粗糙集
粗糙集理论优质获奖课件
若rij=1, 且 i≠j, 则rji=0
对M2中1所 在位置,M 中相应位置 都是1
假如两 假如顶
点之
点xi
间有边, 到xj有边,
一定
xj
13
4、等价关系
等价关系旳定义:设R是非空集合A上旳关系,假如满足 ⑴ R是自反旳; ⑵ R是对称旳; ⑶ R是传递旳; 则称R是A上旳等价关系。
21
内容提要
一、概述 二、知识分类 三、知识旳约简 四、决策表旳约简 五、粗糙集旳扩展模型 六、粗糙集旳试验系统 七、粒度计算简介
22
一、 概述
现实生活中有许多模糊现象并不能简朴地 用真、假值来表达﹐怎样表达和处理这些现 象就成为一种研究领域。早在1923年谓词逻 辑旳创始人G.Frege就提出了模糊(Vague)一 词,他把它归结到边界线上,也就是说在全 域上存在某些个体既不能在其某个子集上分 类,也不能在该子集旳补集上分类。
自反性 反自反性 对称性 反对称性 传递性
12
关系性质旳三种等价条件
体 现 式
关系 矩阵
关系图
自反性 IAR
主对角 线元素 全是1
每个顶 点都有 环
反自反性 R∩IA=
主对角线 元素全是 0
每个顶点 都没有环
对称性 R=R1
反对称性 R∩R1 IA
传递性 RRR
矩阵是对称 矩阵
假如 两个 顶
定义 假如一种集合满足下列条件之一: (1)集合非空, 且它旳元素都是有序对 (2)集合是空集 则称该集合为一种二元关系, 简称为关系,记作R. 如<x,y>∈R, 可记作 xRy;假如<x,y>R, 则记作xRy
实例:R={<1,2>,<a,b>}, S={<1,2>,a,b}. R是二元关系, 当a, b不是有序对时,S不是二元关系 根据上面旳记法,能够写1R2, aRb, aSb等.
粗糙集的简单应用解析
pos(C ?{ R}) ( D) ? ? ? pos C (D)
第二十一页,编辑于星期三:二点 三十分。
规则提取
提取决策规则可以得到以下确定性规则:
(购买Q)且(不购买 R)—— (不购买 S) (购买 Q)且(购买 R) ——(购买S)
不确定规则为:
(不购买 Q)且(购买 R) —— (购买 S) ? (不买 Q买R,买 S ) ? 0.5
(不购买Q)且(购买 R)——(不购买 S)
论域, U 中的每个 xi (i ? n) 称为一个对象;
(2)A 是属性的非空有限集合,即 A ? {a1 , a2 ,? , an } , A 中
的每个 a j ( j ? m) 称为一个属性;
(3)V
?
?
a?
A
Va,Va
是属性的值域;
( 4) f :U ? A ? V 称为信息函数,它为每个对象关于每个
i Cij 表示分辨矩阵 中第 行,第 j 列的元素,Cij 被定义为:
C ij
?
??{a ? ? ??
A a ( xi ) ? a ( xj )}, D( xi ) ?
? , D (xi ) ? D( x j )
D(xj )
其中 i, j ? 1,2,? , n; n ? U
定义2.10 区分函数 是从分辨矩阵中构造的。约简算法的方法
定理2 core ( A) ? ? red ( A),其中 red ( A) 表示 A 的所有约简。
粗糙集理论的基本原理与模型构建
粗糙集理论的基本原理与模型构建粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它在信息科学、数据挖掘和人工智能等领域具有广泛的应用。
本文将介绍粗糙集理论的基本原理和模型构建方法。
一、粗糙集理论的基本原理粗糙集理论最早由波兰学者Pawlak于1982年提出,它是基于集合论和近似推理的一种数学模型。
粗糙集理论的核心思想是通过对数据集进行分析,找出数据之间的关联和规律,从而进行决策和推理。
粗糙集理论的基本原理包括下近似和上近似。
下近似是指在给定条件下,能够包含所有满足条件的对象的最小集合;上近似是指在给定条件下,能够包含所有满足条件的对象的最大集合。
通过下近似和上近似的计算,可以得到粗糙集的边界区域,进而进行数据分类、决策和模式识别等任务。
二、粗糙集模型的构建方法粗糙集模型的构建方法主要包括属性约简和决策规则提取两个步骤。
属性约简是指从原始数据集中选择出最具代表性和决策能力的属性子集。
属性约简的目标是减少属性的数量,同时保持原始数据集的决策能力。
常用的属性约简方法包括正域约简、核约简和快速约简等。
这些方法通过计算属性的重要性和相关性,从而选择出最优的属性子集。
决策规则提取是指从属性约简后的数据集中提取出具有决策能力的规则。
决策规则是一种描述数据之间关系的形式化表示,它可以用于数据分类、决策和模式识别等任务。
决策规则提取的方法包括基于规则的决策树、基于规则的神经网络和基于规则的关联规则等。
三、粗糙集理论的应用领域粗糙集理论在信息科学、数据挖掘和人工智能等领域具有广泛的应用。
它可以用于数据预处理、特征选择、数据分类和模式识别等任务。
在数据预处理方面,粗糙集理论可以帮助我们对原始数据进行清洗和转换,从而提高数据的质量和可用性。
通过对数据集进行属性约简和决策规则提取,可以减少数据集的维度和复杂度,提高数据挖掘和决策分析的效率和准确性。
在特征选择方面,粗糙集理论可以帮助我们选择出最具代表性和决策能力的属性子集。
