时,c ≥1.综上,c 的取值范围为{c |0<c ≤12或c ≥1}.19.(本小题满分12分)解关于x 的不等式ax 2-2 ≥ 2x -ax (0<a ).解:原不等式可化为:ax 2+(a -2)x -2≥0.……………………………………………………………2分即⎝⎛⎭⎫x -2a (x +1)≤0,…………………………………………………………4分 (1)当 2a<-1,即-2<a <0时,, 其解集为⎩⎨⎧⎭⎬⎫x |2a ≤x ≤-1; ………………………………………………6分 (2)当a =-2时,不等式即为(x +1)2≤0,其解集为{-1};…………………………………………………8分(3)当-1<2a,即a <-2时, 其解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2a . ………………………………………………10分 综上:当-2<a <0时,解集为⎩⎨⎧⎭⎬⎫x |2a ≤x ≤-1; 当a =-2时,解集为{-1};当a <-2时,解集为{x |-1≤x ≤2a}. …………………………………………12分 17.(本小题满分12分)已知等比数列{}n a 中,113a =,公比13q =. (I )n S 为{}n a 的前n 项和,证明:12n n a S -= (II )设31323log log log n nb a a a =+++,求数列{}n b 的通项公式. 解: (Ⅰ)因为.31)31(311n n n a =⨯=- ,2311311)311(31n n n S -=--= 所以,21n n a S --(Ⅱ)n n a a a b 32313log log log +++=)21(n +++-= 2)1(+-=n n 所以}{n b 的通项公式为.2)1(+-=n n b n22.(本小题满分12分)已知椭圆G : )0(12222>>=+b a b y a x 的离心率为36, 右焦点为(22, 0).斜率为1的直线l 与椭圆G 交于A , B 两点, 以AB 为底边作等腰三角形, 顶点为P ( - 3, 2).(I )求椭圆G 的方程;(II )求PAB ∆的面积.解: (I )由已知得 c =22,36=a c解得a =32 …………………………………………………2分又b 2 = a 2 - c 2 = 4,………………………………………………4分所以椭圆G 的方程为141222=+y x .………………………………6分(II )设直线l 的方程为y = x + m .由⎪⎩⎪⎨⎧=++=141222y x mx y得4x 2 + 6mx + 3m 2- 12 = 0.(*)……………………8分设A (x 1, y 1), B (x 2, y 2) (x 1 < x 2),AB 中点为E (x 0, y 0), 则x 0 = = -43m, y 0 = x 0 + m =4m .………………………………9分因为AB 是等腰△P AB 的底边, 所以PE ⊥AB .所以PE 的斜率k = = - 1.解得m = 2.此时方程(*)为4x 2 + 12x = 0.解得x 1 = - 3, x 2 = 0.所以y 1 = - 1, y 2 = 2.所以|AB | = 3.………………………………………10分此时, 点P ( - 3, 2)到直线AB :x - y + 2 = 0的距离d = , …………………………………………………11分所以△P AB 的面积S = |AB |·d = .…………………………………………12分10.在平面直角坐标系xOy 中,点P 到两点(0,-3)、(0,3)的距离之和等于4,设点P 的轨迹为C . (1)写出C 的方程;(2)设直线y=kx+1与C 交于A 、B 两点,k 为何值时OA →⊥OB →?此时AB →的值是多少?解:(1)设P (x ,y ),由椭圆的定义可知,点P 的轨迹C 是以(0,-3)、(0,3)为焦点,长半轴长为2的椭圆,它的短半轴长b =22-(3)2=1,故曲线C 的方程为x 2+y 24=1. (2)设A (x 1,y 1)、B (x 2,y 2),其坐标满足⎩⎪⎨⎪⎧x 2+y 24=1,y =kx +1,消去y 并整理得(k 2+4)x 2+2kx -3=0,故x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4. 若OA →⊥OB →,则x 1x 2+y 1y 2=0.而y 1y 2=k 2x 1x 2+k (x 1+x 2)+1,于是x 1x 2+y 1y 2=-3k 2+4-3k 2k 2+4-2k 2k 2+4+1=0, 化简得-4k 2+1=0,所以k =±12. 当k =±12时,x 1+x 2=±417,x 1·x 2=-1217,。

