PN-Triangles

合集下载

三角网

三角网

(a) First triangle starting from the boundary
(b) Subsequent triangles formed near the boundary
一旦提取出数据区域的凸闭包,就可以从其中的一条边 开始逐层构建三角网



生长算法于1978 由Green, Sibson提出, 随后Brasse,lReif 等众多学者对其进行了改进。 三角网生长算法的基本步骤如下: 1) 任意选择点集P中的一点P1; 2) 从点集P中选取距离P1最近的点P2; 3) 如果点P3满足条件: 三角形P1P2P3满足空圆特性且夹角P 1P3P2 最大, 则选择点P3; 4) 创建初始边列表和初始三角形列表; 5) 如果边列表不为空, 则执行以下步骤: ①从边列表中取出一条边; ②寻找满足空圆特性的点插入三角网中; ③与新插入的点构建新的边和三角形, 并加入到边列表和 三角形列表中; ④重复执行第5步, 直至退出。
动态式
TIN
Delaunay三角网


在众多三角网中, Delaunay三角网所具有的空 圆特性和最大最小角特性, 保证了Delaunay三 角网中不会出现过于狭长的三角形, 使得三角网 的构建更加合理与准确,从而具有极大的应用价 值。 狄洛尼三角网为相互邻接且互不重叠的三角形 的集合,每一个三角形的外接圆内不包含其它 的点。
Delaunay三角网构建方 法比较研究
1.引言 2. Delaunay三角网构建方法
2.1 逐点插入方法
2.2 三角网生长方法
2.3 分治方法
3 总结
1.引言
建立TIN的算法多种多样
Delaunay三角网或其他三角网 静态或动态方法 无约束或有约束的方法 直接或间接方法

