2020中考数学最后一题冲刺题
2020年浙江省中考数学黄金冲刺试卷(含答案)
浙江省中考数学黄金冲刺试卷温馨提示:1.本卷满分120分,考试时间120分钟.2.本次考试为开卷考试且不能使用计算器.3.请仔细审题,细心答题,相信你一定有出色的表现.一、选择题(本大题有10小题,每小题3分,共30分)1.给出四个数0,-2,31,27-,其中为无理数的是( ▲ ) A .0 B .-1 C .31D .27-2.下列各式计算正确的是( ▲ ) A .(a +1)2=a 2+1 B .a 2+a 3=a 5 C .a 8÷a 2=a 6D .3a 2-2a 2=13.如图所示的几何体的左视图是( ▲ )4.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同. 若从中随机摸出一个球,它是白球的概率为32,则黄球的个数为( ▲ ) A .2 B .4 C .12 D .165.如图,点D 、E 分别在AB 、AC 上,且∠B =∠AED .若DE =4, AE =5,BC =8;则AB 的长为( ▲ )A .16B .8C .10D .56.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为( ▲ )A .10B .9C .8D .77.河堤横断面如图,堤高BC =5米,迎水坡AB 的坡比是1∶ 3 (坡比是坡面的铅直高BC 与水平宽度AC 之比),则AC 的长是( ▲ ) A .53米 B .10米 C .15米 D .103米8.已知抛物线C :2310y x x =+-,将抛物线C 平移得到抛物线C ',若两条抛物线C和C '关于直线1x =对称,则下列平移方法中,正确的是( ▲ ) A .将抛物线C 向右平移52个单位 B .将抛物线C 向右平移3个单位 C .将抛物线C 向右平移5个单位 D .将抛物线C 向右平移6个单位正面 A . B . C . D .(第5题图)AB CDE9.如图,A 、C 分别是x 轴、y 轴上的点,双曲线2y x=(x >0)与 矩形OA BC 的边BC 、AB 分别交于E 、F ,若AF ︰BF =1︰2,则 △OEF 的面积为( ▲ )A .2B .83C .3D .10310.如图,以G (0,1)为圆心,半径为2的圆与x 轴交于A ,B两点,与y 轴交于C ,D 两点,点E 为⊙G 上一动点,作 C F ⊥AE 于点F .当点E 从点B 出发,逆时针运动到点C 时, 点F 所经过的路径长为( ▲ )A .34π B .33π C .32π D .233π二、填空题(本大题有6小题,每小题4分,共24分)11. 已知a 2﹣b 2=6,a ﹣b =2,则a +b = ▲ .12.一组数1、2、3、x 、5的众数是1,则这组数的中位数是 ▲ .13.已知关于x 的方程321x nx ++=2的解是负数,则n 的取值范围为 ▲ . 14.如图,在8×7的点阵中,任意两个竖直或水平相邻的点都相距1个单位长度.已知正方形ABCD 被线段EF 分割成两部分,则 阴影部分的面积为 ▲ .15.如果一个三角形的一边长等于另一边长的两倍,我们把这样的三角形成为 “倍边三角形”.如果一个直角三角形是倍边三角形,那么这个直角三角形的较小的锐角的正切值为 ▲ . 16.如图,直线122y x =+交y 轴于点A ,与直线12y x =- 交于点B ,把△AOB 沿y 轴翻折,得到△AOC ,(1)点C的坐标是 ▲ ;(2)若抛物线y =(x ﹣m )2+k 的顶点在直 线12y x =-上移动,当抛物线与△AOC 的边OC ,AC 都 有公共点时,则m 的取值围是 ▲ .三、解答题(本大题有8小题,共66分,各小题都必须写出解答过程) 17.(本题6分)计算:︒--+--60cos )21(28018.(本题6分)先化简,再求值:)1)(1()2(2a a a +--+,其中43-=a (第14题图) C DB AFEyxDBFCAGE(第10题图)(第9题图)精品资料19.(本题6分)如图,把直角坐标系xoy放置在边长为1的正方形网格中,O是坐标原点,点A、O、B均在格点上,将△OAB绕O点按顺时针方向旋转90°后,得到△BAO''.(1)画出△BAO'',点A的对应点A'的坐标是▲;(2)若点P是在y轴上的一个动点,当P A+AP'的值最小时,点P的坐标是▲.20.(满分8分)某校就“遇见路人摔倒后如何处理”的问题,随机抽取该校部分学生进行问卷调查,图1和图2是整理数据后绘制的两幅不完整的统计图. 请根据图中提供的信息,解答下列问题:(1)该校随机抽查了▲名学生;(2)将图1补充完整;在图2中,“视情况而定”部分所占的圆心角是▲度;(3)估计该校2600名学生中采取“马上救助”的方式约有多少人?21.(本题8分)如图,AB是半圆O的直径,过半圆O上一点D作DE⊥AB,垂足为E,作半圆O的切线DC,交AB的延长线于点C,连结OD、BD.(1)求证:BD平分∠CDE;(2)过点B作BF∥CD交DE于点F,若BE=4,sin∠BOD=45,求线段BC的长.22.(本题10分)市园林处为了对一段公路进行绿化,计划购买A,B两种风景树共900棵.A,B两种树的相关信息如下表:项目品种单价(元/棵)成活率A80 92%B100 98%若购买(1)求y与x之间的函数关系式;(2)若购树的总费用82000元,则购A种树不少于多少棵?(3)若希望这批树的成活率不低于94%,且使购树的总费用最低,应选购A,B两种树各多少棵?此时最低费用为多少?AB O xy23.(本题10分)(1)将矩形OABC 放在平面直角坐标系中,顶点O 为原点,顶点C 、A分别在x 轴和y 轴上,OA =8,OC =10,点E 为OA 边上一点,连结CE ,将△EOC 沿CE 折叠. ①如图1,当点O 落在AB 边上的点D 处时,求点E 的坐标;②如图2,当点O 落在矩形OABC 内部的点D 处时,过点E 作EG ∥x 轴交CD 于点H ,交BC 于点G ,设H (m ,n ),求m 与n 之间的关系式;(2)如图3,将矩形OABC 变为边长为10的正方形,点E 为y 轴上一动点,将△EOC 沿CE 折叠.点O 落在点D 处,延长CD 交直线AB 于点T ,若12AE AO =,求AT 的长.24.(本题12分)如图,已知抛物线223y x x =--经过x 轴上的A ,B 两点,与y 轴交于点C ,线段BC 与抛物线的对称轴相交于点D ,点E 为y 轴上的一个动点. (1)求直线BC 的函数解析式,并求出点D 的坐标;(2)设点E 的纵坐标为为m ,在点E 的运动过程中,当△BDE 中为钝角三角形时,求m的取值范围; (3)如图2,连结DE ,将射线DE 绕点D 顺时针方向旋转90°,与抛物线交点为G ,连结EG ,DG 得到R t △GED .在点E 的运动过程中,是否存在这样的R t △GED ,使得两直角边之比为2:1,如果存在,求出此时点G 的坐标;如果不存在,请说明理由.图1图2图3y xDA BC OE y xHG DABC OExy TDEC BAO参考答案及评分意见题号 1 2 3 4 5 6 7 8 9 10 答案DCCBCAACBD二、填空题(本大题有6小题,每小题4分,共24分) 11. 3 12. 2 13. n <2且n ≠32 14. 4315. 312或 16. (1)(2,1);(2)116-≤m ≤933- 或133+≤m ≤933+ (每小题各2分)三、解答题(本大题有8小题,共66分)17.(本题6分)原式=122212-(4分) =212+(2分) 18.(本题6分)原式=4a +5 (4分)=2 (2分)19.(本题6分)(1)画出△B A O ''(2分),A '的坐标是(2,﹣1)(2分) (2)P 的坐标(0,1)(2分) 20.(本题8分) (1)200(2分)(2)将图1补充完整(2分),圆心角是 72 度(2分) (3)大约1560人(2分) (1)略(4分).(2)BC =203(4分) 22.(本题10分)(1)80100(900)y x x =+-2090000x =-+ (3分)精品资料(2)209000082000x -+≤ 解得x ≥400即购A 种树不少于400棵 (3分)(3)92%98%(900)94%900x x +-⨯≥ 解得x ≤600 (2分)2090000y x =-+Q 随x 的增大而减小当600x =时,购树费用最低为206009000078000y =-⨯+=(元) 当600x =时,900300x -= (2分) 此时应购A 种树600棵,B 种树300棵. 23.(本题10分) (1)E (0,5)(3分)(2)21520m n =+(3分) (3)解:52AT =或856(4分)24.(本题12分)(1)3y x =-,点D 的坐标是(1,﹣2) (4分) (2)m >3 (2分) 或m <﹣1且m ≠﹣3 (2分)(3)①当点G 在对称轴右侧的抛物线上时,G 1(3,0)、 G 23(1)22+-②当点G 在对称轴左侧的抛物线上时,G 3(1,0)-、 G 43(1)22-- (4分)。
2020-2021学年人教版九年级中考数学冲刺试卷(含答案)
2020-2021学年人教新版中考数学冲刺试卷一.选择题(共9小题,满分27分,每小题3分)1.比赛用的乒乓球的质量有严格的规定,但实际生产的乒乓球的质量可能会有一些偏差.以下检验记录(“+”表示超出标准质量,“﹣”表示不足标准质量)中,质量最接近标准质量乒乓球是()编号1234偏差/g+0.01﹣0.02﹣0.03+0.04 A.1号B.2号C.3号D.4号2.如图的三视图对应的物体是()A.B.C.D.3.绿水青山就是金山银山.为了创造良好的生态生活环境,某省2017年建设城镇污水配套管网3100000米,数字3100000科学记数法可以表示为()A.3.1×105B.31×105C.0.31×107D.3.1×1064.如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=0.5m,当它的一端B着地时,另一端A离地面的高度AC为()A.1.25m B.1 m C.0.75 m D.0.50 m5.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是()A.∠BDO=60°B.∠BOC=25°C.OC=4D.BD=46.如图是根据某班40名同学一周的体育锻炼情况绘制的统计图,该班40名同学一周参加体育锻炼时间的中位数,众数分别是()A.10.5,16B.8.5,16C.8.5,8D.9,87.一辆客车从酒泉出发开往兰州,设客车出发t小时后与兰州的距离为s千米,下列图象能大致反映s与t之间的函数关系的是()A.B.C.D.8.若x<y,则下列不等式中不成立的是()A.x﹣1<y﹣1B.3x<3y C.<D.﹣2x<﹣2y 9.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点A(10,0),sin∠COA =.若反比例函数y=(k>0,x>0)经过点C,则k的值等于()A.10B.24C.48D.50二.填空题(共8小题,满分24分,每小题3分)10.函数y=的自变量x的取值范围是.11.若x1、x2是一元二次方程x2﹣4x﹣3=0的两个根,则x1x2的值是.12.从长度分别为3,4,6,9的四条线段中任选三条作边,能构成三角形的概率为.13.已知a,b,c是△ABC的三条边的长度,且满足a2﹣b2=c(a﹣b),则△ABC一定是三角形.14.如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD、CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为.15.一组按规律排列的式子:,,,,,…,其中第7个式子是,第n个式子是(用含的n式子表示,n 为正整数).16.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A、B分别在l3、l2上,则tanα的值是.17.已知函数y=kx2+2kx+1,当﹣3≤x≤2时,函数有最大值为4,则k =.三.解答题(共10小题,满分96分)18.(1)计算﹣(﹣1)0+12×3﹣1﹣|﹣5|(2)化简1﹣.19.解下列关于x的不等式组,并把解集表示在数轴上,写出其正整数解.20.如图,一艘轮船以每小时40海里的速度在海面上航行,当该轮船行驶到B处时,发现灯塔C在它的东北方向,轮船继续向北航行,30分钟后到达A处,此时发现灯塔C在它的北偏东75°方向上,求此时轮船与灯塔C的距离.(结果保留根号)21.某校组织全校1400名学生进行了“八礼四仪”掌握情况问卷测试.为了解成绩的分布情况,随机抽取了部分学生的成绩(得分取整数.满分为100分),并绘制了频数分布表和频数分布直方图(不完整).分组50.5≤x<60.560.5≤x<70.570.5≤x<80.580.5≤x<90.590.5≤x<100.5合计频数2048a104148400根据所给信息,回答下列问题:(1)频数分布表中,a=.(2)补全频数分布直方图;(3)学校将对分数x在90.5≤x<100.5范围内的学生进行奖励,请你估算出全校获奖学生的人数.22.为了做好防控H1N1甲型流感工作,我县卫生局准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士指导某乡镇预防H1N1甲型流感工作.(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果.(2)求恰好选中医生甲和护士A的概率.23.如图,等腰△ABC内接于半径为5的⊙O,AB=AC,tan∠ABC=.求BC的长.24.已知:如图,四边形ABCD是正方形,∠PAQ=45°,将∠PAQ绕着正方形的顶点A 旋转,使它与正方形ABCD的两个外角∠EBC和∠FDC的平分线分别交于点M和N,连接MN.(1)求证:△ABM∽△NDA;(2)连接BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.25.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中(填“兔子”或“乌龟”)的路程与时间的关系,赛跑的全过程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来后,以400米/分的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟.26.建立模型:(1)如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.操作:过点A 作AD⊥l于点D,过点B作BE⊥l于点E,求证△CAD≌△BCE.模型应用:(2)如图2,在直角坐标系中,直线l1:y=x+8与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.(3)如图3,在直角坐标系中,点B(10,8),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.27.如图1,在平面直角坐标系中,抛物线y=﹣x2+2x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点E,直线CE交抛物线于点F(异于点C),直线CD交x轴交于点G.(1)如图1,求直线CE的解析式和顶点D的坐标;(2)如图1,点P为直线CF上方抛物线上一点,连接PC、PF,当△PCF的面积最大时,点M是过P垂直于x轴的直线l上一点,点N是抛物线对称轴上一点,求FM+MN+NO 的最小值;(3)如图2,过点D作DI⊥DG交x轴于点I,将△GDI沿射线GB方向平移至△G′D′I′处,将△G′D′I′绕点D′逆时针旋转α(0<α<180°),当旋转到一定度数时,点G′会与点I重合,记旋转过程中的△G′D′I′为△G″D′I″,若在整个旋转过程中,直线G″I″分别交x轴和直线GD′于点K、L两点,是否存在这样的K、L,使△GKL为以∠LGK为底角的等腰三角形?若存在,求此时GL的长.参考答案与试题解析一.选择题(共9小题,满分27分,每小题3分)1.解:|+0.01|=0.01,|﹣0.02|=0.02,|﹣0.03|=0.03,|+0.04|=0.04,0.04>0.03>0.02>0.01,绝对值越小越接近标准.所以最接近标准质量是1号乒乓球.故选:A.2.解:从俯视图可以看出直观图的下面部分为三个长方体,且三个长方体的宽度相同.只有D满足这两点,故选:D.3.解:3100000=3.1×106,故选:D.4.解:∵O是AB的中点,OD垂直于地面,AC垂直于地面,∴OD是△ABC的中位线,∴AC=2OD=2×0.5=1(m).故选:B.5.解:∵△OAB绕O点逆时针旋转60°得到△OCD,∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC﹣∠AOB=60°﹣35°=25°,故B选项正确;故选:D.6.解:将这组数据从小到大的顺序排列后,处于中间位置的那个数,由中位数的定义可知,这组数据的中位数是9;众数是一组数据中出现次数最多的数,即8;故选:D.7.解:根据出发时与终点这两个特殊点的意义,图象能大致反映s与t之间的函数关系的是应选A.故选:A.8.解:若x<y,则x﹣1<y﹣1,选项A成立;若x<y,则3x<3y,选项B成立;若x<y,则<,选项C成立;若x<y,则﹣2x>﹣2y,选项D不成立,故选:D.9.解:如图,过点C作CE⊥OA于点E,∵菱形OABC的边OA在x轴上,点A(10,0),∴OC=OA=10,∵sin∠COA==.∴CE=8,∴OE==6∴点C坐标(6,8)∵若反比例函数y=(k>0,x>0)经过点C,∴k=6×8=48故选:C.二.填空题(共8小题,满分24分,每小题3分)10.解:根据题意知3﹣2x≠0,解得:x≠,故答案为:x≠.11.解:∵x1、x2是一元二次方程x2﹣4x﹣3=0的两个根,∴x1x2=﹣3.故答案为﹣3.12.解:从长度分别为3,4,6,9的四条线段中任取三条的所有可能性是:(3,4,6)、(3,4,9)、(3,6,9)、(4,6,9),能组成三角形的可能性是:(3,4,6)、(4,6,9),∴能组成三角形的概率为:=,故答案为.13.