粗糙集理论的基本概念与原理
粗糙集理论的基本概念与原理粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它的提出源于20世纪80年代初期的波兰学者Zdzisław Pawlak。
粗糙集理论的核心思想是通过将数据划分成不同的等价类,来描述和处理不完全和不确知的信息。
本文将介绍粗糙集理论的基本概念与原理。
1. 粗糙集的定义与等价关系粗糙集是指将一个数据集划分成若干个等价类,其中每个等价类称为一个粗糙集。
在粗糙集理论中,等价关系是一个重要的概念。
等价关系是指具有自反性、对称性和传递性的关系。
在粗糙集理论中,等价关系用来描述数据中的相似性和差异性。
2. 上近似集与下近似集上近似集是指在一个粗糙集中,包含了所有与该粗糙集中的元素相似的元素。
下近似集是指在一个粗糙集中,包含了所有与该粗糙集中的元素不相似的元素。
上近似集和下近似集是粗糙集理论中的两个重要概念,它们用来描述数据的粗糙性和不确定性。
3. 约简与精确度约简是粗糙集理论中的一个重要操作,它的目的是通过删除一些不必要的属性或条件,从而减少数据集的复杂性,提高数据的处理效率。
约简可以通过删除一些不重要或不相关的属性来实现。
精确度是用来评估数据集的质量和可靠性的指标,粗糙集理论通过约简来提高数据集的精确度。
4. 粗糙集与模糊集粗糙集理论与模糊集理论有一些相似之处,但也存在一些差异。
模糊集理论是一种用来处理模糊和不确定性问题的数学工具,它通过给每个元素赋予一个隶属度来描述元素的模糊性。
而粗糙集理论是一种用来处理不完全和不确知信息的数学工具,它通过将数据划分成不同的等价类来描述数据的粗糙性。
5. 粗糙集的应用领域粗糙集理论在许多领域中都有广泛的应用。
在数据挖掘领域,粗糙集理论可以用来处理不完全和不确定的数据。
在人工智能领域,粗糙集理论可以用来处理模糊和不确定性问题。
在决策支持系统领域,粗糙集理论可以用来辅助决策过程。
在模式识别领域,粗糙集理论可以用来提取和分类模式。
总结:粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它通过将数据划分成不同的等价类来描述和处理不完全和不确知的信息。
粗糙集理论简介及基本概念解析
粗糙集理论简介及基本概念解析粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它由波兰学者Pawlak于1982年提出。
粗糙集理论的核心思想是通过对数据进行粗糙化处理,将不完全、不确定的信息转化为可处理的粗糙集,进而进行数据分析和决策。
粗糙集理论的基本概念包括:粗糙集、等价关系、下近似集和上近似集。
首先,粗糙集是指在不完全信息条件下,通过将数据进行粗糙化处理得到的集合。
粗糙集可以看作是原始数据的一个近似描述,它包含了原始数据的一部分信息。
粗糙集的构建是通过等价关系来实现的。
其次,等价关系是粗糙集理论中的一个重要概念。
等价关系是指在给定的数据集中,将数据划分为若干等价类的关系。
等价关系的划分可以通过相似性度量来实现,相似性度量可以是欧氏距离、余弦相似度等。
等价关系的划分可以将原始数据进行分类,从而构建粗糙集。
下面,我们来介绍下近似集和上近似集。
下近似集是指在给定的粗糙集中,对于某个特定的属性或条件,能够确定的元素的集合。
换句话说,下近似集是能够满足某个条件的元素的集合,它是粗糙集的一个子集。
而上近似集是指在给定的粗糙集中,对于某个特定的属性或条件,可能满足的元素的集合。
上近似集是包含下近似集的最小集合,它是粗糙集的一个超集。
粗糙集理论的应用非常广泛,特别是在数据挖掘和模式识别领域。
通过粗糙集理论,可以对大量的数据进行处理和分析,从中发现隐藏的规律和模式。
粗糙集理论可以用于特征选择、属性约简、数据分类等任务,为决策提供有力支持。
总结起来,粗糙集理论是一种处理不确定性和模糊性问题的数学工具。
它通过粗糙化处理将不完全、不确定的信息转化为可处理的粗糙集,进而进行数据分析和决策。
粗糙集理论的基本概念包括粗糙集、等价关系、下近似集和上近似集。
粗糙集理论在数据挖掘和模式识别领域有着广泛的应用,可以用于特征选择、属性约简、数据分类等任务。
通过粗糙集理论,我们可以更好地理解和处理不确定性和模糊性问题,为决策提供有力支持。
粗糙集理论的使用方法与步骤详解
粗糙集理论的使用方法与步骤详解引言:粗糙集理论是一种用来处理不确定性和模糊性问题的数学工具,它在数据分析和决策支持系统中得到了广泛的应用。
本文将详细介绍粗糙集理论的使用方法与步骤,帮助读者更好地理解和应用这一理论。
一、粗糙集理论概述粗糙集理论是由波兰学者Pawlak于1982年提出的,它是一种基于近似和粗糙程度的数学理论。
粗糙集理论的核心思想是通过对属性间的关系进行分析,识别出数据集中的重要特征和规律。
它主要包括近似集、正域、决策表等概念。
二、粗糙集理论的使用方法1. 数据预处理在使用粗糙集理论之前,首先需要对原始数据进行预处理。
这包括数据清洗、数据变换和数据归一化等步骤,以确保数据的准确性和一致性。
2. 构建决策表决策表是粗糙集理论中的重要概念,它由属性和决策构成。
构建决策表时,需要确定属性集和决策集,并将其表示为一个矩阵。
