2015高考物理(山东专用)二轮专题辅导训练:专题6 第15讲 动量守恒定律 原子结构和原子核

合集下载

2015年高考真题(山东卷)物理试题详尽解析( pdf版)

2015年高考真题(山东卷)物理试题详尽解析( pdf版)

周期绕地球运动。以 a1、a2 分别表示该空间站和月球向心加速度的
大小,a3 表示地球同步卫星向心加速度的大小。以下判断正确的是
A.a2>a3>a1
B.a2>a1>a3
C.a3>a1>a2
D.a3>a2>a1
【答案】D
地球
L1 月球
【解析】由于 G
Mm r2
man ,则 an
GM r2
,由题意可知月球的轨道半径大于空间站的轨道半径,而同步
卫星的运动周期小于空间站的周期,故空间站的轨道半径大于同步卫星的轨道半径,所以 a3>a2>a1.选项 D 正确。
16.如图,滑块 A 置于水平地面上,滑块 B 在一水平力作用下紧靠滑块
A(A、B 接触面竖直),此时 A 恰好不滑动,B 刚好不下滑。已知 A 与 B
间的动摩擦因数为 μ1,A 与地面间的动摩擦因数为 μ2,最大静摩擦力等
E1
k
Q a2
;若
将正电荷移到 G
点,则正电荷在
H 点的场强为 E2
k
Q (2a)2
1 4
kQ a2
,因两负电荷在 G
点的场强与在
H
点的场强等大反向,则
H
点的合场强为
E
E1
E2
3kQ 4a2
,方向沿
y
轴负向,选项
B
正确。
19.如图甲,R0 为定值电阻,两金属圆环固定在同一绝缘平面内。左端连接在一周期为 T0 的正弦交流电
××
【答案】ABD
【解析】由右手定则可知,处于磁场中的圆盘部分,靠近圆心处电势高,选项 A 正确;根据 E=BLv 可知

2015年山东省高考物理试卷答案与解析

2015年山东省高考物理试卷答案与解析

2015年山东省高考物理试卷参考答案与试题解析一、选择题(共7小题,每小题6分,共42分。

每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得6分,选对但不全的得3分,有选错的得0分。

)1.(6分)(2015•山东)距地面高5m的水平直轨道上A、B两点相距2m,在B点用细线悬挂一小球,离地高度为h,如图.小车始终以4m/s的速度沿轨道匀速运动,经过A点时将随车携带的小球由轨道高度自由卸下,小车运动至B点时细线被轧断,最后两球同时落地.不计空气阻力,取重力加速度的大小g=10m/s2.可求得h等于()A.1.25m B.2.25m C.3.75m D.4.75m考点:平抛运动.专题:平抛运动专题.分析:经过A点时将随车携带的小球由轨道高度自由卸下后,小球做平抛运动,小车运动至B点时细线被轧断,则B处的小球做自由落体运动,根据平抛运动及自由落体运动基本公式抓住时间关系列式求解.解答:解:经过A点,将球自由卸下后,A球做平抛运动,则有:H=解得:,小车从A点运动到B点的时间,因为两球同时落地,则细线被轧断后B出小球做自由落体运动的时间为t3=t1﹣t2=1﹣0.5=0.5s,则h=故选:A点评:本题主要考查了平抛运动和自由落体运动基本公式的直接应用,关键抓住同时落地求出B处小球做自由落体运动的时间,难度不大,属于基础题.2.(6分)(2015•山东)如图,拉格朗日点L1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动.据此,科学家设想在拉格朗日点L1建立空间站,使其与月球同周期绕地球运动,以a1、a2分别表示该空间站和月球向心加速度的大小,a3表示地球同步卫星向心加速度的大小.以下判断正确的是()A.a2>a3>a1B.a2>a1>a3C.a3>a1>a2D.a3>a2>a1考点:同步卫星.专题:人造卫星问题.分析:由题意知,空间站在L1点能与月球同步绕地球运动,其绕地球运行的周期、角速度等于月球绕地球运行的周期、角速度,由a n=r,分析向心加速度a1、a2的大小关系.根据a=分析a3与a1、a2的关系.解答:解:在拉格朗日点L1建立空间站,使其与月球同周期绕地球运动,根据向心加速度a n=r,由于拉格朗日点L1的轨道半径小于月球轨道半径,所以a2>a1,同步卫星离地高度约为36000公里,故同步卫星离地距离小于拉格朗日点L1的轨道半径,根据a=得a3>a2>a1,故选:D.点评:本题比较简单,对此类题目要注意掌握万有引力充当向心力和圆周运动向心加速度公式的联合应用.3.(6分)(2015•山东)如图,滑块A置于水平地面上,滑块B在一水平力作用下紧靠滑块A(A、B接触面竖直),此时A恰好不滑动,B刚好不下滑.已知A与B间的动摩擦因数为μ1,A与地面间的动摩擦因数为μ2,最大静摩擦力等于滑动摩擦力.A与B的质量之比为()A.B.C.D.考点:共点力平衡的条件及其应用;摩擦力的判断与计算.专题:共点力作用下物体平衡专题.分析:对A、B整体和B物体分别受力分析,然后根据平衡条件列式后联立求解即可.解答:解:对A、B分析,受重力、支持力、推力和最大静摩擦力,根据平衡条件,有:F=μ2(m1+m2)g ①再对物体B分析,受推力、重力、向左的支持力和向上的最大静摩擦力,根据平衡条件,有:水平方向:F=N竖直方向:m2g=f其中:f=μ1N联立有:m2g=μ1F ②联立①②解得:=故选:B点评:本题关键是采用整体法和隔离法灵活选择研究对象,受力分析后根据平衡条件列式求解,注意最大静摩擦力约等于滑动摩擦力.4.(6分)(2015•山东)如图,一均匀金属圆盘绕通过其圆心且与盘面垂直的轴逆时针匀速转动.现施加一垂直穿过圆盘的有界匀强磁场,圆盘开始减速.在圆盘减速过程中,以下说法正确的是()A.处于磁场中的圆盘部分,靠近圆心处电势高B.所加磁场越强越易使圆盘停止转动C.若所加磁场反向,圆盘将加速转动D.若所加磁场穿过整个圆盘,圆盘将匀速转动考点:导体切割磁感线时的感应电动势;电势.专题:电磁感应与电路结合.分析:将金属圆盘看成由无数金属幅条组成,根据右手定则判断感应电流的方向,从而判断电势的高低,当没有磁通量变化时,就没有感应电流产生.解答:解:A、将金属圆盘看成由无数金属幅条组成,根据右手定则判断可知:圆盘上的感应电流由边缘流向圆心,所以靠近圆心处电势高,所以A正确;B、根据右手定则可知,产生的电动势为BLv,所以所加磁场越强,产生的电动势越大,电流越大,受到的安培力越大,越易使圆盘停止转动,所以B正确;C、若所加磁场反向,只是产生的电流反向,根据楞次定律可知,安培力还是阻碍圆盘的转动,所以圆盘还是减速转动,所以C错误;D、若所加磁场穿过整个圆盘时,圆盘的磁通量不再变化,没有感应电流产生,没有安培力的作用,圆盘将匀速转动,所以D正确;故选:ABD点评:本题关键要掌握右手定则、安培定则,并能正确用来分析电磁感应现象,对于这两个定则运用时,要解决两个问题:一是什么条件下用;二是怎样用.5.(6分)(2015•山东)直角坐标系xOy中,M、N两点位于x轴上,G、H两点坐标如图.M、N两点各固定一负点电荷,一电量为Q的正点电荷置于O点时,G点处的电场强度恰好为零.静电力常量用k表示.若将该正点电荷移到G点,则H点处场强的大小和方向分别为()A.,沿y轴正向B.,沿y轴负向C.,沿y轴正向D.,沿y轴负向考点:电势差与电场强度的关系;电场强度.专题:电场力与电势的性质专题.分析:根据点电荷的场强公式和场强叠加的原理,可以知道在G点的时候负电荷在G点产生的合场强与正电荷在G点产生的场强大小相等反向相反,在H点同意根据场强的叠加来计算合场强的大小即可.解答:解:G点处的电场强度恰好为零,说明负电荷在G点产生的合场强与正电荷在G点产生的场强大小相等反向相反,根据点电荷的场强公式可得,正电荷在G点的场强为,负电荷在G点的合场强也为,当正点电荷移到G点时,正电荷与H点的距离为2a,正电荷在H点产生的场强为,方向沿y轴正向,由于GH对称,所以负电荷在G点和H点产生的场强的相等方向相反,大小为,方向沿y轴负向,所以H点处场合强的大小为,方向沿y轴负向,所以B正确;故选:B点评:本题是对场强叠加原理的考查,同时注意点电荷的场强公式的应用,本题的关键的是理解G点处的电场强度恰好为零的含义.6.(6分)(2015•山东)如图甲,R0为定值电阻,两金属圆环固定在同一绝缘平面内.左端连接在一周期为T0的正弦交流电源上,经二极管整流后,通过R0的电流i始终向左,其大小按图乙所示规律变化.规定内圆环a端电势高于b端时,a、b间的电压u ab为正,下列u ab ﹣t图象可能正确的是()A.B.C.D.考点:法拉第电磁感应定律;闭合电路的欧姆定律.专题:电磁感应与电路结合.分析:由图乙可知,电流为周期性变化的电流,故只需分析0.5T0内的感应电流即可;通过分析电流的变化明确磁场的变化,根据楞次定律即可得出电动势的图象.解答:解:在第一个0.25T0时间内,通过大圆环的电流为瞬时针增加的,由楞次定律可判断内球内a端电势高于b端,因电流的变化率逐渐减小故内环的电动势逐渐减小,同理可知,在0.25T0~0.5T0时间内,通过大圆环的电流为瞬时针逐渐减小;则由楞次定律可知,a环内电势低于b端,因电流的变化率逐渐变大,故内环的电动势变大;故只有C正确;故选:C.点评:本题考查楞次定律的应用,要注意明确楞次定律解题的基本步骤,正确掌握并理解“增反减同”的意义,并能正确应用;同时解题时要正确审题,明确题意,不要被复杂的电路图所迷或!7.(6分)(2015•山东)如图甲,两水平金属板间距为d,板间电场强度的变化规律如图乙所示.t=0时刻,质量为m的带电微粒以初速度为v0沿中线射入两板间,0~时间内微粒匀速运动,T时刻微粒恰好经金属板边缘飞出.微粒运动过程中未与金属板接触.重力加速度的大小为g.关于微粒在0~T时间内运动的描述,正确的是()A.末速度大小为v0B.末速度沿水平方向C.D.克服电场力做功为mgd重力势能减少了mgd考点:匀强电场中电势差和电场强度的关系.专题:电场力与电势的性质专题.分析:0~时间内微粒匀速运动,重力和电场力相等,~内,微粒做平抛运动,~T时间内,微粒竖直方向上做匀减速运动,水平方向上仍然做匀速直线运动,结合牛顿第二定律和运动学公式进行求解.解答:解:A、0~时间内微粒匀速运动,则有:qE0=mg,~内,微粒做平抛运动,下降的位移,~T时间内,微粒的加速度a=,方向竖直向上,微粒在竖直方向上做匀减速运动,T时刻竖直分速度为零,所以末速度的方向沿水平方向,大小为v0,故A错误,B正确.C、微粒在竖直方向上向下运动,位移大小为,则重力势能的减小量为,故C正确.D、在~内和~T时间内竖直方向上的加速度大小相等,方向相反,时间相等,则位移的大小相等,为,整个过程中克服电场力做功为,故D错误.故选:BC.点评:解决本题的关键知道微粒在各段时间内的运动规律,抓住等时性,结合牛顿第二定律和运动学公式进行求解.知道在~内和~T时间内竖直方向上的加速度大小相等,方向相反,时间相等,位移的大小相等.二、非选择题:必做题8.(10分)(2015•山东)某同学通过下述实验验证力的平行四边形定则.实验步骤:①将弹簧秤固定在贴有白纸的竖直木板上,使其轴线沿竖直方向.②如图甲所示,将环形橡皮筋一端挂在弹簧秤的秤钩上,另一端用圆珠笔尖竖直向下拉,直到弹簧秤示数为某一设定值时,将橡皮筋两端的位置标记为O1、O2,记录弹簧秤的示数F,测量并记录O1、O2间的距离(即橡皮筋的长度l).每次将弹簧秤示数改变0.50N,测出所对应的l,部分数据如表所示:F(N)0 0.50 1.00 1.50 2.00 2.50l(cm)l010.97 12.02 13.00 13.98 15.05③找出②中F=2.50N时橡皮筋两端的位置,重新标记为O、O′,橡皮筋的拉力记为F OO′.④在秤钩上涂抹少许润滑油,将橡皮筋搭在秤钩上,如图乙所示.用两圆珠笔尖成适当角度同时拉橡皮筋的两端,使秤钩的下端达到O点,将两笔尖的位置为A、B,橡皮筋OA段的拉力记为F OA,OB段的拉力记为F OB.完成下列作图和填空:(1)利用表中数据在给出的坐标系上(见答题卡)画出F﹣l图线,根据图线求得l0=10.0 cm.(2)测得OA=6.00cm,OB=7.60cm,则F OA的大小为 1.80N.(3)根据给出的标度,在答题卡上作出F OA和F OB的合力F′的图示.(4)通过比较F′与F oo′的大小和方向,即可得出实验结论.考点:验证力的平行四边形定则.专题:实验题.分析:(1)根据表中数据利用描点法得出对应的数据,图象与横坐标的交点即为l0;(2)橡皮筋两端拉力相等,根据题意求得总长度即可求得皮筋上的拉力;(3)通过给出的标度确定力的长度,根据平行四边形得出图象如图所示;(4)根据实验原理可明确应比较实验得出的拉力与通过平行四边形定则得出的合力.解答:解:(1)根据表格中数据利用描点法作出图象如图所示;由图可知,图象与横坐标的交点即为l0;由图可知l0=10.0cm;(2)AB的总长度为6.00+7.60cm=13.60cm;由图可知,此时两端拉力F=1.80N;(3)根据给出的标度,作出合力如图所示;(4)只要作出的合力与实验得出的合力F00'大小和方向在误差允许的范围内相等,即可说明平行四边形定则成立;故答案为:(1)如图所示;10.0;(2)1.80N;(3)如图所示;(4)点评:本题考查验证平行四边形定则的实验,要注意通过认真分析题意掌握实验原理,注意本题中橡皮筋挂在钩上时,两端的拉力大小相等;根据总长度即可求得拉力大小.9.(8分)(2015•山东)如图甲所示的电路中,恒流源可为电路提供恒定电流I0,R为定值电阻,电流表、电压表均可视为理想电表.某同学利用该电路研究滑动变阻器R L消耗的电功率.改变R L的阻值,记录多组电流、电压的数值,得到如图乙所示的U﹣I关系图线.回答下列问题:(1)滑动触头向下移动时,电压表示数减小(填“增大”或“减小”).(2)I0= 1.0A.(3)R L消耗的最大功率为5W(保留一位有效数字).考点:测定电源的电动势和内阻;闭合电路的欧姆定律;电功、电功率.专题:恒定电流专题.分析:(1)分析电路结构,根据并联电路规律可知R分流的变化,再由欧姆定律可得出电压表示数的变化;(2)由图象及并联电路的规律可分析恒定电流的大小;(3)由功率公式分析得出对应的表达式,再由数学规律可求得最大功率.解答:解:(1)定值电阻与滑动变阻器并联,当R向下移动时,滑动变阻器接入电阻减小,由并联电路规律可知,电流表示数增大,流过R的电压减小,故电压表示数减小;(2)当电压表示数为零时,说明R L短路,此时流过电流表的电流即为I0;故I0为1.0A;(3)由图可知,当I0全部通过R时,I0R=20;解得:R=4由并联电路规律可知,流过R L的电流为:I=;则R L消耗的功率为:P=I2R L==;则由数学规律可知,最大功率为:P=5W;故答案为;(1)减小;(2)1.0;(3)5点评:本题考查闭合电路欧姆定律在实验中的应用,要注意明确:一、图象的应用,能从图象得出对应的物理规律;二是注意功率公式的变形以及数学规律的正确应用.10.(18分)(2015•山东)如图甲所示,物块与质量为m的小球通过不可伸长的轻质细绳跨过两等高定滑轮连接,物块置于左侧滑轮正下方的表面水平的压力传感装置上,小球与右侧滑轮的距离为l.开始时物块和小球均静止,将此时传感装置的示数记为初始值,现给小球施加一始终垂直于l段细绳的力,将小球缓慢拉起至细绳与竖直方向成60°角,如图乙所示,此时传感装置的示数为初始值的1.25倍;再将小球由静止释放,当运动至最低位置时,传感装置的示数为初始值的0.6倍,不计滑轮的大小和摩擦,重力加速度的大小为g,求:(1)物块的质量;(2)从释放到运动至最低位置的过程中,小球克服空气阻力所做的功.考点:动能定理的应用;共点力平衡的条件及其应用.专题:动能定理的应用专题.分析:(1)分别对开始及夹角为60度时进行受力分析,由共点力平衡列式,联立可求得物块的质量;(2)对最低点由向心力公式进行分析求解物块的速度,再对全过程由动能定理列式,联立可求得克服阻力做功.解答:解:(1)设开始时细绳的拉力大小为T1,传感装置的初始值为F1,物块质量为M,由平衡条件可得:对小球:T1=mg对物块,F1+T1=Mg当细绳与竖直方向的夹角为60°时,设细绳的拉力大小为T2,传感装置的示数为F2,根据题意可知,F2=1.25F1,由平衡条件可得:对小球:T1=mgcos60°对物块:F2+T2=Mg联立以上各式,代入数据可得:M=3m;(2)设物块经过最低位置时速度大小为v,从释放到运动至最低位置的过程中,小球克服阻力做功为W f,由动能定理得:mgl(1﹣cos60°)﹣W f=mv2在最低位置时,设细绳的拉力大小为T1,传感装置的示数为F3,据题意可知,F3=0.6F1,对小球,由牛顿第二定律得:T3﹣mg=m对物块由平衡条件可得:F3+T3=Mg联立以上各式,代入数据解得:W f=0.1mgl.答:(1)物块的质量为3m;(2)从释放到运动至最低位置的过程中,小球克服空气阻力所做的功为0.1mgl.点评:本题考查动能定理及共点力的平衡条件的应用,要注意正确选择研究对象,做好受力分析及过程分析;进而选择正确的物理规律求解;要注意在学习中要对多个方程联立求解的方法多加训练.11.(20分)(2015•山东)如图所示,直径分别为D和2D的同心圆处于同一竖直面内,O 为圆心,GH为大圆的水平直径.两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场.间距为d的两平行金属极板间有一匀强电场,上级板开有一小孔.一质量为m,电量为+q的粒子由小孔下方处静止释放,加速后粒子以竖直向上的速度v射出电场,由H点紧靠大圆内侧射入磁场.不计粒子的重力.(1)求极板间电场强度的大小;(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小;(3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为、,粒子运动一段时间后再次经过H 点,求这段时间粒子运动的路程.考点:带电粒子在匀强磁场中的运动;带电粒子在匀强电场中的运动.专题:带电粒子在复合场中的运动专题.分析:(1)带电粒子在电场中做加速运动;根据动能定理可求得电场强度的大小;(2)明确两种可能的相切情况,即可求得半径;根据洛仑兹充当向心力求解磁感应强度;(3)分析粒子在磁场中的运动,根据运动周期明确经过的圆心角,再由圆的性质明确对应的路程.解答:解:(1)设极板间电场强度大小为E,对粒子在电场中的加速运动,由动能定理可得:qE=mv2解得:E=(2)设I区内磁感应强大小为B,粒子做圆周运动的半径为R,由牛顿第二定律得:qvB=m如图甲所示,粒子的运动轨迹与小圆相切有两种情况,若粒子轨迹与小圆外切,由几何关系可得:R=;解得:B=;若粒子轨迹与小圆内切,由几何关系得:R=;解得:B=(3)设粒子在I区和II区做圆周运动的半径分别为R1、R2,由题意可知,I区和II 内的磁感应强度大小分别为B1=;B2=;由牛顿第二定律可得:qvB1=m,qvB2=m代入解得:R1=,R2=;设粒子在I区和II区做圆周运动的周期分别为T1、T2,由运动学公式得:T1=,T2=由题意分析,粒子两次与大圆相切的时间间隔的运动轨迹如图乙所示,由对称性可知,I区两段圆弧所对圆心角相同,设为θ1,II区内所对圆心角设为θ2,圆弧和大圆的两个切点与圆心O连线间的夹角为α,由几何关系可得:θ1=120°θ2=180°α=60°粒子重复上述交替运动到H点,设粒子I区和II区做圆周运动的时间分别为t1、t2,可得:t1=×T1,t2=×T2设粒子运动的路程为s,由运动学公式可得s=v(t1+t2)联立解得:s=5.5πD答:(1)极板间电场强度的大小;(2)若粒子运动轨迹与小圆相切,Ⅰ区磁感应强度的大小或;(3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为、,粒子运动一段时间后再次经过H点,这段时间粒子运动的路程5.5πD.点评:本题考查带电粒子在磁场和电场中的运动,要注意明确洛仑兹力充当向心力的应用,同时要注意分析可能的运动过程,特别是具有对称性的性质要注意把握.【物理3-3】12.(4分)(2015•山东)墨滴入水,扩而散之,徐徐混匀.关于该现象的分析正确的是()A.混合均匀主要是由于碳粒受重力作用B.混合均匀的过程中,水分子和碳粒都做无规则运动C.使用碳粒更小的墨汁,混合均匀的过程进行得更迅速D.墨汁的扩散运动是由于碳粒和水分子发生化学反应引起的考点:布朗运动.专题:布朗运动专题.分析:布朗运动是悬浮微粒永不停息地做无规则运动,用肉眼看不到悬浮微粒,只能借助光学显微镜观察到悬浮微粒的无规则运动,肉眼看不到液体分子;布朗运动的实质是液体分子不停地做无规则撞击悬浮微粒,悬浮微粒受到的来自各个方向的液体分子的撞击作用不平衡的导致的无规则运动.解答:解:A、碳素墨水滴入清水中,观察到的布朗运动是液体分子不停地做无规则撞击碳悬浮微粒,悬浮微粒受到的来自各个方向的液体分子的撞击作用不平衡的导致的无规则运动,不是由于碳粒受重力作用,故A错误;B、混合均匀的过程中,水分子做无规则的运动,碳粒的布朗运动也是做无规则运动.故B正确;C、当悬浮微粒越小时,悬浮微粒受到的来自各个方向的液体分子的撞击作用不平衡表现的越强,即布朗运动越显著,所以使用碳粒更小的墨汁,混合均匀的过程进行得更迅速.故C正确;D、墨汁的扩散运动是由于微粒受到的来自各个方向的液体分子的撞击作用不平衡引起的.故D错误.故选:BC点评:该题中,碳微粒的无规则运动是布朗运动,明确布朗运动的实质是解题的关键,注意悬浮微粒只有借助显微镜才能看到.13.(8分)(2015•山东)扣在水平桌面上的热杯盖有时会发生被顶起的现象.如图,截面积为S的热杯盖扣在水平桌面上,开始时内部封闭气体的温度为300K,压强为大气压强p0.当封闭气体温度上升至303K时,杯盖恰好被整体顶起,放出少许气体后又落回桌面,其内部气体压强立刻减为p0,温度仍为303K,再经过一段时间内,内部气体温度恢复到300K.整个过程中封闭气体均可视为理想气体.求:(Ⅰ)当温度上升到303K且尚未放气时,封闭气体的压强;(Ⅱ)当温度恢复到300K时,竖直向上提起杯盖所需的最小力.考点:理想气体的状态方程.专题:理想气体状态方程专题.分析:(I)分析初末状态的气体状态参量,由查理定律可求得后来的压强;(II)对开始杯盖刚好被顶起列平衡方程;再对后来杯内的气体分析,由查理定律及平衡关系列式,联立求解最小力.解答:解:(I)以开始封闭的气体为研究对象,由题意可知,初状态温度T0=300K,压强为P0,末状态温度T1=303,压强设为P1,由查理定律得:=代入数据解得:P1=P0;(II)设杯盖的质量为m,刚好被顶起时,由平衡条件得:P1S=P0S+mg放出少许气体后,以杯盖内的剩余气体为研究对象,由题意可知,初状态温度为T2=303K,压强P2=P0;末状态温度T3=300K,压强设为P3,由查理定律得=设提起杯盖所需的最小力为F,由平衡条件得:F+P3S=P0S+mg联立以上各式,代入数据得:F=P0S;答:(I)当温度上升到303K且尚未放气时,封闭气体的压强为P0;(Ⅱ)当温度恢复到300K时,竖直向上提起杯盖所需的最小力为P0S;点评:本题考查气体实验定律及共点力的平衡条件应用,要注意明确前后气体质量不同,只能分别对两部分气体列状态方程求解.【物理3-4】14.(2015•山东)如图,轻弹簧上端固定,下端连接一小物块,物块沿竖直方向做简谐运动.以竖直向上为正方向,物块简谐运动的表达式为y=0.1sin(2.5πt)m.t=0时刻,一小球从距物块h高处自由落下:t=0.6s时,小球恰好与物块处于同一高度.取重力加速度的大小g=10m/s2.以下判断正确的是()A.h=1.7mB.简谐运动的周期是0.8sC.0.6s内物块运动的路程是0.2mD.t=0.4s时,物块与小球运动方向相反考点:简谐运动的振动图象.专题:简谐运动专题.分析:由振动公式可明确振动的周期、振幅及位移等;再结合自由落体运动的规律即可求得h高度;根据周期明确小球经历0.4s时的运动方向.解答:解:A、由振动方程式可得,t=0.6s物体的位移为y=0.2sin(2.5π×0.6)=﹣0.1m;则对小球有:h+=gt2解得h=1.7m;故A正确;B、由公式可知,简谐运动的周期T===0.8s;故B正确;C、振幅为0.1m;故0.6s内物块运动的路程为3A=0.3m;故C错误;D、t=0.4s=,此时物体在平衡位置向下振动,则此时物块与小球运动方向相同,故D错误;故选:AB.点评:本题考查简谐运动的位移公式,要掌握由公式求解简谐运动的相关信息,特别是位移、周期及振幅等物理量.15.(2015•山东)半径为R、介质折射率为n的透明圆柱体,过其轴线OO′的截面如图所示.位于截面所在平面内的一细束光线,以角i0由O点射入,折射光线由上边界的A点射出.当光线在O点的入射角减小至某一值时,折射光线在上边界的B点恰好发生反射.求A、B 两点间的距离.考点:光的折射定律.。

