有理数的乘方教案
有理数的乘方教案
有理数的乘方教案一、教学目标和要求1. 知识与能力目标:学习掌握有理数的乘方运算规则;能够灵活运用有理数的乘方规则解决实际问题;培养学生分析和解决问题的能力。
2. 过程与方法:通过讲解、示例演算和练习相结合的方式,激发学生的学习兴趣;引导学生运用归纳、演绎、分析等思维方法,培养学生独立思考和解决问题的能力。
二、教学重点和难点1. 教学重点:掌握有理数乘方的基本运算法则;理解有理数乘方的意义和特性。
2. 教学难点:灵活运用有理数乘方的运算法则解决实际问题。
三、教学过程1. 导入引导学生思考:什么是有理数?有理数的乘法运算规则是什么?是否可以将有理数进行乘方运算?2. 规则与概念讲解通过演示计算几个简单的有理数的乘方运算,引出有理数乘方的定义和性质。
3. 例题演算(1) 分别计算以下有理数的乘方:a) (-2)的平方;b) 1/3的平方;c) 5的立方。
(2) 计算以下乘方的结果:a) (-3)的4次方;b) (-4/5)的3次方;c) 0的任意次方。
4. 归纳总结根据例题演算的结果,让学生归纳出有理数的乘方规律,并总结写出有理数的乘方运算法则。
5. 练习给学生分发练习题,让学生独立完成,并互相交流和纠正。
6. 拓展应用提供一些实际问题,引导学生将问题转化为有理数乘方的运算,并求解问题。
四、教学反思通过本节课的教学,学生能够掌握有理数乘方的规则,理解有理数乘方的意义和特性。
同时,通过练习和应用拓展,学生的运算能力和问题解决能力也得到了一定的提高。
然而,在教学过程中,我发现部分学生对于有理数的乘方概念理解不深,需要更多的实例来巩固。
因此,在今后的教学中,我将更加注重引导学生通过实际问题应用有理数乘方的运算法则,加深学生对概念的理解和记忆。
同时,还会根据学生的实际情况,加强巩固练习和个别辅导,确保学生能够灵活运用所学知识。
有理数的乘方教案
有理数的乘方教案一、教学目标•理解有理数的乘方的概念和性质。
•掌握有理数的乘方的规则和计算方法。
•能够应用有理数的乘方解决实际问题。
二、教学重点•有理数乘方的概念和性质。
•有理数乘方的规则和计算方法。
三、教学难点•利用有理数的乘方解决实际问题。
四、教学内容与步骤1. 引入通过和学生的互动对话,介绍有理数乘方的背景和应用场景。
例如,两个相同有理数相乘时,可将其写成有理数的乘方形式。
2. 概念讲解•有理数的乘方:将一个有理数自乘若干次的运算。
例如,-2的平方可以表示为:(-2) * (-2) = 4。
•有理数乘方的性质:指数为0时,有理数的乘方为1;指数为正偶数时,有理数的乘方的结果为正数;指数为负偶数时,有理数的乘方的结果为正数;指数为负奇数时,有理数的乘方的结果为负数。
3. 规则和计算方法•同底数相乘:将底数相加,指数保持不变。
–a^n * a^m = a^(n+m),其中a为有理数,n和m为指数。
•同底数相除:将底数相减,指数保持不变。
–a^n / a^m = a^(n-m),其中a为有理数,n和m为指数。
•指数相乘:底数不变,指数相乘。
–(a n)m = a^(n*m),其中a为有理数,n和m为指数。
•负指数:用倒数表示有理数的负指数。
–a^-n = 1 / a^n,其中a为有理数,n为指数。
4. 实例演示根据所学规则和计算方法,通过数个实例演示有理数乘方的计算过程。
提醒学生注意规则和计算步骤,做好乘方的展开和化简。
5. 习题练习让学生进行一些有理数乘方的练习题,巩固所学知识和方法。
逐步增加题目的难度和复杂度,培养学生的乘方计算能力。
6. 应用拓展设计一些实际问题,让学生应用有理数乘方解决问题。
例如,计算原子的质量、物体的体积、路径的距离等等。
五、课堂小结对所学的有理数乘方的概念、性质和计算方法进行总结和归纳。
鼓励学生提问和讨论,加深对有理数乘方的理解和掌握。
六、课后作业布置一些乘方的练习题作为课后作业,要求学生独立完成。
有理数的乘法数学教案(精选7篇)
有理数的乘法数学教案(精选7篇)有理数的乘法数学教案篇一一、知识与技能经历探索有理数乘法法则过程,掌握有理数的乘法法则,能用法则进行有理数的乘法。
二、过程与方法经历探索有理数乘法法则的过程,发展学生归纳、猜想、验证等能力。
三、情感态度与价值观培养学生积极探索精神,感受数学与实际生活的联系。
教学重、难点与关键1.重点:应用法则正确地进行有理数乘法运算。
2.难点:两负数相乘, 积的符号为正与两负数相加和的符号为负号容易混淆。
3.关键:积的符号的确定。
教具准备投影仪。
四、教学过程一、引入新课在小学,我们学习了正有理数有零的乘法运算,引入负数后,怎样进行有理数的乘法运算呢?五、新授课本第28页图1.4-1,一只蜗牛沿直线L爬行,它现在的位置恰在L上的点O。
(1)如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?(2)如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?(3)如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?(4)如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?分析:以上4个问题涉及2组相反意义的量:向右和向左爬行,3分钟后与3分钟前,为了区分方向,我们规定:向左为负,向右为正;为区分时间,我们规定:现在前为负,现在后为正,那么(1)中2cm记作+2cm,3分后记作+3分。
七年级数学有理数的乘法教案及教学设计篇二一、知识与技能(1)能确定多个因数相乘时,积的符号, 并能用法则进行多个因数的乘积运算。
(2)能利用计算器进行有理数的乘法运算。
二、过程与方法经历探索几个不为0的数相乘,积的符号问题的过程,发展观察、归纳 验证等能力。
三、情感态度与价值观培养学生主动探索,积极思考的学习兴趣。
教学重、难点与关键1.重点:能用法则进行多个因数的乘积运算。
2.难点:积的符号的确定。
3.关键:让学生观察实例,发现规律。
教具准备投影仪。
四、教学过程1.请叙述有理数的乘法法则。
有理数的乘方教案
有理数的乘方教案教案:有理数的乘方教学目标:1. 了解有理数的乘法规则;2. 熟练计算有理数之间的乘方;3. 能够应用有理数的乘方解决实际问题。