解:由a2﹣b2=c(a﹣b),(a+b)(a﹣b)=c(a﹣b),(a+b)(a﹣b)﹣c(a﹣b)=0,(a﹣b)(a+b﹣c)=0,∵三角形两边之和大于第三边,即a+b>c,∴a+b﹣c≠0,∴a﹣b=0,即a=b,即△ABC一定是等腰三角形.故答案为:等腰.14.解:如图,连接AC交BD于点O∵AB=AD,BC=DC,∠A=60°,∴AC垂直平分BD,△ABD是等边三角形∴∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4∵CE∥AB∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°∴∠DAO=∠ACE=30°∴AE=CE=6∴DE=AD﹣AE=2∵∠CED=∠ADB=60°∴△EDF是等边三角形∴DE=EF=DF=2∴CF=CE﹣EF=4,OF=OD﹣DF=2∴OC==2∴BC==215.解:∵=(﹣1)2•,=(﹣1)3•,=(﹣1)4•,…∴第7个式子是,第n个式子为:.故答案是:,.16.解:如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴DE=3,∴tan∠α=.故答案为:.17.解:∵函数y=kx2+2kx+1=k(x+1)2﹣k+1,当﹣3≤x≤2时,函数有最大值为4,∴该函数的对称轴是直线x=﹣1,当k<0时,x=﹣1时,函数取得最大值,即﹣k+1=4,得k=﹣3;当k>0时,x=2时,函数取得最大值,即9k﹣k+1=4,解得,k=,故答案为:﹣3或.三.解答题(共10小题,满分96分)18.解:(1)原式=8﹣1+12×﹣5=8﹣1+4﹣5=6;(2)原式=1﹣•=1﹣==﹣.19.解:解不等式①得:x<3,解不等式②得:x≥﹣,故不等式组的解集为﹣≤<3,将不等式解集表示在数轴上如下图所示:故正整数解为1,2.20.解:过点A作AD⊥BC于点D.由题意,AB=×40=20(海里)∵∠PAC=∠B+∠C,∴∠C=∠PAC﹣∠B=75°﹣45°=30°,在Rt△ABD中,sin B=,∴AD=AB•sin B=20×=10(海里),在Rt△ACD中,∵∠C=30°,∴AC=2AD=20(海里),答:此时轮船与灯塔C的距离为20海里.21.解:(1)a=400﹣(20+48+104+148)=80,故答案为:80;(2)补全频数分布直方图如下:(3)1400×=518(人),答:估计全校获奖学生的人数为518人.22.解:(1)用列表法表示所有可能结果如下:(2)共有6种等可能情形,恰好选中医生甲和护士A只有一种情形,P(恰好选中医生甲和护士A)=,∴恰好选中医生甲和护士A的概率是.23.解:连接AO,交BC于点E,连接BO,∵AB=AC,∴=,又∵OA是半径,∴OA⊥BC,BC=2BE,在Rt△ABE中,∵tan∠ABC=,∴=,设AE=x,则BE=3x,OE=5﹣x,在Rt△EO中,BE2+OE2=OB2,∴(3x)2+(5﹣x)2=52,解得:x1=0(舍去),x2=1,∴BE=3x=3,∴BC=2BE=6.24.(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,∵BM、DN分别是正方形的两个外角平分线,∴∠ABM=∠ADN=135°,∵∠MAN=45°,∴∠BAM=∠AND=45°﹣∠DAN,∴△ABM∽△NDA;(2)解:当∠BAM=22.5°时,四边形BMND为矩形;理由如下:∵∠BAM=22.5°,∠EBM=45°,∴∠AMB=22.5°,∴∠BAM=∠AMB,∴AB=BM,同理AD=DN,∵AB=AD,∴BM=DN,∵四边形ABCD是正方形∴∠ABD=∠ADB=45°,∴∠BDN=∠DBM=90°∴∠BDN+∠DBM=180°,∴BM∥DN∴四边形BMND为平行四边形,∵∠BDN=90°,∴四边形BMND为矩形.25.解:(1)∵乌龟是一直跑的而兔子中间有休息的时刻,∴折线OABC表示赛跑过程中兔子的路程与时间的关系;由图象可知:赛跑的全过程为1500米;故答案为:兔子,1500;(2)结合图象得出:兔子在起初每分钟跑700÷2=350(米),乌龟每分钟爬1500÷50=30(米).(3)700÷30=(分钟),所以乌龟用了分钟追上了正在睡觉的兔子.(4)∵兔子跑了700米停下睡觉,用了2分钟,∴剩余800米,所用的时间为:800÷400=2(分钟),∴兔子睡觉用了:50.5﹣2﹣2=46.5(分钟).所以兔子中间停下睡觉用了46.5分钟.26.解:(1)如图1,∵∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ACD和△CBE中,∴△CAD≌△BCE(AAS);(2)∵直线y=x+8与y轴交于点A,与x轴交于点B,∴A(0,8)、B(﹣6,0),如图2,过点B做BC⊥AB交直线l2于点C,过点C作CD⊥x轴,在△BDC和△AOB中,∴△BDC≌△AOB(AAS),∴CD=BO=6,BD=AO=8,∴OD=OB+BD=6+8=14,∴C点坐标为(﹣14,6),设l2的解析式为y=kx+b,将A,C点坐标代入,得,解得,∴l2的函数表达式为y=x+8;(3)∵点Q(a,2a﹣6),∴点Q是直线y=2x﹣6上一点,当点Q在AB下方时,如图3,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F.在△AQE和△QPF中,∴△AQE≌△QPF(AAS),∴AE=QF,即8﹣(2a﹣6)=10﹣a,解得a=4;当点Q在线段AB上方时,如图4,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F,则AE=2a﹣14,FQ=10﹣a.在△AQE和△QPF中,∴△AQE≌△QPF(AAS),AE=QF,即2a﹣14=10﹣a,解得a=8;综上可知,A、P、Q可以构成以点Q为直角顶点的等腰直角三角形,a的值为4或8.27.解:(1)∵抛物线y=﹣x2+2x﹣与y轴交于点C,∴C(0,﹣),∵y=﹣x2+2x﹣=﹣(x﹣2)2+,∴顶点D(2,),对称轴x=2,∴E(2,0),设CE解析式y=kx+b,∴,解得:,∴直线CE的解析式:y=x﹣;(2)∵直线CE交抛物线于点F(异于点C),∴x﹣=﹣(x﹣2)2+,∴x1=0,x2=3,∴F(3,),过P作PH⊥x轴,交CE于H,如图1,设P(a,﹣a2+2a﹣)则H(a,a﹣),∴PH=﹣a2+2a﹣﹣(a﹣),=﹣a2+,=PH×3=﹣a2+,∵S△CFP∴当a=时,S面积最大,△CFP如图2,作点M关于对称轴的对称点M',过F点作FG∥MM',FG=1,即G(4,),∵M的横坐标为,且M与M'关于对称轴x=2对称,∴M'的横坐标为,∴MM'=1,∴MM'=FG,且FG∥MM',∴FGM'M是平行四边形,∴FM=GM',∴FM+MN+ON=GM'+NM'+ON,根据两点之间线段最短可知:当O,N,M',G四点共线时,GM'+NM'+ON的值最短,即FM+MN+ON的值最小,∴FM+MN+ON=OG==;(3)如图3,设CD解析式y=mx+n,则,解得:,∴CD解析式y=x﹣,∴当y=0时,x=1.即G(1,0),∴DG==2,∵tan∠DGI==,∴∠DGI=60°,∵DI⊥DG,∴∠GDI=90°,∠GID=30°,∴GI=2DG=4∴I(5,0),∵将△GDI沿射线GB方向平移至△G′D′I′处,将△G′D′I′绕点D′逆时针旋转α(0<α<180°),当旋转到一定度数时,点G′会与点I重合,连接D'I,∴G'D'=D'I=DG=2,∠D'G'I=∠DGI=60°,∴△G'D'I是等边三角形,∴G'I=2,G'K=2D'G'=4,∴G'(3,0),如图4,当G''与I、K重合,△GKL为以∠LGK为底角的等腰三角形,∠LGK=∠GLK =30°,∴GL=D'G+D'L=4;如图5,L与G''重合,△GKL为以∠LGK为底角的等腰三角形,∴GL=GD'+D'L=2+2综上,GL的长为4或2+2.。
浙江省2020年中考冲刺测试卷数学
浙江省2020年中考冲刺测试卷数学一、选择题〔此题共10个小题,每题3分,总分值30分.每题只有一个正确答案〕 1.2-的倒数为〔 〕 A .2-B .2C .12D .12-2.以下讲法正确的选项是〔 〕A .9的平方根是3. B.将点(23)--,向右平移5个单位长度到点(22)-, C .38是无理数D .点(23)--,关于x 轴的对称点是(23)-,3、〝神舟七号〞宇航员翟志刚把足迹留在了茫茫太空,令国人深感自豪,他身穿的舱外航天服造价3000万元,用科学记数法表示3000万元为〔 〕元A 、3×103B 、0.3×108C 、3×107D 、3×1084抛物线2)8(2+--=x y 的顶点坐标是〔 〕A 、〔2,8〕B 、〔8,2〕C 、〔—8,2〕D 、〔—8,—2〕5、如图1是由六个边长为1个单位的小正方体搭成的几何体。
小立方体A 沿着它所在的水平线上以每秒1个单位移动,在它的移动过程中,不改变几何体的〔 〕A 、主视图B 、俯视图C 、左视图D 、三种视图6、如图2直角三角形纸片ABC 的两直角边BC =6,AC =8,沿DE 折叠使点A 与B 重合,那么tan ∠CBE 的值是〔 〕 A 、247 B 、 73 C 、724 D 、137、如图3,扇形OAB 是圆锥的侧面展开图,假设小正方形方格的边长均为1厘米,那么那个圆锥的底面半径为〔 〕厘米. A .21B .22 C .2 D .228.某函数的图象关于直线x=1对称,其中一部分图象如图,点A(x 1,y 1),B(x 2,y 2)在函数图象上,且-2<x 1<x 2<-1,那么y 1与y 2的大小关系为( ) A. y 1>y 2 B. y 1<y 2 C.y 1=y 2 D. 无法确定9. 甲、乙两名同学在一次用频率去估量概率的实验中统计了某一结果显现的频率,绘出的统计图如下图,那么符合这一结果的实验可能是〔 〕A .掷一枚正六面体的骰子,显现4点的概率B .从一个装有4个白球和2个红球的袋子中任取一球,取到红球C .抛一枚硬币,显现反面的概率D .任意写一个整数,它能被2整除的概率 10、二次函数c bx ax y ++=2 的图象大致如图,在b a bc +2,,30%40% 20% 10% 频率图1A图2图3y222222)(,,)(c b a a b b c a -+--+中,值为正数的有( )A.1B.2C.3D.4 二、填空题〔此题共6个小题,每题4分,总分值24分〕. 11、要使2a 为有理数,请写出一个符合条件的实数a :___________12、在函数15-=x y 中,自变量x 的取值范畴是_____________________ 13、依据图中信息,可得出x ﹤14x的解是 .14、校园内有一个半径为4米的圆形草坪,一些学生为走〝捷径〞,在草坪内走出了一条小路AB ,如下图∠AOB =120°,这些学生踩坏了花草,而仅仅为了少走___________步〔假设2步为1米,结果保留整数〕. 15、如图,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,假如E 是BC 的中点,那么△BEF 与平行四边形ABCD 的面积之比是16、如图,将半径为1、圆心角为︒60的扇形纸片AOB ,在x 轴正半轴上向右作无滑动的连续滚动,点A 依次落在A 1,A 2,A 3,…的位置,那么A 2018的横坐标为__________三、解答题〔此题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题10分,第24题12分,共66分〕17.〔此题6分〕 (1)22)12(45sin 301-+-+︒-- 〔2〕解不等式组⎪⎩⎪⎨⎧+≥+<+4134)2(3x x x x 18.(此题6分)如图过正方形ABCD 的顶点D 作直线a ,过A 、C 分不作a 的垂线,垂足分不为BA︒60第16题图第13题第14题A 2B 1B 3O 3A 3OE第15题AFB(O 2) A 1 O 1xyBAO4 120DFG EPO AB C点E 、F .①求证:△AED ≌△DFC②假设AE =2,CF =1,正方形ABCD 的周长是 .19(此题6分)在元旦联欢会上,有一个开盒有奖的游戏,取三只外观一样的盒子,一只内有奖品,另两只空盒子,游戏规那么为:每次游戏时混合后拿出这三只盒子,参加游戏的同学随机打开其中一只,假设有奖品,就获得该奖品,假设是空盒子,就表演一个节目.〔1〕一个人参加游戏,获奖的概率是______,〔2〕两个人参加游戏,两个人都表演节目的概率是多少?并用树状图或列表验证你的结果.20、(此题8分)如图,方格纸中的每个小方格差不多上边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点B 的坐标为〔1,0 ①画出△ABC 关于x 轴对称的△A 1B 1C 1,②画出将△ABC 绕原点O 按逆时针旋转90°所得的△A 2B 2C 2,③△A 1B 1C 1与△A 2B 2C 2成轴对称图形吗?假设成轴对称图形,画出所有的对称轴;21.〔8分〕为了降低能源消耗,减少环境污染,国务院办公厅下发了〝关于限制生产销售使用塑料购物袋的通知〞〔简称〝限塑令〞〕,并从2008年6月1日起正式实施.小宇同学为了了解〝限塑令〞后使用购物袋的情形,6月8日到某集贸市场对部分购物者进行了调查,据了解该市场按塑料购物袋的承重能力提供了0.1元,0.2元,0.3元三种质量不同的塑料袋.下面两幅图是这次调查得到的不完整的统计图〔假设每人每次只使用一个购物袋〕,请你依照图中的信息,回答以下咨询题:〔1〕这次调查的购物者总人数是 ▲ ;〔2〕请补全条形统计图,并讲明扇形统计图中0.2元部分所对应的圆心角是 ▲ 度.0.3元部分所对应的圆心角是 ▲ 度;〔3〕假设6月8日到该市场购物的人数有3000人次〔假设每人每次只使用一个购物袋〕,请估量该市场销售塑料购物袋的个数及金额.22 〔此题总分值10分〕〝假日旅乐园〞中一种新型水上滑梯如图,其中线段PA 表示距离水面〔x 轴〕高度为5m 的平台〔点P 在y 轴上〕。
2020年中考数学冲刺卷 【3】含答案解析
2020年中考数学冲刺卷一、选择题(本大题共10个小题,每小题3分,共30分.每小题的四个选项中,只有一个正确答案,请将正确答案的字母代号填入下表相应的空格.) 1.(3分)下列四个数中是无理数的是( ) A .3B .3πC .3.14159D .√92.(3分)将一幅三角板如图所示摆放,若BC ∥DE ,那么∠1的度数为( )A .45°B .60°C .75°D .80°3.(3分)一元一次不等式组{2(x +3)−4≤0x+13>x −1的最大整数解是( )A .﹣1B .0C .1D .24.(3分)据报道,人类首张黑洞照片于北京时间2019年4月10日子全球六地同步发布,该黑洞位于室女座一个巨椭圆星系M 87的中心,距离地球5500万光年.其中5500万用科学记数法表示为( ) A .55×106B .5.5×106C .0.55×108D .5.5×1075.(3分)下列计算正确的是( ) A .a 3•a 2=a 6B .a 5+a 5=a 10C .(﹣2a 3)3=﹣6a 9D .(a +2b )(a ﹣2b )=a 2﹣4b 26.(3分)如图所示几何体的俯视图是( )A .B .C .D .7.(3分)若(a a 2−b 2−1a+b)÷M 的化简结果是−1a+b ,那么分式M 为( ) A .aa+bB .bb−aC .a a−bD .−b a+b8.(3分)二次函数y =x 2+bx +c 的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为y =x 2﹣2x +1,则b +c 的值为( ) A .16B .6C .0D .﹣129.(3分)如图中的古印度的“无字证明”直观的证明一个重要定理,这个定理早在三千多年前就被周朝的数学家商高提出,它被记载于我国古代著名的数学著作是( )A .《周髀算经》B .《九章算术》C .《几何原本》D .《海岛算经》10.(3分)如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角边AC 于点E ;B 、E 是半圆弧的三等分点,BD̂的长为4π3,则图中阴影部分的面积为( )A .6√3−4π3B .9√3−8π3C .3√32−2π3D .6√3−8π3二.填空题(本大题共5个小题,每小题3分,共15分) 11.(3分)计算√27√6√2的结果是 .12.(3分)某数学兴趣小组同学进行测量大树CD 高度的综合实践活动,如图,在点A 处测得直立于地面的大树顶端C 的仰角为45°,然后沿在同一剖面的斜坡AB 行走13米至坡顶B 处,然后再沿水平方向行走4米至大树脚底点D 处,斜面AB 的坡度(或坡比)i =1:2.4,那么大树CD 的高度为 .13.(3分)如图,在矩形ABCD 中,O 是对角线AC 的中点.将ABCD 绕点B 顺时针旋转90°.旋转后的四边形为A 'B ′C ′D ',点A ,C ,D ,O 的对应点分别为A ′,C ',D ',O ’,若AB =8,BC =10,则线段CO ’的长为 .14.(3分)我们将如图所示的两种排列形式的点的个数分别叫做“平行四边形数”和“正六边形数”.设第n 个“平行四边形数”和“正六边形数”分别为a 和b ,若a +b =103,则ab 的值是 .15.(3分)如图,矩形ABCD 中,AB =32,BC =AB 2,E 为射线BA 上一动点,连接CE 交以BE 为直径的圆于点H ,则线段DH 长度的最小值为 .三.解答题(本大题共8个小题,共75分.解答题应写出文字说明、证明过程或演算步骤) 16.(10分)(1)计算:|√3−2|−(−12)−2+2cos30°−(1−√2)0 (2)解方程:x 2x−1=2−31−2x17.(9分)山西省实验中学欲向清华大学推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图1:其次,对三名候选人进行了笔试和面试两项测试.各项成绩如表所示: 测试项目测试成绩/分 甲乙 丙 笔试 92 90 95 面试8595 80图2是某同学根据上表绘制的一个不完全的条形图. 请你根据以上信息解答下列问题: (1)补全图1和图2;(2)请计算每名候选人的得票数;(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?(4)若学校决定从这三名候选人中随机选两名参加清华大学夏令营,求甲和乙被选中的概率.(要求列表或画树状图)18.