2015年山东省青岛市高考物理二模试卷(解析版)

2015年山东省青岛市高考物理二模试卷(解析版)

2015年山东省青岛市高考物理二模试卷一、选择题(共7小题,每小题6分,共42分.每小题给出的四个选项中有的只有一个选项正确,有的有多个选项正确,全部选对的得6分,选对但不全的得3分,有选错的得0分.)1.(6分)如图所示,物块正沿斜面匀速下滑,现在物块下滑过程中分别对物块施加一个竖直向下的恒力F1和一个与斜面平行向左下方的恒力F2,两种情况下斜面均静止不动,则下列说法正确的是()A.当加F1时,物块仍沿斜面匀速下滑B.当加F2时,物块仍沿斜面匀速下滑C.当加F1时,斜面不受地面的摩擦力D.当加F2时,斜面受地面向右的摩擦力2.(6分)如图所示,一质点做匀加速直线运动先后经过A、B、C三点,已知从A到B和从B到C速度的增加量△v均为2m/s,AB间的距离x1=3m,BC间的距离x2=5m,则物体的加速度为()A.1m/s2B.2m/s2C.3m/s2D.4m/s23.(6分)2015年3月30日21时52分,中国在西昌卫星发射中心用长征三号丙运载火箭,成功将首颗新一代北斗导航卫星发射升空,31日凌晨3时34分顺利进入圆轨道.卫星在该轨道上运动的周期与地球自转周期相同,但该轨道平面与赤道平面有一定的夹角,因此该轨道也被称为倾斜同步轨道,根据以上信息请判断下列说法中正确的是()A.该卫星做匀速圆周运动的圆心一定是地球的球心B.该卫星离地面的高度要小于地球同步卫星离地面的高度C.地球对该卫星的万有引力一定等于对地球同步卫星的万有引力D.只要倾角合适,处于倾斜同步轨道上的卫星可以在每天的固定时间经过青岛上空4.(6分)在匀强电场中有一个光滑的直角三角形框架,∠CAB=30°.将一质量不计的带电滑块以初速度v0释放,使其沿斜面CA运动,到达A点的速度为v0,让滑块以相同速度从C点沿CB下滑,则到达B点的速度为v0,则下列说法正确的是()A.电场方向与AB边垂直B.B点电势是A点电势的两倍C.A点电势与BC边中点的电势相等D.C点电势一定比A点电势高5.(6分)如图甲所示,电阻不计的N匝矩形闭合导线框abcd处于磁感应强度大小为0.1T的水平匀强磁场中,导线框面积为0.5m2.导线框绕垂直于磁场的轴匀速转动,并与理想变压器原线圈相连,原副线圈的匝数比为10:1,副线圈接有一滑动变阻器R,副线圈两端的电压随时间的变化规律如图乙所示.下列说法正确的是()A.闭合导线框中产生的交变电压的表达式为u=100sin100tB.闭合导线框的匝数N=10C.若滑动变阻器的滑片P向上移动,电流表的示数将减小D.若导线框的转速加倍,变压器的输出功率将加倍6.(6分)A、B两物体分别在大小相同的水平恒力F的作用下由静止开始沿同一水平面运动,作用时间分别为t0和4t0,两物体运动的v﹣t图象如图所示,则A、B两物体()A.与水平面的摩擦力大小之比为5:12B.水平力F的最大功率之比为2:1C.水平力F对A、B两物体做功之比为2:1D.在整个运动过程中,摩擦力做功的平均功率之比为5:37.(6分)如图甲所示,在水平面上固定一个匝数为10匝的等边三角形金属线框,总电阻为3Ω,边长为0.4m.金属框处于两个半径为0.1m的圆形匀强磁场中,顶点A恰好位于左边圆的圆心,BC边的中点恰好与右边圆的圆心重合.左边磁场方向垂直水平面向外,右边磁场垂直水平面向里,磁感应强度的变化规律如图乙所示,则下列说法中正确的是(π取3)()A.线框中感应电流的方向是顺时针方向B.t=0.4s时,穿过线框的磁通量为0.005WbC.经过t=0.4s,线框中产生的热量为0.3JD.前0.4s内流过线框的电量为0.2C二、非选择题8.(8分)某同学利用如图甲所示装置研究弹簧的弹性势能与弹簧伸长量之间的关系.图中O点所在虚线为弹簧的原长位置,O、A、B、C、D的间距均为x.先将光电门固定于A处,将固定在弹簧末端质量为m的小铁球从原长处释放,在小球经过光电门时,计时器记录下时间t A;依次将光电门置于B、C、D各处,每次均将小球从原长处由静止释放,得到时间t B、t C、t D.(1)如图乙用游标卡尺测量小球的直径d为mm;(2)当光电门固定于D处时,小球通过该处速度的表达式v D=(用字母表示),弹簧的伸长量为.(3)当小球运动至D处时,弹簧弹性势能的表达式E PD=(用字母表示).9.(10分)在测定一节干电池电动势和内电阻的分组实验中,实验1组的同学利用图甲所示电路,选用下列器材进行了规范的实验操作.A.干电池(内电阻小于1.0Ω)B.电流表(量程0~0.6A,内阻r A=1Ω)C.电压表(量程0~3V,内阻约20kΩ)D.滑动变阻器(0~20Ω,允许最大电流2A)E.开关、导线若干把得到的数据记录后用“○”在图乙所示的“U﹣I”图象中进行描点.在小组互评环节,实验2组的同学在实验器材没有变化的情况下对1组的实验方案进行了改进后再次进行了实验,并把实验数据用“×”也描在图乙所示的“U﹣I”图象中.请完成以下对1组实验方案的评价及改进.(1)从实验原理上来看,用图甲电路进行实验,误差主要来自:.(2)从所得实验数据来看,不足之处是:.(3)在如图丙中画出改进的方案电路图.(4)根据改进后所得的实验数据作出图线,由图线得到:E=V;r=Ω.(保留两位小数).10.(18分)如图所示,在水平地面上固定一个倾角α=45°、高H=4m的斜面.在斜面上方固定放置一段由内壁光滑的圆管构成的轨道ABCD,圆周部分的半径R=m,AB与圆周相切于B点,长度为R,与水平方向的夹角θ=60°,轨道末端竖直,已知圆周轨道最低点C、轨道末端D与斜面顶端处于同一高度.现将一质量为0.1kg,直径可忽略的小球从管口A处由静止释放,g取10m/s2.(1)求小球在C点时对轨道的压力;(2)若小球与斜面碰撞(不计能量损失)后做平抛运动落到水平地面上,则碰撞点距斜面左端的水平距离x多大时小球平抛运动的水平位移最大?是多少?11.(20分)如图甲所示,长度为l,垂直于纸面的两平行板CD、MN间存在匀强磁场,板间距离为板长的两倍,平行板右侧有一水平方向的匀强电场.t=0时刻,一质量为m、带电量为+q的粒子(不计重力),以初速度v0由MN板左端靠近板面的位置,沿垂直于磁场且平行于板面的方向射入磁场区,以垂直于DN边的方向进入电场区域,之后又回到磁场中,最后从平行板左端靠近板面的位置离开磁场,速度方向与初速度方向相反,上述仅l、m、q、v0为已知量.(1)若粒子在T B时刻进入电场,求B0的最大值;(2)若粒子在T B时刻进入电场,且B0取最大值,求电场强度E及粒子在电场中向右运动的最大距离;(3)若B0=,求T B满足的条件.【物理-物理3-3】12.(4分)下列说法正确的是()A.硬币或钢针能浮于水面上,是由于液体表面张力的作用B.晶体有固定的熔点,具有规则的几何外形,物理性质具有各向异性C.影响蒸发快慢以及影响人们对干爽与潮湿感受的因素是空气中水蒸气的压强与同一温度下水的饱和汽压的差距D.随着科技的发展,将来可以利用高科技手段,将散失在环境中的内能重新收集起来加以利用而不引起其他变化13.(8分)如图所示,在导热性能良好、开口向上的气缸内,用活塞封闭一定质量的理想气体,气体的体积V1=6.0×10﹣3m3,温度T1=300K.现使外界环境温度缓慢升高至T2,此过程中气体吸收热量700J,内能增加500J.不计活塞的质量及活塞与气缸间的摩擦,外界大气压强p0=1.0×105Pa,求T2.【物理-物理3-4】(12分)14.一列简谐横波沿x轴传播,某时刻它的波形如图甲所示.经过时间0.2s,这列波的波形如图乙所示,则这列波的波速可能是()A.0.9m/s B.1.8m/s C.2.7m/s D.3.6m/s15.如图所示,一束单色光射入一半径为0.2m玻璃球体,入射角为60°,已知光线在玻璃球内经一次反射后,再次折射回到空气中时与入射光线平行.求:①此玻璃的折射率;②光在玻璃球内的传播时间.【物理-物理3-5】(12分)16.下列说法中正确的是()A.原子核放出β粒子后,转变成的新核所对应的元素是原来元素的同位素B.玻尔在研究原子结构中引进了量子化的观点C.氢原子从高能级跃迁到低能级要放出光子D.放射性元素衰变的快慢跟原子所处的化学状态和外部条件有一定的关系17.如图所示,在光滑水平面上有一长木板C,它的两端各有一挡板,木板C的质量为m C=5kg.在C的正中央并排放着滑块A、B,质量分别为m A=1kg,m B=4kg.开始时,A、B、C均静止,A、B间夹有少量塑胶炸药,炸药爆炸后使A以6m/s的速度水平向左运动.设A、B与C间的摩擦都可以忽略,A、B中任一滑块与挡板碰撞后都与挡板结合成一体,求:①A、B两滑块哪个先与木板C相碰,碰后板C的速度;②当两滑块都与挡板相碰后,板C的速度.2015年山东省青岛市高考物理二模试卷参考答案与试题解析一、选择题(共7小题,每小题6分,共42分.每小题给出的四个选项中有的只有一个选项正确,有的有多个选项正确,全部选对的得6分,选对但不全的得3分,有选错的得0分.)1.(6分)如图所示,物块正沿斜面匀速下滑,现在物块下滑过程中分别对物块施加一个竖直向下的恒力F1和一个与斜面平行向左下方的恒力F2,两种情况下斜面均静止不动,则下列说法正确的是()A.当加F1时,物块仍沿斜面匀速下滑B.当加F2时,物块仍沿斜面匀速下滑C.当加F1时,斜面不受地面的摩擦力D.当加F2时,斜面受地面向右的摩擦力【解答】解:AC、未加F1时,物块匀速下滑,受力平衡,分析物体的受力情况如图,由平衡条件得:mgsinθ=μmgcosθ得:sinθ=μcosθ对物块施加一个竖直向下的恒力F1时,物块受到的滑动摩擦力大小为:f=μ(F1+mg)cosθ重力和F沿斜面向下的分力大小为(F1+mg)sinθ,则上可知:(F+mg)sinθ=μ(F+mg)cosθ,则物块受力仍平衡,所以仍处于匀速下滑状态,所以A正确;由于斜面给物体的摩擦力与支持力的合力竖直向上,故斜面做不受地面摩擦力作用,故C正确.BD、当沿斜面向下推力F2时,物体与斜面间支持力保持不变,故摩擦力大小不变,故物体将沿斜面向下加速运动,故B错误;当有F2作用时,不改变斜面与物体间的摩擦力,故斜面体对物体作用力的合力竖直向上,故斜面体相对地面没有水平方向的运动趋势,故斜面体不地面的摩擦力作用,故D错误.故选:AC.2.(6分)如图所示,一质点做匀加速直线运动先后经过A、B、C三点,已知从A到B和从B到C速度的增加量△v均为2m/s,AB间的距离x1=3m,BC间的距离x2=5m,则物体的加速度为()A.1m/s2B.2m/s2C.3m/s2D.4m/s2【解答】解:因为A到B和从B到C速度的增加量△v均为2m/s,可知A到B 的时间和B到C的时间相等,根据平均速度推论知,B点的速度,根据速度位移公式得,,即,解得T=1s,则加速度a=.故选:B.3.(6分)2015年3月30日21时52分,中国在西昌卫星发射中心用长征三号丙运载火箭,成功将首颗新一代北斗导航卫星发射升空,31日凌晨3时34分顺利进入圆轨道.卫星在该轨道上运动的周期与地球自转周期相同,但该轨道平面与赤道平面有一定的夹角,因此该轨道也被称为倾斜同步轨道,根据以上信息请判断下列说法中正确的是()A.该卫星做匀速圆周运动的圆心一定是地球的球心B.该卫星离地面的高度要小于地球同步卫星离地面的高度C.地球对该卫星的万有引力一定等于对地球同步卫星的万有引力D.只要倾角合适,处于倾斜同步轨道上的卫星可以在每天的固定时间经过青岛上空【解答】解:A、倾斜同步轨道围绕地球做匀速圆周运动,圆心一定是地球的球心,故A正确;B、根据万有引力提供向心力r,得r=,因为倾斜地球同步轨道卫星的周期与赤道上空的同步卫星的周期相同,故它的轨道髙度与位于赤道上空的同步卫星的轨道高度相同,故B错误.C、根据可知,由于不知道该卫星和地球同步卫星质量的关系,所以无法判断万有引力的关系.故C错误.D、倾斜同步轨道卫星相对于地球非静止的,所以倾斜同步轨道卫星从地球上看是移动的,故该卫星不可能始终位于地球表面某个点的正上方,所以只要倾角合适,处于倾斜同步轨道上的卫星可以在每天的固定时间经过青岛上空,故D正确.故选:AD4.(6分)在匀强电场中有一个光滑的直角三角形框架,∠CAB=30°.将一质量不计的带电滑块以初速度v0释放,使其沿斜面CA运动,到达A点的速度为v0,让滑块以相同速度从C点沿CB下滑,则到达B点的速度为v0,则下列说法正确的是()A.电场方向与AB边垂直B.B点电势是A点电势的两倍C.A点电势与BC边中点的电势相等D.C点电势一定比A点电势高【解答】解:设滑块的质量为m,电量为q,BC的中点为D,因质量不计,所以滑块在运动过程中,只有电场力做功.设CA间的电势差为U1,则由动能定理有:m﹣v=qU1设CB间的电势差为U2,则由动能定理有:m﹣v=qU2解得:U2=2U1即BC的中点D的电势与A的电势相等.A、由以上解答可知,A与BC的中点D的电势相等,所以电场方向垂直于AD,与Ab并不垂直,选项A错误.B、虽然CB间的电势差等于CA间的电势差的2倍,但是零势能面没有确定,所以B点电势不一定是A点电势的两倍,选项B错误.C、由以上解答可知,即BC的中点D的电势与A的电势相等,选项C正确.D、虽然滑块哟C到A的过程中电场力做正功,因不知滑块所带的电性,所以无法判知C点和A点的电势高低,选项D错误.故选:C5.(6分)如图甲所示,电阻不计的N匝矩形闭合导线框abcd处于磁感应强度大小为0.1T的水平匀强磁场中,导线框面积为0.5m2.导线框绕垂直于磁场的轴匀速转动,并与理想变压器原线圈相连,原副线圈的匝数比为10:1,副线圈接有一滑动变阻器R,副线圈两端的电压随时间的变化规律如图乙所示.下列说法正确的是()A.闭合导线框中产生的交变电压的表达式为u=100sin100tB.闭合导线框的匝数N=10C.若滑动变阻器的滑片P向上移动,电流表的示数将减小D.若导线框的转速加倍,变压器的输出功率将加倍【解答】解:A、由乙图可知,输出电压的最大值U m2=100V,周期为2π×10﹣2s,角速度ω===100rad/s;则输入端的最大值U m2=100×10=1000V;故表达式应为:u=100sin100t;故A错误;B、发电机输出的最大电压值U m1=NBSω=1000V;解得N==64匝;故B错误;C、将导线框的滑片P向上移动时,滑动变阻器接入电阻增大,输出电流减小,由电流之比等于匝数的反比可知,电流表的示数减减小;故C正确;D、若转速度加倍,则最大值加倍,有效值加倍;输出端的有效值也会加倍,则由P=可知,输出功率将变成原来的4倍;故D错误;故选:C.6.(6分)A、B两物体分别在大小相同的水平恒力F的作用下由静止开始沿同一水平面运动,作用时间分别为t0和4t0,两物体运动的v﹣t图象如图所示,则A、B两物体()A.与水平面的摩擦力大小之比为5:12B.水平力F的最大功率之比为2:1C.水平力F对A、B两物体做功之比为2:1D.在整个运动过程中,摩擦力做功的平均功率之比为5:3【解答】解:A、由速度图线的斜率等于加速度,则得:匀减速运动的加速度大小之比a A:a B=:=1:1.f A=m A a A f B=m B a B在外力作用下联立解得m A:m B=5:12而匀减速运动过程中,两物体的合外力等于摩擦力,根据牛顿第二定律得:摩擦力大小之比等于质量之比,即擦力大小之比是5:12.