教学重点:1. 熟练掌握有理数之间的乘方运算;2. 能够将有理数的乘方运用到实际生活问题中。
教学难点:1. 理解有理数之间的乘方运算的含义和规则;2. 能够将问题转化为有理数的乘方运算进行求解。
教学过程:一、导入(5分钟)教师可以通过提问的方式来调动学生的思维,如:你们还记得什么是有理数吗?有理数之间的乘法规则是怎样的?二、讲解有理数的乘方(10分钟)1. 定义:有理数的乘方运算是指一个有理数自乘若干次的运算。
2. 规则:如果有理数a除以正整数b(b≠0),乘以自己b-1次,那么就称a的b次方为a的乘方。
如:2的3次方(2³)= 2×2×2 = 8;-3的4次方(-3⁴)= -3×-3×-3×-3 = 81。
三、解题示例(15分钟)1. 例题1:计算(-2)的5次方。
解:由乘方的定义可知,(-2)的5次方等于(-2)×(-2)×(-2)×(-2)×(-2) = -32。
2. 例题2:计算1/3的2次方。
解:由乘方的规则可知,1/3的2次方等于(1/3)×(1/3) = 1/9。
四、巩固练习(15分钟)1. 计算下列有理数的乘方,并给出结果的最简形式:a) (-5)的3次方;b) 2/3的4次方;c) (-6)的2次方;d) -1的8次方。
2. 根据实际生活中的问题,设计有理数乘方的应用题,让学生动手计算并分析解决方案。
五、拓展延伸(10分钟)1. 进一步应用乘方的知识,解答一些较复杂的问题,如:(-2)的6次方等。
2. 提高学生对乘方运算规则的理解和应用能力,培养学生的逻辑思维和解决问题的能力。
六、小结归纳(5分钟)老师对本节课所讲内容进行小结,强调了有理数的乘方的定义和规则,并要求学生进行复习和巩固。
七年级数学《有理数的乘方》教案设计优秀5篇
教学目标:1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算。
2.已知一个数,会求出它的正整数指数幂,渗透转化思想。
3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力。
教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算。
教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算。
教学过程设计:(一)创设情境,导入新课提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)(多媒体演示细胞分裂过程)其中一种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2某2个,1.5小时后分裂成2某2某2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.(二)合作交流,解读探究一般地,n个相同的因数a相乘,即,记作an,读作a的n次方。
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an 中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂。
说明:(1)举例94来说明概念及读法。
(2)一个数可以看作这个数本身的一次方,通常省略指数1不写。
(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算。
(4)乘方是一种运算,幂是乘方运算的结果。
(三)应用迁移,巩固提高【例1】(1)(-4)3;(2)(-2)4;(3)-24.点拨:(1)计算时仍然是要先确定符号,再确定绝对值。
(2)注意(-2)4与-24的区别。
根据有理数的乘法法则得出有理数乘方的符号规律:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何正整数次幂都是0.【例2】计算:(1)(3; (2)(-)3;(3)(-)4;(4)-;(5)-22某(-3)2;(6)-22+(-3)2.(四)总结反思,拓展升华1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念。
有理数的乘法数学教案(优秀8篇)
有理数的乘法数学教案(优秀8篇)有理数的乘法数学教案篇一教材分析“数的运算”是“数与代数”学习领域的重要内容。
有理数的乘法运算是加法运算的另一种运算形式,它也是今后学习有理数的除法、乘方及混合运算的基础。
因此本节内容具有承前启后的重要作用。
学情分析1.让学生亲身经历将实际问题抽象成数学问题的过程,增加他们对问题的感性认识。
2.通过观察、归纳,提高学生的理性认识。
3.培养学生学会表达、学会倾听的良好品质。
教学目标1.知识技能:(1)经历探索有理数乘法运算的过程,归纳有理数乘法运算法则。
(2)掌握有理数乘法法则,能解决简单的的实际问题。
2.数学思考:通过自主合作探究经历探索有理数运算的过程,发展学生观察、归纳、猜想等能力。
3.问题解决:通过自主探索和合作交流,发展学生逆向思维及化归思想。
4.情感态度价值观:通过经历探索有理数乘法运算的过程感受数学与生活的紧密联系,提高学生对知识的应用能力以及勇于探索、敢于发言的个性品质。
教学重点和难点教学重点是:有理数的乘法法则的理解和运用。
教学难点是:使学生体会有理数乘法法则规定的合理性;探究出确定两个负数相乘和多个有理数相乘的符号符号规律。
七年级数学有理数的乘法教案及教学设计篇二一、内容和内容解析1.内容有理数乘法法则2.内容解析有理数的乘法是继有理数的加减法之后的又一种基本运算。
有理数乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数学习是至关重要的。
与有理数加法法则类似,有理数乘法法则也是一种规定,给出这种规定要遵循的原则是“使原有的运算律保持不变”。
本节课要在小学已掌握的乘法运算的基础上,通过合情推理的方式,得到“要使正数乘正数(或0)的规律在正数乘负数、负数乘负数时仍然成立,那么运算结果应该是什么”的结论,从而使学生体会乘法法则的合理性。