(8分)如图,一次函数y =kx +b 的图象与坐标轴分别交于A 、B 两点,与反比例函数y =mx的图象在第一象限的交点为C ,CD ⊥x 轴于D ,若OB =3,OD =6,△AOB 的面积为3. (1)求一次函数与反比例函数的表达式; (2)当x >0时,比较kx +b 与mx 的大小.19.(8分)如图,在△ABC中,以AB为直径的⊙O交BC于点D,∠DAC=∠B.(1)求证:CA是⊙O的切线.(2)在AB上取一点E,若∠BCE=∠B,AB=2AC,求tan∠ACE的值.20.(8分)某公司销售一种产品,进价为20元/件,售价为80元/件,公司为了促销,规定凡一次性购买10万件以上的产品,每多买1万件,每件产品的售价就减少2元,但售价最低不能低于50元/件,设一次性购买x万件(x>10)(1)若x=15,则售价应是元/件;(2)一次性购买多少件产品时,该公司的销售总利润为728万元;21.(7分)阅读下列材料,并完成相应的任务.古希腊的几何学家海伦在他的著作《度量论》一书中给出了利用三角形三边之长求面积的公式﹣﹣﹣﹣海伦公式S=√p(p−a)(p−b)(p−c)(其中a,b,c是三角形的三边长,p=a+b+c2,S为三角形的面积),并给出了证明例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:∵a=3,b=4,c=5∴p=a+b+c2=6∴S=√p(p−a)(p−b)(p−c)=√6×3×2×1=6事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.根据上述材料,解答下列问题:如图,在△ABC中,BC=7,AC=8,AB=9(1)用海伦公式求△ABC的面积;(2)如图,AD、BE为△ABC的两条角平分线,它们的交点为I,求△ABI的面积.22.(12分)综合与实践:问题情境:在矩形ABCD中,点E为BC边的中点,将△ABE沿直线AE翻折,使点B与点F重合,直线AF交直线CD于点G.特例探究实验小组的同学发现:(1)如图1,当AB=BC时,AG=BC+CG,请你证明该小组发现的结论;(2)当AB=BC=4时,求CG的长;延伸拓展(3)实知小组的同学在实验小组的启发下,进一步探究了当AB:BC=√3:2时,线段AG、BC、CG之间的数量关系,请你直接写出实知小组的结论.23.(13分)如图,抛物线y=−34x2+bx+c与x轴交于A、B两点,与y轴交于C.直线y=34x+3经过点A、C.(1)求抛物线的解析式;(2)P是抛物线上一动点,过P作PM∥y轴交直线AC于点M,设点P的横坐标为t.①若以点C、O、M、P为顶点的四边形是平行四边形,求t的值.②当射线MP,AC,MO中一条射线平分另外两条射线的夹角时,直接写出t的值.2020年中考数学冲刺卷参考答案一、选择题(本大题共10个小题,每小题3分,共30分.每小题的四个选项中,只有一个正确答案,请将正确答案的字母代号填入下表相应的空格.)1.B ; 2.C ; 3.A ; 4.D ; 5.D ; 6.D ; 7.B ; 8.C ; 9.A ; 10.D ;二.填空题(本大题共5个小题,每小题3分,共15分) 11.2√3; 12.11米; 13.√61; 14.1291; 15.34;三.解答题(本大题共8个小题,共75分.解答题应写出文字说明、证明过程或演算步骤) 16.﹣3;x =−1317.(2)甲的票数是:200×34%=68(票), 乙的票数是:200×30%=60(票), 丙的票数是:200×28%=56(票); (3)应该录取乙;(4)甲和乙被选中的概率=26=1318.y =12x ; 19.tan ∠ACE =AEAC =34; 20.70;14 21.12√5;S △ABI =12AB •FI =12×9×√5=9√52 22.略;23.(1)抛物线的解析式y =−34x 2−94x +3;(2)满足条件的t 的值为﹣2或﹣2+2√2或﹣2﹣2√2;(3)t 的值为−7225,125。
2020年湖北省中考数学黄金冲刺试卷(含答案)
湖北省中考数学黄金冲刺试卷(本试题共4页,满分120分,考试时间120分钟)★祝 考 试 顺 利★注意事项: 1.答卷前,考生务必将自己的姓名、考试号填写在试题卷和答题卡上,并将考试号条形码粘贴在答题卡上的指定位置. 2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效. 3.非选择题(主观题)用0.5毫米的黑色签字笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。
作图一律用2B 铅笔或0.5毫米黑色签字笔。
4.考试结束后,请将本试题卷与答题卡一并上交。
一、选择题:(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.1.在2-,1-,0,2这四个数中,最小的数是:A .2- B. 1- C. 0 D. 22.下列运算正确的是:A.2x ·63x x =B.x x x =÷56C.642)(x x =- D.532x x x =+ 3.如图所示,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是:A .同位角相等,两直线平行B .内错角相等,两直线平行C .两直线平行,同位角相等D .两直线平行,内错角相等4.“六·一”儿童节前夕,某超市用3360元购进A ,B 两种童装共120套,其中A型童装每套24元,B 型童装每套36元.若设购买A 型童装x 套,B 型童装y 套,依题意列方程组正确的是:A .⎩⎨⎧=+=+33602436,120y x y xB .⎩⎨⎧=+=+33603624,120y x y x C .⎩⎨⎧=+=+3360,1202436y x y x D .⎩⎨⎧=+=+3360,1203624y x y x 5.下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是:A.正方体B.圆柱C.圆椎D.球6.要得到抛物线1)4(22--=x y ,可以将抛物线22x y =: A .向左平移4个单位长度,再向上平移1个单位长度B .向左平移4个单位长度,再向下平移1个单位长度C .向右平移4个单位长度,再向上平移1个单位长度D .向右平移4个单位长度,再向下平移1个单位长度7.关于x 的一元二次方程032=+-m x x 有两个不相等的实数根,则实数m 的取值范围为:A .m ≥49 B. m <49 C.m 49= D.m <49- 8. 为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:居民(户) 1 3 2 4月用电量(千瓦/户) 40 50 55 60那么这10户居民月用电量(单位:千瓦时),关于这组数据下列说法错误的是:A.中位数是55B.众数是60 C .方差是29 D.平均数是549.如图,在△ABC 中,点D ,E 分别在边AC ,AB 上,BD 与CE 交于点O ,给出下列四个条件:①∠EBO=∠DCO ;②BE=CD ;③OB=OC ;④OE=OD.从上述四个条件中,选取两个条件,不能判定△ABC 是等腰三角形的是:A .①②B .①③C .③④D .②③10.函数m mx y +-=2与xm y =(x ≠0)在同一坐标系中的图象大致可能是: 11.如图,在△ABC 中,AB=8,AC=6,点D 在AC 上,且AD=2,如果要在AB 上找一点E ,使△ADE 与△ABC 相似,则AE 的长为:A.38B. 23C.3D. 38或23 12.如图,在半径为6cm 的⊙O 中,点A 是劣弧的中点,点D 是优弧上一点,且∠D =30°,下列四个结论:①OA ⊥BC ;②BC=36cm ;③sin ∠AOB=23;④四边形ABOC 是菱形. 其中正确结论的序号是: A.①③ B.①②③④ C. ②③④ D.①③④二、填空题:(本大题共5个小题,每小题3分,共15分)把答案填在答题卡的对应位置的横线上.13.分式方程xx 325=+的解为 . 14. 某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如图1,图2的两幅不完整的统计图,已知该校有1200名学生,估计全校最喜爱艺体类图书的学生约有 人.15.如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处.已知折痕AE=55cm,且tan ∠EFC=43,则矩形ABCD 的周长为 . 16. 如图,在半径为2,圆心角为90°的扇形内,以BC 为直径作半圆,交弦AB 于点D ,连接CD ,则阴影部分的面积是 .17.在△ABC 中,∠BAC=90°,∠C=30°,BC=6,P 为直线AC 上的一点(不与A 、C 重合),满足∠APB=60°,则CP= .三、解答题:(本大题共9个小题,共69分)解答应写出文字说明、证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.18.(本题满分6分)先化简,再求值:144)131(2+++÷+--x x x x x ,其中x 是方程05221=---x x 的解. 19.(本题满分6分)有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?20.(本题满分6分)如图,已知函数b x y +-=21的图象与x 轴,y 轴分别交于点A ,B ,与函数x y =的图象交于点M ,点M 的横坐标为2.在x 轴上有一点P (a ,0)(其中a >2),过点P 作x 轴的垂线,分别交b x y +-=21和x y =的图象于点C ,D.(1)求点A 的坐标;(2)若OB=CD ,求a 的值.21.(本题满分6分)码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,平均卸货速度v (单位:吨/天)与卸货天数t 之间有怎样的函数关系?(2)由于遇到紧急情况,要求船上的货物不超过5天卸载完毕,那么平均每天至少要卸载多少吨?22.(本题满分6分)某船以每小时 36海里的速度向正东方向航行,在点A 测得某岛C 在北偏东60°方向上,航行半小时后到达点B ,测得该岛在北偏东 30°方向上,已知该岛周围16海里内有暗礁.(1)试说明点B 是否在暗礁区域外?(2)若继续向东航行有无触礁危险?请说明理由.23.(本题满分7分)如图,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF=BE.(1)求证:CE=CF ;(2)△CDF 可看成图中哪个三角形通过旋转变换得到的?写出旋转过程;(3)若点G 在AD 上,且∠GCE=45°,试判断线段GE ,BE ,GD 之间的数量关系,并说明理由.24.(本题满分10分)某地区发生了特大旱情,为抗旱保丰收,该地政府制定了农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所投资的金额与政府补贴的额度存在下Ⅰ型 Ⅱ型 投资金额x (万元) x 5 x 2 4补贴金额y (万元) kx y =1(k ≠0) 2 bx ax y +=22(a ≠0) 2.4 3.2(1)分别求1y 和2y 的函数解析式;(2)有一农户投资10万元购买Ⅰ型、Ⅱ型两种设备,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额. 25.(本题满分10分)如图,在△ABC 中,AB=AC ,D 是BC 的中点.AE 平分∠BAD 交BC 于点E ,点O 是AB 上一点,⊙O过A ,E 两点,交AB 于点F.已知BC=216,AD=4.(1)求证:BC 是⊙O 的切线;(2)求⊙O 的半径;(3)求co s ∠BEF 的值.26.(本题满分12分)如图,在平面直角坐标系中,已知点A (-1,0)和点B (4,0),点C 在y 轴正半轴上,且∠ACB =90°,将△COB 绕点C 旋转180°得到△CDE ,连结AE .(1)求证:CE 平分∠AED ;(2)若抛物线c bx x y ++-=221过点E 和点C , 求此抛物线解析式;(3)点P 是(2)中抛物线上一点,且以A 、C 、E 、P为顶点的四边形是平行四边形,求点P 的坐标.答案 一.选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案A B A B C D B C D B D B二.填空题13.3=x 14.160 15.36 16. 1-π 17.34或32三.解答题 18.解:原式142+-=x x ·22)2(12+-=++x x x x . (3分) 解方程05221=---x x ,得31=x , (5分) 代入原式75231231-=+-=. (6分) 19. 解:设两把不同的锁分别为1A ,2A ,则它们对应能打开的钥匙分别为1a ,2a ,第三把钥匙为3a . (1分)(3分)从表中看出,共有6种等可能情况,其中只有(1A ,1a ),(2A ,2a )可打开锁.(4分) 故一次打开锁的概率是P=31. (6分) 20.解:(1)∵点M 在函数x y =的图象上,且点M 的横坐标为2, ∴点M 的坐标为(2,2). (1分)把点M (2,2)代入b x y +-=21,得21=+-b ,解得3=b , ∴一次函数的解析式为321+-=x y . (2分) 把0=y 代入321+-=x y 得0321=+-x ,解得6=x , ∴点A 的坐标为(6,0). (3分)1a 2a 3a 1A (1A ,1a ) (1A ,2a ) (1A ,3a ) 2A(2A ,1a ) (2A ,2a ) (3A ,3a )(2)把0=x 代入321+-=x y ,得3=y , ∴点B 的坐标为(0,3).∵CD=OB ,∴CD=3. ∵PC ⊥x 轴,∴点C 的坐标为(a ,321+-a ),点D 的坐标为(a ,a ), ∴3)321(=+--a a ,∴4=a . (6分) 21.解:(1)设轮船上的货物总量为k 吨,根据已知条件得240830=⨯=k , (1分)所以v 关于t 的函数关系式为 tv 240=. (2分) (2)把5=t 代入t v 240=,得 485240==v (吨)(4分) 从结果可以看出,如果全部货物恰好用5天卸载完,那么平均每天卸载48吨.对于函数tv 240=,当t >0时,t 越小,v 越大,这样若货物不超过5天卸载完,则平均每天至少要卸载48吨.(6分)22. (1)如图 ,过点B 作BD ∥AE ,交AC 于点D.∵AB=36×0.5=18(海里),∠ADB=60°,∠DBC=30°,∴∠ACB=30°,又∵∠CAB=30°,∴BC=AB.(2分)∴BC=AB=18>16. ∴点B 在暗礁区域外.(3分)(2)如图,过点C 作CH ⊥AB ,垂足为点H .由(1)得BC=AB=18(海里)在Rt △CBH 中,∠CBH=60°,∴CH=392318=⨯<16.(5分) ∴船继续向东航行有触礁的危险.(6分)23.(1)证明:在正方形ABCD 中,∵BC=CD ,∠B=∠CDF ,BE=DF ,∴△CBE ≌△CDF (SAS ). (1分)∴CE=CF. (2分)(2)△CDF 可以看成是△CBE 绕点C 顺时针旋转90°得到的. (3分)(3)解:GE=BE+GD. (4分)理由:由(1)得△CBE ≌△CDF ,∴∠BCE=∠DCF ,CE=CF.∵∠GCE=45°,∴∠BCE+DCG=45°.∴∠GCF=∠DCF+∠DCG=45°.(5分)在△ECG 与△FCG 中,∵CE=CF ,∠GCE=∠GCF ,GC=GC ,∴△ECG ≌△FCG (SAS ). (6分)∴GE=GF. ∴GE=DF+GD=BE+GD. (7分)24. 解:(1)由题意得①25=k ,52=k ,∴x y 521=. (1分) ② ⎩⎨⎧=+=+,2.3416,4.224b a b a ∴51-=a ,58=b ,∴x x y 585122+-=.(3分) (2)设购Ⅱ型设备投资t 万元,购Ⅰ型设备投资)10(t -万元,共获补贴Q 万元.∴t t y 524)10(521-=-=,t t y 585122+-=, (5分) ∴4565158515242221++-=+--=+=t t t t t y y Q (7分) 529)3(512+--=t . (8分) ∵51-<0,∴Q 有最大值,即当3=t 时,529=最大Q , (9分) ∴710=-t (万元). 即投资7万元购Ⅰ型设备,投资3万元投资Ⅱ设备,共获得最大补贴5.8万元.(10分)25. 解:(1)连接OE. ∵AB=AC ,D 是BC 的中点. ∴∴AD ⊥BC. (1分)∵OA=OE ,∴∠OEA=∠OAE.又∵∠OAE=∠DAE. ∴∠OEA=∠DAE.(2分)∴O E ∥AD. ∴∠OED=∠ADC=90°.∴BC 是⊙O 的切线.(3分)(2)∵BC=216,AD=4,∴BD=28,AB=12.(4分)∵O E ∥AD. ∴△BE O ∽△BDA. ∴AB OB AD OE =.(5分) 设⊙O 的半径为r ,则12124r r -=,即r =3.(6分) (3)∵∠FAE=∠DAE ,∠AEF=∠ADE=90°,∴Rt △AFE ∽Rt △AED.(7分)∴ADAE AE AF =. ∴24462=⨯=⋅=AD AF AE .∴AE=62.(8分)∵∠BEF+∠AED=90°,∠AED+∠EAD=90°∴∠BEF=∠EAD.(9分)∴cos ∠BEF=cos ∠EAD=AE AD =36.(10分) 26.解:(1)由题意得:BC =EC ,∠ABC =∠DEC . (1分)∵AC ⊥BE ,∴AB =AE ,∴∠AEB =∠ABC . (2分)∴∠AEB =∠DEC . 即CE 平分∠AED . (3分)(2)∵∠ACB =90°,CO ⊥AB ,∴△AOC ∽△COB .(4分) ∴OBOC OC OA =. ∴OB OA OC ⋅=2=4,∴OC =2.∴点C 坐标为(0,2),点E 坐标为(-4,4). (6分)由⎪⎩⎪⎨⎧=+-⨯-=.441621,2c b c 得25-=b ,2=c . (7分) ∴所求抛物线解析式为225212+--=x x y . (8分)(3)若以AC 、CE 为邻边,则点E 可以看成点C 向左平移4个单位,再向上平移2个单位,将点A 向左平移4个单位,再向上平移2个单位得点P (-5,2).当x =-5时,()225252521=+-⨯-⨯-=y ,∴点P 在抛物线上.∴点P (-5,2)即为所求; (10分)若以EC 、EA 为邻边,同理可得点P (3,-2),经验证此点不在抛物线上,故舍去;(11分)若以AC 、AE 为邻边,同理可得点P (-3,6),经验证此点不在抛物线上,故舍去;∴点P 的坐标为(-5,2). (12分)。