属性集包括原始数据中的各个属性,而决策集则是属性的决策结果。
3. 确定正域正域是指满足某一条件的样本集合,它是粗糙集理论中的关键概念。
通过对决策表进行分析,可以确定正域,即满足给定条件的样本集合。
正域的确定可以通过计算属性的约简度或者使用启发式算法等方法。
4. 近似集的计算近似集是粗糙集理论中的核心概念,它是指属性集在正域中的近似表示。
通过计算属性集在正域中的近似集,可以确定属性之间的关系和重要程度。
近似集的计算可以使用不同的算法,如基于粒计算、基于覆盖算法等。
5. 属性约简属性约简是粗糙集理论中的一个重要问题,它是指从属性集中选择出最小的子集,保持属性集在正域中的近似表示不变。
属性约简的目标是减少属性集的复杂性,提高数据分析和决策的效率。
属性约简可以通过计算属性的重要度、使用启发式算法或者遗传算法等方法实现。
6. 决策规则的提取决策规则是粗糙集理论中的重要结果,它是从决策表中提取出来的一组条件和决策的组合。
决策规则可以帮助我们理解数据集中的规律和特征,从而做出更好的决策。
粗糙集
粗糙集(Rough Set)理论是由波兰数学家Pawlak在1982年提出的一种数据分析理论,常用于处理模糊和不精确的问题。
RS可以从大量的数据中挖掘潜在的、有利用价值的知识,它与概率方法、模糊集方法和证据理论方法等其他处理不确定性问题理论的最显著的区别在于:它无需提供问题所需处理的数据集合之外的任何先验信息(即无需指定隶属度或隶属函数)。
粗糙集是提供了严格的数学理论方法。
它把知识理解为对对象的分类能力。
它包含了知识的一种形式模型,这种模型将知识定义为不可区分关系的一个族集。
在信息检索过程中,由于文档中存在大量的多义和近义现象,导致不确定性出现,这将影响检索的性能。
为此采用基于互信息的粗糙集理论来处理这类不确定性问题。
动态约简技术探讨:利用标准的粗糙集方法来产生约简,即直接在原决策表的基础上计算所有的约简集,然后利用这些约简计算决策规则集合来分类未知对象。
这种方法对于未知对象的分类不总是足够充分的,因为该方法没有考虑到约简集的属性部分可能是混乱、不规则的。
动态约简是来自于在决策表的众多随机采样的子表中具有最大的出现频率的约简,在此意义上来说,利用动态约简来分类位置对象是最为稳定、可靠的。
经典粗糙集理论是建立在对象空间的等价类之上,采用上近似、下近似和边界的概念来分析对象的空间中不能由等价关系定义的子集的性质,是一种利用三值逻辑处理不精确或不完全信息的形式化方法。
有“智慧”,实际上是它们将外部环境和内部状态的传感信号分类,得出可能的情况,并由此支配行动,知识直接与真实或抽象世界有关的不同分类模式联系在一起。
因此,任何一个物种都是由一些知识来描述,对物种可以产生不同的分类。
从而如何在知识库中进行本质特征提取,发现最简决策表及最简分类规则集成为知识描述的关键。
从理论上看,智能信息处理的重要任务就是要从大量观察和实验数据中获取知识、表达知识、推理决策规则,特别是对于不精确、不完整的知识。
RS是处理不精确信息的有力工具。
粗糙集 信息熵
粗糙集信息熵粗糙集与信息熵是数据分析和机器学习中两个重要的概念。
粗糙集理论是一种对数据进行不确定性处理的方法,而信息熵是用来衡量数据中的不确定性和信息量的指标。
本文将介绍粗糙集和信息熵的概念、原理及其在数据分析和机器学习中的应用。
粗糙集是巾帼集合理论中的一种基于粗糙关系的数据处理方法。
巾帼集合理论是由波兰数学家帕夫尔·彼得·波尔茨花博士在20世纪80年代提出的。
它是基于粗糙关系的数学模型,用来处理数据中的不确定性和不完备性。
粗糙集理论认为,一个对象的属性值可能存在不确定性,即不同属性值的对象可能属于同一个类别,或者相同属性值的对象可能属于不同的类别。
因此,通过粗糙集的方法,可以通过对不同属性的划分来处理数据中的不确定性和不完备性。
信息熵是信息论中的一个概念,用来度量一个随机变量所包含的信息量。
信息熵的值越大,表示随机变量的不确定性越高,信息量越大。
信息熵的计算公式为:H(X) = -ΣP(xi)log2P(xi)其中,H(X)表示随机变量X的信息熵,P(xi)表示随机变量X取值为xi的概率。
粗糙集和信息熵在数据分析和机器学习中有广泛的应用。
首先,粗糙集可以用来处理数据中的不确定性和不完备性。
通过粗糙集的方法,可以将数据划分成不同的等价类,从而减少数据中的不确定性。
这对于数据挖掘和决策支持系统等领域非常有用。
其次,信息熵可以用来衡量数据中的不确定性和信息量。
在数据分析中,可以利用信息熵来评估数据的纯度和不确定性。
例如,在决策树算法中,可以使用信息熵来选择最佳的划分属性,从而构建一个更加准确和可解释的决策树模型。
此外,粗糙集和信息熵还可以结合使用,提高数据挖掘和机器学习的性能。
例如,可以将粗糙集的方法用于对数据进行处理和划分,然后使用信息熵来评估划分的纯度和不确定性。
这种结合可以使数据分析和机器学习算法更加准确和可靠。
综上所述,粗糙集和信息熵是数据分析和机器学习中的重要概念。
粗糙集用来处理数据中的不确定性和不完备性,而信息熵用来衡量数据中的不确定性和信息量。
经典粗糙集理论
粗糙集可以用于提取数据中的决策规则,这些规则可以作为神经网络的 训练样本。通过训练,神经网络可以学习到决策规则,并用于分类或预 测。
