2019年高考数学第02期小题精练系列专题11函数理含解析
2019年理数高考题及模拟题汇编(函数专题-)与解析
2019年理数高考题及模拟题汇编(函数专题-)与解析-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN专题:函数的概念与基本初等函数I1.【2019年高考全国Ⅰ卷理数】已知0.20.32 log 0.220.2a b c ===,,,则 A .a b c << B .a c b << C .c a b <<D .b c a <<2.【2019年高考天津理数】已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为A .a c b <<B .a b c <<C .b c a <<D .c a b <<3.【2019年高考全国Ⅱ卷理数】若a >b ,则A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │4.【2019年高考北京理数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2−m 1=2152lg E E ,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为 A .1010.1B .10.1C .lg10.1D .10−10.15.【2019年高考全国Ⅰ卷理数】函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A . B .C .D .6.【2019年高考全国Ⅲ卷理数】函数3222x xx y -=+在[]6,6-的图像大致为A .B .C .D .7.【2019年高考浙江】在同一直角坐标系中,函数1x y a =,1(2log )a y x =+(a >0,且a ≠1)的图象可能是8.【2019年高考全国Ⅱ卷理数】2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为A 21M R M B 212M R MCD9.【2019年高考全国Ⅲ卷理数】设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314)10.【2019年高考全国Ⅱ卷理数】设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦11.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >012.【2019年高考江苏】函数y =的定义域是 ▲ .13.【2019年高考全国Ⅱ卷理数】已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.14.【2019年高考北京理数】设函数()e e x xf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.15.【2019年高考浙江】已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是___________. 16.【2019年高考北京理数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.17.【2019年高考江苏】设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 ▲ .18.【云南省玉溪市第一中学2019届高三第二次调研考试数学】函数()23x f x x =+的零点所在的一个区间是 A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)19.【云南省玉溪市第一中学2019届高三第二次调研考试数学】下列函数中,既是偶函数,又在区间(0,)+∞上单调递减的函数是 A .3x y = B .1ln||y x = C .||2x y =D .cos y x =20.【山东省德州市2019届高三第二次练习数学】设函数()()2log 1,04,0xx x f x x ⎧-<=⎨≥⎩,则()3f -+()2log 3f =A .9B .11C .13D .1521.【山东省济宁市2019届高三二模数学】已知是定义在上的周期为4的奇函数,当时,,则A .B .0C .1D .222.【黑龙江省哈尔滨市第三中学2019届高三第二次模拟数学】函数22()log (34)f x x x =--的单调减区间为 A .(,1)-∞-B .3(,)2-∞-C .3(,)2+∞D .(4,)+∞23.【山东省烟台市2019届高三3月诊断性测试(一模)数学】若函数()f x 是定义在R 上的奇函数,1()14f =,当0x <时,2()log ()f x x m =-+,则实数m =A .1-B .0C .1D .224.【北京市房山区2019届高三第一次模拟测试数学】关于函数,下列说法错误的是A .是奇函数B .在上单调递增C .是的唯一零点D .是周期函数25.【河南省郑州市2019届高三第三次质量检测数学】我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休,在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征,如函数()441x x f x =-的图象大致是A .B .C .D .26.【四川省百校2019届高三模拟冲刺卷】若函数()y f x =的大致图象如图所示,则()f x 的解析式可以是A .()e e x xxf x -=+B .()e e x xxf x -=-C .()e e x xf x x -+=D .()e e x xf x x--=27.【天津市北辰区2019届高考模拟考试数学】已知函数是定义在上的偶函数,且在上单调递增,则三个数,,的大小关系为A .B .C .D .28.【宁夏银川一中2018届高三第二次模拟考试数学】已知不等式对于恒成立,则的取值范围是A .B .C .D .29.【北京市朝阳区2019届高三第二次(5月)综合练习(二模)数学】已知函数2,(),x x a f x x x a⎧≥=⎨-<⎩,若函数()f x 存在零点,则实数a 的取值范围是A .(),0-∞B .(),1-∞C .()1,+∞D .()0,+∞30.【山东省烟台市2019届高三5月适应性练习(二)数学】已知函数()y f x =的定义域为R ,)1(+x f 为偶函数,且对121x x ∀<≤,满足()()01212<--x x x f x f .若(3)1f =,则不等式()2log 1f x <的解集为A .1,82⎛⎫ ⎪⎝⎭B .)8,1(C .10,(8,)2⎛⎫+∞ ⎪⎝⎭D .(,1)(8,)-∞+∞31.【重庆西南大学附属中学校2019届高三第十次月考数学】已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是A .2()(2)3-∞+∞,,B .2(2)3,C .22()33-,D .22()()33-∞-+∞,, 32.【山东省德州市2019届高三第二次练习数学】已知定义在R 上的函数()f x 在区间)[0+∞,上单调递增,且()1y f x =-的图象关于1x =对称,若实数a 满足()()2log 2f a f <,则a 的取值范围是 A .10,4⎛⎫⎪⎝⎭B .1,4⎛⎫+∞ ⎪⎝⎭C .1,44⎛⎫ ⎪⎝⎭D .()4,+∞33.【陕西省西安市2019届高三第三次质量检测数学】若定义在上的函数满足且时,,则方程的根的个数是A .B .C .D .34.【广东省汕头市2019届高三第二次模拟考试(B 卷)数学】已知函数()211,02,0x x x f x xx +⎧+-<⎪=⎨⎪≥⎩,()22g x x x =--,设b 为实数,若存在实数a ,使得()()2g b f a +=成立,则b 的取值范围为A .[]1,2-B .37,22⎡⎫-⎪⎢⎣⎭C .37,22⎡⎤-⎢⎥⎣⎦D .3,42⎛⎤- ⎥⎝⎦35.【云南省玉溪市第一中学2019届高三第二次调研考试数学】若()log ()f x x 12=2+1,则()f x 的定义域为____________.36.【山东省滨州市2019届高三第二次模拟(5月)考试数学】若函数为偶函数,则__________.37.【湖南省长沙市第一中学2019届高三下学期高考模拟卷(一)数学】若函数()f x 称为“准奇函数”,则必存在常数a ,b ,使得对定义域的任意x 值,均有()(2)2f x f a x b +-=,已知1)(-=x xx f 为准奇函数”,则a +b =_________. 38.【广东省深圳市深圳外国语学校2019届高三第二学期第一次热身考试数学】函数()211log 1ax f x x x+=+-为奇函数,则实数a =__________. 39.【东北三省三校(辽宁省实验中东北师大附中、哈师大附中)2019届高三第三次模拟考试数学】若函数在上单调递增,则的取值范围是__________.40.【河南省濮阳市2019届高三5月模拟考试数学】已知直线l 与曲线31y x x =-+有三个不同的交点()11,A x y ,()22,B x y ,()33,C x y ,且||||AB AC =,则()31i i i x y =+=∑__________.函数的概念与基本初等函数I答 案 解 析1.【2019年高考全国Ⅰ卷理数】已知0.20.32 log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<【答案】B【解析】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,c <=<=即01,c <<则a c b <<. 故选B .【名师点睛】本题考查指数和对数大小的比较,考查了数学运算的素养.采取中间量法,根据指数函数和对数函数的单调性即可比较大小.2.【2019年高考天津理数】已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为A .a c b <<B .a b c <<C .b c a <<D .c a b <<【答案】A【解析】因为551log 2log 2a =<=, 0.50.5log 0.2log 0.252b =>=, 10.200.50.50.5c <=<,即112c <<, 所以a c b <<. 故选A.【名师点睛】本题考查比较大小问题,关键是选择中间量和利用函数的单调性进行比较.3.【2019年高考全国Ⅱ卷理数】若a >b ,则A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │【答案】C【解析】取2,1a b ==,满足a b >,但ln()0a b -=,则A 错,排除A ; 由219333=>=,知B 错,排除B ;取1,2a b ==-,满足a b >,但|1||2|<-,则D 错,排除D ;因为幂函数3y x =是增函数,a b >,所以33a b >,即a 3−b 3>0,C 正确. 故选C .【名师点睛】本题主要考查对数函数的性质、指数函数的性质、幂函数的性质及绝对值的意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.4.【2019年高考北京理数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2−m 1=2152lg E E ,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为 A .1010.1B .10.1C .lg10.1D .10−10.1【答案】A【解析】两颗星的星等与亮度满足12125lg 2E m m E -=, 令211.45,26.7m m =-=-, 则()121222lg( 1.4526.7)10.1,55E m m E =-=⨯-+= 从而10.11210E E =. 故选A.【名师点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及对数的运算.5.【2019年高考全国Ⅰ卷理数】函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A . B .C .D .【答案】D【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,可知应为D 选项中的图象. 故选D .【名师点睛】本题考查函数的性质与图象的识别,渗透了逻辑推理、直观想象和数学运算素养.采取性质法和赋值法,利用数形结合思想解题.6.【2019年高考全国Ⅲ卷理数】函数3222xxx y -=+在[]6,6-的图像大致为 A . B .C .D .【答案】B【解析】设32()22x x x y f x -==+,则332()2()()2222x x x xx x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ;36626(6)722f -⨯=≈+,排除选项A , 故选B .【名师点睛】本题通过判断函数的奇偶性,排除错误选项,通过计算特殊函数值,作出选择.本题注重基础知识、基本计算能力的考查.7.【2019年高考浙江】在同一直角坐标系中,函数1x y a =,1(2log )a y x =+(a >0,且a ≠1)的图象可能是【答案】D【解析】当01a <<时,函数x y a =的图象过定点(0,1)且单调递减,则函数1x y a=的图象过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭的图象过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =的图象过定点(0,1)且单调递增,则函数1x y a=的图象过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭的图象过定点1(,02)且单调递增,各选项均不符合. 综上,选D.【名师点睛】易出现的错误:一是指数函数、对数函数的图象和性质掌握不熟练,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性.8.【2019年高考全国Ⅱ卷理数】2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设rRα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD【答案】D 【解析】由rRα=,得r R α=, 因为121223()()M M M R r R r r R +=++,所以12122222(1)(1)M M M R R R ααα+=++,即543232221133[(1)]3(1)(1)M M αααααααα++=+-=≈++,解得α=,所以.r R α== 故选D.【名师点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是复杂式子的变形易出错.9.【2019年高考全国Ⅲ卷理数】设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314)【答案】C 【解析】()f x 是定义域为R 的偶函数,331(log )(log 4)4f f ∴=.223303322333log 4log 31,1222,log 422---->==>>∴>>,又()f x 在(0,+∞)上单调递减,∴23323(log 4)22f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选C .【名师点睛】本题主要考查函数的奇偶性、单调性,先利用函数的奇偶性化为同一区间,再利用中间量比较自变量的大小,最后根据单调性得到答案.10.【2019年高考全国Ⅱ卷理数】设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦ 【答案】B【解析】∵(1) 2 ()f x f x +=,()2(1)f x f x ∴=-. ∵(0,1]x ∈时,1()(1)[,0]4f x x x =-∈-; ∴(1,2]x ∈时,1(0,1]x -∈,1()2(1)2(1)(2),02f x f x x x ⎡⎤=-=--∈-⎢⎥⎣⎦; ∴(2,3]x ∈时,1(1,2]x -∈,()2(1)4(2)(3)[1,0]f x f x x x =-=--∈-,如图:当(2,3]x ∈时,由84(2)(3)9x x --=-解得173x =,283x =,若对任意(,]x m ∈-∞,都有8()9f x ≥-,则73m ≤. 则m 的取值范围是7,3⎛⎤-∞ ⎥⎝⎦.故选B.【名师点睛】本题考查了函数与方程,二次函数.解题的关键是能够得到(2,3]x ∈时函数的解析式,并求出函数值为89-时对应的自变量的值.11.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x ,则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣bx 3(a +1)x 2+ax ﹣ax ﹣b x 3(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增,则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴0且,解得b <0,1﹣a >0,b (a +1)3,则a >–1,b <0. 故选C .【名师点睛】本题考查函数与方程,导数的应用.当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣bx 3(a +1)x 2﹣b ,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.12.【2019年高考江苏】函数276y x x =+-的定义域是 ▲ .【答案】[1,7]-【解析】由题意得到关于x 的不等式,解不等式可得函数的定义域. 由已知得2760x x +-≥,即2670x x --≤,解得17x -≤≤,故函数的定义域为[1,7]-.【名师点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.13.【2019年高考全国Ⅱ卷理数】已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.【答案】3-【解析】由题意知()f x 是奇函数,且当0x <时,()e ax f x =-, 又因为ln 2(0,1)∈,(ln 2)8f =, 所以ln 2e 8a --=-,两边取以e 为底数的对数,得ln 23ln 2a -=, 所以3a -=,即3a =-.【名师点睛】本题主要考查函数的奇偶性,对数的计算.14.【2019年高考北京理数】设函数()e e x xf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x x f x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立, 又2e 0x >,则0a ≤, 即实数a 的取值范围是(],0-∞.【名师点睛】本题考查函数的奇偶性、单调性、利用单调性确定参数的范围.解答过程中,需利用转化与化归思想,转化成恒成立问题.注重重点知识、基础知识、基本运算能力的考查.15.【2019年高考浙江】已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是___________. 【答案】43【解析】存在t ∈R ,使得2|(2)()|3f t f t +-≤, 即有332|(2)(2)|3a t t at t +-+-+≤, 化为()22|23642|3a t t ++-≤, 可得()2222364233a t t -≤++-≤, 即()22436433a t t ≤++≤, 由223643(1)11t t t ++=++≥,可得403a <≤. 则实数a 的最大值是43. 【名师点睛】本题考查函数的解析式及二次函数,结合函数的解析式可得33|(2)(2)|a t t at t +-+-+23≤,去绝对值化简,结合二次函数的最值及不等式的性质可求解. 16.