丹佛斯液压马达型号1

丹佛斯液压马达型号1

2520L0262 • Rev CF • Nov 2012OMP , OMR and OMH Technical Information © 2011 Sauer-Danfoss. All rights reserved.Sauer-Danfoss accepts no responsibility for possible errors in catalogs, brochures and other printed material. Sauer -Danfoss reserves the right to alter its products without prior notice. This also applies to products already ordered provided that such alterations can be made without affecting agreed specifications. All trademarks in this material are properties of their respective owners. Sauer-Danfoss, the Sauer-Danfoss logotype, theSauer-Danfoss S-icon, PLUS+1™, What really matters is inside® and Know-How in Motion™ are trademarks of the Sauer-Danfoss Group. Front cover illustrations: F301 213, F301 214, F301 215, F301 228, F301 229, F301 230 Drawing: 151-1837ContentsRevision ViewContentsOMP , OMR and OMH ...................................................................................................................................6Speed, torque and output ...........................................................................................................................6OMP ....................................................................................................................................................................8Versions ..............................................................................................................................................................8Code numbers .................................................................................................................................................9Technical data ................................................................................................................................................10Technical data (e.g. speed, torque, pressure etc.) .............................................................................10Max. permissible shaft seal pressure .....................................................................................................14Pressure drop in motor, oil flow in drain line, direction of shaft rotation ................................15Permissible shaft loads ...............................................................................................................................16Function diagrams .......................................................................................................................................20Shaft version ..................................................................................................................................................27Port thread versions ....................................................................................................................................29Dimensions .....................................................................................................................................................30OMR ..................................................................................................................................................................40Versions ............................................................................................................................................................40Code Numbers ..............................................................................................................................................41Technical data ................................................................................................................................................42Technical data (e.g. speed, torque, pressure etc.) .............................................................................42Max. permissible shaft seal pressure .....................................................................................................46Pressure drop in motor, oil flow in drain line, direction of shaft rotation ..............................47Permissible shaft load .................................................................................................................................48Function diagrams .......................................................................................................................................51Shaft version ..................................................................................................................................................56Port thread versions ....................................................................................................................................60Dimensions . (61)OMP, OMR and OMHTechnical InformationContentsContents OMH (76)Versions (76)Code Numbers (77)Technical data (78)Technical data (e.g. speed, torque, pressure etc.) (78)Max. permissible shaft seal pressure (81)Pressure drop in motor, oil flow in drain line, direction of shaft (82)Permissible shaft loads for OMH (83)Function diagrams (84)Shaft version (87)Port thread versions (90)Dimensions (91)Weight of motors ................................................................................................................................93-953520L0262 • Rev CF • Nov 20124520L0262 • Rev CF • Nov 2012OMP , OMR and OMH Technical InformationSauer-Danfoss is a world leader within production of low speed hydraulic motors with high torque. We can offer more than 3000 different hydraulic motors, categorised in types, variants and sizes (incl. different shaft versions).The motors vary in size (rated displacement) from 8 cm3 [0.50 in3] to 800 cm3 [48.9 in3] per revolution.Speeds range up to approx. 2500 min-1 (rpm) for the smallest type and up to approx 600 min-1 (rpm) for the largest type.Maximum operating torques vary from 13 Nm [115 lbf·in] to 2700 Nm [24.000 lbf·in] (peak) and maximum outputs are from 2.0 kW [2.7 hp] to 70 kW [95 hp].Characteristic features:• Smooth running over the entire speed range• Constant operating torque over a wide speed range • High starting torque• High return pressure without the use of drain line (High pressure shaft seal)• High efficiency• Long life under extreme operating conditions • Robust and compact design• High radial and axial bearing capacity• For applications in both open and closed loop hydraulic systems • Suitable for a wide variety of hydraulics fluidsA Wide Range of Hydraulic MotorsA Wide Range of Hydraulics MotorsF 301 2455520L0262 • Rev CF • Nov 2012OMP , OMR and OMH Technical InformationThe programme is characterised by technical features appealing to a large number of applications and a part of the programme is characterised by motors that can be adapted to a given application. Adaptions comprise the following variants among others:• Motors with corrosion resistant parts• Wheel motors with recessed mounting flange • OMP , OMR- motors with needle bearing • OMR motor in low leakage version• OMR motors in a super low leakage version • Short motors without bearings • Ultra short motors• Motors with integrated positive holding brake • Motors with integrated negative holding brake • Motors with integrated flushing valve • Motors with speed sensor • Motors with tacho connection•All motors are available with black finish paintThe Sauer–Danfoss LSHT motors are used in the following application areas: • Construction equipment • Agricultural equipment• Material handling & Lifting equipment • Forestry equipment• Lawn and turf equipment • Special purpose• Machine tools and stationary equipment •Marine equipmentDetailed data on all Sauer-Danfoss motors can be found in our motor catalogue, which is divided into 8 individual subcatalogues:• General information on Sauer-Danfoss hydraulic motors: function, use, selection of hydraulic motor, hydraulic systems, etc.• Technical data on small motors: OML and OMM• Technical data on medium sized motors: OMP , OMR and OMH • Technical data on medium sized motors: DH and DS • Technical data on medium sized motors: OMEW • Technical data on large motors: OMS, OMT and OMV • Technical data on large motors: TMK • Technical data on large motors: TMT • Technical data on large motors: TMVWA general survey brochure on Sauer-Danfoss hydraulic motors gives a quick motor reference based on power, torque, speed and capabilities.Survey of Literature with Technical Data on Sauer-Danfoss Hydraulic MotorsA Wide Range of Hydraulics Motors6520L0262 • Rev CF • Nov 2012OMP , OMR and OMH Technical InformationMax. speedMax. TorquePeak value Intermittend values Continuous values1) 1 1/4 in shaft2) 1 1/4 in or 1 1/4 in tapered shaft 3) 1 1/4 in splined shaft18001600140012001000800600400200111122341112233223451111223411122332234511112234111223322345min -1(rpm)151-1418.11OMPOMR OMH11001000900800700600500400300200100Nm lbf •in Speed, Torque and OutputA Wide Range of Hydraulics Motors7520L0262 • Rev CF • Nov 2012OMP , OMR and OMH Technical InformationThe bar diagrams above are useful for a quick selection of relevant motor size for the application. The final motor size can be determined by using the function diagram for each motor size.• OMP and OMPW can be found on pages 20 - 26• OMR and OMRW can be found on pages 51 - 55• OMH can be found on pages 84 - 86The function diagrams are based on actual tests on a representative number of motors from our production. The diagrams apply to a return pressure between 5 and 10 bar [75 and 150 psi] when using mineral based hydraulic oil with a viscosity of 35 mm 2/s [165 SUS] and a temperature of 50°C [120°F]. For further explanation concerning how to read and use the function diagrams, please consult the paragraph "Selection of motor size" in the technical information "General Orbital Motors" 520L0232 Rev. B.Speed, Torque and OutputA Wide Range of Hydraulics Motors8520L0262 • Rev CF • Nov 2012OMPTechnical Information VersionsFeatures available (options) :Low leakage (low speed valve)Speed sensor Viton shaft sealReverse rotation PaintedVersions→→→9520L0262 • Rev CF • Nov 2012OMPTechnical Information Code NumbersOrderingAdd the four digit prefix “151-” to the four digit numbers from the chart for complete code number.Example:151-0305 for an OMP 200 with A2 flange, cyl. 1 in shaft, port size G 1/2 and high pressure shaft seal.Orders will not be accepted without the four digit prefix.Code Numbers* Motor painted black→→OMPTechnical InformationTechnical DataTechnical data for OMP with 25 mm and 1 in cylindrical shaft1) Intermittent operation: the permissible values may occur for max. 10% of every minute.2) Peak load: the permissible values may occur for max. 1% of every minute.10520L0262 • Rev CF • Nov 2012Technical DataTechnical data for OMP with 25 mm and 1 in cylindrical shaft (continued)1) Intermittent operation: the permissible values may occur for max. 10% of every minute.2) Peak load: the permissible values may occur for max. 1% of every minute.Technical DataTechnical data for OMP with 1 in splined and 28.5 mm tapered shaft2) Peak load: the permissible values may occur for max. 1% of every minute.Technical Data Technical data for OMP with 32 mm cylindrical shaft2) Peak load: the permissible values may occur for max. 1% of every minute.OMP with HPS andOMP with HPS and drain connection: without drain connection:The shaft seal pressure equals theand return pressure.P seal = P in + P return 2OMP with HIGH Pressure Shaft Seal (HPS)OMP with Standard Shaft SealTechnical Data - Max. Permissible Shaft Seal PressureThe curve applies to an unloaded motor shaft and an oil viscosity of 35 mm2/s [165 SUS]A: OMP 50 - 400B: OMP 25 - 40 / OMPWPressure Drop in MotorOil Flow in Drain LineDirection of ShaftRotationTechnical DataThe table shows the max. oil flow in the drain line at a return pressure less than5-10 bar [75-150 psi].--------- cylindrical shaft 32 mm [1.26 in]______ other shaft versionsThe curve shows the relation between P R and n• when l = 30 mm [1.18 in] for motors with A2 (European version) and A4 oval mounting flange• when l = 24 mm [0.94 in] for motors with square mounting flange and A2 (US version)For applications with special performance requirements we recommend OMP with theoutput shaft running in needle bearings.151-1203.10lbf 2000160012008004000Technical DataThe permissible radial shaft load (P R ) depends on • Speed (n)• Distance (L) from the point of load to the mounting flange • Mounting flange version • Shaft versionMounting flange4-oval flange**2-hole oval flange (European version)4-hole oval flangeSquare flange**2-hole oval flange (US-version)Shaft version 25 mm cylindrical shaft 1 in cylindrical shaft 1 in splined shaft 32 mm cylindrical shaft 25 mm cylindrical shaft Permissible shaft load(P R ) - l in mm 800 •250000 N*n 95 + L 800 •187500 N*n 95 + L 800 •250000 N*n 101 + L Permissible shaft load(P R ) - l in inch800 •2215 lbf*n 3.74 + L800 •1660 lbf*n 3.74 + L800 •2215 lbf*n 3.98 + L* n ≥ 200 min -1 [rpm]; ≤ 55 mm [2.2 in]n< 200 min -1 [rpm]; = > P Rmax = 8000 N [1800 lbf]** For both European and US-versionPermissible Shaft Load for OMP NTechnical DataThe output shaft on OMP N can be offered in needle bearings. These bearings and the recessed mounting flange allow a higher permissible radial load in comparison to OMP motors.The permissible radial load on the shaft is shown for different speeds as a function of the distance from the mounting flange to the point of load application.Curve A indicates the max. radial shaft load. Any shaft load exceeding the values quoted in curve A will involve risk of breakage.The other curves apply to a B10 bearing life of 2000 hours at the number of revolutions indicated by the curve letter. Mineral based hydraulic oil with a sufficient content of anti-wear additives must be used.Bearing life calculations can be made using the explanation and formula provided in the chapter "Bearing dimensioning" in the technical information "General Orbital Motors"520L0232 Rev. B.4400400036003200280024002000160012008004000151-2112.10lbf N P rad.P rad.Permissible Shaft Load for OMPW with Slide BearingsThe output shaft on OMPW can be offered in slide bearings similar to the other OMP-motors. The permissible higher radial load is therefore due to the recessed mounting flange moving the point of load closer to the motor bearings.The permissible radial load on the shaft is shown for different speeds as a function of the distance from the mounting flange to the point of load application.The curves are not based on calculations of B10 bearing life. They represent absolute limits that must not be exceeded.Curve A indicates the max. radial shaft load. Any shaft load exceeding the values quoted in curve A will involve risk of breakage.Technical Data151-2105.10lbf N P rad.P rad.Permissible Shaft Load for OMPW N with Needle BearingThe output shaft on OMPW N can be offered in needle bearings. These bearings and the recessed mounting flange allow a higher permissible radial load in comparison to OMP motors.The permissible radial load on the shaft is shown for different speeds as a function of the distance from the mounting flange to the point of load application.Curve A indicates the max. radial shaft load. Any shaft load exceeding the values quoted in curve A will involve risk of breakage.The other curves apply to a B10 bearing life of 2000 hours at the number of revolutions indicated by the curve letter. Mineral based hydraulic oil with a sufficient content of anti-wear additives must be used.Bearing life calculations can be made using the explanation and formula provided in the chapter "Bearing dimensioning" in the technical information "General Orbital Motors" 520L0232 Rev. B.Technical Data4400400036003200280024002000160012008004000151-2106.10lbf N P rad.P rad.Function Diagrams⏹Continuous range⏹Intermittent range (max. 10% operation every minute)Max. permissible continuous/intermittent pressure drop for the actual shaft version can be found on page 10-13.Intermittent pressure drop and oil flow must not occur simultaneously.Function Diagrams⏹Continuous range⏹Intermittent range (max. 10% operation every minute)Max. permissible continuous/intermittent pressure drop for the actual shaft version can be found on page 10-13.Intermittent pressure drop and oil flow must not occur simultaneously.Function DiagramsFunction Diagrams⏹ Continuous range⏹Intermittent range (max. 10% operation every minute)Max. permissible continuous/intermittent pressure drop for the actual shaft version can be found on page 10-13.Intermittent pressure drop and oil flow must not occur simultaneously.OMP 60under preparationFunction DiagramsFunction DiagramsExplanation of function diagram use, basis and conditions can be found on page 7.⏹ Continuous range⏹Intermittent range (max. 10% operation every minute)Max. permissible continuous/intermittent pressure drop for the actual shaft version can be found on page 10-13Intermittent pressure drop and oil flow must not occur simultaneously.OMP 110under preparationFunction Diagrams⏹Continuous range⏹Intermittent range (max. 10% operation every minute)Max. permissible continuous/intermittent pressure drop for the actual shaft version can be found on page 10-13.Intermittent pressure drop and oil flow must not occur simultaneously.Function Diagrams⏹Continuous range⏹Intermittent range (max. 10% operation every minute)Max. permissible continuous/intermittent pressure drop for the actual shaft version can be found on page 10-13.Intermittent pressure drop and oil flow must not occur simultaneously.Function Diagrams⏹Continuous range⏹Intermittent range (max. 10% operation every minute)Max. permissible continuous/intermittent pressure drop for the actual shaft version can be found on page 10-13.Intermittent pressure drop and oil flow must not occur simultaneously.Shaft VersionA: Cylindrical shaft 25 mm D: Parallel key A8 • 7 • 32 DIN 6885B: Cylindrical shaft 1 inE: Parallel key 1/4 • 1/4 • 11/4 in B.S. 46US versionC: Cylindrical shaft 1 inF: Parallel key 1/4 • 1/4 • 11/4 in B.S. 46Shaft VersionDE151-1842.12FABCD: Cylindrical shaft 32 mm I: Parallel key A10 • 8 • 45 DIN 6885E: Splined shaftB.S. 2059 (SAE 6 B) Straight-sided,bottom fitting, dep. Fit 2Nom. size 1 in * Deviates from BS 2059 (SAE 6B)F: Tapered shaft H: DIN 937 NV 30Tightening torque:100 ± 10 N•m [885 ± 88.50 lbf•in]G: Taper 1:10J: Parallel key B5 • 5 • 14 DIN 6885Shaft VersionShaft Version151-1843.1115.29 [0.602]JA-ADEFA: G main portsG: ISO 228/1 - G 1/2 H: 7/D: G drain port F: UNF drain port E: ISO 228/1 - G 1/4 J: 7/16 - 20 UNF O-ring boss port European versionPort Thread VersionsManifold MountDABC12.2 [0.473]11.8 [0.465]151-1844.11Port Thread Versions18 [0.71]18 [0.71]151-2135.1020 [0.79]20 [0.79]20 [0.79]20 [0.79]36 [1.42]LL: see dimensional drawing forgiven OMP motor on pages 30 - 38Side port version with 2 hole oval mounting flange (A2-flange).D: G 1⁄2; 15 mm [0.59 in] deep E: M8; 13 mm [0.51 in] deep (4 pcs.)DimensionsDimensions - European Version151-1840.11OMPTechnical InformationDimensions - European VersionSide port version with 2 hole oval mounting flange (A2-flange). With drain connection.C: Drain connectionG ¼; 12 mm [0.47 in] deep D: G ½; 15 mm [0.59 in] deep E: M8; 13 mm [0.51 in] deep(4 pcs.)Dimensions151-1850.11. 6 [0.2OMPTechnical InformationDimensions - European VersionOMP C and OMP NSide port version with 2 hole oval mounting flange (A2-flange). DimensionsC: Drain connectionG ¼; 12 mm [0.47 in] deep D: G ½; 15 mm [0.59 in] deep E: M8; 13 mm [0.51 in] deep(4 pcs.)151-1841.12 .6[.2OMPTechnical InformationDimensions - European VersionEnd port version with 2 hole oval mounting flange (A2-flange).DimensionsC: Drain connectionG ¼; 12 mm [0.47 in] deep D:G ½; 15 mm [0.59 in] deep151-1748.11OMPTechnical InformationSide port version with 2 hole oval mounting flange (A2-flange). DimensionsDimensions - US VersionC: Drain connectionG 7/16 UNF;12 mm [0.47 in] deepD: G 7/8 - 14 UNF;16.7 mm [0.66 in] deepE: M8; 13 mm [0.51 in] deep(4 pcs.)151-1217.11ax.6[OMPTechnical InformationDimensions Side port version with 4 hole oval mounting flange (A4-flange).Dimensions - European VersionC: Drain connectionG ¼; 12 mm [0.47 in] deep D: G ½; 15 mm [0.59 in] deep E: M8; 13 mm [0.51 in] deep(4 pcs.)151-1747.12 .6[.OMPTechnical InformationEnd port version with square mounting flange (C-flange). DimensionsC: Drain connectionG ¼; 12 mm [0.47 in] deep D: G ½; 15 mm [0.59 in] deep E: M10; 15 mm [0.59 in] deep(4 pcs.)Dimensions - European Version151-1749.11OMPTechnical Information Side port version with square mounting flange (C-flange).Dimensions - US VersionDimensionsC: Drain connection 7/16 - 20 UNF;12 mm [0.47 in] deep D: 7/8 - 14 UNF;16.76 mm [0.66 in] deepor 1/2 - 14 NPTF E: 3/8 - 16 UNC;15 mm [0.59 in] deep (4 off)F: M8; 13 mm [0.51 in] deep(4 pcs.)151-1214.11CFDOMPTechnical InformationOMPW and OMPW N wheel motorC: Drain connectionG ¼; 12 mm [0.47 in] deep D: G ½; 15 mm [0.59 in] deep E: M10; 20 mm [0.79 in] deep(4 pcs.)DimensionsDimensions - European Version151-1360.11m a xOMPTechnical InformationNotesNotesOMRTechnical InformationVersionsFeatures available (options) :Low leakage (low speed valve) Reverse rotation Speed sensor PaintedViton shaft seal →Versions→→→→→→→Orders will not be acceptedwithout the four digit prefix.Code NumbersOrderingAdd the four digit prefix “151-”to the four digit numbers fromthe chart for complete codenumber.Example:151-6004 for an OMR 160 withA4 flange, cyl. 32 mm shaft, portsize G 1/2 and side port version. Code NumbersTechnical DataTechnical data for OMR with 25 mm and 1 in cylindrical shaft1) Intermittent operation: the permissible values may occur for max. 10% of every minute.2) Peak load: the permissible values may occur for max. 1% of every minute.Technical DataTechnical data for OMR with 1 in splined and 28.5 mm tapered shaft1) Intermittent operation: the permissible values may occur for max. 10% of every minute.2) Peak load: the permissible values may occur for max. 1% of every minute.Technical DataTechnical data for OMR with 32 mm , 1 ¼ in cylindrical shaft and 35 mm, 1 ¼ in tapered shaft1) Intermittent operation: the permissible values may occur for max. 10% of every minute.2) Peak load: the permissible values may occur for max. 1% of every minute.Technical Data for Parking Brake Motor OMR F, OMR NF and OMRW NFFunction 1) This brake is to be used only as a passive parking brake. It may not be used for dynamic braking.2) Brake motors must always have a drain line. The brake release pressure is the difference between thepressure in the brake release line and the pressure in the drain line.In normal condition where there is no pressure on the integrated brake in OMR, i.e. the brake is applied. The brake is released when hydraulic pressure of 21 bar [300psi] min. is applied to the brake release port (1).The pressure forces the piston (2) against the springs (3 and 4) disengaging the outer and inner discs (5 and 6) from each other so that the cardan shaft (7) and consequently output shaft (8) become free to rotate.If the pressure on the brake release port is reduced to less than 21 bar [300psi], the springs force the piston and pressure pad (9) against the brake discs and the cardan shaft/output shaft begin to lock up.Technical Data151-1726.10151-1739.10.10OMR with HPS,The shaft seal pressure equals the average of input pressure and return pressureP seal = P in + P return 2OMR with High Pressure Shaft Seal (HPS)OMR with Standard ShaftSealOMR with HPS, check valves and the drain line.valves and without drain connection:Technical Data - Max. Permissible Shaft Seal PressurePressure Drop in MotorOil Flow in Drain LineDirection of Shaft Rotation The curve applies to an unloaded motor shaft and an oil viscosity of 35 mm2/s [165 SUS] The table shows the max. oil flow in thedrain line at a return pressure less than5-10 bar [75-150 psi].Technical DataPressure dropbar [psi]Voscositymm2/s [SUS]Oil flow in drainline l/min [USgal/min]100[1450]20[100]2.5[0.66]35[165]1.8[0.78]140[2030]20[100]3.5[0.93]35[165]2.8[0.74]--------- cylindrical shaft 32 mm [1.26 in]______ other shaft versionsThe curve shows the relation between P R and n• when l = 30 mm [1.18 in] for motors with A2 (European version) and A4 oval mounting flange• when l = 24 mm [0.94 in] for motors with square mounting flange and A2 (US version)For applications with special performance requirements we recommend OMR with the output shaft running in needle bearings.Permissible Shaft Loadsfor OMR151-1203.10lbf 2000160012008004000The permissible radial shaft load (P R ) depends on • Speed (n)• Distance (L) from the point of load to the mounting flange • Mounting flange version • Shaft versionMounting flange4-oval flange**2-hole oval flange (European version)4-hole oval flangeSquare flange**2-hole oval flange (US-version)Shaft version 25 mm cylindrical shaft 1 in cylindrical shaft 1 in splined shaft 32 mm cylindrical shaft 25 mm cylindrical shaft Permissible shaft load(P R ) - l in mm 800 •250000 N*n 95 + L 800 •187500 N*n 95 + L 800 •250000 N*n 101 + L Permissible shaft load(P R ) - l in inch800 •2215 lbf*n 3.74 + L800 •1660 lbf*n 3.74 + L800 •2215 lbf*n 3.98 + L* n ≥ 200 min -1 [rpm]; ≤ 55 mm [2.2 in]n< 200 min -1 [rpm]; = > P Rmax = 8000 N [1800 lbf]** For both European and US-versionTechnical DataTechnical DataPermissible Shaft Load for OMR N and OMR NF with Needle BearingsThe output shaft on OMR N and OMR NF runs in needle bearings. These bearings and the recessed mounting flange allow a higher permissible radial load in comparison to OMR motors with slide bearings.The permissible radial load on the shaft is shown for different speeds as a function of the distance from the mounting flange to the point of load application.Curve A shows max. radial shaft load. Any shaft load exceeding the values quoted in the curve will involve a risk of breakage.The other curves apply to a B10 bearing life of 2000 hours at the number of revolutions indicated by the curve letter. Mineral based hydraulic oil with a sufficient content of anti-wear additives must be used.Bearing life calculations can be made using the explanation and formula provided in the chapter »Bearing dimensioning« in the technical information "General" DHMH.PK.100.G2.02 520L0232.4400400036003200280024002000160012008004000151-2112.10lbf N P rad.P rad.。