高二第一学期期中测试数学试题(文科)及答案doc

高二第一学期期中测试数学试题(文科)及答案doc

高二第一学期期中测试数学试题(文科)参考公式:回归直线方程a x by ˆˆ+=∧,其中∑∑==∧--=n i i ni ii xn x yx n yx b 1221,x b y aˆˆ-= 一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合要求的) 1.设,a b 为非零实数,若a b <,0c ≠ 则下列不等式成立的是A. ac bc <B. 22a b < C. 22ac bc < D. a c b c -<+ 2.要完成下列两项调查:宜采用的抽样方法依次为①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学的15名艺术特长生中选出3人调查学习负担情况.A .①随机抽样法,②系统抽样法B .①分层抽样法,②随机抽样法C .①系统抽样法,②分层抽样法D .①②都用分层抽样法3.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立......的两个事件是 A .至少有1个白球,都是白球 B .至少有1个白球,至少有1个红球C .恰有1个白球,恰有2个白球D .至少有1个白球,都是红球4.一组数据的平均数是2 .8 ,方差是3 .6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是A .57.2 ,3.6B .57.2 ,56.4C .62.8 ,63.6D .62.8 ,3.65.当1x >时,关于函数 下列叙述正确的是A.函数()f x 有最小值2B.函数()f x 有最大值2C.函数()f x 有最小值3D.函数()f x 有最大值3 6.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为90% , 则甲、乙二人下成和棋的概率为A. 50%B. 30%C. 10%D. 60% 7.如右图所示的程序框图输出的结果是S =120 ,则判断框内应填写的条件是A. i ≤5?B. i>5?C. i ≤6?D. i>6?,11)(-+=x x x f354555658.已知回归直线斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的回归方程是 A. 1.230.08y x ∧=+ B. 1.235y x ∧=+ C. 1.234y x ∧=+ D.0.08 1.23y x ∧=+9.△ABC 的三内角A 、B 、C 的对边边长分别为a 、b 、c ,若 A=2B ,则cosB 等于A. B. C. D.10.ABCD 为长方形,AB=2 ,BC=1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到点O 的距离大于1的概率为 A .4π B . 14π- C . 8π D .18π- 二、填空题(本大题共4小题,每小题5分,共20分)11.把5进制数4301(5)化为十进制数:4301(5)= 。

高二上学期期中考试数学(文)试卷-有答案-通用版

高二上学期期中考试数学(文)试卷-有答案-通用版

第一学期期中考试高二数学(文科)试卷考试时间:120分钟 试卷总分: 150分 命题人:一、选择题(每小题5分,计50分)1.已知,a b 为实数,“100=ab ”是“2lg lg =+b a ”的 ( ) A 、充分而不必要条件 B 、必要而不充分条件 C 、充要条件D 、既不充分也不必要条件2.某人在打靶中,连续射击2次,事件“至少有一次中靶”的互斥事件是 ( ) A .至多有一次中靶 B .两次都中靶 C .两次都不中靶 D .只有一次中靶 3.(程序如右图)程序的输出结果为A. 3,4 B . 7,7 C . 7,8 D . 7,114.在区间[]0,2上随机地取一个数x ,1”发生的概率为( ) A.13B.23C.34D.145.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为 ( )A .588B .480C .450D .1206.若圆心在x y 轴左侧,且与直线x +2y =0相切,则圆的方程是( )A .(x 2+y 2=5 B .(x 2+y 2=5 C .(x -5)2+y 2=5 D .(x +5)2+y 2=57. 执行右边的程序框图,如果输入的t ∈[-1,3],则输出的s 属于 ( ) A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]8. 有下列四个命题:①“若0x y += , 则,x y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题; ③“若1q ≤ ,则220x x q ++= 有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题. 其中真命题为( ) A .①②B .②③C .①③D .③④9.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)如图I 所示;若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数为( )A 、3B 、4C 、5D 、610.若三条直线l 1:4x +y =4,l 2:mx +y =0,l 3:2x -3my =4不能围成三角形,则实数m的取值最多有( )A .2个B .3个C .4个D .6个11.过平面区域202020x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩内一点P 作圆22:1O x y +=的两条切线,切点分别为,A B ,记APB α∠=,则当α最小时cos α的值为( )AB .1920C .910D .1212. 已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A .B .3(0,]4 C. D .3[,1)4二、填空题(每小题5分,计20分)13.用“秦九韶算法”计算多项式322434)(2345+--+-=x x x x x x f 的值,当x=3时,V 3=14.某种产品的广告费支出x 与销售额y 之间有如下对应数据(单位:百万元).根据上表提供的数据,求出y 关于x 的线性回归方程为y ^=6.5x +17.5,则表中t 的值为 .15.某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为________.16.椭圆若椭圆的对称轴在坐标轴上,两焦点与两短轴端点正好是正方形的四个顶点,又焦1-,求椭圆的方程_______.三、解答题(共6大题,计70分,要求写出详细解答过程)17.(10分)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c.(1)求“抽取的卡片上的数字满足a+b=c”的概率;(2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.18.(12分)已知圆22:1O x y +=和点(1,4)M .(1)过点M 向圆O 引切线,求切线的方程;(2)求以点M 为圆心,且被直线28y x =-截得的弦长为8的圆M 的方程;19.(12分)命题P:关于x 的不等式x 2+2ax+4>0,对一切实数x 恒成立, Q:函数f(x)=(3-2a)x是增函数,若P ∨Q 为真,P ∧Q 为假,求a 的取值范围。