故A正确;B、AB两物体的最大速度之比为2:1,施加的力相同,故水平力F的最大功率之比为2:1,故B正确;C、在力F作用下通过的位移之比为1:2,故拉力做功之比为1:2,故C错误;D、由图象可知整个过程位移之比为6:5,摩擦力之比为5:12,故摩擦力做功之比为1:2,所用时间之比为3:5,故擦力做功的平均功率之比为5:6,故D 错误故选:AB7.(6分)如图甲所示,在水平面上固定一个匝数为10匝的等边三角形金属线框,总电阻为3Ω,边长为0.4m.金属框处于两个半径为0.1m的圆形匀强磁场中,顶点A恰好位于左边圆的圆心,BC边的中点恰好与右边圆的圆心重合.左边磁场方向垂直水平面向外,右边磁场垂直水平面向里,磁感应强度的变化规律如图乙所示,则下列说法中正确的是(π取3)()A.线框中感应电流的方向是顺时针方向B.t=0.4s时,穿过线框的磁通量为0.005WbC.经过t=0.4s,线框中产生的热量为0.3JD.前0.4s内流过线框的电量为0.2C【解答】解:A、由磁感应强度B1垂直水平面向里,大小随时间增大;B2垂直水平面向外,大小不变,故线框的磁通量增大,由楞次定律可得,线框中感应电流方向为逆时针方向,故A错误;B、t=0.4s时刻穿过线框的磁通量为:∅=B1××πr2﹣B2××πr2=5×0.5×3×0.12﹣4××3×0.12W b=0.055W b,故B 错误;C、由Q=I2Rt=()2××△t=()2××0.4J=0.3J,故C正确;D、在t=0.4s内通过线框中的电量q=t=t==10×C=0.2C,故D正确.故选:CD.二、非选择题8.(8分)某同学利用如图甲所示装置研究弹簧的弹性势能与弹簧伸长量之间的关系.图中O点所在虚线为弹簧的原长位置,O、A、B、C、D的间距均为x.先将光电门固定于A处,将固定在弹簧末端质量为m的小铁球从原长处释放,在小球经过光电门时,计时器记录下时间t A;依次将光电门置于B、C、D各处,每次均将小球从原长处由静止释放,得到时间t B、t C、t D.(1)如图乙用游标卡尺测量小球的直径d为12.35mm;(2)当光电门固定于D处时,小球通过该处速度的表达式v D=(用字母表示),弹簧的伸长量为4x.(3)当小球运动至D处时,弹簧弹性势能的表达式E PD=4mgx﹣m(用字母表示).【解答】解:(1)游标卡尺的读数为12mm+7×0.05=12.35mm(2)、根据瞬时速度的公式v D=,弹簧的伸长量为4x(3)根据能量守恒,E PD=4mgx﹣m故答案为:(1)12.35mm(2),4x(3)4mgx﹣m9.(10分)在测定一节干电池电动势和内电阻的分组实验中,实验1组的同学利用图甲所示电路,选用下列器材进行了规范的实验操作.A.干电池(内电阻小于1.0Ω)B.电流表(量程0~0.6A,内阻r A=1Ω)C.电压表(量程0~3V,内阻约20kΩ)D.滑动变阻器(0~20Ω,允许最大电流2A)E.开关、导线若干把得到的数据记录后用“○”在图乙所示的“U﹣I”图象中进行描点.在小组互评环节,实验2组的同学在实验器材没有变化的情况下对1组的实验方案进行了改进后再次进行了实验,并把实验数据用“×”也描在图乙所示的“U﹣I”图象中.请完成以下对1组实验方案的评价及改进.(1)从实验原理上来看,用图甲电路进行实验,误差主要来自:电压表的分流.(2)从所得实验数据来看,不足之处是:路端电压的变化范围太小.(3)在如图丙中画出改进的方案电路图.(4)根据改进后所得的实验数据作出图线,由图线得到:E= 1.50V;r=0.53Ω.(保留两位小数).【解答】解:(1)由甲图可知,电路采用相对电源的外接法,故误差来自于电压表的分流使电流表读数偏小;(2)由图中数据可知,路端电压变化范围太小,导致误差过大;(3)为了使路端电压变化较大,可以将已知内阻的电流表与电源相连,采用相对于电源的电流表内接法;故如图所示;(4)由闭合电路欧姆定律可知:E=U+I(r+R A)故图象与纵轴的交点为电源的电动势,故E=1.50V,内阻r=﹣R A=0.53Ω;故答案为:(1)电压表的分流(2)路端电压的变化范围太小(3)如图:(4)如图所示;1.50;0.53.10.(18分)如图所示,在水平地面上固定一个倾角α=45°、高H=4m的斜面.在斜面上方固定放置一段由内壁光滑的圆管构成的轨道ABCD,圆周部分的半径R=m,AB与圆周相切于B点,长度为R,与水平方向的夹角θ=60°,轨道末端竖直,已知圆周轨道最低点C、轨道末端D与斜面顶端处于同一高度.现将一质量为0.1kg,直径可忽略的小球从管口A处由静止释放,g取10m/s2.(1)求小球在C点时对轨道的压力;(2)若小球与斜面碰撞(不计能量损失)后做平抛运动落到水平地面上,则碰撞点距斜面左端的水平距离x多大时小球平抛运动的水平位移最大?是多少?【解答】解:(1)设AD之间的竖直高度为h,由几何关系可知:h=R+Rsin30°+l AB sin60°=2mA到C根据动能定理得:mgh=在C点:F N﹣mg=解得:F N=7N由牛顿第三定律可知小球在C点时对轨道的压力为7N(2)从A到碰撞点,根据动能定理得:mg(h+x)=平抛过程:H﹣x=平抛水平位移:S x=v0t代入数据整理得:S x=可知:当x=1m时平抛水平位移S x有最大值S m=6m答:(1)求小球在C点时对轨道的压力为7N;(2)若小球与斜面碰撞(不计能量损失)后做平抛运动落到水平地面上,则碰撞点距斜面左端的水平距离当x=1m时平抛水平位移S x有最大值,最大值是6m.11.(20分)如图甲所示,长度为l,垂直于纸面的两平行板CD、MN间存在匀强磁场,板间距离为板长的两倍,平行板右侧有一水平方向的匀强电场.t=0时刻,一质量为m、带电量为+q的粒子(不计重力),以初速度v0由MN板左端靠近板面的位置,沿垂直于磁场且平行于板面的方向射入磁场区,以垂直于DN边的方向进入电场区域,之后又回到磁场中,最后从平行板左端靠近板面的位置离开磁场,速度方向与初速度方向相反,上述仅l、m、q、v0为已知量.(1)若粒子在T B时刻进入电场,求B0的最大值;(2)若粒子在T B时刻进入电场,且B0取最大值,求电场强度E及粒子在电场中向右运动的最大距离;(3)若B0=,求T B满足的条件.【解答】解:(1)若粒子在T B时刻进入电场,画出轨迹,如图:临界情况是经过速度偏转角是90°,此时粒子运动半径具有最小值,为:根据,解得:(2)粒子圆周运动周期:可知:粒子在电场中运动的时间为:t=(n=1、2、3…)由运动学知识可得:t=由牛顿第二定律,有:qE=ma,解得:E=d=(3)由B0=可知,R=2lT=分析可知:2nRsinθ=l (n=1、2、3…)故T B′=,且sinθ=答:(1)若粒子在T B时刻进入电场,B0的最大值为;(2)若粒子在T B时刻进入电场,且B0取最大值,电场强度E为,粒子在电场中向右运动的最大距离;(3)若B0=,T B满足的条件为:T B′=,且sinθ=(n=1、2、3…).【物理-物理3-3】12.(4分)下列说法正确的是()A.硬币或钢针能浮于水面上,是由于液体表面张力的作用B.晶体有固定的熔点,具有规则的几何外形,物理性质具有各向异性C.影响蒸发快慢以及影响人们对干爽与潮湿感受的因素是空气中水蒸气的压强与同一温度下水的饱和汽压的差距D.随着科技的发展,将来可以利用高科技手段,将散失在环境中的内能重新收集起来加以利用而不引起其他变化【解答】解:A、硬币或钢针能浮于水面上,是由于液体表面张力的作用,故A 正确;B、晶体分为单晶体和多晶体,多晶体物理性质各向同性,故B错误;C、空气中水蒸气的压强与同一温度下水的饱和汽压的差距影响蒸发快慢,故C 正确;D、能量在转化与转移的过程中具有单向性,故不能将将散失在环境中的内能重新收集起来加以利用而不引起其他变化,故D错误;故选:AC13.(8分)如图所示,在导热性能良好、开口向上的气缸内,用活塞封闭一定质量的理想气体,气体的体积V1=6.0×10﹣3m3,温度T1=300K.现使外界环境温度缓慢升高至T2,此过程中气体吸收热量700J,内能增加500J.不计活塞的质量及活塞与气缸间的摩擦,外界大气压强p0=1.0×105Pa,求T2.【解答】解:设温度升至T 2时气体的体积为V2,则气体对外界做功W=P0S△h=P0(V2﹣V1)由热力学第一定律△U=﹣W+Q解得V2=8.0×10﹣3m3由等压变化有:解得T2=400K答:T2是400K.【物理-物理3-4】(12分)14.一列简谐横波沿x轴传播,某时刻它的波形如图甲所示.经过时间0.2s,这列波的波形如图乙所示,则这列波的波速可能是()A.0.9m/s B.1.8m/s C.2.7m/s D.3.6m/s【解答】解:由图波长λ=24cm=0.24m,由波形图可知:t=(n+)T=0.2s(n=0,1,2…)解得:T=(n=0,1,2…)v==0.3(4n+3)(n=0,1,2…)当n=0时,v=0.9m/s当n=1时,v=2.7m/s当n=2时,v=4.5m/s故选:AC15.如图所示,一束单色光射入一半径为0.2m玻璃球体,入射角为60°,已知光线在玻璃球内经一次反射后,再次折射回到空气中时与入射光线平行.求:①此玻璃的折射率;②光在玻璃球内的传播时间.【解答】解:①作出光路图,如图所示:由于60°=2r,故r=30°故折射率:n==②光在玻璃中传播的距离为:S=4Rcos30°=0.4m在玻璃中的传播速度为:。

2015高考物理(山东专用)二轮专题辅导训练:专题1 第3讲 力与物体的曲线运动(一)

2015高考物理(山东专用)二轮专题辅导训练:专题1 第3讲 力与物体的曲线运动(一)

第3讲 力与物体的曲线运动(一) ——平抛、圆周和天体运动1.(2012·山东卷,15)2011年11月3日,“神舟八号”飞船与“天宫一号”目标飞行器成功实施了首次交会对接.任务完成后“天宫一号”经变轨升到更高的轨道,等待与“神舟九号”交会对接.变轨前和变轨完成后“天宫一号”的运行轨道均可视为圆轨道,对应的轨道半径分别为R 1、R 2,线速度大小分别为v 1、v 2.则v 1v2等于( )A. R 31R 32B. R 2R 1C.R 22R 21 D.R 2R 1解析 “天宫一号”做圆周运动时,万有引力提供向心力,由G MmR 2=m v 2R 可得v= GM R ,则变轨前后v 1v 2=R 2R 1,选项B 正确.答案 B 2.(2013·山东卷,20)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( )A.n 3k 2TB.n 3k TC.n 2k TD.n k T解析 双星靠彼此间的引力提供向心力,则有 G m 1m 2L 2=m 1r 14π2T 2 G m 1m 2L 2=m 2r 24π2T 2 并且r 1+r 2=L解得T =2πL 3G (m 1+m 2)当双星总质量变为原来的k 倍,两星之间距离变为原来的n 倍时T ′=2πn 3L 3Gk (m 1+m 2)=n 3k T 故选项B 正确. 答案 B 3.(2014·山东卷,20)图1-3-12013年我国相继完成“神十”与“天宫”对接、“嫦娥”携“玉兔”落月两大航天工程.某航天爱好者提出“玉兔”回家的设想:如图1-3-1所示,将携带“玉兔”的返回系统由月球表面发射到h 高度的轨道上,与在该轨道绕月球做圆周运动的飞船对接,然后由飞船送“玉兔”返回地球.设“玉兔”质量为m ,月球半径为R ,月面的重力加速度为g 月.以月面为零势能面.“玉兔”在h 高度的引力势能可表示为E p =GMmhR (R +h ),其中G 为引力常量,M 为月球质量.若忽略月球的自转,从开始发射到对接完成需要对“玉兔”做的功为( ) A.mg 月R R +h (h +2R ) B.mg 月R R +h (h +2R ) C.mg 月R R +h (h +22R ) D.mg 月R R +h(h +12R ) 解析 设玉兔在高度h 的速度为v ,则由万有引力定律得,G Mm(R +h )2=m v 2(R +h )可知,玉兔在该轨道上的动能为E k =12GMm (R +h ),由功能关系可知对玉兔做的功为:W =E p +E k =GMmh R (R +h )+12GMm(R +h ),结合在月球表面:G MmR 2=mg 月,整理可知W =mg 月R R +h(h +12R ),故正确选项为D.答案 D 4.(2014·新课标全国卷Ⅱ,15)取水平地面为重力势能零点.一物块从某一高度水平抛出,在抛出点其动能与重力势能恰好相等.不计空气阻力.该物块落地时的速度方向与水平方向的夹角为( ) A.π6 B.π4 C.π3 D.5π12解析 设物体水平抛出的初速度为v 0,抛出时的高度为h ,由题意知12m v 20=mgh ,则v 0=2gh ,物体落地的竖直速度v y =2gh ,则落地时速度方向与水平方向的夹角tan θ=v y v 0=2gh 2gh=1,则θ=π4,选项B 正确.答案 B 5.(2014·新课标全国卷Ⅰ,19)太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动.当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星冲日”.据报道,2014年各行星冲日时间分别是:1月6日木星冲日;4月9日火星冲日;5月11日土星冲日;8月29日海王星冲日;10月8日天王星冲日.已知地球及各地外行星绕太阳运动的轨道半径如下表所A.B .在2015年内一定会出现木星冲日C .天王星相邻两次冲日的时间间隔为土星的一半D.地外行星中,海王星相邻两次冲日的时间间隔最短解析设地球的运转周期为T0、角速度为ω0、轨道半径为r0,则其他行星的轨道半径为r=kr0①根据万有引力定律及牛顿第二定律得:GMmr20=mω2r0②GMmr2=mω2r③联立①②③得:ω=1k3ω0.各行星要再次冲日需满足:ω0t-ωt=2π,即t=k kk k-1T0,其中k=1.5、5.2、9.5、19、30.根据上式结合k值并由数学知识可知:行星冲日的时间间隔一定大于1年,并且k 值越大时间间隔越短,所以选项B、D正确,A、C错误.答案BD6.(2014·新课标全国卷Ⅰ,20)图1-3-2如图1-3-2所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg解析木块a、b的质量相同,外界对它们做圆周运动提供的最大向心力,即最大静摩擦力f m=kmg相同.它们所需的向心力由F向=mω2r知F a<F b.所以b一定比a先开始滑动,A项正确;a、b一起绕转轴缓慢地转动时,F摩=mω2r,r不同,所受的摩擦力不同,B项错.b开始滑动时有kmg=mω2·2l,其临界角速度为ωb=kg2l,选项C正确.当ω=2kg3l时,a所受摩擦力大小为F f=mω2l=23kmg,选项D错误.答案AC主要题型:选择题和计算题知识热点(1)单独命题①平抛运动规律的考查②圆周运动规律的考查③天体运动、人造卫星问题的考查(2)交汇命题①平抛(类平抛)运动与圆周运动、功能关系等综合问题的考查②天体运动中的超重、失重问题.③结合牛顿运动定律、圆周运动、功能关系考查航天器的变轨、对接问题.物理方法(1)运动的合成与分解法(2)模型法命题趋势(1)2015年高考中,平抛运动规律及其研究方法、圆周运动仍是热点.(2)天体运动要突出物理与现代科学技术的结合,特别是与现代航天技术的联系会更加紧密.。