2020年江苏中考数学考前压轴题冲刺练习(含参考答案解析)
2020年江苏中考数学考前压轴题冲刺练习一、选择题(共6题)1.如图,四边形ABCD的顶点坐标分别为A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),当过点B的直线l将四边形ABCD分成面积相等的两部分时,直线l所表示的函数表达式为()A.y=x+B.y=x+C.y=x+1 D.y=x+2.如图,E是正方形ABCD的边AB的中点,点H与B关于CE对称,EH的延长线与AD 交于点F,与CD的延长线交于点N,点P在AD的延长线上,作正方形DPMN,连接CP,记正方形ABCD,DPMN的面积分别为S1,S2,则下列结论错误的是()A.S1+S2=CP2B.AF=2FD C.CD=4PD D.cos∠HCD=3.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)4.如图,在等腰直角三角形ABC中,∠ACB=90°,BC=2,D是BC边上一动点,将AD 绕点A逆时针旋转45°得AE,连接CE,则线段CE长的最小值为()A.B.C.﹣1 D.2﹣5.如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在BC、DE上分别找一点M、N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为()A.90°B.100°C.110°D.120°6.如图,P是半圆O上一点,Q是半径OA延长线上一点,AQ=OA=1,以PQ为斜边作等腰直角三角形PQR,连接OR.则线段OR的最大值为()A.B.3 C.D.1二、填空题(共6题)1.如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持∠EDF=90°,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①DE=DF;②四边形CEDF的面积随点E、F位置的改变而发生变化;③CE+CF=AB;④AE2+BF2=2ED2.以上结论正确的是(只填序号).2.如图,在矩形ABCD中,AB=4,AD=3,以点C为圆心作⊙C与直线BD相切,点P 是⊙C上一个动点,连接AP交BD于点T,则的最大值是.3.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为.第3题第4题4.问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:P A+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是.5.如图,E、F,G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,则AB的长为.第5题第6题6.如图,AB为半圆O的直径,点C在半圆O上,AB=8,∠CAB=60°,P是弧上的一个点,连接AP,过点C作CD⊥AP于点D,连接BD,在点P移动过程中,BD长的最小值为.三、解答题(共6题)1.如图,A,B,C,D在⊙O上,AB∥CD经过圆心O的线段EF⊥AB于点F,与CD交于点E.(1)如图1,当⊙O半径为5,CD=4,若EF=BF,求弦AB的长;(2)如图2,当⊙O半径为,CD=2,若OB⊥OC,求弦AC的长.2.如图,在平面直角坐标系xOy中,二次函数y=ax2+bx与x轴交于点A(10,0),点B (1,2)是抛物线上点,点M为射线OB上点(不含O,B两点),且MH⊥x轴于点H.(1)求直线OB及抛物线解析式;(2)如图1,过点M作MC∥x轴,且与抛物线交于C,D两点(D位于C左边),若MC=MH,点Q为直线BC上方的抛物线上点,求△BCQ面积的最大值,并求出此时点Q的坐标;(3)如图2,过点B作BE∥x轴,且与抛物线交于E,在线段OA上有点P,在点H从左向右运动时始终有AP=2OH,过点P作PN⊥x轴,且PN与直线OB交于点N,当M 与N重合时停止运动,试判断在此运动过程中△MNE与△BME能否全等,若能请求出全等时的HP长度,若不能请说明理由.3.如图(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,动点P在线段AC上以5cm/s 的速度从点A运动到点C,过点P作PD⊥AB于点D,将△APD绕PD的中点旋转180°得到△A′DP,设点P的运动时间为x(s).(1)当点A′落在边BC上时,求x的值;(2)在动点P从点A运动到点C过程中,当x为何值时,△A′BC是以A′B为腰的等腰三角形;(3)如图(2),另有一动点Q与点P同时出发,在线段BC上以5cm/s的速度从点B运动到点C,过点Q作QE⊥AB于点E,将△BQE绕QE的中点旋转180°得到△B′EQ,连结A′B′,当直线A′B′与△ABC的一边垂直时,求线段A′B′的长.4.在△AOB中,∠ABO=90°,AB=3,BO=4,点C在OB上,且BC=1,(1)如图1,以O为圆心,OC长为半径作半圆,点P为半圆上的动点,连接PB,作DB⊥PB,使点D落在直线OB的上方,且满足DB:PB=3:4,连接AD①请说明△ADB∽△OPB;②如图2,当点P所在的位置使得AD∥OB时,连接OD,求OD的长;③点P在运动过程中,OD的长是否有最大值?若有,求出OD长的最大值:若没有,请说明理由.(2)如图3,若点P在以O为圆心,OC长为半径的圆上运动.连接P A,点P在运动过程中,P A﹣是否有最大值?若有,直接写出最大值;若没有,请说明理由.5.如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.6.如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD =AC,联结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长.(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设AE=x,y=(其中S△BCE表示△BCE的面积,S△AEF表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;②当=7时,请直接写出线段AE的长.【答案与解析】一、选择题1.【分析】由已知点可求四边形ABCD分成面积=AC×(|y B|+3)==14;求出CD的直线解析式为y=﹣x+3,设过B的直线l为y=kx+b,并求出两条直线的交点,直线l与x轴的交点坐标,根据面积有7=×(3﹣)×(+1),即可求k;【解答】解:由A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),∴AC=7,DO=3,∴四边形ABCD分成面积=AC×(|y B|+3)==14,可求CD的直线解析式为y=﹣x+3,设过B的直线l为y=kx+b,将点B代入解析式得y=kx+2k﹣1,∴直线CD与该直线的交点为(,),直线y=kx+2k﹣1与x轴的交点为(,0),∴7=×(3﹣)×(+1),∴k=或k=0(舍去),∴k=,∴直线解析式为y=x+;故选:D.【点评】本题考查一次函数的解析式求法;掌握平面内点的坐标与四边形面积的关系,熟练待定系数法求函数解析式的方法是解题的关键.2.【分析】根据勾股定理可判断A;连接CF,作FG⊥EC于G,易证得△FGC是等腰直角三角形,设EG=x,则FG=2x,利用三角形相似的性质以及勾股定理得到CG=2x,CF=2x,EC=3x,BC=x,FD=x,即可证得3FD=AD,可判断B;根据平行线分线段成比例定理可判断C;求得cos∠HCD可判断D.【解答】解:∵正方形ABCD,DPMN的面积分别为S1,S2,∴S1=CD2,S2=PD2,在Rt△PCD中,PC2=CD2+PD2,∴S1+S2=CP2,故A结论正确;连接CF,∵点H与B关于CE对称,∴CH=CB,∠BCE=∠ECH,在△BCE和△HCE中,∴△BCE≌△HCE(SAS),∴BE=EH,∠EHC=∠B=90°,∠BEC=∠HEC,∴CH=CD,在Rt△FCH和Rt△FCD中∴Rt△FCH≌Rt△FCD(HL),∴∠FCH=∠FCD,FH=FD,∴∠ECH+∠FCH=∠BCD=45°,即∠ECF=45°,作FG⊥EC于G,∴△CFG是等腰直角三角形,∴FG=CG,∵∠BEC=∠HEC,∠B=∠FGE=90°,∴△FEG∽△CEB,∴==,∴FG=2EG,设EG=x,则FG=2x,∴CG=2x,CF=2x,∴EC=3x,∵EB2+BC2=EC2,∴BC2=9x2,∴BC2=x2,∴BC=x,在Rt△FDC中,FD===x,∴3FD=AD,∴AF=2FD,故B结论正确;∵AB∥CN,∴=,∵PD=ND,AE=CD,∴CD=4PD,故C结论正确;∵EG=x,FG=2x,∴EF=x,∵FH=FD=x,∵BC=x,∴AE=x,作HQ⊥AD于Q,HS⊥CD于S,∴HQ∥AB,∴=,即=,∴HQ=x,∴CS=CD﹣HQ=x﹣x=x∴cos∠HCD===,故结论D错误,故选:D.3.【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【解答】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选:A.4.【分析】在AB上截取AF=AC=2,由旋转的性质可得AD=AE,由勾股定理可求AB=2,可得BF=2﹣2,由“SAS”可证△ACE≌△AFD,可得CE=DF,则当DF⊥BC时,DF值最小,即CE的值最小,由直角三角形的性质可求线段CE长的最小值.【解答】解:如图,在AB上截取AF=AC=2,∵旋转∴AD=AE∵AC=BC=2,∠ACB=90°∴AB=2,∠B=∠BAC=45°,∴BF=2﹣2∵∠DAE=45°=∠BAC∴∠DAF=∠CAE,且AD=AE,AC=AF∴△ACE≌△AFD(SAS)∴CE=DF,当DF⊥BC时,DF值最小,即CE的值最小,∴DF最小值为=2﹣故选:D.5.【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【解答】解:作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交ED于N,则A′A″即为△AMN的周长最小值.作EA延长线AH,∵∠BAE=120°,∴∠HAA′=60°,∴∠A′+∠A″=∠HAA′=60°,∵∠A′=∠MAA′,∠NAE=∠A″,且∠A′+∠MAA′=∠AMN,∠NAE+∠A″=∠ANM,∴∠AMN+∠ANM=∠A′+∠MAA′+∠NAE+∠A″=2(∠A′+∠A″)=2×60°=120°,故选:D.6.【分析】将△RQO绕点R顺时针旋转90°,可得△RPE,可得ER=RO,∠ERO=90°,PE=OQ=2,由直角三角形的性质可得EO=RO,由三角形三边关系可得EO≤PO+EP =3,即可求解.【解答】解:将△RQO绕点R顺时针旋转90°,可得△RPE,∴ER=RO,∠ERO=90°,PE=OQ=2∴EO=RO,∵EO≤PO+EP=3∴RO≤3∴OR的最大值=故选:A.二、填空题1.【分析】连接CD.证明△ADE≌△CDF,利用全等三角形的性质即可一一判断.【解答】解:连接CD,∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB;在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴ED=DF,故①正确;∴S△ADE=S△CDF,∴S四边形CEDF=S△ADC=S△ABC=定值,故②错误,∵△ADE≌△CDF,∴AE=CF,∴CE+CF=CE+AE=AC=AB,故③正确,∵AE=CF,AC=BC,∴EC=BF,∴AE2+BF2=CF2+CE2=EF2,∵EF2=2DE2,∴AE2+BF2=2ED2,故④正确.故答案为①③④.2.【分析】方法1、过点A作BD的垂线AG,AG为定值;过点P作BD的垂线PE,只要PE最大即可,进而求出PE最大,即可得出结论;方法2、先判断出最大时,BE最大,再用相似三角形的性质求出BG,HG,CH,进而判断出HM最大时,BE最大,而点M在⊙C上时,HM最大,即可HP',即可得出结论.【解答】方法1、解:如图,过点A作AG⊥BD于G,∵BD是矩形的对角线,∴∠BAD=90°,∴BD==5,∵AB•AD=BD•AG,∴AG=,∵BD是⊙C的切线,∴⊙C的半径为过点P作PE⊥BD于E,∴∠AGT=∠PET,∵∠ATG=∠PTE,∴△AGT∽△PET,∴,∴=×PE∵==1+,要最大,则PE最大,∵点P是⊙C上的动点,BD是⊙C的切线,∴PE最大为⊙C的直径,即:PE最大=,∴最大值为1+=3,故答案为3.方法2、解:如图,过点P作PE∥BD交AB的延长线于E,∴∠AEP=∠ABD,△APE∽△ATB,∴,∵AB=4,∴AE=AB+BE=4+BE,∴,∴BE最大时,最大,∵四边形ABCD是矩形,∴BC=AD=3,CD=AB=4,过点C作CH⊥BD于H,交PE于M,并延长交AB于G,∵BD是⊙C的切线,∴∠GME=90°,在Rt△BCD中,BD==5,∵∠BHC=∠BCD=90°,∠CBH=∠DBC,∴△BHC∽△BCD,∴,∴,∴BH=,CH=,∵∠BHG=∠BAD=90°,∠GBH=∠DBA,∴△BHG∽△BAD,∴=,∴,∴HG=,BG=,在Rt△GME中,GM=EG•sin∠AEP=EG×=EG,而BE=GE﹣BG=GE﹣,∴GE最大时,BE最大,∴GM最大时,BE最大,∵GM=HG+HM=+HM,即:HM最大时,BE最大,延长MC交⊙C于P',此时,HM最大=HP'=2CH=,∴GP'=HP'+HG=,过点P'作P'F∥BD交AB的延长线于F,∴BE最大时,点E落在点F处,即:BE最大=BF,在Rt△GP'F中,FG====,∴BF=FG﹣BG=8,∴最大值为1+=3,故答案为:3.3.【分析】连接OE,延长EO交CD于点G,作OH⊥B′C,由旋转性质知∠B′=∠B′CD′=90°、AB=CD=5、BC=B′C=4,从而得出四边形OEB′H和四边形EB′CG 都是矩形且OE=OD=OC=2.5,继而求得CG=B′E=OH===2,根据垂径定理可得CF的长.【解答】解:连接OE,延长EO交CD于点G,作OH⊥B′C于点H,则∠OEB′=∠OHB′=90°,∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,∴∠B′=∠B′CD′=90°,AB=CD=5、BC=B′C=4,∴四边形OEB′H和四边形EB′CG都是矩形,OE=OD=OC=2.5,∴B′H=OE=2.5,∴CH=B′C﹣B′H=1.5,∴CG=B′E=OH===2,∵四边形EB′CG是矩形,∴∠OGC=90°,即OG⊥CD′,∴CF=2CG=4,故答案为:4.4.【分析】(1)在BC上截取BG=PD,通过三角形全等证得AG=AP,BG=DP,得出△AGP是等边三角形,得出AP=GP,则P A+PC=GP+PC=GC=PE,即可证得结论;(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D、E、O、N四点共线时,MO+NO+GO值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO的最小值.【解答】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,BG=DP,∴GC=PE,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴AP=GP,∴P A+PC=GP+PC=GC=PE∴P A+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2,5.【分析】如图,连接BD.由△ADG∽△GCF,设CF=BF=a,CG=DG=b,可得=,推出=,可得b=a,在Rt△GCF中,利用勾股定理求出b,即可解决问题;【解答】解:如图,连接BD.∵四边形ABCD是矩形,∴∠ADC=∠DCB=90°,AC=BD=,∵CG=DG,CF=FB,∴GF=BD=,∵AG⊥FG,∴∠AGF=90°,∴∠DAG+∠AGD=90°,∠AGD+∠CGF=90°,∴∠DAG=∠CGF,∴△ADG∽△GCF,设CF=BF=a,CG=DG=b,∴=,∴=,∴b2=2a2,∵a>0.b>0,∴b=a,在Rt△GCF中,3a2=,∴a=,∴AB=2b=2.故答案为2.6.【分析】以AC为直径作圆O′,连接BO′、BC.在点P移动的过程中,点D在以AC 为直径的圆上运动,当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D,利用勾股定理求出BO′即可解决问题.【解答】解:如图,以AC为直径作圆O′,连接BO′、BC,O'D,∵CD⊥AP,∴∠ADC=90°,∴在点P移动的过程中,点D在以AC为直径的圆上运动,∵AB是直径,∴∠ACB=90°,在Rt△ABC中,∵AB=8,∠CAB=60°,∴BC=AB•sin60°=4,AC=AB•cos60°=4,∴AO'=CO'=2,∴BO'===2,∵O′D+BD≥O′B,∴当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D=2﹣2,故答案为2﹣2.三、解答题1.【分析】(1)如图1中,连接OB,OC.设BF=EF=x,OF=y.利用勾股定理构建方程组解决问题即可.(2)如图2中,作CH⊥AB于H.证明△ACH是等腰直角三角形,四边形EFHC是矩形,求出EF即可解决问题.【解答】解:(1)如图1中,连接OB,OC.设BF=EF=x,OF=y.∵AB∥CD,EF⊥AB,∴EF⊥CD,∴∠CEF=∠BFO=90°∴AF=BF=x,DE=EC=2,根据勾股定理可得:,解得(舍弃)或,∴BF=4,AB=2BF=8.(2)如图2中,作CH⊥AB于H.