高二上学期期中考试模拟试题 数学(文) Word版含答案

高二上学期期中考试模拟试题 数学(文) Word版含答案

伊川县实验高中2013-2014年上学期期中模拟试题高二 文科数学 命题人 牛海轩(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.ABC ∆的内角,,A B C 的对边分别为,,a b c ,则B ∠=( )A2.在△ABC 中,若sin 2A +sinB <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 3.已知点)1,2(-和点(1,1)在直线023=--a y x 的两侧,则a 的取值范围是( ) A .),1()8,(+∞--∞B .(-1,8)C .(-8,1)D .),8()1,(+∞--∞4.ABC ∆中,角A 、B 、C 所以的边为a 、b 、c , 若3a =,120C = ,ABC ∆面积,则c =( ) A.5 B. 6D.75.在ABC △中,若2sin sin sin A B C =⋅且()()3b c a b c a bc +++-=,则该三角形的形状是( )A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形 6.已知等比数列{a n },且284-=+a a ,则)2(10626a a a a ++的值为( )A . -9 B. 4 C. 6 D. 87.等差数列{}n a 的前n 项和为n S ,若3921a a a ++的值为常数,则下列各数中也是常数的是( ).A.21SB.22SC.23SD.24S S 8.已知数列{}n a 满足10a =,2013a 等于( )A.0 D9.若,a b R ∈,且0ab >,则下列不等式中,恒成立的是( )A. a b +≥B.11a b +>2b aa b +≥ D. 222a b ab +> 10.若关于x 的不等式220x ax +->在区间[]1,5上有解,则实数a 的取值范围为 ( )A.(1,+∞) D .)1,(--∞ 11.设变量,x y 满足约束条件22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则 )A.[1,2] D12. 已知a b c >>且k 的最大值是( ) A 、4 B 、 8 C 、9 D 、25 二、填空题(本大题共4小题,每小题5分,共20分)13.若实数x ,y 满足10,10,10,x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩则2z x y =-的最大值为 。

高二数学第一学期期中考试试卷(文科).doc

高二数学第一学期期中考试试卷(文科).doc

高二数学第一学期期中考试试卷(文科)试卷说明:1.本试卷为高二数学文科试卷;2.本试卷共8页,20小题,满分150分,考试时间120分钟;3.选择题答案填涂在答题卡上,填空题和解答题填在试卷相应的位置上,其它地方答题或装订线外答题无效; 4.考试结束后上交试卷第二卷和答题卡。

第一卷一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知p :0a =;q :0ab =,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.下列命题,其中真命题的个数是( )①22a b ac bc >⇒>②a b >⇒>③33a b a b >⇒>④a b a b >⇒>A .0B .1C .2D .33.双曲线222312x y -=两焦点之间的距离是( )A B C .4.如果椭圆的长半轴长是3,焦距是4,那么椭圆的离心率是( ) A .23 B.26C .23D .125.当12-<<-m 时,方程22121x y m m +=++表示( )A .圆B .椭圆C .双曲线D .抛物线6.以1(,0)4为焦点的抛物线的标准方程为( )A .212y x = B.2y x = C.212x y = D.2x y =7.已知等差数列的前n 项和为n s ,若4518a a +=,则8s 等于( ) A .18 B .36 C .54 D .728.在ABC ∆中,::a b c =,则cos B =( )A .2B .3 C .2D .129.已知椭圆2212516x y +=上一点P 到椭圆一个焦点的距离为3,则P到另一焦点的距离为( )A .2B .3C .5D .710.椭圆22214x y m+=与双曲线22212x y m -=有相同的焦点,则m 的值是( )A .1±B .1C .-1D .不存在二、填空题(本大题共4小题,每小题5分,共20分。