OMRON G3VM-21HR MOS FET 开关电路模块说明书

OMRON G3VM-21HR MOS FET 开关电路模块说明书

1Higher power, 2.5-A switching with SOP package. Low 20-m Ω ON Resistance.•Continuous load current of 2.5 A. (Connection C: 5 A)■Application Examples■Terminal Arrangement/Internal Connections■List of Models*The AC peak and DC value are given for the load voltage.RoHS compliantNote: The actual product is marked differently from theimage shown here.•Communication equipment •Test & Measurement equipment •Data loggers •Industrial equipmentOMRON logo Pin 1 markModel nameLOT.No.932Note:The actual product is marked differently from the image shown here.Package type Contact formTerminalsLoad voltage (peak value) *Model Minimum package quantityNumber per tube Number per tape and reelSOP61a(SPST-NO)Surface-mounting Terminals20 VG3VM-21HR75-G3VM-21HR (TR)-2,5002G3VM-21HRMOS FET Relays■Recommended Operating ConditionsUse the G3VM under the following conditions so that the Relay will operate properly.■Engineering Data■Safety Precautions•Refer to "Common Precautions" for all G3VM models.ItemSymbol MinimumTypical MaximumUnitLoad voltage (AC peak/DC)V DD - -20V Operating LED forward current I F 51020mAContinuous load current (AC peak/DC)I O - - 2A Ambient operating temperatureTa−20-65°CLED forward current vs. Ambient temperatureContinuous load current vs. Ambient temperatureLED forward current vs. LED forward voltageContinuous load current vs. On-state voltage On-state resistance vs. Ambient temperature Trigger LED forward current vs. Ambient temperatureTurn ON, Turn OFF time vs. LED forward current Turn ON, Turn OFF time vs. Ambient temperatureCurrent leakage vs. Load voltageOutput terminal capacitance vs. load voltageI F - TaAmbient temperature Ta (°C)L E D f o r w a r d c u r r e n tI F (m A )1020304050-20120100 80 60 40 020O Ambient temperature Ta (°C)0123456C o n t i n u o u s l o a d c u r r e n tI O (A )F FLED forward voltage V F (V)L E D f o r w a r d c u r r e n t I F (m A )0.1110100I O - V ONOn-state voltage V ON (V)C o n t i n u o u s l o a d c u r r e n t I O (A )-3-2-1123R ON - TaAmbient temperature Ta (°C)O n -s t a t e r e s i s t a n c e R O N (Ω)0.020.040.060.080.140.160.180.200.100.12I FT - TaAmbient temperature Ta (°C)T r i g g e r L E D f o r w a r d c u r r e n t I F T (m A )00.10.20.30.50.60.70.80.91.00.4t ON , t OFF - I FLED forward current I F (mA)1011000.010.1110T u r n O N , T u r n O FF t i m e t O N , t O F F (m s )Ambient temperature Ta (°C)-20-4010080 60 40 0200.010.1110T u r n O N , T u r n O F F t i m e t O N , t O F F (m s )I LEAK - V OFFLoad voltage (V)5101520250246810C u r r e n t l e a k a g e I L E A K (n A )C OFF - V OFFLoad voltage (V)O u t p u t t e r m i n a l c a p a c i t a n c e C O F F /C O F F (0v )51015202500.20.40.60.81.0■Dimensions(Unit: mm)Note:Actual Mounting PadDimensions(Recommended Value, TOP VIEW)Note: The actual product is marked differently from the image shown here.Surface-mounting TerminalsWeight: 0.13 g• Application examples provided in this document are for reference only. In actual applications, confirm equipment functions and safety before using the product.• Consult your OMRON representative before using the product under conditions which are not described in the manual or applying the product to nuclear control systems, railroad systems, aviation systems, vehicles, combustion systems, medical equipment, amusement machines, safety equipment, and other systems or equipment that may have a serious influence on lives and property if used improperly. Make sure that the ratings and performance characteristics of the product provide a margin of safety for the system or equipment, and be sure to provide the system or equipment with double safety mechanisms.Cat. No. K172-E1-010412(0412)(O)Note: Do not use this document to operate the Unit.OMRON CorporationELECTRONIC AND MECHANICAL COMPONENTS COMPANYContact: /ecb。

Additel ADT681数字压力仪说明书

Additel ADT681数字压力仪说明书

ModelADT681: Regular gaugeADT681IS: ATEX certified intrinsically safe Accuracy681(IS)-02: 0.025% of full scale 681(IS)-05: 0.05% of full scale 681(IS)-10: 0.1% of full scale 681(IS)-20: 0.2% of full scale(For detailed accuracy, please see pressure range table)Gauge TypesGauge pressure Compound pressure Absolute pressure Differential pressureFan-shaped Graph ScaleSimilar to analog dials, including pressure swing, % indication with fan-shaped graph scale for visual reference, low/high alarm.DisplayDescription: 5 full digit FSTN LCDDisplay rate: 3 readings per second (Default setting).Adjustable from 10 readings per second to 1 reading every ten secondsNumeral display height: 16.5mm (0.65")OVERVIEWGauge pressure Differential pressureWith advanced microprocessor technology and state-of-the-art silicon pressure sensors, the 681 series digital pressure gauges provide an accurate, reliable, and economic solution for a wide range of pressure applications. They are loaded with functionality and remarkably easy to use. To reach the best performance, every silicon pressure sensor in our gauges is specially aged, tested and screened before assembly. The 681 series digital pressure gauges are unmatched in performance and reliability. Best of all, they are very affordableFEATURESPressure ranges to 36,000 psi (2500 bar) 0.025% full scale accuracy (681-02) 0.05% full scale accuracy (681-05) 0.1% full scale accuracy (681-10) 0.2% full scale accuracy (681-20)Fully temperature compensated accuracy from 14°F to 122°F (-10°C to 50°C) Up to eleven selectable pressure unitsLarge, easy to read display with 5-digit resolution Backlit display% pressure indication with fan-shaped graph scale for visual referenceDisplay flash warning when pressure over 120% of FSBottom mount or panel mountATEX certified intrinsically safe (Model 681IS) NIST traceable calibration with data(included)9V battery power or AC adapter (optional)SPECIFICATIONSPressure ranges to 36,000 psi (2500 bar)0.025%, 0.05%, 0.1% or 0.2% FS accuracy% pressure indication with fan-shaped graphscale for visual referenceFully temperature compensated accuracy Panel mount gauges are availableDigital Pressure GaugesAdditel 681Pressure RangesNote: [1]. Sealed gauge pressure for above 1000 psi[2]. G=Gas, L=Liquid (please specify media type when place order) [3]. 0.025% FS for gas media onlyPressure UnitsPa, kPa, MPa, psi, bar, mbar, kgf/cm 2, inH 2O@4°C mmH2O@4°C, inHg@0°C, mmHg@0°CEnvironmentalCompensated Temperature: 14°F to 122°F (-10°C to 50°C)Operating Temperature*: 14°F to 122°F(-10°C to 50°C)*0.025%FS accuracy guaranteed only over the ambient temperature range of 68°F to 79°F (20°C to 26°C)Storage Temperature: -4°F to 158°F (-20°C to 70°C)Humidity: <95%SPECIFICATIONS681 with rubber bootSPECIFICATIONSORDERING INFORMATIONPressure Port1/4NPT male, 1/4BSP male, M20×1.5 male (≤15,000 PSI)1/4HP female or 1/4HP male(≥15,000 PSI)*1/4HP female: Autoclave F-250-C, 9/16" - 18 UNF-2B *1/4HP male: Autoclave M-250-C, 9/16" - 18 UNF-2A0.236 inch (Ø6 mm) test hose (for differential pressure)Other connections available per requestPowerBattery: One 9V alkaline battery (included)Battery life: 300 hours (10 readings/s), 600 hours (3 reading/s), or 6000 hours (1 reading/10s)Power auto-off: 60 minutes power auto-off. Auto-off may be disableExternal power: 110/220V external power adapter (optional)*(Do not use the external power adapter in a hazardous atmosphere)Model NumberModel:ADT681ADT681ISAccuracy:02-0.025% of full scale 05-0.05% of full scale 10-0.1% of full scale 20-0.2% of full scaleRange type:PSI-range by psi BAR-range by bar H 2O-range by inH 2OPressure port type:N- 1/4NPT male N2- 1/2NPT male B-1/4BSP male M-M20X1.5 maleAF-Autoclave F-250-C female AM-Autoclave M-250-C malePressure range P/N:See pressure range table PB:Panel mount with back pressure portEnclosureCase material: Aluminum alloy Wetted parts: 316L SS Dimension:Ø110mm X 35mm depth X 176mm height(panel mount gauge: Ø140mm X 86mm depth)Weight: 0.6kgIntrinsic Safety and European Compliance CE markedATEX certified intrinsically safe (ADT681IS)Communication: RS232*(Do not use the RS-232 connector in a hazardous atmosphere)Warranty: 1 yearAccessories includedRubber boot (Except panel mount gauges)9V alkaline battery (1 pc)ManualNIST traceable calibration certificateOptional AccessoriesGP300PSI PB02N 681 Panel mount with back pressure port。

