河北省平泉县第四中学七年级数学上册 3.1一元一次方程(第2课时)合并同类项导学案(无答案)(新版)

合集下载

人教版初中数学七年级上册教学课件 第三章 一元一次方程 解一元一次方程合并同类项与移项 (第2课时)

人教版初中数学七年级上册教学课件 第三章 一元一次方程 解一元一次方程合并同类项与移项 (第2课时)

探究新知 做一做
下列移项正确的是 ( C ) A. 由2+x=8,得到x=8+2 B. 由5x=-8+x,得到5x+x= -8 C. 由4x=2x+1,得到4x-2x=1 D. 由5x-3=0,得到5x=-3
移项一定 要变号.
探究新知
素养考点 1
例1 解下列方程:
(1)3x 7 32 2x
合并同类项,得
你能说说由方程③到方
-3x = -21. 系数化为1,得
程④的变形过程中有什 么变化吗?
x = 7.
探究新知
移项的定义
一般地,把方程中的某些项改变符号后,从方程 的一边移到另一边,这种变形叫做移项.
移项的依据及注意事项 移项实际上是利用等式的性质1. 注意事项:移项一定要变号.
探究新知
5×21+45=150(元), 答:买羊人数为21人,羊价为150元.
课堂检测
基础巩固题
1.下列变形属于移项且正确的是( B ) A.由2x-3y+5=0,得5-3y+2x=0 B.由3x-2=5x+1,得3x-5x=1+2 C.由2x-5=7x+1,得2x+7x=1-5 D.由3x-5=-3x,得-3x-5-3x=0
探究新知
等量关系
调动前:阅B28题的教师人数=3×阅A18题的教师人数
调动后:阅B28题的教师人数-12=原阅A18题的教师人数÷2+3
探究新知
解:设原有教师x人阅A18题,则原有教师3x人阅B28题, 依题意,得 3x 12 1 x 3,
2
移项,得 3x 1 x 3 12,
2
合并同类项,得 5 x 15,
试一试
下列方程的变形,属于移项的是( D )
A.由 -3x=24得x=-8 B.由 3x+6-2x=8 得 3x-2x+6=8 C.由4x+5=0 得-4x-5=0 D.由2x+1=0得 2x=-1

2020年七年级数学上册 第3章 一元一次方程 3.2 解一元一次方程(一)—合并同类项与移项 第1课时 合并同类

2020年七年级数学上册 第3章 一元一次方程 3.2 解一元一次方程(一)—合并同类项与移项 第1课时 合并同类

1.下列各方程合并同类项不正确的是( C )
A.由3x-2x=4,合并同类项,得x=4
B.由2x-3x=3,合并同类项,得-x=3
C.由5x-2x+3x=-10-2,合并同类项,得6x=-8.
D.由-7x+2x=5,合并同类项,得-5x=5
2.下列解为x=4方程是( B )
A.7x-3x=-4
B.x+x=5+3
7.若关于x的方程2mx-3m=3x+2的解是8,则m的值为( A )
A.2
B.8
C.-2
D.-8
8.关于x的方程3-x=2a与方程x+3x=28的解相同,则a的值为( B )
A.2
B.-2
C.5
D.-5
9. (长沙中考)中国古代数学著作《算法统宗》中有这样一段记载:“三百
七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大
C.x=-1+3
D.-2x=8
3.挖一条长1210m的水渠,由甲、乙两队从两头同时施工.甲队每天挖
130m,乙队每天挖90m,需几天才能挖好?设需用x天才能挖好,则所列方
程正确的是( A )
A.130x+90x=1210
B.130+90x=1210
C.130x+90=1210
D.(130-90)x=1210
除以a
,从而得到x=
b a
.
自我诊断1. 方程2x+x=-6的解是( D )
A.x=0
B.x=1
C.x=2
D.x=-2
利用总分关系列方程
总量=各部分量的 和 .
自我诊断2. 若三个连续奇数的和是15,则它们的积为( A )
A.105
B.15
C.35
D.75

河北省平泉县第四中学七年级数学上册 2.2.2《整式的加减》合并同类项课件 (新版)新人教版

河北省平泉县第四中学七年级数学上册 2.2.2《整式的加减》合并同类项课件 (新版)新人教版
(2)某商店原有5袋大米,每袋大米为x千克,上午卖出3袋, 下午又购进同样包装的大米4袋,进货后这个商店有大米多少千克?
解:(1)把下降的水位变化量记为负,上升的水位变化量 量记为正,第一天水位的变化量为 -2a cm ,第二天水位 的变化量为 0.5a cm .
两天水位的总变化量为
-2a+0.5a =(-2+0.5)a=-1.5a(cm)
知识回顾: 1.整式的概念
2.单项式,单项式的系数,次数
3.多项式,多项式的项,多项式 的次数,
指出下列各式哪些是单项式?哪些是多项式?
5x2y, 0, -2x2y, 2xy2,x, 4x2y, 2x+y, 2xy2 x3 y x2 y2 7 2 y
1.下列三个多项式有哪些单项式组成? 2.每个多项式中的单项式有什么共同特点?
(1)3x2+2x2 (2)3ab2-4ab2 (3)4x2+2x+7+3x-8x2- 2
(一) 同类项
1. 所含字母相同; 2. 相同字母的指数也分别相同; (满足这样条件)的项,叫同类项。
探究新知:
1、同类项的概念:
像100t与252t,3x2与2x2,3ab2与 4ab2这样,所含字母相同,并且相 同字母的指数也相同的项,叫做同 类项。
例1:合并下列各式的同类项:
(1)xy2 1 xy2;
(2) 3x2y+2x2y+3xy2 2xy2;
5
(3)4a2 +3b2 +2ab 4a2 4b2.
解: (1)
xy2 1 xy2 5
原式 (1 1)xy2 5
4 xy 5
解:(2) 3x2 y+2x2 y+3xy2 2xy2 原式 ( 3+2)x2 y+(3 2)xy2 x2 y xy2

