大学数学实验 数据拟合与曲线拟合

合集下载

大学数学实验 数据拟合与曲线拟合

大学数学实验 数据拟合与曲线拟合

基础实验五 数据拟合与曲线拟合一、实验目的对于某个变化过程中的相互依赖的变量,可建立适当的数学模型,用于分析、预报、决策或控制该过程。

对于两个变量可通过用一个一元函数去模拟这两个变量的取值,但用不同的方法可得到不同的模拟函数。

使用最小二乘法来进行数据拟合,用基本函数曲线及其变化模拟给定的曲线,理解拟合方法。

二、实验材料2.1 曲线拟合(1)初等函数包括基本初等函数与它们经过加减乘除复合等运算后所得到的函数的图形及其变换。

拟合函数为多项式情形理论上已经解决,称为拉格朗日插值多项式。

(2)光滑曲线的有关内容,包括分段函数的连续性、一阶可导性与高阶可导性。

(3)方程或方程组的求解,包括超越方程或方程组的近似解法,线性方程组的精确解。

2.2最小二乘法给定平面上一组点(i x ,i y )(n i ,,2,1 =)作曲线拟合有多种方法,其中最小二乘法是常用的一种。

最小二乘法的原理是:求)(x f ,使∑=-=n k k k y x f 12])([δ达到最小。

拟合时,选取一定的拟合函数形式,设拟合函数的基底函数为,)(,,)(,)(10x x x m ϕϕϕ拟合函数为,)()()()(1100x c x c x c x f m m ϕϕϕ+++=确定m c c c ,,,10 使方差δ达到极小,此时得到的)(x f 即为所求。

为使δ取到极值,将)(x f 的表达式代入,对δ求i c 的偏导数,令其等于零,得到1+m 方程组成的方程组,从中求解i c 。

当m =1时,取拟合函数bx a x f +=)(,此做法称为线性拟合,统计学上叫做线性回归。

此时,临界方程组为⎪⎩⎪⎨⎧=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+∑∑∑∑∑=====n i i i n i i n i i n i i n i i y x b x x y b x na 112111, 从中解出a 与b ,有y x x l l x f xx xy +-=)()(,其中∑==n i i x n x 11 ,∑==n i i y n y 11 21)(x x l n i i xx -=∑=, ))((1y y x x l i ni i xy --=∑=。

实验数据与曲线拟合

实验数据与曲线拟合

实验数据与曲线拟合一、引言实验数据与曲线拟合是科学研究和工程应用中常见的任务之一。

通过对实验数据进行曲线拟合,可以找到数据背后的规律和趋势,从而进行预测、优化和决策。

本文将介绍实验数据与曲线拟合的基本概念、方法和应用。

二、实验数据的收集与处理1. 实验数据的收集实验数据的收集是实验研究的基础,可以通过传感器、仪器设备或人工记录等方式进行。

在收集实验数据时,应注意数据的准确性和可靠性,避免误差和干扰的影响。

2. 实验数据的处理在进行曲线拟合之前,需要对实验数据进行处理,以提高数据的可靠性和可用性。

常见的数据处理方法包括数据清洗、异常值处理、数据平滑和数据归一化等。

三、曲线拟合的基本概念1. 曲线拟合的定义曲线拟合是通过数学模型来描述和预测实验数据的一种方法。

通过找到最佳拟合曲线,可以近似地表示实验数据的规律和趋势。

2. 曲线拟合的目标曲线拟合的目标是找到最佳拟合曲线,使得拟合曲线与实验数据之间的误差最小化。

常见的误差度量方法包括最小二乘法、最大似然估计和最小绝对值法等。

3. 曲线拟合的模型曲线拟合的模型可以是线性模型、非线性模型或混合模型等。

选择合适的模型需要根据实验数据的特点和目标需求进行。

四、曲线拟合的方法1. 线性回归线性回归是一种常见的曲线拟合方法,适用于线性关系较为明显的实验数据。

通过最小化实验数据与拟合曲线之间的误差,可以得到最佳拟合直线。

2. 非线性回归非线性回归适用于实验数据存在非线性关系的情况。

常见的非线性回归方法包括多项式回归、指数回归和对数回归等。

通过选择合适的函数形式和参数,可以得到最佳拟合曲线。

3. 插值法插值法是一种通过已知数据点来估计未知数据点的方法。

常见的插值方法包括拉格朗日插值、牛顿插值和样条插值等。

通过插值方法可以得到平滑的曲线拟合结果。

4. 最小二乘法最小二乘法是一种通过最小化实验数据与拟合曲线之间的误差来求解模型参数的方法。

通过最小二乘法可以得到最佳拟合曲线的参数估计值,并评估拟合曲线的拟合程度。

数据拟合方法研究

数据拟合方法研究

数据拟合方法研究一、线性回归拟合方法线性回归拟合是最常见的数据拟合方法之一、其基本思想是建立一个线性模型,通过最小二乘法求解模型参数,使模型的预测结果与实际数据之间的误差最小化。