边界区域
近似集合中的不确定性区 域,即既不属于正域也不 属于负域的元素集合。
粗糙集的度量
精确度
描述了集合中元素被近似集合 包含的程度,即属于近似集合
的元素比例。
覆盖度
描述了近似集合能够覆盖的元 素数量,即近似集合的大小。
粗糙度
描述了集合被近似程度,是精 确度和覆盖度的综合反映。
知识的不确定性
描述了知识表达系统中属性值 的不确定性程度,与粗糙度相
经典粗糙集理论
目录
• 粗糙集理论概述 • 粗糙集的基本概念 • 粗糙集的运算与性质 • 粗糙集的决策分析 • 粗糙集与其他方法的结合 • 经典粗糙集理论案例研究
01 粗糙集理论概述
定义与特点
定义
粗糙集理论是一种处理不确定性和模 糊性的数学工具,通过集合近似的方 式描述知识的不完全性和不确定性。
粗糙集理论中的属性约简可以用于简化神经网络的输入特征,降低输入 维度,提高分类或预测的准确率。
粗糙集与遗传算法
01
遗传算法是一种全局优化算法,能够通过模拟自然界的进化过程来寻找最优解 。将粗糙集与遗传算法结合,可以利用粗糙集对数据的分类能力,结合遗传算 法的全局搜索能力,寻找最优的分类规则或决策规则。
02
粗糙集可以用于生成初始的分类规则或决策规则,然后利用遗传算法对这些规 则进行优化,通过选择、交叉、变异等操作,寻找最优的规则组合。
粗糙集理论的使用方法和步骤
粗糙集理论的使用方法和步骤粗糙集理论是一种用于处理不完全、不确定和模糊信息的数学工具,它在决策分析、数据挖掘和模式识别等领域具有广泛的应用。
本文将介绍粗糙集理论的使用方法和步骤,帮助读者更好地理解和应用这一理论。
一、粗糙集理论的基本概念粗糙集理论是由波兰学者Pawlak于1982年提出的,它的核心思想是通过对数据集进行粗糙化处理,找出数据集中的重要信息,从而进行决策和分析。
在粗糙集理论中,数据集由属性和决策组成,属性是描述对象的特征,决策是对对象进行分类或判断的结果。
二、粗糙集理论的步骤1. 数据预处理:在使用粗糙集理论之前,需要对原始数据进行预处理。
预处理包括数据清洗、数据变换和数据归一化等步骤,旨在提高数据的质量和可用性。
2. 属性约简:属性约简是粗糙集理论的核心步骤之一。
在属性约简过程中,需要根据属性的重要性对属性进行选择和优化。
常用的属性约简方法有基于信息熵的属性约简和基于模糊熵的属性约简等。
3. 决策规则的生成:在属性约简完成后,可以根据属性和决策之间的关系生成决策规则。
决策规则是对数据集中的决策进行描述和判断的规则,可以帮助决策者进行决策和分析。
4. 决策规则的评价:生成的决策规则需要进行评价和优化。
常用的决策规则评价方法有支持度和置信度等指标,通过对决策规则进行评价,可以提高决策的准确性和可靠性。
5. 决策与分析:最后一步是根据生成的决策规则进行决策和分析。
根据决策规则,可以对新的数据进行分类和判断,从而帮助决策者做出正确的决策。
三、粗糙集理论的应用案例粗糙集理论在实际应用中具有广泛的应用价值。
以电商平台为例,可以使用粗糙集理论对用户行为进行分析和预测。
首先,对用户的行为数据进行预处理,包括清洗和归一化等步骤。
然后,通过属性约简找出用户行为中的关键属性,如浏览时间、购买频率等。
接下来,根据属性和决策之间的关系生成决策规则,如用户购买商品的决策规则。
最后,根据生成的决策规则对新的用户行为进行分类和分析,从而提供个性化的推荐和服务。
粗糙集理论简介及基本原理
粗糙集理论简介及基本原理粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它由波兰数学家Pawlak于1982年提出。
粗糙集理论的核心思想是通过对数据进行粗糙化,将数据集划分为不同的等价类,以便更好地理解和描述数据的特征和规律。
粗糙集理论的基本原理是基于信息的不完备性和不确定性。
在现实世界中,我们往往无法获取到完整和精确的信息,数据中可能存在噪声、缺失或冲突等问题。
粗糙集理论通过对数据进行粗糙化,将不确定的数据转化为一组等价类,从而更好地处理这些问题。
粗糙集理论的核心概念是粗糙集和约简。
粗糙集是指在数据集中,存在一些元素无法被确定地分类到某个等价类中,即存在不确定性。
而约简则是指通过消除冗余和保留核心信息,将原始数据集简化为一个更小的等价类集合。
通过约简,我们可以减少数据集的复杂性,提取出数据中的关键特征和规律。
在粗糙集理论中,最常用的方法是基于属性约简。
属性约简是指通过选择一部分重要的属性,来代表整个数据集的特征和规律。
在实际应用中,数据集往往包含大量的属性,其中某些属性可能是冗余的或无关的。
通过属性约简,我们可以提取出最具代表性的属性,从而减少数据集的维度和复杂性。
粗糙集理论在各个领域都有广泛的应用。
在数据挖掘领域,粗糙集理论可以用于特征选择、分类和聚类等任务。
通过约简,我们可以选择出最具代表性的特征,从而提高分类和聚类的准确性和效率。
在决策支持系统中,粗糙集理论可以用于帮助决策者进行决策分析和风险评估。
通过对数据进行粗糙化和约简,我们可以更好地理解和描述决策问题,从而提供决策支持。
总之,粗糙集理论是一种处理不确定性和模糊性问题的有效工具。
它通过对数据进行粗糙化和约简,提取出数据的核心特征和规律,从而帮助我们更好地理解和处理现实世界中的复杂问题。