高中物理(动量守恒定律)

高中物理(动量守恒定律)

高中物理(动量守恒定律)动量守恒定律:后总前总p p =或p p '=或'+'=+22112211v m v m v m v m一、研究对象:两个或两个以上物体组成的系统。

二、特点:满足动量守恒的物理过程常常是物体间短暂时间内相互作用的过程。

三、性质:(1)矢量性:表达式'+'=+22112211v m v m v m v m 中守恒式两边不仅大小相等,且方向相同,等式两边总动量是系统内所有物体动量矢量和。

一维情况下,先规定正方向,再确定各已知量的正负,代入公式求解。

(2)系统性:即动量守恒是某系统内各物体的总动量保持不变。

(3)同时性:等式两边分别对应两个确定状态,每一状态下各物体的动量是同时的。

(4)相对性:表达式中的动量必须相对同一参照物(通常取地球为参照物).四、条件:(1)理想守恒:系统不受外力或所受外力合力为零(不管物体间是否相互作用),此时合外力冲量为零,故系统动量守恒。

(2)近似守恒:当外力为有限量,且作用时间极短,外力的冲量近似为零,或者说外力的冲量比内力冲量小得多,可以近似认为动量守恒。

(3)单方向守恒:如果系统所受外力的矢量和不为零,而外力在某方向上分力的和为零,则系统在该方向上动量守恒。

五、碰撞:指物体间发生相互作用的时间很短,相互作用过程中的相互作用力很大,故通常可认为发生碰撞的物体系统动量守恒。

按碰撞前后物体的动量是否在一条直线上,有正碰和斜碰之分。

六、分类:(1)弹性碰撞——碰撞结束后,形变全部消失,碰撞前后系统的总动量相等,总动能不变。

例如:钢球、玻璃球、微观粒子间的碰撞。

【0=∆p ;0=∆k E 】'22'112211v m v m v m v m +=+2'222'1122221121212121v m v m v m v m +=+()2112122'12m m v m m v m v +-+=()2121211'22m m v m m v m v +-+=(2)一般非弹性碰撞——碰撞结束后,形变部分消失,碰撞前后系统总动量相等,动能有部分损失。

2015高考物理(山东专用)二轮专题辅导训练:专题1 第2

2015高考物理(山东专用)二轮专题辅导训练:专题1 第2

一、选择题(共9小题,每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确.)图1-2-151.如图1-2-15所示,直线a 和曲线b 分别是在平直公路上行驶的汽车a 和b 的位移—时间(x -t )图线.由图可知( ) A .在时刻t 1,a 、b 两车运动方向相同 B .在时刻t 2,a 、b 两车运动方向相反C .在t 1到t 2这段时间内,b 车的速率先减小后增大D .在t 1到t 2这段时间内,b 车的速率一直比a 车的大解析 x -t 图线的斜率表示速度,从题图中看出,a 车始终静止,b 车先正向减速,速率减小为0后,再反向加速,因此A 、B 、D 选项错误,C 正确. 答案 C 2.图1-2-16(2014·高考冲刺卷四)中国首次太空授课活动于2013年6月20日上午举行,如图1-2-16所示,航天员王亚平利用天宫一号中的“质量测量仪”测量航天员聂海胜的质量为74 kg.测量时,聂海胜与轻质支架被王亚平水平拉离初始位置,且处于静止状态,当王亚平松手后,聂海胜与轻质支架受到一个大小为100 N 的水平恒力作用而复位,用光栅测得复位时瞬间速度为1 m/s ,则复位的时间为( ) A .0.74 s B .0.37 s C .0.26 s D .1.35 s解析 宇航员复位的过程中由于受到的是水平恒力的作用,所以是匀变速直线运动,由牛顿第二定律可得宇航员的加速度为a =F m =10074 m/s 2,再根据加速度的定义式a =v t -v 0t 得到复位的时间为t =v t a =110074s =0.74 s ,A 正确.答案 A3.图1-2-17某同学站在电梯地板上,利用速度传感器和计算机研究一观光电梯升降过程中的情况,如图1-2-17所示的v -t 图象是计算机显示的观光电梯在某一段时间内的速度变化情况(向上为正方向).根据图象提供的信息,可以判断下列说法中正确的是()A.0~5 s内,观光电梯在加速上升,该同学处于失重状态B.5~10 s内,该同学对电梯地板的压力等于他所受的重力C.10~20 s内,观光电梯在加速下降,该同学处于失重状态D.20~25 s内,观光电梯在加速下降,该同学处于失重状态解析0~5 s内,观光电梯在加速上升,加速度方向向上,该同学处于超重状态,选项A错误;5~10 s内,观光电梯匀速上升,该同学对电梯地板的压力等于他所受的重力,选项B正确;10~20 s内,观光电梯在减速上升,加速度方向向下,该同学处于失重状态,选项C错误;20~25 s内,观光电梯在加速下降,加速度方向向下,该同学处于失重状态,选项D正确.答案BD4.图1-2-18(2014·全国大纲卷,14)一质点沿x轴做直线运动,其v-t图象如图1-2-18所示.质点在t=0时位于x=5 m处,开始沿x轴正向运动.当t=8 s时,质点在x 轴上的位置为()A.x=3 m B.x=8 mC.x=9 m D.x=14 m解析质点前4 s内沿x轴正方向运动,其位移可由v-t图象中的“面积”数值表示,则对应位移x1=(2+4)×22m=6 m.同理可得4 s~8 s内的位移(沿x轴负方向运动)x2=-(2+4)×12m=-3 m.又知初位置x0=5 m.则当在t=8 s时,质点在x轴上的位置为x=x0+x1+x2=8 m,选项B正确.答案 B5.图1-2-19(2014·广东省实验中学质检)甲、乙两物体做直线运动的v-t图象如图1-2-19所示,由图可知()A.乙物体的加速度为1 m/s2B.4 s末两物体的速度相等C.4 s末甲物体在乙物体前面D.条件不足,无法判断两物体何时相遇解析 对乙物体,a =ΔvΔt =1.33 m/s 2,4 s 末两物体的速度相等,则选项A 错误,选项B 正确;由于不知道初始时刻甲、乙的位置关系,故无法判断4 s 末甲、乙的相对位置及两物体何时相遇,选项C 错误,选项D 正确. 答案 BD图1-2-206.(2014·山东烟台模拟)如图1-2-20甲所示,一小物块放在升降机的底板上,随升降机一起由静止开始在竖直方向做匀变速直线运动,每次运动距离均相同.物块对升降机底板的压力为F 、升降机的末速度大小为v ,F -v 2图象如图乙所示,当地重力加速度为g .则以下说法正确的是( )A .物块的质量为ag B .b =2aC .每次运动高度为b -a2gD .当v 2=c 时,木块一定处于完全失重状态解析 由图可知,当速度为零时,物体保持静止,此时压力大小等于重力,故说明物体的重力为a ,则由G =mg 可知,m =ag ,故A 正确;由图可知,c 点时压力为零,则物体只受重力,此时加速度为g ,则b 点的加速度也为g ,则b =2mg ,故b =2a ,故B 正确;因a 、b 均为压力,而g 为加速度,故b -a2g 应为质量,不可能为高度,故C 错误;当v 2=c 时对应两点,分别为(c,0)和(c ,b ),(c,0)时处于完全失重状态,而(c ,b )为超重状态,故D 错误. 答案 AB 7.(2014·山东潍坊市一模)如图1-2-21甲所示,水平地面上轻弹簧左端固定,右端通过滑块压缩0.4 m 锁定,t =0时解除锁定释放滑块.计算机通过滑块上的速度传感器描绘出滑块的速度图象如图乙所示,其中Oab 段为曲线,bc 段为直线,倾斜直线Od 是t =0时的速度图线的切线,已知滑块质量m =2.0 kg ,取g =10 m/s 2,则下列说法正确的是( )图1-2-21A .滑块被释放后,先做匀加速直线运动,后做匀减速直线运动B .弹簧恢复原长时,滑块速度最大C .弹簧的劲度系数k =175 N/mD .该过程中滑块的最大加速度为35 m/s 2解析 由图象可判断,滑块先做加速度减小的加速运动,再做加速度增大的减速运动,最后做匀减速运动,直至静止,A 项错误;滑块运动过程中,当弹簧弹力大小等于摩擦力的时候,滑块的速度最大,B 项错误;从题中图象知,滑块脱离弹簧后的加速度大小a 1=Δv 1Δt 1=1.50.3 m/s 2=5 m/s 2,而由μmg =ma 1,可得μ=0.5,刚释放时滑动的加速度a 2=Δv 2Δt 2=30.1 m/s 2=30 m/s 2,这是滑块运动过程中的最大加速度,而此时满足kx -μmg =ma 2,可解得k =175 N/m ,故C 项正确,D 项错误. 答案 C 8.图1-2-22(2014·全国大纲卷,19)一物块沿倾角为θ的斜坡向上滑动.当物块的初速度为v时,上升的最大高度为H ,如图1-2-22所示;当物块的初速度为v2时,上升的最大高度记为h .重力加速度大小为g .物块与斜坡间的动摩擦因数和h 分别为( )A .tan θ和H 2B .(v 22gH -1)tan θ和H2C .tan θ和H 2D .(v 22gH -1)tan θ和H4解析 设物块与斜坡间的动摩擦因数为μ,则物块沿斜坡上滑时的加速度大小a =μg cos θ+g sin θ①当物块的初速度为v 时,由运动学公式知v 2=2a Hsin θ②当物块的初速度为v2时,由运动学公式知⎝ ⎛⎭⎪⎫v 22=2ah sin θ③ 由②③两式得h =H4由①②两式得μ=⎝ ⎛⎭⎪⎫v 22gH -1tan θ.答案 D9.如图1-2-23甲所示,质量为M =2 kg 的木板静止在水平面上,可视为质点的物块(质量设为m )从木板的左侧沿木板表面水平冲上木板.物块和木板的速度—时间图象如图乙所示,g =10 m/s 2,结合图象,下列说法正确的是( )图1-2-23A .可求解物块在t =2 s 时的位移B .可求解物块与木板间的动摩擦因数C .可求解物块的质量mD .可求解木板的长度解析 由题图乙可求0~2 s 内物块的v -t 图象所包围的面积(即位移),选项A 正确;由题图乙可知:a m =2 m/s 2=μg ,则μ=0.2,选项B 正确;由v -t 图象知1 s后二者以共同速度匀速运动,故水平面应光滑,因a M =μmgM =2 m/s 2,所以m =M ,选项C 正确;由题图乙可求解物块与木板间的相对位移,但无法求解木板的长度,选项D 错误. 答案 ABC 二、非选择题10.2013年1月1日实施新的交通规定:黄灯亮时车头已经越过停车线的车辆可以继续前行,车头未越过停车线的若继续前行则视为闯黄灯,属于交通违章行为.现有甲、乙两汽车正沿同一平直马路同向匀速行驶,甲车在前,乙车在后,当两车快要到十字路口时,甲车司机看到黄灯闪烁,3秒黄灯提示后将再转为红灯.请问(1)若甲车在黄灯开始闪烁时刹车,要使车在黄灯闪烁的时间内停下来且刹车距离不得大于18 m ,则甲车刹车前的行驶速度不能超过多少?(2)若甲、乙车均以v 0=15 m/s 的速度驶向路口,乙车司机看到甲车刹车后也紧急刹车(乙车司机的反应时间Δt 2=0.4 s ,反应时间内视为匀速运动).已知甲车、乙车紧急刹车时产生的加速度大小分别为a 1=5 m/s 2、a 2=6 m/s 2.若甲车司机看到黄灯闪烁时车头距警戒线L =30 m ,要避免闯红灯,他的反应时间Δt 1不能超过多少? (3)满足第(2)问的条件下,为保证两车在紧急刹车过程中不相撞,甲、乙两车刹车前的距离x 0至少多大?解析 (1)设在满足条件的情况下,甲车的最大行驶速度为v 1,根据平均速度公式可得v 12·t 1=18 m , 所以v 1=12 m/s(2)对甲车:v 0Δt 1+v 202a 1=L代入数据得Δt 1=0.5 s(3)设乙车减速运动的时间为t ,当甲、乙两车速度相等时,即v 0-a 2t =v 0-a 1(t +Δt 2) 解得t =2 s则v =v 0-a 2t =3 m/sx 1=v 20-v22a 1=21.6 mx 2=v 0Δt 2+v 20-v 22a 2=24 m故刹车前的距离至少为x 0=x 2-x 1=2.4 m 答案 (1)12 m/s (2)0.5 s (3)2.4 m11.如图1-2-24甲所示,倾角θ=37°的斜面由粗糙的AB 段和光滑的BC 段组成,质量m =1 kg 的物体(可视为质点)在平行斜面的恒定外力F 作用下由A 点加速下滑,运动到B 点时,力F 突然反向(大小不变),其部分v -t 图如图乙所示,物体滑到C 点时速度恰好为零,取sin 37°=0.6,重力加速度g =10 m/s 2,求:图1-2-24(1)外力F 的大小及物体在AB 段与斜面间的动摩擦因数μ. (2)物体从A 到C 的平均速度大小.解析 (1)由v -t 图可知物体在AB 段的加速度为a 1=Δv 1Δt 1=10 m/s 2在BC 段加速度为a 2=Δv 2Δt 2=-2 m/s 2由牛顿第二定律知物体在AB 段有 F +mg sin θ-μmg cos θ=ma 1 在BC 段有mg sin θ-F =ma 2联立并代入数值得F =8 N ,μ=0.5.(2)由运动学规律知物体从B 到C 经历的时间为t 2=Δv a 2=102 s =5 s物体从A 到B 发生的位移为s 1=v2t 1=5 m物体从B 到C 发生的位移为s 2=v2t 2=25 m物体从A 到C 的平均速度大小v =s 1+s 2t 1+t 2=5 m/s.答案 (1)8 N 0.5 (2)5 m/s 12.(2014·山东泰安质检)如图1-2-25甲所示,由斜面AB 和水平面BC 组成的物块,放在光滑水平地面上,斜面AB 部分光滑、AB 长度为s =2.5 m ,水平部分BC 粗糙.物块左侧与竖直墙壁之间连接着一个力传感器,当传感器受压时示数为正值,被拉时为负值.上表面与BC 等高且粗糙程度相同的木板DE 紧靠在物块的右端,木板DE 质量M =4 kg ,长度L =1.5 m .一可视为质点的滑块从A 点由静止开始下滑,经B 点由斜面转到水平面时速度大小不变.滑块从A 到C 过程中,传感器记录到力和时间的关系如图1-2-25乙所示.g 取10 m/s 2,求:图1-2-25(1)斜面AB 的倾角θ; (2)滑块的质量m ;(3)滑块到达木板DE 右端时的速度大小.解析 (1)在0~1 s 内木块沿斜面匀加速下滑: mg sin θ=ma ① s =12at 2②由图知:t =1 s解得:sin θ=12 θ=30°.③(2)在0~1 s 内对斜面体ABC 受力分析: mg cos θ sin θ-F =0④ 由图知:F =5 3 N 解得:m =2 kg.⑤(3)木块到达B 点的速度: v B =at =g sin θt =5 m/s ⑥1~2 s 木块在BC 部分做减速运动: μmg =ma ′⑦对斜面体,由图象知: μmg =F =4 N ⑧解得:a ′=2 m/s 2,μ=0.2 木块到达C 点时:v C =v B -a ′t =v B -μgt =3 m/s ⑨ 木块滑上木板DE 时: 对木块:-μmg =ma 1⑩ 对木板:μmg =Ma 2⑪解得:a 1=-2 m/s 2,a 2=1 m/s 2 设木块在木板上的滑行时间为t ,x 木块=v C t +12a 1t 2x 木板=12a 2t 2 L =x 木块-x 木板 解得:t =1 s ⑫此时,木块速度:v 木块=v C -a 1t =1 m/s ⑬ 木板速度:v 木板=a 2t =1 m/s所以木块恰好滑到木板右端,速度为1 m/s. 答案 (1)30° (2)2 kg (3)1 m/s。

2015年山东省高考物理试卷(含详细答案)

2015年山东省高考物理试卷(含详细答案)

2015年普通高等学校招生全国统一考试(山东)物理试卷选择题(共7小题,每小题6分,共42分。

每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得6分,选对但不全的得3分,有错选的得0分。

) 14.距地面高5m 的水平直轨道A 、B 两点相距2m ,在B 点用细线悬挂一小球,离地高度为h ,如图。

小车始终以4m s 的速度沿轨道匀速运动,经过A 点时将随车携带的小球由轨道高度自由卸下,小车运动至B 点时细线被轧断,最后两球同时落地。

不计空气阻力,取重力加速度的大小210g m s =。

可求得h 等于A .1.25mB .2.25mC .3.75mD .4.75m15.如图,拉格朗日点L 1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动。

据此,科学家设想在拉格朗日点L 1建立空间站,使其与月球同周期绕地球运动。

以1a 、2a 分别表示该空间站和月球向心加速度的大小,3a 表示地球同步卫星向心加速度的大小。

以下判断正确的是A .231a a a >>B .213a a a >>C .312a a a >>D .321a a a >>16.如图,滑块A 置于水平地面上,滑块B 在一水平力作用下紧靠滑块A (A 、B 接触面竖直),此时A 恰好不滑动,B 刚好不下滑。

已知A 与B 间的动摩擦因数为1μ,A 与地面间的动摩擦因数为2μ,最大静摩擦力等于滑动摩擦力。

A 与B 的质量之比为A .121μμ B .12121μμμμ- C .12121μμμμ+ D .12122μμμμ+17.如图,一均匀金属圆盘绕通过其圆心且与盘面垂直的轴逆时针匀速转动。

现施加一垂直穿过圆盘的有界匀强磁场,圆盘开始减速。

在圆盘减速过程中,以下说法正确的是A .处于磁场中的圆盘部分,靠近圆心处电势高B .所加磁场越强越易使圆盘停止转动C .若所加磁场反向,圆盘将加速转动D .若所加磁场穿过整个圆盘,圆盘将匀速转动18.直角坐标系xOy 中,M 、N 两点位于x 轴上,G 、H 两点坐标如图,M 、N 两点各固定一负点电荷,一电量为Q 的正点电荷置于O 点时,G 点处的电场强度恰好为零。