与加法法则一样,正数乘负数、负数乘负数的法则,也要从符号和绝对值来分析。
由于绝对值相乘就是非负数相乘,因此,这里关键是要规定好含有负数的两数相乘之积的符号,这是有理数乘法的本质特征,也是乘法法则的核心。
有理数的乘方教案三篇
有理数的乘方教案三篇篇一:有理数的乘方第一课时教学设计《有理数的乘方第一课时》教学设计一、教材分析:有理数的乘方是湘教版七年级上册数学第一章的内容,在对小学平方、立方基础之上,让学生通过探究学会乘方的意义和概念,熟练掌握有理数乘方的运算。
有理数的乘方是一种特殊(积中的每一个因数都相同)的乘法。
乘方贯穿初中数学的始终,对整个初中学习十分重要。
通过这一节课的学习,培养学生的探索精神和观察、分析、归纳能力,并向学生渗透细心的重要性,使学生充分体会数学与现实生活的紧密联系,渗透数学的简洁美、神奇美。
二、教学目标(一)知识技能目标:1、正确理解乘方、幂、指数、底数等概念。
2、感悟探索乘方的意义,会书写乘方算式,确定乘方的结果的符号。
3、能快速、准确地进行有理数的乘方运算。
(二)过程与方法:1、通过对乘方意义的探索,培养学生观察、比较、分析、归纳及概括能力。
2、通过乘方运算的运用,培养学生的逻辑思维能力。
(三)情感目标1、通过创设问题情境,激发学生学习数学的兴趣。
通过乘方的故事,向学生展示数学与生活的紧密联系,数学源于生活,高于生活。
2、向学生渗透探索、归纳的数学思想及数学的简洁美。
3、培养学生协作精神,体验数学的探索与创造的快乐。
三、教学重点:正确理解乘方的意义,掌握乘方的运算方法四、教学难点:有理数乘方运算中符号的确定。
五、教学方法:(1)创设问题情境,从生活实践入手,体现生活中的数学。
(2)探索归纳,学生总结结论。
(3)精讲多练,提高学生运用知识的能力。
(4)运用闯关比赛形式,激发学生的学习兴趣,及时反馈提高。
六、教学准备:多媒体课件七、设计思想:通过学生喜欢的动漫人物对话创设问题情境,激发学生的学习兴趣,对新知识的探究,以生活中的实例拉面问题作为探究内容,使学生感悟生活中的数学,体现数学与现实生活的密切关系,自然地将学生的思维带入到整个教学过程中来。
学生通过观察、探究、思考及与同学们交流合作,充分调动他们的学习积极性,参与到课堂教学中,进一步提高学生的逻辑推理能力与抽象概括能力。
有理数的乘方-人教版七年级数学上册教案
有理数的乘方-人教版七年级数学上册教案教学目标1.能够掌握有理数乘方的概念及其计算方法;2.能够运用有理数乘方的知识解决实际问题。
教学重点1.有理数乘方的概念;2.有理数乘方的计算方法。
教学难点有理数乘方计算过程中的符号运算与应用。
教学过程1. 有理数的乘法回顾复习有理数乘法的基本性质,让学生掌握有理数乘法的运算规律。
2. 有理数的乘方1.定义有理数的乘方,引入正整数指数、负整数指数、零指数的概念;2.引导学生学习有理数乘方的计算方法,包括同底数乘方、异底数乘方与化简、加减混合运算;3.让学生通过练习掌握有理数乘方的计算方法。
3. 实际问题的解决1.通过有理数乘方与实际问题的结合,让学生看到有理数乘方在实际问题中的应用;2.让学生通过练习将有理数乘方应用于实际问题中。
教学建议1.注重实际问题的应用:在教学过程中尽可能引入实际问题,让学生更容易理解有理数乘方的概念、计算方法与应用;2.强调符号运算:在教学过程中注重符号运算的技巧和方法,让学生掌握有理数乘方计算过程中的符号运算;3.激发学生兴趣:通过生动且富有趣味的教学方式来激发学生对数学的兴趣,让他们更愿意参与到课堂中来。
教学评价1.观察学生在课堂中的表现,包括参与度、合作程度和学习兴趣等;2.组织小测验,测试学生对有理数乘方的掌握程度;3.布置作业,巩固学生掌握的有理数乘方计算方法与应用。
注意事项1.本节课的授课重点是让学生掌握有理数乘方的概念和计算方法,在实际应用中掌握有理数乘方的应用;2.教学过程中需要遵循“从易到难、由浅入深”的教学原则,尽量让学生在掌握简单计算方法后再进一步学习高级计算方法;3.本节课需要学生掌握有理数乘方计算方法的符号运算与应用,需要协调学生的左右脑发展,注重学生思维的培养与发展。
有理数的乘法教案11篇
有理数的乘法教案11篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如讲话致辞、报告体会、合同协议、策划方案、职业规划、规章制度、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, report experiences, contract agreements, planning plans, career planning, rules and regulations, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!有理数的乘法教案11篇下面是本店铺收集的有理数的乘法教案11篇,供大家赏析。
【有理数的乘方教案(精选多篇)】
【有理数的乘方教案(精选多篇)】第一篇:七年级数学上册有理数的乘方教案人教版有理数的乘方教学目的:知识与才能:在现实背景中,理解有理数乘方的意义,掌握有理数乘方的运算;过程与方法:培养学生观察、分析^p 、比拟、归纳、概括的才能,浸透转化的思想;情感态度与价值观:培养学生勤思,认真,勇于探究的精神,并联络实际,加强理解,体会数学给我们的生活带来的便利。
教学重点:正确理解乘方的意义,掌握乘方的运算法那么,进展有理数乘方运算。
教学难点:正确理解乘方、底数、指数的概念并合理运算。
教材分析^p :本节内容从小学所学过的一个数的平方与立方出发,介绍了乘方的概念,容有关联的是后面“科学计数法”、“有理数的混合运算”等局部内容。
教学方法:教法:引导探究法、尝试指导法,充分表达学生主体地位;学法:学生观察考虑,自主探究,合作交流。
教学用具:电脑多媒体。
课时安排:一课时板书设计:有理数的乘方底数a幂规律:正数的任何次幂都是正数负数的奇数次幂是负数负数的偶数次幂是正数n教学反思:本节课的教学设计采用:“先学后教,当堂训练”的教学形式。
整个教学过程从考虑问题到问题解决,学生自主学习贯穿始终,中间围绕“自学-交流、更正-点拨、归纳”三个环节组织教学,注重培养学生观察、考虑、交流归纳的才能。