粗糙集理论在各个领域都有广泛的应用,为我们提供了一种全新的思维方式和分析工具。
粗糙集理论的使用方法与建模步骤详解
粗糙集理论的使用方法与建模步骤详解粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具。
它是由波兰数学家Pawlak于1982年提出的,被广泛应用于数据挖掘、模式识别、决策分析等领域。
本文将详细介绍粗糙集理论的使用方法和建模步骤。
一、粗糙集理论的基本概念粗糙集理论的核心思想是通过对数据进行粗糙划分,找出数据之间的相似性和差异性,从而进行有效的分类和决策。
在使用粗糙集理论进行建模之前,我们首先需要了解一些基本概念。
1.1 上近似集和下近似集上近似集是指在给定条件下,能够包含所有与目标属性有关的样本的集合;下近似集是指在给定条件下,能够完全确定与目标属性有关的样本的集合。
1.2 等价类和不可区分关系等价类是指在相同条件下,具有相同目标属性的样本所构成的集合;不可区分关系是指在给定条件下,无法通过已有的属性来区分不同的样本。
二、粗糙集建模的步骤在使用粗糙集理论进行建模时,我们可以按照以下步骤进行操作。
2.1 数据预处理在进行粗糙集建模之前,我们需要对原始数据进行预处理。
预处理包括数据清洗、数据转换、数据归一化等操作,以确保数据的质量和可用性。
2.2 属性约简属性约简是粗糙集建模中的关键步骤。
通过属性约简,我们可以从原始数据中选择出最具代表性的属性,减少冗余信息,提高模型的效率和准确性。
2.3 确定目标属性在进行粗糙集建模时,我们需要明确目标属性。
目标属性是我们希望通过建模来预测或分类的属性。
2.4 确定条件属性条件属性是用来描述和区分不同样本的属性。
在确定条件属性时,我们需要根据实际问题和数据特点选择合适的属性。
2.5 构建上近似集和下近似集通过已知的条件属性和目标属性,我们可以构建上近似集和下近似集。
上近似集包含了所有与目标属性有关的样本,下近似集则包含了能够完全确定与目标属性有关的样本。
2.6 确定等价类和不可区分关系根据上近似集和下近似集,我们可以确定等价类和不可区分关系。
等价类是具有相同目标属性的样本集合,不可区分关系则是无法通过已有的属性来区分不同的样本。
粗糙集理论简介
仅使用第一个属性进行划分的情形. 正区域为空. 蓝色区域为负区域.
使用两个属性进行划分的情况
加入第二个属性
负区域
正区域(下近似)
边界区域
上近似
综合表示
Rough Set 的应用
(一)知识发现
RD {(x, y); gk (x) gk (y)(k q)} 是按照决策集D产生的
X1
正常
是
否
x2
高
是
是
x3
高
是
是
x4
正常
否
否
x5
高
否
否
x6
高
否
是
x7
高
否
是
x8
正常
否
否
取B为各种属性组合, 则得到不同等价类取B=A,则等价 类为:{{x1},{x2,x3},{x4,x8},{x5,x6,x7}}
基本概念(三) 上下近似
X U 它在关系 RB下的上下近似集 RB(X ) {x;[x]B X} 为 X 的下近似集
粗糙集理论的基本概念
不可区分关系/等价类. 上近似和下近似.
基本概念(一) 信息系统
称为(U, A,F,D,G) 一个信息系统, 其中 为对象集, U {x1,x2,...xn} 为属性集, A {a1,a2,...ap} 为决策集, D {d1,d2,...dq} F 为U 和 A的关系集, F { f j : j p} G 为U 和 D的关系集, G {g j : j q}
求约简是属性选择问题. 约简有各种各样的标 准(保持属性集合分类能力不变,保证分布函数 不变, 保证决策上下近似不变.etc) 协调集与约简
RB(X ) {x;[x]B X }为 X 的上近似集 如果上下近似是相等的, 则这是一个精确集合, 否则它是一个粗糙集, 其中下近似称为该概念 的正区域, 上下近似的差称为边界.上近似以外 的区域称为负区域.
粗糙集
四、Approximation
为了刻画模糊性,每个不精确概念由 一对称为上近似集与下近似集的精确概念 来表示,它们可用隶属函数来定义。
上近似集是包含x的最小可定义集 下近似集是包含x的最大可定义集
Some object cannot be completely distinguished from the rest of the objects (in line with the decision variable values) in terms of the available conditional attributes. Their designation can only be roughly (approximately) defined; leading to the idea of rough sets based approximation. The fundamental underlying of rough sets consists of the approximation of a set of objects by a pair of sets, called lower and upper approximation sets.