线性回归模型具有简单的形式和可解析的解,适用于解决线性关系的问题。

二、非线性拟合方法如果实际数据与线性模型之间存在非线性关系,线性回归模型就无法准确拟合数据。

这时需要使用非线性拟合方法。

常用的非线性拟合方法有多项式回归、指数函数拟合、对数函数拟合等。

这些方法通过调整模型参数,使模型能更好地逼近实际数据,建立更准确的拟合模型。

三、曲线拟合方法有些数据与线性模型或非线性模型都无法准确拟合,可能需要使用曲线拟合方法。

曲线拟合方法将数据与曲线进行对比,通过调整曲线参数,使曲线与实际数据尽可能接近。

常见的曲线拟合方法有多项式拟合、样条插值、B样条拟合等。

这些方法可以根据实际问题和数据特点选择合适的曲线模型,并通过调整节点或控制点的位置,优化曲线拟合效果。

四、最小二乘法拟合最小二乘法是一种常用的数据拟合方法,可以用于线性或非线性数据拟合。

最小二乘法的基本思想是最小化观测数据与拟合函数之间的残差平方和,即使得模型的预测结果与实际数据之间的误差最小化。

最小二乘法不仅可以用于拟合直线或曲线,还可以用于拟合多项式函数、指数函数、对数函数等。

五、贝叶斯拟合方法贝叶斯拟合方法是一种基于贝叶斯统计学理论的数据拟合方法。

贝叶斯拟合方法将参数的不确定性考虑进来,通过概率分布描述参数的可能取值范围,并通过贝叶斯公式更新参数的后验概率。

贝叶斯拟合方法可以更准确地估计参数的置信区间,并提供更可靠的模型预测。

综上所述,数据拟合方法包括线性回归拟合、非线性拟合、曲线拟合、最小二乘法拟合和贝叶斯拟合等。

不同的拟合方法适用于不同类型的数据和问题。

在实际应用中,需要结合数据的特点和问题的要求,选择合适的拟合方法,并通过调整模型参数,使拟合模型能准确地描述数据的变化趋势。

在Matlab中进行数据拟合和曲线拟合的方法

在Matlab中进行数据拟合和曲线拟合的方法

在Matlab中进行数据拟合和曲线拟合的方法在科学研究或工程应用中,数据拟合和曲线拟合是常见的计算任务之一。

Matlab作为一种强大的数值计算软件,提供了丰富的工具和函数,方便我们进行数据拟合和曲线拟合的操作。

本文将介绍在Matlab中进行数据拟合和曲线拟合的几种方法。

一、线性回归线性回归是最简单的数据拟合方法之一,常用于建立变量之间的线性关系模型。

在Matlab中,可以使用polyfit函数进行线性回归拟合。

该函数可以根据输入数据点的横纵坐标,拟合出一条直线,并返回直线的斜率和截距。

例如,以下代码演示了如何使用polyfit函数进行线性回归拟合:```matlabx = [1, 2, 3, 4, 5];y = [2, 3, 4, 5, 6];coefficients = polyfit(x, y, 1);slope = coefficients(1);intercept = coefficients(2);```在上述代码中,数组x和y分别表示数据点的横纵坐标。

polyfit函数的第三个参数1表示拟合的直线为一阶多项式。

函数返回的coefficients是一个包含斜率和截距的数组,可以通过coefficients(1)和coefficients(2)获取。

二、多项式拟合在实际应用中,线性模型并不适用于所有情况。

有时,数据点之间的关系可能更复杂,需要使用更高阶的多项式模型来拟合。

Matlab中的polyfit函数同样支持多项式拟合。

我们可以通过调整多项式的阶数来拟合不同次数的曲线。

以下代码展示了如何使用polyfit函数进行二次多项式拟合:```matlabx = [1, 2, 3, 4, 5];y = [2, 6, 10, 16, 24];coefficients = polyfit(x, y, 2);a = coefficients(1);b = coefficients(2);c = coefficients(3);```在上述代码中,polyfit的第三个参数2表示拟合的多项式为二阶。

曲线拟合方法

曲线拟合方法

曲线拟合方法曲线拟合方法是在数据分析中应用广泛的一种数学模型,它能够有效地拟合一组数据,从而推断出它背后的现象,同时推断出现象的规律。

曲线拟合方法是最常用的无比可以满足实际应用要求的符号方法之一,在实际应用中可以清楚地看到它的优越性。

一、曲线拟合方法的定义曲线拟合方法是一种用来拟合数据的数学方法,即将一组数据拟合到一条曲线上,从而求解出拟合曲线的方程。

一般来说,曲线拟合方法是根据给定的数据集,通过最小二乘法来拟合出曲线的方程,以表述和描述该数据的特征。

曲线拟合方法给我们提供了一种比较直观和有效的数据分析工具,可以有效地发现数据中不同特征之间的关系,从而推断出它们背后的现象及其规律。

二、曲线拟合方法的基本思想曲线拟合方法的基本思想是将一组数据以曲线的形式,以拟合精度最高的方式拟合出曲线的方程。

有多种拟合方法,比如线性拟合、参数拟合、二次拟合、多项式拟合等,可以根据实际的数据特点,选择合适的拟合方法。

拟合方法的最终目的是使拟合曲线越接近原始数据,越接近实际情况,以此来求解出拟合曲线的方程,并且能够有效地反映出数据的规律特征。

三、曲线拟合方法的应用曲线拟合方法在实际工程中被广泛应用,它的应用非常广泛,可以用于各种数据的拟合,其中包括统计学中的数据拟合、物理学中拟合各种非线性函数曲线,以及优化、控制理论中根据给定数据拟合控制参数等。

曲线拟合方法可以有效地发现数据中不同特征之间的关系,从而推断出它们背后的现象,以及它们背后的规律,因此,曲线拟合方法在预测及数据分析中具有重要的作用。

四、曲线拟合方法的优缺点曲线拟合方法的优点在于它的拟合效果好,能够有效地发现数据中不同特征之间的关系,从而推断出它们背后的现象,以及它们背后的规律,因此它可以提供丰富、有价值的数据分析以及预测服务。