Chinese Academy of Sciences, Beijing

Chinese Academy of Sciences, Beijing

State Key Laboratory of Scienti c and Engineering Computing, ICMSEC, Chinese Academy of Sciences, Beijing
1 Introduction We use segments of low degree algebraic curves Gmn (u; v) = 0 in tensor product Bernstein-Bezier(BB) form de ned within a parallelogram or rectangle, to construct G1 and G2 splines. P A tensor product BB-form polynomial Gmn (u; v) = m i=0 Pn m n n=0 bij Bi (u)Bj (v ) of bi-degree (m; n) has total degree m + n, however, the class of Gmn (u;1 v) is a subset of polynomials of total degree m + n. G (resp G2 ) continuity implies curve segments share the same 1tangent(curvature) at join G and G2 constructions, we develop a spline curve family whose member satis es given interpolation conditions. Each family depends on one free parameter that is related linearly to coe cients of Gmn (u; v). Compared with A-spline segments de ned in triangular (barycentric) BB-form 2], these algebraic curve segments in tensor product form have the following distinct features: (a) They are easy to construct. The coe cients of the bivariate polynomial that de ne the curve are explicitly given. (b) There exist convenient geometric control handles to locally modify the shape of the curve, essential for interactive curve design. (c) The spline curves, for the rectangle scheme, are -error controllable where is the prespeci ed width of the rectangle. This feature is especially important for tting to \noisy" data with uncertainty. (d) These splines curves have a minimal number of in ection points. Each curve segment of the spline curve has either no in ection points if the corresponding edge is convex, or one in ection point otherwise, and the join points of the curve segments are not in ection points. (e). Since the required bi-degree (m; n) for G1 and G2 is low(in this paper, minfm; ng 2), the curve can be evaluated and displayed extremely fast. We explore both display via parameterization as well as recursive subdivision techniques(see 11]). (f) In the six spline families we discuss in sections 2 and 3, there are four cases with minfm; ng = 1. In these cases, rational parametric expressions are easily derived. Hence, for

SimilarPolygons

SimilarPolygons

Chapter 7Similar PolygonsWhen two polygons have the same shape and only differ in size, we say they are similar polygons.These two pentagons are similar. More formally, two polygons are similar if and only if there is a one-to-one correspondence between their vertices such that:1.the corresponding angles are congruent, and2.the lengths of the corresponding sides are proportionalSo just like congruence, similar polygons look the same, the corresponding angles are congruent, but their sides are not congruent, they are in proportion.Since congruent polygons had the same shape and size, we used the congruence symbol - !. And we would write !ABC !!DEF.With similar polygons, the size changes so we no longer have the equality, so we take out the = signs in the congruence symbol and if triangles are similar, we would write !ABC ~ !DEF and say triangle ABC is similar to triangle DEF.Taking this information with the properties of proportion we just learned, we learn more and be better able to apply the geometry we are learning.Let’s look at a theorem,Theorem If two polygons are similar, the ratio of their perimeters equals the ratio of the lengths of any two corresponding sides.As always, the best way to address any new information is by drawing and labeling a pictureADB C E F Perimeter of ∆ABC AB Perimeter of ∆DEF DETo prove this theorem, all we have to do is use the last property of proportion we studied.We know if the polygons are similar, the sides are in proportion. That isAB BC AC DE EF DFThe last property of proportion allows me to take the sum of the numerators and place that result over the sum of the denominators. Those sums are the perimeters of the two triangles.Angle – Angle PostulateUp to this point, the only way we could show triangles similar was by the definition. The next postulate is really going to make our lives easier with respect to triangles.Postulate If two angles of one triangle are congruent to two angles of anothertriangle, the triangles are similar.The reason this is a postulate is that we cannot prove it, but as we examine more and more cases, this seems to hold up. Since it does, we accept it as true without proof.Any postulate or theorem that has a name must be important, so make sure you know what this one says and means. Like ll theorems and postulates, this is a shortcut. Rather than showing all angles are congruent and the corresponding sides are in proportion, all I have to is show two angles congruent.Using this postulate, let’s see what doors that can open to make more observations.= = =TheoremIf an angle of one triangle is congruent to an angle of another triangle and the lengths of the sides including those angles are proportional, the triangles are similar.TCA BR SGiven: ∆ABC and ∆RST with !C ! !T and AC BCRT STProve: ∆ABC ~ ∆RSTTo prove that theorem, I will have to use a couple of strategies. The first is to draw and label the picture. The second is to bring in other information. I know the 2 angles are equal, that’s a start. Now what I can do is pick a point X on TR so that TX = CA, then draw XY || RS.Let’s see what that looks like and how that allows me to play with the geometry I already know.TX YR S∆TXY ~ ∆TRS by the Angle-Angle Postulate, that results inTX TYRT STBy the proportion given to us in the problem, we have AC ST = RT BC by cross multiplying. Again, by substitution, we have RT TY = RT BC or BC = TY by dividing out the RT on each side. The rest follows easily.= = Cross multiplying results in TX ST = RT TY. By substituting AC for TX, we have AC ST = RT TYLet’s try another one.ADXBCStatements Reasons1. AC || BD Given2. !A !!B 2 || lines cut by a transversal,alt int. angles are congruent3. !AXC !!BXD Vertical angles are congruent4. ∆AXC ~ ∆BXD Angle- angle PostulateOnce we know triangles are similar, we then know by definition the sides are in proportion. This will allow us to find lengths of sides of triangles.Applications: Similar !’sWe learned the sides of similar polygons are in proportion. Using that information, we are able to solve problems.If we continued in our study, we might be able to draw some more conclusions based on our observations.Theorem If a line is parallel to one side of a triangle and intersects the other twosides, it divides them proportionally.Given: !ABC, XY || ABProve: AXXC=BYYCStatements Reasons1. XY II AB Given2. !1 !!3, !2 !!4 || lines cut by t. corr. angles3. !ABC ~ !XYC AA Postulate4. ACXC=BCYCSimilar !’s5. AX + XC = AC Segment Addition Thm BY + YC = BC5. AC-XCXC =BC - YCYCProp of pro.6. AC – XC = AX Sub. prop =. BC – YC = BC7. AXXC=BYYCSubstitutionFollowing as a direct result of that theorem, we have the following corollary. CorollaryIf three parallel lines intersect two transversals, they divide them proportionally.Moving along, we have another theorem.Theorem If a ray bisects an angle of a triangle, it divides the opposite side intosegments whose lengths are proportional to the lengths of the other two sides.M Given: ∆ LMNLP bisects !MLN Prove: MP PN = LMLNStatementsReasons1. ∆ LMNGivenLP bisects !MLN 2. Extend ML, YN || LPConstruction 3. MP PN = LMLYfor ∆MYN line ||, divides ∆ pro 4. !1 = !2 Corr !’s 5. !1 = !3 Def ! bisector 6. !3 = !4 Alt int !’s 7. !2 = !4Sub8. LY = LNBase !’s !, opp. sides ! 9.MP PN = LMLNSub in step 3In this proof, we drew the picture, then we added on to that picture so we could use our previously learned knowledge of geometry.Isn’t this stuff neat? These theorems and postulates will allow us to find lengths of line segments using similar triangles.Let’s find the height of a building using similar triangles.A 6 foot tall person casts a shadow 2 feet long. A building’s shadow is 30 feet long, how tall is the building?right angles, therefore by the AA Postulate, the triangles are similar.height of manlength of shadow=height of bldg.length of shadow2 ft. 30 ft.6 h2 302h = 180h = 90The height of the building is 90 feet.Just looking at thetriangles without theman and building andfilling in the numbers=。

元胞自动机

元胞自动机

除了格子气元胞自动机在流体力学上的成功应用。元胞自动机还应用于磁场、电场等场的模拟,以及热扩散、 热传导和机械波的模拟。另外。元胞自动机还用来模拟雪花等枝晶的形成。
元胞自动机可用来通过模拟原子、分子等各种微观粒子在化学反应中的相互作用,而研究化学反应的过程。 例如李才伟 (1997)应用元胞自动机模型成功模拟了由耗散结构创始人I·Prgogine所领导的Brussel学派提出 的自催化模型---Brusselator模型,又称为三分子模型。Y·BarYam等人利用元胞自动机模型构造了高分子的聚 合过程模拟模型,在环境科学上,有人应用元胞自动机来模拟海上石油泄露后的油污扩散、工厂周围废水、废气 的扩散等过程的模拟。
元胞自动机
格动力学模型
01 基本介绍
03 具体解释 05 应用
目录
02 通俗解释 04 分别描述
元胞自动机(cellular automata,CA)是一种时间、空间、状态都离散,空间相互作用和时间因果关系为局 部的格动力学模型,具有模拟复杂系统时空演化过程的能力。
基本介绍
不同于一般的动力学模型,元胞自动机不是由严格定义的物理方程或函数确定,而是用一系列模型构造的规 则构成。凡是满足这些规则的模型都可以算作是元胞自动机模型。因此,元胞自动机是一类模型的总称,或者说 是一个方法框架。其特点是时间、空间、状态都离散,每个变量只取有限多个状态,且其状态改变的规则在时间 和空间上都是局部的。
元胞自动机用于兔子-草,鲨鱼-小鱼等生态动态变化过程的模拟,展示出令人满意的动态效果;元胞自动机 还成功地应用于蚂蚁、大雁、鱼类洄游等动物的群体行为的模拟;另外,基于元胞自动机模型的生物群落的扩散 模拟也是当前的一个应用热点。在信息学中。元胞自动机用于研究信息的保存、传递、扩散的过程。另外。 Deutsch(1972)、Sternberg(1980)和Rosenfeld(1979)等人还将二维元胞自动机应用到图像处理和模式识别 中 (WoIfram.S.,1983)。