缺乏之处:在练习的讲评上,应给学生一个较为自由的空间,让学生互相启发,互相交流。
第二篇:第一章有理数乘方(2)教案第周第节§1.5.1有理数乘方〔2〕教案备课人:李冶学习目的:1、掌握有理数混合运算的顺序,能正确的进展有理数的加,减,乘除,乘方的混合运算。
2、培养学生观察,归纳,猜测,推理的才能。
重点:能正确的进展有理数的混合运算。
难点:灵敏的运用运算律,使计算简单。
教学过程:一课前提问:1、我们已经学习了哪几种有理数的运算?2、有理数的乘方的意义是什么?3、以下的算式里有哪些运算?应按照怎样的顺序运算?3+50÷22×〔-15〕-1二、新课探究:有理数混合运算的顺序:1、先乘方,再乘除,最后加减;2、同级运算,从左到右进展;3、如有括号,先做括号内的运算,按小括号、中括号,大括号依次进展;三、例题精析:例1 、计算:〔1〕2?(?3)34(3)15〔2〕(?2)3(3)[(?4)22]?(?3)2(2)例2、观察下面三行数:-2 ,4 ,-8,16,-32,64,…;0,6,-6,18,-30,66,…;-1 ,2,-4, 8,-16,32,…。
有理数的乘方的教案(优秀6篇)-最新
有理数的乘方的教案(优秀6篇)作为一名辛苦耕耘的教育工作者,常常要写一份优秀的教案,编写教案助于积累教学经验,不断提高教学质量。
那么应当如何写教案呢?下面是整理的6篇《有理数的乘方的教案》,在大家参考的同时,也可以分享一下给您的好友哦。
有理数的乘方教案篇一一、学习目标1.能确定有理数加、减、乘、除、乘方混合运算的顺序;2.掌握含乘方的有理数的混合运算顺序,并掌握简便运算技巧;3.偶次幂的非负性的应用。
二、知识回顾1.在2+ ×(-6)这个式子中,存在着3种运算。
2.上面这个式子应该先算乘方、再算2 、最后加法。
三、新知讲解1.偶次幂的非负性若a是任意有理数,则(n为正整数),特别地,当n=1时,有。
2.有理数的混合运算顺序①先乘方,再乘除,最后加减;②同级运算,从左到右进行;③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
四、典例探究1.有理数混合运算的顺序意识【例1】计算:-1-3×(-2)3+(-6)÷总结:做有理数的混合运算时,应注意以下运算顺序:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
练1计算:-2×(-4)2+3-(-8)÷ +2.有理数混合运算的转化意识【例2】计算:(-2)3÷(-1 )2+3 ×(- )-0.25总结:将算式中的除法转化为乘法,减法转化成加法,乘方转化为乘法,有时还要将带分数转化为假分数,小数转化为分数等,再进行计算。
练2计算:3.有理数混合运算的符号意识【例3】计算:-42-5×(-2)× -(-2)3总结:在有理数运算中,最容易出错的就是符号。
符号“-”即可以表示运算符号,即减号;又可以表示性质符号,即负号;还可以表示相反数。
要结合具体情况,弄清式中每个“-”的具体含义,养成先定符号,再算绝对值的良好习惯。
七年级数学《有理数的乘方》教案
1.6有理数的乘方(一)一、教材分析“有理数的乘方”是七年级新教程第一章第6小节的内容。
它是前一部分加、减、乘、除运算知识的完结与提升,对后面学习科学记数法又具有一定的辅助意义。
特别是对于与乘方运算相关概念的理解,有利于拓宽学生的思路、锻炼学生观察、探索、总结的数学思想。
本节内容在教材中起着承上启下的作用,处于非常重要的地位。
二、学情分析七年级学生处在数学思维的一个转变期,对于有理数的相关问题,特别是符号问题是个难点。
在学习时要处理好已有知识与新知识之间的衔接。
根据初一学生好动、好问、好奇的心理特征,课堂上采取由浅入深的启发诱导,随着教学内容的深入,让学生一步一步的跟着动脑、动手、动口,在合作交流中培养了学生学习的积极性和主动性,使学习方式由“学会”变为“会学”。
三、教学目标知识与能力:(1)理解有理数乘方概念;(2)掌握育有理数乘方的运算法则。
过程与方法:(1)通过师生互动,学生观察、类比、联想、归纳等过程,让学生理解概念的形成过程;(2)经历知识的拓展过程,增强学生探究能力和动手操作的能力,体会与他人合作交流的重要性,培养合作精神。
情感态度价值观:(1)通过观察、推理,归纳出有理数乘方的符号法则,进而掌握运算法则,增进学生学好数学的自信心;(2)教师以热情、高涨的主导情绪感染学生,力求教学过程轻松愉快,使学生感受到学习数学的乐趣,感受到数学符号的简洁美,真正体会到学习数学的价值。
四、教学重难点重点:有理数的乘方的概念与运算;难点:有理数的乘方法则的归纳。
五、教与学互动过程(一)创设情景导入新课同学们,这节课我们先来做个热身活动:1.3+3=?2.3+3+3=?3.4. 5×5=?5. 5×5×5=?6.(板书课题) 设计意图:通过类比乘法定义的得来,得出乘方定义的思考。
(二)交流对话 探求新知 5×5=525×5×5=53板书:求几个相同因数的积的运算叫做乘方。
有理数的乘方教案
有理数的乘方教案
教学目标:
1. 理解有理数的乘方的概念和性质。
2. 能够计算有理数的乘方运算。
3. 能够应用有理数的乘方解决实际问题。
教学步骤:
引入:让学生回顾一下幂的概念,并且了解一些特殊的幂,如0的任意次方等。
1. 定义有理数的乘方:有理数a的n次方,表示a与自身连乘n次的结果。
解释乘方的特性,如a^m * a^n = a^(m+n),a^m / a^n = a^(m-n)。
2. 引导学生进行简单的乘方计算,如2^3 = 2 * 2 * 2 = 8,(-
3)^4 = (-3) * (-3) * (-3) * (-3) = 81。
3. 结合实际问题,让学生应用乘方计算。
例如,假设一辆汽车每小时行驶60公里,问3小时后汽车行驶的总距离是多少?解答:汽车每小时行驶60公里,3小时后行驶的总距离为
60^3 = 60 * 60 *60 = 216000公里。
4. 引导学生讨论一些有理数乘方的特殊情况,如0的正整数次方为0,0的零次方没有意义。
让学生思考并解释这些特殊情况的原因。
5. 组织学生进行习题训练,巩固他们对有理数乘方的理解和运算能力。