【2019年高考北京理数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】①130;②15【解析】①10x =时,顾客一次购买草莓和西瓜各一盒,需要支付()608010130+-=元. ②设顾客一次购买水果的促销前总价为y 元,当120y <元时,李明得到的金额为80%y ⨯,符合要求; 当120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立, 即()87,8y y x y x -≥≤, 因为min158y ⎛⎫=⎪⎝⎭,所以x 的最大值为15. 综上,①130;②15.【名师点睛】本题主要考查函数的最值,不等式的性质及恒成立,数学的应用意识,数学式子变形与运算求解能力.以实际生活为背景,创设问题情境,考查学生身边的数考查学生的数学建模素养.17.【2019年高考江苏】设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,2()1(1)f x x =--,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 ▲ .【答案】12,34⎡⎫⎪⎢⎪⎣ 【解析】作出函数()f x ,()g x 的图象,如图:由图可知,函数2()1(1)f x x =--的图象与1()(12,34,56,78)2g x x x x x =-<≤<≤<≤<≤的图象仅有2个交点,即在区间(0,9]上,关于x 的方程()()f x g x =有2个不同的实数根,要使关于x 的方程()()f x g x =有8个不同的实数根,则()(0,2]f x x =∈与()(2),(0,1]g x k x x =+∈的图象有2个不同的交点,由(1,0)到直线20kx y k -+=的距离为11=,解得0)k k =>, ∵两点(2,0),(1,1)-连线的斜率13k =,∴13k ≤<,综上可知,满足()()f x g x =在(0,9]上有8个不同的实数根的k 的取值范围为13⎡⎢⎣. 【名师点睛】本题考查分段函数,函数的图象,函数的性质,函数与方程,点到直线的距离,直线的斜率等,考查知识点较多,难度较大.正确作出函数()f x ,()g x 的图象,数形结合求解是解题的关键因素.18.【云南省玉溪市第一中学2019届高三第二次调研考试数学】函数()23x f x x =+的零点所在的一个区间是 A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)【答案】B【解析】易知函数()23x f x x =+在定义域上单调递增且连续, 且2(2)260f --=-<,1(1)230f --=-<,f (0)=1>0, 所以由零点存在性定理得,零点所在的区间是(-1,0). 故选B.【名师点睛】本题考查函数的单调性和零点存在性定理,属于基础题.19.【云南省玉溪市第一中学2019届高三第二次调研考试数学】下列函数中,既是偶函数,又在区间(0,)+∞上单调递减的函数是A .3x y =B .1ln||y x = C .||2x y =D .cos y x =【答案】B【解析】易知1ln||y x =,||2x y =,cos y x =为偶函数, 在区间(0,)+∞上,1ln ||y x =单调递减,||2x y =单调递增,cos y x =有增有减. 故选B.【名师点睛】本题考查函数的奇偶性和单调性,属于基础题.20.【山东省德州市2019届高三第二次练习数学】设函数()()2log 1,04,0xx x f x x ⎧-<=⎨≥⎩,则()3f -+()2log 3f =A .9B .11C .13D .15【答案】B【解析】∵函数()()2log 1,04,0x x x f x x ⎧-<=⎨≥⎩,∴()2l 23og 2(3)log 3log 44f f -+=+=2+9=11. 故选B .【名师点睛】本题考查分段函数、函数值的求法,考查对数函数的运算性质,是基础题.21.【山东省济宁市2019届高三二模数学】已知是定义在上的周期为4的奇函数,当时,,则A .B .0C .1D .2【答案】A【解析】由题意可得:.故选A .【名师点睛】本题主要考查函数的奇偶性,函数的周期性等知识,意在考查学生的转化能力和计算求解能力.22.【黑龙江省哈尔滨市第三中学2019届高三第二次模拟数学】函数22()log (34)f x x x =--的单调减区间为 A .(,1)-∞-B .3(,)2-∞-C .3(,)2+∞D .(4,)+∞【答案】A【解析】函数()()22log 34f x x x =--,则2340(4)(1)04x x x x x -->⇒-+>⇒>或1x <-, 故函数()f x 的定义域为4x >或1x <-,由2log y x =是单调递增函数,可知函数()f x 的单调减区间即234y x x =--的单调减区间,当3(,)2x ∈-∞时,函数234y x x =--单调递减,结合()f x 的定义域,可得函数()()22log 34f x x x =--的单调减区间为(),1-∞-. 故选A.【名师点睛】本题考查了复合函数的单调性,要注意的是必须在定义域的前提下,去找单调区间.23.【山东省烟台市2019届高三3月诊断性测试(一模)数学】若函数()f x 是定义在R 上的奇函数,1()14f =,当0x <时,2()log ()f x x m =-+,则实数m =A .1-B .0C .1D .2【答案】C【解析】∵()f x 是定义在R 上的奇函数,1()14f =,且0x <时,2()log ()f x x m =-+,∴211log 2144f m m ⎛⎫-=+=-+=- ⎪⎝⎭,∴1m =. 故选C .【名师点睛】本题主要考查函数奇偶性的应用,以及已知函数值求参数的方法,熟记函数奇偶性的定义即可,属于常考题型.24.【北京市房山区2019届高三第一次模拟测试数学】关于函数,下列说法错误的是A .是奇函数B .在上单调递增C .是的唯一零点D .是周期函数【答案】D 【解析】,则为奇函数,故正确;由于,故在上单调递增,故正确; 根据在上单调递增,,可得是的唯一零点,故正确;根据在上单调递增,可知它一定不是周期函数,故错误.故选D.【名师点睛】本题考查函数性质的综合应用,关键是能够利用定义判断奇偶性、利用导数判断单调性、利用单调性判断零点.25.【河南省郑州市2019届高三第三次质量检测数学】我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休,在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征,如函数()4 41 xxf x=-的图象大致是A.B.C.D.【答案】D【解析】因为函数()4 41 xxf x=-,44()()()4141x xx xf x f x----==≠--,所以函数()f x不是偶函数,图象不关于y轴对称,故排除A、B选项;又因为9256(3),(4),7255f f==所以(3)(4)f f>,而选项C在0x>时是递增的,故排除C. 故选D.【名师点睛】本题考查了函数的图象和性质,利用函数的奇偶性和取特值判断函数的图象是解题的关键,属于基础题.26.【四川省百校2019届高三模拟冲刺卷】若函数()y f x =的大致图象如图所示,则()f x 的解析式可以是A .()e e x xxf x -=+B .()e e x xxf x -=-C .()e e x xf x x -+=D .()e e x xf x x--=【答案】C【解析】当x →0时,f (x )→±∞,而A 中的f (x )→0,排除A ; 当x <0时,f (x )<0,而选项B 中x <0时,()e ex x xf x -=->0, 选项D 中,()e e x xf x x--=>0,排除B ,D ,故选C .【名师点睛】本题考查了函数的单调性、函数值的符号,考查数形结合思想,利用函数值的取值范围可快速解决这类问题.27.【天津市北辰区2019届高考模拟考试数学】已知函数是定义在上的偶函数,且在上单调递增,则三个数,,的大小关系为A .B .C .D .【答案】C【解析】∵,,,∴,为偶函数,,又在上单调递增,,即.故选C.【名师点睛】本题考查利用函数的单调性比较大小的问题,关键是能够利用奇偶性将自变量变到同一单调区间内,再通过指数、对数函数的单调性,利用临界值确定自变量的大小关系.28.【宁夏银川一中2018届高三第二次模拟考试数学】已知不等式对于恒成立,则的取值范围是A.B.C.D.【答案】C【解析】不等式对于恒成立,等价于对于恒成立,令,则,在上恒成立,,时,,,故的取值范围是.故选C.【名师点晴】本题主要考查二次函数的性质以及不等式恒成立问题,不等式恒成立问题的常见解法:①分离参数,恒成立,即,或恒成立,即;②数形结合,的图象在图象的上方;③讨论最值,或恒成立.29.【北京市朝阳区2019届高三第二次(5月)综合练习(二模)数学】已知函数2,(),x x a f x x x a⎧≥=⎨-<⎩,若函数()f x 存在零点,则实数a 的取值范围是A .(),0-∞B .(),1-∞C .()1,+∞D .()0,+∞【答案】D【解析】函数2,(),x x af x x x a⎧≥=⎨-<⎩的图象如图:若函数()f x 存在零点,则实数a 的取值范围是(0,+∞). 故选D .【名师点睛】本题考查分段函数,函数的零点,考查数形结合思想以及计算能力.30.【山东省烟台市2019届高三5月适应性练习(二)数学】已知函数()y f x =的定义域为R ,)1(+x f 为偶函数,且对121x x ∀<≤,满足()()01212<--x x x f x f .若(3)1f =,则不等式()2log 1f x <的解集为A .1,82⎛⎫ ⎪⎝⎭B .)8,1(C .10,(8,)2⎛⎫+∞ ⎪⎝⎭D .(,1)(8,)-∞+∞【答案】A【解析】因为对121x x ∀<≤,满足()()01212<--x x x f x f ,所以()y f x =当1≤x 时,是单调递减函数,又因为)1(+x f 为偶函数,所以()y f x =关于直线1x =对称,所以函数()y f x =当1>x 时,是单调递增函数,又因为(3)1f =,所以有1)1(=-f , 当2log 1x ≤,即当02x <≤时,()()222log 1log (11lo 1g ,22)12f x f x x x f x <⇒<-⇒>-⇒>∴<≤; 当2log 1x >,即当2x >时,()()222log 1log (3)log 38,28x x f x f x x f <<⇒⇒<∴<⇒<<,综上所述:不等式()2log 1f x <的解集为1,82⎛⎫⎪⎝⎭.故选A .【名师点睛】本题考查了抽象函数的单调性、对称性、分类讨论思想. 对于()y f x =来说,设定义域为I ,D I ⊆,1212,,x x D x x ∀∈≠, 若21212121()()(()())()0(0)f x f x f x f x x x x x --⋅->>-,则()y f x =是D 上的增函数;若21212121()()(()())()0(0)f x f x f x f x x x x x --⋅-<<-,则()y f x =是D 上的减函数.31.【重庆西南大学附属中学校2019届高三第十次月考数学】已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是A .2()(2)3-∞+∞,,B .2(2)3,C .22()33-,D .22()()33-∞-+∞,, 【答案】D【解析】因为(2)f x +是偶函数,所以()f x 的图象关于直线2x =对称, 因此,由(0)0f =得(4)0f =,又()f x 在(]2-∞,上单调递减,则()f x 在[)2,+∞上单调递增,所以,当232x -≥即0x ≤时,由(23)0f x ->得(23)(4)f x f ->,所以234x ->,解得23x <-;当232x -<即0x >时,由(23)0f x ->得(23)(0)f x f ->,所以230x -<,解得23x >, 因此,(23)0f x ->的解集是22()()33-∞-+∞,,. 故选D.【名师点睛】本题考查函数的奇偶性和单调性,不等式的求解,先根据函数的奇偶性得到函数在定义域上的单调性,从而分类讨论求解不等式.32.【山东省德州市2019届高三第二次练习数学】已知定义在R 上的函数()f x 在区间)[0+∞,上单调递增,且()1y f x =-的图象关于1x =对称,若实数a 满足()()2log 2f a f <,则a 的取值范围是 A .10,4⎛⎫ ⎪⎝⎭B .1,4⎛⎫+∞ ⎪⎝⎭C .1,44⎛⎫ ⎪⎝⎭D .()4,+∞【答案】C【解析】根据题意,()1y f x =-的图象关于直线1x =对称,则函数()f x 的图象关于y 轴对称,即函数()f x 为偶函数,又由函数()f x 在区间)[0+∞,上单调递增, 可得()()2log 2||f a f <,则2log |2|a <, 即22log 2a -<<,解得144a <<, 即a 的取值范围为1,44⎛⎫⎪⎝⎭.故选C .【名师点睛】本题考查函数的单调性与奇偶性的应用,考查对数不等式的解法. 33.【陕西省西安市2019届高三第三次质量检测数学】若定义在上的函数满足且时,,则方程的根的个数是A .B .C .D .【答案】A 【解析】因为函数满足,所以函数是周期为的周期函数.又时,,所以函数的图象如图所示.再作出的图象,如图,易得两函数的图象有个交点, 所以方程有个根.故选A .【名师点睛】本题考查函数与方程,函数的零点、方程的根、函数图象与轴交点的横坐标之间是可以等价转化的.34.【广东省汕头市2019届高三第二次模拟考试(B 卷)数学】已知函数()211,02,0x x x f x xx +⎧+-<⎪=⎨⎪≥⎩,()22g x x x =--,设b 为实数,若存在实数a ,使得()()2g b f a +=成立,则b 的取值范围为A .[]1,2-B .37,22⎡⎫-⎪⎢⎣⎭C .37,22⎡⎤-⎢⎥⎣⎦D .3,42⎛⎤- ⎥⎝⎦【答案】A【解析】因为()211,02,0x x x f x xx +⎧+-<⎪=⎨⎪≥⎩, 所以当0x ≥时,()12x f x +=单调递增,故()122x f x +=≥;当0x <时,()()21112x f x x x x x x ⎡⎤+⎛⎫⎛⎫=-=-+=-+-≥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 当且仅当1x x-=-,即1x =-时,取等号,综上可得,.又因为存在实数,使得成立,所以只需,即,解得.故选A.【名师点睛】本题主要考查分段函数的值域,将存在实数,使得成立,转化为是解题的关键,属于常考题型.35.【云南省玉溪市第一中学2019届高三第二次调研考试数学】若()log ()f x x 121=2+1,则()f x 的定义域为____________.【答案】1(,0)2-【解析】要使函数有意义,需12210log (21)0x x +>⎧⎪⎨+>⎪⎩,解得102x -<<.则()f x 的定义域为1(,0)2-.【名师点睛】本题考查函数的定义域,属于基础题.36.【山东省滨州市2019届高三第二次模拟(5月)考试数学】若函数为偶函数,则__________.【答案】-2 【解析】函数为偶函数,则, 即:恒成立,.则.【名师点睛】本题主要考查偶函数的性质与应用,对数的运算法则等知识,意在考查学生的转化能力和计算求解能力.37.【湖南省长沙市第一中学2019届高三下学期高考模拟卷(一)数学】若函数()f x 称为“准奇函数”,则必存在常数a ,b ,使得对定义域的任意x 值,均有()(2)2f x f a x b +-=,已知1)(-=x xx f 为准奇函数”,则a +b =_________. 【答案】2【解析】由()(2)2f x f a x b +-=知“准奇函数”()f x 关于点),(b a 对称.。
2019年全国统一高考数学试卷(理科)真题解析(解析版)
状元考前提醒拿到试卷:熟悉试卷刚拿到试卷一般心情比较紧张,建议拿到卷子以后看看考卷一共几页,有多少道题,了解试卷结构,通览全卷是克服“前面难题做不出,后面易题没时间做”的有效措施,也从根本上防止了“漏做题”。
答题策略答题策略一共有三点:1. 先易后难、先熟后生。
先做简单的、熟悉的题,再做综合题、难题。
2. 先小后大。
先做容易拿分的小题,再做耗时又复杂的大题。
3. 先局部后整体。
把疑难问题划分成一系列的步骤,一步一步的解决,每解决一步就能得到一步的分数。
立足中下题目,力争高水平考试时,因为时间和个别题目的难度,多数学生很难做完、做对全部题目,所以在答卷中要立足中下题目。
中下题目通常占全卷的80%以上,是试题的主要构成,学生能拿下这些题目,实际上就是有了胜利在握的心理,对攻克高档题会更放得开。
确保运算正确,立足一次性成功在答卷时,要在以快为上的前提下,稳扎稳打,步步准确,尽量一次性成功。
不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤。
试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,格式是否规范。
要学会“挤”分考试试题大多分步给分,所以理科要把主要方程式和计算结果写在显要位置,文科尽量把要点写清晰,作文尤其要注意开头和结尾。
考试时,每一道题都认真思考,能做几步就做几步,对于考生来说就是能做几分是几分,这是考试中最好的策略。
检查后的涂改方式要讲究发现错误后要划掉重新写,忌原地用涂黑的方式改,这会使阅卷老师看不清。
如果对现有的题解不满意想重新写,要先写出正确的,再划去错误的。
有的同学先把原来写的题解涂抹了,写新题解的时间又不够,本来可能得的分数被自己涂掉了。
考试期间遇到这些事,莫慌乱!绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
浙江省2019届高考数学总复习专题02函数优质考卷分项解析
浙江省2019届高考数学总复习专题02 函数优质考卷分项解析一、选择题1. 设函数f(x) = (x^2 3x + 2)/(x 1),则f(x)的定义域为()A. x ≠ 1B. x ∈ RC. x > 1D. x < 12. 下列函数中,既是奇函数又是减函数的是()A. y = x^3B. y = x^3C. y = x^2D. y = x^23. 已知函数f(x) = |x 2|,则f(3)的值等于()A. 1B. 1C. 2D. 24. 设函数f(x) = (1/2)^x,则f(x)的反函数为()A. y = 2^xB. y = (1/2)^xC. y = log2(x)D. y = log(1/2)(x)5. 若函数f(x) = 2x + 3在区间[1, 1]上的值域为[1, 5],则函数g(x) = f(x) 2的值域为()A. [3, 1]B. [1, 3]C. [1, 3]D. [1, 1]二、填空题6. 已知函数f(x) = x^2 2x,则f(x)的零点为______。
7. 设函数f(x) = (1/2)^x,若f(a) = 4,则a的值为______。
8. 若函数f(x) = |x 1| + |x + 1|的最小值为2,则x的取值范围为______。
9. 已知函数f(x) = x^3 3x,则f(x)的极小值点为______。
10. 设函数f(x) = e^x,若f(a) = 1,则a的值为______。
三、解答题11. 设函数f(x) = (x 1)/(x + 2),求f(x)的定义域、值域和单调性。
12. 已知函数f(x) = ax^2 + bx + c(a ≠ 0),讨论f(x)的图像与x轴交点的个数。
13. 设函数f(x) = x^3 3x,求f(x)的极值。
14. 已知函数f(x) = (1/2)^x,求f(x)的反函数,并讨论其单调性。
15. 设函数f(x) = |x 1|,求f(x)在区间[0, 2]上的最大值和最小值。
2019年高考真题理科数学分类汇编(解析版):函数及答案
2018年高考真题理科数学分类汇编(解析版)函 数1、(2018年高考(安徽卷))函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥ 个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是 (A ){}3,4 (B ){}2,3,4(C ) {}3,4,5 (D ){}2,3【答案】B【解析】由题知,过原点的直线与曲线相交的个数即n 的取值.用尺规作图,交点可取2,3,4. 所以选B2、(2018年高考(北京卷))函数f(x)的图象向右平移一个单位长度,所得图象与y=e x 关于y 轴对称,则f(x)=A.1e x +B. 1e x -C. 1e x -+D. 1e x --3、(2018年高考(广东卷))定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是( )A . 4B .3C .2D .【解析】C ;考查基本初等函数和奇函数的概念,是奇函数的为3y x =与2sin y x =,故选C .4、(2018年高考(全国(广西)卷))已知函数()()()-1,021f x f x -的定义域为,则函数的定义域为(A )()1,1- (B )11,2⎛⎫- ⎪⎝⎭ (C )()-1,0 (D )1,12⎛⎫ ⎪⎝⎭ 【答案】B【解析】由题意可知 1210,x -<+<,则112x -<<-。