∵OB⊥OC,∴∠A=∠BOC=45°,∵AH⊥CH,∴△ACH是等腰直角三角形,∵AC=CH,∵AB∥CD,EF⊥AB,∴EF⊥CD,∠CEF=∠EFH=∠CHF=90°,∴四边形EFHC是矩形,∴CH=EF,在Rt△OEC中,∵EC=,OC=,OE===2,∵∠EOC+∠OCE=90°,∠EOC+∠FOB=90°,∴∠FOB=∠ECO,∵OB=OC,∴△OFB≌△CEO(AAS),∴OF=EC=,∴CH=EF=3,∴AC=EF=6.2.【分析】(1)将点A(10,0),点B(1,2)代入y=ax2+bx中,可求y=﹣x2+x,直线OB的解析式为y=2x;(2)设M(m,2m),由已知可求C(3m,2m),将点C代入抛物线解析式可得m=,即可求BC的直线解析为y=x+,设Q(n,﹣n2+n),过点Q与BC垂直的直线解析式为y=﹣x﹣n2+n,则两直线的交点为T(﹣n2+n﹣,n2+n﹣),QT=|n2﹣8n+7|,当QT最大时,则△BCQ的面积最大;(3)函数对称轴x=5,E(9,2),设P(t,0),则依次可求N(t,2t),H(5﹣t,0),M(5﹣t,10﹣t),BM2=t2﹣8t+32,ME2=t2﹣11t+89,NE2=5t2﹣26t+85,MN2=t2﹣75t+125,当BM=MN,BE=EN时,此时△BEN是等腰三角形,M是BN的中点,BN⊥ME,t+1=10﹣t,,此时不成立;当BE=MN,BM=EN时,t2﹣8t+32=5t2﹣26t+85,由于△<0,t不存在.【解答】解:(1)将点A(10,0),点B(1,2)代入y=ax2+bx中,∴a=﹣,b=,∴y=﹣x2+x,直线OB的解析式为y=2x;(2)设M(m,2m),∵MC=MH,∴C(3m,2m),∴2m=﹣×9m2+×3m,∴m=,∴C(7,),M(,),∴BC的直线解析为y=x+,设Q(n,﹣n2+n),∴过点Q与BC垂直的直线解析式为y=﹣x﹣n2+n,则两直线的交点为T(﹣n2+n﹣,n2+n﹣),∴QT=|n2﹣8n+7|,∴当n=4时,△BCQ面积的最大值,∴Q(4,);(3)函数对称轴x=5,∴E(9,2),设P(t,0),∴N(t,2t),∵AP=2OH,∴H(5﹣t,0),∴M(5﹣t,10﹣t),∴BM2=t2﹣8t+32,ME2=t2﹣11t+89,NE2=5t2﹣26t+85,MN2=t2﹣75t+125,当BM=MN,BE=EN时,此时△BEN是等腰三角形,M是BN的中点,BN⊥ME,∴t+1=10﹣t,,∴t=,t=,∴此时不成立;当BE=MN,BM=EN时,t2﹣8t+32=5t2﹣26t+85,∴△<0,∴t不存在;综上所述:在此运动过程中△MNE与△BME不能全等.3.【分析】(1)根据勾股定理求出AC,证明△APD∽△ABC,△A′PC∽△ABC,根据相似三角形的性质计算;(2)分A′B=BC、A′B=A′C两种情况,根据等腰三角形的性质解答;(3)根据题意画出图形,根据锐角三角函数的概念计算.【解答】解:(1)如图1,∵在△ABC中,∠C=90°,AB=5cm,BC=3cm,∴AC==4cm,当点A′落在边BC上时,由题意得,四边形AP A′D为平行四边形,∵PD⊥AB,∴∠ADP=∠C=90°,∵∠A=∠A,∴△APD∽△ABC,∵AP=5x,∴A′P=AD=4x,PC=4﹣5x,∵∠A′PD=∠ADP,∴A′P∥AB,∴△A′PC∽△ABC,∴,即=,解得:x=,∴当点A′落在边BC上时,x=;(2)当A′B=BC时,(5﹣8x)2+(3x)2=32,解得:.∵x≤,∴;当A′B=A′C时,x=.(3)Ⅰ、当A′B′⊥AB时,如图6,∴DH=P A'=AD,HE=B′Q=EB,∵AB=2AD+2EB=2×4x+2×3x=5,∴x=,∴A′B′=QE﹣PD=x=;Ⅱ、当A′B′⊥BC时,如图7,∴B′E=5x,DE=5﹣7x,∴cos B=,∴x=,∴A′B′=B′D﹣A′D=;Ⅲ、当A′B′⊥AC时,如图8,由(1)有,x=,∴A′B′=P A′sin A=;当A′B′⊥AB时,x=,A′B′=;当A′B′⊥BC时,x=,A′B′=;当A′B′⊥AC时,x=,A′B′=.4.【分析】(1)①由∠ABO=90°和DB⊥PB可得∠DBA=∠PBO,结合边长关系由两边对应成比例及其夹角相等的三角形相似即可证明结论.②过D点作DH⊥BO交OB延长线于H点,由AD∥OB平行可得∠DAB=90°,而△ADB∽△OPB可知∠POB=90°,由已知可求出AD.由Rt△DHO即可计算OD的长,③由△ADB∽△OPB可知,可求AD=,由此可知D在以A为圆心AD为半径的圆上运动,所以OD的最大值为OD过A点时最大.求出OA即可得到答案.(2)在OC上取点B′,使OB′=OP=,构造△BOP~△POB′,可得=P A﹣PB′≤AB',求出AB’即可求出最大值.【解答】解:(1)①∵DB⊥PB,∠ABO=90°,∴∠ADB=∠CDP,又∵AB=3,BO=4,DB:PB=3:4,即:,∴△ADB∽△OPB;②如解图(2),过D点作DH⊥BO交OB延长线于H点,∵AD∥OB,∠ABD=90°,∴∠DAB=90°,又∵△ADB∽△OPB,∴,∴AD=,∵四边形ADHB为矩形,∴HD=AB=3,HB=AD=,∴OH=OB+HB=在Rt△DHO中,OD===.③在△AOB中,∠ABO=90°,AB=3,BO=4,∴OA=5.由②得AD=,∴D在以A为圆心AD为半径的圆上运动,∴OD的最大值为OD过A点时最大,即OD的最大值为=OA+AD=5+=.(2)如解图(4),在OC上取点B′,使OB′=OP=,∵∠BOP=∠POB′,=,∴△BOP~△POB′,∴,∴=P A﹣PB′≤AB',∴∴有最大值为AB′,在Rt△ABB′中,AB=3,BB′==,∴AB′===,即:点P在运动过程中,P A﹣有最大值为,5.【分析】(1)根据角平分线的定义得到∠EDF=∠ADF,根据圆内接四边形的性质和圆周角定理结论得到结论;(2)根据圆周角定理得到AD⊥BF,推出△ACB是等边三角形,得到∠ADB=∠ACB=60°,根据等腰三角形的性质得到结论;(3)设CD=k,BC=2k,根据勾股定理得到BD==k=10,求得=2,BC=AC=4,根据相似三角形的性质即可得到结论【解答】(1)证明:∵DF平分∠ADE,∴∠EDF=∠ADF,∵∠EDF=∠ABC,∠BAC∠BDC,∠EDF=∠BDC,∴∠BAC=∠ABC,∴AC=BC;(2)解:∵BD是⊙O的直径,∴AD⊥BF,∵AF=AB,∴DF=DB,∴∠FDA=∠BDA,∴∠ADB=∠CAB=∠ACB,∴△ACB是等边三角形,∴∠ADB=∠ACB=60°,∴∠ABD=90°﹣60°=30°,∴∠F=∠ABD=30°;(3)解:∵,∴=,设CD=k,BC=2k,∴BD==k=10,∴k=2,∴CD=2,BC=AC=4,∵∠ADF=∠BAC,∴∠F AC=∠ADC,∵∠ACF=∠DCA,∴△ACF∽△DCA,∴=,∴CF=8,∴DF=CF﹣CD=6.6.【分析】(1)过点E作EG⊥BC,垂足为点G.AE=x,则EC=2﹣x.根据BG=EG构建方程求出x即可解决问题.(2)①证明△AEF∽△BEC,可得,由此构建关系式即可解决问题.②分两种情形:当∠CAD<120°时,当120°<∠CAD<180°时,分别求解即可解决问题.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC﹣AC=2,∠BAC=∠ABC=∠ACB=60°.∵AD=AC,∴AD=AB,∴∠ABD=∠ADB,∵∠ABD+∠ADB+∠BAC+∠CAD=180°,∠CAD=90°,∠ABD=15°,∴∠EBC=45°.过点E作EG⊥BC,垂足为点G.设AE=x,则EC=2﹣x.在Rt△CGE中,∠ACB=60°,∴,,∴BG=2﹣CG=1+x,在Rt△BGE中,∠EBC=45°,∴,解得.所以线段AE的长是.(2)①设∠ABD=α,则∠BDA=α,∠DAC=∠BAD﹣∠BAC=120°﹣2α.∵AD=AC,AH⊥CD,∴,又∵∠AEF=60°+α,∴∠AFE=60°,∴∠AFE=∠ACB,又∵∠AEF=∠BEC,∴△AEF∽△BEC,∴,由(1)得在Rt△CGE中,,,∴BE2=BG2+EG2=x2﹣2x+4,∴(0<x<2).②当∠CAD<120°时,y=7,则有7=,整理得3x2+x﹣2=0,解得x=或﹣1(舍弃),.当120°<∠CAD<180°时,同法可得y=当y=7时,7=,整理得3x2﹣x﹣2=0,解得x=﹣(舍弃)或1,∴AE=1.。
2020中考冲刺全国数学经典压轴题60例(1)
2020中考冲刺全国数学经典压轴题60例含参考答案与试题解析一、解答题(共60小题)1.(•重庆)已知:如图①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连接AF、BF.(1)求AE和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F 分别平移到线段AB、AD上时,直接写出相应的m的值.(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.考几何变换综合题.点:专题:压轴题.分析:(1)利用矩形性质、勾股定理及三角形面积公式求解;(2)依题意画出图形,如答图2所示.利用平移性质,确定图形中的等腰三角形,分别求出m的值;(3)在旋转过程中,等腰△DPQ有4种情形,如答图3所示,对于各种情形分别进行计算.解答:解:(1)在Rt△ABD中,AB=5,AD=,由勾股定理得:BD===.∵S△ABD=BD•AE=AB•AD,∴AE===4.在Rt△ABE中,AB=5,AE=4,由勾股定理得:BE=3.(2)设平移中的三角形为△A′B′F′,如答图2所示:由对称点性质可知,∠1=∠2.由平移性质可知,AB∥A′B′,∠4=∠1,BF=B′F′=3.①当点F′落在AB上时,∵AB∥A′B′,∴∠3=∠4,∴∠3=∠2,∴BB′=B′F′=3,即m=3;②当点F′落在AD上时,∵AB∥A′B′,∴∠6=∠2,∵∠1=∠2,∠5=∠1,∴∠5=∠6,又易知A′B′⊥AD,∴△B′F′D为等腰三角形,∴B′D=B′F′=3,∴BB′=BD﹣B′D=﹣3=,即m=.(3)存在.理由如下:在旋转过程中,等腰△DPQ依次有以下4种情形:①如答图3﹣1所示,点Q落在BD延长线上,且PD=DQ,易知∠2=2∠Q,∵∠1=∠3+∠Q,∠1=∠2,∴∠3=∠Q,∴A′Q=A′B=5,∴F′Q=F′A′+A′Q=4+5=9.在Rt△BF′Q中,由勾股定理得:BQ===.∴DQ=BQ﹣BD=﹣;②如答图3﹣2所示,点Q落在BD上,且PQ=DQ,易知∠2=∠P,∵∠1=∠2,∴∠1=∠P,∴BA′∥PD,则此时点A′落在BC边上.∵∠3=∠2,∴∠3=∠1,∴BQ=A′Q,∴F′Q=F′A′﹣A′Q=4﹣BQ.在Rt△BQF′中,由勾股定理得:BF′2+F′Q2=BQ2,即:32+(4﹣BQ)2=BQ2,解得:BQ=,∴DQ=BD﹣BQ=﹣=;③如答图3﹣3所示,点Q落在BD上,且PD=DQ,易知∠3=∠4.∵∠2+∠3+∠4=180°,∠3=∠4,∴∠4=90°﹣∠2.∵∠1=∠2,∴∠4=90°﹣∠1.∴∠A′QB=∠4=90°﹣∠1,∴∠A′BQ=180°﹣∠A′QB﹣∠1=90°﹣∠1,∴∠A′QB=∠A′BQ,∴A′Q=A′B=5,∴F′Q=A′Q﹣A′F′=5﹣4=1.在Rt△BF′Q中,由勾股定理得:BQ===,∴DQ=BD﹣BQ=﹣;④如答图3﹣4所示,点Q落在BD上,且PQ=PD,易知∠2=∠3.∵∠1=∠2,∠3=∠4,∠2=∠3,∴∠1=∠4,∴BQ=BA′=5,∴DQ=BD﹣BQ=﹣5=.综上所述,存在4组符合条件的点P、点Q,使△DPQ为等腰三角形;DQ的长度分别为﹣、、﹣或.点评:本题是几何变换压轴题,涉及旋转与平移变换、矩形、勾股定理、等腰三角形等知识点.第(3)问难度很大,解题关键是画出各种旋转图形,依题意进行分类讨论;在计算过程中,注意识别旋转过程中的不变量,注意利用等腰三角形的性质简化计算.2.(•重庆)如图1,在▱ABCD中,AH⊥DC,垂足为H,AB=4,AD=7,AH=.现有两个动点E,F同时从点A出发,分别以每秒1个单位长度、每秒3个单位长度的速度沿射线AC方向匀速运动,在点E,F的运动过程中,以EF为边作等边△EFG,使△EFG与△ABC在射线AC的同侧,当点E运动到点C时,E,F两点同时停止运动,设运动时间为t秒.(1)求线段AC的长;(2)在整个运动过程中,设等边△EFG与△ABC重叠部分的面积为S,请直接写出S与t之间的函数关系式,并写出相应的自变量t的取值范围;(3)当等边△EFG的顶点E到达点C时,如图2,将△EFG 绕着点C旋转一个角度α(0°<α<360°),在旋转过程中,点E与点C重合,F的对应点为F′,G的对应点为G′,设直线F′G′与射线DC、射线AC分别相交于M,N两点.试问:是否存在点M,N,使得△CMN是以∠MCN为底角的等腰三角形?若存在,请求出CM的长度;若不存在,请说明理由.几何变换综合题.考点:专压轴题;动点型.题:分析:(1)利用平行四边形性质、勾股定理,求出DH、CH 的长度,可以判定△ACD为等腰三角形,则AC=AD=7;(2)首先证明点G始终在直线AB上,然后分析运动过程,求出不同时间段内S的表达式:①当0≤t≤时,如答图2﹣1所示,等边△EFG在△内部;②当<t≤4时,如答图2﹣2所示,点G在线段AB上,点F在AC的延长线上;③当4<t≤7时,如答图2﹣3所示,点G、F分别在AB、AC的延长线上,点E在线段AC上.(3)因为∠MCN为等腰三角形的底角,因此只可能有两种情形:①若点N为等腰三角形的顶点,如答图3﹣1所示;②若点M为等腰三角形的顶点,如答图3﹣2所示.解答:解:(1)∵▱ABCD,∴CD=AB=4.在Rt△ADH中,由勾股定理得:DH===2,∴CH=DH.∴AC=AD=7.(2)在运动过程中,AE=t,AF=3t,∴等边△EFG的边长EF=EG=GF=2t.如答图1,过点G作GP⊥AC于点P,则EP=EG=t,GP=EG= t.∴AP=AE+EP=2t.∴tan∠GAC===.∵tan∠BAC=tan∠ACH===,∴tan∠GAC=tan∠BAC,∴点G始终在射线AB上.设∠BAC=∠ACH=θ,则sinθ==,cosθ==.①当0≤t≤时,如答图2﹣1所示,等边△EFG在△内部.S=S △EFG=EF2=(2t)2=t2;②当<t≤4时,如答图2﹣2所示,点G在线段AB上,点F在AC的延长线上.过点B作BQ⊥AF于点Q,则BQ=AB•sinθ=4×=4,AQ=AB•cosθ=4×=8.∴CQ=AQ﹣AC=8﹣7=1.设BC与GF交于点K,过点K作KP⊥AF于点P,设KP=x,则PF==x,∴CP=CF﹣PF=3t﹣7﹣x.∵PK∥BQ,∴,即,解得:x=(3t﹣7).∴S=S △EFG﹣S△CFK=t2﹣(3t﹣7)•(3t﹣7)=﹣t2+t﹣;③当4<t≤7时,如答图2﹣3所示,点G、F分别在AB、AC的延长线上,点E在线段AC上.过点B作BQ⊥AF于点Q,则BQ=AB•sinθ=4×=4,AQ=AB•cosθ=4×=8.∴CQ=AQ﹣AC=8﹣7=1.设BC与GF交于点K,过点K作KP⊥AF于点P,设KP=x,则EP==x,∴CP=EP﹣CE=x﹣(7﹣t)=x﹣7+t.∵PK∥BQ,∴,即,解得:x=(7﹣t).∴S=S △CEK=(7﹣t)•(7﹣t)=t2﹣t+.综上所述,S与t之间的函数关系式为:S=.(3)设∠ACH=θ,则tanθ===,cosθ==.当点E与点C重合时,t=7,∴等边△EFG的边长=2t=14.假设存在点M,N,使得△CMN是以∠MCN为底角的等腰三角形,①若点N为等腰三角形的顶点,如答图3﹣1所示,则∠NMC=∠MCN=θ.过点C作CP⊥F′M于点P,则CP=CF′=7.∴PM===14.设CN=MN=x,则PN=PM﹣MN=14﹣x.在Rt△CNP中,由勾股定理得:CP2+PN2=CN2,即:(7)2+(14﹣x)2=x2,解得:x=.过点N作NQ⊥CM于点Q,∴CM=2CQ=2CN•cosθ=2××=7;②若点M为等腰三角形的顶点,如答图3﹣2所示,则∠MNC=∠MCN=θ.过点C作CP⊥G′N于点P,则CP=CF′=7.∴PN===14.设CM=MN=x,则PM=PN﹣MN=14﹣x.在Rt△CMP中,由勾股定理得:CP2+PM2=CM2,即:(7)2+(14﹣x)2=x2,∴CM=x=.综上所述,存在点M,N,使得△CMN是以∠MCN为底角的等腰三角形,CM的长度为7或.点评:本题是几何变换综合题,涉及平移与旋转两种几何变换.第(2)问中,针对不同时间段内的几何图形,需要分类讨论;第(3)问中,根据顶点的不同,分两种情形进行分类讨论.本题涉及考点众多,图形复杂,计算量偏大,难度较大;解题时需要全面分析,认真计算.3.(•长春)如图,在矩形ABCD中,AB=4,BC=3,点O 为对角线BD的中点,点P从点A出发,沿折线AD﹣DO ﹣OC以每秒1个单位长度的速度向终点C运动,当点P与点A不重合时,过点P作PQ⊥AB于点Q,以PQ为边向右作正方形PQMN,设正方形PQMN与△ABD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).(1)求点N落在BD上时t的值;(2)直接写出点O在正方形PQMN内部时t的取值范围;(3)当点P在折线AD﹣DO上运动时,求S与t之间的函数关系式;(4)直接写出直线DN平分△BCD面积时t的值.考点:相似形综合题;勾股定理;三角形中位线定理;矩形的性质;正方形的性质;相似三角形的判定与性质;锐角三角函数的定义.菁优网版权所有专题:压轴题;分类讨论.分析:(1)可证△DPN∽△DQB,从而有,即可求出t的值.(2)只需考虑两个临界位置(①MN经过点O,②点P与点O重合)下t的值,就可得到点O在正方形PQMN内部时t的取值范围.(3)根据正方形PQMN与△ABD重叠部分图形形状不同分成三类,如图4、图5、图6,然后运用三角形相似、锐角三角函数等知识就可求出S与t之间的函数关系式.(4)由于点P在折线AD﹣DO﹣OC运动,可分点P在AD上,点P在DO上,点P在OC上三种情况进行讨论,然后运用三角形相似等知识就可求出直线DN平分△BCD面积时t的值.解答:解:(1)当点N落在BD上时,如图1.∵四边形PQMN是正方形,∴PN∥QM,PN=PQ=t.∴△DPN∽△DQB.∴.∵PN=PQ=PA=t,DP=3﹣t,QB=AB=4,∴.∴t=.∴当t=时,点N落在BD上.(2)①如图2,则有QM=QP=t,MB=4﹣t.