202年初中数学七年级上册第二单元一元一次方程03 一元一次方程(3)解法(一)移项合并同类项

202年初中数学七年级上册第二单元一元一次方程03 一元一次方程(3)解法(一)移项合并同类项

3.2解一元一次方程(一)合并同项与移项一、解一元一次方程的方法1、合并同类项2、移项3、去括号去分母二、移项的定义:把等式一边的某项变号后移到另一边,叫做移项三、移项的性质:把某一项移到式子的另一边,要改变这一项的符号a+b=c → a=c-ba-b=c → a=c+b四、去括号去分母(1)如果括号前的符号是正号,去括号后原括号内各项的符号与原来的符号相同,+(x-3)=x-3(2)如果括号前的符号是负号,去括号后原括号内各项的符号与原来的符号相反。

-(x-3)=-x+3(3)(3)等式两边乘同一个数,结果仍相等。

五、解一元一次方程的一般步骤包括:去分母、去括号、移项、合并同类项、系数化为1概念题一、解一元一次方程的方法1、2、3、二、移项的定义:把等式叫做移项三、移项的性质:把某一项移到式子的另一边,要a+b=c → a=a-b=c → a=四、去括号去分母(1)如果括号前的符号是正号,去括号后原括号内各项的符号与原来的符号号,+(x-3)=(2)如果括号前的符号是负号,去括号后原括号内各项的符号与原来的符号号。

-(x-3)=(3)等式两边乘同一个数,结果仍。

五、解一元一次方程的一般步骤包括:、、、、。

3.2.1 解法(一)合并同类项一、合并下列各式中可以合并的项:(1)2x+3x-4x= (2)3y-2y+y=(3)8x+7+2x= (4)7x-4.5x=(5)15x+4x-10x= (6)-6ab+8ab+ab=(7) -p2-p2-p2-p2= (8) m-n2+m-n2=(9) 4(a+b)+(a+b)-7(a+b)=(10)2(x+y)2-7(x+y)2+9(x+y)2=二、完成下面的解题过程:(1)解方程-3x+0.5x=10. (2)解方程3x-4x=-25-20.解:合并同类项,得 . 解:合并同类项,得 .两边,得两边,得∴=x;x;∴=(3)9x—5x=8 (4)4x-6x-x =-15解:合并同类项得:=解:合并同类项得:=两边,得两边,得∴=x;x;∴=(5) 3+-6-xxx(6)4x+3-3x-2=0x-=5.1⨯4315-7⨯5.2解:合并同类项得:=解:合并同类项得:=两边,得两边,得∴=x;x;∴=三、用合并同类法解下列方程:(1)6x —x =4 (2)-4x +6x -0.5x =-0.3 (3)9x -5x =8(4)4x -6x -x =-15 (5)2y -25y =6-8 (6)14x +12x =3(7)3(x -7)+5(x -4)=15 (8)7232=+x x (9)314125=-x x(10) 21)15(51=+x (11)3x -1.3x +5x -2.7x =-12×3-6+43.2.2 解法(二)移项把某一项移到式子的另一边,要 一、选择题1.下列变形中属于移项的是( )A.由572x y -=,得275y x --+ B.由634x x -=+,得634x x -=+ C.由85x x -=-,得58x x --=-- D.由931x x +=-,得319x x -=+ 2.解方程6x +1=-4,移项正确的是( )A.6x =4-1B.-6x =-4-1C.6x =1+4D.6x =-4-1 3.解方程-3x +5=2x -1, 移项正确的是( )A.3x -2x =-1+5B.-3x -2x =5-1C.3x -2x =-1-5D.-3x -2x =-1-5 4.下列变形正确的是( ) A.由3921x +=,得3219x =+B.由125x-=,得110x -=C.由105x -=,得15x = D.由747x +=,得41x +=5.方程3412x x -=+,移项,得3214x x -=+,也可以理解为方程两边同时( ) A.加上()24x -+ B.减去()24x -+ C.加上()24x + D.减去()24x + 二、填空(1)方程3y =2的解是y = ; (2)方程-x =5的解是x = ; (3)方程-8t =-72的解是t = ; (4)方程7x =0的解是x = ; (5)方程34x =-12的解是x = ;三、填空:(只写移项的变化,不用计算结果) (1) x +7=13移项得 ; (2) x -7=13移项得 ; (3) 5+x =-7移项得 ; (4) -5+x =-7移项得 ; (5) 4x =3x -2移项得 ;(6) 4x =2+3x 移项得 ; (7) -2x =-3x +2移项得 ; (8) -2x =-2-3x 移项得 ; (9) 4x +3=0移项得 ; (10) 0=4x +3移项得 .四、将下列方程中含有未知数的项移到方程的左边,•将常数项移方程的右边:(1)6+x =10 (2)5433xx -=(3)7-6x =5-4x (4) 11522x x -=-+五.完成下面的解题过程:(1)解方程6x -7=4x -5. 解:移项,得 . 合并同类项,得 . 系数化为1,得 .(2)解方程3x -4x =-25-20. 解:合并同类项,得 .系数化为1,得 .(3).解方程2x +5=25-8x. 解:移项,得 . 合并同类项,得 . 系数化为1,得 .(5)解方程:5x +2=7x -8解: ,得5x -7x =-8-2. ,得-2x =-10. ,得x =5.3.用先移项后合并的方法解下列方程。