但是,曲线拟合方法也有一些缺点,比如它拟合的曲线不一定能够代表实际情况,有可能导致拟合出错误的结果,因此在使用时要注意控制拟合精度。

实验数据处理与拟合技巧

实验数据处理与拟合技巧

实验数据处理与拟合技巧在科研和实验工作中,数据的处理和拟合是非常重要的环节。

仅靠实验数据本身并不足以揭示事物之间的关系和规律,因此我们需要借助统计学和数学方法对数据进行处理和分析,从而找出其中的规律和趋势。

以下将介绍一些实验数据处理与拟合的技巧。

一、数据预处理数据预处理是指在进行数据拟合前对原始数据进行处理,以减少误差和噪声的影响,使数据更加准确和可靠。

常见的数据预处理方法包括数据平滑、异常值处理和数据缺失处理。

1. 数据平滑数据平滑是指通过去除噪声和异常值,使数据呈现出平滑的趋势。

常用的方法有移动平均、低通滤波和加权平均等。

移动平均是一种简单有效的平滑方法,通过计算一段时间内数据的平均值来消除噪声。

低通滤波则是通过滤波器对数据进行处理,去除高频噪声。

加权平均可以根据数据点的重要性进行加权处理,使得重要数据点对拟合结果的影响更大。

2. 异常值处理异常值是指与其他数据点明显不符的数据,可能是由于测量误差或其他因素引起的。

处理异常值可以有效避免其对数据拟合结果的干扰。

常用的方法有删除、替换和修正。

删除即将异常值从数据集中剔除,但需谨慎,以免丢失有价值的信息。

替换则是用邻近值或统计方法替代异常值,修正则是根据异常值的特点进行修正处理。

3. 数据缺失处理数据缺失是指实验数据中存在一些缺失的数据点,可能是由于设备故障或其他原因导致的。

数据缺失会对数据拟合和分析产生不利影响,因此需要进行处理。

常用的方法有删除、插值和模型估计。

删除是将缺失点从数据集中删除,但同样需要注意避免信息的丢失。

插值是利用数据点的邻近值进行插值计算,填补缺失点。

模型估计则是利用其他变量和模型对缺失数据进行估计,补充缺失值。

二、数据拟合数据拟合是指将实验数据与数学模型进行对比和拟合,以求解模型参数和预测未知数据。

常见的数据拟合方法有线性回归、非线性拟合和最小二乘法。

1. 线性回归线性回归是一种常用的拟合方法,用于分析自变量和因变量之间的线性关系。

§4.常见的数学建模方法(1)---数据拟合(曲线拟合)法

§4.常见的数学建模方法(1)---数据拟合(曲线拟合)法

实例. 找出基于下列数据的美国马萨诸塞州生产量、劳动力和投资之间变化的经
济增长模型(道格拉斯 Douglas 生产函数模型 )
实例 3. 某研究所为了研究三种肥料氮, 磷, 钾对于土豆和生菜的作
用, 分别对每种作物进行了三组试验. 实验数据如下列表格所示, 其 中 ha 表示公顷 , t 表示吨 , kg 表示千克. 试建立反映施肥量与产量 关系的数学模型. 氮施肥量(公斤/公顷)与土豆产量(吨/公顷)关系的实验数据
4
组数据应服 从的数学模型,如记 l - 1000 = l’ , l0 – 1000 = b, al0 = k , 则有 l’ = b + kt . 可以算得:
t 42.5,
2 ' t 8100 , l i i 1
4
(l 1000)
i 1
4
0.705,
' t l i i 34.6 i 1
§4. 常见的数学建模方法(1) --- 数据拟合(曲线拟合)法
在建立数学模型时,实际问题有时仅给出一组数据. 处理这类问题的 较简单易行的方法是通过数据拟合法求得 “最佳” 的近似函数式 --经验公式. 从几何上看就是找一条 “最佳” 的曲线, 使之和给定的 数 ( 1)决定经验公式的形式 . 根据所描绘的系统固有的特点 ,参照 据点靠得最近 , 即进行曲线拟合 . 根据一组数据来确定其经验公式 , 已知数据的图形和特点或者它应服从的规律来决定经验公式的形式 . 一般可 分为三步进行: 这一步是关键的一步. (2)决定经验公式中的待定参数 . 一般可用线性情况下的最小二 乘法 .它误差较小,适用于测定数据比较精确的情况.在使用最小二 乘法 时,如遇到数学模型是非线性经验公式时其中参数的待定,通

曲线拟合法

曲线拟合法

曲线拟合法
曲线拟合法是一种用于根据离散数据拟合出函数模型的方法,可以用来估计未知数据.是统计分析中经常使用的一种数学方法,它可以用来实现从数据中获取信息的目的。

曲线拟合的最常用的方法是最小二乘法,它的主要思想是将最小的均方误差捆绑到拟合的曲线上,使得它可以更好地描述数据曲线。

曲线拟合是一个复杂的过程。

它的目的是将一系列离散点拟合成一个曲线,该曲线可以刻画数据点之间的关系。

它可以帮助研究者更好地理解数据,并对数据进行进一步研究。

首先,研究者需要确定拟合曲线的函数形式,例如多项式,指数或对数函数,接着将参数估计出来,这一步通常使用标准的最小二乘估计方法。

有时候,参数的估计可能会受到多种因素的影响,但对于拟合曲线的准确性来说,参数的估计是非常重要的。

此外,在最小二乘估计方法中,也需要考虑多元变量之间的关系,这要求研究者针对每一种可能的关系预估参数。

另外,有许多类型的拟合方法,不同的拟合方法适用于不同的数据集,比如,动态拟合法、矩阵法和多元拟合法,这些方法可以帮助研究者在拟合表达式中找到更准确的参数值。

总的来说,曲线拟合法是一种有效的数据模型,它可以根据离散数据拟合出函数模型,这有助于研究者更全面地理解数据,并能够预测出未知点的值,有效地估计出参数。

它在统计学中有着广泛的应用,这种方法对于提高数据分析的精度,预测未知变量,并更加准确地描
述数据曲线都有着重要意义。

曲线拟合的意义

曲线拟合的意义

曲线拟合的意义曲线拟合是数据分析领域中的一项重要技术,它的意义远远不止于对数据进行精确的预测和估计。

曲线拟合是通过建立数学模型,将散乱的数据点用一条线或曲线去表示。

这能够帮助我们更好地理解数据的趋势、关系和规律。

曲线拟合在各个领域都有着广泛的应用。

在自然科学研究中,曲线拟合可以帮助我们分析实验数据,找到变量之间的关系,并在此基础上做出科学解释。

例如,物理学家利用曲线拟合的方法,研究物质的热膨胀性质,得到了具有实用价值的方程,从而在工程领域有了广泛的应用。

在经济领域,曲线拟合可以用来预测市场走势,分析供需关系,进行金融风险评估等。

通过对历史数据的曲线拟合,可以得到一条合理的曲线,从而预测未来可能的趋势。

这对企业的决策和投资非常有指导意义。

在医学研究中,曲线拟合被广泛应用于药物动力学的研究。

通过对实验数据进行曲线拟合,可以确定药物的半衰期、生物利用度等参数,从而指导合理的药物治疗方案。

此外,曲线拟合也可以用来分析临床试验数据,判断药物疗效和副作用。

除了以上几个领域,曲线拟合还可以在环境科学、社会科学、天文学等学科中得到广泛应用。

例如,利用气象观测数据进行曲线拟合,可以预测气温、降雨量等气象要素的变化趋势,对灾害预警和农业生产有重要意义;在社会科学研究中,曲线拟合可以帮助我们分析人口统计数据、经济指标、社会关系等,为政府决策提供参考依据。