∵四边形PQMN是正方形,∴MN∥DQ.∵点O是DB的中点,∴QM=BM.∴t=4﹣t.∴t=2.②如图3,∵四边形ABCD是矩形,∴∠A=90°.∵AB=4,AD=3,∴DB=5.∵点O是DB的中点,∴DO=.∴1×t=AD+DO=3+.∴t=.∴当点O在正方形PQMN内部时,t的范围是2<t<.(3)①当0<t≤时,如图4.S=S正方形PQMN=PQ2=PA2=t2.②当<t≤3时,如图5,∵tan∠ADB==,∴=.∴PG=4﹣t.∴GN=PN﹣PG=t﹣(4﹣t)=﹣4.∵tan∠NFG=tan∠ADB=,∴.∴NF=GN=(﹣4)=t﹣3.∴S=S正方形PQMN﹣S△GNF=t2﹣×(﹣4)×(t﹣3)=﹣t 2+7t﹣6.③当3<t≤时,如图6,∵四边形PQMN是正方形,四边形ABCD是矩形.∴∠PQM=∠DAB=90°.∴PQ∥AD.∴△BQP∽△BAD.∴==.∵BP=8﹣t,BD=5,BA=4,AD=3,∴.∴BQ=,PQ=.∴QM=PQ=.∴BM=BQ﹣QM=.∵tan∠ABD=,∴FM=BM=.∴S=S 梯形PQMF=(PQ+FM)•QM=[+]•=(8﹣t)2=t 2﹣t+.综上所述:当0<t≤时,S=t2.当<t≤3时,S=﹣t2+7t﹣6.当3<t≤时,S=t2﹣t+.(4)设直线DN与BC交于点E,∵直线DN平分△BCD面积,∴BE=CE=.①点P在AD上,过点E作EH∥PN交AD于点H,如图7,则有△DPN∽△DHE.∴.∵PN=PA=t,DP=3﹣t,DH=CE=,EH=AB=4,∴.解得;t=.②点P在DO上,连接OE,如图8,则有OE=2,OE∥DC∥AB∥PN.∴△DPN∽△DOE.∴.∵DP=t﹣3,DO=,OE=2,∴PN=(t﹣3).∵PQ=(8﹣t),PN=PQ,∴(t﹣3)=(8﹣t).解得:t=.③点P在OC上,设DE与OC交于点S,连接OE,交PQ于点R,如图9,则有OE=2,OE∥DC.∴△DSC∽△ESO.∴.∴SC=2SO.∵OC=,∴SO==.∵PN∥AB∥DC∥OE,∴△SPN∽△SOE.∴.∵SP=3++﹣t=,SO=,OE=2,∴PN=.∵PR∥MN∥BC,∴△ORP∽△OEC.∴.∵OP=t﹣,OC=,EC=,∴PR=.∵QR=BE=,∴PQ=PR+QR=.∵PN=PQ,∴=.解得:t=.综上所述:当直线DN平分△BCD面积时,t的值为、、.点评:本题考查了矩形的性质、正方形的性质、相似三角形的判定与性质、锐角三角函数的定义、三角形的中位线定理、勾股定理等知识,考查了用割补法求五边形的面积,考查了用临界值法求t的取值范围,考查了分类讨论的数学思想,综合性较强,有一定的难度.4.(•达州)如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4).(1)求过O、B、A三点的抛物线的解析式.(2)在第一象限的抛物线上存在点M,使以O、A、B、M 为顶点的四边形面积最大,求点M的坐标.(3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.考点:二次函数综合题.专题:压轴题;分类讨论.分析:(1)由于抛物线与x轴的两个交点已知,因此抛物线的解析式可设成交点式,然后把点B的坐标代入,即可求出抛物线的解析式.(2)以O、A、B、M为顶点的四边形中,△OAB的面积固定,因此只要另外一个三角形面积最大,则四边形面积即最大;求出另一个三角形面积的表达式,利用二次函数的性质确定其最值;本问需分类讨论:①当0<x<4时,点M在抛物线OB段上时,如答图1所示;②当4<x<5时,点M在抛物线AB段上时,图略.(3)△PQB为等腰三角形时,有三种情形,需要分类讨论,避免漏解:①若点B为顶点,即BP=BQ,如答图2﹣1所示;②若点P为顶点,即PQ=PB,如答图2﹣2所示;③若点P为顶点,即PQ=QB,如答图2﹣3所示.解答:解:(1)∵该抛物线经过点A(5,0),O(0,0),∴该抛物线的解析式可设为y=a(x﹣0)(x﹣5)=ax(x﹣5).∵点B(4,4)在该抛物线上,∴a×4×(4﹣5)=4.∴a=﹣1.∴该抛物线的解析式为y=﹣x(x﹣5)=﹣x2+5x.(2)以O、A、B、M为顶点的四边形中,△OAB的面积固定,因此只要另外一个三角形面积最大,则四边形面积即最大.①当0<x<4时,点M在抛物线OB段上时,如答图1所示.∵B(4,4),∴易知直线OB的解析式为:y=x.设M(x,﹣x2+5x),过点M作ME∥y轴,交OB于点E,则E(x,x),∴ME=(﹣x2+5x)﹣x=﹣x2+4x.S △OBM=S△MEO+S△MEB=ME(x E﹣0)+ME(x B﹣x E)=ME•x B= ME×4=2ME,∴S△OBM=﹣2x2+8x=﹣2(x﹣2)2+8∴当x=2时,S△OBM最大值为8,即四边形的面积最大.②当4<x<5时,点M在抛物线AB段上时,图略.可求得直线AB解析式为:y=﹣4x+20.设M(x,﹣x2+5x),过点M作ME∥y轴,交AB于点E,则E(x,﹣4x+20),∴ME=(﹣x2+5x)﹣(﹣4x+20)=﹣x2+9x﹣20.S △ABM=S△MEB+S△MEA=ME(x E﹣x B)+ME(x A﹣x E)=ME•(x A ﹣x B)=ME×1=ME,∴S△ABM=﹣x2+x﹣10=﹣(x﹣)2+∴当x=时,S△ABM最大值为,即四边形的面积最大.比较①②可知,当x=2时,四边形面积最大.当x=2时,y=﹣x2+5x=6,∴M(2,6).(3)由题意可知,点P在线段OB上方的抛物线上.设P(m,﹣m2+5m),则Q(m,m)当△PQB为等腰三角形时,①若点B为顶点,即BP=BQ,如答图2﹣1所示.过点B作BE⊥PQ于点E,则点E为线段PQ中点,∴E(m,).∵BE∥x轴,B(4,4),∴=4,解得:m=2或m=4(与点B重合,舍去)∴m=2;②若点P为顶点,即PQ=PB,如答图2﹣2所示.易知∠BOA=45°,∴∠PQB=45°,则△PQB为等腰直角三角形.∴PB ∥x 轴,∴﹣m2+5m=4,解得:m=1或m=4(与点B重合,舍去)∴m=1;③若点Q为顶点,即PQ=QB,如答图2﹣3所示.∵P(m,﹣m2+5m),Q(m,m),∴PQ=﹣m2+4m.又∵QB=(x B﹣x Q)=(4﹣m),∴﹣m2+4m=(4﹣m),解得:m=或m=4(与点B重合,舍去),∴m=.综上所述,当△PQB为等腰三角形时,m的值为1,2或.点评:本题是二次函数压轴题,涉及考点较多,有一定的难度.重点考查了分类讨论的数学思想,第(2)(3)问均需要进行分类讨论,避免漏解.注意第(2)问中求面积表达式的方法,以及第(3)问中利用方程思想求m值的方法.5.(•云南)已知如图平面直角坐标系中,点O是坐标原点,矩形ABCO是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.(1)当点P 运动到线段AC 的中点时,求直线DP 的解析式(关系式);(2)当点P 沿直线AC 移动时,过点D 、P 的直线与x 轴交于点M .问在x 轴的正半轴上是否存在使△DOM 与△ABC相似的点M ?若存在,请求出点M 的坐标;若不存在,请说明理由;(3)当点P 沿直线AC 移动时,以点P 为圆心、R (R >0)为半径长画圆.得到的圆称为动圆P .若设动圆P 的半径长为,过点D 作动圆P 的两条切线与动圆P 分别相切于点E 、F .请探求在动圆P 中是否存在面积最小的四边形DEPF ?若存在,请求出最小面积S 的值;若不存在,请说明理由.考点: 圆的综合题;待定系数法求一次函数解析式;垂线段最短;勾股定理;切线长定理;相似三角形的判定与性质.菁优网版权所有 专综合题;压轴题;存在型;分类讨论.题:分析:(1)只需先求出AC中点P的坐标,然后用待定系数法即可求出直线DP的解析式.(2)由于△DOM与△ABC相似,对应关系不确定,可分两种情况进行讨论,利用三角形相似求出OM的长,即可求出点M的坐标.(3)易证S△PED=S△PFD.从而有S四边形DEPF=2S△PED=DE.由∠DEP=90°得DE2=DP2﹣PE2=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE也最短,对应的四边形DEPF的面积最小.借助于三角形相似,即可求出DP ⊥AC时DP的值,就可求出四边形DEPF面积的最小值.解答:解:(1)过点P作PH∥OA,交OC于点H,如图1所示.∵PH∥OA,∴△CHP∽△COA.∴==.∵点P是AC中点,∴CP=CA.∴HP=OA,CH=CO.∵A(3,0)、C(0,4),∴OA=3,OC=4.∴HP=,CH=2.∴OH=2.∵PH∥OA,∠COA=90°,∴∠CHP=∠COA=90°.∴点P的坐标为(,2).设直线DP的解析式为y=kx+b,∵D(0,﹣5),P(,2)在直线DP上,∴∴∴直线DP的解析式为y=x﹣5.(2)①若△DOM∽△ABC,图2(1)所示,∵△DOM∽△ABC,∴=.∵点B坐标为(3,4),点D的坐标为(0.﹣5),∴BC=3,AB=4,OD=5.∴=.∴OM=.∵点M在x轴的正半轴上,∴点M的坐标为(,0)②若△DOM∽△CBA,如图2(2)所示,∵△DOM∽△CBA,∴=.∵BC=3,AB=4,OD=5,∴=.∴OM=.∵点M在x轴的正半轴上,∴点M的坐标为(,0).综上所述:若△DOM与△CBA相似,则点M的坐标为(,0)或(,0).(3)∵OA=3,OC=4,∠AOC=90°,∴AC=5.∴PE=PF=AC=.∵DE、DF都与⊙P相切,∴DE=DF,∠DEP=∠DFP=90°.∴S△PED=S△PFD.∴S四边形DEPF=2S△PED=2×PE•DE=PE•DE=DE.∵∠DEP=90°,∴DE2=DP2﹣PE2.=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE取到最小值,四边形DEPF的面积最小.∵DP⊥AC,∴∠DPC=90°.∴∠AOC=∠DPC.∵∠OCA=∠PCD,∠AOC=∠DPC,∴△AOC∽△DPC.∴=.∵AO=3,AC=5,DC=4﹣(﹣5)=9,∴=.∴DP=.∴DE 2=DP2﹣=()2﹣=.∴DE=,∴S四边形DEPF=DE=.∴四边形DEPF面积的最小值为.点评:本题考查了相似三角形的判定与性质、用待定系数法求直线的解析式、切线长定理、勾股定理、垂线段最短等知识,考查了分类讨论的思想.将求DE的最小值转化为求DP的最小值是解决第3小题的关键.另外,要注意“△DOM与△ABC相似”与“△DOM∽△ABC “之间的区别.6.(•十堰)已知抛物线C1:y=a(x+1)2﹣2的顶点为A,且经过点B(﹣2,﹣1).(1)求A点的坐标和抛物线C1的解析式;(2)如图1,将抛物线C1向下平移2个单位后得到抛物线C2,且抛物线C2与直线AB相交于C,D两点,求S△OAC:S△OAD的值;(3)如图2,若过P(﹣4,0),Q(0,2)的直线为l,点E在(2)中抛物线C2对称轴右侧部分(含顶点)运动,直线m过点C和点E.问:是否存在直线m,使直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形相似?若存在,求出直线m的解析式;若不存在,说明理由.考点:二次函数综合题;待定系数法求一次函数解析式;待定系数法求二次函数解析式;相似三角形的判定与性质;锐角三角函数的增减性.菁优网版权所有专题:压轴题;存在型.分析:(1)由抛物线的顶点式易得顶点A坐标,把点B的坐标代入抛物线的解析式即可解决问题.(2)根据平移法则求出抛物线C2的解析式,用待定系数法求出直线AB的解析式,再通过解方程组求出抛物线C2与直线AB的交点C、D的坐标,就可以求出S△OAC:S△OAD的值.(3)设直线m与y轴交于点G,直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形形状、位置随着点G的变化而变化,故需对点G的位置进行讨论,借助于相似三角形的判定与性质、三角函数的增减性等知识求出符合条件的点G的坐标,从而求出相应的直线m的解析式.解答:解:(1)∵抛物线C1:y=a(x+1)2﹣2的顶点为A,∴点A的坐标为(﹣1,﹣2).∵抛物线C1:y=a(x+1)2﹣2经过点B(﹣2,﹣1),∴a(﹣2+1)2﹣2=﹣1.解得:a=1.∴抛物线C1的解析式为:y=(x+1)2﹣2.(2)∵抛物线C2是由抛物线C1向下平移2个单位所得,∴抛物线C2的解析式为:y=(x+1)2﹣2﹣2=(x+1)2﹣4.设直线AB的解析式为y=kx+b.∵A(﹣1,﹣2),B(﹣2,﹣1),∴解得:∴直线AB的解析式为y=﹣x﹣3.联立解得:或.∴C(﹣3,0),D(0,﹣3).∴OC=3,OD=3.过点A作AE⊥x轴,垂足为E,过点A作AF⊥y轴,垂足为F,∵A(﹣1,﹣2),∴AF=1,AE=2.∴S△OAC:S△OAD=(OC•AE):(OD•AF)=(×3×2):(×3×1)=2.∴S△OAC:S△OAD的值为2.(3)设直线m与y轴交于点G,设点G的坐标为(0,t).1.当直线m与直线l平行时,则有CG∥PQ.∴△OCG∽△OPQ.∴=.∵P(﹣4,0),Q(0,2),∴OP=4,OQ=2,∴=.∴OG=.∵当t=时,直线m与直线l平行,∴直线l,m与x轴不能构成三角形.∴t≠.2.当直线m与直线l相交时,设交点为H,①t<0时,如图2①所示.∵∠PHC>∠PQG,∠PHC>∠QGH,∴∠PHC≠∠PQG,∠PHC≠∠QGH.当∠PHC=∠GHQ时,∵∠PHC+∠GHQ=180°,∴∠PHC=∠GHQ=90°.∵∠POQ=90°,∴∠HPC=90°﹣∠PQO=∠HGQ.∴△PHC∽△GHQ.∵∠QPO=∠OGC,∴tan∠QPO=tan∠OGC.∴=.∴=.∴OG=6.∴点G的坐标为(0,﹣6)设直线m的解析式为y=mx+n,∵点C(﹣3,0),点G(0,﹣6)在直线m上,∴.解得:.∴直线m的解析式为y=﹣2x﹣6,联立,解得:或∴E(﹣1,﹣4).此时点E就是抛物线的顶点,符合条件.∴直线m的解析式为y=﹣2x﹣6.②当t=0时,此时直线m与x轴重合,∴直线l,m与x轴不能构成三角形.∴t≠0.③O<t<时,如图2②所示,∵tan∠GCO==<,tan∠PQO===2,∴tan∠GCO≠tan∠PQO.∴∠GCO≠∠PQO.∵∠GCO=∠PCH,∴∠PCH≠∠PQO.又∵∠HPC>∠PQO,∴△PHC与△GHQ不相似.∴符合条件的直线m不存在.④<t≤2时,如图2③所示.∵tan∠CGO==≥,tan∠QPO===.∴tan∠CGO≠tan∠QPO.∴∠CGO≠∠QPO.∵∠CGO=∠QGH,∴∠QGH≠∠QPO,又∵∠HQG>∠QPO,∴△PHC与△GHQ不相似.∴符合条件的直线m不存在.⑤t>2时,如图2④所示.此时点E在对称轴的右侧.∵∠PCH>∠CGO,∴∠PCH≠∠CGO.当∠QPC=∠CGO时,∵∠PHC=∠QHG,∠HPC=∠HGQ,∴△PCH∽△GQH.∴符合条件的直线m存在.∵∠QPO=∠CGO,∠POQ=∠GOC=90°,∴△POQ∽△GOC.∴=.∴=.∴OG=6.∴点G的坐标为(0,6).设直线m的解析式为y=px+q∵点C(﹣3,0)、点G(0,6)在直线m上,∴.解得:.∴直线m的解析式为y=2x+6.综上所述:存在直线m,使直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形相似,此时直线m的解析式为y=﹣2x﹣6和y=2x+6.点评:本题考查了二次函数的有关知识,考查了三角形相似的判定与性质、三角函数的定义及增减性等知识,考查了用待定系数法求二次函数及一次函数的解析式,考查了通过解方程组求两个函数图象的交点,强化了对运算能力、批判意识、分类讨论思想的考查,具有较强的综合性,有一定的难度.7.(•湘西州)如图,抛物线y=ax2+bx+c关于y轴对称,它的顶点在坐标原点O,点B(2,﹣)和点C(﹣3,﹣3)两点均在抛物线上,点F(0,﹣)在y轴上,过点(0,)作直线l与x轴平行.(1)求抛物线的解析式和线段BC的解析式.(2)设点D(x,y)是线段BC上的一个动点(点D不与B,C重合),过点D作x轴的垂线,与抛物线交于点G.设线段GD的长度为h,求h与x之间的函数关系式,并求出当x为何值时,线段GD的长度h最大,最大长度h的值是多少?(3)若点P(m,n)是抛物线上位于第三象限的一个动点,连接PF并延长,交抛物线于另一点Q,过点Q作QS⊥l,垂足为点S,过点P作PN⊥l,垂足为点N,试判断△FNS 的形状,并说明理由;(4)若点A(﹣2,t)在线段BC上,点M为抛物线上的一个动点,连接AF,当点M在何位置时,MF+MA的值最小,请直接写出此时点M的坐标与MF+MA的最小值.考点:二次函数综合题;二次根式的性质与化简;待定系数法求一次函数解析式;二次函数的最值;待定系数法求二次函数解析式;线段的性质:两点之间线段最短.菁优网版权所有专代数几何综合题;压轴题.题:分析:(1)由于抛物线的顶点在坐标原点O,故抛物线的解析式可设为y=ax2,把点C的坐标代入即可求出抛物线的解析式;设直线BC 的解析式为y=mx+n,把点B、C的坐标代入即可求出直线BC的解析式.(2)由点D(x,y)在线段BC上可得y D=x﹣2,由点G在抛物线y=﹣x2上可得y G=﹣x2.由h=DG=y G﹣y D=﹣x2﹣(x ﹣2)配方可得h=﹣(x+)2+.根据二次函数的最值性即可解决问题.(3)可以证明PF=PN,结合PN∥OF可推出∠PFN=∠OFN;同理可得∠QFS=∠OFS.由∠PFN+∠OFN+∠OFS+∠QFS=180°可推出∠NFS=90°,故△NFS是直角三角形.(4)过点M作MH⊥l,垂足为H,如图4,由(3)中推出的结论PF=PN可得:抛物线y=﹣x2上的点到点F(0,﹣)的距离与到直线y=的距离相等,从而有MF=MH,则MA+MF=MA+MH.由两点之间线段最短可得:当A、M、H 三点共线(即AM⊥l)时,MA+MH(即MA+MF)最小,此时x M=x A=﹣2,从而可以求出点M及点A的坐标,就可求出MF+MA的最小值.解答:解:(1)如图1,∵抛物线y=ax2+bx+c关于y轴对称,它的顶点在坐标原点O,∴抛物线解析式为y=ax2.∵点C(﹣3,﹣3)在抛物线y=ax2上,∴.9a=﹣3.∴a=﹣.∴抛物线的解析式为y=﹣x2.设直线BC的解析式为y=mx+n.∵B(2,﹣)、C(﹣3,﹣3)在直线y=mx+n上,∴.解得:.∴直线BC的解析式为y=x﹣2.(2)如图2,∵点D(x,y)是线段BC上的一个动点(点D不与B,C重合),∴y D=x﹣2,且﹣3<x<2.