(新课标)2014高考物理一轮复习课时练16

合集下载

2014届高三物理总复习课时作业16.pdf

2014届高三物理总复习课时作业16.pdf

课时作业16 动能定理 时间:45分钟 满分:100分 一、选择题(8×8′=64′) 1.一个质量为0.3 kg的弹性小球,在光滑水平面上以6 m/s的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同,则碰撞前后小球速度变化量的大小Δv和碰撞过程中墙对小球做功的大小W为( ) A.Δv=0 B.Δv=12 m/s C.W=1.8 J D.W=10.8 J 解析:取末速度的方向为正方向,则v2=6 m/s,v1=-6 m/s,速度变化量Δv=v2-v1=12 m/s,A错误,B正确;小球与墙碰撞过程中,只有墙对小球的作用力做功,由动能定理得:W=mv-mv=0,故C、D均错误. 答案:B 2.某物体同时受到两个在同一直线上的力F1、F2的作用,由静止开始做直线运动,力F1、F2与位移x的关系图象如下图所示,在物体开始运动后的前4.0 m内,物体具有最大动能时对应的位移是( ) A.2.0 m B.1.0 m C.3.0 m D.4.0 m 解析:由题图知x=2.0 m时,F合=0,此前F合做正功,而此后F合做负功,故x=2.0 m时物体的动能最大,故A正确. 答案:A 3.质量为m的物体在水平力F的作用下由静止开始在光滑地面上运动,前进一段距离之后速度大小为v,再前进一段距离使物体的速度增大为2v,则( ) A.第二过程的速度增量等于第一过程的速度增量 B.第二过程的动能增量是第一过程动能增量的3倍 C.第二过程合外力做的功等于第一过程合外力做的功 D.第二过程合外力做的功等于第一过程合外力做功的2倍 解析:由题意知,两个过程中速度增量均为v,A正确;由动能定理知:W1=mv2,W2=m(2v)2-mv2=mv2,故B正确,C、D错误. 答案:AB 4如图所示,已知物体与三块材料不同的地毯间的动摩擦因数分别为μ、2μ和3μ,三块材料不同的地毯长度均为l,并排铺在水平地面上,该物体以一定的初速度v0从a点滑上第一块,则物体恰好滑到第三块的末尾d点停下来,物体在运动中地毯保持静止.若让物体从d点以相同的初速度水平向左运动,则物体运动到某一点时的速度大小与该物体向右运动到该位置的速度大小相等,则这一点是( ) A.a点 B.b点 C.c点 D.d点 解析:设相同点为e点,e点在c点左侧s处.如下图所示: 根据动能定理则, 向右运动时:-μmgl-2μmg(l-s)=Eke-mv, 向左运动时:-3μmgl-2μmgs=Eke-mv, 则有:-μmgl-2μmgl+2μmgs=-3μmgl-2μmgs, 即2μmgs=-2μmgs,所以s=0,即该点为c点. 答案:C 5.如图所示,在外力作用下某质点运动的v-t图象为正弦曲线.从图中可以判断( ) A.在0~t1时间内,外力做正功 B.在0~t1时间内,外力的功率逐渐增大 C.在t2时刻,外力的功率最大 D.在t1~t3时间内,外力做的总功为零 解析:在0~t1时间内,速度增大,由动能定理得,选项A正确,由P=F·v可知,在t=0及t=t2时刻,外力功率为零,v-t图象中的图线的斜率代表加速度,在t1时刻a=0,则F=0,外力功率为0,选项B、C均错;在t1~t3时间内,动能改变量为零,由动能定理得,选项D正确. 答案:AD 6.如图所示,一个质量为m的物体静止放在光滑水平面上,在互成60°角的大小相等的两个水平恒力作用下,经过一段时间,物体获得的速度为v,在力的方向上获得的速度分别为v1、v2,那么在这段时间内,其中一个力做的功为(  )A.mv2B.mv2C.mv2D.mv2 解析:在合力F的方向上,由动能定理得,W=Fs=mv2,某个分力的功为W1=F1scos30°=scos30°=Fs=mv2,故B正确. 答案:B 7如图所示,质量相等的物体A和物体B与地面的动摩擦因数相等,在力F的作用下,一起沿水平地面向右移动x,则( ) A.摩擦力对A、B做功相等 B. A、B动能的增量相同 C. F对A做的功与F对B做的功相等 D.合外力对A做的功与合外力对B做的功相等 解析:因F斜向下作用在物体A上,A、B受的摩擦力不相同,因此,摩擦力对A、B做的功不相等,A错误;A、B两物体一起运动,速度始终相同,故A、B动能增量一定相等,B正确;F不作用在B上,不能说F对B做功,C错误;合外力对物体做的功应等于物体动能增量,故D正确. 答案:BD 8.质量为1 kg的物体以某一初速度在水平面上滑行,由于摩擦阻力的作用,其动能随位移变化的图线如图所示,g取10 m/s2,则以下说法中正确的是( ) A.物体与水平面间的动摩擦因数是0.5 B.物体与水平面间的动摩擦因数是0.25 C.物体滑行的总时间为4 s D.物体滑行的总时间为2.5 s 解析:根据动能定理可得物体动能和位移之间的关系: Ek=Ek0-μmgx, 由题中图象所给数据可得 μ===0.25, 根据牛顿第二定律可得加速度大小: a==μg=2.5 m/s2, 由运动学公式可得物块滑行的总时间: t== s=4 s. 答案:BC 二、计算题(3×12′=36′) 9.如图所示,一辆汽车从A点开始爬坡,在牵引力不变的条件下行驶45 m的坡路到达B点时,司机立即关掉油门,以后汽车又向前滑行15 m停在C点,汽车的质量为5×103 kg,行驶中受到的摩擦阻力是车重的0.25倍,取g=10m/s2,求汽车的牵引力做的功和它经过B点时的速率. 解析:汽车从A到C的过程中,汽车发动机的牵引力做正功,重力做负功,摩擦力做负功,由动能定理可得 WF-mgh-0.25mgl=0,所以有 WF=mgh+0.25mgl=2.25×106 J. 汽车由B到C的过程中,克服重力做功,克服摩擦力做功,由动能定理可得 -0.25mgl1-mgl1·sin30°=0-mv. 代入数据可得vB=15 m/s. 答案:2.25×106 J 15 m/s 10.如图所示,轻弹簧左端固定在竖直墙上,右端点在O位置.质量为m的物块A(可视为质点)以初速度v0从距O点右方x0的P点处向左运动,与弹簧接触后压缩弹簧,将弹簧右端压到O′点位置后,A又被弹簧弹回,A离开弹簧后,恰好回到P点,物块A与水平面间的动摩擦因数为μ.求: (1)物块A从P点出发又回到P点的过程,克服摩擦力所做的功. (2)O点和O′点间的距离x1. 解析:(1)A从P点出发又回到P点的过程中根据动能定理得克服摩擦力所做的功为WFf=mv. (2)A从P点出发又回到P点的过程中根据动能定理2μmg(x1+x0)=mv 得x1=-x0. 答案:(1)mv (2)-x0 11.(2012·福建理综)如图,用跨过光滑定滑轮的缆绳将海面上一艘失去动力的小船沿直线拖向岸边.已知拖动缆绳的电动机功率恒为P,小船的质量为m,小船受到的阻力大小恒为f,经过A点时的速度大小为v0,小船从A点沿直线加速运动到B点经历时间为t1,A、B两点间距离为d,缆绳质量忽略不计.求: (1)小船从A点运动到B点的全过程克服阻力做的功Wf; (2)小船经过B点时的速度大小v1; (3)小船经过B点时的加速度大小a. 解析:(1)小船从A点运动到B点克服阻力做功 Wf=fd (2)小船从A点运动到B点,电动机牵引绳对小船做功 W=Pt1 由动能定理有W-Wf=mv-mv 由式解得v1= (3)设小船经过B点时绳的拉力大小为F,绳与水平方向夹角为θ,电动机牵引绳的速度大小为u,则P=Fu u=v1cosθ 由牛顿第二定律有 Fcosθ-f=ma 由式解得 a=- 答案:(1)fd (2) (3)-。

【高考核动力】高三物理一轮复习:课时作业16(Word版含解析)[ 高考]