故选B 5、(2018年高考(全国(广西)卷))函数()()1=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x -(A )()1021x x >- (B )()1021x x ≠- (C )()21x x R -∈ (D )()210x x -> 【答案】A 【解析】由题意知1112(0)21y y x y x +=⇒=<-, 因此 ,故选A6、(2018年高考(全国(广西)卷))若函数()211=,2f x x ax a x ⎛⎫++∞ ⎪⎝⎭在是增函数,则的取值范围是 (A )[]-1,0 (B )[]-∞1, (C )[]0,3 (D )[]3∞,+7、(2018年高考(湖南卷))函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为 A .3 B .2 C .1 D .0【答案】B【解析】画出两个函数的图象,可得交点数。
2019年高考数学第02期小题精练系列专题23综合训练2理含解析
2019年高考数学第02期小题精练系列专题23综合训练2理含解析1. 已知集合,则( ){}{}2log ,21,0x A x x B y y x ==<=≥A B = A . B . C . D .∅{}21x x <<{}21x x ≤<{}21x x <≤【答案】C 【解析】试题分析:由已知可得,故选 C.{}{}0,21A x x B y y <=<=≥⇒A B =A B ={}21x x ≤<考点:集合的基本运算.2. 将直线绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为( )3y x =A .B .C .D .1133y x =-+113y x =-+33y x =-113y x =+【答案】A 【解析】考点:图象的变换.3. 已知命题;命题,则下列命题为真命题的是( )():,0,23x x p x ∃∈-∞<:0,,sin 2q x x x π⎛⎫∀∈< ⎪⎝⎭A .B .C .D .p q ∧()p q ∨⌝()p q ⌝∧()p q ∧⌝【答案】C 【解析】试题分析:因为当时,即,所以命题为假,从而为真.因为当时,即,所以命题为真,所以为真,故选C.x <023x⎛⎫>1 ⎪⎝⎭23x x>p p ⌝0,2x π⎛⎫∈ ⎪⎝⎭sin x x >q ()p q ⌝∧考点:命题的真假.4. 某工厂生产某种产品的产量 (吨)与相应的生产能耗 (吨标准煤)有如下几组样本数据:x y据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得其回归直线的斜率为0.7,则这组样本数据的回归直线方程是( )A .B . C. D .0.7 2.05y x =+0.71y x =+0.70.35y x =+0.70.45y x =+【解析】考点:线性回归直线.5. 已知,则的值为( )3sin 25πα⎛⎫-= ⎪⎝⎭()cos 2πα-A .B . C. D .2425725725-2425-【答案】B 【解析】试题分析:由,得.所以,故选 B.3sin 25πα⎛⎫-=⎪⎝⎭3cos 5α=()297cos cos 21cos 1225252πααα=-=-=-=-⨯考点:三角恒等变换.6. 设变量、满足约束条件,则目标函数的最小值为( )xy3602030x y x y y +-≥⎧⎪--≤⎨⎪-≤⎩4z x y =+ A . B .6 C.7 D .86- 【答案】C 【解析】考点:线性规划.【方法点晴】本题考查线性规划问题,灵活性较强,属于较难题型.考生应注总结解决线性规划问题的一般步骤(1)在直角坐标系中画出对应的平面区域,即可行域;(2)由目标函数变形为;(3)作平行线:将直线平移,使直线与可行域有交点,且观察在可行域中使最大(或最小)时所经过的点,求出该点的坐标;(4)求出最优解:将(3)中求出的坐标代入目标函数,从而求出的最大(小)值.z ax by =+a z y x bb=-+0ax by +=z bz 7. 在中,,,的对边分别是,,,若,,则的周长为( )ABC△AB C a b c 2cos cos b A a B c +=2a b ==ABC △A .5B .6 C.7 D .7.5 【答案】A 【解析】试题分析: 由正弦定理可得,即,∵,∴,故的周长为,故选A.sin cos sin cos sin B A A B c C +=()sin sin sin A B C c C +==sin 0C >1c =ABC △1225++=考点:解三角形.8. 将函数的图象向左平移个单位后关于直线对称,则的最小值为( )()sin 43f x x π⎛⎫=+ ⎪⎝⎭()0ϕϕ>12x π=ϕA .B . C. D .6π524π4π724π【答案】B 【解析】考点:1、三角函数的图象与性质;2、图象的变换.9. 某几何体的三视图如图所示,则该几何体的体积为( )A .B .1 C. D .22343【解析】试题分析:由三视图可知该几何体是一四棱锥,底面是长和宽分别为和的矩形,高为,则其体积为,故选C.4111441133V ⨯⨯⨯==考点:三视图.【方法点晴】本题主要考查三视图,属于较易题型.应注意把握三个视图的位置和尺寸:主视图在图纸的左上方,左视图在主视图的右方,俯视图在主视图的下方;主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按上述顺序放置,则应注明三个视图名称. 10. 已知向量,满足,,则向量在向量方向上的投影为( )ab 1a =ab ⊥2a b -a -A .0B .1 C.2 D .1- 【答案】D 【解析】试题分析:在方向上的投影为,故选D.2a b-a-()22221011a b a a b a aa -⋅-⋅--==-=- 考点:向量的投影.11. “”是“定积分”的( )()()14210aaa --+>6cos 1a xdx π>⎰A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件【解析】考点:1、不等式;2、定积分;3、充要条件.12. 已知函数与的图象如图所示,则函数的递减区间为( )()f x ()'f x ()()xf xg x e =A .B . C. D .()0 4,()()0 1 4 +∞,,,40 3⎛⎫ ⎪⎝⎭,()4 1 43⎛⎫-∞ ⎪⎝⎭,,, 【答案】B 【解析】试题分析:由图可知,先减后增的那条曲线为的图象,先增再减最后增的曲线为的图象,当时,,令,得,则,故的减区间为,,故选B.()'f x ()f x ()()0 1 4 x ∈+∞,,()()'f x f x <()()()''0xf x f xg x e-=<()()'0f x f x -<()()0 1 4 x ∈+∞,,()g x ()0 1,()4 +∞, 考点:1、函数的图象;2、函数的导数;3、函数的单调性.【方法点晴】本题考查函数的图象、函数的导数、函数的单调性,涉及分类讨论思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型.首先由图可知,先减后增的那条曲线为的图象,先增再减最后增的曲线为的图象,当时,,令,得,则,故的减区间为,()'f x ()f x ()()0 1 4 x ∈+∞,,()()'f x f x <()()()''0xf x f xg x e -=<()()'0f x f x -<()()0 1 4 x ∈+∞,,()g x ()0 1,()4 +∞,。
高考数学二轮复习专题11 离心率问题速解(精讲精练)(解析版)
专题11离心率问题速解【命题规律】求椭圆或双曲线的离心率、与双曲线的渐近线有关的问题,多以选择、填空题的形式考查,难度中等.【核心考点目录】核心考点一:顶角为直角的焦点三角形求解离心率的取值范围问题核心考点二:焦点三角形顶角范围与离心率核心考点三:共焦点的椭圆与双曲线问题核心考点四:椭圆与双曲线的4a 通径体核心考点五:椭圆与双曲线的4a 直角体核心考点六:椭圆与双曲线的等腰三角形问题核心考点七:双曲线的4a 底边等腰三角形核心考点八:焦点到渐近线距离为b核心考点九:焦点到渐近线垂线构造的直角三角形核心考点十:以两焦点为直径的圆与渐近线相交问题核心考点十一:渐近线平行线与面积问题【真题回归】1.(2022·全国·统考高考真题)椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为()A2B.2C .12D .13【答案】A【解析】[方法一]:设而不求设()11,P x y ,则()11,Q x y -则由14AP AQk k ⋅=得:21112211114AP AQ y y y k k x a x a x a ⋅=⋅==+-+-+,由2211221x y a b +=,得()2221212b a x y a -=,所以()2221222114b a x ax a -=-+,即2214b a =,所以椭圆C 的离心率c e a = A.[方法二]:第三定义设右端点为B ,连接PB ,由椭圆的对称性知:PB AQk k =-故14AP AQ PA AQ k k k k ⋅=⋅-=-,由椭圆第三定义得:22PA AQb k k a⋅=-,故2214b a =所以椭圆C 的离心率c e a = A.2.(2021·天津·统考高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB .则双曲线的离心率为()A BC .2D .3【答案】A【解析】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c y a b -=,解得2b y a =±,所以22b AB a=,又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a =c =,所以222212a c b c =-=,所以双曲线的离心率ce a==故选:A.3.(2021·全国·统考高考真题)设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是()A .⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦【答案】C【解析】设()00,P x y ,由()0,B b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32bb c-≤-,即22b c ≥时,22max 4PB b =,即max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即0e <≤;当32b b c ->-,即22b c <时,42222max b PB a b c=++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立.故选:C .4.(多选题)(2022·全国·统考高考真题)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为()A B .32C .2D .2【答案】AC【解析】[方法一]:几何法,双曲线定义的应用情况一M 、N 在双曲线的同一支,依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为B ,所以1OB F N ⊥,因为123cos 05F NF ∠=>,所以N 在双曲线的左支,OB a =,1OF c =,1FB b =,设12F NF α∠=,由即3cos 5α=,则4sin 5α=,235NA NF 22a a ==,21NF NF 2a-=532222a a b a ⎛⎫--= ⎪⎝⎭,2b e a =∴=,选A 情况二若M 、N 在双曲线的两支,因为123cos 05F NF ∠=>,所以N 在双曲线的右支,所以OB a =,1OF c =,1FB b =,设12F NF α∠=,由123cos 5F NF ∠=,即3cos 5α=,则4sin 5α=,235NA NF 22a a ==,12NF NF 2a -=352222a b a a +-=,所以23b a =,即32b a =,所以双曲线的离心率2c e a ==选C[方法二]:答案回代法A e =选项特值双曲线())22121,F ,F 4x y -=∴,过1F 且与圆相切的一条直线为(y 2x =+,两交点都在左支,N ⎛∴ ⎝,2112NF 5,NF 1,FF ∴===则123cos 5F NF ∠=,C e =选项特值双曲线())2212x y 1,F ,F 49-=∴,过1F 且与圆相切的一条直线为(2y x 3=,两交点在左右两支,N 在右支,N ∴,2112NF 5,NF 9,FF ∴===则123cos 5F NF ∠=,[方法三]:依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,若,M N 分别在左右支,因为1OG NF ⊥,且123cos 05F NF ∠=>,所以N 在双曲线的右支,又OG a =,1OF c =,1GF b =,设12F NF α∠=,21F F N β∠=,在12F NF △中,有()212sin sin sin NF NF cβαβα==+,故()122sin NF NF cαββα-=+-即()sin sin sin a c αββα=+-,所以sin cos cos sin sin sin a cαβαββα=+-,而3cos 5α=,sin a c β=,cos b c β=,故4sin 5α=,代入整理得到23b a =,即32b a =,所以双曲线的离心率c e a ==若,M N 均在左支上,同理有()212sin sin sin NF NF c βαβα==+,其中β为钝角,故cos bcβ=-,故()212sin sin sin NF NF c βαβα-=-+即sin sin cos cos sin sin a cβαβαβα=--,代入3cos 5α=,sin a c β=,4sin 5α=,整理得到:1424a b a =+,故2a b =,故2e ==,故选:AC.5.(2022·全国·统考高考真题)已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE V 的周长是________________.【答案】13【解析】∵椭圆的离心率为12c e a ==,∴2a c =,∴22223b a c c =-=,∴椭圆的方程为222222213412043x y x y c c c+=+-=,即,不妨设左焦点为1F ,右焦点为2F ,如图所示,∵222AF a OF c a c ===,,,∴23AF O π∠=,∴12AF F △为正三角形,∵过1F 且垂直于2AF 的直线与C 交于D ,E 两点,DE 为线段2AF 的垂直平分线,∴直线DE 的斜率为3,斜率直线DE 的方程:x c -,代入椭圆方程22234120x y c +-=,整理化简得到:221390y c --=,判别式()22224139616c c ∆=+⨯⨯=⨯⨯,∴122264613cDE y =-=⨯⨯⨯⨯=,∴138c =,得1324a c ==,∵DE 为线段2AF 的垂直平分线,根据对称性,22AD DF AE EF ==,,∴ADE V 的周长等于2F DE △的周长,利用椭圆的定义得到2F DE △周长为22221121222413DF EF DE DF EF DF EF DF DF EF EF a a a ++=+++=+++=+==.故答案为:13.6.(2022·浙江·统考高考真题)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,过F 且斜率为4ba的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________.【解析】过F 且斜率为4ba 的直线:()4b AB y xc a =+,渐近线2:b l y x a=,联立()4b y x c a b y xa ⎧=+⎪⎪⎨⎪=⎪⎩,得,33c bc B a ⎛⎫ ⎪⎝⎭,由||3||FB FA =,得5,,99c bc A a ⎛⎫- ⎪⎝⎭而点A 在双曲线上,于是2222222518181c b c a a b -=,解得:228124c a =,所以离心率e 4=.故答案为:4.7.(2022·全国·统考高考真题)记双曲线2222:1(0,0)x y C a b a b-=>>的离心率为e ,写出满足条件“直线2y x =与C 无公共点”的e 的一个值______________.【答案】2(满足1e <≤【解析】2222:1(0,0)x y C a b a b -=>>,所以C 的渐近线方程为b y x a =±,结合渐近线的特点,只需02b a <≤,即224b a≤,可满足条件“直线2y x =与C 无公共点”所以==c e a 又因为1e >,所以1e <≤故答案为:2(满足1e <≤皆可)【方法技巧与总结】求离心率范围的方法一、建立不等式法:1、利用曲线的范围建立不等关系.2、利用线段长度的大小建立不等关系.12,F F 为椭圆22221(0)x y a b a b +=>>的左、右焦点,P 为椭圆上的任意一点,[]1,PF a c a c ∈-+;12,F F 为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,P 为双曲线上的任一点,1PF c a ≥-.3、利用角度长度的大小建立不等关系.12,F F 为椭圆22221x y a b +=的左、右焦点,P 为椭圆上的动点,若12F PF θ∠=,则椭圆离心率e 的取值范围为sin12e θ≤<.4、利用题目不等关系建立不等关系.5、利用判别式建立不等关系.6、利用与双曲线渐近线的斜率比较建立不等关系.7、利用基本不等式,建立不等关系.【核心考点】核心考点一:顶角为直角的焦点三角形求解离心率的取值范围问题【典型例题】例1.(2022·全国·高二专题练习)已知椭圆()222210x y a b a b +=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎛⎫∈ ⎪⎝⎭,则该椭圆的离心率e 的取值范围是()A .12,23⎛⎫ ⎪⎝⎭B .2⎝⎭C .,23⎛ ⎝⎭D .23⎫⎪⎪⎝⎭【答案】B【解析】由题意椭圆22221x y a b+=()00a b >>,上一点A 关于原点的对称点为点B ,F 为其右焦点,设左焦点为N ,连接AN ,BN ,因为AF ⊥BF ,所以四边形AFBN 为长方形.根据椭圆的定义:2AF AN a +=,由题∠ABF =α,则∠ANF =α,所以22cos 2sin a c c αα+=,利用2112sin cos 4c e a πααα===+⎛⎫+ ⎪⎝⎭,∵,124ππα⎛⎫∈ ⎪⎝⎭,∴342πππα<+<14πα<⎛⎫+ ⎪⎝⎭,即椭圆离心率e 的取值范围是23⎛⎫⎪ ⎪⎝⎭,故选B .例2.(2022春·辽宁葫芦岛·高二统考期中)已知点12F F ,分别是椭圆22221(0)x ya b a b+=>>的左、右焦点,点P 12PF F ∆是直角三角形的动点P 恰好有6个,则该椭圆的离心率为()A .12BC.2D【答案】C【解析】由题意知,椭圆的最大张角为090,所以b c =,所以a =,所以c e a ===,故应选C .例3.(2022秋·安徽·高二校联考开学考试)若P 是以1F ,2F 为焦点的椭圆22221(0)x y a b a b +=>>上的一点,且120PF PF ⋅= ,125tan 12PF F ∠=,则此椭圆的离心率为()AB .1517C .1315D .1317【答案】D【解析】因为120PF PF ⋅=,所以12PF PF ⊥,在12Rt PF F 中,设25PF m =(0m >),则112PF m =,1213F F m ==,所以213c m =,12217a PF PF m =+=,所以213217c e a ==.