∵DG⊥x轴,∴x G=x D=x.∵点G在抛物线y=﹣x 2上,∴y G=﹣x2.∴h=DG=y G﹣y D=﹣x2﹣(x﹣2)=﹣x2﹣x+2=﹣(x 2+x)+2=﹣(x 2+x+﹣)+2=﹣(x+)2++2=﹣(x+)2+.∵﹣<0,﹣3<﹣<2,∴当x=﹣时,h取到最大值,最大值为.∴h与x之间的函数关系式为h=﹣(x+)2+,其中﹣3<x<2;当x=﹣时,线段GD的长度h最大,最大长度h的值是.(3)△FNS是直角三角形.证明:过点F作FT⊥PN,垂足为T,如图3,∵点P(m,n)是抛物线y=﹣x2上位于第三象限的一个动点,∴n=﹣m 2.m<0,n<0.∴m2=﹣3n.在Rt△PTF中,∵PT=﹣﹣n,FT=﹣m,∴PF=====﹣n.∵PN⊥l,且l是过点(0,)平行于x轴的直线,∴PN=﹣n.∴PF=PN.∴∠PNF=∠PFN.∵PN⊥l,OF⊥l,∴PN∥OF.∴∠PNF=∠OFN.∴∠PFN=∠OFN.同理可得:∠QFS=∠OFS.∵∠PFN+∠OFN+∠OFS+∠QFS=180°,∴2∠OFN+2∠OFS=180°.∴∠OFN+∠OFS=90°.∴∠NFS=90°.∴△NFS是直角三角形.(4)过点M作MH⊥l,垂足为H,如图4,在(3)中已证到PF=PN,由此可得:抛物线y=﹣x2上的点到点F(0,﹣)的距离与到直线y=的距离相等.∴MF=MH.∴MA+MF=MA+MH.由两点之间线段最短可得:当A、M、H三点共线(即AM⊥l)时,MA+MH(即MA+MF)最小,等于AH.即x M=x A=﹣2时,MA+MF取到最小值.此时,y M=﹣×(﹣2)2=﹣,点M的坐标为(﹣2,﹣);y A=×(﹣2)﹣2=﹣,点A的坐标为(﹣2,﹣);MF+MA的最小值=AH=﹣(﹣)=.∴当点M的坐标为(﹣2,﹣)时,MF+MA的值最小,最小值为.点评:本题考查了用待定系数法求二次函数及一次函数的解析式、二次函数的最值、二次根式的化简、两点之间线段最短等知识,综合性非常强,难度比较大.而证出PF=PN及由此得出“抛物线y=﹣x2上的点到点F(0,﹣)的距离与到直线y=的距离相等”是解决第三小题和第四小题的关键.8.(•宜昌)如图,在平面直角坐标系中,已知点P(0,4),点A在线段OP上,点B在x轴正半轴上,且AP=OB=t,0<t<4,以AB为边在第一象限内作正方形ABCD;过点C、D依次向x轴、y轴作垂线,垂足为M,N,设过O,C两点的抛物线为y=ax2+bx+c.(1)填空:△AOB≌△DNA或△DPA ≌△BMC(不需证明);用含t的代数式表示A点纵坐标:A(0,4﹣t );(2)求点C的坐标,并用含a,t的代数式表示b;(3)当t=1时,连接OD,若此时抛物线与线段OD只有唯一的公共点O,求a的取值范围;(4)当抛物线开口向上,对称轴是直线x=2﹣,顶点随着t 的增大向上移动时,求t 的取值范围.考点: 二次函数综合题;全等三角形的判定与性质.菁优网版权所有 专题:压轴题.分析: (1)根据全等三角形的判定定理SAS 证得:△AOB ≌△DNA 或DPA ≌△BMC ;根据图中相关线段间的和差关系来求点A 的坐标;(2)利用(1)中的全等三角形的对应边相等易推知:OM=OB+BM=t+4﹣t=4,则C (4,t ).把点O 、C 的坐标分别代入抛物线y=ax 2+bx+c 可以求得b=t ﹣4a ;(3)利用待定系数法求得直线OD 的解析式y=x .联立方程组,得,所以ax 2+(﹣﹣4a )x=0,解得 x=0或x=4+.对于抛物线的开口方向进行分类讨论,即a >0和a <0两种情况下的a的取值范围;(4)根据抛物线的解析式y=ax2+(﹣4a)x得到顶点坐标是(﹣,﹣(t﹣16a)2).结合已知条件求得a=t2,故顶点坐标为(2﹣,﹣(t﹣)2).哟抛物线的性质知:只与顶点坐标有关,故t的取值范围为:0<t≤.解答:解:(1)如图,∵∠DNA=∠AOB=90°,∴∠NAD=∠OBA(同角的余角相等).在△AOB与△DNA中,,∴△AOB≌△DNA(SAS).同理△DNA≌△BMC.∵点P(0,4),AP=t,∴OA=OP﹣AP=4﹣t.故答案是:DNA或△DPA;4﹣t;(2)由题意知,NA=OB=t,则OA=4﹣t.∵△AOB≌△BMC,∴CM=OB=t,∴OM=OB+BM=t+4﹣t=4,∴C(4,t).。
2020年中考考前最后一卷数学试题(福建卷)(解析版)
2020年中考考前最后一卷【福建卷】数学·全解全析1.【答案】C【解析】A不能化简;B,故错误;C,故正确;D,故错误,故选C.2.【答案】C【解析】图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.3.【答案】A【解析】观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A.4.【答案】B【解析】①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B.5.【答案】B【解析】设此多边形为n边形,根据题意得:(2)180720n -⋅=o o, 解得:n =6,∴这个正多边形的每一个外角等于:360660.÷=o o故选B . 6.【答案】C【解析】2a =-满足21a >,但不满足1a >; 故选C . 7.【答案】D【解析】去掉一个最高分和一个最低分对中位数没有影响, 故选D . 8.【答案】D【解析】设今年儿子的年龄为x 岁,则今年父亲的年龄为3x 岁,依题意,得: 3x ﹣5=4(x ﹣5). 故选D . 9.【答案】A【解析】连接OA 、OB ,∵正方形ABCD 内接于⊙O , ∴AB =BC =DC =AD ,∴»»»»AB BCCD DA ===, ∴∠AOB =14×360°=90°,在Rt △AOB 中,由勾股定理得:2AO 2=()2, 解得:AO =2, ∴»AB 的长为902180π´=π,故选A .10.【答案】C【解析】①y =ax 2+(2–a )x –2=(x –1)(ax +2).则该抛物线恒过点A (1,0).故①正确; ②∵y =ax 2+(2–a )x –2(a >0)的图象与x 轴有2个交点, ∴△=(2–a )2+8a =(a +2)2>0, ∴a ≠–2.∴该抛物线的对称轴为:x =21122a a a-=-,无法判定的正负. 故②不一定正确;③根据抛物线与y 轴交于(0,–2)可知,y 的最小值不大于–2,故③正确; ④∵A (1,0),B (–2a,0),C (0,–2),∴当AB =AC =,解得:a =12,故④正确. 综上所述,正确的结论有3个. 故选C . 11.【答案】–4【解析】根据立方根的意义,一个数的立方等于a ,则a 的立方根这个数,可知–64的立方根为–4. 故答案为–4. 12.【答案】12【解析】如图所示,一只蚂蚁从点出发后有ABD 、ABE 、ACE 、ACF 四条路,所以蚂蚁从出发到达处的概率是.13.【答案】25°【解析】连接OC ,∵DC 是⊙O 的切线,C 为切点, ∴∠OCD =90°, ∵∠D =40°, ∴∠DOC =50°, ∵AO =CO ,∴∠A =∠ACO , ∴∠A =12∠DOC =25°.故答案为:25°.14.【答案】2【解析】2012x x x -≤⎧⎪⎨-<⎪⎩①②,由不等式①得x ≤2, 由不等式②得x >–1, 其解集是–1<x ≤2, 所以整数解为0,1,2,则该不等式组的最大整数解是x =2. 故答案为:2. 15.【答案】150°【解析】连接PQ ,由题意可知△ABP ≌△CBQ则QB =PB =4,PA =QC =3,∠ABP =∠CBQ , ∵△ABC 是等边三角形, ∴∠ABC =∠ABP +∠PBC =60°, ∴∠PBQ =∠CBQ +∠PBC =60°, ∴△BPQ 为等边三角形,∴PQ=PB=BQ=4,又∵PQ=4,PC=5,QC=3,∴PQ2+QC2=PC2,∴∠PQC=90°,∵△BPQ为等边三角形,∴∠BQP=60°,∴∠BQC=∠BQP+∠PQC=150°∴∠APB=∠BQC=150°16.【答案】2【解析】∵四边形ABCO是菱形,∴CD=AD,BC∥OA,∵D(8,4),反比例函数的图象经过点D,∴k=32,C点的纵坐标是2×4=8,∴,把y=8代入得:x=4,∴n=4﹣2=2,∴向左平移2个单位长度,反比例函数能过C点,故答案为2.17.【解析】原式=4×2﹣18.【解析】∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中,AB DCB C BF CE=⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.19.【解析】22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭ 2(3)(1)(2(1)111)x x x x x x +-+⎛⎫=÷⎪+⎝⎭+-+ 23(1)(1)1(3)x x x x x ++-=⋅++ 13x x -=+ 当2x =时,原式211325-==+. 20.【解析】(1)如图所示:(2)如图所示:(3)AE =AF .21.【解析】(1)延长BC ,作DH ⊥BC 交BC 于H ,∵AB //CD ,∴∠ABC =60°=∠DCH ,∵CD =3,∴DH∴△BCD 的面积=1422⨯⨯= (2)连接AN ,由题意知,AB =CB ,BN =BM ,NBM ABC ∠=∠=60°∴ABM CBM =∠∠ ∴ABN CBM ≅V V则120BAN BCM ∠=∠=o 连接AC ,则ABC △是正三角形,N ∴、A 、A 三点共线NQ n =Q ,BQ m =,4CQ m ∴=-,在Rt NQC V 中,tan NQ CQ NCQ =⋅∠)1422n m m ⎫=-=+≤≤⎪⎭22.【解析】(1)根据题意得:2326a b b a -=-=⎧⎨⎩,∴1210a b ==⎧⎨⎩;(2)设购买污水处理设备A 型设备x 台,B 型设备(10−x )台, 则:12x +10(10−x )⩽105, ∴x ⩽2.5, ∵x 取非负整数, ∴x =0,1,2, ∴有三种购买方案:①A 型设备0台,B 型设备10台; ②A 型设备1台,B 型设备9台; ③A 型设备2台,B 型设备8台. (3)由题意:240x +200(10−x )⩾2040, ∴x ⩾1,又∵x ⩽2.5,x 取非负整数, ∴x 为1,2.当x =1时,购买资金为:12×1+10×9=102(万元), 当x =2时,购买资金为:12×2+10×8=104(万元),∴为了节约资金,应选购A 型设备1台,B 型设备9台. 23.【解析】(1)1350101212871⨯=+++++7辆,停留时间为10s ~12s 的车辆的平均停留时间为:(10+12)÷2=11s . (2)车辆在A 斑马线前停留时间约为:()11103125107897111 4.7250⨯+⨯+⨯+⨯+⨯+⨯=, 车辆在B 斑马线前停留时间为:()11332510713112 6.4540⨯+⨯+⨯+⨯+⨯=, 4.72 6.45,<Q因此移动红绿灯放置B 处斑马线上较为合适. 24.【解析】(1)①∵OA =OC ,∴∠A =∠ACO .∵∠PCB =∠A ,∴∠ACO =∠PC B .∵AB 是⊙O 的直径,∴∠ACO +∠OCB =90°,∴∠PCB +∠OCB =90°,即OC ⊥CP . ∵OC 是⊙O 的半径,∴PC 是⊙O 的切线. ②∵CP =CA ,∴∠P =∠A ,∴∠COB =2∠A =2∠P . ∵∠OCP =90°,∴∠P =30°.∵OC =OA =2,∴OP =2OC =4,∴PC (2)连接MA 、M B .∵点M 是弧AB 的中点,∴AM =BM ,∴∠ACM =∠BAM . ∵∠AMC =∠AMN ,∴△AMC ∽△NMA ,∴AM CMNM AM=,∴AM 2=MC •MN . ∵MC •MN =9,∴AM =3,∴BM =AM =3.25.【解析】(Ⅰ)Q 抛物线22y x bx c =-+的顶点在x 轴上,2440b c ∴=-=V ,2c b ∴=,∴抛物线2222()y x bx b x b =-+=-.当0x =时,2222y x bx b b =-+=,∴点A 的纵坐标为2b .(Ⅱ)若2b ≥,则当0x =时,29y b ==最大,3b ∴=或3(b =-舍去);若02b <<,则当4x =时,2(4)9y b =-=最大,1b ∴=或7(b =舍去).综上所述,1b =或3b =.(Ⅲ())ⅰ作BD x ⊥轴于点D ,如图所示.90APB o Q ∠=,90BDP ∠=o ,90APO BPD ∴∠+∠=o ,90PBD BPD ∠+∠=o ,APO PBD ∴∠=∠.又90AOP PDB ∠=∠=o Q ,AOP ∴V ∽PDB V ,AO OPPD DB∴=, AO DB PD OP ∴⋅=⋅.设点B 的坐标为()2(,)t t b -,(),0P b Q ,()20,A b ,2AO b ∴=,OP b =,PD t b =-,2()DB t b =-,()22()b t b t b b ∴⋅-=-⋅.0b ≠Q ,t b ≠, ()0t b b ∴-⋅≠,()1b t b ∴-=,即21bt b -=.由()20,A b,()2(,)B t t b -,可得直线AB 解析式为()22y t b x b =-+.当x b =时,()2221y t b x b bt b =-+=-=,∴点C 的坐标为(),1b ,PC ∴为定长1.()21bt b -=Q ⅱ,0b >,1t b b∴=+,11111222ABP S PC OD b b ⎛⎫∴=⋅=+≥⨯= ⎪⎝⎭V , APB ∴V 面积的最小值为1.。
2020广东中考数学终极押题卷(含答案)
2020广东中考数学终极押题卷说明:1.全卷共4页,满分为120分,考试用时为90分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的准考证号、姓名、考场号、座位号.用2B铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.|-3|=( )A.3B.-3C.13D.-132.小明同学在某搜索引擎中输入“新型冠状病毒”,搜索到与之相关的结果条数为608 000,这个数用科学记数法表示为( )A.60.8×104B.6.08×105C.0.608×106D.6.08×1073.如图所示的几何体是由六个大小相同的小正方体组合而成的,它的俯视图为( )A B C D4.下面计算中,正确的是( )A.3a-2a=1B.2a2+4a2=6a4C.(x3)2=x5D.x8÷x2=x65.下列图形中,既是轴对称图形又是中心对称图形的是( )A.正三角形B.正五边形C.等腰直角三角形D.矩形6.√16的平方根是( )A.±4B.4C.±2D.27.在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数 2 3 9 8 5 3这些男生跳远成绩的众数、中位数分别是( )A.2.10,2.05B.2.10,2.10C.2.05,2.10D.2.05,2.058.点O,A,B,C 在数轴上的位置如图所示,O 为原点,AC=1,OA=OB.若点C 所表示的数为a,则点B 所表示的数为( )A.-(a+1)B.-(a-1)C.a+1D.a-1 9.已知α,β是一元二次方程x 2-6x+5=0的两个实数根,则α+β-αβ的值是( )A.3B.1C.-1D.-310.如图,在▱ABCD 中,CD=2AD,BE⊥AD 于点E,F 为DC 的中点,连接EF,BF,延长EF 交BC 的延长线于G.有下列结论:①∠ABC=2∠ABF;②EF=BF;③S 四边形DEBC =2S △EFB .其中结论正确的共有( )A.0个B.1个C.2个D.3个二、填空题(本大题共7小题,每小题4分,共28分)11.计算:|√83-1|-(12)-1= .12.如图,E 为△ABC 边CA 延长线上一点,过点E 作ED∥BC.若∠BAC=70°,∠CED=50°,则∠B= .第12题图第13题图第15题图13.如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的边长是.14.已知2a-3b=7,则8+6b-4a= .15.如图,一轮船在M处观测灯塔P位于南偏西30°方向,该轮船沿正南方向以15海里/时的速度匀速航行2小时后到达N处,再观测灯塔P位于南偏西60°方向,若该轮船继续向南航行至灯塔P最近的位置T处,此时轮船与灯塔之间的距离PT为海里(结果保留根号).16.用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品.要生产甲种产品37件,乙种产品18件,则恰好需用A,B两种型号的钢板共块.17.如图,已知正方形的边长为a,将此正方形按照下面的方法进行剪拼:第一次,先沿正方形的对边中点连线剪开,然后对接为一个长方形,则此长方形的周长为4a+a(可以不合并);第二次,再沿长方形的对边(长方形的宽)中点连线剪开,对接为新的长方形;如此继续下去,第6次得到的长方形的周长为.三、解答题(一)(本大题共3小题,每小题6分,共18分)18.解不等式组:{4(x+1)≤7x+13, x-4<x-83.。
数学-(河北卷)2020年中考考前最后一卷(全解全析)
∵第4,5个数据都是2,则其平均数为:2;
∴女生进球数的中位数为:2,
(2)样本中优秀率为: ,
故全校有女生1200人,“优秀”等级的女生为:1200× =450(人),
答:“优秀”等级的女生约为450人.
∴DM=DE,
又∵AD是公共边,∴△ADM≌△ADE,
∴∠1=∠2,即AD平分∠BAC,
故选C.
8.【答案】B
【解析】∵函数 的图象在其象限内y的值随x值的增大而增大,
∴m+2<0,
解得m<–2.
故选B.
9.【答案】D
【解析】∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10.∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.
故选A.
5.【答案】D
【解析】解不等式①得: ,
解不等式②得: ,
将两不等式解集表示在数轴上如下:
故选D.
6.【答案】B
【解析】设方程的两根为x1,x2,
根据题意得x1+x2=0,
所以a2–2a=0,解得a=0或a=2,
当a=2时,方程化为x2+1=0,△=–4<0,故a=2舍去,
所以a的值为0.
故选B.