七年级数学上册 第三章 一元一次方程 3.2 解一元一次方程(一)—合并同类项与移项 第2课时 用移

七年级数学上册 第三章 一元一次方程 3.2 解一元一次方程(一)—合并同类项与移项 第2课时 用移

3.2 解一元一次方程(一)——合并同类项与移项情景导入归纳导入类比导入悬念激趣问题1:上节课我们学习了利用等式的基本性质解方程,哪位同学能叙述一下等式的基本性质呢?问题2:上周在我校举办了全市的数学优质课评选,共有50名教师听课,已知男教师比女教师的4倍少5人,请问听课的教师中有多少名男教师,多少名女教师?(要求:只列方程)[说明与建议] 说明:此环节为本节课新知的学习做好铺垫,体会等式的基本性质在解方程的过程中的作用.同时让学生体会到数学来源于生活,激发学生探究新知的兴趣.建议:学生叙述等式的基本性质要准确,问题2可引导学生发散思维,一题多解.通过上节课的学习,同学们知道:可以利用等式的基本性质解方程,比如:5x -2=8.方程两边同时加上2,得5x -2+2=8+2. 也就是5x =10.方程两边同时除以5,得x =2.此种解法过程比较繁琐,还有没有更加简便的方法呢?[说明与建议] 说明:本环节既回顾了上节所学:等式的基本性质及解方程,又引出了新的问题,为下面的学习设置了疑问,激发学生的学习兴趣.建议:此方程可由学生独立完成,回顾上节课解题过程,让学生总结此种方法的不便之处,教师适时提出问题,引出新课.教材母题——教材第89页例3 解下列方程:(1)3x +7=32-2x ;(2)x -3=32+1.【模型建立】利用合并同类项与移项解一元一次方程,要注意以下几点:(1)移项时,从方程的一边移到另一边的项要变号.(2)方程中的项包括它前面的符号.(3)不要把移项和加法交换律混淆.(4)在解方程时,习惯上把含有未知数的项放在等号的左边,不含未知数的项放在等号的右边.【变式变形】1.下列变形符合移项法则的是(C )A .由5+3x =2,得3x =2+5B .由-10x -5=-2x ,得-10x -2x =5C .由7x +9=4x -1,得7x -4x =-1-9D .由5x +2=9,得5x =9+22.一元一次方程t -3=12t 化为t =a 的形式为__t =6__.3.当k =__-12__时,方程5x -k =3x +8的解是x =-2.4.如果5a 3b -m 与a 3b 6m -7是同类项,那么m 的值为( D ) A .-1 B .2 C .-2 D .15.解方程:(1)-9x -4x +8x =-3-7; (2)3x -4=8-x ; (3)-3m +1=9-m ; (4)0.6x -4.1=3.9-1.4x.[答案:(1)x =2 (2)x =3 (3)m =-4 (4)x =4][命题角度1] 用合并同类项解一元一次方程用合并同类项法解一元一次方程的步骤:(1)合并同类项;(2)系数化为1.如素材二变式变形第5(1)题.[命题角度2] 用合并同类项与移项解一元一次方程利用合并同类项与移项解一元一次方程,要注意以下几点:(1)移项时,从方程的一边移到另一边的项要变号.(2)方程中的项包括它前面的符号.(3)不要把移项和加法交换律混淆.(4)在解方程时,习惯上把含有未知数的项放在等号的左边,不含未知数的项放在等号的右边.如素材二变式变形第5(2)(3)(4)题.[命题角度3] 利用一元一次方程解决和差倍分问题解这类题的关键是根据题意找出题目中的和差倍分的等量关系.增长量=原有量×增长率.注意:要恰当地设未知数,这样可以简化运算.题目中等量关系可能不止一个,有时会有多个,要根据具体情况恰当地选择等量关系.解完方程后要检验,避免出现不符合实际的答案.例 如果甲、乙、丙三个村合修一条水渠,计划出工60人,甲村出工人数是乙村出工人数的13,丙村出工人数是乙村出工人数的2倍,求乙村出工人数.解:设乙村出工人数为x ,则甲村出工人数为13x ,丙村出工人数为2x.根据题意,得x +13x +2x =60.合并同类项,得103x =60.系数化为1,得x =18.答:乙村出工的人数为18.[命题角度4] 利用一元一次方程解决盈亏问题 盈亏问题的等量关系:(1)“盈”是分配中的多余情况,“亏”是分配中的缺少情况; (2)一般会给出两个条件:什么情况下会“盈”,盈多少?什么情况下会“亏”,亏多少?这两个条件都可以用来列式子,然后利用相等关系列方程.例 某小组计划做一批“中国结”,如果每人做5个,那么比计划多做了9个;如果每人做4个,那么比计划少做了15个.小组成员共有多少名?解:设小组成员共有x 名,由题意,得5x -9=4x +15. 移项,得5x -4x =15+9. 合并同类项,得x =24. 答:小组成员共有24名.[命题角度5] 利用一元一次方程解决比例分配问题甲∶乙∶丙=a∶b∶c,设其中一份为x ,由已知部分量在总量中的比例,可得表示各部分份量的式子,相等关系:各部分量之和=总量.例 已知a∶b∶c=2∶3∶4,a +b +c =27,求a -2b -2c 的值. 解:因为a∶b∶c=2∶3∶4,所以设a =2m ,b =3m ,c =4m. 代入a +b +c =27,得2m +3m +4m =27, 即9m =27,所以m =3. 所以a =6,b =9,c =12.所以a -2b -2c =6-2×9-2×12=-36. [命题角度6] 利用一元一次方程解决日历问题 日历中的相等关系:(1)日历中同一行中相邻的两数相差1,同一列中相邻的两数相差7.(2)用字母表示相邻三个数时,有多种表示方法,一般设中间一个数为a ,利用相反数的性质,能使计算过程简便.例 [利川校级一模] 图3-2-2是2014年6月的日历表,在日历表上可以用一个方框圈出3×3个位置相邻的数(如11,12,13,18,19,20,25,26,27),若圈出的9个数的和为99,则方框中心的数为( A )图3-2-2A .11B .12C .16D .18P88练习1.解下列方程:(1)5x -2x =9; (2)x 2+3x2=7;(3)-3x +0.5x =10; (4)7x -4.5x =2.5×3-5.[答案] (1)x =3;(2)x =3.5;(3)x =-4;(4)x =1.2.某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元.前年的产值是多少?解:设前年的产值是x 万元,根据题意,得 x +1.5x +1.5x ×2=550. x +1.5x +3x =550.合并同类项得5.5x =550. 系数化为1.得x =100.答:前年的产值是100元. P90练习1.解下列方程:(1)6x -7=4x -5; (2)12x -6=34x .[答案] (1)x =1;(2)x =-24.2.王芳和李丽同时采摘樱桃,王芳平均每小时采摘8 kg ,李丽平均每小时采摘7 kg.采摘结束后王芳从她采摘的樱桃中取出0.25 kg 给了李丽,这时两人的樱桃一样多.她们采摘用了多少时间?解:设她们采摘用了x 小时,根据题意,得8x -0.25=7x +0.25. 