曲线拟合不仅能够帮助我们理解和预测数据,还能提供一种简洁、直观的方式来表达复杂的信息。

通过绘制曲线图,我们可以一目了然地看到数据的趋势和规律,更容易向他人传递信息和展示研究成果。

然而,曲线拟合也存在一些局限性和挑战。

首先,曲线拟合的结果受到数据的质量和数量的限制。

如果数据点过少或者存在较大的误差,那么曲线拟合的结果可能并不准确。

其次,选择合适的数学模型和拟合方法也是一个关键的问题。

在实际应用中,我们需要根据具体情况选择不同的拟合方法,以获得最佳的结果。

总之,曲线拟合在数据分析中具有极其重要的意义。

Matlab数据拟合与曲线拟合方法

Matlab数据拟合与曲线拟合方法

Matlab数据拟合与曲线拟合方法【引言】数据拟合与曲线拟合是在科学研究和工程应用中常见的问题之一。

随着大数据时代的到来,数据拟合与曲线拟合方法在各个领域的重要性日益凸显。

本文将介绍基于Matlab的数据拟合与曲线拟合方法,包括最小二乘法、多项式拟合、样条拟合、指数拟合等,以及在实际应用中的一些注意事项。

【数据拟合方法一:最小二乘法】最小二乘法是一种常见的数据拟合方法,它通过最小化残差平方和,寻找最优解。

在Matlab中,我们可以使用内置函数“polyfit”来实现最小二乘法拟合。

该函数可以使用一条直线或多项式进行拟合,并返回拟合参数。

对于非线性函数,可以通过线性化或迭代求解的方式进行。

【数据拟合方法二:多项式拟合】多项式拟合是一种常用的数据拟合方法,它用一个多项式函数来近似拟合数据。

在Matlab中,我们可以使用“polyfit”函数实现多项式拟合。

该函数可以拟合任意次数的多项式,并返回拟合系数。

然后,利用这些系数可以计算拟合曲线,并评估拟合的准确性。

【数据拟合方法三:样条拟合】样条拟合是一种平滑且灵活的数据拟合方法,它基于样条函数的概念,将数据划分为多个区间,并在每个区间内拟合一个多项式。

在Matlab中,我们可以使用“spline”函数来实现样条拟合。

该函数需要提供拟合的数据点和拟合阶数,并返回拟合曲线。

【数据拟合方法四:指数拟合】指数拟合是一种适用于指数增长或衰减趋势的数据拟合方法,它将数据拟合为一个指数函数。

在Matlab中,我们可以使用“fit”函数和指数模型来实现指数拟合。

该函数可以自动调整模型参数,使拟合曲线与数据最匹配。

通过评估拟合结果的可靠性指标,我们可以判断拟合是否准确。

【数据拟合实例:气象数据分析】为了更好地理解数据拟合方法的应用,我们以气象数据分析为例进行探讨。

假设我们有一组记录了气温变化的数据点,并希望找到一个拟合曲线以准确地预测未来的气温变化情况。

通过应用多项式拟合或样条拟合方法,我们可以得到一个平滑的曲线,并计算出拟合曲线与实际数据的拟合度。

数据拟合与曲线拟合实验报告

数据拟合与曲线拟合实验报告

数据拟合与曲线拟合实验报告【数据拟合与曲线拟合实验报告】1. 实验介绍数据拟合与曲线拟合是数学和统计学中非常重要的概念和方法。

在科学研究、工程技术和数据分析中,我们经常会遇到需要从一组数据中找到代表性曲线或函数的情况,而数据拟合和曲线拟合正是为了解决这一问题而存在的。

2. 数据拟合的基本原理数据拟合的基本思想是利用已知的一组数据点,通过某种数学模型或函数,找到一个能够较好地描述这组数据的曲线或函数。

常见的数据拟合方法包括最小二乘法、最小二乘多项式拟合、指数拟合等。

在进行数据拟合时,我们需要考虑拟合的精度、稳定性、可行性等因素。

3. 曲线拟合的实验步骤为了更好地理解数据拟合与曲线拟合的原理与方法,我们进行了一组曲线拟合的实验。

实验步骤如下:- 收集一组要进行拟合的数据点;- 选择合适的拟合函数或模型;- 利用最小二乘法或其他拟合方法,计算拟合曲线的参数;- 对拟合结果进行评估和分析;- 重复实验,比较不同的拟合方法和模型。