序号为③的矩形的宽为3,长为5,5=2+3,
序号为④的矩形的宽为5,长为8,8=3+5,
序号为⑤的矩形的宽为8,长为13,13=5+8,
2020年最新中考数学考前最后一卷解析版 (4)
2020年中考一轮复习诊断性测试卷数学测试卷(解析版)一、单选题1.下列运算不正确的是A. B.C. D.答案:B解析:B【解析】,B是错的,A、C、D运算是正确的,故选B2.某班第一小组共有6名同学,某次数学考试的成绩分别为(单位:分):72,80,77,81,89,81,则这组数据的众数和中位数分别是()A.81分、80.5分B.89分、80.5分C.81分、81分D.89分、81分答案:A解析:A【解析】【分析】根据众数和中位数的概念求解.【详解】将数据重新排列为72,77,80,81,81,89,所以这组数据的众数为81分,中位数为80812=80.5(分),故选:A.【点睛】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3.如图,矩形OABC的顶点A在y轴上,C在x轴上,双曲线y=与AB交于点D,与BC 交于点E,DF⊥x轴于点F,EG⊥y轴于点G,交DF于点H.若矩形OGHF和矩形HDBE的面积分别是1和2,则k的值为()A. B.+1 C. D.2答案:B解析:B【解析】试题解析:设D(t,),∵矩形OGHF的面积为1,DF⊥x轴于点F,∴HF=,而EG⊥y轴于点G,∴E点的纵坐标为,当y=时,=,解得x=kt,∴E(kt,),∵矩形HDBE的面积为2,∴(kt-t)•(-)=2,整理得(k-1)2=2,而k>0,∴k=+1.故选B.考点:反比例函数系数k的几何意义.4.如图①,在矩形 ABCD 中,动点 E 从点 A 出发,沿 AB →BC 方向运动,当点 E 到达点 C 时 停止运动.过点 E 作 FE ⊥AE ,交 CD 于 F 点,设点 E 运动路程为 x ,FC =y ,图②表示 y 与 x 的函数关系的大致图像,则矩形 ABCD 的面积是( )A .235B .5C .6D .254答案:B解析:B【解析】解:若点E 在BC 上时,如图.∵∠EFC +∠AEB =90°,∠FEC +∠EFC =90°,∴∠CFE =∠AEB .∵在△CFE 和△BEA 中,90CFE AEB C B ∠=∠⎧⎨∠=∠=︒⎩,∴△CFE ∽△BEA ,由二次函数图象对称性可得E 在BC 中点时,CF 有最大值,此时CF BE =CE AB ,BE =CE =x ﹣52,即525522x yx -=-,∴y =22552x ()-,当y =25时,代入方程式解得:x 1=32(舍去),x 2=72,∴BE =CE =1,∴BC =2,AB =52,∴矩形ABCD 的面积为2×52=5.故选B .点睛:本题是二次函数综合分析题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E 为BC 中点是解题的关键.5.下列计算结果是x 5的为( )A .x 10÷x 2B .x 6﹣xC .x 2•x 3D .(x 3)2答案:C解析:C【解析】解:A .x 10÷x 2=x 8,不符合题意;B.x6﹣x不能进一步计算,不符合题意;C.x2x3=x5,符合题意;D.(x3)2=x6,不符合题意.故选C.6.将一把直尺与一块三角板如图放置,若∠1=60°,则∠2为()A.150°B.120°C.100°D.60°答案:A解析:A【解析】【分析】根据三角形内角和180°,可得∠3=30°,利用邻补角求出∠4=150°,根据两直线平行,同位角相等,可得∠2=∠4=150°.【详解】解:如图,∵∠1=60°,∴∠3=180°-90°-∠1=30°,∴∠4=180°-∠3=150°,由直尺两对边平行,∴∠2=∠4=150°.故答案为:A.【点睛】此题考查三角形内角和定理和平行线的性质,解题关键在于利用平行线的性质求出∠4 7.方程=0的解为()A.﹣2 B.2 C.5 D.无解答案:D解析:D【解析】【分析】根据解方程的步骤进行作答.【详解】 由题意,得;两边同时乘以(x -5),得到2-x +3=0;所以,x =5.由原式可知,x,矛盾.所以无解.因此,答案选D.【点睛】本题考查了解方程的步骤,熟练掌握解方程的步骤是本题解题关键.8.如图,在矩形ABCD 中,E 、F 分别是CD 、BC 上的点,若90AEF ∠=︒,则一定有( )A .ADE AEF ∆∆∽B .ECF AEF ∆∆∽C .ADE ECF ∆∆∽D .ECF AEF ∆∆∽答案:C解析:C【解析】【分析】 根据矩形的性质及相似三角形的判定方法,从而求得图中存在的相似三角形即可.【详解】解:∵在矩形ABCD 中,∴∠D =∠C =90°,∵∠AEF =90°∴∠DEA +∠CEF =90°,∠DEA +∠DAE =90°∴∠DAE =∠CEF∴△ADE ∽△ECF故选:C .【点睛】此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.9.若数m使关于x的不等式组313222xm x+⎧-≤⎪⎨⎪-≤-⎩有解且至多有3个整数解,且使关于y的分式方程3212422y my y-=+--的解满足-3≤y≤4,则满足条件的所有整数m的个数是()A.6B.5C.4D.3答案:C解析:C【点拨】根据不等式组求出a的范围,然后再根据分式方程求出m的范围,从而确定的m的可能值.【详解】解:由不等式组可知:x≤5且x≥22m+,∵有解且至多有3个整数解,∴2<22m+≤5,∴2<m≤8由分式方程可知:y=m-3,将y=m-3代入y-2≠0,∴m≠5,∵-3≤y≤4,∴-3≤m-3≤4,∵m是整数,∴0≤m≤7,综上,2<m≤7,∴所有满足条件的整数m有:3、4、6、7,4个,故选:C.【小结】考查学生的计算能力以及推理能,解题的关键是根据不等式组以及分式方程求出m的范围.10.如图,AC是⊙O的直径,∠A=30°,BD是⊙O的切线,C为切点,AB与⊙O相交于点E,OC=CD,BC=2,OD与⊙O相交于点F,则弧EF的长为()。
2020广东中考最后押题一卷(数学)试卷
第 24 题图
25.如图,抛物线 y ax2 2ax 2 3 与 x 轴相交于点 A, B 两点,与 y 轴相交于点 C ,连接 BC ,已
知 tan CBO 3 ,抛物线的对称轴交 x 轴于点 D . 2
(1)求该抛物线的解析式;
(2)连接 CD ,能否在抛物线上找到一点 M ,使得 MCD 30 ,若有求 M 点的坐标,若没有说
(2)求∠CAD 的度数.
20.为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计.统计
发现班上贫困家庭学生人数分别有 2 名,3 名,4 名,5 名,6 名,共五种情况.并将其制成了如
下两幅不完整的统计图,请回答下列问题:
(1)求该校一共有班级________个;在扇形统计图中,贫困家庭学生人数有 5 名的班级所对应扇
11.分式 2x 有意义,则 x 的取值范围是
.
1 x
12.分解因式 3x2 12 =
.
13.从 1 , 2 ,π,0, -3 这五个数中随机抽取一个数,恰好是无理数的概率是
3
14.关于 x 的一元二次方程(a﹣2)x2﹣2x﹣4+a2=0 有一个根是 0,则 a 的值为
. .
15.如图,矩形 ABCD 中,AC、BD 交于点 O,M、N 分别为 BC、OC 的中点.若 MN=4,则 AC 的长
为
.
16. 中国清代数学著作《御制数理精蕴》中有这样一道题:“马四匹、牛六头,共价四十八两
(“两”是我国古代货币单位);马三匹、牛五头,共价三十八两.则马每匹价
两.
17.如图,在⊙O 中,半径 OA⊥OB,过点 OA 的中点 C 作 FD∥OB 交⊙O 于 D、F 两点,且 CD=
2020年广东省中考考前最后冲刺卷数学试题
2020年广东中考数学考前最后冲刺卷(时间:90分钟满分:120分)一、选择题(本大题10小题,每小题3分,共30分).1.下列实数为无理数的是( )A.5-B. 72C.0D. π 2.某种计算机完成一次基本运算的时间约为1纳秒(ns),已知10.000000001ns s =,该计算机15次基本运算,所用时间用科学记数法表示为( )A. 91.510s -⨯B. 91510s -⨯C. 81.510s -⨯D. 81510s -⨯3.一个由圆柱和长方体组成的几何体如图1水平放置,它的俯视图是( )A. B.C.D.4.下列运算正确的是( ) A. 224x x x += B. 326x x x ⋅= C. 42222x x x ÷= D ()2236x x = 5.下列选项中,是中心对称图形的是( )A. B.C.D 6.有一组数据:1,3,3,6,7,8,这组数据的中位数是( )A.3B.3.5C.4D.4.57.不等式组 2x 31114x x >-⎧⎪⎨≤⎪⎩的解集在数轴上表示正确的是( ) A. B.C.D.8.若30a -+=,则a+b 的值是( ) A.2 B.1 C.0 D.-19.五月底,全体九年级师生共422人参加社会实践活动,当时预备了49座和37座两种客10辆,刚好坐满.设49座客车有x 辆,37座客车有y 辆,根据题意可列出方程组( )A. 104937422x y x y +=⎧⎨+=⎩, B 103749422x y x y +=⎧⎨+=⎩ C 422493710x y x y +=⎧⎨+=⎩. D.422374910x y x y +=⎧⎨+=⎩10.如图2,过点()11,0A 作x 轴的垂线,交直线y=2x 于点1B ;点2A 与点O 关于直线1A B 对称;过点()22,0A 作x 轴的垂线,交直线y=2x 于点2B ;点3A 与点O 关于直线22A B 对称;过点3A 作x 轴的垂线,交直线y=2x 于点3B ;按此规律作下去,则点n B 的坐标为( )A. ()12,2n n -B. ()12,2n n + C ()12,2n n + D. ()12,2n n -二、填空题11.计算:(201|3|2ππ-⎛⎫-+-= ⎪⎝⎭ ____________;12.如图 3.E 为∠ABC 边CA 延长线上一点,过点E 作ED//BC.若∠BAC=70°.∠CED=50°则B ∠=______________;13.如图4,AB 是O 的直径,点C,D 在圆上,∠ADC=65°,则∠ABC=_____________度14.如图5,在矩形纸片ABCD 中,已知AD=8,AB=6,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE,则EF 的长为____________________;15.如图6是一个测量工件内槽宽的工具,点0既是A'B 的中点,也是AB 的中点,若测得AB=5 cm,则该内槽A'B'的宽为_________________cm.16.A,B 两市相距200km,甲车从A 市到B 市,乙车从B 市到A 市,两车同时出发,已知甲车速度比乙车速度快15km/h,且甲车比乙车早半小时到达目的地,若设乙车的速度是xkm/h,则根据题意,可列方程为________________________;17.如图7是由同样大小的三角形按一定规律排列形成的,其中第①个图形有3个三角形,第②个图形有6个三角形,第③个图形有11个三角形,第4个图形有18个三角形......按此规律,则第7个图形中三角形的个数为________________;三、解答题(一)(本大题3小题,每小题6分,共18分)8.计算:222cos 45|1-︒++19.先化简,再求值221b a a b a b⎛⎫-÷ ⎪+-⎝⎭,其中1a b ==. 四、解答题(二)(本大题3小题,每小题8分,共24分)20.如图在锐角三角形ABC 中,AB=2cm,AC=3cm(1)尺规作图:作BC 边的垂直平分线分别交AC,BC 于点D,E;(保留作图痕述,不要求写作法)(2)在(1)的条件下,连接BD,求△ABD 的周长四、解答题(二)(本大题3小题,每小题8分,共24分21.“凑够一拨人就走,管它红灯绿灯。
2020年江西省中考考前最后一卷数学试卷及答案解析
2020年江西省中考考前最后一卷数学试卷
一.选择题(共6小题,满分18分,每小题3分)
1.﹣2的相反数是()
A.2B.﹣2C .D .﹣
2.已知地球上海洋面积约为316 000 000km2,数据316 000 000用科学记数法可表示为()A.3.16×109B.3.16×107C.3.16×108D.3.16×106
3.下列图形中,不是轴对称图形的是()
A .
B .
C .
D .
4.下列运算中正确的是()
A.(x3)2=x5B.2a﹣5•a3=2a8
C .D.6x3÷(﹣3x2)=2x
5.一元二次方程x2﹣3x+1=0的两个根为x1,x2,则x12+3x2+x1x2﹣2的值是()A.10B.9C.8D.7
6.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形
B.平行四边形
C.对角线互相垂直的四边形
D.对角线相等的四边形
二.填空题(共6小题,满分18分,每小题3分)
7.函数y =+中,自变量x的取值范围是.
8.等腰三角形一腰上的高与另一腰的夹角为30度,则它的底角的度数为.
9.计算:﹣=.
10.如图,正三棱柱的底面周长为15,截去一个底面周长为6的正三棱柱,所得几何体的俯视图的周长是,面积是.
第1 页共29 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020中考数学最后冲刺题
1.如图,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +8与x 轴相交于点A (﹣2,0)和点B (4,0),与y 轴相交于点C ,顶点为点P .点D (0,4)在OC 上,联结BC 、BD .
(1)求抛物线的表达式并直接
写出点P 的坐标;
(2)点E 为第一象限内抛物线上一点,如果△COE 与△BCD 的面积相等,求点E
的坐标;
(3)点Q 在抛物线对称轴上,如果△BCD ∽△CPQ ,求点Q 的坐标.
2.如图,抛物线y =ax 2+bx +6经过点A (2,0),B (4,0)两点,与x 轴交于点C .点D 是抛物线上一个动点,设点D 的横坐标为m (1<m <4).连接AC ,BC ,DB ,DC .(1)求抛物线的函数表达式:(2)当△BCD 的面积等于△
AOC 的面积的4
3
时,求m
的值;
(3)在(2)的条件下,若点M
是x 轴上一动点,点N 是
抛物线上一动点,试判断是否存在这样的点M .使
得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标:若不存在,请说明理由.
A O
B C
D x
y
y C A O B P
D
x
3.如图,在平面直角坐标系xOy 中,O 为坐标原点,点A (4,0),点B (0,4),△ABO 的中线AC 与y 轴交于点C ,且OM 经过O ,A ,C 三点.
(1)求圆心M 的坐标;
(2)若直线AD 与OM 相切
于点A ,交y 轴于点D ,求直线AD 的函数表达
式;(3)在过点B 且以圆心M
为顶点的抛物线上有一动点P .过点P 作PE ∥y 轴,交直线AD 于
点E .若以PE 为半径的OP 与直线AD 相交于
另一点F.当EF =45时,求点P 的坐标.
4.如图,抛物线y=2
1x 2
+bx +c 与y 轴交于点C (0,﹣4),
与x 轴交于点A ,B ,且B 点的坐标为(2,0)(1)求该抛物线的解析式.(2)若点P 是AB 上的
一动点,过点P 作PE ∥AC ,交BC 于E ,连接CP ,求△PCE 面积的最大值(3)若点D 为OA 的中点,点M 是线段AC
上一点,且△OMD
为等腰三角形,求M
点的坐标.
A B
C
O D
E
F P M y
x
5.如图,在平面直角坐标系中,已知抛物线y =x 2+3x -4交x 轴于A ,B 两点,交y 轴于点C,抛物线上一点D 的横坐标为-5.
(1)求直线BD 的解析式;
(2)若点E 是线段BD 上的动点(不与点B ,D 重合),过点E 作轴的垂线交
抛物线于点F ,交x 轴于点G .连接BF 、DF ,
当点E 运动到什么位置时,△BDF 的面积最大?求出此时点E
的坐标,并求出△BDF 的最大面积;(3)若点E 是直线BD 上
的动点,(2)中的其他
条件不变,在抛物线上是否存在一点F ,
使△DEF 为直角三角形?若存在,请求出点F 的坐标;若不存在,请说明理由.
6.如图,在平面直角坐标系xOy 中,直线y =kx +n 与x 轴交于点A ,与y 轴交于点B .已知抛物线y =-x 2+bx +c 经过A (3,0),B (0,3)两点.(1)求此抛物线的解
析式和直线AB 的解析式;(2)如图①,动点E 从
O 点出发沿着OA 方向以1个单位/秒的
速度向终点A 匀速运动,同时,动点F 从A 点出发,沿看AB
方向以2个单位/秒的速度向终点B 匀速运动,当E ,F 中任意一点到达终点时另点也随之停止运动,连接EF ,设运动时间为1秒,当t 为何值时,△AEF 为等腰直角三角形?(3)如图②,取一根橡
皮筋,两端点分别固定在A 、B 处,用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 与A 、B 两点构成无数个三角形,在这些三角形中,是
否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P 的坐标;如果不存在,请简要说明理由.
x y A G O B
D
E
F C y
x A O B F
E
y
x A B P O
7.已知抛物线y=ax2-4x+3(a≠0)与x轴交于点A(1,0)和
点B,与y轴交于点C.
(1)求抛物线的解析式;
(2)若点P为抛物线上一点,
当PB=PC时,求点P的坐
标;
(3)若点M为线段BC上的点
(不含端点),且△MAB与△
ABC相似,求点M的坐标.8.在平面直角坐标系中,O为坐标原点,抛物线y=ax2-2ax-5交x轴的负半轴于点A,交x轴的正半轴于点B,交y轴的负半轴于点C,且AB=8.
(1)如图1,求a的值;
(2)如图2,点D在第一.象限的抛
物线上,连接AD,过点D作DM
∥y轴,交直线BC于点M,连
接AM、BD,AM与BD交于点
N,若S△ABN=S△DMN,求点D的坐
标及tan∠DAB的值;
(3)在(2)的条件下,点P在第一象
限的抛物线上,过点P作AD的
垂线,交x轴于点F,点E在x
轴上(点E在点F的左侧),EF=
15,点G在直线FP上,连接EP、
OG.若EP=OG,∠PEF+∠G=45
°,求点P的坐标.
x
a
y
a
A
a
B
a
C
a
x
a
y
a
A
a
B
a
C
a
O
a
O
a
D
a
M
a
N
a
C
A a
B a x a
y
a O
9.如图,直线y =﹣2x +c 交x 轴于点A (3,0),交y 轴于点B ,抛物线y =﹣x 2+bx +c 经过点A ,B .(1)求抛物线的解析式;(2)点M (m ,0)是线段OA 上一动点(点M 不与点O ,A 重合),过点M 作y 轴的平行线,交直线AB
于点P ,交抛物线于点N ,若NP =2
5
AP ,求m 的值;
(3)若抛物线上存在点Q ,使∠QBA =45°,请直接写出相应的点Q 的坐标.
10.如图,抛物线y =ax 2+bx ﹣3过A (1,0),B (﹣3,0),直线AD 交抛物线于点D ,点D 的横坐标为﹣2,点P (m ,n )是线段AD 上的动点.(1)求直线AD 及抛物线的解析式;(2)过点P 的直线垂直于x 轴,
交抛物线于点Q ,求线段PQ
的长度l 与m 的关系式,m
为何值时,PQ 最长?(3)在平面内是否存在整点(横、纵坐标都为整数)R ,使得P ,Q ,D ,R 为顶点的四边形是
平行四边形?若存在,直接
写出点R 的坐标;若不存在,说明理由.
A B
C D
P Q O x y x
y A
B
M
P
N O。