8x -7x =0.25+0.25. x =0.5.答:他们采摘用了0.5小时. P91习题3.2 复习巩固1.解下列方程: (1)2x +3x +4x =18; (2)13x -15x +x =-3;(3)2.5y +10y -6y =15-21.5;(4)12b -23b +b =23×6-1. [答案] (1)x =2;(2)x =3;(3)y =-1;(4)b =3.6.2.举例说明解方程时怎样“移项”,你知道这样做的根据吗?[答案] 例如解方程5x +3=2x ,把2x 改变符号后移到方程左边,同时3改变符号移到方程右边,即5x -2x =-3.移项的根据是等式的基本性质.3.解下列方程: (1)x +3x =-16;(2)16y -2.5y -7.5y =5; (3)3x +5=4x +1; (4)9-3y =5y +5.[答案] (1)x =-4;(2)y =56;(3)x =4;(4)y =12.4.用方程解答下列问题:(1)x 的5倍与2的和等于x 的3倍与4的差,求x ; (2)y 与-5的积等于y 与5的和,求y . [答案] (1)x =-3;(2)y =-56.5.小新出生时父亲28岁,现在父亲的年龄是小新年龄的3倍,求现在小新的年龄. 解:设小新现在的年龄是x 岁,根据题意,得 3x -x =28;合并同类项,得2x =28. 系数化为1,得x =14.答:现在小新的年龄是14岁.6.洗衣机厂今年计划生产洗衣机25 500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量比为1∶2∶14,计划生产这三种洗衣机各多少台?[答案] Ⅰ型,Ⅱ型,Ⅲ型各1500台,3000台,21 000台.7.用一根长60 m的绳子围出一个长方形,使它的长是宽的1.5倍,长和宽各应是多少?[答案] 长18 m,宽12 m.综合运用8.随着农业技术的现代化,节水型灌溉得到逐步推广.喷灌和滴灌是比漫灌节水的灌溉方式.灌溉三块同样大的实验田,第一块用漫灌方式,第二块用喷灌方式,第三块用滴灌方式.后两种方式用水量分别是漫灌的25%和15%.(1)设第一块实验田用水x t,则另两块实验田的用水量各如何表示?(2)如果三块实验田共用水420 t,每块实验田各用水多少吨?解:(1)设第一块实验田用水x t,第二块实验田的用水量为0.25x t,第三块实验田用水0.15x t;(2)根据题意,得x+0.25x+0.15x=420,1.4 x=420,x=300.300×0.25=75(t),300×0.15=45(t).答:三块实验田用水各300 t,75 t,45 t.9.某造纸厂为节约木材,大力扩大再生纸的生产.它去年10月生产再生纸2050 t,这比它前年10月再生纸产量的2倍还多150 t.它前年10月生产再生纸多少吨?[答案] 950吨.10.把一根长100 cm的木棍锯成两段,要使其中一段长比另一段长的2倍少5 cm,应该在木棍的哪个位置锯开?[答案] 35 cm处.11.几个人共同种一批树苗,如果每人种10棵,则剩下6棵树苗未种;如果每人种12棵,则缺6棵树苗.求参与种树的人数.[答案] 6人.拓广探索12.在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为30?如果能,这三个数分别是多少?[答案] 3,10,17.13.一个两位数的个位上的数的3倍加1是十位上的数,个位上的数与十位上的数的和等于9,这个两位数是多少?[答案] 72.[当堂检测]第1课时用合并同类项解一元一次方程1.下面由(1)到(2)的变形是合并同类项的是()A.(1)3x-2=6,(2)3x=82B.(1)-12x=8 ,(2)x=-3C.(1)2x–4x –3x = 6 ,(2)-5x = 6D.(1)2(3x+2) =4x,(2)6x+4 =4x2.下面变形正确的是()A. 由3x- x +4x= 8 得:3+4x=8B. 由2x – 4x –x = 8+2 得:-3x =10C. 由– 6x-3x = 5 得: -3x = 5D. 13x +2x -8x = -3 -5 得:7x = -23. 方程4x-m=3的解是x=m,则:m 的值是( )A .m=-1B .m=1C .m=-2D .m=2 4. 小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x 张,根据题意,请你能帮小悦列出方程为__________________(不需要求解). 5. 用合并同类项解方程: (1)4x –7x=4+2×3;(2)4x -2.5x +5x –1.5x=-8-7.参考答案: 1. C 2. B 3. B4. x+5(12-x )=48 ;5. 解:(1)-3x=10,x=310 ; (2)5x=-15,x= -3 .第2课时 用移项、合并同类项解一元一次方程 1.列变形中属于移项的是( )A .由5x -7y =2,得-2=-7y +5xB .由6x -3=x +4,得6x -3=4+xC .由8-x =x -5,得-x -x =-5-8D .由x +9=3x -1,得3x -1=x +92. 在解方程3x+5=-2x-1的过程中,移项正确的是( )C A .3x-2x=-1+5 B .-3x-2x=5-1 C .3x+2x= -1-5 D .-3x-2x=-1-53. 请把下列解方程:5x-2=7x+8的过程补完整. 解:移项得:5x-7x =___ 合并同类项得:___=10 系数化为一得:x =____4. 练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去14元.如果设水性笔的单价为x 元,那么由题意列方程是___________ .5. 解方程:(1)3x+3-4=6x+1 ; (2)12x-4-3x+3=12x+17. 参考答案: 1. C ; 2. C ;3. 8+2 -2x -54. 5(x-2)+3x=145.(1)x =-32 (2)x = -6[能力培优]专题一 利用合并同类项与移项解方程 1.解下列方程(1)12884x x +=-;(2)233234x x +=-.2. 已知方程4x +2m =3x +1和方程3x +2m =6x +1的解相同,求这个相同的解.3.规定新运算符号*的运算过程为b a b a 4131*-=,则求: (1)求5*(-5);(2)解方程2*(2*x )=1*x .4.关于x 的方程kx +2=4x +5 ()4≠k 有正整数解,求满足条件的k 的正整数值.专题二 列方程解和、差、倍分问题5.小明编了这样一道题:我是四月出生的,我的年龄的2倍加上8,正好是我出生那一月的总天数,那么你认为小明是几岁 ( )A.18岁B.11岁C.19岁D.21岁6.某会议厅主席台上方有一个长12.8m 的长条形(矩形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空:字宽:字距=9:6:2,如图所示.