高二第一学期期中考试文科数学试卷及参考答案

高二第一学期期中考试文科数学试卷及参考答案

)
A. 6
B. 2
C. 2
D. 6
4. 已知直线 ax 2 y 1 0 与直线 (a 4)x ay 1 0 垂直,则实数 a 的值为 (
)
A. 0
B. 4 或 2
C. 0 或 6
5. 某空间几何体的三视图如右图所示,则该几何体的体积是
D. 4
(
)
A. 32
B. 32 2
32
C.
3
32 2
D.
3
6. 平面 截球 O 的球面所得圆的半径为 1,球心 O 到平面 的距离为 2, 则此球的体积为 ( )
(1) 求点 D 的坐标; (2) 求直线 BD 的方程 . (3) 求 ABD 的面积 .
2
18. (本题满分 14 分 )已知四棱锥 P ABCD , 底面 ABCD 是 A 60o 的菱形,又 PD 平面 ABCD , 点 M 是棱 AD 的中点 . (1) 证明: PB AC; (2) 证明: MB 平面 PAD ;
高二第一学期期中考试
文科数学试题
(试卷总分 150 分,考试时间 120 分钟 ) 第 I 卷选择题
一、选择题 (本大题共 12 个小题,每小题 5 分,共 60 分,在每个小题给出的四个选项中,只有一项
是符合题目要求的 ).
1. 如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体 的三视图,则这个几何体是 ( )
(1) 求数列 an 的通项公式;
(2) 设 bn
2
, 求数列 bn 的前 n 项和 Sn.
(n 3)( an 2)
3
21. (本题满分 14 分)如图,四棱锥 P ABCD 中,ABCD 为矩形, PAD 为等腰直角三角形, APD 90o, 平面 PAD 平面 ABCD , 且 AB 1, AD 2,E, F 分别为 PC 和 BD 的中点 . (1) 证明: EF // 平面 PAD; (2) 证明:平面 PDC 平面 PAD . (3) 求四棱锥 P ABCD 的体积 .

【高二】高二上册数学文科期中试卷(带答案)

【高二】高二上册数学文科期中试卷(带答案)

【高二】高二上册数学文科期中试卷(带答案)昆明三中2021-2021学年度高二年级上学期期中试题数学()(共100分,考试时间120分钟)第一卷一、(每小题3分,共36分.每小题只有一项是符合题目要求)1.如果抛物线y2=4x通过点P(3),则点P到抛物线焦点的距离等于()a.94b.4c.134d.32.如果双曲线x2+y2=1的虚轴长度是实轴长度的两倍,则等于()a.-14 b.-4 c.4 d.143.命题:“如果A2+B2=0(a,B∈ R),那么a=b=0“,反命题是()a.若a≠b≠0(a,b∈r),则a2+b2≠0b、如果a=b≠ 0(a,B)∈ R)然后是A2+B2≠ 0c.若a≠0且b≠0(a,b∈r),则a2+b2≠0d、如果≠ 0或B≠ 0(a,B)∈ R)然后是A2+B2≠ 04.不等式组x≥0,x+3y≥4,3x+y≤4,所表示的平面区域的面积等于( )a、 32b、 23c、 43d、 345.“>n>0”是“方程x2+ny2=1表示焦点在y轴上的椭圆”的( )a、充分和不必要条件B.必要和充分条件c.必要而不充分条件d.既不充分也不必要条件6.已知点P是抛物线y2=4x上的点,点P到直线的距离为D1x+2y+10=0的距离为d2,则d1+d2的最小值是( )a、五,b、四,c、 1155d、 1157.设a∈r,则a>1是1a<1的( )a、充分但不必要的条件B.必要但不充分的条件c.充要条件d.既不充分也不必要条件8.如果命题“非p或非Q”是一个假命题,则以下结论中正确的命题是()①命题“p且q”是真命题② 命题“P和Q”是一个错误命题③命题“p或q”是真命题④ 命题“P或Q”是一个错误命题a.①③b.②④c.②③d.①④9.如果命题a是命题B的充要条件,命题C是命题B的充要条件,命题D是命题C的充要条件,那么命题D是()a.充分不必要条件b.必要不充分条件c、充分必要条件D.既不充分也不必要条件10.设平面区域d是由双曲线y2-x24=1的两条渐近线和椭圆x22+y2=1的右准线所围成的三角形(含边界与内部).若点(x,y)∈d,则目标函数z=x+y的最大值为( )a、一,b、二,c、三,d、六,11.在平面直角坐标系中,若不等式组x+y-1≥0,x-1≤0,ax-y+1≥0,(a为常数)所表示的平面区域的面积等于2,则a的值为( )a、-5b.1c.2d.312.已知抛物线c的方程为x2=12y,过点a(0,-1)和点b(t,3)的直线与抛物线c没有公共点,则实数t的取值范围是( )a、(-∞,-1)∪(1,+∞)b、(-∞,-22)∪(22,+∞)c.(-∞,-22)∪(22,+∞)d.(-∞,-2)∪(2,+∞)昆明市第三中学二年级2022-2022学年第一学期期中考试试题数学()第二卷题号一二三总分十七亿一千八百一十九万二千零二十一得分二、问题:(本主要问题共有4个子问题,每个子问题得3分,共计12分。