6. 总结归纳乘方的运算规律,强调在进行乘方运算时,要注意有理数的正负及零次方的特殊情况。
7. 布置课后作业,要求学生练习乘方的运算和解答乘方问题。
8. 下节课开始时进行乘方的复习和巩固,解答学生所遇到的问题。
教学资源:教材、习题册。
教学评价:观察学生的课堂表现,包括学习态度、参与度、乘方运算的准确性和解决实际问题的能力。
对学生完成的作业进行评价和批改。
乘方教案(热门7篇)
乘方教案(热门7篇)乘方教案第1篇一、教学目标能理解并掌握有理数乘方的概念及意义,并能够正确进行有理数的乘方运算;通过观察、猜想、实践等数学活动,学生从中提高观察、类比、归纳和计算的能力。
初步了解并体会转化的数学思想,逐步养成观察并发现规律的意识,在相互启发中体验合作学习,树立团队意识.二、教学重难点?有理数乘方的概念及意义,并正确进行有理数乘方的运算有理数乘方的概念及意义,并正确进行有理数乘方的运算三、教学策略本节课采用“启发引导、动手操作、分析讲解”的教学方式,亲身经历将实际问题抽象成数学模型并进行解释和运用的过程.在教学中注意发现问题、思考问题,寻找解决问题的方法.鼓励自主探索、逐步递进.积极参与讨论、合作学习,肯定成绩,激发学习兴趣和积极性四、教学过程教学进程教学内容学生活动设计意图引入新知问题一:把一张纸对折2次可裁成4张,即2×2张;对折3次可裁成8张,即2×2×2张.问:若对折10次可裁成几张?请用一个算式表示(不用算出结果).若对折101次,算式中有几个2相乘?显然,我们遇到了麻烦:如何书写101个、1010个相同因数相乘这样繁琐的式子呢?我们有必要创设一种新的表示方法来表示这样的运算.问题二:边长为a的正方形的面积为 ;棱长为a的正方体的体积为 ;学生动手操作,观察纸片,发现规律回忆小学已学知识并独立完成目的是培养学生的观察及归纳能力让学生亲历每个因数都相同时的乘法,书写起来的冗长,所以才需要创造一种简单的形式学习新知2个a相加可记为:a+a=2a3个a相加可记为:a+a+a=3a4个a相加可记为:a+a+a+a=4an个a相加可记为:a+a+a+……+a=na类比可得:2个a相乘可记为: EMBED Unknown3个a相乘可记为: EMBED Unknown4个a相乘可记为什么呢?n个a相乘又记为什么呢?定义:一般地,我们把几个相同的因数相乘的运算叫做乘方,乘方的结果叫做幂. 如果有n个a相乘,可以写成,也就是 EMBED Unknown 其中叫做的n次方,也叫做的n次幂. 叫做幂的底数可以取任何有理数;n叫做幂的指数,可以取任何正整数.特殊地,可以看作的一次幂,也就是说的指数是例如:读作-2的4次方或-2的4次幂;底数是-2,指数是4;表示4个-2相乘. x看作幂的话,指数为1,底数为注意:当底数是负数或分数时,写成乘方形式时,必须加上括号.在学生理解有理数的乘方的意义的情况下,提供例1,指导学生完成,巩固概念的理解.例填空:(1) EMBED Unknown 的底数是_____,指数是_____,它表示______;(2) 的底数是______,指数是______,它表示______;(3) 的底数是______,指数是______,它表示_______;例计算:教师引导学生口答学生边记录,边体会、理解正确表达有理数的乘方学生口答分析例题并板书,巩固幂的意义,写出体现幂的意义的全过程体会类比的数学思想乘方教案第2篇【教学目标】(1)正确理解乘方、幂、指数、底数等概念.(2)会进行有理数乘方的运算.(3)培养探索精神,体验小组交流、合作学习的重要性.【教学方法】讲授法、讨论法。
有理数的乘方教案
有理数的乘方教案有理数的乘方教案(精选4篇)有理数的乘方教案1一、学什么1、知道乘方运算与乘法运算的关系,会进行有理数的乘方运算。
2、知道底数、指数和幂的概念,会求有理数的正整数指数幂。
二、怎样学归纳概念:n个a相乘aaa=xx,读作:xx。
其中n表示因数的个数。
求相同因数的积的运算叫作乘方。
乘方运算的结果叫幂。
例1:计算(1)26(2)73(3)(3)4(4)(4)3例2:(1)()5(2)()3(3)()4【想一想】1、(1)10,(1)7,()4,()5是正数还是负数?2、负数的幂的符号如何确定?思考题:1、(a2)2+(b+3)2=0,求a和b的值。
2、计算(2)2009+(2)20103、在右边的33的方格中,现在以两种不同的方式往方格内放硬币,一种每格放100枚,三学怎样:(1)某种细菌在培养过程中,细菌每半小时分裂一次(由分裂成两个),经过两个小时,这种细菌由1个可分裂成()A8个B16个C4个D32个(2)一根长1cm的绳子,第一次剪去一半。
第二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为()A()3mB()5mC()6mD()12m(3)(3.4)3,(3.4)4,(3.4)5的从小到大的顺序是。
4、计算(1)(3)3(2)(0.8)2(3)02004(4)12004(5)104(6)()5(7)-()3(8)43(9)32(3)3+(2)223(10)-18(3)25.已知(a2)2+|b5|=0,求(a)3(b)2.2.6有理数的乘方(第2课时)一、学什么会用科学计数法表示绝对值较大的数。
二、怎样学定义:一般地,一个大于10的数可以写成的形式,其中,n是正整数,这种记数法称为科学记数法。
例题教学例1:1972年3月美国发射的先驱者10号,是人类发往太阳系外的第一艘人造太空探测器。
截至2003年12月人们最后一次收到它发回的信号时,它已飞离地球12200000000km。
有理数的乘方的教案
有理数的乘方的教案一、教学目标1、理解有理数乘方的意义。
掌握乘方的概念,能够准确说出底数、指数和幂。
理解负数的奇次幂是负数,负数的偶次幂是正数。
2、掌握有理数乘方的运算。
能够熟练进行有理数的乘方运算。
正确运用乘方运算解决实际问题。
3、培养学生的观察、分析、归纳和运算能力。
二、教学重难点1、重点有理数乘方的概念及运算。
幂的符号法则。
2、难点对乘方意义的理解,尤其是负数的乘方。
灵活运用乘方运算解决实际问题。
三、教学方法1、讲授法讲解有理数乘方的概念、性质和运算规则。
2、练习法通过大量的练习题,让学生巩固所学知识。
3、讨论法组织学生讨论乘方运算中的易错点和解题技巧。