【高考核动力】高三物理一轮复习:课时作业16(Word版含解析)[ 高考]

课时作业(十六)(时间:45分钟满分:100分)一、选择题(本题共10小题,每小题7分,共70分,每小题至少有一个选项正确,把正确选项前的字母填在题后括号内)1.如图所示,斜劈劈尖顶着竖直墙壁静止于水平面上,现将一小球从图示位置静止释放,不计一切摩擦,则在小球从释放到落至地面的过程中,下列说法正确的是()A.斜劈对小球的弹力不做功B.斜劈与小球组成的系统机械能守恒C.斜劈的机械能守恒D.小球重力势能减小量等于斜劈动能的增加量【解析】不计一切摩擦,小球下滑时,小球和斜劈组成的系统只有小球重力做功,系统机械能守恒,小球重力势能减小量等于斜劈和小球动能的增量之和,故B对、D错.小球的机械能减少,斜劈的机械能增加,斜劈对小球做负功.故A、C错.【答案】 B2.如图所示,一小球从距竖直弹簧一定高度静止释放,与弹簧接触后压缩弹簧到最低点(设此点小球的重力势能为0).在此过程中,小球重力势能和动能的最大值分别为E P和E k,弹簧弹性势能的最大值为E′P,则它们之间的关系为()A.E P=E′P>E k B.E P>E k>E′PC.E P=E k+E′P D.E P+E k=E′P【解析】当小球处于最高点时,重力势能最大;当小球受到的重力和弹簧的弹力平衡时,动能最大;当小球压缩弹簧到最短时重力势能全部转化为弹性势能,此时弹性势能最大.由机械能守恒定律可知E P=E′P>E k,故选A.【答案】 A3.质量均为m的a、b两球固定在轻杆的两端,杆可绕点O在竖直面内无摩擦转动,两球到点O的距离L1>L2,如图所示.将杆拉至水平时由静止释放,则在a下降过程中()A .杆对a 不做功B .杆对b 不做功C .杆对a 做负功D .杆对b 做负功【解析】 b 球受到重力和杆对它的作用力,运动过程中克服重力做了功,其动能反而增加了,这一定是杆对它做了正功,b 的机械能增加.a 、b 两球和杆组成的这个系统,在绕点O 无摩擦转动过程中机械能守恒.b 球的机械能增加,则a 球的机械能必减少,由功能转化关系可知杆对a 做了负功.故只有选项C 正确.【答案】 C4.如图所示,在轻弹簧的下端悬挂一个质量为m 的小球A ,若将小球A 从弹簧原长位置由静止释放,小球A 能够下降的最大高度为h .若将小球A 换为质量为2m 的小球B ,仍从弹簧原长位置由静止释放,已知重力加速度为g ,不计空气阻力,则小球B 下降h 时的速度为(重力加速度为g ,不计空气阻力)( )A.2ghB.ghC.gh2D .0 【解析】 对弹簧和小球A ,根据机械能守恒定律得弹性势能E p =mgh ;对弹簧和小球B ,根据机械能守恒定律有E p +12×2m v 2=2mgh ,得小球B 下降h 时的速度v =gh ,只有选项B 正确.【答案】 B5.质量为m 的小球从高H 处由静止开始自由下落,以地面作为参考平面.当小球的动能和重力势能相等时,重力的瞬时功率为( )A .2mg gHB .mg gH C.12mg gH D.13mg gH 【解析】 动能和重力势能相等时,根据机械能守恒定律有:2mgh ′=mgH ,解得小球离地面高度h ′=H 2,故下落高度为h =H2,速度v =2gh =gH ,故P =mg v =mg gH ,B 项正确.【答案】 B6.如图所示,一个小球(视为质点)从h 高处由静止开始通过光滑弧形轨道AB 进入半径R =4 m 的竖直光滑圆轨道,若使小球不与轨道分离,则h 的值可能为(g =10 m/s 2,所有高度均相对B 点而言)( )A .2 mB .5 mC .7 mD .9 m【解析】 当小球在圆轨道中上升的最大高度小于R 时,小球不与轨道分离,有mgh <mgR ,h <4 m ,A 选项正确;当小球在圆轨道中能做完整的圆周运动时,小球通过圆轨道最高点有:mg ≤m v 2/R ,由机械能守恒定律mgh =2mgR +m v 2/2,得:h ≥10 m ,BCD 选项错误.【答案】 A7.如图所示,一根跨越光滑定滑轮的轻绳,两端各有一杂技演员(可视为质点),a 站于地面,b 从图示的位置由静止开始向下摆动,运动过程中绳始终处于伸直状态,当演员b 摆至最低点时,a 刚好对地面无压力,则演员a 质量与演员b 质量之比为( )A .1∶1B .2∶1C .3∶1D .4∶1【解析】 设b 摆至最低点时的速度为v ,由机械能守恒定律可得:mgl (1-cos 60°)=12m v 2,解得v =gl .设b 摆至最低点时绳子的拉力为F T ,由圆周运动知识得:F T -m b g =m b v 2l,解得F T =2m b g ,对演员a 有F T =m a g ,所以,演员a 质量与演员b 质量之比为2∶1. 【答案】 B8.如图所示,a 、b 两小球静止在同一条竖直线上,离地面足够高,b 球质量大于a 球质量.两球间用一条细线连接,开始线处于松弛状态.现同时释放两球,球运动过程中所受的空气阻力忽略不计,下列说法正确的是( )A .下落过程中两球间的距离保持不变B .下落后两球间距离逐渐增大,一直到细线张紧为止C .下落过程中,a 、b 两球都处于失重状态D .整个下落过程中,系统的机械能守恒【解析】 两球同时释放后,均做自由落体运动,加速度均为g ,故两球均处于失重状态,且机械能守恒,两球间距也保持不变,A 、C 、D 均正确,B 错误.【答案】 ACD9.如图所示是全球最高的(高度为208米)北京朝阳公园摩天轮,一质量为m 的乘客坐在摩天轮中以速率v 在竖直平面内做半径为R 的匀速圆周运动,假设t =0时刻乘客在最低点且重力势能为零,那么,下列说法正确的是( )A .乘客运动的过程中,重力势能随时间的变化关系为E p =mgR (1-cos vR t ) B .乘客运动的过程中,在最高点受到座位的支持力为m v 2R -mg C .乘客运动的过程中,机械能守恒,且机械能为E =12m v 2D .乘客运动的过程中,机械能随时间的变化关系为E =12m v 2+mgR (1-cos v R t )【解析】 在最高点,根据牛顿第二定律可得,mg -F N =m v 2R ,乘客受到座位的支持力为F N =mg -m v 2R ,B 项错误;由于乘客在竖直平面内做匀速圆周运动,其动能不变,重力势能发生变化,所以乘客在运动的过程中机械能不守恒,C 项错误;在时间t 内转过的角度为v R t ,所以对应t 时刻的重力势能为E p =mgR (1-cos v R t ),总的机械能为E =E k +E p =12m v 2+mgR (1-cos vR t ),A 、D 项正确.【答案】 AD10.(2012·浙江卷)由光滑细管组成的轨道如图所示,其中AB 段和BC 段是半径为R 的四分之一圆弧,轨道固定在竖直平面内.一质量为m 的小球,从距离水平地面高为H 的管口D 处静止释放,最后能够从A 端水平抛出落到地面上.下列说法正确的是( )A .小球落到地面时相对于A 点的水平位移值为2RH -2R 2B .小球落到地面时相对于A 点的水平位移值为22RH -4R 2C .小球能从细管A 端水平抛出的条件是H >2RD .小球能从细管A 端水平抛出的最小高度H min =52R【解析】 设小球从A 端水平抛出的速度为v A ,由机械能守恒得mgH =mg ·2R +12m v 2A,得v A =2gH -4gR ,设空中运动时间为t ,由2R =12gt 2,得t =2Rg ,水平位移s 水=v A t=2gH -4gR ·2R g =22RH -4R 2,故B 正确,A 错误;小球能从细管A 端水平抛出的条件是D 点应比A 点高,即H >2R ,C 正确,D 错误.【答案】 BC二、综合应用(本题共2小题,共30分,解答时应写出必要的文字说明,方程式和演算步骤,有数值计算的要注明单位)11.(15分)如图所示,半径为R 的光滑半圆弧轨道与高为10R 的光滑斜轨道放在同一竖直平面内,两轨道之间由一条光滑水平轨道CD 相连,水平轨道与斜轨道间有一段圆弧过渡.在水平轨道上,轻质弹簧被a 、b 两小球挤压,处于静止状态.同时释放两个小球,a 球恰好能通过圆弧轨道的最高点A ,b 球恰好能到达斜轨道的最高点B .已知a 球质量为m 1,b 球质量为m 2,重力加速度为g .求:(1)a 球离开弹簧时的速度大小v a ; (2)b 球离开弹簧时的速度大小v b ; (3)释放小球前弹簧的弹性势能E p .【解析】 (1)由a 球恰好能到达A 点知m 1g =m 1v 2AR 由机械能守恒定律得 12m 1v 2a -12m 1v 2A =m 1g ×2R 得v a =5gR .(2)对于b 球由机械能守恒定律得: 12m 2v 2b =m 2g ×10R 得v b =20gR . (3)由机械能守恒定律得 E p =12m 1v 2a +12m 2v 2b 得E p =⎝⎛⎭⎫52m 1+10m 2gR . 【答案】 (1)5gR (2)20gR (3)⎝⎛⎭⎫52m 1+10m 2gR12.(15分)如图所示,在同一竖直平面内,一轻质弹簧一端固定,另一自由端恰好与水平线AB 平齐,静止放于倾角为53°的光滑斜面上.一长为L =9 cm 的轻质细绳一端固定在O 点,另一端系一质量为m =1 kg 的小球,将细绳拉至水平,使小球在位置C 由静止释放,小球到达最低点D 时,细绳刚好被拉断.之后小球在运动过程中恰好沿斜面方向将弹簧压缩,最大压缩量为x =5 cm.(g =10 m/s 2,sin 53°=0.8,cos 53°=0.6)求:(1)细绳受到的拉力的最大值;(2)D 点到水平线AB 的高度h ; (3)弹簧所获得的最大弹性势能E p .【解析】 (1)小球由C 到D ,由机械能守恒定律得: mgL =12m v 21解得v 1=2gL ①在D 点,由牛顿第二定律得 F -mg =m v 21L ②由①②解得F =30 N由牛顿第三定律知细绳所能承受的最大拉力为30 N. (2)由D 到A ,小球做平抛运动v2y=2gh③tan 53°=v yv1④联立解得h=16 cm(3)小球从C点到将弹簧压缩至最短的过程中,小球与弹簧系统的机械能守恒,即E p=mg(L+h+x sin 53°),代入数据得:E p=2.9 J.【答案】(1)30 N(2)16 cm(3)2.9 J。