故选:D.核心考点二:焦点三角形顶角范围与离心率【典型例题】例4.(2022春·福建漳州·高二校联考期中)已知椭圆2222:1x y C a b+=(0a b >>),椭圆的左、右焦点分别为1F ,2F ,P 是椭圆C 上的任意一点,且满足120PF PF ⋅>,则椭圆C 的离心率e 的取值范围是()A .10,2⎛⎫ ⎪⎝⎭B .2⎛⎫ ⎪ ⎪⎝⎭C .122⎛⎫⎪ ⎪⎝⎭D .,12⎛⎫⎪ ⎪⎝⎭【答案】B【解析】由已知得1(,0)F c -,2(,0)F c ,设()00,P x y ,则()100,PF c x y =--- ,()200,PF c x y =--,因为120PF PF ⋅> ,所以()()0000,,0c x y c x y ---⋅-->,即222000c x y -++>,即22200x y c +>,因为点P 是椭圆上的任意一点,所以2200x y +表示椭圆上的点到原点的距离的平方,因为()22200minx y b +=,所以22b c >,所以222a c c ->,即2212c a <,所以2c e a ⎛⎫=∈ ⎪ ⎪⎝⎭,故选:B .例5.(2022春·北京·高二人大附中校考期末)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,若C 上存在一点P ,使得12120F PF ︒∠=,且12F PF △,则C 的离心率的取值范围是()A .⎛ ⎝⎦B .110,12⎛⎫⎪⎝⎭C .311212⎫⎪⎢⎣⎭D .11,112⎛⎫⎪⎝⎭【答案】C【解析】设12||2=F F c ,12F PF △内切圆的半径为r .因为12||+||2PF PF a =,所以()22212121212||||||2||||(1cos1204|||)|F F PF PF PF PF a PF PF ︒=+-+=-,则212||||4PF PF b =.由等面积法可得)22211(22)4sin12022a c rb ac ︒+=⨯⨯=-,整理得)r a c =-,又12r a >故1112c a <.又12120F PF ︒∠=,所以16900F PO ︒∠≤≤则c a ≥11212e ≤<.故选:C例6.(2022春·新疆乌鲁木齐·高二乌市八中校考阶段练习)已知1F ,2F 是椭圆()222210x y a b a b+=>>的两个焦点,若存在点P 为椭圆上一点,使得1260F PF ∠=︒,则椭圆离心率e 的取值范围是().A .,12⎫⎪⎪⎣⎭B .2⎛⎫⎪ ⎪⎝⎭C .1,12⎡⎫⎪⎢⎣⎭D .122⎡⎫⎢⎣⎭【答案】C 【解析】如图,当动点P 在椭圆长轴端点处沿椭圆弧向短轴端点运动时,P 对两个焦点的张角12F PF ∠渐渐增大,当且仅当P 点位于短轴端点0P 处时,张角12F PF ∠达到最大值.由此可得:存在点P 为椭圆上一点,使得1260F PF ∠=︒,012P F F ∴△中,10260F P F ∠≥︒,可得02Rt P OF △中,0230OP F ∠≥︒,所以02P O ,即b ≤,其中c =2223a c c ∴-≤,可得224a c ≤,即2214c a ≥椭圆离心率ce a=,且0a c >>112e ∴≤<故选:C例7.(2022春·吉林辽源·高三辽源市第五中学校校考期中)已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且ππ[,]64α∈,则该椭圆离心率e 的最大值为___________.1-【解析】已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B 、F 为其右焦点,设椭圆的左焦点为N ,连接,,,AF AN BF BN ,所以四边形AFBN为长方形,根据椭圆的定义2AF AN a +=,且ABF α∠=,则ANF α∠=,所以22cos 2sin a c c αα=+,又由离心率的公式得211π2sin cos )4c e a ααα==++,由ππ[,]64α∈,则5πππ1242α≤+≤,所以112)π4α≤≤+1-.1例8.(2022春·黑龙江佳木斯·高二建三江分局第一中学校考期中)已知椭圆22221(0)x y a b a b +=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,63ππα⎡⎤∈⎢⎣⎦,则该椭圆的离心率e 的取值范围是___________.【答案】2,312⎡⎤-⎢⎥⎣⎦【解析】椭圆上点A 关于原点的对称点为点B ,F 为其右焦点,设左焦点为1F ,连接11AF AF BF BF ,,,,则四边形1AFF B 为矩形.根据椭圆的定义:12AF AF a ABF α+=∠=,,则1BAF α∠=.∴1||2c sin ||2cos 22cos 2AF AF c a c c sin αααα=⋅=⋅=⋅+⋅,,椭圆的离心率2112sin cos 2sin 4c e a πααα===+⎛⎫+ ⎪⎝⎭,64ππα⎡⎤∈⎢⎥⎣⎦,∴51242πππα≤+≤,则2(31)sin 144πα+⎛⎫≤+≤ ⎪⎝⎭,∴213122sin()4πα≤≤-+,∴椭圆离心率e 的取值范围2312⎡⎤-⎢⎥⎣⎦,.故答案为:2312⎡⎤-⎢⎥⎣⎦,例9.(2022·高二单元测试)椭圆2222:1(0)x y C a b a b +=>>上一点A 关于原点的对称点为B ,F 为其右焦点,若AF BF ⊥,设ABF θ∠=,且5,412ππθ⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率的取值范围为________.【答案】2623⎢⎣⎦【解析】记椭圆C 的左焦点为F ',连AF ',BF ',由椭圆的对称性和性质知BF AF '=,2AF B AFB π∠∠==',由2AF BF a +=,可得2cos 2sin 2c c a θθ+=,得11sin cos 4c e a πθθθ===+⎛⎫+ ⎪⎝⎭,由5,412ππθ⎡⎤∈⎢⎥⎣⎦,可得2,423πππθ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦sin 14πθ⎛⎫≤+≤ ⎪⎝⎭,所以23e ≤≤.故答案为:2⎢⎣⎦.核心考点三:共焦点的椭圆与双曲线问题【典型例题】例10.(2022春·江苏苏州·高二江苏省苏州第十中学校校考阶段练习)已知椭圆和双曲线有共同的焦点12,,,F F P Q 分别是它们在第一象限和第三象限的交点,且260QF P ∠=,记椭圆和双曲线的离心率分别为12,e e ,则221231e e +等于_______.【答案】4【解析】设椭圆长半轴长为1a ,双曲线实半轴长为2a ,()1,0F c -,()2,0F c ,P 为两曲线在第一象限的交点,Q 为两曲线在第三象限的交点.由椭圆和双曲线定义知:1212+=PF PF a ,1222-=PF PF a ,112PF a a ∴=+,212=-PF a a ,由椭圆和双曲线对称性可知:四边形12PF QF 为平行四边形,260QF P ∠= ,12120F PF ∴∠= ,222121212122cos F F PF PF PF PF F PF ∴=+-∠,即()()()()22222121212121243c a a a a a a a a a a =++-++-=+,22122222123314a a e e c c∴+=+=.故答案为:4.例11.(2022春·山东青岛·高二统考期末)已知椭圆1C 和双曲线2C 有共同的焦点1F ,2F ,P 是它们的一个交点,且1223F PF π∠=,记椭圆1C 和双曲线2C 的离心率分别为1e ,2e ,则2212484w e e =+的最小值为()A .24B .37C .49D .52【答案】C【解析】设椭圆的长半轴长为1a ,双曲线的实半轴长2a ,焦距2c ,则1212+=PF PF a ,1222-=PF PF a ,解得112=+PF a a ,212=-PF a a,如图在△F1PF2中,根据余弦定理可得:()()()22212121222cos3F F PF PF PF PF π=+-⋅,整理得2221243c a a =+,即2212314e e +=,所以()2222222112122222121231213148448437494e e w e e e e e e e e ⎛⎫=+=⨯+⨯+=++≥ ⎪⎝⎭,当且仅当1242e e ==时,取等号.故选:C.例12.(2022春·广西·高三校联考阶段练习)已知椭圆和双曲线有共同的焦点1F ,2F ,P 是它们的一个交点,且12π3F PF ∠=,记椭圆和双曲线的离心率分别为1e ,2e ,则12e e ⋅的最小值为()A2B .34CD .3【答案】A【解析】如图,设椭圆的长半轴为1a ,双曲线的实半轴长为2a ,则根据椭圆及双曲线的定义:1211222,2PF PF a PF PF a +=-=,所以112212,PF a a PF a a =+=-,设122F F c =,因为12π3F PF ∠=,则在12PF F △中,由余弦定理得:22212121212π4()()2()()cos3c a a a a a a a a =++--+-,化简得:2221234a a c +=,即2212134e e +=,从而有2212134e e =+≥整理得12e e ⋅≥=(当且仅当122e e =时等号成立)故选:A.例13.(2022春·辽宁沈阳·高二沈阳市第三十一中学校考阶段练习)已知椭圆和双曲线有共同的焦点1F ,2F ,P 是它们的一个交点,且123F PF π∠=,记椭圆和双曲线的离心率分别为1e ,2e ,则当121e e 取最大值时,1e ,2e 的值分别是()A2,2B .12C.3D.4【答案】A【解析】不妨设椭圆与双曲线的标准方程分别为:()222210x y a b a b+=>>,c =2222111x y a b -=,c =设1PF m =,2PF n =.m n >.则2m n a +=,12m n a -=,∴1m a a =+,1n a a =-.因为123F PF π∠=,所以()22221cos322m n c mnπ+-==,即()()()()22211114a a a a c a a a a ++--=+-.∴2221340a a c +-=,∴2221314e e +=,∴4≥,则121e e ≤12e =2e =时取等号.故选:A .例14.(2022·河南洛阳·校联考模拟预测)已知椭圆1C :()222210x y a b a b +=>>和双曲线2C :()222210,0x y m n m n-=>>有共同的焦点1F ,2F ,P 是它们在第一象限的交点,当1260F PF ∠=︒时,1C 与2C 的离心率互为倒数,则双曲线2C 的离心率是()ABC .2D【答案】B【解析】设1C ,2C 的离心率分别为1e ,2e ,焦距为2c ,因为122PF PF a +=,122PF PF m -=,所以1PF a m =+,2PF a m =-,由余弦定理,得222121212122cos F F PF PF PF PF F PF =+-⋅∠,即()()()()22242cos 60c a m a m a m a m =++--+-︒,化简,得22243c a m =+,两边同除以2c ,得2212134e e =+.又121e e =,所以222234=+e e .又21e >,所以2e =.故选:B核心考点四:椭圆与双曲线的4a 通径体【典型例题】例15.(2022·广西南宁·南宁市第八中学校考一模)已知椭圆()222210x y a b a b+=>>的左、右焦点分别为12,F F ,过1F 且与x 轴垂直的直线交椭圆于,A B 两点,直线2AF 与椭圆的另一个交点为C ,若222=AF F C ,则椭圆的离心率为()ABCD【答案】A【解析】过点C 作CD x ⊥轴于D ,则122~ AF F CDF ,由222=AF F C ,则122||2||=F F F D ,12AF CD =,所以点22,2⎛⎫⎪⎝⎭b C c a ,由点C 在椭圆上,所以有222222(2)1b ac a b ⎛⎫⎪⎝⎭+=,即225c a =,所以e ==c a 故选:A.例16.(2022·全国·高三专题练习)已知椭圆22221(0)x y C a b a b+=>>:的左、右焦点分别为1F ,2F ,过2F 直线与椭圆C 交于M ,N 两点,设线段1NF 的中点D ,若10MD NF ⋅=,且12//MF DF,则椭圆C 的离心率为()A .13BC .12D【答案】B【解析】因为10MD NF ⋅=,所以1MD NF ⊥,又D 是1NF 中点,所以1MF MN =,因为12//MF DF,所以2F 是MN 中点,则22MF NF =,因此MN x ⊥轴,设2MF m =,则12MF m =,1232MF MF m a +==,23a m =,在12MF F △中,由勾股定理得22242(((2)33m m c +=,变形可得3c e a ==.故选:B .例17.(2022春·云南·高三校联考阶段练习)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点为1F ,2F ,过1F 且垂直于x 轴的直线交C 于M ,N 两点,若22MF NF ⊥,则C 的离心率为()A 1+B .2CD【答案】A【解析】由题可得:MN x c =-,代入双曲线2222:1(0,0)x y C a b a b -=>>,解得2b y a=±,又22MF NF ⊥,∴112F M F F =,即22bc a=,222c a ac ∴-=,2210e e ∴--=,1e ∴=1e > ,1e ∴.故选:A例18.(2022春·江苏宿迁·高三校考阶段练习)如图,已知A ,B ,C 是双曲线22221(0,0)x y a b a b -=>>上的三个点,AB 经过原点O ,AC 经过右焦距F ,若BF AC ⊥且2CF FA =,则该双曲线的离心率等于_____.【答案】3【解析】若E 是左焦点,连接,,AE BE EC ,设||BF m =,||AF n =,∴由双曲线的对称性且BF AC ⊥知:AEBF 是矩形,则||AE m =,||BE n =,又2CF FA =,即||2FC n =,则||2||22EC a FC a n =+=+,∴在Rt EAC △中,222||||||AE AC EC +=,即22294()m n a n +=+,而2m n a -=,∴23an =,83a m =,∵在Rt EAF V 中,2224m n c +=,即226849a c =,可得3e =..核心考点五:椭圆与双曲线的4a 直角体【典型例题】例19.(2022春·福建福州·高二福建省福州格致中学校考阶段练习)已知1F ,2F 是双曲线()2222:10,0x y E a b a b-=>>的左、右焦点,过1F l ,l 分别交y 轴和双曲线右支于点M ,P ,且212F F PM F M -=uuu u r uuu r uuuu r,则E 的离心率为______.【答案】2【解析】因为212F F PM F M -=uuu u r uuu r uuuu r ,所以1MF PM =uuu r uuu r,即M 为1PF 的中点.又O 为1F 2F 的中点,所以OM 为中位线.所以2//OM PF ,即2PF x ⊥轴.因为直线l 过1F 122F F c =,所以212PF F ==,11224PF F F c ==.由双曲线的定义可得:122PF PF a -=,即42c a -=,解得:2c a ==心率为2e =故答案为:2例20.(2022·全国·高三专题练习)如图所示,双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为1F 、2F ,过1F 的直线与双曲线C 的两条渐近线分别交于A 、B 两点,A 是1F B 的中点,且12F B F B ⊥,则双曲线C 的离心率e =()AB .2CD1【答案】B【解析】 A 是1F B 的中点,AO ∴为△12F F B 的中位线,12F B F B ⊥,所以1OA F B ⊥,所以1OB F O c ==.设1(B x ,1)y ,2(A x ,2)y ,点B 在渐近线by x a=上,∴2221111x y c b y x a ⎧+=⎪⎪⎨⎪=⎪⎩,得11x a y b =⎧⎨=⎩.又A 为1F B 的中点,∴2222c a x b y -+⎧=⎪⎪⎨⎪=⎪⎩,A 在渐近线by x a=-上,∴22b b a c a -=-⋅,得2c a =,则双曲线的离心率2c e a==.故选:B例21.(2022·天津·统考一模)设12,F F 分别是双曲线22221(0,0)x y a b a b -=>>的左、右焦点,O 为坐标原点,过左焦点1F 作直线1F P 与圆222x y a +=切于点E ,与双曲线右支交于点P ,且满足()112OE OP OF =+,OE =()A .221612x y -=B .22169x y -=C .22136x y -=D .221312x y -=【答案】D【解析】∵E 为圆222x y a +=上的点,OE a ∴==()112OE OP OF =+,∴E 是1PF 的中点,又O 是12F F 的中点,222PF OE a ∴===,且2//PF OE ,又12124PF PF a PF a -==∴==1PF 是圆的切线,121,OE PF PF PF ∴⊥∴⊥,又222222212122460,15,12F F c c PF PF c b c a =∴=+=∴=∴=-=,,∴双曲线方程为221312x y -=.故选:D例22.(2022·四川广元·统考三模)设1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过2F 的直线交椭圆于A ,B 两点,且120AF AF ⋅= ,222AF F B =,则椭圆E 的离心率为()A .23B .34C D 【答案】C【解析】因为222AF F B =,不妨令()22220B AF F m m ==>,过2F 的直线交椭圆于A ,B 两点,由椭圆的定义可得,122AF AF a +=,122BF BF a +=,则12BF a m =-,122AF a m =-,又120AF AF ⋅=,所以12AF AF ⊥,则12AF F △和1AF B △都是直角三角形,则22211AF AB BF +=,即()()2222292a m m a m -+=-,解得3a m =,所以143AF a =,223AF a =,又122F F c =,2221212AF AF F F +=,所以222164499a a c +=,因此2259c a =,所以椭圆E 的离心率为c a =故选:C.例23.(2022春·江西抚州·高二江西省临川第二中学校考阶段练习)如图,已知1F ,2F 为双曲线E :22221(0,0)x y a b a b-=>>的左、右焦点,过点1F ,2F 分别作直线1l ,2l 交双曲线E 于A ,B ,C ,D 四点,使得四边形ABCD 为平行四边形,且以AD 为直径的圆过1F ,11DF AF =,则双曲线E 的离心率为()A BC .52D .2【答案】D【解析】设11DF AF x ==,则22DF x a =-,由双曲线的对称性和平行四边形的对称性可知:21CF AF x ==,连接1CF ,则有1222CF CF x a =+=+,2222DC DF CF x a=+=-由于1F 在以AD 为直径的圆周上,11DF AF ∴⊥,∵ABCD 为平行四边形,//AB CD ,1DF DC ∴⊥,在直角三角形1CDF 中,22211CF DF CD =+,()()222222x a x x a +=+-,解得:3x a =,123,DF a DF a ==;在直角三角形12F F D 中,2221212DF DF F F +=,()()22232a a c +=,得2252a c =,c e a =,故选:D.核心考点六:椭圆与双曲线的等腰三角形问题【典型例题】例24.(2022春·陕西西安·高二期末)设1F ,2F 是椭圆E :()222210x y a b a b+=>>的左、右焦点,过点()2,0F c 且倾斜角为60°的直线l 与直线2a x c=相交于点P ,若12PF F △为等腰三角形,则椭圆E 的离心率e 的值是()A2B .13C.3D.2【答案】A【解析】直线l的方程为)y x c =-,由)2y x c a x c ⎧=-⎪⎨=⎪⎩解得2y c =,则2a P c ⎛ ⎝⎭,由于12PF F △为等腰三角形,所以21cos 6022a c c c -︒==,222212,,22c c a c a a ===.