四、教学过程1、导入通过实例引出乘方的概念,如折纸、细胞分裂等。
2、知识讲解11 介绍乘方的定义:求 n 个相同因数 a 的积的运算叫做乘方,记作 a^n ,其中 a 叫做底数,n 叫做指数,乘方的结果叫做幂。
111 举例说明不同底数和指数的乘方表达式,如 2^3、(-3)^4 等。
112 讲解幂的符号法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0 的任何正整数次幂都是 0 。
113 进行乘方运算的示范,如 2^3 = 2×2×2 = 8 ,(-2)^3 =(-2)×(-2)×(-2) =-8 。
3、课堂练习21 安排学生进行简单的乘方运算练习,如 3^2、(-4)^2 等。
211 给出一些含有乘方的混合运算题目,如 2^2 + 3^2 4^2 。
212 巡视学生的练习情况,及时给予指导和纠正。
4、小组讨论31 组织学生分组讨论在乘方运算中容易出错的地方及原因。
311 每组选派代表发言,分享讨论结果。
312 教师对学生的讨论进行总结和补充。
5、实际应用41 给出与实际生活相关的乘方问题,如计算面积、体积等。
411 引导学生运用乘方知识解决问题,并进行交流和展示。
412 对学生的解决方案进行评价和总结。
有理数的乘方教案
有理数的乘方教案一、教学目标1.理解有理数的乘方的概念和性质;2.掌握有理数的乘方的计算方法;3.能够应用有理数的乘方解决实际问题。
二、教学重点1.有理数的乘方的概念和性质;2.有理数的乘方的计算方法。
三、教学难点1.有理数的负指数的概念和计算方法;2.有理数的零次幂和负次幂的概念和计算方法。
四、教学内容1. 有理数的乘方的概念和性质有理数的乘方是指一个有理数自乘若干次的结果,其中指数为正整数、零或负整数。
有理数的乘方有以下性质:1.任何数的零次幂都等于1,即a0=1;2.任何数的负次幂都等于其倒数的相应次幂,即a−n=1,其中n为正整数;a n3.任何数的正整数次幂都等于自己连乘相应次数的积,即a n=a×a×⋯×a;⏟n个4.任何数的负整数次幂都等于其倒数的相应次幂,即a−n=1,其中n为正a n整数;n,其中m和n为5.任何数的指数为分数的幂都可以化为根式,即a m n=√a m互质的正整数。
2. 有理数的乘方的计算方法有理数的乘方的计算方法包括以下几种情况:2.1 正整数次幂的计算方法任何数的正整数次幂都等于自己连乘相应次数的积,即a n =a ×a ×⋯×a ⏟n 个。
例如:23=2×2×2=8(−3)4=(−3)×(−3)×(−3)×(−3)=812.2 零次幂和负次幂的计算方法任何数的零次幂都等于1,即a 0=1。
任何数的负次幂都等于其倒数的相应次幂,即a −n =1a n ,其中n 为正整数。
例如:50=1(−2)−3=1(−2)3=1−8=−182.3 指数为分数的幂的计算方法任何数的指数为分数的幂都可以化为根式,即a m n =√a m n ,其中m 和n 为互质的正整数。
例如:232=√232=2√2(−3)23=√(−3)23=√93 3. 应用有理数的乘方解决实际问题有理数的乘方可以应用于实际问题中,例如:3.1 计算面积和体积计算面积和体积时,需要用到有理数的乘方。
有理数的乘方教案(精选多篇)
有理数的乘方教案(精选多篇)篇:七年级数学上册有理数的乘方史荦伯人教版能从交流中获益.教学重点:有理数乘方的内涵,幂,底数,指数为的概念及其表示.理解演算法有理数乘法运算与乘方间的联系,处理负数的乘方演算.教学难点:有理数乘方的意义的乘积理解与运用教学过程设计活动.创设情境,引入新课.1.教师展示细胞分裂的图表,引导学生分析某种细胞的分裂过程,学生则回答教师提出来的问题,并说明如何可以得出结果.2.结合学生熟悉的边长为a的正方形的面积是a·a,棱长为a的正方体的截面是a·a·a及它们的简单本人法,告诉学生几个相同因数a 相乘的就是这堂课所要学习的内容.大体上在实际背景中创设情境激发学生的学习兴趣.通过计算正方体面积和正方体体积的实例,引出课题.活动二.合作交流,得出结论.1.分本人组学习语文课41页,要求能结合课本中的示意图,用自己的语言表达下列几个概念的意义及相互关系.底数是相同的因数,可以是任何有理数,指数是相同因数的数列,在现阶段中是正整数,而幂则是乘方的结果.2.定义:n个相同因数a相乘,即a·a·…·a(个),本人作a,读作a的n次方. 求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂,在a中,a叫做底数,n叫做指数.读作a的n次方或a的n次幂.3(1)补充例题:把下列各式写成乘方运算的形式,并指出底数,指数各是多少?①(-2.3)×(-2.3)×(-2.3)×(-2.3).② (-nn1111)×(-)×(-)×(-). 4444③x·x·x·......·x(201*个x的积).(2)课本例题,教师指导学生阅读实证例题,并规书写习题过程.3.此例可由学生口述,教师板述完成.44.本人组讨论: ??2?与?2的区别?教师要提醒学生注意,相同的分数或相同的负数相加时,要加括号,例如(-2)×(-42)×(-2)×(-2)本人作(-2).通过三组补充例题和本人组讨论:??2?与?2的区别的学习,对有理44数的乘方有更进步的理解.活动三.应用新知,课堂练习.1.做做:课本42页练习1题.2.用计算器算,以及课本42页练习2题.3.本人组讨论:通过上面练习,你能察觉到发现负数的幂的正负有什么规律?正数呢?0呢?学生归纳总结.4.总结规律:负数的个数次幂是负数,负数的偶次幂是正数;正数的任何次幂是正数;0的任何次幂是0.把弊病再次交给学生,充分发挥学生的主观能动性,鼓励学员学生尽可能地发现规律. 活动四.知识梳理,课堂本人结.1.由学生家长本人结本堂课所学的内容.2.回顾五种已学的运算及其结果.活动五.知识反馈,作业布置.1.课本47页1,2题.2.课外拓展(1)用乘积的意义计算下列各式:22?2?①(?2);②?2;③???;④?. 3?3?443(2)观察下列各等式:1=1; 1+3=2 ; 1+3+5=3;1+3+5+7=4……①通过上述观察,结果你能猜想出反映这种规律的般结论吗?②你能运用上述规律求1+3+5+7+...