4. 数据拟合与曲线拟合的实验结果通过实验,我们掌握了数据拟合和曲线拟合的基本原理与方法。

在实验中,我们发现最小二乘法是一种简单而有效的数据拟合方法,能够较好地逼近实际数据点。

我们还尝试了多项式拟合、指数拟合等不同的拟合方法,发现不同的拟合方法对数据拟合的效果有着不同的影响。

5. 经验总结与个人观点通过这次实验,我们对数据拟合和曲线拟合有了更深入的理解。

数据拟合是科学研究和实践工作中不可或缺的一部分,它能够帮助我们从一堆杂乱的数据中提炼出有用的信息和规律。

曲线拟合的精度和稳定性对研究和实践的结果都有着重要的影响,因此在选择拟合方法时需要慎重考虑。

6. 总结在数据拟合与曲线拟合的实验中,我们深入探讨了数据拟合和曲线拟合的基本原理与方法,并通过实验实际操作,加深了对这一概念的理解。

数据拟合与曲线拟合的重要性不言而喻,它们在科学研究、工程技术和信息处理中发挥着重要的作用,对我们的日常学习和工作都具有重要的指导意义。

曲线拟合的一般步骤

曲线拟合的一般步骤

曲线拟合的一般步骤曲线拟合是数学中的一个重要概念,可以用于回归分析、模拟计算、数据预测等领域。

本文将简单介绍曲线拟合的一般步骤,帮助读者了解如何应用曲线拟合进行数据分析。

一、确定曲线类型在进行曲线拟合之前,首先需要确定所拟合的曲线类型。

曲线类型的选择取决于数据的特性和预测的目标。

例如,如果数据呈现出周期性变化的趋势,可以选择对数周期函数或三角函数进行拟合;如果数据呈现出指数增长的趋势,可以选择指数函数进行拟合。

选择合适的曲线类型有助于提高拟合的准确度和预测的精度。

二、收集数据收集数据是进行曲线拟合的前提。

数据的收集需要考虑采样的频率、样本量的大小等因素。

通常情况下,数据的样本量越大、采样的频率越高,得到的拟合曲线越精确。

在进行数据收集时,还需要考虑数据的可信度和数据的质量。

三、对数据进行处理在收集完数据之后,需要对数据进行处理。

数据处理的主要目的是为了减少数据存在的噪声,并消除异常数据对拟合的影响。

数据处理方法可以采用平滑处理、滤波处理、插值法等方法。

同时,还需要进行数据标准化,将不同尺度的数据进行标准化处理,以便进行合理的拟合。

四、选择拟合算法选择合适的拟合算法对于拟合的准确度和模型的复杂度有重要影响。

拟合算法通常分为参数拟合和非参数拟合两种。

其中,参数拟合根据已有数据,估计模型中的参数,并针对参数进行优化;非参数拟合则不需要对模型参数进行预先确定。

常用的参数拟合算法包括最小二乘法、梯度下降法、牛顿迭代法等;非参数拟合算法包括局部加权线性回归、核函数回归等。

五、拟合模型评估进行拟合之后,需要对拟合模型进行评估。

评估的目的是为了验证拟合模型的有效性、准确性和稳定性。

评估方法可以采用拟合优度、均方误差、残差分布等指标。

根据评估结果,进行参数调整和算法选择,逐步提高拟合的精度和模型的可行性。

总结曲线拟合是一项基础而重要的数据处理技术。

选择合适的曲线类型、收集准确的数据、对数据进行处理、选择合适的拟合算法、评估拟合模型,这是曲线拟合的一般步骤。

在Matlab中进行数据拟合与曲线拟合的基本方法

在Matlab中进行数据拟合与曲线拟合的基本方法

在Matlab中进行数据拟合与曲线拟合的基本方法数据拟合是一种通过数学函数描述和预测现有数据集的方法,而曲线拟合则是一种特定形式的数据拟合。

在实际应用中,数据拟合和曲线拟合广泛用于物理学、工程学、经济学等领域。

而Matlab是一个功能强大的数学计算软件,其中有许多用于数据拟合和曲线拟合的工具和函数。

一、数据拟合的基本方法1. 线性拟合线性拟合是最简单的数据拟合方法之一。

在Matlab中,可以使用polyfit函数进行线性拟合。

假设我们有一组数据点,可以使用polyfit函数拟合出一个一次多项式(直线),该多项式可以最小化与实际数据之间的距离。

2. 多项式拟合多项式拟合是数据拟合中常用的方法之一。

可以使用polyfit函数进行多项式拟合。

该函数可以拟合出一个n次多项式,n为用户设定的拟合阶数。

3. 曲线拟合曲线拟合是更一般的数据拟合方法。

它可以拟合各种形式的曲线,包括指数、对数等。

Matlab中提供了curvefit函数用于曲线拟合。

该函数可以使用非线性最小二乘法拟合各种形式的曲线。

二、曲线拟合的基本方法1. 直线拟合直线拟合是曲线拟合中最简单的方法之一。

在Matlab中,可以使用polyfit函数进行直线拟合。

和数据拟合中的线性拟合类似,直线拟合也可以求出最小二乘拟合的直线方程。

2. 非线性拟合非线性拟合可以拟合各种复杂的曲线。

在Matlab中,可以使用fit函数进行非线性拟合。

该函数可以拟合任意的自定义模型。

3. 傅里叶拟合傅里叶拟合是一种将信号分解为一系列基本谐波的方法,并根据基本谐波的振幅和相位进行拟合的方法。

在Matlab中,可以使用fft函数进行傅里叶拟合。

三、实例演示下面通过一个实例演示在Matlab中进行数据拟合与曲线拟合的基本方法。

假设我们有一组实际测量的温度数据,并希望拟合出一个合适的曲线来描述这组数据。

1. 首先,我们可以将实际数据点绘制在图上,以便观察数据的分布和趋势。

2. 接下来,我们可以使用polyfit函数进行线性拟合,拟合出一个最小二乘拟合的直线方程。

实验数据与曲线拟合

实验数据与曲线拟合

实验数据与曲线拟合一、引言实验数据与曲线拟合是科学研究和工程应用中常见的数据处理方法之一。

通过拟合实验数据的曲线,我们可以得到一个数学模型,从而对数据进行预测、分析和优化。

本文将介绍实验数据与曲线拟合的基本概念、方法和步骤,并结合一个具体的案例进行详细说明。

二、实验数据与曲线拟合的基本概念1. 实验数据:实验数据是通过实验或观测得到的一系列数值。

这些数据可能受到误差的影响,因此需要进行处理和分析。

2. 曲线拟合:曲线拟合是通过数学模型来拟合实验数据的过程。

目标是找到一个最佳的曲线,使得拟合曲线与实验数据的误差最小。

三、实验数据与曲线拟合的方法1. 线性拟合:线性拟合是最简单的拟合方法之一。

它假设实验数据与拟合曲线之间存在线性关系,通过最小二乘法来确定最佳拟合直线的参数。

2. 多项式拟合:多项式拟合是一种常见的曲线拟合方法。

它假设实验数据与拟合曲线之间存在多项式关系,通过最小二乘法来确定最佳拟合多项式的系数。

3. 非线性拟合:非线性拟合适用于实验数据与拟合曲线之间存在复杂关系的情况。

它通过迭代方法来确定最佳拟合曲线的参数。

四、实验数据与曲线拟合的步骤1. 收集实验数据:首先需要进行实验或观测,得到一系列的数据。

2. 数据预处理:对实验数据进行清洗和处理,去除异常值和噪声。

3. 选择拟合模型:根据实验数据的特点和目标,选择适合的拟合模型,如线性模型、多项式模型或非线性模型。

4. 确定拟合参数:根据选择的拟合模型,通过最小二乘法或迭代方法来确定最佳拟合参数。

5. 拟合曲线绘制:利用确定的拟合参数,绘制拟合曲线,并将其与实验数据进行对比。