故选:A例25.(2022·全国·高三专题练习)已知双曲线22221x y a b-=的左焦点为1F ,过1F 作一倾斜角为15 的直线交双曲线右支于P 点,且满足1POF △(O 为原点)为等腰三角形,则该双曲线离心率e 为()A.e =B .2e =C.e =D.12e =【答案】C【解析】记右焦点为2F ,由题意知,1215PF F ∠=,且1POF △为等腰三角形,则只能是1OF OP =,所以212230POF PF F ∠∠==,OP c =,所以直线OP的方程为y x =,由2222331y x x y a b ⎧=⎪⎪⎨⎪-=⎪⎩,得2222222222333P Pa b x b a a b y b a ⎧=⎪⎪-⎨⎪=⎪-⎩所以222222222333a b a b c b a b a+=--,整理,得42243840c a c a -+=,即423840e e -+=,解得22e =或23(舍去),所以2e =.故选:C .例26.(2022·河南鹤壁·鹤壁高中校考模拟预测)已知12F F 、是椭圆22221(0)x y a b a b+=>>的左、右焦点,点P 为抛物线28(0)y ax a =->准线上一点,若12F PF △是底角为15︒的等腰三角形,则椭圆的离心率为()A .31-B .21-C .312-D .212-【答案】A【解析】如图,抛物线的准线与x 轴的交点为M因为12,F F 是椭圆22221(0)x y a b a b+=>>的左、右焦点,所以12(,0),(,0)F c F c -抛物线28(0)y ax a =->准线为:直线2x a =,所以(2,0)M a 因为12F PF △是底角为15︒的等腰三角形,则1212==15PF F F PF ∠∠︒则22122=30,==2PF M F F PF c ∠︒则222223cos ===22F M a c PF M PF c -∠,整理得:2=(3+1)a c 所以离心率23131c e a==+.故答案为:A.例27.(2022·全国·高三专题练习)已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点为12,F F ,若椭圆C 上恰好有6个不同的点P ,使得12F F P 为等腰三角形,则椭圆C 的离心率的取值范围是()A .111,,1322⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭B .110,,132⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】A【解析】法一:显然,P 是短轴端点时,12PF PF =,满足12F F P 为等腰三角形,因此由对称性,还有四个点在四个象限内各有一个,设(,)P x y 是第一象限内使得12F F P 为等腰三角形的点,若112PF F F =,则222212x y a b c ⎧+=⎪=,又222a b c =+,消去y 整理得:222224240c x a cx a c a +-+=,解得22a ac x c --=(舍去)或22a acx c -+=,由0x a <<得220a aca c-+<<,所以112c a <<,即112e <<,若212PF F F =,则222212x y a b c ⎧+=⎪=,又222a b c =+,消去y 整理得:222224240c x a cx a c a --+=,解得22a ac x c -=或22a ac x c +=,22a aca c +>舍去.所以220a aca c-<<,所以1132c a <<,即1132e <<,12e =时,2a c =,12PF F △是等边三角形,P 只能是短轴端点,只有2个,不合题意.综上,e 的范围是111(,)(,1)322⋃.法二:①当点P 与短轴的顶点重合时,12F F P 构成以12F F 为底边的等腰三角形,此种情况有2个满足条件的12F F P ;②当12F F P 构成以12F F 为一腰的等腰三角形时,根据椭圆的对称性,只要在第一象限内的椭圆上恰好有一点P 满足12F F P 为等腰三角形即可,则1122PF F F c ==或2122PF F F c ==当12PF c =时,则2c a >,即12c e a =>,则112e <<,当22PF c =时,则有22c a c c a>-⎧⎨<⎩,则1132e <<,综上所述,椭圆的离心率取值范围是111,,1322⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭.故选:A.核心考点七:双曲线的4a 底边等腰三角形【典型例题】例28.(2022·全国·高三专题练习)已知1F ,2F 是双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点,过点1F作斜率为2的直线l 与双曲线的左,右两支分别交于M ,N 两点,以2F 为圆心的圆过M ,N ,则双曲线C 的离心率为()ABC .2D【答案】B【解析】取MN 中点A ,连AF 2,由已知令22||||MF NF m ==,则2AF MN ⊥,如图:因点M ,N 为双曲线左右两支上的点,由双曲线定义得12||||22MF MF a m a =-=-,12||||22NF NF a m a =+=+,则11||||||4,||2MN NF MF a MA a =-==,令双曲线半焦距为c ,12Rt AF F △中,12||,||AF m AF =2Rt AMF中,2||AF=22222m a c =+,因直线l的斜率为2,即12tan 2AF F ∠=,而2121||tan ||AF AF F AF ∠=,即21||||AF AF =,2221||1||2AF AF =,于是有2222221222c a c a -=+,c =,==c e a ,所以双曲线C故选:B例29.(2022·全国·高三专题练习)设双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F ,过点1Fl 与双曲线C 的左、右两支分别交于,M N 两点,且()220F M F N MN +⋅=,则双曲线C 的离心率为()ABCD .2【答案】A【解析】如图,设D 为MN 的中点,连接2F D .易知2222F M F N F D +=,所以()22220F M F N MN F D MN +⋅=⋅= ,所以2F D MN ⊥.因为D 为MN 的中点,所以22F M F N =.设22F M F N t ==,因为212MF MF a -=,所以12MF t a =-.因为122NF NF a -=,所以12NF t a =+.所以114MN NF MF a =-=.因为D 是MN 的中点,11F D F M MD =+,所以12,MD ND a F D t ===.在Rt 12F F D中,2F D =;在Rt 2MF D中,2F D ==22222t a c =+.所以21F D F D t ===因为直线l所以2121tan F D DF F F D ∠===,所以2222221,23c a c a a c -==+,c =,所以离心率为ca=故选:A核心考点八:焦点到渐近线距离为b 【典型例题】例30.(2022·全国·模拟预测)设1F ,2F 分别是双曲线C :()222210,0x ya b a b-=>>的左、右焦点,O 为坐标原点,过右焦点2F 作双曲线的一条渐近线的垂线,垂足为A .若12212AF F S OF =△,则双曲线C 的离心率为()AB .2C D 【答案】D【解析】根据对称性,不妨取双曲线C 的一条渐近线的方程为by x a=,即0bx ay -=,点()2,0F c b =.因为2OF c =,所以AO a =,所以122124422AF F AOF S S ab ab ==⨯=△△.由题意知2222ab c a b ==+,所以a b =,离心率e ==,故选:D.例31.(2022·全国·高三专题练习)设1F ,2F 是双曲线2222:1(0,0)x yC a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1||||PF OP ,则C 的离心率为()AB .2CD【答案】B【解析】不妨设双曲线的一条渐近线方程为b y x a=,则2b c a PF b ⨯==,2OF c =,PO a ∴=,1|||PF OP ==在2Rt POF △中,222cos PF b PF O OF c∠==, 在12Rt PF F 中,22221212212cos 2PF F F PF b PF O PF F F c∠+-==,b c=,即224c a =,e=2,故选:B .例32.(2022·全国·高三专题练习)设1F ,2F 是双曲线2222:1(0,0)x y C a b u b -=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P,若1PF ,则C 的离心率为()A.B .2CD【答案】C【解析】双曲线2222:1(0,0)x y C a b a b -=>>的渐近线为b y x a =±,焦点()2,0F c 到直线b y x a=的距离d b ==,所以2PF b =,由勾股定理得OP a =,所以2cos a POF c ∠=,在1POF △中,()122cos cos cos aPOF POF POF cπ∠=-∠=-∠=-,因为1PF 由余弦定理可得22211112cos PF OP OF OP OF POF =+-⋅∠,即)2222a a c ac c ⎛⎫=+-- ⎪⎝⎭,即222a c =,所以离心率c e a ==故选:C例33.(多选题)(2022秋·广东·高二校联考阶段练习)过双曲线2222:1x y C a b-=(0a >,0b >)的右焦点F 引C 的一条渐近线的垂线,垂足为A ,交另一条渐近线于点B .若FB AF λ=,23λ≤≤,则C 的离心率可以是()A B C .2D .2【答案】BC【解析】右焦点(c,0)F ,设一渐近线OA 的方程为b y x a=,则另一渐近线OB 的方程为b y x a=-,由FA 与OA 垂直可得FA 的方程为()a y x c b=--,联立方程2222()b y x a c a ax a a b c y x c b ⎧=⎪⎪⇒==⎨+⎪=--⎪⎩,可得A 的横坐标为2a c,联立方程()2222222b y x a c ca ax a a b a c y x c b ⎧=-⎪⎪⇒==⎨--⎪=--⎪⎩可得B 的横坐标为2222ca a c-.因为FB AF λ= ,所以()2222222222()22c c a ca a c a c c a c c a c cλλ---=-⇒=⨯--,可得2222222c e a c e λ==--,因为23λ≤≤,所以22322e e ≤-≤,即22222340432*******2e e e e e e ⎧-≥⎪⎪-⇒≤≤⇒≤⎨-⎪≤⎪-⎩,BC 满足题意,AD 不合题意,故选:BC.核心考点九:焦点到渐近线垂线构造的直角三角形【典型例题】例34.(2022·陕西西安·西安中学校考模拟预测)已知双曲线:C 22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,过2F 作双曲线C 的一条渐近线的垂线l ,垂足为H ,直线l 与双曲线C 的左支交于E 点,且H 恰为线段2EF 的中点,则双曲线C 的离心率为()ABC .2D【答案】D【解析】连结1EF ,因为点,O H 分别为12F F 和2EF 的中点,所以1//OH EF ,且12EF EF ⊥设点()2,0F c 到一条渐近线by x a=的距离d b ==,所以22EF b =,又212EF EF a -=,所以122EF b a =-,12Rt EF F 中,满足()2222244b a b c -+=,整理为:2b a =,双曲线的离心率ce a===故选:D例35.(2022秋·安徽·高二校联考期中)已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为1F ,2F ,以1OF 为直径的圆与双曲线的一条渐近线交于点M (异于坐标原点O ),若线段1MF 交双曲线于点P ,且2//MF OP 则该双曲线的离心率为()ABCD【答案】A【解析】不妨设渐近线的方程为by x a=-,因为2//MF OP ,O 为12F F 的中点,所以P 为1MF 的中点,将直线OM ,1MF 的方程联立()b y x aa y x cb ⎧=-⎪⎪⎨⎪=+⎪⎩,可得2,a ab M c c ⎛⎫- ⎪⎝⎭,又()1,0F c -,所以2,22a c cab P c ⎛⎫⎛⎫-+-⎪ ⎪⎝⎭⎪ ⎪ ⎪⎝⎭即22,22a c ab P c c ⎛⎫+- ⎪⎝⎭,又P 点在双曲线上,所以()2222222144c ac a a c+-=,解得c a =故选:A.例36.(2022·全国·高三专题练习)已知双曲线2222:1(0,0)x y E a b a b-=>>的左焦点为1F ,过点1F 的直线与两条渐近线的交点分别为M N 、两点(点1F 位于点M 与点N 之间),且112MF F N =,又过点1F 作1F P OM ⊥于P (点O 为坐标原点),且||||ON OP =,则双曲线E 的离心率e =()ABCD .62【答案】C【解析】不妨设M 在第二象限,N在第三象限,如下图所示:因为ON OP =,11F OP F ON ∠=∠,所以11F OP F ON ≅ ,所以1190F PO F NO ∠=∠=︒,11F P F N =,又()1:,,0OM bl y x F c a=--,所以11F F N b ==,所以ON OP a ==,所以1122MF F N b ==,因为113tan ,tan tan 2b b F OP MON F OP a a∠=∠=∠=,所以22231bba b a a =-,所以222222113b c a e a a -==-=,所以e =故选:C.例37.(2022·全国·统考模拟预测)设F 是双曲线22221(0)x y b a a b-=>>的一个焦点,过F 作双曲线的一条渐近线的垂线,与两条渐近线分别交于,P Q 两点.若2FP FQ =,则双曲线的离心率为()A BC .2D .5【答案】C【解析】不妨设(,0)F c -,过F 作双曲线一条渐近线的垂线方程为()ay x c b=+,与b y x a =-联立可得2a x c =-;与b y x a =联立可得222a cx b a=-,∵2FP FQ = ,∴22222a ca c cb ac ⎛⎫+=-+ ⎪-⎝⎭,整理得,22222c b a =-,即224c a =,∵1e >,∴2e =.故选:C .核心考点十:以两焦点为直径的圆与渐近线相交问题【典型例题】例38.(2022春·四川宜宾·高二四川省宜宾市第四中学校校考阶段练习)已知F 是双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,O 为坐标原点,过F 的直线与C 的两条渐近线的交点分别为,M N ,若0OM MF ⋅= ,||MN b =,则C 的离心率为________.【答案】2【解析】因为0OM MF ⋅= ,所以OM MF ⊥,即⊥OM MF所以MF 为点(),0F c 到渐近线0bx ay -=的距离,bcMF b c===,所以MF MN b ==,可得点M 为NF 的中点,又因为⊥OM MF ,所以ON OF c ==,所以222OM c b a =-=,设双曲线的左焦点为1F ,1F ON θ∠=,(),N x y 则()tan tan tan b FON FON aθπ=-∠=-∠=,因为222c a b =+,所以cos a c θ=,sin b cθ=所以cos a x ON c a c θ=-=-⋅=-,sin by ON c b cθ==⋅=,所以(),N a b -,因为M 为NF 中点,所以,22a M c b -⎛⎫⎪⎝⎭,222222c a b OMa -⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,将222b c a =-代入整理可得:()22224c a c a a -+-=即222240c ac a --=,所以220e e --=,可得()()210e e -+=,解得:2e =或1e =-(舍),故答案为:2例39.(2022·山西运城·统考模拟预测)已知双曲线E :()222210,0x y a b a b-=>>的左焦点为1F ,过点1F 的直线与两条渐近线的交点分别为M ,N 两点(点1F 位于点M 与点N 之间),且13MN F N =,又过点1F 作1F P OM ⊥于P (点О为坐标原点),且ON OP =,则双曲线E 的离心率e 为__________.【解析】双曲线E :()222210,0x y a b a b-=>>的渐近线方程为b y x a =±,如图所示,设11,b M x x a ⎛⎫- ⎪⎝⎭,22,b N x x a ⎛⎫⎪⎝⎭,()1,0F c -,。
函数-2019年高考数学---精校解析Word版
【知识应用通关】+1,则函数f(x)的解析式为( )B.f(x)=xx+1D.f(x)=1x+2t+1x+1x+f-x=-x+f x=-lg x,则f(x)=________.x-+x+,x -,x,-2≤x ≤2,-,x 2-x ,≥1,-π2,0单调性相反;f xx单调性相同.奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反.-,x -x -x ,=⎨⎪⎧-⎝ ⎛⎭⎪⎫x -122+⎛⎫11x -,上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x<f (1)a -x -log a x ,x >1,x+x+1(2)图象法函数是奇(偶)函数⇔函数图象关于原点x+x+a为奇函数,则x3【解析】由题意知,+1)(f(x+a)=-1f xf(x+a)=1f xx,当x ,∴f x+,∴f(1)=f(3)=-f(2 019)=504[f(3)+(4)]+f(504×4+(504×4+x1-x2>0 x1-2幂函数的图象一定会出现在第一象限,一定不会出现在第四象限,至于是否出现在第二、三象限,要A.-1 C.1【答案】CA.④,⑦B.④,⑧C.③,⑧D.①,⑤确定二次函数图象的三要点二次函数在闭区间上的最值,则二次函数f(x)在闭区间[m,n]上的最大值、最小值有如下的分布情况:m<n<-b2a ,即-b∈(n,+∞)m<-b2a<n,即-b∈(m,n)①b2>4ac;②2a-③a-b+c=0;④其中正确的结论是,[-6,的单调递增区间是(0,6]当,na当n时.有理数指数幂-=结果不能同时含有根式和分数指数幂,也不能既有分母又有负分数指数幂.-=39=33-=y=3a的图象有两个交点,则实数2-2.-22-23-=+lg 2·lg 5-lg 2·lg 50-log35·log- 1 000;lg 0.3·lg 1.2(2)(log32+log943+loglg 32-lg 3-1·lg 31-lg 3·32lg 3+2lg 2-1lg 31·lg 3+2lg 2-1=-(2)原式=⎭⎪⎫lg 2lg 3+lg 2lg 9⎭⎪⎫lg 3lg 8=⎫lg 3lg 33lg 2,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大,如图,,且a≠1)的值域为{y|y≥1},则a>1,故函数y=)>g(1)时,x的取值范围是[1,2).0<b<a-1<1 .0<a-1<b-1<1,即ab+a+b=0.所以a+2 4++b+4>0.∴a+b>0.2x-,.利用图象变换法作函数的图象 个单位y =f (x -a ); 个单位y =f (x )+b . y =f (x )―――――――――――――――――――――→A >1,横坐标不变,纵坐标伸长为原来的A 倍0<A <1,横坐标不变,纵坐标缩短为原来的A 倍y =【知识应用通关】的图象大致为( )的定义域为{x|x≠0}且为偶函数,所以排除选项B,,解得x=2,或x=-2(舍去).则当0<x<2时,函数f(x),故函数f(x)为偶函数,即函数的图象关于y利用函数的图象解决方程根问题的思路当方程与基本函数有关时,可以通过函数图象来研究方程的根,方程f(x)=0f(x)=g(x)的根就是函数f(x)与g(x)图象交点的横坐标.,则下列结论正确的是( ) ,+∞)若方程f(x)=g(x1⎛⎫若f(3-a2)<f(2a),则实数,对于任意的x∈R,不等式有三个不同的实数根,即函数) .1,作出函数f (x )的图象,如图所示,当的图象有且只有一个交点,所以实数a 的取值范围是(-∞,在区间[0,2]上有解,则实数B.⎣⎢⎡⎦⎥⎤-32,-1-,时,f(x)=ln(1-。