第一学期期中考试(高二文科数学)参考答案

第一学期期中考试(高二文科数学)参考答案

广州市岭南中学2019学年第一学期期中考试高中二年级 文科数学答案一、选择题:本大题共10小题,每小题5分,共50分.1~10 CDAAC CCDBA二、填空题:本大题共4小题,每小题各5分,共20分11、31- 12、480 13、 -2 14、 1 三、解答题:本大题共6小题,共80分. 15、(1) 22cos 12cos sin 2cos sin 22x x x x x y +⋅+++= 242sin 222cos 2sin +⎪⎭⎫ ⎝⎛+=++=πx x x ………… 6分 π=T ; ………… 8分(2)224222πππππ+≤+≤-k x k ()K k ∈单调增区间为:]8,83[ππππ+-k k ()K k ∈ …………13分 16.解法一:由于是有放回地取球,因此袋中每只球每次取到的概率均为1/2. 1分(1)3次全是红球的概率 81212121P 1=••=…………6分 (2)3次颜色全相同的概率41812P 2P 12=•=•= …………10分 (3)3次颜色不全相同的概率4341-1P -1P 23===。

…………13分 解法二:利用树图列出所有可能结果,有8种,再求。

(略)17、(1)直三棱柱ABC -A 1B 1C 1,底面三边长AC=3,BC=4AB=5,∴ AC ⊥BC ,且BC 1在平面ABC 内的射影为BC ,∴ AC ⊥BC 1; …………5分(2)设CB 1与C 1B 的交点为E ,连结DE ,∵ D 是AB的中点,E 是BC 1的中点,∴ DE//AC 1,∵ DE ⊂平面CDB 1,AC 1⊄平面CDB 1,∴ AC 1//平面CDB 1; …………10分(3) D C B B V 11-=8 …………13分18.解:(1)正方形边长为x ,则V =(8-2x )·(5-2x )x =2(2x 3-13x 2+20x )(0<x <25) V ′=4(3x 2-13x +10)=4(3x-10)(x-1)(0<x <25) ………… 6分 V ′=0得x =1[来源:1]列表如下: x(0,1) 1 (1, 25) ()F x '+ 0 -()F x 极小值V (1)∴当x =1时,容积V 取最大值为18. ………… 13分19.解:(1)由1112S a ==,得112a b =+;由21243S a a =+=,得4423a b =+. ∴223a b a b +=⎧⎨+=⎩,解得11a b =⎧⎨=⎩,故21n n S n =+; ………… 4分 (2)当2n ≥时,2232212(1)(1)(1)11(1)n n n n n n n n n n a S S n n n n n n ----++-=-=-==+++.…… 7分 由于112a =也适合221n n n a n n +-=+. ……… 8分 ∴221n n n a n n+-=+; ……… 9分 (3)21111(1)1n n a b n n n n n n ===-+-++. ……… 10分 ∴数列{}n b 的前n 项和1211111111122311n n n T b b b b n n n n -=++++=-+-++-+--+ 1111n n n =-=++. ……… 14分 20.解:(1)由二次函数()f x 满足(0)(1)0f f ==.设()(1)(0)f x ax x a =-≠,则221()()24a f x ax ax a x =-=--. 又()f x 的最小值是14-,故144a -=-.解得1a =. ∴2()f x x x =-; …… 4分(2)2232222322()()(1)g x xf x a x a x x x ax x a x x ax a x =++-=-++-=+-.∴22'()32(3)()g x x ax a x a x a =+-=-+. ………… 6分 由'()0g x =,得3a x =,或x a =-,又0a ≠,故3a a ≠-.………… 7分 当3a a >-,即0a >时,由'()0g x <,得3a a x -<<. ………… 8分 ∴()g x 的减区间是(,)3a a -,又()g x 在区间(3,2)-上单调递减, ∴323a a -≤-⎧⎪⎨≥⎪⎩,解得36a a ≥⎧⎨≥⎩,故6a ≥(满足0a >); ……… 10分 当3a a <-,即0a <时,由'()0g x <,得3a x a <<-. ∴()g x 的减区间是(,)3a a -,又()g x 在区间(3,2)-上单调递减, ∴332a a ⎧≤-⎪⎨⎪-≥⎩,解得92a a ≤-⎧⎨≤-⎩,故9a ≤-(满足0a <). ……… 13分 综上所述得9a ≤-,或6a ≥.∴实数a 的取值范围为(,9][6,)-∞-+∞. ……… 14分。