6. 拟合效果评估:通过计算拟合曲线与实验数据之间的误差指标,评估拟合效果的好坏。

7. 拟合结果应用:根据拟合结果,进行数据预测、分析和优化等进一步应用。

五、案例说明假设我们进行了一组实验,测量了某物体在不同时间下的位移数据。

我们希望通过拟合曲线来预测物体在未来的位移情况。

物理实验中的数据拟合与曲线分析技术

物理实验中的数据拟合与曲线分析技术

物理实验中的数据拟合与曲线分析技术在物理实验中,数据拟合与曲线分析技术是非常重要的工具。

通过对实验数据的分析和处理,我们可以得到更准确的结果,进一步理解和解释所研究的物理现象。

本文将介绍数据拟合与曲线分析的基本概念和常用方法。

一、数据拟合的基本概念所谓拟合,即通过某种数学模型来拟合实验数据的曲线,以求得该模型的参数。

拟合的目的是找到最佳的拟合曲线,使其能够较好地描述实验数据,并能够用于预测和推测未知数据。

在物理实验中,常见的拟合模型包括线性模型、多项式模型、指数模型等。

数据拟合有多种方法,其中最常见的是最小二乘法。

该方法通过最小化实验数据与拟合曲线之间的残差平方和来确定最佳拟合曲线。

在实际操作中,可以利用计算软件进行拟合计算,以提高效率和准确性。

二、曲线分析的常用方法曲线分析是研究曲线特性和趋势的方法。

通过对实验数据进行曲线分析,可以揭示出数据的规律和趋势,促进对物理现象的深入理解。

在曲线分析中,有几个基本的概念和方法是非常重要的。

首先是斜率和截距,它们可以提供曲线的直观特征。

通过斜率可以了解曲线的变化速率,而截距则提供了曲线与坐标轴的交点位置。

其次是曲率和凸凹性。

曲率描述了曲线的弯曲程度,可以用于判断曲线的平滑程度和拐点位置。

凸凹性则指曲线的凸起和凹陷程度,通过分析凸凹性可以得到曲线上的极值点。

还有相关系数和确定系数,它们用于评估拟合曲线的质量和拟合程度。

相关系数衡量了实验数据与拟合曲线之间的线性关系程度,确定系数则表示拟合曲线能够解释实验数据的百分比。

三、实例分析为了更好地理解数据拟合与曲线分析技术,我们以某种物理实验的实例进行分析。

假设我们进行了一次关于弹簧的实验,通过测量质点的位移和受力的关系,我们得到了一组实验数据。

根据经验,我们可以猜想该实验符合胡克定律,即受力与位移成正比。

首先,我们可以利用最小二乘法进行线性拟合,得到拟合直线的斜率和截距。

通过斜率可以计算出胡克系数,从而得到弹簧的弹性常数。

北理工_数据分析_实验5_数据拟合

北理工_数据分析_实验5_数据拟合

北理工_数据分析_实验5_数据拟合实验5:数据拟合一、实验目的本实验旨在通过数据拟合的方法,掌握数据分析中的拟合技术,了解拟合模型的选择和参数估计方法。

二、实验原理数据拟合是指根据已有的离散数据点,通过选择合适的拟合模型,利用数学方法寻找最佳拟合曲线或曲面,以达到对数据的描述、预测和分析的目的。

常见的拟合模型包括线性拟合、多项式拟合、指数拟合、对数拟合等。

在数据拟合过程中,一般需要先选择合适的拟合模型。

模型的选择应基于对数据的了解和实际需求。

然后,通过最小二乘法等方法,估计拟合模型的参数。

最后,进行模型的检验和评估,判断拟合效果的好坏。

三、实验步骤1. 收集实验数据:根据实验要求,收集一组离散的数据点。

2. 选择拟合模型:根据数据的特点和实际需求,选择合适的拟合模型。

例如,若数据呈现线性关系,则选择线性拟合模型。

3. 参数估计:利用最小二乘法等方法,估计拟合模型的参数。

以线性拟合为例,通过最小化实际数据点与拟合直线的误差平方和,求解直线的斜率和截距。

4. 拟合曲线绘制:根据估计得到的参数,绘制拟合曲线。

可使用数据分析软件或编程语言实现。

5. 拟合效果评估:通过观察拟合曲线与实际数据点的拟合程度,评估拟合效果的好坏。

可计算残差平方和、决定系数等指标进行评估。

四、实验数据与结果假设我们收集到一组实验数据,表示某种物质的浓度与时间的关系。

数据如下:时间(小时)浓度(mg/L)1 2.12 3.53 4.94 6.35 7.8根据实验数据,我们选择线性拟合模型进行拟合。

利用最小二乘法,我们得到拟合直线的参数估计结果为:斜率为1.26,截距为0.98。

根据这些参数,我们绘制出拟合直线如下图所示。

(插入拟合曲线图)通过观察拟合直线与实际数据点的拟合程度,我们可以评估拟合效果的好坏。

同时,我们可以计算残差平方和和决定系数等指标进行更详细的评估。

五、实验结论通过本实验,我们学习了数据拟合的基本原理和方法。

通过选择合适的拟合模型,利用最小二乘法估计参数,我们可以得到拟合曲线,进而对数据进行描述和分析。

数学中的曲线拟合

数学中的曲线拟合

数学中的曲线拟合曲线拟合是数学中一种重要的数值分析方法,它主要用于研究数据点的关系,并通过建立适当的数学模型来预测未知数据或者分析数据间的相互影响。

在各个领域中,曲线拟合都扮演着重要的角色,从物理、生物到工程等多个学科都离不开曲线拟合技术的应用。

本文将简要介绍曲线拟合的基本概念、方法和实际应用。

一、曲线拟合概述曲线拟合是指通过建立数学模型,将数据点拟合在一条曲线上,在统计学中也称为回归分析。

在拟合过程中,我们试图找到最佳拟合曲线,使得所有数据点到拟合曲线的距离尽可能小,从而能够更好地描述数据间的规律。

常用的曲线模型包括线性回归、多项式拟合、指数拟合和对数拟合等。

二、曲线拟合方法1.线性回归线性回归是曲线拟合中最简单的一种方法,它假设数据点之间存在线性关系,即可以用一条直线来拟合数据。

线性回归的核心是最小二乘法,通过最小化实际观测值与拟合值之间的平方差来确定最佳拟合直线的斜率和截距。

2.多项式拟合多项式拟合是曲线拟合中常用的一种方法,它利用多项式函数来逼近数据点。

多项式拟合的核心是最小二乘法,通过最小化实际观测值与拟合值之间的平方差来确定最佳拟合曲线的系数。

多项式拟合可以根据数据点的特点选择合适的多项式阶数,从而更好地描述数据间的关系。

3.非线性拟合若数据点之间的关系不能通过线性函数或多项式函数来表示,就需要使用非线性拟合方法。

非线性拟合通过建立非线性模型来拟合数据点,常用的非线性模型包括指数函数、对数函数、幂函数等。

非线性拟合通常需要借助数值计算方法,如最小二乘法、牛顿法或Levenberg-Marquardt算法等。

三、曲线拟合应用举例曲线拟合广泛应用于各个领域,以下举例说明其实际应用:1.物理学中的运动学分析物理学中,我们常常使用曲线拟合的方法来研究运动学问题。

通过对物体在不同条件下运动的轨迹进行拟合,可以得到运动的规律和物体的运动参数,如位移、速度、加速度等。

2.生物学中的生长模型生物学研究中,曲线拟合方法可以用于分析生物体的生长过程。

数据拟合与曲线拟合模型应用

数据拟合与曲线拟合模型应用

1.实验项目名称:数据拟合与曲线拟合模型应用 2.实验目的和要求:了解最小二乘法与曲线拟合问题及用法;理解并掌握线性模型曲线拟合及多项式函数曲线拟合的理论和方法,掌握用MATLAB 作出曲线拟合。