2019高考数学压轴小题及答案解析
2019高考数学压轴小题及答案解析题组一10.设函数$f(x)$为定义域为$\mathbb{R}$的奇函数,且$f(x)=f(-2x)$,当$x\in[0,1]$时,$f(x)=\sin x$,则函数$g(x)=\cos(\pi x)-f(x)$上的所有零点的和为()在区间$[-2,2]$。
11.已知函数$f(x)=\frac{2}{1+x^2}+\sin x$,其中$f'(x)$为函数$f(x)$的导数,求$f(2018)+f(-2018)+f'(2019)+f'(-2019)$的值。
12.已知直线$l:y=ax+1-a(a\in\mathbb{R})$,若存在实数$a$使得一条曲线与直线$l$有两个不同的交点,且以这两个交点为端点的线段长度恰好等于$|a|$,则称此曲线为直线$l$的“绝对曲线”。
下面给出的四条曲线方程:$y=-2x-12$,$(x-1)^2+(y-1)^2=1$,$y=4x$,$x+3y=4$。
其中直线$l$的“绝对曲线”的条数为()。
15.若平面向量$\vec{a}=\begin{pmatrix}1\\2\\1\end{pmatrix}$,$\vec{b}=\begin{pmatrix}1\\-1\\2\end{pmatrix}$,$\vec{c}=\begin{pmatrix}3\\1\\-1\end{pmatrix}$,满足$\vec{a}\cdot\vec{b}=0$,$\vec{b}\cdot\vec{c}=0$,则$\vec{1}$在$\vec{2}$方向上投影的最大值是()。
16.观察下列各式:$3=3^1$,$6=3+5$,$9=7+9+11$,$12=13+15+17+19$,$\cdots$,$3m=m^2+(m+1)^2+(m+2)^2+\cdots+(2m-1)^2$。
按上述规律展开后,发现等式右边含有“2017”这个数,则$m$的值为()。
2019高考数学小题训练 函数专题及其答案解析
2019高考数学小题训练 函数专题及其答案解析第3练 函数及其表示一、 填空题1. 定义域为R 的函数y =f (x )的图象与直线x =2 014的公共点个数为________.2. 已知函数f(x)=⎩⎪⎨⎪⎧log 2x ,x>0,4x , x ≤0,则f[f(-1)]=________. 3. 已知函数f(x)=1+f ⎝ ⎛⎭⎪⎫12log 2x ,则f(2)=________. 4. 若一系列函数的解析式相同,值域相同但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y =2x 2+1,值域为{3,19}的“孪生函数”共有________种.5. 若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=________.6. 已知下列四组函数:①f(x)=lg x 2,g(x)=2lg x ; ②f(x)=x -2,g(x)=x 2-4x +4;③f(x)=1x -1,g(x)=x +1x 2-1; ④f(x)=x ,g(x)=log a a x (a>0且a ≠1).其中表示同一个函数的为________.(填序号)7. 已知函数f(1-cos x)=sin 2x ,则f ⎝ ⎛⎭⎪⎫32=________. 8. 已知映射f :A →B ,其中A =B =R ,对应法则f :x →y =|x |12.若对实数k ∈B ,在集合A 中不存在元素x 使得f :x →k ,则实数k 的取值范围是________.9. 已知函数f(x)=⎩⎪⎨⎪⎧-x 2, x ≥0,x 2+2x , x<0,则不等式f(f(x))≤3的解集为________.10. 已知实数a ≠0,函数f(x)=⎩⎪⎨⎪⎧2x +a , x<1,-x -2a , x ≥1,若f(1-a)=f(1+a),则实数a =________.二、 解答题11. 已知二次函数y =f(x)(x ∈R )的图象过点(0,-3),且f (x )>0的解集为(1,3).(1) 求f (x )的解析式;(2) 求函数y =f (sin x ),x ∈⎣⎢⎡⎦⎥⎤0,π2的最值.12. 为了保护环境,实现城市绿化,某房地产公司要在拆迁地矩形ABCD 上规划出一块矩形地面建造公园,公园一边落在CD 上,但不得越过文物保护区△AEF 的EF.问如何设计才能使公园占地面积最大?并求最大面积.(其中AB =200m ,BC =160m ,AE =60m ,AF =40m )第4练 函数的定义域与值域一、 填空题1. 函数f(x)=lg (-x 2+2x +3)的定义域为________.2. 函数y =2x -x 2的定义域是________.3. 若函数y =x 2-2x -1的定义域为{0,1,2,3},则其值域为________.4.已知函数f(x)=|2x -2|(x ∈(-1,2)),则函数y =f(x -1)的值域为________.5. 已知函数f(x)的定义域为(-1,0),则函数f(2x +1)的定义域为________.6. 函数y =x -x(x ≥0)的值域为________.7. 已知常数a>0,函数f(x)=x +a x -1(x>1)的最小值为3,则a =________.8. 函数f(x)=⎩⎪⎨⎪⎧2x , x ≥0,-2-x , x <0的值域是________. 9. 函数f(x)=2x -12x +1,x ∈R 的值域是________. 10. 函数f(x)=⎝ ⎛⎭⎪⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________.二、 解答题11. 设a 为实数,函数f(x)=x 2+|x -a|+1,x ∈R .(1) 若f (x )是偶函数,求实数a 的值;(2) 在(1)的条件下,求f (x )的最小值.12. 已知f(x)是定义在集合M 上的函数.若区间D ⊆M ,且对任意x 0∈D ,均有f(x 0)∈D ,则称函数f(x)在区间D 上封闭.(1) 判断函数f(x)=x -1在区间[-2,1]上是否封闭?并说明理由;(2) 若函数g(x)=3x +a x +1在区间[3,10]上封闭,求实数a 的取值范围.第5练 函数的奇偶性与单调性(1)一、 填空题1. 若函数f(x)=4x 2-mx +5在[-2,+∞)上单调递增,在(-∞,-2]上单调递减,则f(1)=________.2. 定义在R 上的四个函数y =x 3,y =2x ,y =x 2+1,y =2sin x 中,奇函数的个数是________.3. 对于定义在R 上的函数f (x ),给出下列三个命题: ①若f (-2)=f (2),则f (x )为偶函数;②若f (-2)≠f (2),则f (x )不是偶函数;③若f (-2)=f (2),则f (x )一定不是奇函数.其中正确命题的序号为________.4. 已知函数f(x)=⎩⎪⎨⎪⎧1, x>0,0, x =0,-1, x<0,g(x)=x 2f(x -1),则函数g(x)的单调递减区间是________.5. 设f(x)是周期为2的奇函数,当0≤x ≤1时,f(x)=2x(1-x),则f ⎝ ⎛⎭⎪⎫-52=________. 6. 若f(x)=-x 2+2ax 与g(x)=a x +1在区间[2,+∞)上都是单调减函数,则实数a 的取值范围是________.7. 已知函数f(x)=⎩⎨⎧x 2+12a -2,x ≤1,a x -a , x>1.若f(x)在(0,+∞)上单调递增,则实数a 的取值范围为________.8.已知函数f(x)对任意的x ∈R 满足f (-x )=f (x ),且当x ≥0时,f (x )=x 2-ax +1,若f (x )有4个零点,则实数a 的取值范围为________.9. 设函数y =f(x)在(-∞,+∞)内有定义,对于给定的实数k ,定义函数f k (x)=⎩⎪⎨⎪⎧f (x ),f (x )≤k ,k , f (x )>k.取函数f(x)=2-|x|,当k =12时,函数f k(x)的单调递增区间为________.10. 已知定义在R上的偶函数f(x)在[0,+∞)上是增函数,且f(2)=1,若f(x+a)≤1对x∈[-1,1]恒成立,则实数a的取值范围是________.二、 解答题11. 设函数f(x)=ax 2+bx +1(a ,b ∈R ).(1) 若f (-1)=0,且对任意实数x 均有f (x )≥0成立,求实数a ,b 的值;(2) 在(1)的条件下,当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围.12. 已知函数f(x)对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1) 求证:f (x )在R 上是减函数;(2) 求f (x )在[-3,3]上的最大值和最小值.第6练 函数的奇偶性与单调性(2)一、 填空题1. 若函数f(x)=x (2x +1)(x -a )为奇函数,则实数a =________.2. 函数f(x)=|x -2|x 的单调减区间是________.3. 设函数f(x)=a sin x +x 2,若f(1)=0,则f(-1)=________.4. 若函数f(x)=log a (6-ax)在[0,2]上为减函数,则实数a 的取值范围是________.5. 设f(x)是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝ ⎛⎭⎪⎫32=________. 6. 已知函数f(x)=x 2-cos x ,x ∈⎣⎢⎡⎦⎥⎤-π2,π2,则满足f(x 0)>f ⎝ ⎛⎭⎪⎫π3时x 0的取值范围为________.7. 已知函数f(x)=⎩⎪⎨⎪⎧x 2+sin x , x ≥0,-x 2+cos (x +α), x<0是奇函数,则sin α=________.8. 已知函数f(x)=⎩⎪⎨⎪⎧a x , x<0,(a -3)x +4a , x ≥0满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围是________. 9. 已知f(x)是定义在区间[-1,1]上的奇函数,当x<0时,f(x)=x(x -1),则关于m 的不等式f(1-m)+f(1-m 2)<0的解集为________.10. 若函数f(x)是定义在R 上的奇函数,当x >0时,f (x )=x ln x ,则不等式f (x )<-e 的解集为________.二、 解答题11. 已知函数f(x)为定义在R 上的奇函数,且当x >0时,f (x )=-x 2+2x .(1) 求f (x )的解析式;(2) 若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.12. 设函数f(x)=a x -(k -1)a -x (a >0且a ≠1)是定义域为R 的奇函数.(1) 求实数k 的值;(2) 若f (1)<0,试判断函数单调性并求使不等式f (x 2+tx )+f (4-x )<0对任意实数x 恒成立的实数t 的取值范围;(3) 若f (1)=32,且g (x )=a 2x +a -2x -2mf (x )在[1,+∞)上的最小值为-2,求实数m 的值.第7练二次函数一、填空题1. 若关于x的不等式ax2-6x+a2<0的解集为(1,m),则实数a =________.2. 函数f(x)=2x2-4x-3,x∈[2,3]的值域为________.3.已知函数y=x2-2x+a的定义域为R,值域为[0,+∞),则实数a的取值集合为________.4. 若关于x的方程3x2-6x+a=0的一根大于1,另一根小于1,则实数a的取值范围为________.5. 已知函数f(x)=x2-2x,x∈[a,b]的值域为[-1,3],则b-a的取值范围是________.6. 若函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-4x,则不等式f(x+2)<5的解集是________.7. 若函数f(x)=x2-ax-a在区间[0,2]上的最大值为1,则实数a=________.8. 如图,已知二次函数y=ax2+bx+c(a,b,c为实数,a≠0)的图象过点C(t,2),且与x轴交于A,B两点,若AC⊥BC,则实数a=________.9. 设函数f(x)=x|x-a|,若对任意的x1,x2∈[2,+∞),x1≠x2,不等式f(x1)-f(x2)x1-x2>0恒成立,则实数a的取值范围为________.10. 已知函数f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}.记H1(x)的最小值为A,H2(x)的最大值为B,则A-B=________.二、解答题11. 已知二次函数f(x)=x2+2bx+c(b,c∈R)满足f(1)=0.(1) 若关于x的方程f(x)+x+b=0的两实数根分别在区间(-3,-2),(0,1)内,求实数b的取值范围;(2) 若函数F(x)=log3f(x)在区间(-2,-1)上具有单调性,求实数b的取值范围.12. 设a∈R,函数f(x)=x|x-a|-a.(1) 若f(x)为奇函数,求实数a的值;(2) 若对任意的x∈[2,3],f(x)≥0恒成立,求实数a的取值范围.。
专题11 三角函数及其性质-2019年高考理数母题题源系列(全国Ⅰ专版)(解析版)
专题11 三角函数及其性质【母题来源一】【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④D .①③【答案】C【解析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴Q 为偶函数,故①正确.当ππ2x <<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误. 当0πx ≤≤时,()2sin f x x =,它有两个零点:0,π;当π0x -≤<时,()()sin sin f x x x =--2sin x =-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④正确,故选C .【名师点睛】本题也可画出函数()sin sin f x x x =+的图象(如下图),由图象可得①④正确.【母题来源二】【2018年高考全国Ⅰ理数】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.【答案】33【解析】()()212cos 2cos 24cos 2cos 24cos 1cos 2f x x x x x x x ⎛⎫'=+=+-=+- ⎪⎝⎭, 所以当1cos 2x <时函数单调递减,当1cos 2x >时函数单调递增,从而得到函数的递减区间为()5ππ2π,2π33k k k ⎡⎤--∈⎢⎥⎣⎦Z ,函数的递增区间为()ππ2π,2π33k k k ⎡⎤-+∈⎢⎥⎣⎦Z , 所以当π2π,3x k k =-∈Z 时,函数()f x 取得最小值,此时33sin 22x x =-=-, 所以()min33332222f x ⎛=⨯--=- ⎝⎭,故答案是33. 【名师点睛】该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关的函数的求导公式,需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小值点,从而求得相应的三角函数值,代入求得函数的最小值. 【母题来源三】【2017年高考全国Ⅰ理数】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 【答案】D【解析】因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住ππsin cos(),cos sin()22αααα=-=+;另外,在进行图象变换时,提倡先平移后伸缩,而先伸缩后平移在考试中也经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.【命题意图】(1)能画出y =sin x ,y =cos x ,y = tan x 的图象,了解三角函数的周期性.(2)理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、 最大值和最小值以及与x 轴的交点等). (3)能画出sin()y A x ωϕ=+的图象,了解参数,,A ωϕ对函数图象变化的影响.(4)理解同角三角函数的基本关系式、诱导公式,能运用和与差的三角函数公式、二倍角公式等进行简单的恒等变换. 【命题规律】三角函数的考查重点是三角函数的定义、图象与性质,考查中以图象的变换、函数的单调性、奇偶性、周期性、对称性、最值作为热点,并常与三角恒等变换交汇命题,难度为中档偏下. 常见的命题角度有: (1)三角函数的图象变换; (2)三角函数解析式的确定;(3)三角函数的性质(单调性、值域与最值、奇偶性、周期性、对称性等); (4)函数sin()y A x ωϕ=+的性质与其他知识的综合应用. 【方法总结】(一)函数图象的平移变换解题策略(1)对函数y =sin x ,y =A sin(ωx +φ)或y =A cos(ωx +φ)的图象,无论是先平移再伸缩,还是先伸缩再平移,只要平移|φ|个单位,都是相应的解析式中的x 变为x ±|φ|,而不是ωx 变为ωx ±|φ|. (2)注意平移前后两个函数的名称是否一致,若不一致,应用诱导公式化为同名函数再平移. (二)结合图象及性质求解析式y =A sin(ωx +φ)+B (A >0,ω>0)的方法(1)求A ,B ,已知函数的最大值M 和最小值m ,则,22M m M mA B -+==. (2)求ω,已知函数的周期T ,则2πTω=. (3)求φ,常用方法有:①代入法:把图象上的一个已知点代入(此时,A ,ω,B 已知). ②五点法:确定φ值时,往往以寻找“五点法”中的第一个零点(,0)ϕω-作为突破口,具体如下: “第一点”(即图象上升时与x 轴的交点中距原点最近的交点)为ωx +φ=0;“第二点”(即图象的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图象的“谷点”)为ωx +φ=3π2;“第五点”为ωx +φ=2π.(三)求解三角函数的值域(最值)常见到以下几种类型的题目及求解方法(1)形如y =a sin x +b cos x +k 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域); (2)形如y =a sin 2x +b sin x +k 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).(四)三角函数单调性问题的常见类型及解题策略(1)已知三角函数解析式求单调区间.①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;②求形如y =A sin (ωx +φ)或y =A cos (ωx +φ)(其中,ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解. (3)利用三角函数的单调性求值域(或最值).形如y =A sin (ωx +φ)+b 或可化为y =A sin (ωx +φ)+b 的三角函数的值域(或最值)问题常利用三角函数的单调性解决. (五)三角函数的奇偶性、周期性、对称性的处理方法(1)求三角函数的最小正周期,一般先通过恒等变形化为y =A sin(ωx +φ),y =A cos(ωx +φ),y =A tan(ωx +φ)的形式,再分别应用公式T =2||ωπ,T =2||ωπ,T =||ωπ求解. (2)对于函数y =A sin (ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否为函数的对称轴或对称中心时,可通过检验 f (x 0)的值进行判断.(3)若f (x )=A sin (ωx +φ)为偶函数,则φ=k π+2π(k ∈Z ),同时当x =0时,f (x )取得最大或最小值.