高二数学上学期期中考试(文科)

高二数学上学期期中考试(文科)

(4)“若 ac 2 bc 2 ,则a b ”的逆否命题。
三.解答题(共六题,70 分)请把答案写在答题卷相应位置上。 17.(本小题 10 分)
写出“若 x 2 ,则 x 2 5x 6 0 ”的逆命题、否命题、逆否命题,并判断其真假.
18.(本小题 12 分)
求椭圆 x2 4 y2 16 的长轴和短轴的长、离心率、焦点和顶点的坐标
C.50
9.命题:“ x∈R,都有 x2-x+1>0”的否定是
D.162
A. x∈R,都有 x2-x+1≤0
B. x∈R,都有 x2-x+1>0
C. x∈R,都有 x2-x+1≤0.
D.以上选项均不正确
10.已知双曲线 y2-x2=1 的离心率为 e,且抛物线 y2=2px 的焦点坐标为(e2,0),则 P
心率为
()
A. 3
6
B.
2
6
C.
3
3
D.
3
第Ⅱ卷(非选择题 共 90 分)
二、填空题(每题 5 分,共 20 分)
13. 若x 0, y 0, 且 1 4 1 ,则 x y 的最小值是

xy
x2 14.椭圆 16
y2 9
1 上一点 P 到它的一个焦点的距离等于 3,那么点 P 到另一个焦点的
高二数学(共 4 页,第 1 页)
点,则点 M 的轨迹方程是
A. 9x 2 y 2 1 16 4
B. x 2 y 2 1 4
C. x 2 y 2 1 4
D. 9 y 2 x 2 1 16 4
8.设 x 、 y R ,且 x y 4 ,则 5x 5y 的最小值为
A.9
B.25
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上学期期中考试 高二文科数学试卷、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有 一项是符合题目要求的•* 21 .设集合 U ^ { x | x ::: 5 , N }, M = { x | x —5x 6 = 0},则?U M =(A . {1 , 4}B . {1, 5}C . {2, 3}D . {3, 4}12•函数f (x )=log 2X的一个零点落在下列哪个区间 x4x - y TO _0,7.设实数x, y 满足条件x-2y ,8_0,,若目标函数z=ax ,by(a 0,b 0)的最大值x - 0, y - 0A. (0, 1)3 .已知三条不重合的直线 3)D. (3,m,n,l 和两个不重合的平面 〉,:,有下列命题:B. (1 , 2)C. (2, ① m //n, n 二二,则m II 】; ②若 I _ : •, m _ :且 I _ m 则:• _ 1:' ③若I _ n, m .丨n,则I IIm④若:•—:,〉门:二 m, n :, n _ m,则 n _ 其中正确命题的个数为().A. 4 B . 3 C . 2 D . 14. 一个几何体的三视图如图所示,那么此几何体的侧面积 (单位:cm )为( A . 48 B . 64 俯视图C. 80 D . 1205•如果函数f (x ) JT=C0S (wx )(w 0)的相邻两个零点之 间的距离为 ,则,6的值为( C. 12D. 24 6•阅读如图所示的程序框图,输出的 A . 0 B . 1+ .2 C . 1 +于S 值为( ).D/.2- 155——K ——正视图* ----- 8 ----- *侧视图数的正整数的个数是f (x )在 R 是单调函数;②函数 f (x )的最小值是-2 ;③方程f (x ) = b 恒有两个不等实根;④对任意x <:0,x 2 :0且为=x 2,恒有f (' 立)f (x^)成立.其中正确结论 2 2的个数为( ).A . 1B . 2C. 3D . 4[来源:]二、填空题'(本大题共4小题,每小题5分。