IND ({ Age}) = {{x1, x 2, x6}, {x3, x 4}, {x5, x7}} IND({LEMS}) = {{x1}, {x 2}, {x3, x 4}, {x5, x6, x7}} IND({ Age, LEMS}) = {{x1}, {x 2}, {x3, x 4}, {x5, x7}, {x6}}
在粗糙集中,隶属关系不再是一个原始概念 ,因此无须人为的给元素指定一个隶属度, 从而避免了主观因素的影响。
粗糙集理论简介及应用案例解析
粗糙集理论简介及应用案例解析引言:在信息时代的背景下,数据的爆炸式增长给人们的决策和分析带来了巨大的挑战。
而粗糙集理论作为一种有效的数据分析工具,已经在各个领域得到了广泛的应用。
本文将对粗糙集理论进行简要介绍,并通过实际案例来解析其应用。
一、粗糙集理论的基本原理粗糙集理论是由波兰学者Pawlak于1982年提出的一种数据分析方法,它主要通过对数据集中的不确定性进行处理,从而提取出其中的规律和知识。
粗糙集理论的核心思想是基于近似和不确定性,通过构建等价关系和约简操作来实现对数据的分析。
二、粗糙集理论的应用案例解析1. 医学领域在医学领域,粗糙集理论可以用于辅助医生进行疾病诊断和预测。
例如,通过对患者的病历数据进行分析,可以建立一个疾病与症状之间的关联模型。
通过这个模型,医生可以根据患者的症状快速判断出可能的疾病,并采取相应的治疗措施。
2. 金融领域在金融领域,粗糙集理论可以用于风险评估和投资决策。
例如,通过对股票市场的历史数据进行分析,可以建立一个股票价格与各种因素之间的关联模型。
通过这个模型,投资者可以根据市场的变化预测股票的价格走势,并做出相应的投资决策。
3. 交通领域在交通领域,粗糙集理论可以用于交通流量预测和交通优化。
例如,通过对交通数据进行分析,可以建立一个交通流量与各种因素之间的关联模型。
通过这个模型,交通管理者可以根据不同的因素预测交通流量的变化,并采取相应的措施来优化交通。
4. 教育领域在教育领域,粗糙集理论可以用于学生评估和课程推荐。
例如,通过对学生的学习数据进行分析,可以建立一个学生能力与学习成绩之间的关联模型。
通过这个模型,教育者可以根据学生的能力评估学生的学习状况,并推荐适合的课程来提高学生的学习效果。
结论:粗糙集理论作为一种有效的数据分析工具,已经在各个领域得到了广泛的应用。
通过对数据集中的不确定性进行处理,粗糙集理论可以提取出其中的规律和知识,为决策和分析提供有力的支持。
粗糙集理论的入门指南
粗糙集理论的入门指南粗糙集理论是数学领域中的一种理论,它源于20世纪80年代的波兰学者Zdzisław Pawlak的研究工作。
粗糙集理论被广泛应用于数据挖掘、模式识别、决策分析等领域,它提供了一种处理不完备、模糊和不确定信息的方法。
一、粗糙集理论的基本概念在了解粗糙集理论之前,我们需要了解一些基本概念。
粗糙集理论主要涉及到以下几个概念:1. 上近似和下近似:粗糙集理论中的一个核心概念是近似。
给定一个数据集,上近似是指用最少的信息来描述数据集中的对象,下近似是指用最多的信息来描述数据集中的对象。
2. 等价关系:在粗糙集理论中,等价关系是指将数据集中的对象划分为不同的等价类。
等价关系可以用来描述数据集中的相似性。
3. 决策属性:决策属性是指在数据集中用来区分不同类别的属性。
在粗糙集理论中,决策属性是决策规则的基础。
二、粗糙集理论的应用粗糙集理论在实际应用中具有广泛的应用价值。
以下是一些常见的应用领域:1. 数据挖掘:粗糙集理论可以用于数据挖掘中的特征选择和分类问题。
通过分析数据集中的属性之间的关系,可以找到最具有代表性的属性,从而提高数据挖掘的效果。
2. 模式识别:粗糙集理论可以用于模式识别中的特征提取和模式分类。
通过对数据集中的特征进行分析,可以提取出最具有代表性的特征,从而实现模式的识别。
3. 决策分析:粗糙集理论可以用于决策分析中的决策规则的生成和评估。
通过对数据集中的属性进行分析,可以生成一组决策规则,从而帮助决策者做出正确的决策。
三、粗糙集理论的优点和局限性粗糙集理论作为一种处理不完备、模糊和不确定信息的方法,具有以下优点:1. 简单易懂:粗糙集理论的基本概念和方法相对简单,易于理解和应用。
2. 适用范围广:粗糙集理论可以应用于各种领域,包括数据挖掘、模式识别、决策分析等。
然而,粗糙集理论也存在一些局限性:1. 计算复杂度高:在处理大规模数据集时,粗糙集理论的计算复杂度较高,需要消耗大量的计算资源。
粗糙集理论介绍
粗糙集理论介绍面对日益增长的数据库,人们将如何从这些浩瀚的数据中找出有用的学问?我们如何将所学到的学问去粗取精?什么是对事物的粗线条描述什么是细线条描述?粗糙集合论Pl答了上面的这些问题。
要想了解粗糙集合论的思想,我们先要了解一下什么叫做学问?假设有8个积木构成了一个集合A,我们记:A={xl,x2,x3,x4,x5,x6,x7,x8},每个积木块都有颜色属性,根据颜色的不同,我们能够把这积累木分成Rl={红,黄,兰} 三个大类,那么全部红颜色的积木构成集合Xl = {xl,x2,x6},黄颜色的积木构成集合X2={x3,x4},兰颜色的积木是:X3={x5,x7,x8}o根据颜色这个属性我们就把积木集合A进行了一个划分(所谓A的划分就是指对于A中的任意一个元素必定属于且仅属于一个分类),那么我们就说颜色属性就是一种学问。