新教材高考物理一轮复习课时练16动能定理及其应用含解析新人教版

新教材高考物理一轮复习课时练16动能定理及其应用含解析新人教版

动能定理及其应用1.(单物体动能定理)如图所示,“蹦极”运动中,长弹性绳的一端固定,另一端绑在人身上,人从几十米高处跳下。

将蹦极过程简化为人沿竖直方向的运动。

从绳恰好伸直到人第一次下降至最低点的过程中,下列说法正确的是()A.人先处于失重状态后处于超重状态B.绳对人的拉力始终做负功,人的动能一直减小C.绳恰好伸直时,绳的弹性势能为零,人的动能最大D.人在最低点时,绳对人的拉力等于人所受的重力2.(多选)(图像问题)(2020河北沧州高三月考)在平直公路上,汽车由静止开始做匀加速直线运动,当速度达到v max后,立即关闭发动机直至静止,v-t图像如图所示,设汽车的牵引力为F,受到的摩擦力为F f,全程中牵引力做功为W1,克服摩擦力做功为W2,则()A.F∶F f=1∶3B.W1∶W2=1∶1C.F∶F f=4∶1D.W1∶W2=1∶33.(单物体动能定理)如图所示,在轻弹簧的下端悬挂一个质量为m的小球A,若将小球A从弹簧原长位置由静止释放,小球A能够下降的最大高度为h。

若将小球A换为质量为3m的小球B,仍从弹簧原长位置由静止释放,重力加速度为g,不计空气阻力,则小球B下降h时的速度为()A.√2ggB.√4gg3C.√ggD.√gg24.(图像问题)质量m=10 kg的物体只在变力F作用下沿水平方向做直线运动,F随坐标x的变化关系如图所示。

若物体从坐标原点处由静止出发,则物体运动到x=16 m处时的速度大小为()A.3 m/sB.4 m/sC.2√2 m/sD.√17 m/s5.(多过程单物体动能定理)(2020黑龙江实验中学月考)如图,abc是竖直面内的光滑固定轨道,ab水平,长度为R,bc是半径为R的四分之一的圆弧,与ab相切于b点。

一质量为m的小球受到与重力大小相等的水平外力F的作用,自a点从静止开始向右运动,运动到b点时立即撤去外力F,重力加速度大小为g,下列说法正确的是()A.水平外力F做的功为2mgRB.小球运动到b点时对圆弧轨道的压力大小为3mgC.小球能从c点竖直向上飞出D.小球运动到c点时对圆弧轨道的压力大小为mg6.(图像问题)(2020四川绵阳高三模拟)静止在粗糙水平地面上的物块,在恒定水平拉力的作用下开始运动,当位移为2x0时撤去外力,此时动能为E k0,继续滑行x0后停下来,其动能随位移变化的关系如图所示。