左梭状回视觉字形区功能研究进展

左梭状回视觉字形区功能研究进展

左梭状回视觉字形区功能研究进展翟洪昌;任静【摘要】左梭状回中部视觉字形区的功能是众多学者关注的焦点.文章主要探讨以下问题:视觉字形区是否具有字形特异加工功能,是否加工非文字刺激;视觉字形区加工文字外部特征还是文字意义及是否加工正字法;文字与非文字在视觉字形区的信号特征等.【期刊名称】《广州大学学报(自然科学版)》【年(卷),期】2010(009)005【总页数】4页(P92-95)【关键词】视觉字形区;功能;字形;物体【作者】翟洪昌;任静【作者单位】广州大学,教育学院,广东,广州510006;广州大学,教育学院,广东,广州510006【正文语种】中文【中图分类】Q189字形加工是否具有特定的脑结构基础及其功能如何已经成为现代神经科学研究的热点.COHEN等发现左梭状回中部对视觉字形具有特异加工,并把该激活区称为视觉字形区 (Visual Word Form Area,VW FA)[1-3].视觉字形区概念提出后,诸多学者围绕文字字形相对其它视觉物体是否具有特异化神经网络及非文字是否也在该区加工开展研究.PR INCE等[4]认为视觉字形区对物体外形一般加工而不是字形特异加工.针对该问题,研究者采用文字、非文字 (面孔、图形等)进行验证.对于该脑区加工文字字形还是字义,研究者采用假字、非字、陌生外文等具有外部特征而缺失意义的刺激与真字进行对比.有学者侧重从刺激信号特征角度探讨该区功能.视觉字形区的功能引起诸多学者的验证性研究.有学者采用非文字刺激探讨视觉字形区的功能,对视觉字形区的字形特异加工功能提出了质疑.COHEN等[1]发现文字加工在左梭状回中部出现激活,推测该激活点和文字视觉加工有关.随后,研究者采用真词、辅音串和棋盘为实验材料,结果发现真词在该脑区的激活比辅音串强[2].COHEN和MCCANDL ISS等[2-3]综合了多个相关研究,确定了视觉字形区的峰值强度中心位于左梭状回中部,Talairach coordinates(TC)坐标:X=-42,Y=-54,Z=-12,被试间变异很小.大量拼音文字研究都发现,左梭状回中部在文字加工过程中呈现一致性激活[1-3,5].视觉字形区是否也是其他文字字形加工脑区引起研究者的关注.COHEN等[6]认为,在其他语言加工中,也会发现视觉字形区的激活.有研究者发现左梭状回中部是加工日语汉字的重要脑区[7].有关汉字的研究也发现视觉字形区的激活.L IU等[8]在实验中发现汉字在左梭状回的字形加工位置与拼音文字的视觉字形区非常接近.上述语标文字的研究结果表明,左梭状回不仅对拼音文字具有字形加工功能,对其他文字同样具有加工功能.如果非文字刺激激活视觉字形区,说明该区对所有刺激具有一般视觉加工,而不仅仅是文字的特异性加工.MARTIN等[9]在实验中报告左梭状回中部可以被物体形状加工任务激活.JOSEPH等[10]报道简笔画和字母在左梭状回中部有共同激活区域,视觉字形区并未对字母产生特异激活.JOSEPH等[11]随后的研究进一步证实字母的特异性加工出现在与语言相关的脑区,而在左梭状回视觉字形区,字母和物体的激活相似.面孔研究也发现视觉字形区及附近脑区被面孔刺激激活[12-13].可见,视觉字形区对文字没有特异性加工,而是对所有刺激都具有一般外形加工.值得注意的是,JOSEPH等[10-11]在实验中使用的是字母刺激,而非单词.字母在视觉字形区没有产生特异性激活并不能代表单词没有特异激活.字母有音有形,但是字母的形能否代表词形值得考虑.字母在该脑区未激活并不能证明其不具有字形特异加工功能.目前,关于视觉字形区是否对字形具有特异性加工还存在很大争议.支持者认为这一脑区在加工文字时对字形包含的文字抽象特征进行特异性加工[14].相反,也有研究者认为这一脑区只是参与复杂视觉刺激的视觉信息提取、加工和整合,并向更高级的神经中枢传递,这一过程并不是文字特有的,其它视觉物体、颜色、面孔等刺激都能激活该脑区,该脑区只是神经传递的一个节点[15].文字是一种特殊的符号,除了具有外部视觉特征,还蕴含意义和正字法规则.视觉字形区对文字加工是单纯外部特征加工还是文字意义加工,是视觉字形区功能研究的重要方面.视觉字形区功能研究主要探讨其对文字是外部特征加工、意义加工还是正字法规则加工.为了探讨视觉字形区是否具有字义和正字法规则加工,研究者采用真字、假字、非字和无意义符号等材料进行研究.REINKE等[16]通过分析英语单词、有意义符号、数字和被试不认识的希伯来词汇在视觉字形区的脑加工情况,发现视觉字形区对单词和有意义符号的激活比陌生外文强,表明视觉字形区对有意义刺激有特异加工.相似的,SH IN等[17]用面孔和建筑物图片及其对应的抽象符号作为对比材料,结果发现抽象符号在枕颞结合区的激活位置和视觉字形区相近.物体抽象符号表征意义,因此视觉字形区对有意义符号具有加工功能.上述研究表明,视觉字形区对文字、有意义符号蕴含的意义特征进行加工.一系列研究成果报告了左梭状回对正字法规则的特异性加工[1-3].假字没有意义,但构字规则与真字一样.研究者以真词、假词和非词进行对比研究,发现左梭状回对真词和假词的激活强于不符合正字法规则的非词[2].L IU等[18]采用真字、假字和非字为实验材料,对比假字和非字在左梭状回的激活强度,发现假字的激活更强.说明符合正字法规则的文字能更强激活视觉字形区,即视觉字形区对正字法规则具有特异加工.然而,有研究发现真字在视觉字形区的神经活动不具有特异性.V IGNEAU等[19]发现视觉字形区在单词和非词阅读任务中的激活相似,因此研究者对该脑区的正字法特异加工功能产生了质疑.同时,有研究发现左梭状回对真词和字母串的反应没有差异[20].语标文字研究也有类似发现.KUO等[21]对汉字字形加工进行研究,结果发现,与真字和假字相比,无意义符号在视觉字形区附近脑区的激活更强.这些研究结果似乎表明文字意义特征和正字法规则在视觉字形区的神经活动中并没有优势,视觉字形区只是对文字外部特征进行一般视觉加工.视觉字形区对文字意义或正字法规则是否具有特异性加工尚无定论.有意义和无意义刺激都能激活视觉字形区,说明视觉字形区具有一般外部特征加工功能.心理书写任务是无字形呈现的实验任务.如果视觉字形区出现激活,则说明字形的物理属性不是视觉字形区激活的必要条件.NAKAMURA等[7]要求被试写出和在头脑中回想假名对应的日语汉字.这两种任务都没有呈现日语汉字字形,但是结果发现书写任务和想像任务激活了视觉字形区.但是,文字心理想像和书写研究还很少,得到的结果还不足以确定视觉字形的外部特征是否是视觉字形区活动的必要条件,这一观点还需要更多实验来探索.对于在未呈现视觉字形的条件下,视觉字形区仍能激活,MCCANDL ISS等[3]认为,可能因为被试在头脑中想像文字字形,从而引起视觉字形区的相应激活,是自上而下的神经活动.我们认为视觉字形区是一个多重功能脑区,每种功能都是与其他脑区相互协作而产生,视觉字形区只是功能神经网络中的一部分.REINKE等[16]在研究中发现视觉字形区并不是加工字形的唯一脑区,其他脑区,如海马、颞叶,也参与字形加工,形成一个神经网络.由此可见,视觉字形区的活动是激活模式中的一个成分,并不特异负责词形信息的加工.综上所述,左梭状回视觉字形区既可加工文字的外部特征,也可加工文字内部意义特征,并不是功能单一的脑区.最近的研究发现,不同类型刺激在视觉字形区的激活强度有差异.视觉字形区字形加工的特点是其对字形的激活强度大于其他刺激.因此,对于视觉字形区功能的研究不能只关注该区是否激活,而应该具体探讨不同刺激在该脑区的激活强度变化.BEN-SHACHAR等[22]发现视觉字形区对 3种不同类型的刺激都产生激活,但是对不同刺激的敏感度不同.对字形最敏感,其次是简笔画,最不敏感是无意义符号.相反,WATERS等[23]在实验中发现,图片在视觉字形区的激活比文字强.造成不同激活强度的原因可能是被试对不同刺激类型的经验水平不同,也可能是因为加工不同类型刺激所需要加工的视觉特征不同.有研究者认为,视觉字形区对不同刺激激活强度不同,可能和任务要求有关.STARRFELT等[24]通过 PET实验,对比文字和图形在颜色判断和分类任务条件下的激活情况,结果表明,字形和图片的激活状况受到加工要求高低的影响.视觉字形区对字形有特异性加工会出现在对形状加工较低的实验条件下(颜色判断).当加工要求增加时 (分类),视觉字形区对文字和图片的加工差异就会逐渐消失.这些研究结果表明,任务要求对视觉字形区的激活模式和强度有一定影响.根据目前研究结果,我们认为视觉字形区的字形加工功能是相对特异性,而非绝对特异性.视觉字形区研究取得很大进展,也存在不足.实验材料种类繁多,材料的选择标准、控制因素、数据处理方法等都难以统一,难免造成结果差异.先前大多数字形研究都和语音或语义研究夹杂在一起[21,25],而且大部分研究采用默读、语音判断、命名或无任务注视等实验任务[26-27].这些实验任务包含语音或语义加工.以往的研究较少讨论作业方法,而这些都是以后研究所要考虑的问题.近期有研究发现,视觉字形区对单词频度敏感[28-29].KRONB ICHLER等[30]系统地变化刺激词汇的词频.结果,随着词频的降低,视觉字形区的激活逐渐增加.说明不仅字形结构会影响视觉字形区的脑活动,文字的其他特征也会影响其活动.因此,视觉字形区未来的研究要深入探究其他语言特征对其激活强度和加工模式的影响.目前,关于双语视觉字形加工的研究还不多,第一语言和第二语言在字形视觉加工方面是否有其独特性,也是未来视觉字形区功能研究的方向之一.【相关文献】[1] COHEN L,DEHAENE S,NACCACHEL,et al.The visual word form area:spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients[J].B rain,2000,123(p t2):291-307.[2] COHEN L,LEHER ICY S,CHOCHON F,et nguage-specific tuning of visualcortex?Functional properties of the visual word form area[J].Brain,2002,125(p t5):1054-1069.[3] MCCANDL ISSB D,COHEN L,DEHAENE S.The visual word form area:expertise for reading in the fusiform gyrus[J].Trends Cogn Sci,2003,7(7):293-299.[4] PR INCEC J,DEVL IN J T.The myth of the visualword formarea[J].Neuroimage,2003,19(3):473-481.[5] VINCKIER F,DEHAENE S,JOBERTA,et al.Hierarchical coding of letter strings in the ventral stream:Dissecting the in neror ganization of the visual word-formsystem[J].Neuron,2007,55(1):143-156.[6] COHEN L,DEHAENE S.Specialization within the ventral stream:the case for the visual word form area[J].Neuroim age,2004,22(1):466-476.[7] NAKAMURA K,HONDA M,OKADA T,et al.Participation of the left posterior inferior temporal cortex in writing and mental recall of Kanjior thography:Afunctional MRIstudy[J].B rain,2000,123(p t5):954-967.[8] LIU JG,TIAN J,LEE K,et al.A study on neural mechanism of face processing based on fMRI[J].Progr Nat Sci,2008,18(2):201-207.[9] MARTIN A,CHAO L L.Seman tic memory and the brain:structure and processes[J].Curr Op in Neurobiol,2001,11(2):194-201.[10]JOSEPH J E,GATHERSA D,PIPER GA.Shared and dissociated cortical regions for object and letter processing[J].Brain ResCogn B rain Res,2003,17(1):56-67.[11]JOSEPH J E,CERULLOM A,FARLEY A B,et al.fMR Icorrelates of cortical specialization and generalization for letter processing[J].Neuroimage,2006,32(2):806-820.[12]HOROV ITZ SG,ROSSION B,SKUDLARSK IP,et al.Parametric design and correlational analyseshelp integrating fMR I and electro physiological data during faceprocessing[J].Neuro image,2004,22(4):1587-1595.[13]ISHA IA,HAXBY JV,UNGERLEIDER L G.V isual imagery of famous faces:effects of memory and attention revealed by fMR I[J].Neuroimage,2002,17(4):1729-1741.[14]DEHAENE S,COHEN L,SIGMANM,et al.The neural code for written words:aproposal[J].Trends Cogn Sci,2005,9(7):335-341.[15]DEVL IN J T,JAM ISON H L,GONNERMAN LM,et al.The role of the posterior fusiform gyrus in reading[J].J Cogn Neurosci,2006,18(6):911-922.[16]REINKE K,FERNANDESM,SCHW INDTG,et al.Functional specificity of the visual word form area:General activation for words and symbols but specific network activation forwords[J].B rain Lang,2008,104(2):180-189.[17]SH IN YW,KWON J S,KWON KW,et al.Objects and their icons in the brain:The neural correlates of visual concept formation[J].Neurosci Lett,2008,436(3):300-304.[18]L IU C,ZHANGWT,TANG Y Y,et al.The Visual Word Form Area:Evidence from an fMR Istudy of implicit processing of Chinese characters[J].Neuro image,2008,40(3):1350-1361.[19]VIGNEAUM,JOBARD G,MAZOYER B,et al.Word and non-word reading:what role for the Visual Word Form Area?[J].Neuroimage,2005,27(3):694-705.[20]BAKER C I,LIU J,WALD L L,et al.Visual word processing and experiential origins of functional selectivity in hum an extra striate cortex[J].Proc NatlA cad SciUSA,2007,104(21):9087-9092.[21]KUOW J,YEH TC,LEE JR,et al.Orthographic and phonologicalp rocessing of Chinese characters:An fMR Istudy[J].Neuroim age,2004,21(4):1721-1731.[22]BEN-SHACHARM,DOUGHERTY R F,DEUTSCH G K,et al.D ifferential sensitivity towords and shapes in ventraloccipito-tem poral cortex[J].Cereb Cortex,2007,17(7):1604-1611. [23]WATERSD,CAM PBELL R,CAPEK CM,et al.Fingerspelling,signed language,text and picture processing in deaf native signers:The role of them id-fusiform gyrus[J].Neuro image,2007,35(3):1287-1302.[24]STARRFELTR,GERLACH C.The visualwhat for area:words and pictures in the left fusiform gyrus[J].Neuroim age,2007,35(1):334-342.[25]CHEEM W,WEEKESB,LEE KM,et al.Overlap and dissociation of semantic processing of Chinese Characters,English Words,and pictures:Evidence from fMR I[J].Neuroimage,2000,12(4):392-403.[26]NAKAMURA K,OGA T,OKADA T,et al.Hem is pheric asymmetry emergesat distinct parts of the occipito temporal cortex for objects,logograms and phonograms:A functionalMR Istudy[J].Neuroimage,2005,28(3):521-528.[27]PILLA IJ J,ARAQUE JM,ALL ISON JD,et al.Functional MR Istudy of semantic and phonological language processing in bilingual sub jects:preliminary findings[J].Neuroim age,2003,19(3):565-576.[28]HAUKO,DAV ISM H,PULVERMüLLER F.M odulation of brain activity by multiple lexical and word for mvariables in visual word recognition:A parametric fMR Istudy[J].Neuroim age,2008,42(3):1185-1195.[29]PROVERB IO A M,ZAN IA,ADORN IR.The left fusiform area is affected by written frequency of words[J].Neuropsycho logia,2008,46(9):2292-2299.[30]KRONB ICHLERM,HUTZLER F,WIMM ER H,et al.The visual word form area and the frequency with which words are encountered:evidence from a parametric fMRIstudy[J].Neuroimage,2004,21(3):946-953.【责任编辑:周全】。