高考物理动量守恒定律专题训练答案及解析

高考物理动量守恒定律专题训练答案及解析

高考物理动量守恒定律专题训练答案及解析一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A 球与B 球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B 球的最小速度. 【答案】(1);(2);(3)零.【解析】试题分析:(1)A 、B 发生完全非弹性碰撞,根据动量守恒定律有:碰后A 、B 的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A球与B球碰撞中损耗的机械能.当B、C速度相等时,弹簧伸长量最大,弹性势能最大,结合B、C在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答3.如图所示,一辆质量M=3 kg的小车A静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p=6J,小球与小车右壁距离为L=0.4m,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。

高中物理动量守恒定律的应用专题训练答案

高中物理动量守恒定律的应用专题训练答案

高中物理动量守恒定律的应用专题训练答案一、高考物理精讲专题动量守恒定律的应用1.如图所示,有两足够长倾角皆为037θ=的粗糙斜面AB 和CD 通过一小段平滑的园弧与光滑的水平面BC 连接,两质量相等的可视为质点的小滑块a 和b 与斜面AB ,CD 的动摩擦因数因数分别为10.5μ=,20.25μ=。

开始时小滑块a 在斜面AB 上距水平面高为1.2h m =处的P 点由静止下滑,物块b 静止在水平面BC 上。

已知小滑块a 与b 的碰撞为弹性碰撞,重力加速度210/g m s =,sin37°=0.6,cos=37°=0.8。

求:(1)小滑块a 第一次与小滑块b 碰撞前的速度1v ; (2)小滑块b 第一次碰撞后,沿CD 斜面上滑的距离1s ; (3)小滑块a 、b 在斜面上运动的总路程a s 与b s 。

【答案】(1)22/m s (2)0.5m (3)229m , 109m 【解析】 【详解】(1)小滑块a 第一次与小滑块b 碰撞前,由动能定理:2111cos sin 2h mgh mg mv μθθ-⋅= 解得:122/v m s =(2)因ab 质量相等,则ab 发生弹性碰撞时满足动量守恒和能量守恒:'112mv mv mv =+2'22112111222mv mv mv =+ 解得'10v =,2122/v v m s ==物块b 滑上最高点的过程中由动能定理:212121-sin cos 0-2mgs mg s mv θμθ-⋅= 解得s 1=0.5m(3)b 滑到斜面底端时的速度:222132112cos -22mg s mv mv μθ-⋅= 解得32/=v m sb 与a 碰后再次交换速度,则此时b 的速度为零,a 的速度为v 4=2m/s ,则a 沿斜面上升速度减为零时:212241cos sin 0-2mg s mgs mv μθθ-⋅-=解得:s 2=0.2m返回到底端时:212251cos sin 2mg s mgs mv μθθ-⋅+=, 解得50.8/v m s =在底部a 与b 碰撞后再次交换速度,则b 的速度:60.8/v m s =, 上升到顶端时:232351-sin cos 0-2mgs mg s mv θμθ-⋅=; 解得s 3=0.05m ;因每次滑块上升到顶端再回到底端时的路程成等比关系,其中公比q =0.1, 由数学知识可知:222222110.19a s s s m q ⨯=-=-=--;(2sin 37hs m ==o) 1220.510110.19b s s m q ⨯===--2.如图所示,质量为M=2kg 的木板A 静止在光滑水平面上,其左端与固定台阶相距x ,右端与一固定在地面上的半径R=0.4m 的光滑四分之一圆弧紧靠在一起,圆弧的底端与木板上表面水平相切。

高考物理动量守恒定律解题技巧和训练方法及练习题(含答案)及解析

高考物理动量守恒定律解题技巧和训练方法及练习题(含答案)及解析

高考物理动量守恒定律解题技巧和训练方法及练习题(含答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,质量为M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端刚好与水平面相切于水平面上的B 点,B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为53°,A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ=0.2,重力加速度为g=10m/s 2.求: (1)圆弧所对圆的半径R ;(2)若AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地?【答案】(1)1m (2)428225t s = 【解析】 【分析】根据动能定理得小物块在B 点时的速度大小;物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从C 抛出后,根据运动的合成与分解求落地时间; 【详解】解:(1)设小物块在B 点时的速度大小为1v ,根据动能定理得:22011122mgL mv mv μ=- 设小物块在B 点时的速度大小为2v ,物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:12()mv m M v =+ 根据系统机械能守恒有:2201211()(cos53)22mv m M v mg R R =++- 联立解得:1R m =(2)若整个水平面光滑,物块以0v 的速度冲上圆弧面,根据机械能守恒有:2200311(cos53)22mv mv mg R R =+- 解得:322/v m s =物块从C 抛出后,在竖直方向的分速度为:38sin 532/5y v v m s =︒= 这时离体面的高度为:cos530.4h R R m =-︒=212y h v t gt -=-解得:4282t s +=2.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M 2=2 kg ,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上)【答案】25m/s【解析】试题分析:要使两车恰好不相撞,则两车速度相等. 以M 1、M 2、m 组成的系统为研究对象,水平方向动量守恒:()20120M v M m M v +=++共,解得5m /s v =共以小球与乙车组成的系统,水平方向动量守恒: ()202M v mv m M v -=+共,解得25m /s v =考点:考查了动量守恒定律的应用【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系统,由系统动量守恒列出等式,联立求解3.如图所示,质量为m 的由绝缘材料制成的球与质量为M=19m 的金属球并排悬挂.现将绝缘球拉至与竖直方向成θ=600的位置自由释放,下摆后在最低点与金属球发生弹性碰撞.在平衡位置附近存在垂直于纸面的磁场.已知由于磁场的阻尼作用,金属球将于再次碰撞前停在最低点处.求经过几次碰撞后绝缘球偏离竖直方向的最大角度将小于450.【答案】最多碰撞3次 【解析】解:设小球m 的摆线长度为l小球m 在下落过程中与M 相碰之前满足机械能守恒:①m 和M 碰撞过程是弹性碰撞,故满足: mv 0=MV M +mv 1 ②③联立 ②③得:④说明小球被反弹,且v 1与v 0成正比,而后小球又以反弹速度和小球M 再次发生弹性碰撞,满足: mv 1=MV M1+mv 2 ⑤⑥解得:⑦整理得:⑧故可以得到发生n 次碰撞后的速度:⑨而偏离方向为450的临界速度满足:⑩联立①⑨⑩代入数据解得,当n=2时,v 2>v 临界 当n=3时,v 3<v 临界即发生3次碰撞后小球返回到最高点时与竖直方向的夹角将小于45°. 考点:动量守恒定律;机械能守恒定律. 专题:压轴题.分析:先根据机械能守恒定律求出小球返回最低点的速度,然后根据动量守恒定律和机械能守恒定律求出碰撞后小球的速度,对速度表达式分析,求出碰撞n 次后的速度表达式,再根据机械能守恒定律求出碰撞n 次后反弹的最大角度,结合题意讨论即可.点评:本题关键求出第一次反弹后的速度和反弹后细线与悬挂点的连线与竖直方向的最大角度,然后对结果表达式进行讨论,得到第n 次反弹后的速度和最大角度,再结合题意求解.4.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。

2015届高三第二次全国大联考(山东版)物理卷含解析

2015届高三第二次全国大联考(山东版)物理卷含解析

绝密★启用前2015年第二次全国大联考【山东卷】理科综合·物理试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分,考试时间90分钟。

2.答题前考生务必用0.5毫米黑色墨水签字笔填写好自己的姓名、班级、考号等信息3.考试作答时,请将答案正确填写在答题卡上。

第一卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;第Ⅱ卷请用直径0.5毫米的黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷..................、草稿纸上作答.......无效..。

第I 卷(选择题 共42分)本卷包括7小题,每小题给出四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得6分,选对但不全的得3分,有选错的得0分。

14.如图所示,光滑的梯形物块A 叠放在梯形物块B 上,B 放在水平地面上,A 、B 之间的接触面倾斜.A 的左侧靠在竖直墙面上,关于两物块的受力,下列说法正确的是( )A .A 对B 的压力等于A 的重量B .物块B 受到向左的摩擦力C .地面对B 的支持力等于于A 、B 两物块的总重量D .若物块B 稍向右移,则地面对B 的摩擦力增大【答案】BC【考点】该题考查受力分析及共点力的平衡问题【解析】A 对B 的压力等于B 对A 的支持力,该支持力的方向不是竖直向上,所以不可能等于A 的重量,故A 错误;A 对B 的压力斜向右,所以B 受到的摩擦力向左,故B 正确;对AB 整体分析可知地面对B 的支持力等于两物体的总重量,故C 正确;若物体稍向右移,B 的受力并没有发生变化,地面对B 的摩擦力也没有发生变化,故D 错误。

15.最近“NASA ”证实木星的质量最大卫星木卫三确有海洋存在,这也引起了科学家对木卫三再次探索的极大兴趣。

已知它的直径约为地球的0.025倍,质量约为地球的0.4倍,它与木卫一的轨道半径保持着1:4的关系,下列说法正确的是( )A .木星对木卫三的万有引力大于对木卫一的万有引力B .木卫三表面的重力加速度约为地球表面重力加速度的160倍C .木卫三与木卫一运动周期之比为1:8D .从地球向木卫三发射航天器的发射速度必须大于第三宇宙速度【答案】AC【考点】该题考查万有引力定律及其应用【解析】根据万有引力的公式,木卫三的质量大且距离木星近,所以万有引力大,故A 正确;根据重力加速度的公式2R GM g =可知木卫三表面的重力加速度约为地球表面重力加速度的640倍,故B 错误;根据周期的公式GMr T 324π=可知木卫三与木卫一运动周期之比为1:8,故C 正确;第三宇宙速度是脱离太阳,第二宇宙速度是脱离地球,故D 错误。