根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少?7.(2012·长沙)以“开放崛起,绿色发展”为主题的第七届“中博会”已于2012年5月20日在湖南长沙圆满落幕,作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省外境内投资合作项目多51个. (1)求湖南省签订的境外、省外境内的投资合作项目分别有多少个?(2)若境外、省外境内投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,求在这次“中博会”中,东道主湖南省共引进资金多少亿元? 专题三 列方程解盈余不足问题8.(2012·铜仁)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A.5(x+21-1)=6(x-1) B.5(x+21)=6(x-1)C. 5(x+21-1)=6xD. 5(x+21)=6x9.在“读书月”活动中,学校把一些图书分给某班学生阅读,若每个人分3本,则剩余20本;若每个人分4本,则还缺少25本.这个班有多少名学生?10.某学校组织学生春游,如果租用若干辆45座的客车,则有15个人没有座位,如果租用同数量的60座的客车,则多出1辆,其余车恰好坐满,已知租用45座的客车日租金为每辆车250元,60座的客车日租金为300元,问租用哪种客车更合算,租几辆车?专题四日历中的方程11.如图是某月的日历表,在此日历表上可以用一个长方形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数的和为144,那么最小的一个数为()A.7 B.8 C.9 D.1012日历表中,任意圈出的同一竖列上相邻的3个数的和能否是21?如果能,请求出这三个数,如果不能,请说明理由?13.日历表中,小亮圈出同一竖列上相邻的4个数的和是50,这四天分别是几号?知识要点:1.把等式一边的某项变号后移到另一边,叫做移项.2.移项的目标:将方程中的所有含未知数的项都集中到方程的左边,常数项都集中到方程的右边,便于合并同类项.3.移项的理论依据:移项相当于利用等式性质1,方程两边同时加上或减少同一个数或式.4.“表示同一个量的两个不同的式子相等”是一个基本的相等关系,常用来列方程.方法技巧:1.两个方程同解问题解题思路:如果两个方程中只有一个方程含有参数,那么我们先求出不含参数的方程的解,然后将方程的解代入另一个方程得到一个关于参数的方程,从而求出参数的值;如果两个方程都含有参数,那么我们将参数看作已知数,分别解出这两个方程,然后根据两个解相等,列出一个关于参数的方程,从而求出参数的值.2.日历中同一竖列上相邻的两个日期之间相差7天;日历中同一横行上相邻的两个日期之间相差1天;日历中2×2个数之间交叉相加和相等.3.盈余不足问题常常利用“表示同一个量的两个不同的式子相等”来列方程.4.新定义运算的题目只要将新定义的符号按照题目指明的运算进行就ok,其他的运算不变.答案:1. 解:(1)12884x x +=-, 移项,得:12848x x -=--, 合并同类项,得:412x =-, 系数化为1,得:x =-3.(2)233234x x +=-,移项,得:232334x x -=--,合并同类项,得:1512x -=-, 系数化为1,得:x =60.2. 解:4x +2m =3x +1的解为:x =1-2m , 3x +2m =6x +1的解为:x =213m -, 所以1-2m =213m -, 解得m =12, 把m =12代入x =1-2m ,得x =0. 3. 解析:(1)5*(-5)=115(5)34⨯-⨯-=1235;(2)因为2*x =2134x -,所以2*(2134x -)=2121()3434x --,1*x =1134x -.所以2121()3434x --=1134x -,解得:158-=x .4. 解析:移项,得kx -4x =5-2,合并同类项,得(k -4)x =3, 因为k -4≠0,所以系数化为1,得34x k =-. 因为34k -为正整数,所以k -4=1或者k -4=3.解得75==k k 和. 5. B 解析:设小明x 岁,由题意得2x +8=30, 解得x =11.6. 解析:设边空、字宽、字距分别为9x (cm )、6x (cm )、2x (cm ),则: 9x ×2+6x ×18+2x (18﹣1)=1280, 解得:x =8.答:边空为72cm ,字宽为48cm ,字距为16cm .7. 解析:(1)设湖南省签订的境外投资合作项目有x 个,那么省外境内投资合作项目 (512-x )个,由题意得: 348512=-+x x ,解得133=x ,512-x =215; (2)215×7.5+133×6=2410.5(亿元).答:(1)湖南省签订的境外、省外境内的投资合作项目分别有133个、215个. (2)在这次“中博会”中,东道主湖南省共引进资金2410.5亿元.8.A 解析:如果每隔5米栽1棵,则树苗缺21棵,故道路长为5(x +21-1);如果每隔6米栽1棵,则树苗正好用完,故道路长为6(x -1).因路长相等,所以5(x +21-1)=6(x -1).9. 解析:设这个班有x 名学生,由题意得320425x x +=-,解得45x =, 答:这个班有45名学生.10. 解析:设租45座的客车x 辆,根据题意得:45x+15=60(x-1),解得:x=5,所以租45座的客车的租金应为:250×(5+1)=1500(元), 租60座的客车的租金应为:300×(5-1)=1200(元), 所以租用60座的客车更合算,租4辆.11.B 解析:根据图可以得出,圈出的9个数中最大数与最小数的差为16,设最中间一个数为x ,则其他各数为x ±1,x ±7,x ±8,x ±6.这9个数的和为9x,由题意得9x=144,所以x=16,所以最小的数是16-8=8.12. 解:设圈出的三个数中中间日期为x 号,由题意得: (x-7)+x+(x+7)=21.解得x=7, x-7=7-7=0,x+7=7+7=14.因为日历中最小日期为0号,所以不符合题意,不存在这样的情况. 答:不可能存在三天日期和为21的情况.13. 解:设从前面数第二个日期是x 号,则另三个日期为(x-7)、(x+7)、(x+14)号,由题意得:(x-7)+x+(x+7)+(x+14)=50,解得 x=9, x-7=9-7=2,x+7=9+7=16,x+14=9+14=23. 答:这四天分别是2号,9号,16号,23号.解一元一次方程的“八项注意”革命歌曲<<三大纪律,八项注意>>想必同学们都知道吧,尤其是”八项注意”可以说是耳熟能详了.那么在学习解一元一次方程时,为了避免同学们在解方程时发生错误,特提出以下八个注意点:第一,注意解方程的格式.解方程的每一步都必须是方程,因此同学们在初学时出现的“连等式”或“解原式=”这些解题格式均是错误的。