NVIDIA Direct3D 11 Tessellation技术详细介绍说明书

NVIDIA Direct3D 11 Tessellation技术详细介绍说明书
Approximating Catmull-Clark Subdivision Surface with Bicubic Patches” by Charles Loop and Scott Schaefer, ACM Transactions on Graphics, Vol. 27 No. 1 Article 8 March 2008.
Enrich Visual Details Using Direct3D 11 Tessellation
Tianyun Ni, NVIDIA
Direct3D 11 Tessellation: More Detail, Less Storage
Tianyun Ni, NVIDIA
Tessellation on Characters
Approximation rather than interpolation Requires the mesh info of a facet and its1-ring
neighborhood
PAaptpcrhoxCimoantsintgruCcattimonull-Clark SubdSivcishioenmSeusrfaces (ACC)
Vertex Shader Hull Shader
Skinning,…
•Compute Control Points (optional) •Compute LOD
Tessellator
Geometry expansion
Domain Shader Setup/Raster
Pixel Shader
Tessellation Patterns
Pixel Shader
Direct3D11 Tessellation Pipeline

完整版)全等三角形难题题型归类及解析

完整版)全等三角形难题题型归类及解析

完整版)全等三角形难题题型归类及解析1.在三角形ABC中,AD是角BAC的平分线,AE=AC,DE=2cm,BD=3cm,求BC的长度。

为了解决这个问题,我们可以利用角平分线的轴对称性,构造全等三角形ADE和ABC。

因为AE=AC,所以三角形ADE和三角形ABC的两边分别相等,因此它们是全等的。

根据全等三角形的性质,∠DAE=∠CAB,∠AED=∠ACB。

又因为AD是角BAC的平分线,所以∠DAE=∠EAC,因此∠CAB=2∠EAC。

设BC=x,则根据正弦定理可得:3/x=sin(2EAC)/sin(EAC),化简后得到x=6.2.在三角形ABC中,BD是角ABC的平分线,AB=BC,P在BD上,PM⊥AD于M,PN⊥CD于N,求解PM与PN 的关系。

首先,我们可以利用角平分线的性质,构造等腰三角形ABD和CBD。

因为AB=BC,所以三角形ABD和三角形CBD的两边分别相等,因此它们是全等的。

根据全等三角形的性质,∠BDA=∠BDC,∠ADB=∠CDB。

又因为BD是角ABC的平分线,所以∠ADB=∠BDC,因此∠BDA=∠CDB。

因此,三角形APM和三角形CPN是全等的。

因为全等三角形的对应边相等,所以PM=PN。

3.在三角形OAB中,P是角OAB的平分线上的一点,PC⊥OA于C,∠OAP+∠OBP=180°,OC=4cm,求解AO+BO的值。

我们可以利用角平分线的轴对称性,构造全等三角形OAC和OBC。

因为∠OAP+∠OBP=180°,所以∠AOP=∠BOP=90°。

因此,三角形OAP和三角形OBP是直角三角形。

设AO=x,BO=y,则根据勾股定理可得:x^2+PC^2=OP^2,y^2+PC^2=OP^2.又因为OC=4cm,所以PC=2cm。

将PC代入上面的两个式子中,得到x^2+y^2=OP^2-4.又因为三角形OAC和三角形OBC是全等的,所以x=y,因此2x^2=OP^2-4,即OP^2=2x^2+4.因此,AO+BO=2x=2√((OP^2-4)/2)=2√(2x^2)=2√(2y^2)=2√(2x^2+4)/2=2√(OP^2)/2=OP√2=2√6.4.在三角形ABC中,E在边AC上,且∠XXX∠ABC。

英语数学习题(中英文

英语数学习题(中英文

英语数学题班级: 姓名:1、今天是星期四,101000天后是星期几?Today is Thursday, what day is 101000 days later?2、某班男女人数相等,喜欢足球的学生中51是女生,喜欢足球的男生占全班人数的41。

已知不喜欢足球的女生有21人,喜欢足球的男生有( )人。

3 ).4139, the 5、A 、B A 与Dsecond place, then B got ( ).6、将1999减去它的21,再减去余下的31,再减去余下的41,……,最后减去余下的19991,那么剩下的数是( )。

Subtract one half of 1999 from it, and then subtract one third of the rest, and then subtract one quarter of the remaining,...... , finally subtract one 1999th of the remaining , then the result is ().7、现有大小油桶40个,每个大油桶可装油5千克,每个小油桶可装油3千克,大桶比小桶共多装油24千克,那么大油桶有()个,小油桶有()个。

There are forty drums, each big drums can hold oil 5 kg, each small oil can hold 3 kg, big drums hold more than 24 kg than small drums, so big drums have ( ), small oil have ( ). 8、甲、乙、丙三人同时同向出发,沿着周长为900米的环行跑道跑步。

甲每分钟跑360米,乙每分钟跑300米,丙每分钟跑210米。

他们至少各绕甲()圈,乙()圈,丙()) ring.9、将1011、2倍,小students without glasses is 2 times of the number with glasses, Bob found the number of the students with glasses is two thirds of the number without glasses. ( ) students attend theget-together.12、某商品按定价卖出可得利润960元,若按定价的80%卖出,则亏损832元,则商品的购入价是()元。

HydroLink 水链功能说明书

HydroLink 水链功能说明书

HydroLink ™The Hydrolink ™, combining a hydraulic separator with a distribution manifold, is used in heating and air-conditioning systems. It provides a chamber to hydraulically separate the boiler (or chiller) circuit from the distribution circuits and also provides a self-contained manifold station that supplies up to four independently controlled load circuits with the same supply temperature. Available configurations are compact, and can be easily installed in any hydronic system, saving space.Product rangeCode 559920A 2+0 separator-manifold with built-in mounting brackets and pre-formed insulation. Size: 1" NPT female main; 1" NPT male branches. Code 559921A 2+1 separator-manifold with built-in mounting brackets and pre-formed insulation. Size: 1" NPT female main; 1" NPT male branches. Code 559922A 2+2 separator-manifold with angle mounting brackets and pre-formed insulation.Size: 1 1/4" NPT female main; 1" NPT male branches.Code 559931A 3+1 separator-manifold with angle mounting brackets and pre-formed insulation.Size: 1 1/4" NPT female main; 1" NPT male branches.38483.03Technical characteristics Materials:Body:painted steelMaximum working pressure: 100 psi (7 bar)Working temperature range: 32 to 230°F (0 to 110°C)Performance:Medium:Water and non-hazardous glycol solutionsMaximum glycol percentage:50%Connections: - main: 3+1 and 2+2: 1 1/4” NPT female2+0 and 2+1: 1” NPT female - branches: 3+1 and 2+2: 1” NPT male 2+0 and 2+1:1” NPT male - air vent valve: 1/2” NPT female - drain valve: 1/2” NPT female Center distances: - main: 3+1 and 2+2: 3 1/8” (80 mm) 2+0 and 2+1: 2 3/8” (60 mm) - branches: 3+1 and 2+2: 5” (125 mm) 2+0 and 2+1:5” (125 mm)InsulationMaterial: EPPThickness: 3/4” (20 mm)Density: 3 lb/ft 3 (45 kg/m 3)Thermal conductivity: 0.25 BTU/in (.037 W/mK) at 50°F (10°C)Temperature range: 20 to 250°F (-5–120°C)Reaction to fire (UL 94):class HBFThese items are designed for use in closed hydronic systems. Do not use in plumbing applications. These items do not meet the low-lead plumbing standards of U.S. and Canada.Flow CharacteristicsMaximum recommended flow rates at connections:SAFETY INSTRUCTIONThis safety alert symbol will be used in this manual to draw attention to safety related instructions. When used, the safety alert symbol means ATTENTION! BECOME ALERT! YOUR SAFETY IS INVOLVED! FAILURE TO FOLLOW THESE INSTRUCTIONS MAY RESULT IN A SAFETY HAZARD.BranchesPrimarySecondary (totals)2+09 gpm (.56 l/s)22 gpm (1.4 l/s)2+19 gpm (.56 l/s)22 gpm (1.4 l/s)2+211 gpm (.70 l/s)26 gpm (1.67 l/s)3+111 gpm (.70 l/s)26 gpm (1.67 l/s)known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to .Installation and Insulation Assembly mounting brackets, which allow the front-to-back positioning to be adjusted.If the HydroLink™ unit is to be used with chilled water, spread a thin layer of sealant around the outer edges of the pre-formed insulation, wait until the solvent has evaporated (about 10 minutes) and then assemble.Having chosen the box location, proceed as in points 1-2-3-4 below.Installation and Insulation Assembly Procedures - Model 2 + 0 and 2 + 1Examples of locationin manifold boxService InstructionsThere is no service required for the HydroLink™ device.Installation Tip2. Mount the device to the internal supports in the manifold box.3. Connect the piping, leak-test and close the pre-formed insulation shell after removingthe protection film from the upper surface adhesive.4. If the unit is to be used with chilled water, see point 2 of the previous section.1. Remove the protection film from the lower surface adhesive and position the HydroL ink™ unit inside the insulation shell.。