若f (x )=A sin (ωx +φ)为奇函数,则φ=k π(k ∈Z ),同时当x =0时,f (x )=0. (六)三角函数的图象及性质与三角恒等变换相结合的综合问题(1)利用三角恒等变换及辅助角公式把三角函数关系式转化成y =A sin(ωx +φ)+t 或y =A cos(ωx +φ)+t 的形式.(2)利用公式2π(0)T ωω=>求周期.(3)根据自变量的范围确定ωx +φ的范围,根据相应的正弦曲线或余弦曲线求值域或最值,另外求最值时,根据所给关系式的特点,也可换元转化为二次函数的最值.(4)根据正、余弦函数的单调区间列不等式求函数y =A sin(ωx +φ)+t 或y =A cos(ωx +φ)+t 的单调区间.1.【山西省晋城市2019届高三第三次模拟考试数学试题】函数()|sin |cos 2f x x x =+的值域为 A .91,8⎡⎤⎢⎥⎣⎦B .1,12⎡⎤⎢⎥⎣⎦C .[]0,1D .90,8⎡⎤⎢⎥⎣⎦【答案】D【解析】由题意得22()|sin |12sin 2|sin ||sin |1f x x x x x =+-=-++21992sin 0,488x ⎛⎫⎡⎤=--+∈ ⎪⎢⎥⎝⎭⎣⎦.故选D.【名师点睛】本题考查三角函数的恒等变换及性质,考查二次函数值域,考查运算求解能力,是中档题. 2.【安徽省定远中学2019届高三全国高考猜题预测卷一数学试题】函数()[]()cos 2π,2πf x x x =∈-的图象与函数()sin g x x =的图象的交点横坐标的和为A .5π3 B .2π C .7π6D .π【答案】B【解析】令sin cos2x x =,有2sin 12sin x x =-,所以sin 1x =-或1sin 2x =.又[]π,2πx ∈-,所以2x π=-或32x π=或π6x =或5π6x =, 所以函数()[]()cos 2π,2πf x x x =∈-的图象与函数()sin g x x =的图象交点的横坐标的和为π3ππ5π2π2266-+++=. 故选B.【名师点睛】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.求解时,根据两个函数相等,求出所有交点的横坐标,然后求和即可.3.【安徽省合肥市2019届高三第三次教学质量检测数学试题】若函数()()πsin 103f x x ωω⎛⎫=+-> ⎪⎝⎭的最小正周期为2π3,则()f x 图象的一条对称轴为 A .π18x =- B .5π2x =- C .7π18x =D .π2x =【答案】C【解析】函数()f x 的最小正周期为2π2π3T ω==,解得=3ω. ()πsin 313f x x ⎛⎫=+- ⎪⎝⎭,令()ππ3π32x k k +=+∈Z ,解得()ππ318k x k =+∈Z ,取1k =,可得()f x 图象的一条对称轴为7π18x =. 故选C.【名师点睛】本题考查三角函数的周期性和对称轴.对于函数()()sin f x A x B ωϕ=++,最小正周期为2πT ω=,令()ππ2x k k ωϕ+=+∈Z 可得对称轴方程.求解本题时,先由最小正周期求出ω,再令()πππ32x k k ω+=+∈Z 可得对称轴方程,从而可得答案. 4.【广东省潮州市2019届高三第二次模拟考试数学试题】函数2sin()(0,0π)y x ωϕωϕ=+><<的部分图象如图所示,则函数()f x 的单调递增区间为A .πππ,π63k k 轾犏-+犏臌,k ∈Z B .ππ3π,3πk k ⎡⎤-+⎢⎥⎣⎦,k ∈Z C .πππ,π36k k ⎡⎤-+⎢⎥⎣⎦,k ∈Z D .ππ6π,6πk k ⎡⎤-+⎢⎥⎣⎦,k ∈Z 【答案】C【解析】根据函数2sin()(0,0π)y x ωϕωϕ=+><<的部分图象, 可得:3321ππ13441π64π2T ω=⋅=-=, 解得:2ω=, 由于点π,26⎛⎫⎪⎝⎭在函数图象上,可得:2sin 22π6ϕ⎛⎫⨯+= ⎪⎝⎭,可得:22π6ππ2k ϕ⨯+=+,k ∈Z , 解得:π2π6k ϕ=+,k ∈Z ,由于:0πϕ<<, 可得:6π=ϕ,即2sin 2π6y x ⎛⎫=+ ⎪⎝⎭,令πππ2π22π262k x k -≤+≤+,k ∈Z 解得:ππππ36k x k -≤≤+,k ∈Z , 可得:函数()f x 的单调递增区间为:πππ,π36k k ⎡⎤-+⎢⎥⎣⎦,k ∈Z . 故选C .【名师点睛】本题主要考查三角函数的单调性、三角函数的图象与性质,属于中档题.求解本题时,利用图象先求出周期,用周期公式求出ω,再利用特殊点求出ϕ,然后根据正弦函数的单调性列不等式求解即可.掌握函数sin()y A x ωϕ=+的单调区间的求法:若0,0A ω>>,把x ωϕ+看作是一个整体,由π2π2k x ωϕ+≤+≤()3π2π2k k +∈Z 求得函数的减区间,ππ2π2π22k x k ωϕ-+≤+≤+()k ∈Z 求得增区间.5.【广东省韶关市2019届高考模拟测试(4月)数学文试题】已知函数π()sin()(0)6f x x ωω=+>的相邻对称轴之间的距离为π2,将函数图象向左平移6π个单位得到函数()g x 的图象,则()g x =A .πsin()3x + B .πsin(2)3x +C .cos2xD .πcos(2)3x +【答案】C【解析】函数π()sin()(0)6f x x ωω=+>的相邻对称轴之间的距离为π2, 则π22T =, 解得:πT =, 所以2ππω=,解得2ω=,将函数π()sin(2)6f x x =+的图象向左平移6π个单位,得到ππππ()sin[2()]sin 2cos 26636g x x x x ⎛⎫=++=++= ⎪⎝⎭的图象, 故选C .【名师点睛】本题考查的知识要点:三角函数关系式的平移变换和伸缩变换的应用,正弦型函数性质的应用,主要考查学生的运算能力和转换能力,属于基础题型.求解时,首先利用函数的图象求出函数的关系式,进一步利用图象的平移变换的应用求出结果.6.【河北省廊坊市高三年级期中联合调研考试】已知函数ππ()cos(2)3)133f x x x =+++,则下列判断错误的是A .()f x 的最小正周期为πB .()f x 的图象关于点0π,4⎛⎫-⎪⎝⎭对称 C .()f x 的值域为[]1,3- D .()f x 的图象关于直线π2x =对称 【答案】B【解析】因为ππππ()cos(2)3)12sin 212cos 213363f x x x x x ⎛⎫=+++=+++=+ ⎪⎝⎭,所以其最小正周期为2π2πT ==,A 正确; 因为1cos21x -≤≤,所以[]()2cos211,3f x x =+∈-,C 正确; 由2()πx k k =∈Z 得π()2k x k =∈Z ,即函数()f x 的对称轴为π()2k x k =∈Z ,D 正确; 由π2π()2x k k =+∈Z 得ππ()42k x k =+∈Z ,即函数()f x 的对称中心为ππ,1()42k k ⎛⎫+∈ ⎪⎝⎭Z ,所以B 错误. 故选B.【名师点睛】本题主要考查三角函数的性质,熟记余弦函数的性质即可,属于常考题型.求解时,先将函数ππ()cos(2)3)133f x x x =+++化为()2cos 21f x x =+,再由三角函数的性质,逐项判断,即可得出结果.7.【河南省八市重点高中联盟“领军考试”2019届高三压轴数学试题】已知函数()()()sin 0f x x ωϕω=+>在区间7π2π,123⎛⎫⎪⎝⎭上单调,且π()14f =,30π4f ⎛⎫= ⎪⎝⎭,则ω的最大值为 A .7 B .9 C .11D .13【答案】B【解析】由题意,函数()sin()(0)f x x ωϕω=+>在区间7π2π,123⎛⎫⎪⎝⎭上单调, 则273121ππ2π2T -=≤,解得π6T ≥,所以2ππ6ω≥,即12ω≤, 又由π3π()1,()044f f ==,则3ππ4442T k T -=+,即π21212π244k k T ω++==⋅, 解得21,k k ω=+∈Z ,当5k =时,此时11ω=,则()sin(11)f x x ϕ=+, 又由π()14f =,即π11π()sin()144f ϕ=+=,解得π4ϕ=-,即()πsin(11)4f x x =-, 此时函数()f x 在区间7π2π,123⎛⎫⎪⎝⎭上不单调,不满足题意. 当4k =时,此时9ω=,则()sin(9)f x x ϕ=+,又由π()14f =,即π9π()sin()144f ϕ=+=,解得π4ϕ=,即()πsin(9)4f x x =+, 此时函数()f x 在区间7π2π,123⎛⎫⎪⎝⎭上是单调函数,满足题意, 所以ω的最大值为9,故选B.【名师点睛】本题主要考查了三角函数的图象与性质的应用,其中解答中熟记三角函数的图象与性质,合理列出关于周期的不等关系式是解答的关键,着重考查了分析问题和解答问题的能力,属于难题.求解本题时,根据函数()f x 在区间7π2π,123⎛⎫⎪⎝⎭上单调,得273121ππ2π2T -=≤,解得12ω≤,又由已知中π3π()1,()044f f ==,得3ππ4442T kT -=+,得到21,k k ω=+∈Z ,代入验证,即可求解. 8.【山东省栖霞市2019届高三高考模拟卷数学理)试题】将函数π()2sin 26f x x ⎛⎫=+⎪⎝⎭的图象向右平移π6个单位长度,再把图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是A .函数()g x 31B .函数()g x 的最小正周期为πC .函数()g x 的图象关于直线π3x =对称 D .函数()g x 在区间π2,6π3⎡⎤⎢⎥⎣⎦上单调递增 【答案】D【解析】将函数()f x 的图象向右平移π6个单位长度得:πππ()2sin 22sin 2666h x x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,再把图象上所有点的横坐标伸长到原来的2倍得:()π2sin 6g x x ⎛⎫=-⎪⎝⎭, ()g x 的最大值为2,可知A 错误; ()g x 的最小正周期为2π,可知B 错误;π3x =时,ππ66x -=,则π3x =不是()g x 的图象的对称轴,可知C 错误; 当2,63ππx ⎡⎤∈⎢⎥⎣⎦时,ππ0,62x ⎡⎤-∈⎢⎥⎣⎦,此时()g x 单调递增,可知D 正确. 本题正确选项为D.【名师点睛】本题考查三角函数图象平移变换和伸缩变换、正弦型函数的单调性、对称性、值域和最小正周期的求解问题,关键是能够明确图象变换的基本原则,同时采用整体对应的方式来判断正弦型函数的性质.求解时,根据平移变换和伸缩变换的原则可求得()g x 的解析式,依次判断()g x 的最值、最小正周期、对称轴和单调性,可求得正确结果.9.【湖南省岳阳市第一中学2019届高三第一次模拟(5月)数学试题】设函数π()sin 6f x x ⎛⎫=-⎪⎝⎭,若对于任意5ππ,62α⎡⎤∈--⎢⎥⎣⎦,在区间[]0,m 上总存在唯一确定的β,使得()()0f f αβ+=,则m 的最小值为A .π6 B .π2C .7π6D .π【答案】B 【解析】当5ππ,62α⎡⎤∈--⎢⎥⎣⎦时,有π2π,63πα⎡⎤-∈--⎢⎥⎣⎦,所以()3[f α∈.在区间[]0,m 上总存在唯一确定的β,使得()()0f f αβ+=,所以存在唯一确定的β,使得()()3[0,2f f βα=-∈. []πππ0,,[,]666m m ββ∈-∈--,所以ππ2ππ5π[,),[,)63326m m -∈∈. 故选B.【名师点睛】本题主要考查了三角函数的图象和性质,考查了函数与方程的思想,正确理解两变量的关系是解题的关键,属于中档题.求解时,先求()3[f α∈,再由存在唯一确定的β,使得()()3]f f βα=-∈,得ππ2π[,)633m -∈,从而得解.10.【江西省抚州市临川第一中学2019届高三下学期考前模拟考试数学试题】已知函数()sin()f x x ωϕ=+(0,0π)ωϕ><<的图象经过两点2π(0,(,0)24A B ,()f x 在π(0,)4内有且只有两个最值点,且最大值点大于最小值点,则()f x = A .πsin 34x ⎛⎫+⎪⎝⎭ B .3πsin 54x ⎛⎫+⎪⎝⎭ C .πsin 74x ⎛⎫+ ⎪⎝⎭D .3πsin 94x ⎛⎫+⎪⎝⎭【答案】D【解析】根据题意可以画出函数()f x 的图象大致如下:因为2(0)sin 2f ϕ==3π2π()4k k ϕ=+∈Z , 又因为0πϕ<<,所以3π4ϕ=,所以3π()sin()4f x x ω=+, 因为ππ3π()sin()0444f ω=+=,由图可知,π3ππ2π44k ω+=+,解得18,k k ω=+∈Z , 又因为2ππ4T ω=<,可得8ω>,所以当1k =时,9ω=, 所以3π()sin(9)4f x x =+,故选D.【名师点睛】本题主要考查了正弦型函数的图象与性质,属于中档题.这类型题的关键在于结合图象,以及各个参数的几何意义,利用特殊点代入求解.求解本题时,由题意画出函数()f x 的图象,然后结合图象以及题目的条件,利用特殊点代入,结合参数范围,即可求出函数的解析式.11.【福建省龙岩市(漳州市)2019届高三5月月考数学试题】已知函数21()sin 3cos 2f x x x x =++,则下列结论正确的是 A .()f x 的最大值为1 B .()f x 的最小正周期为2π C .()y f x =的图象关于直线π3x =对称 D .()y f x =的图象关于点7π,012⎛⎫⎪⎝⎭对称 【答案】C【解析】函数21()sin 3cos 2f x x x x =+=1cos 231222x x -+=sin (2x π6-)+1. 对于A :根据f (x )=sin (2x π6-)+1可知最大值为2,则A 不对; 对于B :f (x )=sin (2x π6-)+1的最小正周期为T =π,则B 不对; 对于C :令2x π6-=ππππ,223k k x k ,Z +\=+?,故图象关于直线π3x =对称,则C 正确; 对于D :令2x π6-=πππ,212k k x k ,Z \=+?,故()y f x =的图象关于点7π,112⎛⎫⎪⎝⎭对称,则D 不对. 故选C .【名师点睛】本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.求解时,利用二倍角公式和辅助角公式化简得f (x )的解析式,再利用三角函数函数性质考查各选项即可.12.【湖北省黄冈市2019届高三2月联考数学试题】已知函数()ππ2sin cos 22f x x x ⎛⎫⎛⎫=-⋅- ⎪ ⎪⎝⎭⎝⎭的图象与直线()00ax y a -=>恰有三个公共点,这三个点的横坐标从小到大依次为123,,x x x ,则()123123tan x x x x x x +-=+-A .−2B .2C .−1D .1【解析】由题意得,()sin 2f x x =-,则()2cos2f x x '=-,易知直线()00ax y a -=>过定点()0,0,如图,由对称性可知,直线与三角函数图象切于另外两个点,∴1320,0x x x +==,则切线方程过点()()()1133,sin 2,0,0,,sin 2x x x x --, ∴333sin 202cos 20x x x ---=-,即333sin 22cos 2x x x =,则33tan 22x x =,∴()()123133123133tan tan tan 212x x x x x x x x x x x x +---===+---. 故选D.【名师点睛】本题考查函数的零点,导数的综合应用.在研究函数零点时,有一种方法是把函数的零点转化为方程的解,再把方程的解转化为函数图象的交点,特别是利用分离参数法转化为动直线与函数图象交点问题,这样就可利用导数研究新函数的单调性与极值,从而得出函数的变化趋势,得出结论.对于本题,根据题意得到()sin 2f x x =-,()2cos2f x x '=-,画出函数图象,可知切线方程过点()()()1133,sin 2,0,0,,sin 2x x x x --,由切线的几何意义得到:333sin 202cos 20x x x ---=-,进而得到结果.13.【福建省厦门市厦门外国语学校2019届高三最后一模数学试题】已知函数()3cos f x x xωω=+(>0)ω的零点构成一个公差为π2的等差数列,把函数()f x 的图象沿x 轴向左平移π6个单位,得到函数()g x 的图象,关于函数()g x ,下列说法正确的是A .在[,]42ππ上是增函数 B .其图象关于π4x =-对称 C .函数()g x 是奇函数D .在区间π2π[,]63上的值域为[−2,1]【解析】()3cos f x x x ωω=+可变形为π()2sin()6f x x ω=+,因为()y f x =的零点构成一个公差为π2的等差数列,所以()y f x =的周期为π, 故2ππω=,解得2ω=,所以π()2sin(2)6f x x =+,函数()f x 的图象沿x 轴向左平移π6个单位后得到()()22sin[()]sin()cos(22)222x g f x x x x ++===++=πππ666π,选项A :222,k x k k -+≤≤∈πππZ ,解得:k x k k 2-+≤≤∈πππ,Z , 即函数()y g x =的增区间为π[π,π],2k k k -+∈Z ,显然π[,][π,π]422k k ππ⊄-+,故选项A 错误; 选项B :令2π,x k k =∈Z ,解得:k x k 2=∈π,Z ,即函数()y g x =的对称轴为k x k 2=∈π,Z ,不论k 取何值,对称轴都取不到π4x =,所以选项B 错误; 选项C :()y g x =的定义域为R ,因为2cos02(00)g ==≠,所以函数()y g x =不是奇函数,故选项C 错误; 选项D :当π2π[,]63x ∈时,故42[,]33x ∈ππ,根据余弦函数图象可得,2cos(2[)2(),1]x g x ∈-=,故选项D 正确. 故本题应选D.【名师点睛】本题考查了三角函数的图象与性质,考查了图象平移的规则,整体法思想是解决本题的思想方法.根据()y f x =的零点构成一个公差为π2的等差数列可得函数()y f x =的周期,从而得出函数()y f x =的解析式,沿x 轴向左平移π6个单位,便可得到函数()g x 的解析式,由()y g x =的解析式逐项判断选项的正确与否即可.14.【湖南省师范大学附属中学2019届高三下学期模拟(三)数学试题】若函数()2sin()(0,f x x ωϕϕ=+>0π)ϕ<<的图象经过点π,26⎛⎫⎪⎝⎭,且相邻两条对称轴间的距离为π2,则π()4f 的值为______.3【解析】因为相邻两条对称轴的距离为π2,所以2ππω=,2ω∴=, 所以()2sin(2)f x x ϕ=+,因为函数的图象经过点π,26⎛⎫⎪⎝⎭,所以πsin 13ϕ⎛⎫+= ⎪⎝⎭,0πϕ<<Q ,π6∴=ϕ,所以π()2sin 26f x x ⎛⎫=+ ⎪⎝⎭,所以πππ2sin 3426f ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭. 3【名师点睛】本题考查了正弦型函数的图象与性质的应用问题,熟记性质准确计算是关键,是基础题.求解时,根据函数f (x )的图象与性质求出T 、ω和φ的值,写出f (x )的解析式,求出f (π4)的值.。
函数解析:2019年高考全国Ⅱ卷理科数学最后一道选择题
函数解析:2019年高考全国Ⅱ卷理科数学最后一道选择题高考考试不仅要掌握基础知识,还要有灵活的思维,更要制定做题战术。
作为基础部分的题,最后一道选择题和最后一道填空题必须拿到分。
设函数f(x)的定义域为R,满足f(x+1)=2 f(x),且当x∈(0,1]时,f(x)=x(x-1),若对任意x∈(﹣∞,m],都有f(x) ≧﹣8/9,则m的取值范围是:y=x(x-1)图像若对任意x∈(﹣∞,m],都有f(x) ≧﹣8/9。
就要求出f(x)的最小值≧﹣8/9即可。
当x∈(0,1]时,f(x)=x(x-1),可以解出f(x)=x(x-1)的最小值为﹣1/4(恒大于﹣8/9,m临界不在此范围)。
y= 2(x-1) (x-2)图像因为满足f(x+1)=2 f(x),且x∈(0,1]时,f(x) =x(x-1)。
所以当x∈(0,1],就有f(x+1) =2x(x-1)。
可得当x∈(1,2],就有f(x) =2(x-1) (x-2)。
可以解出f(x)= 2(x-1) (x-2)的最小值为﹣1/2(恒大于﹣8/9,m临界不此范围)。
y=4(x-2) (x-3)图像因为满足f(x+1)=2 f(x),且x∈(1,2],就有f(x) =2(x-1) (x-2)。
所以当x∈(1,2],就有f(x+1) =4(x-1) (x-2)。
可得当x∈(2,3],就有f(x) =4(x-2) (x-3)。