河北省平泉县第四中学人教版七年级数学上册 3-2 解一元一次方程(一)合并同类项

河北省平泉县第四中学人教版七年级数学上册 3-2 解一元一次方程(一)合并同类项

河北省平泉县第四中学人教版七年级数学上册 3-2 解一元一次方程(一)合并同类项引言在数学学习中,解一元一次方程是一个非常重要的内容。

本篇文档将以河北省平泉县第四中学人教版七年级数学上册的内容为基础,介绍如何解一元一次方程中的合并同类项。

一元一次方程的概念一元一次方程是指只含有一个未知数,并且未知数的最高次幂为1的方程。

一元一次方程的一般形式为:ax+b=0其中,a和b为已知数,a不等于0。

合并同类项的概念合并同类项是指将具有相同未知数的项合并成一个项。

在解一元一次方程中,我们需要先合并同类项,然后再进行移项、消元等操作来求得未知数的值。

合并同类项的步骤合并同类项的步骤如下:1.将具有相同未知数的项放在一起。

2.对于各项中的系数,进行相加或相减。

解题示例现在我们通过一个具体的例子来说明合并同类项的步骤。

例题:合并同类项:3x+2x+5−3x+4解题步骤:1.将具有相同未知数的项放在一起:3x+2x−3x+5+42.对于各项中的系数,进行相加或相减:(3+2−3)x+(5+4)3.化简:2x+9因此,经过合并同类项的步骤,原方程3x+2x+5−3x+4可以简化为2x+ 9。