【名师伴你行】2015届高考物理二轮复习 碰撞与动量守恒、近代物理初步提能专训

【名师伴你行】2015届高考物理二轮复习 碰撞与动量守恒、近代物理初步提能专训

提能专训(十七)碰撞与动量守恒、近代物理初步时间:90分钟满分:100分一、选择题(本题共8小题,每小题4分,共32分.多选全部选对的得4分,选对但不全的得2分,有选错的得0分)1.(2014·福建理综)如图,放射性元素镭衰变过程中释放出α、β、γ三种射线,分别进入匀强电场和匀强磁场中,下列说法正确的是( )A.①表示γ射线,③表示α射线B.②表示β射线,③表示α射线C.④表示α射线,⑤表示γ射线D.⑤表示β射线,⑥表示α射线答案:C解析:γ射线为电磁波,在电场、磁场中均不偏转,故②和⑤表示γ射线,A、B、D 项错;α射线中的α粒子为氦的原子核,带正电,在匀强电场中,沿电场方向偏转,故③表示α射线,由左手定则可知在匀强磁场中α射线向左偏转,故④表示α射线,C项对.2.下表给出了一些金属材料的逸出功.h=6.63×10-34J·s,光速c=3×108 m/s)( )A.2种B.3种C.4种D.5种答案:A解析:要发生光电效应,则入射光的能量大于金属的逸出功,由题可算出波长为400 nm的光的能量为E =h ν0=hcλ=6.63×10-34×3.0×108400×10-9 J =4.97×10-19 J ,大于铯和钙的逸出功,所以A 选项正确.3.(2014·山东潍坊一模)(多选)下列关于近代物理知识的说法正确的是( ) A .发生α衰变时,生成核与原来的原子核相比,中子数减少了2个 B .β射线是原子核外的电子电离形成的电子流,它具有较强的穿透能力C .含有10个原子核的放射性元素,经过一个半衰期,一定有5个原子核发生衰变D .氢原子的核外电子由较高能级跃迁到较低能级时,要释放一定频率的光子,同时氢原子的电势能减少,电子的动能增加答案:AD解析:发生α衰变时,质量数少4,电荷数少2,生成核与原来的原子核相比,中子数减少了2个,A 正确;β射线是原子核内的中子转化为质子同时释放一个电子,B 错误;半衰期是对大量粒子的统计规律,对少数原子核不适用,C 错误;氢原子的核外电子由较高能级跃迁到较低能级时,要释放一定频率的光子,同时氢原子的电势能减少,电子的动能增加,D 正确.(2014·广东肇庆一模)如图所示为氢原子的能级结构示意图,一群氢原子处于n =3的激发态,在向较低能级跃迁的过程中向外辐射出光子,用这些光子照射逸出功为 2.49 eV 的金属钠.下列说法正确的是( )A .这群氢原子能辐射出三种不同频率的光,其中从n =3能级跃迁到n =2能级所发出的光波长最短B .这群氢原子在辐射光子的过程中电子绕核运动的动能减少,电势能增加C .能发生光电效应的光有三种D .金属钠表面所发出的光电子的最大初动能是9.60 eV 答案:D解析:根据C 23=3知,这群氢原子能辐射出三种不同频率的光子,从n =3向n =2跃迁的光子频率最小,波长最长,A 错误.氢原子辐射光子的过程中,能量减少,轨道半径减小,根据k e 2r =m v 2r知,电子动能增加,则电势能减少,B 错误.只有从n =3跃迁到n =1,以及从n =2跃迁到n =1辐射的光子能量大于逸出功,所以能发生光电效应的光有两种,C 错误.从n =3跃迁到n =1辐射的光子能量最大,发生光电效应时,产生的光电子最大初动能最大,光子能量最大值为13.6 eV -1.51 eV =12.09 eV ,根据光电效应方程得,E km =h ν-W 0=12.09 eV -2.49 eV =9.60 eV ,D 正确.5.(2014·广东深圳市二模)(多选)23892U 的衰变方程为23892U→23490Th +42He ,其衰变曲线如图,T 为半衰期,则( )A.23892U 发生的是α衰变 B.23892U 发生的是β衰变 C .k =3 D .k =4答案:AC解析:由衰变方程可知23892U 发生的是α衰变,A 对,B 错;m =⎝ ⎛⎭⎪⎫12k m 0,当k =3时,m =18m 0,故k =3,C 对,D 错.6.(2014·江苏南京一模)(多选)钚的一种同位素23994Pu 衰变时释放巨大能量,如图所示,其衰变方程为23994Pu→23592U +42He +γ,则( )A .核燃料总是利用比结合能小的核B .核反应中γ的能量就是23994Pu 的结合能 C.23592U 核比23994Pu 核更稳定,说明235 92U 的结合能大D .由于衰变时释放巨大能量,所以23994Pu 比23592U 的比结合能小 答案:AD解析:在核反应中,比结合能越大的核越恒定,所以核燃料总是利用比结合能较小的核,A正确;衰变后,铀核比钚核更加稳定,所以铀核的比结合能大,D正确.7.(多选)用a、b两种不同频率的光分别照射同一金属板,发现当a光照射时验电器的指针偏转,b光照射时指针未偏转,以下说法正确的是( )A.增大a光的强度,验电器的指针偏角一定减小B.a光照射金属板时验电器的金属小球带负电C.a光在真空中的波长小于b光在真空中的波长D.若a光是氢原子从n=4的能级向n=1的能级跃迁时产生的,则b光可能是氢原子从n=5的能级向n=2的能级跃迁时产生的答案:CD解析:根据题意,a光能使该金属发生光电效应,而b光不能,a光的频率必定大于b 光的频率,a光在真空中的波长一定小于b光在真空中的波长,选项C正确;a光照射金属板时,能使该金属发生光电效应,即放出电子,金属板会因放出电子而带正电荷,当增大a 光的强度时,金属板逸出的电子增多,金属板的带电荷量增多,验电器指针偏角一定增大,所以选项A错误;a光照射金属板时,金属板带正电,与其连接的验电器的金属小球也带正电,所以选项B错误;根据玻尔理论,氢原子从n=4的能级向n=1的能级跃迁时产生的光子能量大于氢原子从n=5的能级向n=2的能级跃迁时产生的光子能量,又a光的频率较大,光子能量也较大,所以若a光是氢原子从n=4的能级向n=1的能级跃迁时产生的,则b 光可能是氢原子从n=5的能级向n=2的能级跃迁时产生的,选项D正确.8.(2014·天津六校联考)A、B为原来都静止在同一匀强磁场中的两个放射性元素原子核的变化示意图,其中一个放出一α粒子,另一个放出一β粒子,运动方向都与磁场方向垂直.如图中a、b与c、d分别表示各粒子的运动轨迹,下列说法中不正确的是( )A.磁场方向一定为垂直纸面向里B.尚缺乏判断磁场方向的条件C.A放出的是α粒子,B放出的是β粒子D.b为α粒子的运动轨迹,c为β粒子的运动轨迹答案:A解析:粒子在磁场中做匀速圆周运动,磁场方向不同,粒子旋转的方向相反,由于α粒子和β粒子的速度方向未知,不能判断磁场的方向,故A错误,B正确;放射性元素放出α粒子时,α粒子与反冲核的速度相反,而电性相同,则两个粒子受到的洛伦兹力方向相反,两个粒子的轨迹应为外切圆,而放射性元素放出β粒子时,β粒子与反冲核的速度相反,且电性相反,则两个粒子受到的洛伦兹力方向相同,两个粒子的轨迹应为内切圆,故B放出的是β粒子,A放出的是α粒子,故C正确;放射性元素放出粒子时,两带电粒子的动量守恒,由半径公式可得轨迹半径与动量成正比,与电量成反比,而α粒子和β粒子的电量比反冲核的电量小,则α粒子和β粒子的半径比反冲核的半径都大,故b为α粒子的运动轨迹,c为β粒子的运动轨迹,故D正确.二、填空题(本题包括2小题,共12分.请将正确的答案填写在横线上.)9.(6分)(1)现有三个核反应方程:①2411Na→2412Mg+ 0-1e;②235 92U+10n→141 56Ba+9236Kr+310n;③21H+31H→42He+10n.下列说法正确的是________.A.①是裂变,②是β衰变,③是聚变B.①是聚变,②是裂变,③是β衰变C.①是β衰变,②是裂变,③是聚变D.①是β衰变,②是聚变,③是裂变(2)现有四个核反应:A.21H+31H→42He+10nB.235 92U+10n→X+8936Kr+310nC.2411Na→2412Mg+ 0-1eD.42He+94Be→12 6C+10n①________是发现中子的核反应方程,________是研究原子弹的基本核反应方程,________是研究氢弹的基本核反应方程.②B中X的质量数和中子数分别为________、________.答案:(1)C (2)①D B A ②14488解析:(1)2411Na→2412Mg+0-1e中Na核释放出β粒子,为β衰变;23592U+10n→14156Ba+9236Kr+310n 为铀核在被中子轰击后,分裂成两个中等质量的核,为裂变;而21H +31H→42He +10n 为聚变,故C 正确.(2)①人工转变核反应方程的特点:箭头的左边是氦核与常见元素的原子核,箭头的右边也是常见元素的原子核,故D 是查德威克发现中子的核反应方程;B 是裂变反应,是研究原子弹的基本核反应方程;A 是聚变反应,是研究氢弹的基本核反应方程.②由电荷数守恒和质量数守恒可以判定,X 的质量数为144,电荷数为56,所以中子数为144-56=88.10.(2014·山东泰安质检)(6分)氘核21H 与氚核31H 结合成氦核42He 的核反应方程如下:21H +31H ―→42He +10n +17.6 MeV(1)这个核反应称为________.(2)要发生这样的核反应,需要将反应物质的温度加热到几百万开尔文.式中17.6 MeV 是核反应中________(填“放出”或“吸收”)的能量,核反应后生成物的总质量比核反应前物质的总质量________(填“增加”或“减少”)了________kg.答案:(1)聚变 (2)放出 减少 3.1×10-29解析:21H +31H→42He +10n +17.6 MeV 为轻核聚变反应,17.6 MeV 是反应中放出的能量,再由ΔE =Δmc 2可知,质量减少Δm =ΔE c2=3.1×10-29kg.三、计算题(本题包括5小题,共56分.解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案不能得分)11.(2014·湖北八校二联)(10分)如图,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数为μ.现让甲物块以速度v 0向着静止的乙运动并发生正碰,试求:(1)甲与乙第一次碰撞过程中系统的最小动能;(2)若甲在乙刚停下来时恰好与乙发生第二次碰撞,则在第一次碰撞中系统损失了多少机械能?答案:(1)23mv 20 (2)14mv 2解析:(1)碰撞过程中系统动能最小时,为两物体速度相等时,设此时两物体速度为v 由系统动量守恒有2mv 0=3mv 得v =23v 0此时系统的动能E k =12×3mv 2=23mv 20(2)设第一次碰撞刚结束时甲、乙的速度分别为v 1、v 2,之后甲做匀速直线运动,乙以初速度v 2做匀减速直线运动,在乙刚停下时甲追上乙并发生碰撞,因此两物体在这段时间内平均速度相等,有v 1=v 22而第一次碰撞中系统动量守恒,有 2mv 0=2mv 1+mv 2 由以上两式可得v 1=v 02v 2=v 0所以第一次碰撞中的机械能损失量为E =12×2mv 20-12×2mv 21-12mv 22=14mv 212.(2014·宁夏银川一中一模)(10分)如图所示,在光滑水平面上有一块长为L 的木板B ,其上表面粗糙,在其左端有一个光滑的圆弧槽C 与长木板接触但不连接,圆弧槽的下端与木板的上表面相平,B 、C 静止在水平面上.现有很小的滑块A 以初速度v 0从右端滑上B 并以v 02的速度滑离B ,恰好能到达C 的最高点.A 、B 、C 的质量均为m ,试求:(1)木板B 上表面的动摩擦因数μ; (2)14圆弧槽C 的半径R . 答案:(1)5v 2016gL (2)v 264g解析:(1)由于水平面光滑,A 与B 、C 组成的系统动量守恒,有:mv 0=m ⎝ ⎛⎭⎪⎫12v 0+2mv 1又μmgL =12mv 20-12m ⎝ ⎛⎭⎪⎫12v 02-12×2mv 21解得:μ=5v 216gL(2)当A 滑上C ,B 与C 分离,A 、C 间发生相互作用.A 到达最高点时两者的速度相等,A 、C 组成的系统水平方向动量守恒,有:m ⎝ ⎛⎭⎪⎫12v 0+mv 1=(m +m )v 2又12m ⎝ ⎛⎭⎪⎫12v 02+12mv 21=12(2m )v 22+mgR 解得:R =v 2064g13.(12分)(1)下列说法中正确的是________. A .光电效应实验揭示了光的粒子性B .原子核发生一次β衰变,该原子核外就失去一个电子C .原子核放出β粒子后,转变成的新核所对应的元素是原来的同位素D .玻尔在研究原子结构中引进了量子化的观念E .氢原子从低能级跃迁到高能级要吸收能量(2)如图所示,两质量分别为M 1=M 2=1.0 kg 的木板和足够高的光滑凹槽静止放置在光滑水平面上,木板和光滑凹槽接触但不粘连,凹槽左端与木板等高.现有一质量m =2.0 kg 的物块以初速度v 0=5.0 m/s 从木板左端滑上,物块离开木板时木板的速度大小为1.0 m/s ,物块以某一速度滑上凹槽,已知物块和木板间的动摩擦因数μ=0.5,重力加速度g 取10 m/s 2.求:①木板的长度;②物块滑上凹槽的最大高度.答案:(1) ADE (2)①0.8 m ②0.15 m解析:(2)①物块在木板上滑行的过程中,对系统由动量守恒和能量守恒可得:mv 0=mv 1+(M 1+M 2)v 212mv 20=12mv 21+12(M 1+M 2)v 22+μmgL 联立求解可得:v 2=4 m/s ,L =0.8 m ②物体在凹槽上滑行的过程中,同理可得:mv 1+M 2v 2=(m +M 2)v12mv 21+12M 2v 22=12(m +M 2)v 2+mgh解得:h=0.15 m.14.(2014·河北省唐山市高三二模)(12分)(1)最近在河南安阳发现了曹操墓地.放射性同位素14C在考古中有重要应用,只要测得该化石中14C残存量,就可推算出化石的年代.为研究14C的衰变规律,将一个原来静止的14C原子核放在匀强磁场中,观察到它所放射的粒子与反冲核的径迹是两个相内切的圆,圆的半径之比R∶r=7∶1,那么14C的衰变方程式应是( )A.146C→10 4Be+42He B.146C→14 5B+01eC.14 6C→14 7N+0-1e D.146C→13 5B+11H(2)如图所示,三个大小相同的小球A、B、C置于光滑水平面上,三球的质量分别为m A =2 kg、m B=4 kg、m C=2 kg,取水平向右方向为动量的正方向,某时刻A球的动量p A=20 kg·m/s,B球此刻的动量大小和方向未知,C球的动量为零.A球与B球先碰,随后B球与C球碰,碰撞均在同一直线上,且A球与B球以及B球与C球之间分别只相互碰撞一次,最终所有小球都以各自碰后的速度一直匀速运动.所有的相互作用结束后,Δp C=10 kg·m/s、Δp B=4 kg·m/s,最终B球以5 m/s的速度水平向右运动.求:①A球对B球的冲量大小与C球对B球的冲量大小之比;②整个过程系统由于碰撞产生多少热量?答案:(1)C (2)①7∶5 ②48 J解析:(1)由动量守恒定律可知,放射的粒子与反冲核动量大小相等、方向相反.又因径迹是两个内切圆,即衰变时粒子与反冲核受力方向相同,故它们带电性质相反.又由带电粒子在匀强磁场中回旋半径r之比为7∶1,故C正确.(2)①由A、B、C组成的系统动量守恒Δp A+Δp B+Δp C=0解得:Δp A=-14 kg·m/s由A、B相碰时对A用动量定理可得:I BA=Δp A,I AB=-I BA=14 kg·m/s由B、C相碰时对C用动量定理可得:I BC=Δp C,I CB=-I BC=-10 kg·m/s则I AB∶I CB=7∶5.②设A、B碰前A的动量为p A,B的动量为p B,C的动量为p C,所有的作用结束后A的动量为p A′,B的动量为p B′,C的动量为p C′,由A、B、C组成的系统动量守恒得:p A+p B+p C=p A′+p B′+p C′p A′=p A+Δp Ap C′=p C+Δp Cp B′=m B v B′=20 kg·m/sQ =p 2A 2m A +p 2B2m B -p A ′22m A -p B ′22m B -p C ′22m C联立解得:Q =48 J.15.(12分)(1)如图为氢原子的能级示意图,锌的逸出功是3.34 eV ,那么对氢原子在能级跃迁过程中发射或吸收光子的特征认识正确的是________.A .用氢原子从高能级向基态跃迁时发射的光照射锌板一定不能产生光电效应现象B .一群处于n =3能级的氢原子向基态跃迁时,能放出3种不同频率的光C .一群处于n =3能级的氢原子向基态跃迁时,发出的光照射锌板,锌板表面所发出的光电子的最大初动能为8.75 eVD .用能量为10.3 eV 的光子照射,可使处于基态的氢原子跃迁到激发态E .用能量为14.0 eV 的光子照射,可使处于基态的氢原子电离(2)如图所示,在光滑水平地面上,有一质量m 1=4.0 kg 的平板小车,小车的右端有一固定的竖直挡板,挡板上固定一轻质细弹簧,位于小车A 点处的质量为m 2=1.0 kg 的木块(视为质点)与弹簧的左端相接触但不连接,此时弹簧与木块间无相互作用力.木块与A 点左侧的车面之间有摩擦,与A 点右侧的车面之间的摩擦可忽略不计.现小车与木块一起以v 0=2.0 m/s 的初速度向右运动,小车将与其右侧的竖直墙壁发生碰撞,已知碰撞时间极短,碰撞后小车以v 1=1.0 m/s 的速度水平向左运动,取g =10 m/s 2.①求小车与竖直墙壁发生碰撞的过程中小车动量变化量的大小;②若弹簧始终处于弹性限度内,求小车撞墙后与木块相对静止时的速度大小和弹簧的最大弹性势能.答案:(1)BCE (2)①12 kg·m/s ②3.6 J11 解析:当氢原子从高能级向低能级跃迁时,辐射出光子的能量有可能大于3.34 eV ,锌板有可能产生光电效应,选项A 错误;由跃迁关系可知,选项B 正确;从n =3能级向基态跃迁时发出的光子最大能量为12.09 eV ,由光电效应方程可知,发出光电子的最大初动能为8.75 eV ,选项C 正确;氢原子在吸收光子能量时需满足两能级间的能量差,因此D 选项错误;14.0 eV>13.6 eV ,因此可以使处于基态的氢原子电离,选项E 正确.(2)①小车与竖直墙壁发生碰撞的过程中,小车动量变化量的大小为Δp =m 1v 1-m 1(-v 0)=12 kg·m/s①②小车与墙壁碰撞后向左运动,木块与小车间发生相对运动将弹簧压缩至最短时,二者速度大小相等,此后木块和小车在弹簧弹力和摩擦力的作用下,做变速运动,直到二者再次具有相同速度,此后,二者相对静止.整个过程中,小车和木块组成的系统动量守恒,设小车和木块相对静止时的速度大小为v ,根据动量守恒定律有m 1v 1-m 2v 0=(m 1+m 2)v ②解得v =0.40 m/s ③当小车与木块首次达到共同速度v 时,弹簧压缩至最短,此时弹簧的弹性势能最大,设最大弹性势能为E p ,根据机械能守恒定律可得E p =12m 1v 21+12m 2v 20-12(m 1+m 2)v 2④ E p =3.6 J ⑤。

物理动量守恒定律专题练习(及答案)含解析

物理动量守恒定律专题练习(及答案)含解析

①求弹簧恢复原长时乙的速度大小; ②若乙与挡板 P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板 P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I=8N 【解析】 【详解】 (1)当弹簧恢复原长时,设甲乙的速度分别为 和 ,对两滑块及弹簧组成的系统,设向 左的方向为正方向,由动量守恒定律可得:
又知
(2 分)
因为子弹在射穿第一块钢板的动能损失为 ΔE 损 1=f·d=
mv
2 0
(1
分),
由能量守恒得:
1 2
mv
2 1

1 2
mV
2 1

1 2
mv
2 0
-ΔE
损 1(2
分)
且考虑到 v1 必须大于 V1,
解得:v1= ( 1 3 ) v0 26
设子弹射入第二块钢板并留在其中后两者的共同速度为 V2,
物理动量守恒定律专题练习(及答案)含解析
一、高考物理精讲专题动量守恒定律
1.在图所示足够长的光滑水平面上,用质量分别为 3kg 和 1kg 的甲、乙两滑块,将仅与甲 拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板 P.现将两滑块由静止释放,当弹簧 恢复原长时,甲的速度大小为 2m/s,此时乙尚未与 P 相撞.
(1)求物块 M 碰撞后的速度大小; (2)若平台表面与物块 M 间的动摩擦因数 μ=0.5,物块 M 与小球的初始距离为 x1=1.3 m, 求物块 M 在 P 处的初速度大小. 【答案】(1)3.0m/s(2)7.0m/s 【解析】 试题分析:(1)碰后物块 M 做平抛运动,设其平抛运动的初速度为 V
6.如图所示,光滑平行金属导轨的水平部分处于竖直向下的 B=4T 的匀磁场中,两导轨间 距 L=0.5m,导轨足够长金属棒 a 和 b 的质量都为 m=1kg,电阻 Ra Rb 1 .b 棒静止于轨 道水平部分,现将 a 棒从 h=80cm 高处自静止沿弧形轨道下滑,通过 C 点进入轨道的水平 部分,已知两棒在运动过程中始终保持与导轨垂直,且两棒始终不相碰.求 a、b 两棒的最 终速度大小以及整个过程中 b 棒中产生的焦耳热(已知重力加速度 g 取 10m/s2)

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h="0.3" m (h 小于斜面体的高度).已知小孩与滑板的总质量为m 1="30" kg ,冰块的质量为m 2="10" kg ,小孩与滑板始终无相对运动.取重力加速度的大小g="10" m/s 2.(i )求斜面体的质量;(ii )通过计算判断,冰块与斜面体分离后能否追上小孩? 【答案】(i )20 kg (ii )不能 【解析】试题分析:①设斜面质量为M ,冰块和斜面的系统,水平方向动量守恒:222()m v m M v =+系统机械能守恒:22222211()22m gh m M v m v ++= 解得:20kg M =②人推冰块的过程:1122m v m v =,得11/v m s =(向右)冰块与斜面的系统:22223m v m v Mv '=+ 22222223111+222m v m v Mv ='解得:21/v m s =-'(向右) 因21=v v ',且冰块处于小孩的后方,则冰块不能追上小孩. 考点:动量守恒定律、机械能守恒定律.2.光滑水平轨道上有三个木块A 、B 、C ,质量分别为3A m m =、B C m m m ==,开始时B 、C 均静止,A 以初速度0v 向右运动,A 与B 相撞后分开,B 又与C 发生碰撞并粘在一起,此后A 与B 间的距离保持不变.求B 与C 碰撞前B 的速度大小.【答案】065B v v = 【解析】 【分析】【详解】设A 与B 碰撞后,A 的速度为A v ,B 与C 碰撞前B 的速度为B V ,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得: 对A 、B 木块:0A A A B B m v m v m v =+对B 、C 木块:()B B B C m v m m v =+由A 与B 间的距离保持不变可知A v v = 联立代入数据得:065B v v =.3.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。

高中物理专题复习 动量及动量守恒定律

高中物理专题复习  动量及动量守恒定律

高中物理专题复习动量及动量守恒定律一、动量守恒定律的应用1.碰撞两个物体在极短时间内发生相互作用,这种情况称为碰撞。

由于作用时间极短,一般都满足内力远大于外力,所以可以认为系统的动量守恒。

碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。

仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A 以速度v 1向质量为m 2的静止物体B 运动,B 的左端连有轻弹簧。

在Ⅰ位置A 、B 刚好接触,弹簧开始被压缩,A 开始减速,B 开始加速;到Ⅱ位置A 、B 速度刚好相等(设为v ),弹簧被压缩到最短;再往后A 、B 开始远离,弹簧开始恢复原长,到Ⅲ位置弹簧刚好为原长,A 、B 分开,这时A 、B 的速度分别为21v v ''和。

全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。

⑴弹簧是完全弹性的。

Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。

这种碰撞叫做弹性碰撞。

由动量守恒和能量守恒可以证明A 、B 的最终速度分别为:121121212112,v m m m v v m m m m v +='+-='。

⑵弹簧不是完全弹性的。

Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。

这种碰撞叫非弹性碰撞。

⑶弹簧完全没有弹性。

Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A 、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。

这种碰撞叫完全非弹性碰撞。

可以证明,A 、B 最终的共同速度为121121v m m m v v +='='。

在完全非弹性碰撞过程中,系统的动能损失最大,为:()()21212122121122121m m v m m v m m v m E k +='+-=∆。

【2015步步高】2015届高考一轮复习(题组扣点+课堂探究+学科素养培养+):第六章 动量守恒定律 第2课时

【2015步步高】2015届高考一轮复习(题组扣点+课堂探究+学科素养培养+):第六章 动量守恒定律  第2课时

度大小.
图5
题组扣点
课堂探究
学科素养培养 高考模拟
课堂探究
第2课时 动量守恒定律
1.应用动量守恒定律的解题步骤 (1)明确研究对象,确定系统的组成(系统包括哪几个物体及研 究的过程); (2)进行受力分析,判断系统动量是否守恒(或某一方向上是否 守恒); (3)规定正方向,确定初末状态动量; (4)由动量守恒定律列出方程; (5)代入数据,求出结果,必要时讨论说明.
【例 1】 (2013·山东理综)如图 5 所示,光 解析 因碰撞时间极短,A 与 C 滑水平轨道上放置着长木板 A(上表面 碰撞过程动量守恒,设碰后瞬
粗糙)和滑块 C,滑块 B 置于 A 的左端,
三者质量分别为 mA=2 kg、mB=1 kg、间 A 的速度为 vA,C 的速度为 mC=2 kg.开始时 C 静止,A、B 一起以 vC,以向右为正方向,由动量 v0=5 m/s 的速度匀速向右运动,A 与 C 守恒定律得
发生碰撞(时间极短)后 C 向右运动,经 mAv0=mAvA+mCvC

过一段时间,A、B 再次达到共同速度
一起向右运动,且恰好不再与 C 碰 A 与 B 在摩擦力作用下达到共
撞.求 A 与 C 发生碰撞后瞬间 A 的速 同速度,设共同速度为 vAB,由
度大小.
动量守恒定律得
mAvA+mBv0=(mA+mB)vAB ②
图6
(1)B 运动过程中的最大速度; (2)C 运动过程中的最大速度.
题组扣点
课堂探究
学科素养培养 高考模拟
课堂探究
第2课时 动量守恒定律
解析 (1)碰后瞬间 B 速度最大,选向右为正方向,由动量守恒定 律得
mAv0=mA(-vA′)+mBvB 所以 vB=mAv0m+BvA′=1×140+4 m/s=3.5 m/s,方向向右