),13.已知向量 a =(3, -2) , a =(3m -1,4 -m ),若 a _b ,贝卩 m 的值为 __________ 14.已知直线 l 1 :ax 3y -1 =0与直线 l 2:2x (a -1) *1=0垂直,则 a = __________15.有一个底面圆的半径为 1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内 随机取一点P,则点P 到点O 的距离大于1的概率为 _________________ .为12,则1+b 的最小值为(B .8D.8.JI0 ,2兀1 兀0J3:::0,COS(— - ) ,cos( )-4 3 4 2A ..3 3B . D .已知四棱锥ABCD 中, 底面ABCD 为矩形, 且AC 与BD 交于O , PA 二 PB = PC ( 二 PD = 2AB =2B0 =4,则该四棱锥的外接球的体积与表面积之比为A .B.C . ©910. 已知x, y,z 均为正实数,且2xgyh =log 2Z ,贝y ().A. z ::: x :: y B . x :: y :: z C. z :: 11•已知两个等差数列{a n }和{4}的前 项和分别为y :: x D . y :: x :: zA? 7n + 45 a nA 和8,且= ,则使得匸为整3 n + 3 b A . 2B . 3C. 4D . 512 .已知函数f (X )= e -3,x 兰02x bx -2,x 0(b 是常数且b 0 ).对于下列结论:①函数「x +1,x < 016•函数f(x) ,则函数y = f(f(x)) + 1的所有零点所构成的集合为|Jog2X,x>0三、解答题(共6道小题,满分70分,解答题写出文字说明、证明过程或演算步骤)17. (本小题满分10分)2 在厶ABC中,内角A B, C的对边分别为a,b,c,已知cos A= -, sin B= • 5cos C(1) 求tan C 的值;(2) 若a = 2,求△ ABC的面积.18. (本小题满分12分)已知等差数列{ a n}的前n项和为S n, S5= 35, a5和為的等差中项为13.(1) 求a n 及S n;^4 *(2) 令b n= (n € N ),求数列{b n}的前n项和T n.a n I19. (本小题满分12分)如图(a),在直角梯形ABCD中,/ ADC= 90° CD// AB, AB= 4, AD= CD= 2,将厶ADC沿AC 折起,使平面ADC丄平面ABC,得到几何体D-ABC,如图(b)所示.(1) 求证:BC丄平面ACD;(2) 求几何体D- ABC的体积.BS20. (本小题满分12分)某校为了了解高一学生周末的“阅读时间”,从高一年级中随机抽取了100名学生进行调查,获得了每人的周末“阅读时间”(单位:小时),按照10,0.5 ,10.5,1,川,[4,5.5]分成9 组,制成样本的频率分布直方图如图所示.(1)求图中a的值;(2)估计该校高一学生周末“阅读时间”的中位数;(3)在1,1.5 ,11.5,2这两组中采用分成抽样的方法抽取7人,再从这7人中随机抽取2人,求抽取的两人恰好都在同一组的概率.21. (本小题满分12分)已知圆M过两点C(1,- 1), Q —1,1),且圆心M在x • y -2二0上.(1)求圆M的方程;⑵设P是直线3x+ 4y+ 8= 0上的动点,PA, PB是圆M的两条切线,A, B为切点,求四边形PAMB面积的最小值.22. (本小题满分12分)已知二次函数f (x) = x22ax • 1 - a (a • R);(1)若函数在区间(一1,1)上存在零点,求实数a的取值范围;⑵若函数在区间>0,11时有最大值2,求实数a的取值范围。