(新课标)2014高考物理一轮复习课时练31汇总

(新课标)2014高考物理一轮复习课时练31汇总

课时作业(三^一)1. (2012 •海南卷)如右图所示,在两水平极板间存在匀强电场和匀强磁场,电场方向 竖直向下,磁场方向垂直于纸面向里. 一带电粒子以某一速度沿水平直线通过两极板. 若不计重力,下列四个物理量中哪一个改变时,粒 子运动轨迹不会改变A.粒子速度的大小 B.粒子所带的电荷量C.电场强度D.磁感应强度[解析]粒子在电场中运动,当做直线运动时 Eq = qvB,电量改变,粒子受力仍平衡,B 正确.[答案]B2. (2012 •福建泉州联考)在空间某一区域中既存在匀强电场,又存在匀强磁场.有一 带电粒子,以某一速度从不同方向射入到该区域中 (不计带电粒子受到的重力),则该带电粒子在区域中的运动情况可能是()①做匀速直线运动 ②做匀速圆周运动③做匀变速直线运动 ④做匀变速曲线运动A. ③④ B .②③ C.①③D.①②[解析]如果粒子受到的电场力和洛伦兹力平衡, 则粒子做匀速直线运动, ①正确;如果粒子速度方向与磁感线平行,则③④正确.[答案]AC3. (2012 •福州调研)如图所示,某空间存在正交的匀强电磁场,电场方向水平向右,瓦7x\x X -- f c- x X XXX X \XX XX ・磁场方向垂直纸面向里.一带负电微粒由 斜向上运动,则下列说法正确的是a 点以一定初速度进入电磁场,刚好能沿直线( )abA. 微粒的动能一定增加C.微粒的电势能一定减少B. 微粒的动能一定减少D.微粒的机械能一定不变C 正确;[解析]微粒从a到b过程中,电场力做正功,所以微粒的电势能一定减少,由于除重力以外的外力中只有电场力做正功,所以微粒的机械能增大, 做匀速运动,才能满足题设条件,故动能不变,A 、B 错误.[答案]C4. (2012 •温州市联考)如右图所示,一个静止的质量为m 带电荷量为q 的粒子(不计B 的匀强磁场中,粒子打至 P 点,设O 圧x .5. (2012 •浙江杭州月考)有一个带电荷量为+ q 、重为G 的小球,从两竖直的带电平行 板上方h 处自由落下,两极板间另有匀强磁场,磁感应强度为 B ,方向如右图所示,则带电小球通过有电场和磁场的空间时,下列说法正确的是( )A —定做曲线运动 B. 不可能做曲线运动 C. 有可能做匀加速运动 D. 有可能做匀速运动[解析]由于小球的速度变化时,洛伦兹力会变化,小球所受合力变化,小球 不可能做匀速或匀加速运动, B C D 错,A 正确.D 错误;因微粒必须1qU= 2mv ,带电粒子在磁场中x mv8m做匀速圆周运动有:2= qB ,整理得:x 2= qgU,故B 正确.uF重力),经电压U 加速后垂直进入磁感应强度为[解析]带电粒子在电场中做加速运动,由动能定理有:[答案]B[答案]A6. 如右图所示,a、b是一对平行金属板,分别接到直流电源两极上,右边有一挡板,正中间开有一小孔d,在较大空间范围内存在着匀强磁场,磁感应强度大小为B,方向垂直纸面向里,在a、b两板间还存在着匀强电场E.从两板左侧中点c处射入一束正离子(不计重力),这些正离子都沿直线运动到右侧,从d孔射出后分成3束•则下列判断正确的是A. 这三束正离子的速度一定不相同B. 这三束正离子的比荷一定不相同C. a、b两板间的匀强电场方向一定由a指向bD. 若这三束离子改为带负电而其他条件不变则仍能从d孔射出[解析]因为三束正离子在两极板间都是沿直线运动,电场力等于洛伦兹力,可以判断三束正离子的速度一定相同,且电场方向一定由a指向b,选项A错误,C正确;在右侧磁场中三束正离子做圆周运动的半径不同,可知这三束正离子的比荷一定不相同,选项B正确;若将这三束离子改为带负电,而其他条件不变的情况下受力分析可知,三束离子在两板间仍做匀速直线运动,仍能从d孔射出,选项D正确.[答案]BCD7. (2012 •河北石家庄市教学检测)劳伦斯和利文斯设计出回旋加速器,工作原理示意图如右图所示.置于高真空中的D形金属盒半径为R两盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B的匀强磁场与盒面垂直,高频交流电频率为f,加速电压为U若A处粒子源产生的质子质量为m电荷量为+ q,在加速器中被加速,且加速过程中不考虑相对论效应和重力的影响.则下列说法正确的是A. 质子被加速后的最大速度不可能超过2 n RfB. 质子离开回旋加速器时的最大动能与加速电压U成正比C. 质子第2次和第1次经过两D形盒间狭缝后轨道半径之比为 2 : 1D.不改变磁感应强度B和交流电频率f,该回旋加速器的最大动能不变2n R [解析]粒子被加速后的最大速度受到D形盒半径R的制约,因v = 〒 =2 n Rf, A1 1正确;粒子离开回旋加速器的最大动能E<m= ~2mv= 2m K4 n 2Rf2= 2m n 2Rf2,与加速电压Umv 1 1无关,B错误;根据R= Bq, Uq= 2mV, 2Uq= ?mV,得质子第2次和第1次经过两D形盒间狭缝后轨道半径之比为护:1, C正确;因回旋加速器的最大动能E<m= 2n n 2Rf2与m R f 均有关,D错误.[答案]AC8. (2012 •河南省质量调研)如右图所示,空间存在水平向左的匀强电场和垂直纸面向里的匀强磁场.在该区域中,有一个竖直放置的光滑绝缘圆环,环上套有一个带正电的小球. 0点为圆环的圆心,a、b、c、d为圆环上的四个点,a点为最高点,c点为最低点,b、O d 三点在同一水平线上. 已知小球所受电场力与重力大小相等. 现将小球从环的顶端a点由静止释放,下列判断正确的是()A. 小球能越过d点并继续沿环向上运动B. 当小球运动到c点时,所受洛伦兹力最大C. 小球从a点运动到b点的过程中,重力势能减小,电势能增大D. 小球从b点运动到c点的过程中,电势能增大,动能先增大后减小[解析]由题意可知,小球运动的等效最低点在b、c中间,因此当小球运动到d点时速度为0,不能继续向上运动,选项A错误;小球在等效最低点时速度最大,所受洛伦兹力最大,选项B错误;小球从a运动到b的过程中,重力做正功,电场力也做正功,所以重力势能与电势能均减小,选项C错误;小球从b运动到c的过程中,电场力做负功,电势能增大,合外力先做正功再做负功,动能先增大后减小,选项D正确.[答案]D"能力提升"9. 如右图所示,粗糙的足够长的竖直木杆上套有一个带电的小球,个运动过程中小球的 v —t 图象如右图所示,其中错误的是10. 目前有一种磁强计,用于测定地磁场的磁感应强度•磁强计的原理如右图所示,电 路有一段金属导体,这的横截面是宽为a 、高为b 的长方形,放在沿 y 轴正方向的匀强磁场中,导体中通有沿 x 轴正方向、大小为I 的电流•已知金属导体单位体积中的自由电子数为n 电子电荷量为e ,金属导电过程中,自由电子所做的定向移动可视为匀速运动•两电 极M N 均与金属导体的前后两侧接触,用电压表测出金属导体前后两个侧面间的电势差为 U 则磁感应强度的大小和电极M N 的正负为( )nebUneaU A .—P , M 正、N 负B~T ,M 正、N 负nebUneaUC~T~, M 负、N 正 D.—p , M 负、N 正[解析]由左手定则知,金属中的电子在洛伦兹力的作用下将向前侧面聚集、故M 负、U nebUN 正.由 F 电=F 洛,即 ae = Bev, I = nevS= nevab,得 B = I .[答案]C整个装置处在由水平匀强电场和垂直纸面向外的匀强磁场组成的足够大的复合场中, 小球由静止开始小滑,在整[解析]小球下滑过程中,qE 与qvB 反向,开始下落时qE>qvB ,所以 m —qE — qvB,随下落速度v 的增大 a 逐m —qvB- qE,随下落速度v的增大a 逐渐减小;最后 a = 0,小球匀速下落,故图正确,A B D 错误.[答案]ABD11. (2012 •山西四校联考)有一个带正电的小球,质量为m电荷量为q,静止在固定的绝缘支架上.现设法给小球一个瞬时的初速度V。

高考物理一轮总复习(人教版)课时作业16 含解析

高考物理一轮总复习(人教版)课时作业16  含解析

课时作业(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(1~6题为单项选择题,7~10题为多项选择题) 1.如图所示,BC 是竖直面内的四分之一圆弧形光滑轨道,下端C 与水平直轨道相切。

一个小物块从B 点正上方R 处的A 点处由静止释放,从B 点刚好进入圆弧形光滑轨道下滑,已知圆弧形轨道半径为R =0.2 m ,小物块的质量为m =0.1 kg ,小物块与水平面间的动摩擦因数μ=0.5,取g =10 m/s 2。

小物块在水平面上滑动的最大距离是( )A .0.1 mB .0.2 mC .0.6 mD .0.8 m解析: 设在水平面上滑动的最大距离为x ,由动能定理得:mg ·2R -μmgx =0,解得:x =2R μ=2×0.20.5m =0.8 m ,故选项D 正确。

答案: D2.某同学用如图所示的装置测量一个凹形木块的质量m ,弹簧的左端固定,木块在水平面上紧靠弹簧(不连接)将其压缩,记下木块右端位置A 点,释放后,木块右端恰能运动到B 1点。

在木块槽中加入一个质量m 0=200 g 的砝码,再将木块左端紧靠弹簧,木块右端位置仍然在A 点,释放后木块离开弹簧,右端恰能运动到B 2点。

测得AB 1、AB 2长分别为36.0 cm 和12.0 cm ,则木块的质量m 为( )A .100 gB .200 gC .300 gD .400 g解析: 两次木块均由同一位置释放,故弹簧恢复原长的过程中,弹簧所做的功相同,未加砝码时,由动能定理,可得W 弹-μmg ·AB 1=0,加上砝码m 0时,有W 弹-μ(m +m 0)g ·AB 2=0,解得m =100 g ,选项A 正确。

答案: A3.质量m =2 kg 的物体在光滑水平面上以v 1=6 m/s 的速度匀速向西运动,若有一个F=8 N 、方向向北的恒力作用于物体,在t =2 s 内物体的动能增加了( )A .28 JB .64 JC .32 JD .36 J解析: 设物体沿F 方向的加速度为a ,由牛顿第二定律得: a =F m =82m/s 2=4 m/s 2 物体沿F 方向做匀加速直线运动,2 s 内的位移为:x =12at 2=12×4×22 m =8 m力F 所做的功为:W =Fx =8×8 J =64 J 由动能定理得:W =ΔE k =64 J ,故选B 。