总结合并同类项是解一元一次方程的第一步,通过将具有相同未知数的项进行合并,可以简化方程,为后续的计算提供便利。

同时,合并同类项也是数学中基本的整理项的操作,掌握了这个方法,对于后续的学习也是非常有帮助的。

希望本文对于学习河北省平泉县第四中学人教版七年级数学上册的解一元一次方程(一)合并同类项的内容有所帮助,如果还有疑问,请及时向老师或同学请教。

七年级数学上册第4章一元一次方程一元一次第2课时合并同类项解一元一次方程课件苏科版

七年级数学上册第4章一元一次方程一元一次第2课时合并同类项解一元一次方程课件苏科版
第四单元 一元一次方程
4.2合并同类项解一元一次方程
课题引入
上节课我们学习了较简情势的一元一次方程的求解,哪位同学能 够说一下解方程的基本思想?
课题引入
复习旧知:
方程的解的定义: 1. 能使方程左右两边相等的未知数的值叫做方程的解.求方程的解的
过程叫做解方程. 2. 等式的两边同时加上或减去同一个数或同一个整式,所得结果仍是
(4)18-5x=7x+12 解:18-12=7x+5x x=0.5
课后作业
1.方程3x+6=2x-8移项后,正确的是( C )
A 3x+2x=6-8
B 3x-2x=-8+6
C 3x-2x=-6-8
D 3x-2x=8-6
2.如果代数式 与 的值互为相反数,则 的值等于( D )
A9 2
C
2 9
B -92
解:方程得x= 1a2,已经a是整数,且0<a<10,要使x是偶数,则a可以等于 1,2,3,4,6,得出的x分别为12、6、4、3、2所以可以找出5个.
【移项的概念】根据等式
解:4x-16=0 4x=16 x=4
解:3x-4=x 3x-x=4 2x=4 x=2
的基本性质方程中的某些 项改变符号后,可以从方 程的一边移到另一边,这 样的变形叫做移项.
大家看一下有什么规律可寻?(请相互讨论)
知识梳理
知识点1:移项
【例】解方程:5x-2=7x+8:
【讲授】此题应先对方程进行移项,然后合并同类项,最后方程两
A.从5+x=12得x=12+5 B.从5x+8=4x得5x-4x=8 C.从10x-2=4-2x得10x+2x=4+2 D.从2x=3x-5得2x-3x=5

人教版数学七年级上册3.1.2解一元一次方程-合并同类项(教案)

人教版数学七年级上册3.1.2解一元一次方程-合并同类项(教案)
-方程移项与合并同类项的结合:在解方程时,学生需要掌握移项的技巧,并将移项后的同类项进行合并,这对于部分学生来说是一个难点。
-解决实际问题时方程的构建:将实际问题抽象为方程时,学生可能会对如何构建方程感到困惑,尤其是涉及到合并同类项的处理。
举例:对于方程2x + 3y = 7和3x - 2y = 5,要求学生先通过移项将方程转换为同类项在一侧,如2x - 3x = 7 - 5,然后合并同类项得到-x,这是学生需要突破的难点。在解决实际问题时,如“小明和小华共有30本书,小明比小华多5本书”,学生需要构建出方程x + (x + 5) = 30,并运用合并同类项的方法求解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解合并同类项的基本概念。合并同类项是指在代数表达式中,将含有相同字母和字母指数的项进行相加或相减。它是解一元一次方程的重要步骤,可以帮助我们简化方程,便于求解。
2.案例分析:接下来,我们来看一个具体的案例。比如方程3x + 5x - 2x = 14,我们将展示如何通过合并同类项来求解这个方程。
3.培养学生问题解决能力,能够将现实生活中的问题抽象为一元一次方程,并运用所学知识解决实际问题。
4.增强学生数学思维能力,使其在解决方程问题时,能够灵活运用数学知识和方法,形成数学思维习惯。
5.培养学生合作交流能力,通过小组讨论和问题解答,学会倾听、表达、协作,提高团队协作能力。
三、教学难点与重点
1.教学重点
3.重点难点解析:在讲授过程中,我会特别强调同类项的识别和合并同类项的法则这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与合并同类项相关的实际问题。

河北省平泉县第四中学七年级数学上册 3.1一元一次方程

河北省平泉县第四中学七年级数学上册 3.1一元一次方程

一元一次方程(第4课时)去括号学习目标:1.准确而熟练地运用去括号法则解带有括号的方程2、激情投入,阳光展示,高效学习,享受学习的乐趣。

学习重难点:括号前是“-”号的,去括号时,括号内的各项要改变符号,乘数与括号内多项式相乘,乘数应乘遍括号内的各项 教学过程:一、温故知新1、叙述去括号法则,化简下列各式:(1))2(24-+x x = ; (2))4(12+-x = ;(3))1(73--x x = ;(4) )1(3)4(2+---x x =二、自主导学.问题(一)如何解带括号元一次方程1.用3分钟时间钻研教材93页至94页例2上方思考如何解带括号元一次方程?2.仿照例题1解方程)3(23)1(73+-=--x x x 。

解:去括号,得 ,移项,得 ,合并同类项,得 ,系数化为1,得 。

3.归纳解带括号的 一元一次方程的步骤(1) ,(2) ,(3) ,(4) 。

注意:1、当括号前是“-”号,去括号时,各项都要变号。

2、括号前有数字,则要乘遍括号内所有项,不能漏乘并注意符号。

三、合作探究例题1解方程:(1)8)2(24=-+x x (2))3()2(2+-=-x x(3))1(72)4(2--=+-x x x (4))12(41)2(3--=+--x x x例2列方程求解:当x 取何值时,代数式)2(3x -和)3(2x +的值相等?当y 取何值时,代数式2(3y +4)的值比5(2y -7)的值大3?四、学以致用1.解方程:(1))4(12)2(24+-=-+x x x (2))12(1)2(3--=+-x x x(3))131(72)421(6--=+-x x x (4))121(62)332(9--=--x x x2.列方程求解:当x 取何值时,代数式4x -5与3x -6的值互为相反数五、自主作业1.解方程:(1)5(x +2)=2(5x -1) (2)4x +3=2(x -1)+1(3)(x +1)-2(x -1)=1-3x (4)2(x -1)-(x +2)=3(4-x )2.若)2(2+x 和)5(3-x 互为相反数,则=x3.已知方程x x 32)2(3-=-的解与关于x 的方程)3(226+=-x k 的解相同,求k 的值4.若已知3-=x 是方程20)2(=-x a 的解,求解关于y 的方程)1(2)3(++=+y a y a(二)能力提升1、已知关于x 的方程)4(223+=+x a x ,某同学在解这个方程时,不小心忘记把方程右端括号里的4乘2,解得的结果为2=x ,求原来方程的解。