在这个例子中我们不难看到,一种对集合A的划分就对应着关于A中元素的一个学问,假如还有其他的属性,比如还有外形R2={三角,方块,圆形},大小R3={大,中,小},这样加上Rl 属性对A 构成的划分分别为:A/R1={X1 ,X2,X3}={(X1 ,x2,x6},{x3,x4)4x5,x7,x8},(颜色分类) A∕R2={Yl,Y2,Y3}={{xl,x2},{x5,x8},{x3,x4,x6,x7}}(外形分类)A∕R3={Z1,Z2,Z3)={{x1,x2,x5},{x6,x8},{x3,x4,x7}}(大小分类) 上面这些全部的分类合在•起就形成了•个基本的学问库。
那么这个基本学问库能表示什么概念呢?除了红的{xl,x2,x6}、大的{xl,x2,x5}、三角形的{xl,x2)这样的概念以外还可以表达例如大的且是三角形的{xl,x2,x5}∩{xl,x2)={xl,x2}, 大三角{xl,x2,x5}∩{xl,x2}={xl,x2},兰色的小的圆形({x5,x7,x8)∩{x3,x4,x7}∩{x3,x4,x6,x7}={x7},兰色的或者中的积木{x5,x7,x8} U {x6,x8)={×5,x6,x7,x8}β而类似这样的概念可以通过求交运算得到,比如Xl与Yl的交就表示红色的三角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例
对于上表来说,U中有四个对象(概念),而现 在条件集合中只有一个属性,对于U1和U2来说, 它们的p不同所以可以通过p来区分,即u1,u2在p 下可区分;而U2和U3虽然是不同的对象但是在P 下却是相同的,即在p下不可区分,就成为不可 区分
粗糙集:
一个集合若恰好等于基本集的任意并集称为一个清晰 (crisp)集(精确集),否则称为粗糙(rough)集(不 精确集)。 解释:都可区分的是清晰集,有不可区分的对象为粗糙 集 主要特点:以不完全信息或知识去处理一些不分明现象的 能力,或依据观察、度量到的某些不精确的结果而进行分 类数据的能力. 粗糙集体现了集合中元素间的不可区分性. 主要优势:它不需要提供问题所需处理的数据集合之外的 任何先验知识,而且与处理其它不确定性问题的理论有很 强的互补性.
粗糙集理论所处理的问题
•不确定或不精确知识的表达; •经验学习并从经验中获取知识; •不一致信息的分析; •根据不确定,不完整的知识进行推理; •在保留信息的前提下进行数据化简; •近似模式分类; •识别并评估数据之间的依赖关系
三、粗糙集的应用
粗糙集理论在许多领域得到了应用: ①临床医疗诊断;
②电力系统和其他工业过程故障诊断;
3. 如果P中的任何一条属性都是不 可简约的,那么就称P是独立的 解释:P是独立的说明P中的任何一个属性都是必 不可少的,它独立的表达一个系统分类的特征。
属性约简的算法分析:
初始状态:所有数据已存入数据库(以下为模拟数据)
u 1 2 3 4 5 6
a 1 1 0 1 1 2
b 0 0 0 1 1 1
集合O 的下逼近(即正区) 为 I 3 (O ) = PO S (O ) = {刘保,赵 凯} 集合O 的负区为 N EG (O ) = {李得} 集合O 的边界区为 BND (O ) = {王治, 马丽} 集合O 的上逼近为 I 3 (O ) = PO S (O ) + BND (O ) = {刘保,赵凯,王治,马 丽} 根据表1, 可以归纳出下面几条规则, 揭示了教育程度与 是否能找到好工作之间的关 RUL E 1: IF (教育程度= 大学) OR (教育程度= 博士) THEN (可以找到好工作) RUL E 2: IF (教育程度= 小学) THEN (找不到好工作) RUL E 3: IF (教育程度= 高中) THEN (可能找到好工作)
特别是和模糊理论结合,取得许多丰硕的成果,粗糙理 论理论和模糊理论虽然两者都是描述集合的不确定性的 理论,但是模糊理论侧重的是描述集合内部元素的不确 定性,而粗糙集理论侧重描述的是集合之间的不确定性 两者互不矛盾,互补性很强,是当前国内外研究的一个 热点之一。
粗糙集展望
粗糙集是一种较有前途的处理不确定性的方法, 相信今 后将会在更多的领域中得到应用. 但是, 粗糙集理论还处在继续发展之中, 尚有一些理 论上的问题需要解决, 诸如用于不精确推理的粗糙逻辑 (Rough logic) 方法, 粗糙集理论与非标准分析(Non standard analysis) 和非参数化统计(Nonparam et ric stat ist ics) 等之间的 关系等等. 将粗糙集与其它软计算方法(如模糊集,人工神经网 络,遗传算法等) 相综合, 发挥出各自 的优点, 可望设计出 具有较高的机器智商(M IQ ) 的混合智能系统(Hyb rid In telligen t System ) , 这是一个值得努力的方向.
粗糙集理论建立在这样一个前提上:即所考虑的 论域中的每一个对象都包含某种信息(数据和知 识)。
条件属性集:
数学定义是:P={P1,P2,…,Pm} 解释:就是对象的各种属性总和(也就是数据库中 的字段) Pm 就是这个对象的一个属性
基本集(基本粒度):
定义:所有不可区分的对象形成的集合 解释:可区分(可分辨):如果Ui ≠Uj 就称这两个 对象在其条件P下是可区分的(对于两个不同的对 象至少有一个属性是不同的)否则即为不可区分
3)不完全性:
例:在炒股票中.