(新课标)2014高考物理一轮复习课时练15

(新课标)2014高考物理一轮复习课时练15

课时作业(十五)1.(2012·菏泽检测)在一棵大树将要被伐倒的时候,有经验的伐木工人就会双眼紧盯着树梢,根据树梢的运动情形就能判断大树正在朝着哪个方向倒下,从而避免被倒下的大树砸伤.从物理知识的角度来解释,以下说法正确的是( )A.树木开始倒下时,树梢的角速度较大,易于判断B.树木开始倒下时,树梢的线速度最大,易于判断C.树木开始倒下时,树梢的向心加速度较大,易于判断D.伐木工人的经验缺乏科学依据[解析] 树木倒下时树干上各部分的角速度相同,半径越大其线速度越大,B项正确.[答案] B2.(2012·浦东模拟)如图所示,正在匀速转动的水平转盘上固定有三个可视为质点的小物块A、B、C,它们的质量关系为m A=2m B=2m C,到轴O的距离关系为r C=2r A=2r B.下列说法中正确的是A.B的角速度比C小B.A的线速度比C大C.B受到的向心力比C小D.A的向心加速度比B大[解析] 正在匀速转动的水平转盘上固定有三个可视为质点的小物块A、B、C,它们的角速度相同,A错;由v=ωr可知,C的线速度最大,B错;由a=ω2r可知,C的向心加速度最大,A、B向心加速度相同,D错;由F=mω2r可知,B受到的向心力比C小,所以答案选C.[答案] C3.(2012·济宁联考)如图所示,两轮用皮带传动,皮带不打滑,图中有A 、B 、C 三点,这三点所在处半径r A >r B =r C ,则这三点的向心加速度a A 、a B 、a C 的关系是( )A .a A =aB =aC B .a C >a A >a B C .a C <a A <a BD .a C =a B >a A[解析] 皮带传动不打滑,A 点与B 点线速度大小相同,由a =v 2r 得a ∝1r,所以a A <a B ;A点与C 点共轴转动,角速度相同,由a =ω2r 得a ∝r ,所以有a A >a C ,所以a C <a A <a B ,可见选项C 正确.[答案] C4.(2012·东北三校联考)如右图所示,在绕中心轴OO ′转动的圆筒内壁上,有一物体随圆筒一起转动.在圆筒的角速度逐渐增大的过程中,物体相对圆筒始终未滑动,下列说法中正确的是A .物体所受弹力逐渐增大,摩擦力大小一定不变B .物体所受弹力不变,摩擦力大小减小了C .物体所受的摩擦力与竖直方向的夹角不为零D .物体所受弹力逐渐增大,摩擦力大小可能不变[解析] 在圆筒的角速度逐渐增大的过程中,物体相对圆筒始终未滑动,则摩擦力的竖直分量与重力平衡,切线分量与速度方向相同,使物体速度增加,所以物体所受的摩擦力与竖直方向的夹角不为零,C 正确;物体的向心力由弹力提供,随着速度增加,向心力增加,物体所受弹力逐渐增大,如果圆筒的角速度均匀增加,则摩擦力大小不变,A 、B 错误,D 正确.[答案] CD5.(2013·安徽联考)摆式列车是集电脑、自动控制等高新技术于一体的新型高速列车,如右图所示.当列车转弯时,在电脑控制下,车厢会自动倾斜,抵消离心力的作用;行走在直线上时,车厢又恢复原状,就像玩具“不倒翁”一样.假设有一超高速列车在水平面内行驶,以360 km/h 的速度拐弯,拐弯半径为1 km ,则质量为50 kg 的乘客,在拐弯过程中所受到的火车给他的作用力为(g取10 m/s2) ( ) A.500 N B.1000 N C.500 2 N D.0[解析] 乘客所需的向心力:F=m v2R=500 N,而乘客的重力为500 N,故火车对乘客的作用力大小为5002N,C正确.[答案] C6.无缝钢管的制作原理如图所示,竖直平面内,管状模型置于两个支承轮上,支承轮转动时通过摩擦力带动管状模型转动,铁水注入管状模型后,由于离心作用,紧紧地覆盖在模型的内壁上,冷却后就得到无缝纲管.已知管状模型内壁半径R,则下列说法正确的是( )A.铁水是由于受到离心力的作用才覆盖在模型内壁上B.模型各个方向上受到的铁水的作用力相同C.若最上部的铁水恰好不离开模型内壁,此时仅重力提供向心力D.管状模型转动的角速度ω最大为g R[解析] A中在惯性参考系中物体不受离心力作用,A错;模型最下部受到铁水的作用力最大,最上方受到的作用力最小,B错误;最上部的铁水如果恰好不离开模型内壁,则重力提供向心力,由mg=mω2R可得ω=gR,故管状模型转动的角速度ω至少为gR,C正确,D错误.[答案] C7.(2013·西城区月考)英国特技演员史蒂夫·特鲁加里亚曾飞车挑战世界最大环形车道.如右图所示,环形车道竖直放置,直径达12 m,若汽车在车道上以12 m/s恒定的速率运动,演员与汽车的总质量为1000 kg,重力加速度g取10 m/s2,则( )A.汽车通过最低点时,演员处于超重状态B .汽车通过最高点时对环形车道的压力为1.4×104N C .若要挑战成功,汽车不可能以低于12 m/s 的恒定速率运动 D .汽车在环形车道上的角速度为1 rad/s[解析] 因为汽车通过最低点时,演员具有向上的加速度,故处于超重状态,A 正确;由ω=v r 可得汽车在环形车道上的角速度为2 rad/s ,D 错误;由mg =m v 20r 可得v 0=gr ≈7.7 m/s,C 错误;由mg +F =m v 2r可得汽车通过最高点时对环形车道的压力为1.4×104N ,B 正确.[答案] AB 8.在一根竖直硬质细杆的顶端O 用铰链连接两根轻杆,轻杆的下端分别固定两个金属小球.当发动机带动竖直硬质细杆运动时,两个金属球可在水平面上做匀速圆周运动,如图所示,设与金属球连接的两轻杆的长度均为l ,两金属球的质量均为m .各杆的质量均可忽略不计.当发动机加速运转时,轻杆与竖直杆的夹角从30°增加到60°,忽略各处的摩擦和阻力,求这一过程中速度变为原来的多少倍.