二维中子输运问题的离散纵标短特征线方法研究

二维中子输运问题的离散纵标短特征线方法研究

二维中子输运问题的离散纵标短特征线方法研究刘聪;张斌;张亮;包博宇;赵好强;陈义学【摘要】离散纵标法是求解中子输运方程的主要数值方法之一,空间变量离散及误差控制对保证输运计算精度至关重要.传统有限差分离散方法对于特定模型会产生非物理振荡问题,粗网精度不足使得低阶差分方法的应用具有局限性.本文研究了二维常数和线性短特征线方法,短特征线空间离散基于中子输运的特征线解,根据输运方程的空间矩守恒构造网格角通量密度完成输运方程求解.选取固定源和临界问题进行测试验证并分析了网格敏感性.数值结果表明,线性短特征线离散对网格敏感性较低,较常数短特征线和低阶差分方法具有更高的计算精度及效率.【期刊名称】《原子能科学技术》【年(卷),期】2019(053)001【总页数】9页(P77-85)【关键词】中子输运;离散纵标法;空间离散;短特征线方法【作者】刘聪;张斌;张亮;包博宇;赵好强;陈义学【作者单位】华北电力大学核科学与工程学院,北京102206;华北电力大学核科学与工程学院,北京102206;华北电力大学核科学与工程学院,北京102206;华北电力大学核科学与工程学院,北京102206;华北电力大学核科学与工程学院,北京102206;华北电力大学核科学与工程学院,北京102206【正文语种】中文【中图分类】TL328离散纵标法(SN)是粒子输运数值计算常用的确定论方法之一[1],广泛应用于堆芯物理分析和核设施屏蔽计算。

空间变量离散是SN方程数值求解的重要组成部分,常见的离散方法包括有限差分法、有限元法等,不同离散方法各有优劣。

空间离散方法的正定性、截断误差、网格步长敏感性等影响着输运计算的可靠性。

有限差分方法具有成熟的数学基础且是各类SN程序普遍应用的空间离散方式,菱形差分(DD)[2]是最具代表性的低阶差分方法,DD在一维平板几何中具有二阶收敛精度,但有负通量问题且在粗网格下计算精度较低。

由DD发展出多种非线性低阶差分方法,包括负通量置零修正菱形差分(DZ)、带权重差分(WD)[3]、定向θ权重差分(DTW)[4]、指数定向差分(EDW)[5]和指数迭代差分(EDI)[6]等,这些差分方法通过引入修正或非线性假设保证角通量密度非负,在一定程度上改善了DD非物理振荡和粗网精度低的问题。

BS EN 558-1-1996 标准

BS EN 558-1-1996 标准
Amalgamated Engineering Union Association of Bronze and Brass Founders British Foundry Association British Gas plc British Plumbing Fittings Manufacturers’ Association British Valve and Actuator Manufacturers’ Association British Water Chartered Institution of Building Services Engineers Electricity Association Energy Industries Council Engineering Equipment and Materials Users’ Association GAMBICA (BEAMA) Ltd. Health and Safety Executive Institution of Mechanical Engineers LP Gas Association Pipeline Industries Guild Society of British Water Industries Water Services Association of England and Wales West Midlands CBI Coopted members
Industriearmaturen — Baulängen von Armaturen aus Metall zum Einbau in Rohrleitungen mit Flanschen — Teil 1: Nach PN bezeichnete Armaturen

中考数学试卷英文版

中考数学试卷英文版

Section I: Multiple-Choice Questions (40 points)Question 1: What is the value of the expression \( 3^2 - 2 \times 3 + 1 \)?A) 4B) 6C) 7D) 9Question 2: Solve for \( x \) in the equation \( 2x + 5 = 19 \).A) 7B) 8C) 9D) 10Question 3: Simplify the expression \( \frac{5}{6} + \frac{3}{4} \).A) \( \frac{23}{12} \)B) \( \frac{17}{12} \)C) \( \frac{19}{12} \)D) \( \frac{15}{12} \)Question 4: The length of a rectangle is 8 cm more than its width. If the perimeter of the rectangle is 36 cm, what is the width of the rectangle?A) 4 cmB) 6 cmC) 8 cmD) 10 cmQuestion 5: Solve the inequality \( 3x - 5 > 2x + 1 \).A) \( x > 6 \)B) \( x < 6 \)C) \( x = 6 \)D) \( x \leq 6 \)Question 6: If \( y = 2x - 3 \), what is the value of \( y \) when \( x = 4 \)?A) 5B) 6C) 7D) 8Question 7: A triangle has sides of lengths 5 cm, 12 cm, and 13 cm. What type of triangle is it?A) Acute-angled triangleB) Right-angled triangleC) Obtuse-angled triangleD) Equilateral triangleQuestion 8: Simplify the expression \( \sqrt{16} - \sqrt{9} \).A) 5B) 4C) 3D) 2Question 9: The sum of the first 10 natural numbers is:A) 55B) 56C) 57D) 58Question 10: Solve the system of equations:\[ \begin{cases} 2x + 3y = 8 \\ x - y = 2 \end{cases} \]A) \( x = 3, y = 1 \)B) \( x = 2, y = 0 \)C) \( x = 1, y = 2 \)D) \( x = 0, y = 3 \)Section II: Short Answer Questions (30 points)Question 11: Solve the following equation for \( x \): \( 4x - 3 = 2x + 7 \).Question 12: Find the value of \( y \) in the following proportion:\( \frac{3}{4} = \frac{y}{12} \).Question 13: Simplify the expression: \( (a + 3)(a - 3) \).Question 14: A train travels at a speed of 60 km/h. How far will ittravel in 3 hours?Question 15: Solve the following inequality graphically on a number line: \( 2x - 5 < 3 \).Section III: Extended Answer Questions (30 points)Question 16: (10 points) A farmer has 20 sheep and 5 goats. If the ratio of sheep to goats is 4:1, how many goats does the farmer have?Question 17: (10 points) Solve the following quadratic equation: \( x^2 - 5x + 6 = 0 \).Question 18: (10 points) A rectangle has a length of \( 2x \) and a width of \( x + 3 \). If the perimeter of the rectangle is 24 cm, find the value of \( x \) and the dimensions of the rectangle.Instructions:- Answer all questions.- Show all your work for full credit.- Use a separate answer sheet for your answers.Good luck!。

电生理相关英文单词-推荐下载

电生理相关英文单词-推荐下载

电生理相关英文I Anatomical Structures1Alveoli肺泡2Anterior前面3Aorta主动脉4Aortic Arch主动脉弓5Apex心尖部6Artery动脉7Ascending Aorta升主动脉8Bronchioles小/细支气管9Bronchus支气管10Capillary毛细血管11Caudal尾侧12Cavotricuspid Isthmus (CTI)下腔静脉三尖瓣峡部13Chordae Tendineae腱索14Coronary Sinus (CS)冠状窦15Cranial头侧16Crista Terminalis (CT)界嵴17Descending Aorta降主动脉18Diastole舒张19Endocardium心内膜20Epicardium心外膜21Femoral Artery/Vein股动脉/静脉22Fossa Ovalis卵圆窝23Frontal (Coronal) Plane正面(冠状)平面24HIS希氏束25Horizontal (Transverse) Plane水平(横向)面26Inferior下面27Inferior Vena Cava (IVC)下腔静脉28Interatrial Septum房间隔29Interventricular Septum室间隔30Jugular Vein颈静脉31LAA-LSPV ridge左心耳-左上肺静脉嵴部32Lateral侧壁33Left Atrial Appendage (LAA)左心耳34Left Atrium (LA)左心房35Left Inferior Pulmonary Vein (LIPV)左下肺静脉36Left Superior Pulmonary Vein (LSPV)左上肺静脉37Left Ventricle (LV)左心室38Left Ventricular Outflow Tract(LVOT)左室流出道39Lungs肺40Mitral Annulus/Valve (MA?MV)二尖瓣环/二尖瓣41Moderator Band腱索42Myocardium心肌层43Oblique斜44Papillary Muscle乳头肌45Patent Foramen Ovale卵圆孔未闭46Pectinated muscle梳状肌47Pericardium心包48Posterior后面49Pulmonary Artery肺动脉50PV carina上下肺静脉交界处隆突51Right Atrial Appendage (RAA)右心耳52Right Atrium (RA)右心房53Right Inferior Pulmonary Vein (RIPV)右下肺静脉54Right Superior Pulmonary Vein (RSPV)右上肺静脉55Right Ventricle (RV)右心室56Right Ventricular Outflow Tract(RVOT)右室流出道57Sagittal Plane矢状面58Semi Lunar Valves半月瓣59Subclavian Vein锁骨下静脉60Superior上面61Superior Vena Cava (SVC)上腔静脉62Systole收缩63Trabeculated muscle肌小梁64Trachea气管65Tricuspid Annulus/Valve (TA/TV)三尖瓣环/三尖瓣66Vein静脉II Basic EP1Absolute Refractory Period(ARP)绝对不应期2Accelerated Junctional Tachycardia加速性结性心动过速3Action Potential动作电位4Arrhythmia心律失常5Atrioventricular heart block房室传导阻滞6Atrio-ventricular Node (AVN)房室结7Augmented Unipolar Leads加压单极导联8Automaticity自律性9Bachman’s Bundle (BB)Bachman束10Bipolar双极11Bradycardia心动过缓12Calcium钙13Complex复合波14Conduction system传导系统15Conductivity传导性16Contractility收缩性17Depolarisation除极/去极化18Electrocardiogram(ECG/EKG)心电图19Electrode电极20Excitability兴奋性21Heart Rate心率22Internodal Tracts结间束23Interval间期24Intracardiac Electrogram心内电图25Ions channel离子通道26Junctional Rhythm结性心律27Left Anterior Fascicle左前分支28Left Posterior Fascicle左后分支29Phrenic nerve膈神经30Polarisation极化31Potassium钾32Precordial (Chest) Leads胸前导联33Purkinjie Fibres蒲肯野纤维/蒲氏纤维34Regularity规则性/规律性35Relative Refractory Period(RRP)相对不应期36Repolarisation复极化37Rhythm节律38Right/Left Bundle Branch (RBB/LBB)左/右束支39Segment段40Sino-atrial Node (SAN)窦房结41Sodium钠42Split/Notched切迹43Supernormal Period超常期44Syncytium融合体/合胞体45Tachycardia心动过速46Threshold阈值47Trans-membrane Potential跨膜电位48Unipolar单极49Vagus nerve迷走神经50Waveform波III EP Study1Burst Pacing短阵快速起搏2Capture夺获3Catheter导管4Coupling interval联律间期5Cycle Length周长6Decapolar十极的7Decremental conduction递减性传导8Defibrillator除颤仪9Effective Refractory Period (ERP)有效不应期10Fluoroscopy透视11Foley导尿管12Incremental Pacing递增/早搏刺激13Pacing Threshold起搏阈值14Programmed Stimulation (ExtrastimulusPacing)程序刺激(期前刺激)15Puncture穿刺16Quadripolar四极的17Rheobase基强度18Sedation镇静19Sheath鞘20Simulator模拟器21SNRT(Sinus Node Recovery Time)窦房结恢复时间22Spacing间距23Stimulator刺激仪24Total Refractory Period(TRP)总不应期IV Arrhythmias1Abnormal Automaticity自律性异常2Accessory Pathway旁路3Adenosine腺苷4AH Jump AH 跳跃5Algorithm算法6Antegrade前向/顺行7Atrial-Esophageal Fistula心房食道漏8Atrio-ventricular Nodal Re-entrantTachycardi (AVNRT)房室结折返型心动过速9Atrio-ventricular Re-entrantTachycardia (AVRT)房室折返型心动过速10Atypical Atrial Flutter不典型房扑11Average Complex Interval (ACI)平均复合波间期12Bi-direction block双向阻滞13Catecholamine儿茶酚胺14CFAE(Complex Fractionated AtrialElectrograms)复杂碎裂心房电位15Circumferential PV Isolation环肺静脉隔离16Classification分类17Clockwise顺钟向18combine合并19Complication并发症20Concealed Accessory Pathway隐形旁道21Counterclockwise逆钟向22Diagnosis诊断23diaphragmatic paralysis膈肌麻痹24Dilator扩张器25Dual AV Node Physiology房室结双径路现象26Echo Beat回波27Ectopic Atrial Tachycardia异位房性心动过速/房速28Electrical isolation of LA- PVjunction at the antrum环肺静脉前庭电隔离29Entrainment拖带30Epidemiology流行病学31Fast Pathway快径32Ganglionated Plexi (GP)神经节丛33Guidewire导丝34Hemodynamically stable/unstable VT血流动力学稳定性/ 不稳定性室速35Idiopathic VT特发性室速36ILVT(idiopathic left ventriculartachycardia)左室特发性室速37induction诱发38Integration整合39Interval Confidence Level (ICL)间期可信等级40Ischaemic VT缺血性室速/器质性室速41Isoproterenol异丙肾上腺素42Kent Potential /accessory potential Kent电位/旁路电位43Landmark Registration路标融合44Lasso(circular mapping catheter)环形标测导管45Linear Ablation线性消融46Localization定位47Longitudinal Phased Array 纵向相控阵48LV fascicular VT左室分支型室速49Manifest Accessory Pathway显性旁道50Mechanism机制51mechanism机制52Medication药物治疗53monomorphic/polymorphic单行性/ 多形性54NSR (normal sinus rhythm)正常窦性心律55Pace-Map起搏标测56Palpitation心悸57paroxysmal阵发性58Premature Ventricular Contraction(PVC)心室期前收缩/室性早搏59PSVT阵发性室上性心动过速60PV stenosis肺静脉狭窄61PVI(Pulmonary Vein Isolation)肺静脉隔离62Rationale基本原理63RBBB/LBBB右/左束支阻滞64Registration融合65Retrograde逆向/逆行66segmental PV Isolation节段性肺静脉隔离67Segmentation分割68Shortest Complex Interval (SCI)最短复合波间期69slice切片70Slow Pathway慢径71Spontaneous自发的72Stepwise /tailored approach分步/个体化消融73Substrate Modification基质改良74Supra-ventricular Tachycardia (SVT)室上性心动过速/室上速75surface registration表面融合76Surgical外科的77Sustained持续性78Tamponade心包填塞79Termination终止/停止80Thrombus血栓81Transseptal穿间隔82Treatment治疗83Triangle of Koch Koch 三角84Triggered Activity触发活动85Typical Atrial Flutter典型房扑86Validation验证87velocity速度88Ventricular Flutter/VentricularFibrillation心室扑动/心室颤动室扑/室颤89Ventricular Tachycardia室性心动过速/室速90Visual Alignment可视化校准/单点融合91Warm up period温醒期92Wolff-Parkinsons-White (WPW)WPW综合征V Carto/Catheters13D mapping system三维标测系统2Ablation Catheters/Mapping Catheter消融导管/标测导管3Advanced Catheter Location(ACL)精确的导管位置4Calibration校准/校正5Cardiac Gating心电门控6Chamber心腔7Compression Coil压缩线圈8Connection of Choice可选择性连接9Contact贴靠10Conventional EP Mapping传统电生理标测11Deflectable Catheter可调弯导管12Diagnostic Catheters诊断导管13Diameter直径14Double Potentials双电位15Duo-Decapolar双十极/二十极16Electroanatomical (EA) Mapping)点解剖标测17Fast Anatomical Mapping(FAM)快速解剖标测18Filtered滤波过的19Fixed curve catheter固定弯导管20Focal局灶21Gated Mode门控模式22Graphical User Interface (GUI)图形用户界面23Handle手柄24Head meets Tail/Early meets Late/Redmeets Purple头接尾/早接晚/红接紫25Hexapolar六极的26Irrigated灌注的27Macro-Reentry大折返28Magnetic磁的29Mapping Channel标测通道30Micro-Reentry微折返31Navigation导航32Octapolar八极的33Orientation方位34Plug & Play即插即用35Polyurethane聚氨酯36Porcine猪的37Puller Wire牵拉线38Push Pull Handle推拉式手柄39Reentry折返40Reference Channel参考通道41Reference Patch参考电极42Shaft管身43Stable Mode稳定模式44Stainless Wire Braiding不锈钢丝编织45Substrate Mapping/Voltage Mapping基质标测/电压标测46Symmetrical/Asymmetrical对称/ 不对称47Uni-Directional/Bi- Directional单弯/双弯48Visualization可视化49Window of Interest(WOI)兴趣窗。