4)不一致性:
相同原因产生不一样的结果
5)时变性:
随着时间会改变的事物
一些基本术语
论域:
数学定义是:U={U1,U2,…,Um} 解释:所要处理的所有对象(在数据库中即是所有数据)的总和 例:例如,对于货票集合来说,其任意子集称为一个概念。根据 运输距离对货票 进行分类,可以形成不同的概念: 概念1:运距在500公里(含500公里)以下的货票; 概念2:运距在500公里-1500公里(含1500公里)间的货票; 概念3:运距在1500公里以上的货票。 对于上例来说U就是货票集合,它由价格分成了3个概念即类 (U1,U2,U3)
c 0 0 0 0 0 0
d 1 0 0 1 2 2
E 1 1 0 0 2 2
现在设e为决策属性,其他为条件属性,即对于不同 的对象,不同的条件属性的组合会对决策属性有怎么 样的影响? 算法思路: 基本假设是能影响属性e的只有a,b,c,d四个(即系统 在a,b,c,d,e下可区分) 基本原则是如果所有的条件属性都是一样的两个对象 其决策属性也应该是一样的(因为否则说明这个对象 还有能影响其决策属性的条件属性未被列入表内) 那么如果去掉某个条件属性,对于任意两个不同的决 策属性其他属性都不同,那么这个属性冗余,否则这 个属性必需(即前面的概念2)
所有的这些能够用交、并表示的概念以及 加上上面的三个基本知识(A/R1,A/R2.A/R3) 一起就构成了一个知识系统记为 R=R1∩R2∩R3,它所决定的所有知识是 A/R={{x1,x2},{x3},{x4},{x5},{x6},{x7},{x8}} 以及A/R中集合的并。
近似
下近似集是在那些所有的包含于X的知识 库中的集合中求并得到的,而上近似则 是将那些包含X的知识库中的集合求并得 到的。
除了红的{x1,x2,x6}、大的{x1,x2,x5}、三角形的 {x1,x2}这样的概念以外还可以表达例如 大的且是三角形的{x1,x2,x5}∩{x1,x2}={x1,x2}, 大三角{x1,x2,x5}∩{x1,x2}={x1,x2}, 兰色的小的圆形 ({x5,x7,x8}∩{x3,x4,x7}∩{x3,x4,x6,x7}={x7}, 兰色的或者中的积木 {x5,x7,x8}∪{x6,x8}={x5,x6,x7,x8}。 而类似这样的概念可以通过求交运算得到,比如X1 与Y1的交就表示红色的三角形。
粗糙集 Rough set
制作人:闵玉玲(06) 江丽萍 (12) 吴佳(14)
一、粗糙集的概念 二、粗糙集的特点
三、粗糙集的应用
面对日益增长的数据库,将如何从 这些浩瀚的数据中找出有用的知识? 我们如何将所学到的知识去粗取精? 什么是对事物的粗线条描述什么是 细线条描述?
一、粗糙集的概念
(一)粗糙集概述
一般的,我们可以用 右面的图来表示 上、下近似的概念。
这其中蓝色曲线围的区域是
X的区域,紫色曲线围的部分是内部参考消息,是 下近似,红色曲线围的内部部分就是上近似集。 其中各个小方块可以被看成是论域上的知识系统 所构成的所有划分。 整个粗集理论的核心就是上面说的有关知识、集 合的划分、近似集合等等概念。
③预测与控制;
④模式识别与分类;
⑤机器学习和数据挖掘; ⑥图像处理; ⑦其他。
关于粗糙集算法
研究了粗糙集理论属性约简算法和规则提取启发式算法 例如基于属性重要性、基于信息度量的启发式算法,另 一方面研究和其他智能算法的结合,
如:和神经网络的结合,利用粗糙集理论进行数据预处 理,以提高神经网络收敛速度;和支持向量机SVM结合 和遗传算法结合;
在很多实际系统中均不同程度地存在着不确定性因素, 采集到的数据常常包含着噪声,不精确甚至不完整. 粗 糙集理论是继概率论,模糊集,证据理论之后的又一个 处理不确定性的数学工具 。
(二)相关概念 知识: (举例说明)
A={x1,x2,x3,x4,x5,x6,x7,x8},每个积木块都有颜色 属性,按照颜色的不同,我们能够把这堆积木分成 R1={红,黄,兰}三个大类,那么所有 红颜色的积木构成集合X1={x1,x2,x6}, 黄颜色的积木构成集合X2={x3,x4}, 兰颜色的积木构成集合 X3={x5,x7,x8}。 在这个例子中我们不
从这个简单的例子中, 我们还可以体会到粗糙集 理论在数据分析,寻找规律方面的作用
二、粗糙集的特点
粗糙集方法的简单实用性是令人惊奇的, 它能在创立后的 不长时间内得到迅速应用是因 为具有以下特点:
(1) 它能处理各种数据, 包括不完整( incomp lete) 的数 据以及拥有众多变量的数据; (2) 它能处理数据的不精确性和模棱两可(ambiguity) , 包括确定性和非确定性的情况; (3) 它能求得知识的最小表达( reduct) 和知识的各种不 同颗粒(granu larity) 层次; (4) 它能从数据中揭示出概念简单, 易于操作的模式(pat tern) ;
难看到,一种对集合A 按照颜色这个属性我们就把积木集合 A进行了一个划 的划分就对应着关于A 分(所谓A的划分就是指对于 A中的任意一个元素必然 中元素的一个知识
属于且仅属于一个分类),那么我们就说颜色属性就 是一种 知识
假如还有其他的属性,比如还有形状R2={三角,方 块,圆形},大小R3={大,中,小},这样加上R1属性 对A构成的划分分别为: A/R1={X1,X2,X3}={{x1,x2,x6},{x3,x4},{x5,x7,x 8}} (颜色分类) A/R2={Y1,Y2,Y3}={{x1,x2},{x5,x8},{x3,x4,x6,x 7}} (形状分类) A/R3={Z1,Z2,Z3}={{x1,x2,x5},{x6,x8},{x3,x4,x 7}} (大小分类) 上面这些所有的分类合在一起就形成了一个基 本的知识库。
(5) 它能产生精确而又易于检查和证实的规则, 特别适于智能控制中规则的自动生成. 特点综述:粗糙集理论作为一种处理不精确(imprecise)、不一