[解析] 由题意,当轻杆与竖直杆夹角为30°时,金属球做圆周运动,有:mg tan30°=m v 21R 1,R 1=l sin30°,所以v 1=3gl 6同理,当轻杆与竖直杆夹角为60°时,有:mg tan60°=m v 22R 2,R 2=l sin60°,所以v 2= 3gl 2 故v 2v 1=427. [答案] 4279.(2012·上海虹口期末)某机器内有两个围绕各自的固定轴匀速转动的铝盘A ,B ,A 盘固定一个信号发射装置P ,能持续沿半径向外发射红外线,P 到圆心的距离为28 cm.B 盘上固定一个带窗口的红外线信号接收装置Q ,Q 到圆心的距离为16 cm.P ,Q 转动的线速度相同,都是4π m/s.当P ,Q 正对时,P 发出的红外线恰好进入Q 的接收窗口,如下图所示,则Q 每隔一定时间就能接收到红外线信号,这个时间的最小值应为A .0.56 sB .0.28 sC .0.16 sD .0.07 s[解析] P 转动的周期T P =0.14 s ,Q 转动的周期T Q =0.08 s ,设这个时间的最小值为t ,t 必须是二者周期的最小公倍数,解得t =0.56 s ,选项A 正确.[答案] A10.(2012·江西重点中学联考)如右图所示,一根不可伸长的轻绳两端各系一个小球a 和b ,跨在两根固定在同一高度的光滑水平细杆C 和D 上,质量为m a 的a 球置于地面上,质量为m b 的b 球从水平位置静止释放.当b 球摆过的角度为90°时,a 球对地面压力刚好为零,下列结论正确的是A .m a ∶m b =3∶1B .m a ∶m b =2∶1C .若只将细杆D 水平向左移动少许,则当b 球摆过的角度为小于90°的某值时,a 球对地面的压力刚好为零D .若只将细杆D 水平向左移动少许,则当b 球摆过的角度仍为90°时,a 球对地面的压力刚好为零[解析] 设D 杆到球b 的距离为r ,球b 运动到最低点时的速度大小为v ,则m b gr =12mv 2,m a g -m b g =mv 2r ,可得m a =3m b ,所以选项A 正确,B 错误;若只将细杆D 水平向左移动少许,设D 杆到球b 的距离变为R ,当b 球摆过的角度为θ时,a 球对地面的压力刚好为零,此时速度为v ,如右图所示,则m b gR sin θ=12mv 2,3m b g -m b g sin θ=mv2R,可得θ=90°,所以选项C 错误,D 正确.本题答案为AD.[答案] AD11.(2012·南师附中月考)“太极球”是近年来在广大市民中较流行的一种健身器材.做该项运动时,健身者半马步站立,手持太极球拍,拍上放一橡胶太极球,健身者舞动球拍时,球却不会掉落地上.现将太极球简化成如下图所示的平板和小球,熟练的健身者让球在竖直面内始终不脱离板而做匀速圆周运动,且在运动的图中的A ,B ,C ,D 位置时球与板间无相对运动趋势.A 为圆周的最高点,C 为最低点,B ,D 与圆心O 等高.设球的重力为1 N ,不计拍的重力.求:(1)健身者在C 处所需施加的力比在A 处大多少?(2)设在A 处时健身者需施加的力为F ,当球运动时B ,D 位置时,板与水平方向需有一定的夹角θ,请作出tan θ-F 的关系图象.[解析] (1)设球运动的线速度为v ,半径为R ,则在A 处时F +mg =m v 2R ①,在C 处时F ′-mg =m v 2R②,由①②式得ΔF =F ′-F =2mg =2 N.(2)在A 处时健身者需施加的力为F ,球做匀速圆周运动的向心力F 向=F +mg ,在B 处不受摩擦力作用,受力分析如右图所示,则tan θ=F 向mg =F +mg mg=F +1. 作出的tan θ-F 的关系图象如右图所示.[答案] (1)2 N (2)见解析12.如下图所示,V 形细杆AOB 能绕其对称轴OO ′转动,OO ′沿竖直方向,V 形杆的两臂与转轴间的夹角均为α=45°.两质量均为m =0.1 kg 的小环,分别套在V 形杆的两臂上,并用长为L =1.2 m 、能承受最大拉力F max =4.5 N 的轻质细线连结,环与臂间的最大静摩擦力等于两者间弹力为0.2倍.当杆以角速度ω转动时,细线始终处于水平状态,取g =10 m/s 2.(1)求杆转动角速度ω的最小值;(2)将杆的角速度从(1)问中求得的最小值开始缓慢增大,直到细线断裂,写出此过程中细线拉力随角速度变化的函数关系式;(3)求第(2)问过程中杆对每个环所做的功.[解析] (1)杆的角速度最小时,摩擦力f max 沿杆向上,建立坐标系,水平方向为x 轴,竖直方向为y 轴,则竖直方向受力平衡F N sin45°+f max cos45°=mg ,水平方向合力提供向心力:F N cos45°-f max sin45°=m ω21r , 且f max =0.2F N ,r =L2,∴ω1=10/3≈3.33 rad/s.(2)当角速度增大,f max 沿杆向下时,竖直方向有,F N sin45°=f max cos45°+mg , 水平方向;F N cos45°+f max sin45°=m ω22r ,∴ω2=5 rad/s.当细线拉力刚达到最大时,有F N sin 45°=f max cos45°+mg ,F N cos45°+f max sin45°+F max =m ω23r ,∴ω3=10 rad/s.∴F 拉=⎩⎪⎨⎪⎧0103 rad/s≤ω≤5 rad/s 0.06ω2-1.5 5 rad/s≤ω<10 rad/s(3)根据动能定理,有W =12m (ω3r )2-12m (ω1r )2,∴W =1.6 J.[答案] (1)3.33 rad/s(2)F 拉=⎩⎪⎨⎪⎧0103 rad/s≤ω≤5 rad/s 0.06ω2-1.5 5 rad/s≤ω<10 rad/s(3)1.6 J。