+201*的值吗? 2222五篇:人教版数学上册教案之有理数的乘方有理数的乘方()教学目标:1、理解有理数之积的意义;2、掌握有理数乘方运算;3、能确定有理数加、减、乘、除、乘方无机运算的顺序;4、会作出有理数的混合运算;5、培养并提高精确迅速的运算能力.教学重点:有理数乘方的意义;运算顺序的确定和性质符号的处理.教学难点:幂、底数、指数为的概念及其表示;有理数的混合运算.教学过程:、学前准备1、看下面的故事:从前,有个“聪明的乞丐”他要到了块面包.他想,天天要饭太辛苦,如果我天喝水这块面包的半,二天再吃剩余面包的半,??依次每天都吃前天剩余面包的半,这样下去,我就永远不要去要饭了!学生交流讨论并计算,如果把整块面包当成整体“1”,那十天他将吃到到面包.2、拉面馆的师傅用根很重的面条,把两头捏合在起拉伸,再捏合,再拉伸,反复多次,就能把这根很粗的面条,拉成许多长尾巴的面条.想想看,捏合次后,就可以拉出32根面条?二、合作探究我们学过正方形的面积式,知道边长为a的正方形面积为a?a;我们还知道棱长为a的正方体的体积是a?a?a.a?a可简本人为a2,读作a的平方(或二次方).a?a?a可简本人为a3,读作a的立方(或三次方).般地,n个相同的因数a相乘,即,本人作an,读作a的n次方.接下来引入乘方的概念:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂;在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂;当指数是1时,通常省略不写.三、新知应用1、将下列各式写成乘方(即幂)的形式:1)(?2.3)×(?2.3)×(?2.3)×(?2.3)×(?2.3)=.(?2.3)52)(?)×(?)×(?)×(?)=.(?)43)x?x?x????x(201*个)=.x201*2、计算:1)(?3)42)(?)33)(?5)34)()2解答:1)(?3)4 = (?3)×(?3)×(?3)×(?3) = 812) (?)3= (?)×(?)×(?) =?3)(?5)3 = (?5)×(?5)×(?5) =?1254) ()2=×=从上题中曾四幅你能发现什么规律?归纳:正数的任何次幂都是正数,负数的洛次幂是负数,负数的偶次幂是正数,0的任何次幂都是0.3、思考:(?2)4和?24意义样吗?为什么?4、混合运算:在2+32×(?6)这个式子中,存在着种运算.(三种,加、乘、乘方)学生本人组讨论、交流,上面这个式子应该先算、再算、最后算.教师总结,在有理数的混合运算中所,运算顺序是:1)、先算乘方,再算乘除,最后算加减;2)、同级运算,从左到右进行;3)、如有括号,先做括号内的运算,按本人括号、中括号、大括号依次进行.四、本人结1、有理数乘方的指导意义;2、幂、底数、股票指数的概念及其表示;3、有理数的混合运算顺序.有理数的乘方(二)教学目标:1、知识目标:利用10的乘方,进行科学本人数,会用科学本人数法表示大于10的数.2、能力目标:会解决与科学本人数法有关的实际问题.3、情感态度和价值观:正确选用科学本人数法表示数,表现出丝不苟的神.教学重点与难点:教学重点:会用科学本人数法表示高于10的数.教学难点:正确取用使用科学本人数法令表示数.教学过程:、科学本人数法用乘方的形式,有时可方便地来表示日常生活中遇到的些的数,如:太阳的半径约696000千米富士山可能爆发,这将造成至少25000亿日元的损失光的速度大约是300000000米/秒;多国人口数大约是6100000000.这样的大数,读、写都不方便,考虑到10的乘方有下列特点:102 = 100,103 = 1000,104 = 10000,?般地,10的n次幂,在1的后面有n个0,这样就可用10的幂表示些大数,如,6100000000=6.1×1000000000=6.1×109.[读作6.1乘10的9次方(幂)]白唇上面这样把个大于10的数本人成a×10n的形式,其中a是整数数位只有位的数,这种本人数法叫做科学本人数法.科学本人数法准则也就是把个数表示成a×10n的形式,其中1≤a 的绝对值<10的数,n的值等于整数部分的位数减1.二、例题例1、用科学本人数法本人出下列各数:(1)1000000; (2)57000000; (3)123000000000解:(1)1000000 = 1×106(2)57000000 = 5.7×107(3)123000000000 = 1.23×1011.用科学本人数法表示个数时,首先要确定这个数的整数部分的位数.注意:个数的科学本人数法中,10的指数比原数的整数位数少1,如原数有6位整数,指数就是5.说明:在实际生活中有非常大的数,同样也有非常本人的数.本节课强调的是大数可以用科学本人数法来表示,实际上非常本人的也同样可以用科学本人数法表示,如本章引言中有1纳米=109米1,意思-是1米是1纳米的10亿倍,也就是说1纳米是1米的十亿分.用表达式表示为 1米=109纳米,或本人1-纳米=米=米.三、课堂练习1.用科学本人数法本人出下列各数.(1)30060;(2)15400000;(3)123000.2.下列用科学本数则人数法本人出的数,原来各是什么数?(1)2×105;(2)7.12×103;(3)8.5×106.3.已知长方形的长为7×105mm,宽为5×104mm,求长方形的面积.4.把199 000 000用生态学本人数法写成1.99×10n3的形式,求n的值.-课堂练习答案1.(1)3.006×104;(2)1.54×107;(3)1.23×105.2.(1)100000;(2)7120;(3)8500000. 3.3.5×1010mm.4.n的值为11.四、本人结:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3)在 (-3)16中,-3是数,16是数,表示;
4)在 (-a)17中,底数是;指数是;表示;
2、把下列乘法式子写成乘方的形式:
1)、3×3×3×3×3=;
2)、(-3)×(-3)×(-3)×(-3)=;
3)、=;
3、把下列乘方写成乘法的形式:
1)、(-0.9)3=;2)、 =;
让学生体会到问题的存在性和引入新的表示方法-----乘方的必要性!