2015《山东高考》一轮复习第13章——动量守恒近代物理

2015《山东高考》一轮复习第13章——动量守恒近代物理

第1节 动量定理 动量守恒定律[真题回放]1.(2013·新课标全国卷Ⅰ)在粗糙的水平桌面上有两个静止的木块A 和B ,两者相距为d .现给A 一初速度,使A 与B 发生弹性正碰,碰撞时间极短.当两木块都停止运动后,相距仍然为d .已知两木块与桌面之间的动摩擦因数均为μ,B 的质量为A 的2倍,重力加速度大小为g .求A 的初速度的大小.【解析】 设在发生碰撞前的瞬间,木块A 的速度大小为v ;在碰撞后的瞬间,A 和B 的速度分别为v 1和v 2.在碰撞过程中,由能量和动量守恒定律,得12m v 2=12m v 21+12(2m )v 22① m v =m v 1+(2m )v 2②式中,以碰撞前木块A 的速度方向为正.由①②式得 v 1=-v 22③设碰撞后A 和B 运动的距离分别为d 1和d 2,由动能定理得 μmgd 1=12m v 21 ④ μ(2m )gd 2=12(2m )v 22⑤按题意有 d =d 1+d 2⑥设A 的初速度大小为v 0,由动能定理得 μmgd =12m v 20-12m v 2 ⑦联立②至⑦式,得 v 0=285μgd .⑧【答案】285μgd2.(2013·新课标全国卷Ⅱ)如图13-1-1,光滑水平直轨道上有三个质量均为m 的物块A 、B 、C .B 的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A 以速度v 0朝B 运动,压缩弹簧;当A 、B 速度相等时,B 与C 恰好相碰并粘接在一起,然后继续运动.假设B 和C 碰撞过程时间极短.求从A 开始压缩弹簧直至与弹簧分离的过程中,图13-1-1(1)整个系统损失的机械能; (2)弹簧被压缩到最短时的弹性势能.【解析】 (1)从A 压缩弹簧到A 与B 具有相同速度v 1时,对A 、B 与弹簧组成的系统,由动量守恒定律得m v 0=2m v 1①此时B 与C 发生完全非弹性碰撞,设碰撞后的瞬时速度为v 2,损失的机械能为ΔE ,对B 、C 组成的系统,由动量守恒和能量守恒定律得m v 1=2m v 2② 12m v 21=ΔE +12(2m )v 22③联立①②③式得 ΔE =116m v 20④(2)由②式可知v 2<v 1,A 将继续压缩弹簧,直至A 、B 、C 三者速度相同,设此速度为v 3,此时弹簧被压缩至最短,其弹性势能为E p .由动量守恒和能量守恒定律得m v 0=3m v 3⑤ 12m v 20-ΔE =12(3m )v 23+E p⑥联立④⑤⑥式得 E p =1348m v 20.⑦【答案】(1)116m v 2(2)1348m v23.(2013·山东高考)如图13-1-2所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为m A=2 kg、m B=1 kg,m C=2 kg.开始时C静止,A、B一起以v0=5 m/s 的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C发生碰撞.求A与C碰撞后瞬间A的速度大小.图13-1-2【解析】因碰撞时间极短,A与C碰撞过程动量守恒,设碰后瞬间A的速度为v A,C的速度为v C,以向右为正方向,由动量守恒定律得m A v0=m A v A+m C v C ①A与B在摩擦力作用下达到共同速度,设共同速度为v AB,由动量守恒定律得m A v A+m B v0=(m A+m B)v AB ②A与B达到共同速度后恰好不再与C碰撞,应满足v AB=v C ③联立①②③式,代入数据得v A=2 m/s. ④【答案】 2 m/s[考向分析]考点一对动量定理的理解及应用一、适用范围适用于恒力作用也适用于变力作用,适用于直线运动也适用于曲线运动,适用于受持续的冲量作用,也适用于受间断的多个冲量的作用.二、解释现象一类是物体的动量变化一定,此时力的作用时间越短,力就越大;时间越长,力就越小.另一类是作用力一定,此时力的作用时间越长,动量变化越大;力的作用时间越短,动量变化越小.三、解题的基本思路1.确定研究对象:一般为单个物体或由多个物体组成的系统.2.对物体进行受力分析.可以先求每个力的冲量,再求各力冲量的矢量和;或先求合力,再求其冲量.3.抓住过程的初末状态,选好正方向,确定各动量和冲量的正负号.4.根据动量定理列方程代入数据求解.【例1】[考向1应用动量定理解释现象]把重物压在纸带上,用一水平力缓缓拉动纸带,重物跟着纸带一起运动;若迅速拉动纸带,纸带就会从重物下抽出,解释这个现象的原因是() A.在缓缓拉动纸带时,纸带给重物的摩擦力大B.在迅速拉动纸带时,纸带给重物的摩擦力大C.在缓缓拉动纸带时,纸带给重物的冲量大D.在迅速拉动纸带时,纸带给重物的冲量大【解析】在缓缓拉动时,两物体之间的作用力是静摩擦力;在迅速拉动时,它们之间的作用力是滑动摩擦力.由于滑动摩擦力f =μN (μ是动摩擦因数),而最大静摩擦力f m =u m N (u m 是静摩擦因数)且μ≤μm .一般情况下可以认为f =f m 即滑动摩擦力f 近似等于最大静摩擦力f m .因此,一般情况是:缓拉,摩擦力小;快拉,摩擦力大.缓缓拉动纸带时,摩擦力虽小些,但作用时间可以很长,故重物获得的冲量,即动量的改变量可以很大,所以能把重物带动;快拉时,摩擦力虽大些,但作用时间很短,故冲量小,所以重物动量的改变量小.因此选项C 正确.【答案】 C【例2】 [考向2 动量定理的计算]质量为0.4 kg 的小球沿光滑水平面以5 m /s 的速度冲向墙壁,又以4 m/s 的速度反向弹回.如图13-1-3,球跟墙壁的作用时间为0.05 s .求:图13-1-3(1)小球动量的增量; (2)球受到的平均冲力.【解析】 取初速度v 1的方向为正方向,则:v 1=5 m /s ,v 2=-4 m/s(1)Δp =m v 2-m v 1=0.4×(-4-5) kg·m /s =-3.6 kg·m/s 负号表示动量增量与初动量方向相反. (2)F =m v 2-m v 1t =-3.60.05N =-72 N ,平均冲力的大小为72 N ,平均冲力的方向与初速度反向. 【答案】 (1)-3.6 kg·m/s ,负号表示与初动量反向 (2)-72 N ,负号表示与初速度反向 【反思总结】动量定理是矢量式,对同一直线上运动的问题,规定正方向后,可将矢量运算简化为代数运算.应用I=Δp求变力的冲量时,如果物体受到大小或方向改变的力的作用,则不能直接用Ft计算,往往用动量定理间接求解.考点二动量守恒定律的理解与应用1.动量守恒定律的“五性”(1)矢量性:速度、动量均是矢量,因此列式时,要规定正方向.(2)相对性:动量守恒定律方程中的动量必须是相对于同一惯性参考系.(3)系统性:动量守恒是针对满足守恒条件的系统而言的,系统改变,动量不一定满足守恒.(4)同时性:动量守恒定律方程等号左侧表示的是作用前同一时刻的总动量,右侧则表示作用后同一时刻的总动量.(5)普适性:动量守恒定律不仅适用于低速宏观物体组成的系统,而且适用于接近光速运动的微观粒子组成的系统.2.动量守恒定律的不同表达形式(1)p=p′,系统相互作用前的总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向.(4)Δp=0,系统总动量的增量为零.3.碰撞现象满足的三个规律(1)动量守恒.(2)机械能不增加.(3)速度要合理.①若碰前两物体同向运动,则应有v后>v前,碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′.②碰前两物体相向运动,碰后两物体的运动方向不可能都不改变.4.对反冲现象的三点说明(1)系统内的不同部分在强大内力作用下向相反的方向运动,通常用动量守恒来处理.(2)反冲运动中,由于有其他形式的能转变为机械能,所以系统的总机械能增加.(3)反冲运动中平均动量守恒.5.爆炸现象的三个规律(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒.(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸前后系统的总动能增加.(3)位置不变:爆炸的时间极短,因而作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸前的位置以新的动量开始运动.【例3】(2014·新课标全国卷Ⅰ)如图13-1-4,质量分别为m A、m B的两个弹性小球A、B静止在地面上方,B球距地面的高度h=0.8 m,A球在B球的正上方.先将B球释放,经过一段时间后再将A 球释放.图13-1-4当A球下落t=0.3 s时,刚好与B球在地面上方的P点处相碰,碰撞时间极短,碰后瞬间A球的速度恰为零.已知m B=3m A,重力加速度大小g=10 m/s2,忽略空气阻力及碰撞中的动能损失.求:(1)B球第一次到达地面时的速度;(2)P点距离地面的高度.【解析】(1)设B球第一次到达地面时的速度大小为v B,由运动学公式有v B=2gh①将h=0.8 m代入上式,得v B=4 m/s ②(2)设两球相碰前后,A 球的速度大小分别为v 1和v 1′(v 1′=0),B 球的速度分别为v 2和v 2′.由运动学规律可得v 1=gt③由于碰撞时间极短,重力的作用可以忽略,两球相碰前后的动量守恒,总动能保持不变.规定向下的方向为正,有m A v 1+m B v 2=m B v ′2④ 12m A v 21+12m B v 22=12m B v ′22⑤设B 球与地面相碰后的速度大小为v ′B ,由运动学及碰撞的规律可得v ′B =v B⑥设P 点距地面的高度为h ′,由运动学规律可得h ′=v ′2B -v 222g⑦联立②③④⑤⑥⑦式,并代入已知条件可得 h ′=0.75 m .⑧【答案】 (1)4 m/s (2)0.75 m 突破训练 1(2014·大纲全国卷)一中子与一质量数为A (A >1)的原子核发生弹性正碰.若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( )A.A +1A -1B.A -1A +1C.4A (A +1)2D.(A +1)2(A -1)2 【解析】 设中子质量为m ,则原子核的质量为Am .设碰撞前后中子的速度分别为v 0、v 1,碰后原子核的速度为v 2,由弹性碰撞可得m v 0=m v 1+Am v 2,12m v 20=12m v 21+12Am v 22,解得v 1=1-A 1+Av 0,故⎪⎪⎪⎪⎪⎪v 0v 1=A +1A -1,A 正确. 【答案】 A考点三 实验:验证动量守恒定律1.方案一:利用气垫导轨完成一维碰撞实验. (1)测质量:用天平测出滑块质量. (2)安装:正确安装好气垫导轨.(3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度.(①改变滑块的质量. ②改变滑块的初速度大小和方向.)(4)验证:一维碰撞中的动量守恒.2.方案二:利用等长悬线悬挂等大小球完成一维碰撞实验. (1)测质量:用天平测出两小球的质量m 1、m 2. (2)安装:把两个等大小球用等长悬线悬挂起来.(3)实验:一个小球静止,拉起另一个小球,放下时它们相碰.(4)测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度.(5)改变条件:改变碰撞条件,重复实验. (6)验证:一维碰撞中的动量守恒.3.方案三:在光滑桌面上两车碰撞完成一维碰撞实验. (1)测质量:用天平测出两小车的质量.(2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥.(3)实验:接通电源,让小车A 运动,小车B 静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动.(4)测速度:通过纸带上两计数点间的距离及时间由v =ΔxΔt 算出速度. (5)改变条件:改变碰撞条件,重复实验. (6)验证:一维碰撞中的动量守恒.4.方案四:利用斜槽上滚下的小球验证动量守恒定律.(1)用天平测出两小球的质量,并选定质量大的小球为入射小球.(2)按照如图13-1-5所示安装实验装置,调整固定斜槽使斜槽底端水平.图13-1-5(3)白纸在下,复写纸在上,在适当位置铺放好.记下重垂线所指的位置O.(4)不放被撞小球,让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把所有的小球落点圈在里面,圆心P就是小球落点的平均位置.(5)把被撞小球放在斜槽末端,让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射小球落点的平均位置M和被碰小球落点的平均位置N.如图13-1-6所示.图13-1-6(6)连接ON,测量线段OP、OM、ON的长度.将测量数据填入表中.最后代入m1O P=m1O M+m2O N,看在误差允许的范围内是否成立.(7)整理好实验器材放回原处.(8)实验结论:在实验误差范围内,碰撞系统的动量守恒.5.对实验误差的分析(1)系统误差:主要来源于装置本身是否符合要求,即:①碰撞是否为一维碰撞.②实验是否满足动量守恒的条件,如气垫导轨是否水平,两球是否等大,长木板实验是否平衡掉摩擦力等.(2)偶然误差:主要来源于质量m和速度v的测量.(3)减小误差的措施:①设计方案时应保证碰撞为一维碰撞,且尽量满足动量守恒的条件.②采取多次测量求平均值的方法减小偶然误差.【例4】(2014·新课标全国卷Ⅱ)现利用图13-1-7甲所示的装置验证动量守恒定律.在图甲中,气垫导轨上有A、B两个滑块,滑块A右侧带有一弹簧片,左侧与打点计时器(图中未画出)的纸带相连;滑块B左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间.甲图13-1-7实验测得滑块A的质量m1=0.310 kg,滑块B的质量m2=0.108 kg,遮光片的宽度d=1.00 cm;打点计时器所用交流电的频率f=50.0 Hz.将光电门固定在滑块B的右侧,启动打点计时器,给滑块A一向右的初速度,使它与B相碰.碰后光电计时器显示的时间为Δt B=3.500 ms,碰撞前后打出的纸带如图13-1-7乙所示.乙图13-1-7若实验允许的相对误差绝对值(⎪⎪⎪⎪⎪⎪碰撞前后总动量之差碰前总动量×100%)最大为5%,本实验是否在误差范围内验证了动量守恒定律?写出运算过程.【解析】 纸带上打出的相邻点的时间间隔Δt =1f =0.02 s根据v =ΔxΔt 可计算出滑块A 碰撞前后的速度v 0=2.00 m /s ,v 1=0.970 m/s 滑块A 、B 碰撞后滑块B 的速度v 2=dΔt B=2.86 m/s两滑块碰撞前后的总动量p =m 1v 0=0.310×2.00 kg·m /s =0.620 kg·m/s p ′=m 1v 1+m 2v 2=0.610kg·m/s两滑块碰撞前后总动量相对误差绝对值为δ=⎪⎪⎪⎪⎪⎪⎪⎪p -p ′p ×100%=1.6%<5% 因此,本实验在误差允许范围内验证了动量守恒定律. 【答案】 见解析数学技巧5 数学归纳法在物理中的应用数学归纳法是一种数学证明方法,典型地用于确定一个表达式在所有自然数范围内是成立的或者用于确定一个其他的形式在一个无穷序列是成立的,这就是著名的结构归纳法.如果说一个关于自然数n 的命题,当n =1时成立(这一点我们可以代入检验即可),我们就可以假设n =k (k ≥1)时命题也成立.再进一步,如果能证明n =k +1时命题也成立的话(这一步是用第二步的假设证明的),由n =1命题成立,可推知n =2命题成立,继而又可推出n =3命题成立……这样就形成了一个无穷的递推,从而命题对于n ≥1的自然数都成立.在物理高考题中经常出现的多过程问题,很多情况下可以用数学归纳法来解决.【例5】 雨滴在穿过云层的过程中,不断与漂浮在云层中的小水珠相遇并结合为一体,其质量逐渐增大.现将上述过程简化为沿竖直方向的一系列碰撞.已知雨滴的初始质量为m 0,初速度为v 0,下降距离l 后与静止的小水珠碰撞且合并,质量变为m 1.此后每经过同样的距离l 后,雨滴均与静止的小水珠碰撞且合并,质量依次为m 2、m 3…m n ….(设各质量为已知量).不计空气阻力.若考虑重力的影响,求:(1)第1次碰撞前、后雨滴的速度v 1和v ′1; (2)求第n 次碰撞后雨滴的动能12m n v ′2n【解析】 (1)若考虑重力的影响,雨滴下降过程中做加速度为g 的匀加速运动,碰撞瞬间动量守恒第1次碰撞前v 21=v 20+2 gl ,v 1=v 20+2gl第1次碰撞后m 0v 1=m 1v 1′,v 1′=m 0m 1v 1=m 0m1v 20+2gl ①(2)第2次碰撞v 22=v 1′2+2gl利用①式化简得v 22=⎝ ⎛⎭⎪⎫m 0m 12v 20+⎝ ⎛⎭⎪⎪⎫m 20+m 21m 212gl ②第2次碰撞后,利用①式得v ′22=⎝ ⎛⎭⎪⎫m 1m 22v 22=⎝ ⎛⎭⎪⎫m 0m 22v 20+⎝ ⎛⎭⎪⎪⎫m 20+m 21m 212gl 同理,第3次碰撞后v ′23=⎝ ⎛⎭⎪⎫m 0m 32v 20+⎝ ⎛⎭⎪⎪⎫m 20+m 21+m 22m 232gl , 第n 次碰撞后速度为v ′2n =⎝ ⎛⎭⎪⎫m 0m n 2v 2o +2gl故n 次碰撞后雨滴的动能为 12m n v n ′2=12m n.【答案】 (1)v 20+2glm o m 1v 20+2gl(2)12m n突破训练 2(2012·安徽高考)如图13-1-8所示,装置的左边是足够长的光滑水平台面,一轻质弹簧左端固定,右端连接着质量M =2 kg 的小物块A .装置的中间是水平传送带,它与左右两边的台面等高,并能平滑对接.传送带始终以u =2 m /s 的速率逆时针转动.装置的右边是一光滑曲面,质量m =1 kg 的小物块B 从其上距水平台面高h =1.0 m 处由静止释放.已知物块B 与传送带之间的动摩擦因数μ=0.2,l =1.0 m .设物块A 、B 间发生的是对心弹性碰撞,第一次碰撞前物块A 静止且处于平衡状态.取g =10 m/s 2.图13-1-8(1)求物块B 与物块A 第一次碰撞前的速度大小;(2)通过计算说明物块B 与物块A 第一次碰撞后能否运动到右边的曲面上?(3)如果物块A 、B 每次碰撞后,物块A 再回到平衡位置时都会立即被锁定,而当它们再次碰撞前锁定被解除,试求出物块B 第n 次碰撞后的运动速度大小.【解析】 (1)设物块B 从光滑曲面h 高处滑下时的速度为v 0,由机械能守恒定律,得mgh =12m v 20,故v 0=2gh =2×10×1 m/s =2 5 m/s >u ,故B 滑上传送带后做匀减速运动.加速度a =μmgm =μg =2m/s 2,根据v 2-v 20=-2as ,得物块B 到达传送带左端时的速度v 1=v 20-2al =(25)2-2×2×1 m /s=4 m/s.离开传送带后做匀速运动,故物块B 与物块A 第一次碰撞前的速度v 1=4 m/s.(2)物块B 与物块A 发生对心弹性碰撞,碰撞前后遵守动量守恒和能量守恒.即m v 1=m v ′1+MV ′1 12m v 21=12m v ′21+12MV ′21 联立解得,v ′1=m -M M +m v 1=-13v 1=-43 m/s负号说明B 与A 碰撞后,B 的速度方向向右. 物块B 运动到传送带上做匀减速运动.速度减为零时的位移s =v ′212a =1692×2m =49 m <l ,因此物块B 还没有到达传送带的右边,速度已减小为零,故不能到达右边的曲面上.(3)物块B 与A 第一次碰撞后,运动到传送带上做匀减速运动,速度减为零后做反向的加速运动,根据对称性,离开传送带后的速度v 2=v ′1,然后与A 发生第二次碰撞,且满足m v 2=m v ′2+MV ′212m v 22=12m v ′22+12MV ′22 联立解得,v ′2=m -M M +mv 2=-13v 2=-132v 1同理,物块B 与A 第三次碰撞前的速度v 3=-v ′2,碰撞后的速度v ′3=-13v 3=-133v 1. 依此类推第n 次碰撞后B 的速度v ′n =-13n v 1 即n 次碰撞后的速度大小为13n v 1=43n m/s. 【答案】 (1)4 m/s (2)不能 (3)43n m/s1. (2014·浙江高考)如图13-1-9所示,甲木块的质量为m 1,以v 的速度沿光滑水平地面向前运动,正前方有一静止的、质量为m 2的乙木块,乙上连有一轻质弹簧.