初中数学人教七年级上册(2023年新编) 一元一次方程[合并同类项]

初中数学人教七年级上册(2023年新编) 一元一次方程[合并同类项]

《解一元一次方程》——合并同类项一、教学目标:(1)知识与技能:在实际问题的解决中,分析出问题中的数量关系,建立等式方程并掌握移项的方法以及技巧,学会解决“ax+b=cx+d”类型的一元一次方程。

(2)过程与方法:学会将抽象问题实际化,在实际问题的探索中,进一步体会利用一元一次方程解决实际问题的方法。

(3)情感态度与价值观:引导学生处理现实生活中的实际问题,感受数学与生活的密切联系,激发学生学习数学的兴趣。

二、教学重点:建立方程解决实际问题,会解决“ax+b=cx+d”类型的一元一次方程。

三、教学难点:找出条件中等量关系并列出解决方程。

四、教学媒体:多媒体、课件、教科书。

五、教学过程解决问题引出概念由问题1分析可得到:由问题2分析可得得出移项的作用与概念老师:带着学生一起分析解决问题1。

学生:解决问题1后,在老师的提示下,学生尝试独立解决问题2.老师:老师让学生回顾一下问题二是如何解决的,师生一起得出移项的概念以及它的作用。

由浅入深的一步步调动学生的积极性。

由学生和老师一起推导出方程的概念与作用。

使学生记忆深刻。

理解概念巩固新知知道利用移项解决一元一次方程之后,解决书上相关例题并进行扩展。

老师:带着一起解决例题让学生独立完成扩展习题。

老师:在教室巡视遇到有问题的学生,可以单独指导。

概念不仅在理解,而且还需要运用。

学生独立完成,教师巡视可以充分了解学生的掌握情况。

归纳小结回忆本节课所学习的概念。

由学生归纳总结,老师补充。

让学生自己总结可以提高学生对今天所学知识的进一步认识与熟悉。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程(第2课时)合并同类项
学习目标:1、会列一元一次方程解决实际问题;
2、会合并同类项解一元一次方程。

3、列一元一次方程解决实际问题
4、激情投入,阳光展示,高效学习,享受学习的乐趣。

学习重点:合并同类项解一元一次方程.
学习难点:体会解一元一次方程中“转化”的思想方法。

教学过程:
一、温故知新
1.等式性质(1):。

(2):。

2.解方程:(1)x-9=8 (2) 3x+1=4
二、自主导学.
问题:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买的数量又是去年的2倍。

前年这个学校购买了多少台计算机?
分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的3倍,那么去年购买___台,又知今年购买数量是去年的3倍,则今年购买了______(即____)台;
题目中的相等关系为:三年共购买计算机260台,即
前年购买量+去年购买量+今年购买量=260
列方程:__________ ___如何解这个方程呢?
根据分配律,x+3x+9x=(______)x=13x;
这样就可以把含x的项合并为一项,合并时要注意x的系数是1,不是0;
下面的框图表示了解这个方程的具体过程:
x+3x+9x=260
↓合并同类项
x=260
↓系数化为1
X=_____
归纳:上面解方程中“合并同类项”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中a、b是常数。

三、合作探究
例1解方程:(1)3x-x=7 (2)1
4
x+
1
2
x=3
(3)9625-3-=x x (4)364155.235.75⨯-⨯-=-+-x x x x
例题2、有一列数,按一定规律排列为1,- 3,5,- 7,9,·····
如果其中三个相邻的数之和为 – 201,求这三个数
解:设三个数中最小数为x ,则其他两个数为 ,
列方程为
解方程:
四、学以致用
1.解方程
(1)154342⨯=-+x x x (2)
23322341⨯-=+x x
(3) 5x-2x-7=8 (4)0532
1=--y y 2、已知关于x 的方程963=-ax 的解是3-=x ,则=a
五、自主作业
解方程:
(1)3x+4x-5x=8 (2)-3x+2.5x=6
(3)6x-3.5x=2.5×3-5 (4)
58
32189=-+x x x
(5) 163-=+x x (6) 3327-=-+-x x x
(7) 55.75.216=--y y y (8) 1352-=+--x x x
(9)x+3.5x-2x=10 (10)
16
53421=-+m m m
能力提升:
1.某班学生共60人,外出参加种树活动,根据任务的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数。

2.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32块皮块,黑色皮块和白色皮块各有多少块?
3.甲、乙、丙三个乡合修水利工程,按照受益土地的面积比3 :2 :4 分担费用1440元,三个乡各分配多少元?
4.某学生读一本书,第一天读了全书的1
3
多2页,第二天读了全书的
1
2
少1•页,•还剩23页没读,
问全书共有多少页?(设未知数,列方程,不求解)。

相关文档
最新文档