可以解出f(x)= =4(x-2) (x-3)的最小值为﹣1(小于﹣8/9,m 临界在此范围)。
必有m最大值∈(2,3]y=4(x-2) (x-3) 图像令f(m)=﹣8/9,即4(m-2) (m-3) =﹣8/9。
解得:m₁=7/3,m₂=8/3x∈(﹣∞,7/3],f(x)的图像要使得m∈(﹣∞,3],有f(m) 恒≧﹣8/9,即m值只能取7/3。
所以m∈(﹣∞,7/3],有f(m) 恒≧﹣8/9,即m最大值为7/3。
因此m的取值范围是:m∈(﹣∞,7/3]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高考数学第02期小题精练系列专题11函数理含解析1. 下列函数中,满足“对任意的,当时,都有”的是( )()f x ()12,0,x x ∈+∞12x x <()()12f x f x >A .B .C .D .()1f x x=()sin f x x x =-()x f x e =()()ln 1f x x =+【答案】A 【解析】试题分析:依题意可知函数为上的减函数,B ,C ,D 都是增函数,故选A.()0,+∞考点:函数的单调性.2. 已知函数则( )2,0,()(3),0,x x f x f x x ⎧≤=⎨->⎩(5)f =A .32B .16C .D .13212【答案】D 【解析】考点:分段函数的求值.3. 已知函数,若关于的方程有个不同根,则实数的取值范围是_________.()()2lg ,064,0x x f x x x x ⎧-<⎪=⎨-+≥⎪⎩x ()()210f x bf x -+=8b 【答案】172,4⎛⎤ ⎥⎝⎦【解析】试题分析:作出函数的图象,如右图所示,因为关于的方程有个不同根,所以方程有个不同的正解,且在上,所以,解得,所以实数的取值范围是.()f x x ()()210f x bf x -+=8210x bx -+=2(0,4]2024016410b b b ⎧>⎪⎪⎪∆=->⎨⎪-+≥⎪⎪⎩1724b <≤b 172,4⎛⎤⎥⎝⎦考点:根的存在性及根的个数的判断.4. 已知则_______.⎩⎨⎧≤>=),0(3),0(log )(2x x x x f x=))]21(([f f f 【答案】2log 3- 【解析】考点:分段的求值.5. 已知函数为上的单调函数,则实数的取值范围是( )()()21,02,0axax x f x a e x ⎧+≥⎪=⎨+<⎪⎩R a A . B . C . D .[)1,0-()0,+∞()2,0-(),2-∞-【答案】A 【解析】试题分析:由题意得,若在上单调递增,则有,此时无解;若在上单调递减,则有,解得,所以函数为单调函数时,实数的取值范围是,故选A .()f x R 02021a a a >⎧⎪+>⎨⎪+≤⎩()f x R 02021a a a <⎧⎪+<⎨⎪+≥⎩10a -≤<a [)1,0-考点:函数的单调性的判定.6. 设,分别是定义在上的奇函数和偶函数,当时,,且,则不等式的解集是( )()f x ()g x R 0x <'()()()'()0f x g x f x g x +>(3)0f -=()()0f xg x <A .B .C .D .(3,0)(3,)-+∞(3,0)(0,3)-(,3)(3,)-∞-+∞(,3)(0,3)-∞-【答案】D 【解析】考点:函数性质的综合应用问题.7. 已知函数的图象如图所示,则函数的图象可能是( ))0(sin >+=a b ax y )(log b x y a +=【答案】A 【解析】试题分析:由图象可知,,所以函数可视为函数的图象向左平移个单位,故选A. 01,01a b <<<<)(log b x y a +=log a y x =b 考点:函数图象的应用.8. 设函数,若,则 .⎪⎩⎪⎨⎧>≤-=-0,0,23)(x x x x f x 1)(0=x f =0x【答案】1± 【解析】试题分析:由题意得,当时,令,当时,令,所以.0x ≤003211x x --=⇒=-0x>011x =⇒==0x 1±考点:分段函数的应用.9. 将甲桶中的升水缓慢注入空桶乙中,后甲桶剩余的水量符合指数衰减曲线.假设过后甲桶和乙桶的水量相等,若再过甲桶中的水只有升,则的值为( )a min t nt y ae =5min minm 4am A.5 B.8 C.8 D.10 【答案】A 【解析】考点:函数的实际应用问题.10 已知实数若关于的方程有三个不同的实根,则的取值范围为( ),0,(x)lg(x),x 0,x e x f ⎧≥=⎨-<⎩x 2(x)f(x)t 0f ++=tA. B. C. D.(,2]-∞-[1,)+∞[2,1]-(,2][1,)-∞-+∞【答案】A 【解析】试题分析:设,作出函数的图象,如图所示,则时,有两个根,当时,有一个根,若关于的方程有三个不同的实根,则等价为由两个不同的实数根,且或,当时,,此时由,解得或,满足有两个根,有一个根,满足条件;当时,设,则即可,即,解得,综上实数的取值范围为,故选 A.()m f x =()f x 1m ≥()m f x =1m <()m f x =x 2(x)f(x)t 0f ++=2t 0m m ++=1m ≥1m <1m =2t =-220m m +-=1m =2m =-()1f x =()2f x =-1m ≠()2t h m m m =++()10h <110t ++<2t <-t 2t ≤-考点:根的存在性及个数的判断.11. 已知函数的图象如图,则它的一个可能的解析式为( )()x f A . B . C. D .x y 2=144+-=x y ()1log 3+=x y 3x y =【答案】B 【解析】考点:函数图象.12. 如图是函数的部分图象,则函数的零点所在的区间是( )()b ax x x f ++=2()()x f x x g '+=lnA .B . C. (1,2) D .(2,3))21,41()1,21( 【答案】B 【解析】试题分析:由函数图象可知,即,函数,()()00111f f <<⎧⎪⎨=⎪⎩011b a b<<⎧⎨=--⎩()ln 2ln 21g x x x a x x b =++=+--11()ln 11ln 2022g b b =+--=--<,,所以零点所在的一个区间为,故选B. ()1ln12110g b b =+--=->1(,1)2考点:1、二次函数;2、函数的零点;3、函数图象.13. 已知函数则( )()5log ,02,0xx x f x x >⎧=⎨≤⎩125f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ A . B .4 C .-4 D .1414-【答案】A 【解析】考点:分段函数求值.14. 已知函数是上的单调函数,且对任意实数都有,则()f x R x()21213x f f x ⎛⎫+= ⎪+⎝⎭2(log 3)f =( )A .1B . C. D .04512【答案】C 【解析】试题分析:由于函数为单调函数,故设,即,即,所以,.()()21,213x t f x f t =+=+12321tt =++1t =()2121x f x =-+221(log 3)1312f =-=+ 考点:函数的单调性.15. 函数(其中)的图象不可能是( )()2af x x x=+a R ∈ A . B . C .D . 【答案】C 【解析】试题分析:当时,图象为 B.当时,若,当且仅当时,等号成立,即函数有最小值,故A 选项正确.当时,若,在为增函数,故D 选项正确.所以图象不可能为C.a =1a =0x >()2322113222x x f x x x x -=+=++≥=⋅321,22x x x==1a =-0x >()21f x x x=-()0,+∞考点:函数图象与性质.16. 设,若定义域为的函数满足,则的最大值为( ){},min ,,y x y x y x x y ≥⎧=⎨<⎩R ()(),f x g x ()()221xf xg x x +=+()(){}min ,f x g x A . B . C .D .1412【答案】C 【解析】考点:新定义函数,反证法.17. 已知,分别是定义在上的偶函数和奇函数,且,则( )()f x ()g x R ()()321f x g x x x -=++()()11f g +=A .-3B .-1 C.1 D .3 【答案】C 【解析】试题分析:,分别是定义在上的偶函数和奇函数,所以,故.()f x ()g x R ()()231,f x x g x x =+=-()()111f g +=考点:函数的奇偶性.18. 已知指数函数,对数函数和幂函数的图形都过,如果,那么 .()y f x =()y g x =()y h x =1,22P ⎛⎫⎪⎝⎭()1f x ()()234g x h x ===123x x x ++=【答案】32【解析】考点:指数函数与幂函数.19. 已知函数,对函数,定义关于的“对称函数”为,满足:对任意,两个点,关于点对称,若是关于的“对称函数”,且恒成立,则实数的取值范围是 .()()y f x x R =∈()()y g x x I =∈()g x ()f x ()()y h x x I =∈()y h x =x I ∈()(),x h x ()(),xg x ()(),x f x ()h x ()g x =()3f x x b =+()()h x g x >b【答案】()+∞ 【解析】试题分析:根据对称函数的定义可知,即,恒成立,等价于恒成立.为直线,为圆的上半部分,由直线在圆的上方,若直线和圆相切,由圆心到直线的距离,所以.3x b =+()62h x x b =+-()()h xg x >3x b +>3yx b=+y =2,d b ===()b ∈+∞考点:新定义函数.20. 已知函数与的图象上存在关于轴对称的点,则的取值范围是( )()()2102x f x x e x =+-<()()2ln g x x x a =++y aA .B .C .D .⎛-∞⎝(-∞⎛⎝⎛⎝【答案】B 【解析】试题分析:两个函数存在关于轴的对称点,即有实根,即有实根,即左右两个函数在有交点,当时,,结合两个函数的图象可知当时在上有交点,故的取值范围是.y ()()0g x f x --=()11ln 2xx a e +=-0x <0x=0111ln ,22a a e -===a <0x <a (-∞ 考点:函数的图象与性质.21. 已知实数,若关于的方程有三个不同的实根,则的取值范围为____________.()(),0lg ,0xe xf x x x ⎧≥⎪=⎨-<⎪⎩x ()()20f x f x t ++=t【答案】(],2-∞- 【解析】考点:函数与方程零点. 22. 给出下列函数:①;②;③④则它们共同具有的性质是( )()sin f x x =()tan f x x=2,1,(),11,2,1;x x f x x x x x -+>⎧⎪=-≤≤⎨⎪--<-⎩2,0,()2,0,xx x f x x -⎧>⎪=⎨-<⎪⎩A .周期性B .偶函数C .奇函数D .无最大值【答案】C 【解析】考点:函数的性质.23. 已知函数,则的图象大致为( )1()ln(1)f x x x=+-()y f x =【答案】B 【解析】试题分析:设,则,∴在上为增函数,在上为减函数,∴,,得或均有排除选项A ,C ,又中,,得且,故排除D.综上,符合的只有选项B.故选B.()(ln 1)g x x x =+-1()xg x x'=-+()g x ()1,0-()0,+∞()0(0)g x g <=()()10f x g x =<0x >10x -<<()0f x <1()ln(1)f x x x=+-10ln 10()x x x +>+-≠⎧⎨⎩1x >-0x ≠考点:1、函数图象;2、对数函数的性质.24. 已知函数与,则它们所有交点的横坐标之和为( )2()|ln |1||f x x x =-+()2g x x =A .0B .2C .4D .8【答案】C 【解析】考点:1、函数的零点;2、函数的性质;3、函数图象.25. 已知函数是定义在上的偶函数,且在区间上单调递增,若实数满足,则实数的取值范围是 .()f x R [0,)+∞b2122(log )(log )3(1)f b f b f +≤b【答案】1,22⎡⎤⎢⎥⎣⎦【解析】试题分析:依题意,由得,由函数是定义在上的偶函数,∴,即,又∵函数在区间上单调递增,∴,得,故填.2122(log )(log )3(1)f b f b f +≤222(log )(log )3(1)f b f b f +-≤()f x R 23(log )3(1)f b f ≤2(log )(1)f b f ≤()f x [0,)+∞21log 1b -≤≤112b ≤≤1,22⎡⎤⎢⎥⎣⎦考点:1、函数的奇偶性;2、函数的单调性3、对数的运算. 26. 定义域为的偶函数满足对任意,有,且当时,R )(x f Rx ∈)1()()2(f x f x f -=+]3,2[∈x18122)(2-+-=x x x f ,若函数在上至少有三个零点,则的取值范围)1|(|log )(+-=x x f y a ),0(+∞a是 . 【答案】)33,0( 【解析】考点:1、函数的图象与性质;2、函数的零点与图象交点之间的关系.27. 已知,函数则等于( )2a >,1,()log ,1,x aa x f x x x ⎧<=⎨≥⎩[](2)f f A . B .C .2D .2a log 2alog (log 2)a a【答案】C 【解析】试题分析:因为,函数,所以,由得,因为,所以,故选C. 2a >,1,()log ,1,x a a x f x x x ⎧<=⎨≥⎩21>()2log 2a f =log 21a <[]log 2(2)2a f f a ==考点:1、分段函数的解析式;2、对数与指数的性质.28. 若定义在上的函数当且仅当存在有限个非零自变量,使得,则称为类偶函数,那么下列函数中,为类偶函数的是( )R ()f x x()()f x f x -=()f xA .B . C. D .()4cos f x x =()223f x x x =-+()21x f x =+()33f x x x =-【答案】D 【解析】试题分析: 若,对任意恒成立,故选项A 错误.若或,当且仅当时,成立,故选项B ,C 均错误.若,则仅存在,使得成立,故选项D 正确,故选D.()4cos f x x =()(),x R f x f x ∈-=()223f x x x =-+()21x f x =+0x =()()f x f x -=()33f x x x =-x =()()f x f x -=考点:1、函数的解析式;2、新定义问题的应用.29. 函数的定义域为 .()f x =【答案】){}2,1e ⎡+∞⎣【解析】考点:1、函数的定义域及对数的性质;2、利用导数研究函数的单调性及求函数的最值.30. 若函数在上有两个不同的零点,则的取值范围为()()f x xλ=-+[]1,1-λA.B.C.D.((1]-[]1,1-【答案】C【解析】试题分析:函数在上有两个不同的零点,则(半圆)与有两个不同交点,同一坐标系内画出两曲线的图象,如图,由图得即时符合题意,的取值范围为,故选C. ()f x xλ=+[]1,1-y=y xλ=-1λ≤-<1λ<<-λ(1]-考点:1、零点与函数图象的关系;2、数形结合思想的应用.31. 函数的定义域为()()f x=A. B. C. D.[0 )+∞,( 2]-∞,[]0 2,[0 2),【答案】D【解析】试题分析:因为,由可得,所以函数的定义域为,故选D.()f x()520ln52010xxxe⎧->⎪->⎨⎪-≥⎩02x≤<()f x=[0 2),考点:1、函数的定义域;2、对数函数与指数函数的性质.32. 函数的图象关于轴对称,且对任意都有,若当时,,则()()f x y x R ∈()()3f x f x +=-35 22x ⎛⎫∈ ⎪⎝⎭,()12xf x ⎛⎫= ⎪⎝⎭()2017f = A . B . C. D .414-144- 【答案】A 【解析】考点:1、函数的解析式;2、函数的奇偶性与周期性.33. 设函数,若函数有三个零点,,,则等于 .() 1 1log 1 1 1ax f x x x =⎧⎪=⎨-+≠⎪⎩,,()()()2g x f x bf x c =++⎡⎤⎣⎦1x 2x 3x 122313x x x x x x ++ 【答案】2 【解析】考点:1、分段函数的图象和解析式;2、函数零点与方程根之间的关系及数形结合思想的应用.34. 记表示不超过的最大整数,如,设函数,若方程有且仅有个实数根,则正实数的取值范围为( )[]x x [][]1.31, 1.32=-=-()[]f x x x =-()1log a f x x -=3aA .B . C. D .(]3,4[)3,4[)2,3(]2,3【答案】B【解析】试题分析:由题意得,,所以方程有且仅有个实数根,即有且仅有个实数根,即函数与的图象有三个不同的交点,必有分别作出两函数图象,如图所示,要使函数与的图象有三个不同的交点,则且,解得,故选B. ()[]11f x x x -=+-()1log a f x x -=3[]1log a x x x +-=3[]1y x x=+-log a y x =1,a >[]1y x x =+-log a y x =log 31a ≤log 41a >34a ≤<考点:1、方程的根与图象交点的关系;2、新定义问题及数形结合思想.35. 如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟漏完.已知圆柱中液面上升的速度是一个常量,是圆锥形漏斗中液面下落的距离,则与下落时间(分)的函数关系表示的图象只可能是( )H H t 【答案】A 【解析】考点:1、函数的图象;2、阅读能力、建模能力及选择题的排除法. 36. 已知函数,(),在同一直角坐标系中,函数与的图像不可能的是( )323()32ax ax x f x -+=+232()2g x a x ax x a =-++a R ∈'()f x ()g x 【答案】B 【解析】试题分析:B 选项中,由的图象可知,此时的判别式,图象与轴有两个交点,不符合题意,故选 B.()2,2a f x ax x '=-+()g x 0a <()22af x ax x '=-+2120a ∆=->x 考点:二次函数的图象.37. 函数是偶函数,且在内是增函数,,则不等式的解集为( )()f x (0,)+∞(3)0f -=()0xf x <A .B .{}|303x x x -<<>或{}|303x x x <-<<或C .D .{}|33x x x <->或{}|303x x x -<<<<或0【答案】B 【解析】考点:函数的奇偶性与单调性.38. 函数的零点不可能在下列哪个区间上( )53224,010()2126,1020xx x f x x -⎧⨯-≤≤⎪=⎨-+<≤⎪⎩ A . B . C. D .(1,4)(3,7)(8,13)(11,18) 【答案】B 【解析】试题分析:当时单调递增,又,所以有唯一零点,故B 不正确,故选B.100≤≤x )(x f 0)3(=f 100≤≤x 3=x考点:函数的零点.39. 设区间的长度为,其中.现已知两个区间与的长度相等,则的最小值为( )[,]q p p q -p q >2[4ln ,ln ]m m [ln ,4ln 10]m m -1x x e me +-+A .B .或 C. D .或32e 322e 32e 322e 322e 22e【答案】A 【解析】试题分析:根据题意可得:化简得,当是无意义,故不成立,所以,,,ln 10ln 4ln 4ln 2m m m m --=-0)5)(ln 2(ln =--m m 2ln =m 2[4ln ,ln ]m m 5ln =m 5e m =611511x xx xx x e emeeeee+-+-+++=+=+32e ≥=,故选A.考点:函数与方程.40. 高三学生在新的学期里,刚刚搬入新教室,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高,当教室在第层楼时,上下楼造成的不满意度为,但高处空气清新,嘈杂音较小,环境较为安静,因此随教室所在楼层升高,环境不满意度降低,设教室在第层时楼,环境不满意度为,则同学们认为最适宜的教室应在( )n n n 8nA .2楼B .3楼C .4楼D .8楼【答案】B 【解析】试题分析:总的不满意度:,由对勾函数的性质可知,当时,其值最小,故选B.nn y 8+=3=n考点:根据实际问题选择函数类型.41. (原创)已知函数是单调函数,且对恒成立,则( )()()f x x R ∈()()3233214f f x x x x -+--=x R ∈()()()012f f f ++=A .0B .6 C.12 D .18 【答案】D 【解析】考点:函数的性质.。