甲木块与弹簧接触后( )图13-1-9A .甲木块的动量守恒B .乙木块的动量守恒C .甲、乙两木块所组成系统的动量守恒D .甲、乙两木块所组成系统的动能守恒【解析】 根据动量守恒定律的条件,以甲、乙为一系统,系统的动量守恒,A 、B 错误,C 正确;甲、乙的一部分动能转化为弹簧的弹性势能,甲、乙系统的动能不守恒,D 错误.【答案】 C2.(2014·福建高考)一枚火箭搭载着卫星以速率v 0进入太空预定位置,由控制系统使箭体与卫星分离.已知前部分的卫星质量为m 1,后部分的箭体质量为m 2,分离后箭体以速率v 2沿火箭原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v 1为( )图13-1-10A .v 0-v 2B .v 0+v 2C .v 0-m 2m 1v 2D.v 0+m 2m 1(v 0-v 2)【解析】 根据动量守恒定律得 (m 1+m 2)v 0=m 2v 2+m 1v 1 解得v 1=v 0+m 2m 1(v 0-v 2).故选D. 【答案】 D3.(多选)从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是( )A .掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小B .掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小C .掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢D .掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时间长【解析】 设玻璃杯下落高度为h .它们从高h 处落地瞬间的速度大小为2gh ,与水泥地或草地接触t 时间后停止,根据动量定理可知:由于掉在水泥地上动量变化快,相互作用时间短,受到的合力大,所以地面给杯子的冲击力也大,故杯子易碎.应选C 、D.【答案】 CD4.一个质量为0.3 kg 的小球,在光滑水平面上以6 m /s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小为4 m/s.则碰撞前后墙对小球的冲量I 的大小及碰撞过程中墙对小球做的功W 分别为( )A .I =3 kg·m/s ,W =-3 JB .I =0.6 kg·m/s ,W =-3 JC .I =3 kg·m/s ,W =7.8 JD .I =0.6 kg·m/s ,W =3 J【解析】 本题考查动能定理和动量定理的应用,难度较易.碰撞前后墙对小球的冲量大小I =m v ′-m (-v )=3 kg·m/s ,碰撞过程中墙对小球做的功等于小球动能的改变量,即W =12m v ′2-12m v 2=-3 J ,A 正确.【答案】 A5.质量为M 的木块在光滑的水平面上以速度v 1向右运动,质量为m 的子弹以速度v 2向左射入木块并停留在木块中,要使木块停下来,发射子弹的数目是( )A.(M +m )v 2m v 1B.M v 1(M +m )v 2 C.m v 1M v 2D.M v 1m v 2【解析】 设发射子弹的数目为n ,由动量守恒可知:nm v 2-M v 1=0,解得n =M v 1m v 2,选项D 正确.【答案】 D6. (2014·苏北四市调研)A 、B 两球之间压缩一根轻弹簧,静置于光滑水平桌面上,已知A 、B 两球质量分别为2m 和m .当用板挡住A 球而只释放B 球时,B 球被弹出落于距桌边距离为x 的水平地面上,如图13-1-11所示.若用同样的程度压缩弹簧,取走A 左边的挡板,将A 、B 同时释放,则B 球的落地点距离桌边距离为( )图13-1-11A.x 3B.3x C .x D.63x【解析】 当用板挡住小球A 而只释放B 球时,根据能量守恒有:E p =12m v 20,根据平抛运动规律有:x =v 0t .当用同样的程度压缩弹簧,取走A 左边的挡板,将A 、B 同时释放,设A 、B 的速度分别为v A 和v B ,则根据动量守恒和能量守恒有:2m v A -m v B =0,E p =12×2m v 2A +12m v 2B ,解得v B =63v 0,B 球的落地点距桌边距离为x ′=v B t =63x ,D 选项正确.【答案】 D7.(多选) (2014·山东潍坊一中阶段性检测)在光滑水平面上,a 、b 两小球沿水平面相向运动.当小球间距小于或等于L 时,受到大小相等、方向相反的相互排斥恒力作用,小球间距大于L 时,相互间的排斥力为零,小球在相互作用区间运动时始终未接触,两小球运动时速度v 随时间t 的变化关系图象如图13-1-12所示,由图可知( )图13-1-12A .a 球质量大于b 球质量B .在t 1时刻两小球间距最小C .0~t 2时间内两小球间距逐渐减小D.在0~t3时间内b球所受排斥力方向始终与运动方向相反【解析】由题给条件知a、b球组成的系统在发生相互作用的过程中动量守恒.由v-t图象可知,b球在t1时刻速度减为零,然后反向运动,而它们是受到等大反向的冲量作用,故b球的初动量要小于a球的初动量,即m a v0>m b v0,则m a>m b,故选项A正确.在0~t2时间内,两小球从相向运动至同向运动到速度相等,间距会逐渐减小,而在t2时刻两小球间距达到最小,故选项B错误、选项C正确.在t1~t3时间内,a和b是同向运动,b受到的斥力和运动方向相同,故选项D错误.【答案】AC8.(2012·天津高考) 质量为0.2 kg的小球竖直向下以6 m/s的速度落至水平地面,再以4 m/s的速度反向弹回,取竖直向上为正方向,则小球与地面碰撞前后的动量变化为________kg·m/s.若小球与地面的作用时间为0.2 s,则小球受到地面的平均作用力大小为________N(取g=10 m/s2).【解析】以竖直向上为正方向,则v′=4 m/s,v=-6 m/s所以小球与地面碰撞前后的动量变化为Δp=m v′-m v=[0.2×4-0.2×(-6)] kg·m/s=2 kg·m/s根据动量定理,得(F-mg)t=Δp所以平均作用力F=Δpt+mg=20.2N+0.2×10 N=12 N.【答案】2129.某同学用如图13-1-13所示装置来研究碰撞过程,第一次单独让小球a从斜槽某处由静止开始滚下.落地点为P,第二次让a从同一位置释放后与静止在斜槽末端的小球b发生碰撞.a、b球的落地点分别是M、N,各点与O的距离如图所示.该同学改变a的释放位置重复上述操作.由于某种原因他只测得了a球的落地点P′、M′到O的距离分别为22.0 cm、10.0 cm.求b球的落地点N′到O的距离.图13-1-13【解析】 设a 球的质量为m 1,b 球的质量为m 2,碰撞过程中满足动量守恒定律. m 1O M +m 2O N =m 1O P ,解得m 1∶m 2=4∶1.改变a 的释放位置,有m 1OM ′+m 2ON ′=m 1OP ′, 解得:ON ′=48.0 cm. 【答案】 48.0 cm10.(2014·江苏高考)牛顿的《自然哲学的数学原理》中记载,A 、B 两个玻璃球相碰,碰撞后的分离速度和它们碰撞前的接近速度之比总是约为15∶16.分离速度是指碰撞后B 对A 的速度,接近速度是指碰撞前A 对B 的速度.若上述过程是质量为2m 的玻璃球A 以速度v 0碰撞质量为m 的静止玻璃球B ,且为对心碰撞,求碰撞后A 、B 的速度大小.【解析】 设A 、B 球碰撞后速度分别为v 1和v 2由动量守恒定律:2m v 0=2m v 1+m v 2,由题意知v 2-v 1v 0=1516,解得v 1=1748v 0,v 2=3124v 0.【答案】 1748v 0 3124v 011.(2014·大纲全国卷)冰球运动员甲的质量为80.0 kg.当他以5.0 m /s 的速度向前运动时,与另一质量为100 kg 、速度为3.0 m/s 的迎面而来的运动员乙相撞.碰后甲恰好静止.假设碰撞时间极短,求:(1)碰后乙的速度的大小; (2)碰撞中总机械能的损失.【解析】 (1)设运动员甲、乙的质量分别为m 、M ,碰撞前速度大小分别为v 、V ,碰撞后乙的速度大小为V ′.取运动员甲速度方向为正方向,由动量守恒定律有m v -MV =MV ′ ① 代入数据得V ′=1.0 m/s②(2)设碰撞过程中总机械能的损失为ΔE ,应有 12m v 2+12MV 2=12MV ′2+ΔE ③ 联立②③式,代入数据得 ΔE =1 400 J.【答案】 (1)1.0 m/s (2)1 400 J12. 如图13-1-14所示,质量M =2 kg 的长木板B 静止于光滑水平面上,B 的右边放有竖直固定挡板,B 的右端到挡板的距离为s .现有一小物体A (可视为质点)质量m =1 kg ,以初速度v 0=6 m /s 从B 的左端水平滑上B .已知A 与B 间的动摩擦因数μ=0.2,A 始终未滑离B ,B 与竖直挡板碰前A 和B 已相对静止,B 与挡板的碰撞时间极短,碰后以原速率弹回.取重力加速度g =10 m/s 2,求:图13-1-14(1)B 与挡板相碰时的速度大小; (2)s 的最短距离;(3)长木板B 与竖直固定挡板碰撞后离竖直固定挡板的距离为多少时,物体A 恰与长木板B 相对静止.(保留两位小数)【解析】 (1)设B 与挡板相碰时的速度大小为v 1,由动量守恒定律得m v 0=(M +m )v 1,v 1=2 m/s. (2)A 与B 刚好共速时B 到达挡板距离s 最短,由牛顿第二定律,B 的加速度为a =μmg M =1 m/s 2,s =v 212a =2 m.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第15讲 动量守恒定律 原子结构和原子核1.(2012·山东卷,38)(1)氢原子第n 能级的能量为E n =E 1n 2,其中E 1为基态能量.当氢原子由第4能级跃迁到第2能级时,发出光子的频率为ν1;若氢原子由第2能级跃迁到基态,发出光子的频率为ν2,则ν1ν2=________. (2)光滑水平轨道上有三个木块A 、B 、C ,质量分别为m A =3m 、m B =m C =m ,开始时B 、C 均静止,A 以初速度v 0向右运动,A 与B 碰撞后分开,B 又与C 发生碰撞并粘在一起,此后A 与B 间的距离保持不变.求B 与C 碰撞前B 的速度大小.图6-15-1对B 、C 木块:m B v B =(m B +m C )v ②由A 与B 间的距离保持不变可知v A =v ③联立①②③式,代入数据得v B =65v 0.④答案 (1)14 (2)65v 02.(2013·山东卷,38)(1)恒星向外辐射的能量来自其内部发生的各种热核反就,当温度达到108 K 时,可以发生“氦燃烧”.①完成“氦燃烧”的核反应方程:42He +________→84Be +γ.②84Be 是一种不稳定的粒子,其半衰期为2.6×10-16 s .一定质量的84Be ,经7.8×10-16 s 后所剩84Be 占开始时的________.(2)如图6-15-2所示,光滑水平轨道上放置长板A (上表面粗糙)和滑块C ,滑块B 置于A 的左端,三者质量分别为m A =2 kg 、m B =1 kg 、m C =2 kg.开始时C 静止,A 、B 一起以v 0=5 m/s 的速度匀速向右运动,A 与C 发生碰撞(时间极短)后C 向右运动,经过一段时间,A 、B 再次达到共同速度一起向右运动,且恰好不再与C 碰撞.求A 与C 发生碰撞后瞬间A 的速度大小.图6-15-2解析 (1)①根据质量数和电荷数守恒可知42He +42He →84Be +γ.②经历半衰期的次数n =t T =7.8×10-162.6×10-16=3,故剩余的占开始时的(12)3=18. (2)因碰撞时间极短,A 与C 碰撞过程动量守恒,设碰后瞬间A 的速度为v A ,C 的速度为v C ,以向右为正方向,由动量守恒定律得m A v 0=m A v A +m C v C ①A 与B 在摩擦力作用下达到共同速度,设共同速度为v AB ,由动量守恒定律得 m A v A +m B v 0=(m A +m B )v AB ②A 与B 达到共同速度后恰好不再与C 碰撞,应满足v AB =v C ③联立①②③式,代入数据得v A =2 m/s答案 (1)①42He ②18(2)2 m/s 3. (2014·山东卷,39)(1)氢原子能级如图6-15-3所示,当氢原子从n =3跃迁到n =2的能级时,辐射光的波长为656 nm.以下判断正确的是________.(双选,填正确答案标号)图6-15-3a .氢原子从n =2跃迁到n =1的能级时,辐射光的波长大于656 nmb .用波长为325 nm 的光照射,可使氢原子从n =1跃迁到n =2的能级c .一群处于n =3能级上的氢原子向低能级跃迁时最多产生3种谱线d .用波长为633 nm 的光照射,不能使氢原子从n =2跃迁到n =3的能级图6-15-4(2)如图6-15-4所示,光滑水平直轨道上两滑块A 、B 用橡皮筋连接,A 的质量为m .开始时橡皮筋松弛,B 静止, 给A 向左的初速度v 0.一段时间后,B 与A 同向运动发生碰撞并粘在一起.碰撞后的共同速度是碰撞前瞬间A 的速度的两倍,也是碰撞前瞬间B 的速度的一半.求:①B 的质量;②碰撞过程中A 、B 系统机械能的损失.解析 (1)根据氢原子的能级图和能级跃迁规律,当氢原子从n =2能级跃迁到n =1的能级时,辐射光的波长一定小于656 nm ,因此a 选项错误;根据发生跃迁只能吸收和辐射一定频率的光子,可知b 选项错误,d 选项正确;一群处于n =3能级上的氢原子向低能级跃迁时可以产生3种频率的光子,所以c 选项正确.(2)①以初速度v 0的方向为正方向,设B 的质量为m B ,A 、B 碰撞后的共同速度为v ,由题意知:碰撞前瞬间A 的速度为v 2,碰撞瞬间B 的速度为2v ,由动量守恒定律得m ·v 2+m B ·2v =(m +m B )v ①由①式得m B=m 2②②从开始到碰撞后的全过程,由动量守恒定律得m v0=(m+m B)v③设碰撞过程A、B系统机械能的损失为ΔE,则ΔE=12m(v2)2+12m B(2v)2-12(m+m B)v2④联立②③④式得ΔE=16m v2⑤答案(1)cd(2)①m2②16m v24.(2014·新课标全国卷Ⅰ,35)(1)(6分)关于天然放射性,下列说法正确的是________.(填正确答案标号.选对1个得3分,选对2个得4分,选对3个得6分.每选错1个扣3分,最低得分为0分)A.所有元素都可能发生衰变B.放射性元素的半衰期与外界的温度无关C.放射性元素与别的元素形成化合物时仍具有放射性D.α、β和γ三种射线中,γ射线的穿透能力最强E.一个原子核在一次衰变中可同时放出α、β和γ三种射线图6-15-5(2)(9分)如6-15-5所示,质量分别为m A、m B的两个弹性小球A、B静止在地面上方,B球距离地面的高度h=0.8 m,A球在B球的正上方.先将B球释放,经过一段时间后再将A球释放.当A球下落t=0.3 s时,刚好与B球在地面上方的P 点处相碰.碰撞时间极短,碰后瞬间A球的速度恰为零.已知m B=3m A,重力加速度大小g=10 m/s2,忽略空气阻力及碰撞中的动能损失.求:①B球第一次到达地面时的速度;②P点距离地面的高度.解析(1)只有原子序号超过83的元素才能发生衰变,选项A错.半衰期由原子核内部的结构决定,与外界温度无关,选项B对.放射性来自于原子核内部,与其形成的化合物无关,选项C对.α、β、γ三种射线中,γ射线能量最高,穿透能力最强,选项D对.一个原子核在一次衰变中要么是α衰变、要么是β衰变,同时伴随γ射线的产生,选项E错.(2)①设B球第一次到达地面时的速度大小为v B,由运动学公式有v B=2gh①将h=0.8 m代入上式,得v B=4 m/s②②设两球相碰前后,A球的速度大小分别为v1和v1′(v1′=0),B球的速度分别为v2和v2′.由运动学规律可得v1=gt③由于碰撞时间极短,重力的作用可以忽略,两球相碰前后的动量守恒,总动能保持不变,规定向下的方向为正,有m A v 1+m B v 2=m B v 2′④ 12m A v 21+12m B v 22=12m B v 2′2⑤ 设B 球与地面相碰后的速度大小为v B ′,由运动学及碰撞的规律可得v B ′=v B ⑥设P 点距地面的高度为h ′,由运动学规律可得h ′=v B ′2-v 222g⑦ 联立②③④⑤⑥⑦式,并代入已知条件可得h ′=0.75 m ⑧答案 (1)BCD (2)①4 m/s ②0.75 m5. (2014·新课标全国卷Ⅱ,35)(1)(5分)在人类对微观世界进行探索的过程中,科学实验起到了非常重要的作用.下列说法符合历史事实的是________.(填正确答案标号.选对1个得2分,选对2个得4分,选对3个得5分,每选错1个扣3分,最低得分为0分)A .密立根通过油滴实验测出了基本电荷的数值B .贝克勒尔通过对天然放射现象的研究,发现了原子中存在原子核C .居里夫妇从沥青铀矿中分离出了钋(Po)和镭(Ra)两种新元素D .卢瑟福通过α粒子散射实验证实了在原子核内部存在质子E .汤姆逊通过阴极射线在电场和磁场中偏转的实验,发现了阴极射线是由带负电的粒子组成的,并测出了该粒子的比荷(2)(10分)现利用图6-15-6所示的装置验证动量守恒定律.在图中,气垫导轨上有A 、B 两个滑块,滑块A 右侧带有一弹簧片,左侧与打点计时器(图中未画出)的纸带相连;滑块B 左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间.图6-15-6实验测得滑块A 的质量m 1=0.310 kg ,滑块B 的质量m 2=0.108 kg ,遮光片的宽度d =1.00 cm ;打点计时器所用交流电的频率f =50.0 Hz.将光电门固定在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰.碰后光电计时器显示的时间为Δt B =3.500 ms ,碰撞前后打出的纸带如图6-15-7所示.图6-15-7若实验允许的相对误差绝对值(|碰撞前后总动量之差碰前总动量|×100%)最大为5%,本实验是否在误差范围内验证了动量守恒定律?写出运算过程.解析 (1)密立根通过油滴实验测出了基本电荷的数值为1.6×10-19 C ,选项A 正确;贝克勒尔通过对天然放射性研究发现了放射性元素,选项B 错误;居里夫妇从沥青铀矿中分离出了钋(Po)和镭(Ra)两种新元素,选项C 正确;卢瑟福通过α粒子散射实验,得出了原子的核式结构理论,选项D 错误;汤姆逊通过对阴极射线在电场及在磁场中偏转的实验,发现了阴极射线是由带负电的粒子组成,并测定了粒子的比荷,选项E 正确.(2)按定义,物体运动的瞬时速度大小为v 则v =Δs Δt ①式中Δs 为物块在很短时间Δt 内走过的路程,设纸带上打出相邻两点的时间间隔为Δt A ,则Δt A =1f =0.02 s ②Δt A 可视为很短,设在A 碰撞前后瞬时速度大小分别为v 0、v 1,将②式和图给实验数据代入①式可得:v 0=4.00×10-20.02 m/s =2.00 m/s ③v 1=1.94×10-20.02 m/s =0.970 m/s ④设B 在碰撞后的速度大小为v 2,由①式有v 2=d Δt B⑤ 代入题所给的数据可得:v 2=2.86 m/s ⑥设两滑块在碰撞前后的动量分别为p 和p ′,则p =m 1v 0⑦p ′=m 1v 1+m 2v 2⑧两滑块在碰撞前后总动量相对误差的绝对值为δγ=|p -p ′p|×100%⑨ 联立③④⑥⑦⑧⑨式并代入有关数据,可得:δγ=1.7%<5%⑩因此,本实验在允许的误差范围内验证了动量守恒定律.答案 (1)ACE (2)见解析从近几年山东卷来看,本专题考查的题型及知识内容都比较稳定.从题型看,试题一大一小的组合题型.小题是填空题或选择题,大题是计算题.从知识内容上看,小题考查的主要有:玻尔理论、核反应及核能,大题均为动量守恒或动量守恒与能量守恒相结合的题目.高考热点动量、动量定理、动量守恒定律及其应用为重点;原子的能级跃迁、原子核的衰变规律、核反应方程核能的计算应为次重点.命题预测2015年高考,动量、动量守恒定律及其应用以计算题的形式出现的可能性大,其他考点以选择题或填空题的形式出现,主要集中在氢原子的能级结构、能级公式,原子核的组成,核反应方程等知识点上.。

相关文档
最新文档