文科数学参考答案、选择题:本大题共12小题,共60分二、填空题:本大题共4小题,共20分13. 114. 3 15.1 1得 x = — 3 或 x = 4和 x = — 2或 X = 2.1 1答案 ^—3,—2,4,羽'三、解答题:本大题共6小题,共70分 17. (10 分)又 5cos C = sin B = sin(A + C)= sin Acos C + cos Asin C VcosC + 2sin C. 所以 tan C = . 5.2解:(1)因为 O v A v n ,cos A =3,16.解析本题即求方程f (f (x ))二一1的所有根的集合,先解方程 f(t —1,或N ,JOg 2t =— 1,1 1得 t = — 2 或 t =2•再解方程 f(x)= — 2 和f(x)=2. 即严0, x + 1 = —2或 x>0,Jog 2x = — 2 x < 0,和 1 x + 1= 2 x>0,或 1 lOg 2x =2. 得 sin A = 1 — cos 2A = ⑵由 tan C = . 5, 得 sin C = 6, 1cos C=— 6. 于是sin B = */5cos C =设厶ABC 的面积为S,则S = 2acsin B =~^.18. (12分)解:⑴设等差数列{a n }的公差为d ,因为 S 5 = 5a 3 = 35, a s + a 7= 26,所以 a n — 3+ 2(n — 1) = 2n + 1, S = 3n +n n ~ 1x 2— n 2+ 2n.⑵由(1)知 a n — 2n + 1,所以b n -亠-^丄丄a 2— 1 n (n + 1)n n + 1, 所以 T n — 1— 2 + 1 — 3 +••• +19. (12分)(1)证明:在图中,可得AC — BC — 2 2, 从而 AC 2 + BC 2—AB 2, 故AC 丄BC,又平面 ADC 丄平面 ABC,平面 ADC A 平面 ABC — AC, BC?平面ABC , /• BC 丄 平面ACD⑵解 由(1)可知,BC 为三棱锥B —ACD 的高,BC — 2 2, S ACD — 2, 11 厂座••• V B -ACD — §S ACD BC — 3X 2X 2 .2- 3 ,由等体积性可知,几何体 D —ABC 的体积为4^220. (12 分)由a =2及正弦定理 sin A sin C'所以,ai + 2d _7,,2a i + 10d =26,解得 a i = 3, d = 2, 1-n +1n n + 1.得c =由頻率分布II方圈・可知・周耒・阅读时糾**在[0«0.5)的皴珮为°,佣皿5".0^同理.在(0.5 J)> (15, 2), [2. 23) r 卩・3.5)・{3.5.4), [4.4,5)W姐的般率分别为0+08 • 620 ■03 .0*07 » 0,04 . 0.02,由1 -(0,04 + 0.08 + 020 + 0,25 + 0.07 + 0.04 十0.02) ■ 0.5 2 + 0」2 ■解得a = 030. ............................ .. .................. 分(II〉设中位数为曲小时.因为曲5 组的频率之和为0.04 + 0,08 + 0.15 + 020 + 0.25 «0,72 > 0.5 ”而曲4坦的频率之和为0,0440.08^0.15 + 0.20• 0.47<05・所叹2£/»弋2.5 *由050x(m^2) = 0.5-0,47.解得 E =23.故可怙计该枝离一学生周末■阅读时间”的中恆孜为2.06小时* ........... 8分(III)由lg意得周未阅it时闾在[1 r!.5)<⑴5・2)中的人分别有15人.加人.按分民抽样的方法分別推(取鼻人"4人」记作)• B t CRa・b t c. d t从7人屮超机牺取2 人.共有*£・AC •Aa, Ab t丿―刖・5C.風、Bb, Be・Bd・Ca, Cb t CCf cd, a b. w・还be. bd・of.共21和同时fiSW- ffl的有柏,AC. BC » abt ac • ad. Ac »bd»共9 种*故植率是戸鼻春.〒” ......... 125>21. (12分)解:⑴设圆M的方程为(x—a)?十(y—!3)2=『(「>0),1 - a 2+ -1-b 2= r 2,根据题意得: —1-a 2+ 1-b 2二r 2,a +b -2= 0,解得 a= b = 1, r = 2,故所求圆M 的方程为(x — 1)2+ (y - 1)2= 4. (2)因为四边形PAMB 的面积C1 1S = S PAM + S/BM = 2l AM| |・PA + 2l BM| |PB| , 又| AM| = |BM| = 2, |PA = | PB|,所以 S= 2|PA| , 而 | PA| PM|2-| AM|2| PM|2-4,即 S= 2 | PM|2-4.因此要求S 的最小值,只需求|PM|的最小值即可, 即在直线3x + 4y + 8= 0上找一点P ,使得|PM|的值最小, 所以 |PM| min =|3%= 3 ,所以四边形PAMB 面积的最小值为 S = 2 | PM|min -4 = 2 32—4= 2 5. 22. (12 分) 解:(1)当在(-1,1)上存在一个零点时: 由 f(1)::0 得(3a-2)・(a 2) 0 二a ::: -2或a --3a - 1 I 2.(-a 2 ) a2 -a15 即a 」5)a1 0 当在(-1,1)上存在唯二个零点时: f(-1) >0』f(1)>0 T :: -a :: 1 (—a)2 2a(—a) 1—a ::0综上:…2或a .宁且厂|(2)丁 f(x)的对称轴为x »a ,并且在区间〔0,11有最小值2,当a_-1时,f (x) 1在区间 0,11 上是减函数,f(x)max 二 f(0) =2= a =-1 ;.当-r :: a 时,— 1 —f(x)max 二 f (0)=2二 a —1 (舍);当-2 舟 a ::: 0 时,f(x)max 二 f (1)=2二 a = 0(舍); 当 a _0 时,f(x)在区间 10,11 上是增函数,f (x)m ax = f (1)=2= a=0 综上:a 的值是-1或0.得: -3a 2 0 a +2 A O -1 ■ a ::: 1 2a a 「1 02a < 3 a > -2「1 :: a :: 1-1-S /^T-1 + ^/5 a或 a -- 2 2-1 、52 a ::: 23。

相关文档
最新文档