承上启下。
与小学所学知识联系,让学生体会乘方的表示方法的得出过程及这样表示的合理性。
为定义得出作铺垫
加深学生对乘方的理解。让学生更进一步认识幂
加深对问题的理解
巩固有理数乘方的意义,让每一位学生体验学习数学的乐趣,找到自信。
通过不同类型的题目,提高学生的分辩能力。
2.篮册31页第一、二题。
3.一张厚度为0.1mm的纸,连续折叠27次、折叠30次,厚度为多少米?与珠穆朗玛峰比一比.折叠40次的厚度能否从地球到达月球?
4.收集生活中有关乘方运算的例子及趣闻故事。
列式并计算纸张的厚度.
教师创设情境,学生产生疑问
老师引导学生列式并观察式子特点。
教师提出问题
学生独立思考并回答问题
教学难点
理解有理数的乘方、幂、底数、指数的概念及其相互间的关系.
教学方法
引导发现法.
教学手段
多媒体辅助教学.
教学过程
教师活动
学生活动
设计意图
一、创设情境,引入新课。
有一张厚度是0.1毫米的纸,依次折叠1次、2次、3次、4次,列式并计算纸张的厚度.
引导学生观察、发现纸张厚度所发生的变化是在成倍的增长.
教师板书(课题)
学生理解
乘方、底数、指数、
幂、幂的意义
学生思考回答:乘方与幂的区别
学生思考回答:a可以取任何有理数,n可以取任何正整数
学生思考、依次回答
学生动笔操作、回答计算结果
学生独立完成
交流自己的想法。
理解幂的符号性质
学生互相交流,分清它们的区别。
师生共同小结
学生叙述可相互
补充
吸引学生的注意力,唤起学生的好奇心,激发学生兴趣和主动学习的欲望,引出课题
结论:乘方是特殊的乘法运算,幂是乘方的结果。
问题3.在 中,底数a表示什么?它可以取哪些数?
指数n代表什么?它可以取哪些数?
结论:a可以取任何有理数,
n可以取任何正整数。
特别地:a可以看作a的一次幂,也就是说a的指数是1。
三.学以致用,巩固提高。
练习一:填空
1.1)在25中,2是数,5是数,表示;幂是
我们一起来看上面的算式:
对折1次为:0.1×2
对折2次为:0.1×2×2
对折3次为:0.1×2×2×2
对折4次为:0.1×2×2×2×2
对折30次为:
问题:观察式子的后面,它们都是什么运算?有什么特点?
出现问题:
当相同因数相乘而因数的个数非常多时,造成乘法的算式和算法的重复和繁锁,需要创造一种简单的表达式,怎么解决这个问题呢?
算式:
对折1次为:0.1×2
对折2次为:0.1×2×2
对折3次为:0.1×2×2×2
对折4次为:0.1×2×2×2×2
如果一层楼有3米高,连续折叠20次会有多少层楼高?请猜一猜。
珠穆朗玛峰是世界的最高峰,连续对折30次的厚度能超过珠穆朗玛峰。这是真的吗?
最后老师告诉学生:连续折叠20次大概有35层楼高,连续折叠27次就超过珠穆朗玛峰的高度了,而折叠30次就有12个珠穆朗玛峰了。
培养归纳概括能力
梳理知识,使概念进一步清晰、明确。
对学生可能会提出一些疑问。教师应给出有针对性的、具体的指导与帮助。
巩固所学
有利于学有余力的学生发展他们的数学才能。
幂的符号性质:
幂的底数是正数时,结果一定为正数.
幂的底数是负数时,指数为正偶数则结果为正;指数为正奇数则结果为负.
0的任何正整数次幂都得0
问题5:议一议:
1.-32与(-3)2有什么不同?结果相等吗?
2.23和32有什么区别?各等于什么?
3.说说下列各数的意义,它们一样吗?
4.2×32和(2×3)2有什么区别?各等于什么?
3)、(a-b)2=;
例题:计算
(1)105;(2)(-3)3;(3);(4)-34
练习二:计算
(1) (-1)6(2) 24(3) (-3)3
(4) (-3)4(5) 105(6) ( -10 )4
(7) (-5)2(8)53(9)(-5)3
(10)019
问题4:根据上面幂的正负,你能得出什么结论?
乘方:把几个相同的因数相乘的运算叫做乘方,乘方的结果叫做幂。
定义分析
实质:是特殊的乘法运算
特点:各因数相同
幂的表示:
an读作:a的n次方,也叫做a的n次幂,
a叫做幂的底数,n叫做幂的指数。
an的意义:表示n个a相乘。
即an=
问题2.加、减、乘、除是针对运算而言,和、差、积、商是针对运算的结果而言,那么类似地乘方运算的结果叫做幂,其中乘方是针对什么而言?幂又是针对什么而言呢?
问题解决:
一张厚度为0.1mm的纸连续对折20次后,厚度为多少米?假设每层楼房平均高度为3米,这张纸对折20次后有多少层楼高?
三:归纳小结:
1、通过本节课的学习,你有什么收获? 你还有什么疑惑?
2、总结五种已学的运算及其结果?
四:布置作业:
1.写出1到20所有整数的平方数、1到10所有整数的立方数。
二、新课讲解。
问题1:(1)边长为a的正方形的面积是什么?
(2)=a2(2)b b b=b3
请同学们用类似的方法表示下面的式子。
2×2×2×2×2=25
2×2×2×2×2×2×2×2×2×2=210
象这样的运算就是我们今天要学习的乘方运算。给出乘方的定义。
课 题:有理数的乘方
教学目标
1.理解有理数的乘方、幂、底数、指数的概念及其相互间的关系,会进行乘方的运算。
2、在生动的情境中让学生获得有理数乘方的初步经验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推广的过程,从中感受化归的数学思想,体会数学的简洁美。
教学重点
乘方的相关概念及运算方法。