(新课标)2014高考物理一轮复习课时练24汇总

(新课标)2014高考物理一轮复习课时练24汇总

课时作业(二十四)1.(2012·广州测试)如右图所示的电容式键盘,是通过改变电容器的哪个因素来改变电容的( )A .两板间的距离B .两板间的电压C .两板间的电介质D .两板的正对面积[解析] 计算机键盘上下运动时,改变了上、下两板间的距离,故A 正确. [答案] A2.(2012·山东淄博月考)如右图所示,用电池对电容器充电,电路a 、b 之间接有一灵敏电流表,两极板间有一个电荷q 处于静止状态.现将两极板的间距变大,则( )A .电荷将向上加速运动B .电荷将向下加速运动C .电流表中将有从a 到b 的电流D .电流表中将有从b 到a 的电流[解析] 充电后电容器的上极板A 带正电.不断开电源,增大两板间距,U 不变、d 增大.由E =Ud 知两极板间场强减小,场强减小会使电荷q 受到的电场力减小,电场力小于重力,合力向下,电荷q 向下加速运动.由C =εS4πkd 知电容C 减小,由Q =CU 知极板所带电荷量减少,会有一部分电荷返回电源,形成逆时针方向的电流,故电流表中将会有由b 到a的电流,选项BD 正确.[答案] BD3.电荷量和质量之比叫比荷,质量和电荷量不同的带电粒子,在具有相同电压的加速电场中由静止开始加速后,必定是( )A .比荷大的粒子其动能大,电荷量大的粒子其速度大B .比荷大的粒子其速度大,电荷量大的粒子其动能大C .比荷大的粒子其速度和动能都大D .电荷量大的粒子其速度和动能都大[解析] 由动能定理E k =12mv 2=qU 可知,电荷量大的粒子其动能大.又可得v = 2qUm ,可知比荷大的粒子其速度大,B 对.[答案] B4.(2012·秦淮检测)如图(甲)所示为一只“极距变化型电容式传感器”的部分构件示意图.当动极板和定极板之间的距离d 变化时,电容C 便发生变化,通过测量电容C 的变化就可知道两极板之间距离d 的变化的情况.在图(乙)中能正确反映C 与d 之间变化规律的图象是( )[解析] 由平行板电容器电容的决定式C =εr S /(4πkd )可知,电容C 与极板之间距离d 成反比,在第一象限反比例函数图象是双曲线的一支,所以A 正确.[答案] A5.(2012·滨海检测)如图(甲)所示,一个带正电的粒子以一定的初速度垂直进入水平方向的匀强电场,若不计重力,在图(乙)中能正确描述粒子在电场中运动轨迹的是[解析] 粒子在电场中做类平抛运动,受力方向总是沿电场线方向指向轨迹的凹侧,C 正确.[答案] C 6.如右图所示,平行板电容器的电容为C ,带电荷量为Q ,两极板间距离为d ,今在距两极板的中点12d 处放一电荷q ,则( )A .q 所受静电力的大小为QqCdB .q 所受静电力的大小为k 4Qqd 2 C .q 点处的电场强度是k 4Qd 2 D .q 点处的电场强度是k 8qd 2[解析] 两极板之间的电场强度E =U d ,q 受到的静电力F =Eq =U d q =QCd q ,A 正确;Q 不是点电荷,点电荷的场强公式E =k Qr 2在这里不能用,B 、C 、D 不正确.[答案] A 7.如右图所示,水平放置的平行板电容器,上板带负电,下板带正电,带电粒子以速度v 0水平射入电场,且沿下板边缘飞出.若下板不动,将上板上移一小段距离,粒子仍以相同的速度v 0从原处飞入(不计重力),则带电粒子( )A .将打在下板中央B .仍沿原轨迹由下板边缘飞出C .不发生偏转,沿直线运动D .在两板间运动时间不变[解析] 将电容器上板移动一小段距离,电容器带电荷量不变,由公式E =U d =QCd =4k πQεr S ,可知,电容器产生的场强不变,以相同速度入射的带电粒子仍将沿原轨迹运动,下板不动时,带电粒子沿原轨迹由下板边缘飞出,B 正确;带电粒子运动时间t =lv 0不变,D正确.[答案] BD 8.如图所示装置,真空中有三个电极:发射电子的阴极:其电势φk =-182 V ;栅网:能让电子由其间穿过,电势φk =0;反射极电势为φr =-250 V ,与栅网的距离d =4 mm.设各电极间的电场是均匀的,从阴极发射的电子初速度为零,电子所受重力可以忽略,已知电子质量是0.91×10-30 kg ,电荷量e =1.6×10-19 C ,设某时刻有一电子穿过栅网飞向反射极,问它经过多长时间后再回到栅网?[解析] 因为|φk |<|φr |,所以电子穿过栅网,不到反射极就返回.设电子在到达栅网时速度为v ,则12mv 2=e (φg -φk ),电子在栅网和反射极间的加速度a =e φg -φrmd ,又t =2va ,联立以上几式解得t =1.5×10-9s.[答案] 1.5×10-9 s9.如右图所示,从F 处释放一个无初速度的电子向B 板方向运动,指出下列对电子运动的描述中哪项是正确的(设电源电动势为E )( )A .电子到达B 板时的动能是Ee B .电子从B 板到达C 板动能变化量为零C .电子到达D 板时动能是3Ee D .电子在A 板和D 板之间做往复运动[解析] 电子从A 板到B 板做匀加速运动,且eE =ΔE k ,A 正确;在BC 之间做匀速运动,B 正确;从C 板到D 板做匀减速运动,到达D 板时,速度减为零,C 错误,D 正确.[答案] ABD 10.如右图所示,质量相同的两个带电粒子P 、Q 以相同的速度沿垂直于电场方向射入两平行板间的匀强电场中,P 从两极板正中央射入,Q 从下极板边缘处射入,它们最后打在同一点(重力不计),则从开始射入到打到上极板的过程中( )A .它们运动的时间t Q =t pB .它们运动的加速度a Q <a pC .它们所带的电荷量之比q P ∶q Q =1∶2D .它们的动能增加量之比ΔE KP ∶ΔE KQ =1∶2[解析] 设P 、Q 两粒子的初速度为v 0,加速度分别为a P 和a Q ,粒子P 到上极板的距离是h /2,它们做类平抛运动的水平距离为l .则对P ,由l =v 0t P ,h 2=12a P t 2P ,得到a P =hv 20l 2.同理对Q ,l =v 0t Q ,h =12a Q t 2Q ,得到a Q =2hv 20l 2.由此可见t P =t Q ,a Q =2a P ,而a P =q P E m ,a Q =q Q Em ,所以q P ∶q Q =1∶2.由动能定理,它们的动能增加量之比ΔE k P ∶ΔE k Q =ma P h2∶ma Q h =1∶4.综上所述,A 、C 正确.[答案] AC11.质谱分析技术已广泛应用于各前沿科学领域.汤姆孙发现电子的质谱装置示意如图所示,M 、N 为两块水平放置的平行金属极板,板长为L ,板右端到屏的距离为D ,且D 远大于L ,O ′O 为垂直于屏的中心轴线,不计离子重力和离子在板间偏离O ′O 的距离.以屏中心O 为原点建立xOy 直角坐标系,其中x 轴沿水平方向,y 轴沿竖直方向.设一个质量为m 0、电荷量为q 0的正离子以速度v 0沿O ′O 的方向从O ′点射入,板间不加电场和磁场时,离子打在屏上O 点.若在两极板间加一沿+y 方向场强为E 的匀强电场,求离子射到屏上时偏离O 点的距离y 0.[解析] 离子在电场中受到的静电力F y =q 0E离子获得的加速度a y =F ym 0 离子在板间运动的时间t 0=Lv 0到达极板右边缘时,离子在+y 方向的分速度v y =a y t 0离子从板右端到达屏上所需时间t 0′=Dv 0离子射到屏上时偏离O 点的距离y 0=v y t 0′由上述各式,得y 0=q 0ELDm 0v 20. [答案] q 0ELD m 0v 2012.如下图甲所示,静电除尘装置中有一长为L 、宽为b 、高为d 的矩形通道,其前、后面板使用绝缘材料,上、下面板使用金属材料.如下图乙是装置的截面图,上、下两板与电压恒定的高压直流电源相连.质量为m 、电荷量为-q 、分布均匀的尘埃以水平速度v 0进入矩形通道,当带负电的尘埃碰到下板后其所带电荷被中和,同时被收集.通过调整两板间距d 可以改变收集效率η.当d =d 0时,η为81%(即离下板0.81d 0范围内的尘埃能够被收集).不计尘埃的重力及尘埃之间的相互作用.(1)求收集效率为100%时,两板间距的最大值d m ; (2)求收集效率η与两板间距d 的函数关系.[解析] (1)收集效率η为81%,即离下板0.81d 0的尘埃恰好到达下板的右端边缘,设高压电源的电压为U ,则在水平方向有L =v 0t① 在竖直方向有0.81d 0=12at 2② 其中a =F m =qE m =qUmd 0③当减小两板间距时,能够增大电场强度,提高装置对尘埃的收集效率.收集效率恰好为100%时,两板间距即为d m .如果进一步减小d ,收集效率仍为100%.因此,在水平方向有L =v 0t④ 在竖直方向有d m =12a ′t 2⑤ 其中a ′=F ′m =qE ′m =qUmd m⑥联立①②③④⑤⑥式可得d m =0.9d 0⑦(2)当d >0.9d 0时,设距下板x 处的尘埃恰好到达下板的右端边缘,此时有 x =12qU md (L v 0)2⑧ 根据题意,收集效率为η=xd⑨联立①②③⑧⑨式可得η=0.81(d 0d )2.即当d ≤0.9d 0时η=100%当d >0.9d 0时η=0.81(d 0d )2[答案] (1)0.9d 0 (2)η=0.81(d 0d )2(d >0.9d 0) η=100% (d ≤0.9d 0)。