3.实验使用的主要仪器设备和软件:方正商祺N260微机;MATLAB 7. 1版本 4.实验的基本理论和方法:曲线拟合:给定平面上一组点(,),(1,2,,)i i x y i n = ,作曲线拟合有多种方法,其中最小二乘法是常用的一种。

最小二乘法的原理:求()f x ,使21[()]ni i i f x y δ==-∑达到最小。

拟合时,选取一定的拟合函数形式。

5.实验内容与步骤:1、给药问题:对某人用快速静脉注射方式—次注入某药物300mg 后,在一定时刻)(h t 采取血药,测得血药浓度)/(ml mg c 如下表:请根据上述数据,确定给药方案:每次注射计量多大,间隔时间多长。

(1) 模型建立:本题可视为一室模型,首先作如下假设: 血药浓度——)(t c 中心室容积——V给药速率——)(0t f ,对于快速静脉注射,初始条件为:0)(0=t f 从中心室流出的药物转移速率系数——k , 考察t 到t t ∆+血药浓度的减少,就有 t t kc t c t t c ∆-=-∆+)()()( 再设t=0时药量为0D ,VD c 0)0(=,即得微分方程kc dt dc-=, VD c 0)0(= (1)方程(1)的解为kte VD t c -=0)( (2) 所以血药浓度随时间变化的模型为:kt e VDt c -=0)((2)参数据确定(拟合求解))15,24.0(≈≈V k参数确定 用MATLAB 软件进行拟合,程序和得到的结果如下: function f=curvefun1(x,tdata) f=300*exp(-x(2)*tdata)/x(1)tdata=[0.25 0.5 1 1.5 2 3 4 6 8];cdata=[19.21 18.15 15.36 14.10 12.89 9.32 7.45 5.24 3.01]; x0=[10,0.2];x=lsqcurvefit('curvefun1',x0,tdata,cdata) f=curvefun1(x,tdata); plot(tdata,cdata,'k+',tdata,f,'r-')0123456782468101214161820图9:指数函数拟合x =14.8212 0.2420根据结果可以知道:2420.0,8212.14)1(===k x V 。

实验数据与曲线拟合

实验数据与曲线拟合

实验数据与曲线拟合1. 曲线拟合1. 曲线拟合的定义2. 简单线性数据拟合的例子2. 最小二乘法曲线拟合1. 最小二乘法原理2. 高斯消元法求解方程组3. 最小二乘法解决速度与加速度实验3. 三次样条曲线拟合1. 插值函数2. 样条函数的定义3. 边界条件4. 推导三次样条函数5. 追赶法求解方程组6. 三次样条曲线拟合算法实现7. 三次样条曲线拟合的效果4. 12.1 曲线拟合5. 12.1.1 曲线拟合的定义6. 曲线拟合(Curve Fitting)的数学定义是指用连续曲线近似地刻画或比拟平面上一组离散点所表示的坐标之间的函数关系,是一种用解析表达式逼近离散数据的方法。

曲线拟合通俗的说法就是“拉曲线”,也就是将现有数据透过数学方法来代入一条数学方程式的表示方法。

科学和工程遇到的很多问题,往往只能通过诸如采样、实验等方法获得若干离散的数据,根据这些数据,如果能够找到一个连续的函数(也就是曲线)或者更加密集的离散方程,使得实验数据与方程的曲线能够在最大程度上近似吻合,就可以根据曲线方程对数据进行数学计算,对实验结果进行理论分析,甚至对某些不具备测量条件的位置的结果进行估算。

7. 12.1.2 简单线性数据拟合的例子8. 回想一下中学物理课的“速度与加速度”实验:假设某物体正在做加速运动,加速度未知,某实验人员从时间t0 = 3秒时刻开始,以1秒时间间隔对这个物体连续进行了12次测速,得到一组速度和时间的离散数据,请根据实验结果推算该物体的加速度。

9. 表 12 – 1 物体速度和时间的测量关系表10. 在选择了合适的坐标刻度之后,我们就可以在坐标纸上画出这些点。

如图12–1所示,排除偏差明显偏大的测量值后,可以看出测量结果呈现典型的线性特征。

沿着该线性特征画一条直线,使尽量多的测量点能够位于直线上,或与直线的偏差尽量小,这条直线就是我们根据测量结果拟合的速度与时间的函数关系。

最后在坐标纸上测量出直线的斜率K,K就是被测物体的加速度,经过测量,我们实验测到的物体加速度值是1.48米/秒2。

物理实验技术使用中如何进行数据拟合与曲线拟合

物理实验技术使用中如何进行数据拟合与曲线拟合

物理实验技术使用中如何进行数据拟合与曲线拟合在物理实验中,数据拟合与曲线拟合是一项非常重要的技术。

通过对实验数据进行拟合,我们可以得到更准确的实验结果,进一步理解和解释实验现象。

本文将介绍物理实验中如何进行数据拟合与曲线拟合的常用方法和技巧。

一、数据拟合的基本概念与方法数据拟合是指根据一组离散的实验数据点,找到能够最好地描述这些数据点的某种函数形式。

常用的数据拟合方法有最小二乘法和非线性最小二乘法。

1. 最小二乘法最小二乘法是一种最常用的线性数据拟合方法。

它通过寻找最小化残差平方和的参数值,来确定拟合函数的参数。

残差是指实验数据和拟合函数值之间的差异。

在使用最小二乘法进行数据拟合时,首先需要确定拟合函数的形式。

然后,将实验数据代入拟合函数,并计算残差平方和。

通过对残差平方和进行最小化,可以得到最佳的拟合参数。

2. 非线性最小二乘法非线性最小二乘法是适用于非线性拟合问题的方法。

在非线性拟合中,拟合函数的形式一般是已知的,但是函数参数的确定需要通过拟合实验数据来进行。

非线性最小二乘法通过迭代寻找最小化残差平方和的参数值。

首先,假设初始参数值,代入拟合函数,并计算残差。

然后,根据残差的大小,调整参数值,直到残差平方和最小化。

二、曲线拟合的常用方法与技巧曲线拟合是一种在实验中常见的数据处理方法。

例如,在光谱实验中,我们常常需要对谱线进行拟合,来确定峰的位置、宽度等参数。

1. 多项式拟合多项式拟合是一种常用的曲线拟合方法。

多项式可以近似任何函数形式,因此可以适用于不同形状的实验数据曲线。

在多项式拟合中,我们根据实验数据点的分布情况,选择适当的多项式次数。

通过最小二乘法,确定多项式的系数,从而得到拟合曲线。

2. 非线性曲线拟合非线性曲线拟合适用于实验数据具有复杂形状的情况。

拟合函数的形式一般是已知的,但是参数的确定需要通过拟合实验数据来进行。

非线性曲线拟合的方法类似于非线性最小二乘法。

通过寻找最小化残差平方和的参数值,可以得到拟合曲线的形状和特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基础实验五 数据拟合与曲线拟合
一、实验目的
对于某个变化过程中的相互依赖的变量,可建立适当的数学模型,用于分析、预报、决策或控制该过程。