2.2.4 晶体的14种Bravais格子简介

2.2.4 晶体的14种Bravais格子简介

背景音乐:
4°四方(Tetragonal) 晶系或正方晶系或四角晶系 Bravais格子之惯用元胞的几何特征为:
a b c, 90 0
格点有两种分布方式:其一,分布于惯用元胞的八个顶点上;
有 其二,除顶点外,还分布于体心 两种Bravais格子,分别称
为简单四方Bravais格子和体心四方Bravais格子 Pearson 记法 tP 和tI,惯用元胞分别如图2.2.2-1中的(h)图和(i)图所示
Pearson记法
7°立方(Cubic) 晶系
Bravais格子之惯用元胞的几何特征为:
a b c, 90 0
格点有三种分布方式:其一,分布于惯用元胞的八个顶点上;
其二,除顶点外,还分布于体心;其三,除顶点外,还分布于六
个面心
有 三种 Bravais格子,分别称为简单立方Bravais格子、
方Bravais格子。另一方面,惯用元
胞也可选用简单六方Bravais格子的 平行六面体元胞,只是除顶点外格点 还分布于体内(2/3,1/3,1/3)处 和(1/3,2/3,2/3)处,如图2.2.2 -1中的(k)图所示。因此,简单三 角Bravais格子通常又称为六方菱面 体 背景音乐:

十四种Bravais格子按点对称性分为七种点对称性类型,分
别对应于七个晶系。下面,将按晶系对这十四种Bravais格子
的主要特征逐一简介
背景音乐:
1°三斜(Triclinic)晶系
Bravais格子之惯用元胞的几何特征为:
a b c,
有 格点的分布方式只有一种:分布于惯用元胞的八个正交Bravais格子、体心正交

Automated phase-measuring profilometry:a phase mapping approach

Automated phase-measuring  profilometry:a phase mapping approach

1.
Introduction
across the object is linearly related to the object height.
The images were recorded on a 128
X
Noncontact automated optical methods have been
批注本地保存成功开通会员云端永久保存去开通
Automated phase-measuring profilometry: approach
V. Srinivasan, H. C. Liu, and Maurice Halioua
a phase mapping
When a sinusoidal grating is projected on either a reference plane or a diffuse object to be measured, every point along a line normal to the grating lines, on the reference plane as well as the object, can be character-
Ill.
REFERENCE PnANE
C B A
Experiment and Results
For experimental measurements, sinusoidal gratings wave grating pattern. A conventional slide projector was modified in order to operate with a grating slide, mounted on a stepper motor-driven translation stage. The period of the projected grating measured on the reference plane, close to the optical axis of projection,, was -15 mm. Deformed grating images were recorded on a 128 X 128 photodiode array detector interfaced to an LSI 11/23 computer for data acquisition and processing. Phase measurement was by a three discrete phase shift implementation of Eq. (3). The results of a calibration experiment, in which a cylindrical test object which had been measured by a mechanical contact profilometer, are shown in Fig. 2. The line profile was generated by the optical method and the X marks indicate measurements made by a manual contact profilometer. Almost perfect agreement (better than 1%)was observed, except in the regions with steep slopes where mechanical contact methods are not very reliable. A more general type of diffuse object-a mannequin face-was measured. Figure 3 shows the deforment of an image
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N-Triangles
1.1 Introduction in PN-Triangles
Standard calculation of PN-Triangles (in Software): · Input data are points Pi of a given Triangle and the coresponding normals Ni · Seperate calculation of the geometry (control points) and the normal components of the curved PN-Triangle
d020 d1/2? b030 d200 d200 b300 b300
m3 d1/2 d020
b030
Recent developments for PN-Triangles
1.4 Calculation of the normals
The normals of a curved PN-Triangle are defined as follows: n: R2 → R3, for w = 1 – u – v, u,v,w ≥ 0 n(u,v) = n200w2 + n020u2 + n002v2 + n110wu + n011uv + n101wv The control points for the normal component are defined as follows for ||Ni|| = 1: n200 = N1 n020 = N2 n002 = N3 vij = 2 (Pj – Pi) · (Ni + Nj) (Pj – Pi) · (Pj – Pi) h110 = N1 + N2 – v12(P2 - P1) h011 = N2 + N3 – v23(P3 - P2) h101 = N3 + N1 – v31(P1 - P3)
1.3 Quadratically varying normals
Why choose cubically varying geometry and quadratically varying normals? · The exact surface normals are a challenge to compute · Tangent continuity does not imply overall better visual impression (smooth interpolating schemes often generate extraneous creases) · A least cost surface with one polynomial piece per triangle geometric shape is not necessarily normal-continuous, but improves the shading monotonicity by prescribing a separate, continuous normal. How to calculate the normals: · Linear interpolation of the normals at the endpoints ignores inflections in the curve while the quadratic normal construction of curved PN triangles picks up such shape variations.
Recent developments for PN-Triangles
1. Introduction in PN-Triangles
In 3D entertainment software design: · New techniques added to hardware must have a simple migration path · A majority of computer software use triangles as their fundamental modelling primitiv · It is increasingly common for applications to pass normals to the hardware Triangles and normals are the basic components for Point-normal Triangles, short PN-Triangles. Because of the arguments mentioned above, PN-Triangles have become a good way for improving visual quality.
Recent developments for PN-Triangles
Seminar in Geometric Modelling – WS 2006/2007
n002 n011 n101 n020
n110
n200
Recent developments for PN-Triangles
Contents
n200 n110 n002 n011 n101 n020
n110 = h110 / ||h110||, n011 = h011 / ||h011||, n101 = h101 / ||h101||,
Recent developments for PN-Triangles
1.5 Pro and Contra of PN-Triangles
Pro: · Provide a smoother silhouette and a more organic shape for triangle-based models · Can be used as an triangle-multiplier and can therefore be viewed as a form of geometry compression · Minimal cost for model preparation, application program modification and rendering performance Contra: · Standard algorithm for PN-Triangles smooth around highlights and sharp- /or crease edges of the original model.
N1
b102
b300
E = (b210 + b120 + b021 + b012 + b201 + b102) / 6 V = (P1 + P2 + P3) / 3 b111 = E + (E – V) / 2
b210 2/3 1/3 P1
P2
Recent developments for PN-Triangles
Recent developments for PN-Triangles
1.7 Problems
Currently a software preprocessing step adds a rim of small triangles along edges intended to be sharp. This will result in: · Higher amount of triangles · Possible singularities in the added triangles
1. Introduction in PN-Triangles 1.1 Introduction in PN-Triangles 1.2 Calculation of the Geometry 1.3 Quadratically varying normals 1.4 Calculation of the normals 1.5 Pro and Contra of PN-Triangles 1.6 Curved Sharp Edges 1.7 Problems 2. Scalar Tagged PN-Triangles 2.1 Basics on STPN-Triangles 2.2 Shape Parameters 2.3 Mesh generation 2.4 Conclusion 3. Real-time linear silhouette enhancement 3.1 Detection of silhouettes 3.2 Rendering silhouettes 3.3 View dependent geometry 3.4 Implementation with PN-Triangles 3.5 Conclusion 4. Hardware implementation of PN-Triangles 4.1 Control Point Generation and Tessellation 4.2 Load Balancing 5. References
Recent developments for PN-Triangles
1.6 Curved Sharp Edges
Curved sharp edges with different normals associated with each side of the (logical) edge between two triangles will in general result in gaps in the surface. Possible Solution: · Increase the number of indices in the input stream from three to (at most) nine for triangles with up to six crease halfedges. · Additional indices point to the point-normal pair of the abutting triangle in the neighboring triangulation · The algorithm for determining the PN triangle geometry is unchanged except that it projects onto a tangent line to obtain the tangent coefficient of an edge
相关文档
最新文档