对于两个变量可通过用一个一元函数去模拟这两个变量的取值,但用不同的方法可得到不同的模拟函数。

使用最小二乘法来进行数据拟合,用基本函数曲线及其变化模拟给定的曲线,理解拟合方法。

二、实验材料
2.1 曲线拟合
(1)初等函数包括基本初等函数与它们经过加减乘除复合等运算后所得到的函数的图形及其变换。

拟合函数为多项式情形理论上已经解决,称为拉格朗日插值多项式。

(2)光滑曲线的有关内容,包括分段函数的连续性、一阶可导性与高阶可导性。

(3)方程或方程组的求解,包括超越方程或方程组的近似解法,线性方程组的精确解。

2.2最小二乘法
给定平面上一组点(i x ,i y )(n i ,,2,1 =)作曲线拟合有多种方法,其中最小二乘法是常
用的一种。

最小二乘法的原理是:求)(x f ,使∑=-=n k k k y x f 1
2])([δ达到最小。

拟合时,选取一定的拟合函数形式,设拟合函数的基底函数为
,)(,,)(,)(10x x x m ϕϕϕ
拟合函数为
,)()()()(1100x c x c x c x f m m ϕϕϕ+++=
确定m c c c ,,,10 使方差δ达到极小,此时得到的)(x f 即为所求。

为使δ取到极值,将)(x f 的
表达式代入,对δ求i c 的偏导数,令其等于零,得到1+m 方程组成的方程组,从中求解i c 。

当m =1时,取拟合函数bx a x f +=)(,此做法称为线性拟合,统计学上叫做线性回归。

此时,临界方程组为
⎪⎩⎪⎨⎧=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+∑∑∑∑∑=====n i i i n i i n i i n i i n i i y x b x x y b x na 1121
11, 从中解出a 与b ,有y x x l l x f xx xy +-=
)()(,其中∑==n i i x n x 11 ,∑==n i i y n y 11 21)(x x l n i i xx -=∑=, ))((1y y x x l i n
i i xy --=∑=。

Mathematica 提供了最基本的数据拟合函数Fit ,这个函数使用最小二乘法产生基函数的线性组合以构造出拟合函数。

函数的参数表中包括三项:第一个参数是被拟合的数据;第二个参数是一个表,用于说明拟合用的基函数;第三个参数是拟合变量。

2.3 线性拟合
练习1 为研究某一化学反应过程中温度)(0C x 对产品得率y (%)的影响,测得数据如下:
试求其线性拟合曲线。

Mathematica 程序:
b1={{100,45},{110,51},{120,54},{130,61},{140,66},{150,70},{160,74},{170,78}, {180,85},{190,89}} (将数据以表的形式输入)
ft1=Fit[b1,{1,x},x] (用Fit 拟合,这里是线性拟合)
gp=Plot[ft1,{x,100,190},PlotStyle->{RGBColor[1,0,0]}] (作拟合曲线的图形) fp=ListPlot[b1,PlotStyle->{PointSize[0.05],RGBColor[0,0,1]}] (作散点图)
Show[fp,gp] (显示点组与拟合曲线,作图。

下面为计算残差的程序) a= ;b= ; (a ,b 的值由上面的结果确定)
f[x_]=a*x+b; (拟合函数)
darata=Sum[(b1[[i,2]]-f[b1[[i,1]]])^2,{i,1,10}](计算残差)
2.4 非线性拟合
提示:先用ListPlot 语句描点,观察点的分布情况,以确定拟合函数。

(1)用多项式函数拟合的Mathematica 程序:
Clear[gp,fp];
b2={{1,4},{2,6.4},{3,8.0},{4,8.4},{5,9.28},{6,9.5},{7,9.7},{8,9.86},{9,10.0},{10,10.2}, {11,10.32},{12,10.42},{13,10.5},{14,10.55},{15,10.58},{16,10.6}}
gp=ListPlot[b3,PlotStyle->{RGBColor[0,1,0],PointSize[0.04]}]
ft2=Fit[b3,Table[x^i,{i,0,4}],x] (用四次曲线拟合)
fp=Plot[ft2,{x,0,17},PlotStyle->{RGBColor[1,0,0]}]
Show[gp,fp]
f[x_]=expr; (用拟合的多项式函数来定义f(x ))
darata=Sum[(b2[[i,2]]-f[b2[[i,1]]])^2,{i,1,16}](计算残差)
(2)用函数x b ae y =作拟合,求拟合曲线。

作变换x
x 1=
,y y ln =,拟合函数变形为x b a y +=ln 。

Mathematica 程序为: fx[x_]:=1/x
fy[y_]:=Log[y]
nb=Table[{fx[b2[[i,1]]],fy[b2[[i,2]]]},{i,1,16}]
ft3=Fit[nb,{1,x},x] (拟合)
f4=a*Exp[b/x] (a ,b 的值由上面的结果确定)
t1=Plot[f4,{x,1,18},PlotStyle->{RGBColor[1,0,0]}]
t2=ListPlot[b2,PlotStyle->{RGBColor[0,1,0],PointSize[0.05]}]
Show[%,%%]
(3)用x
b a y +=1作拟合。

Mathematica 程序为: g[y_]:=1/y
sb=Table[{b2[[i,1]],g[b2[[i,2]]]},{i,1,16}]
ft5=Fit[sb,{1,1/x},x]
f5=1/ft5
t3=Plot[f5,{x,1,16},PlotStyle->{RGBColor[0,0,1]}]
Show[t1,t2,t3](在一张图上比较一下用两种方法得到的函数曲线)
(4)用分段函数作拟合。

2.4 思考题
1
求其线性拟合曲线.
2y )实验,得数据如下:
以模型2
+
=作曲线拟合。

y+
cx
bx
a
3
试作非线性拟合。

相关文档
最新文档