(新课标)2014高考物理一轮复习课时练2

(新课标)2014高考物理一轮复习课时练2

课时作业(二)1.(2012·南通模拟)对以a =2 m/s 2做匀加速直线运动的物体,下列说法正确的是 A .在任意1 s 内末速度比初速度大2 m/s B .第n s 末的速度比第1 s 末的速度大2n m/s C .2 s 末速度是1 s 末速度的2倍 D .n s 时的速度是n2s 时速度的2倍[解析] 加速度是2 m/s 2,即每秒速度增加2 m/s ,经t s 速度增加2t m/s ,所以很明显A 正确;第n s 末的速度比第1 s 末的速度大2(n -1)m/s ,B 错;因为物体不一定是从静止开始做匀加速运动,所以C 、D 说法不正确.[答案] A2.(2012·山东东营高三月考)一物体以5 m/s 的初速度、-2 m/s 2的加速度在粗糙水平面上滑行,在4 s 内物体通过的路程为( )A .4 mB .36 mC .6.25 mD .以上答案都不对[解析] 此题属刹车类题目,要注意其实际运动时间.因v 0=5 m/s ,a =-2 m/s 2,故只需t =v a =2.5 s 停下来,其4 s 内位移即为2.5 s 内位移,s =v 2t =52×2.5 m=6.25 m .选项C 正确.[答案] C3.(2012·淮安质检)做匀加速直线运动的质点,在第5 s 末的速度为10 m/s ,则 A .前10 s 内位移一定是100 m B .前10 s 内位移不一定是100 m C .加速度一定是2 m/s 2D .加速度不一定是2 m/s 2[解析] 质点在第5 s 末的速度为瞬时速度,因不知质点运动的初速度,故无法确定其加速度大小,C 错误,D 正确;质点在前10 s 内一直做匀加速运动,则前10 s 内的平均速度等于5 s 末瞬时速度为10 m/s ,前10 s 内的位移为100 m ,故A 正确,B 错误.[答案] AD4.(2012·福建师大附中月考)火车从甲站出发,沿平直铁路做匀加速直线运动,紧接着又做匀减速直线运动,到乙站恰好停止.在先、后两个运动过程中( )A .火车的位移一定相等B .火车的加速度大小一定相等C .火车的平均速度一定相等D .所用的时间一定相等[解析] 火车从甲站出发,沿平直铁路做匀加速直线运动,即初速度为零,紧接着又做匀减速直线运动,也就是做匀加速直线运动的末速度就是做匀减速直线运动的初速度,而做匀减速直线运动的末速度又为零,所以,在先、后两个运动过程中的平均速度v =v 0+v2相等,选项C 正确;火车运动的位移x =v t =v 0+v 2t ,火车运动的加速度a =v 0-vt,即它们不仅与初速度、末速度有关,还跟时间有关,而前后两个运动过程中所用的时间不一定相同,所以火车的位移、加速度在先、后两个运动过程中不一定相等,即A 、B 、D 选项都不正确.[答案] C5.骑自行车的人由静止开始沿直线运动,在第1 s 内通过1米、第2 s 内通过2米、第3 s 内通过3米、第4 s 内通过4米.则下列说法中正确的是( )A .自行车和人都做匀加速直线运动B .第2 s 末的瞬时速度为2.5 m/sC .第3、4两秒内的平均速度为3.5 m/sD .整个过程中加速度为1 m/s 2[解析] 本题已明确指出骑自行车的人做初速度为零的直线运动,因此,若为匀变速直线运动,必有连续相等时间内的位移之比是1∶3∶5∶7,而这里对应的位移之比是1∶2∶3∶4.虽然在连续相等时间内位移差相等,但不是匀变速直线运动,故无法求出加速度及第 2 s 末的瞬时速度.根据平均速度的定义可求得第3、4两秒内的平均速度为v =3+42 m/s =3.5m/s.C 选项正确.[答案] C6.汽车刹车后开始做匀减速运动,第1 s 内和第2 s 内的位移分别为3 m 和2 m ,那么从2 s 末开始,汽车还能继续向前滑行的最大距离是( )A .1.5 mB .1.25 mC .1.125 mD .1 m[解析] 由平均速度可求0.5 s 、1.5 s 时的速度分别为3 m/s 和2 m/s ,得a =-1 m/s 2.由v =v 0+at 得v 0=3.5 m/s ,共运动3.5 s,2 s 末后汽车还能运动1.5 s ,由x =12at 2得x =1.125 m.[答案] C7.(2012·成都模拟)做匀减速直线运动的物体经4 s 停止,若在第1 s 内的位移是14 m ,则最后1 s 内位移是( )A .3.5 mB .2 mC .1 mD .0[解析] 利用“逆向推理法”,把物体的运动看成逆向的初速度为零的匀加速直线运动,则相等时间内的位移之比为7∶5∶3∶1,所以71=14 m x 1,x 1=2 m .故选B.[答案] B8.目前,配置较高的汽车都安装了ABS(或EBS)制动装置,可保证车轮在制动时不会被抱死,使车轮仍有一定的滚动,安装了这种防抱死装置的汽车,在紧急刹车时可获得比车轮抱死更大的制动力,从而使刹车距离大大减小.假设汽车安装防抱死装置后刹车制动力恒为F ,驾驶员的反应时间为t ,汽车的质量为m ,刹车前匀速行驶的速度为v ,则A .汽车刹车的加速度大小为a =vtB .汽车刹车时间t ′=mv FC .汽车的刹车距离为s =vt +mv 2FD .汽车的刹车距离为s =vt +mv 22F[解析] 由F =ma 可知,a =F m ,制动时间应为t ′=v a =mvF,A 错误,B 正确;刹车距离应为s =vt +v 22a =vt +mv 22F,C 错误、D 正确.[答案] BD9.(2012·南师附中模拟)如图甲所示是一种速度传感器的工作原理图,这个系统中只有一个不动的小盒子B ,工作时小盒子B 向被测物体发出短暂的超声波脉冲,脉冲被运动的物体反射后又被B 盒接受,从B 盒发射超声波开始计时,经时间Δt 0再次发射超声波脉冲,图乙是连续两次发射的超声波的位移—时间图象,则下列说法正确的是A .超声波的速度为v 声=2x 1t 1B .超声波的速度为v 声=2x 2t 2C .物体的平均速度为v =2x 2-x 1t 2-t 1+2Δt 0D .物体的平均速度为v =2x 2-x 1t 2-t 1+Δt 0[解析] 由图乙可知,超声波的速度为v 声=2x 1t 1,A 项正确;对图乙添加辅助线如图,通过数量关系,找出运动物体在发生位移Δx 所用时间Δy ,由图可知,Δt =t 2-t 1+Δt 02,则物体的平均速度为v =2x 2-x 1t 2-t 1+Δt 0,D 项正确.[答案] AD10.物体以速度v 匀速通过直线上的A 、B 两点,所用时间为t ,现在物体从A 点由静止出发,先做匀加速直线运动(加速度为a 1)到某一最大速度v m ,然后立即做匀减速直线运动(加速度大小为a 2)至B 点速度恰好减为0,所用时间仍为t .则物体的A .v m 只能为2v ,与a 1、a 2的大小无关B .v m 可为许多值,与a 1、a 2的大小有关C .a 1、a 2必须是一定的D .a 1、a 2必须满足a 1·a 2a 1+a 2=2vt[解析] 匀速运动时x =vt ① 匀加速、匀减速运动时x =12v m t② 由①②得v m =2v③ 由v 2=2ax 得:v 2m 2a 1+v 2m2a 2=x④由①③④得:a 1·a 2a 1+a 2=2vt,所以选项A 、D 正确.[答案] AD11.一列火车做匀变速直线运动驶来,一人在轨道旁边观察火车运动,发现在相邻的两个10 s 内,火车从他跟前分别驶过8节车厢和6节车厢,每节车厢长8 m(连接处长度不计),求:(1)火车的加速度的大小;(2)人开始观察时火车速度的大小.[解析] (1)由题知,火车做匀减速运动,设火车加速度大小为a ,L =8 m. Δx =aT 2,8L -6L =a ×102,a =2L 100=2×8100m/s 2=0.16 m/s 2.(2)设人开始观察时火车速度大小为v 0,v t 2=v =8L +6L 2T =14×820 m/s =5.6 m/s.v t2=v 0-aT ,解得v 0=7.2 m/s.[答案] (1)0.16 m/s 2(2)7.2 m/s12.(2012·洛阳四校联考)2010年11月18日,珠海航展现场空军八一飞行表演队两架歼10飞机表演剪刀对冲,上演精彩空中秀.质量为m 的歼10飞机表演后返回某机场,降落在跑道上减速过程简化为两个匀减速直线运动.飞机以速度v 0着陆后立即打开减速阻力伞,加速度大小为a 0,运动时间为t 1;随后在无阻力伞情况下匀减速直至停下.在平直跑道上减速滑行总路程为s .求:第二个减速阶段飞机运动的加速度大小和时间.[解析] 如图,A 为飞机着陆点,AB 、BC 分别为两个匀减速运动过程,C 点停下.A 到B 过程,依据运动学规律有 s 1=v 0t 1-12a 1t 21 v B =v 0-a 1t 1B 到C 过程,依据运动学规律有 s 2=v B t 2-12a 2t 220=v B -a 2t 2A 到C 过程,有: s =s 1+s 2联立解得:a 2=v 0-a 1t 122s +a 1t 21-2v 0t 1,t 2=2s +a 1t 21-2v 0t 1v 0-a 1t 1.v0-a1t12 2s+a1t21-2v0t1t2=2s+a1t21-2v0t1v0-a1t1[答案] a2=。

2014年全国统一高考物理试卷(新课标ⅰ)(附参考答案+详细解析Word打印版)

2014年全国统一高考物理试卷(新课标ⅰ)(附参考答案+详细解析Word打印版)

2014年全国普通高等学校招生统一考试物理试卷(新课标Ⅰ)一、选择题:本题共8小题,每小题6分,在每题给出的四个选项中,第14-18题只有一项符合题目要求,第19-21题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分。

14.(6分)在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是()A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化15.(6分)关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是()A.安培力的方向可以不垂直于直导线B.安培力的方向总是垂直于磁场的方向C.安培力的大小与通电导线和磁场方向的夹角无关D.将直导线从中折成直角,安培力的大小一定变为原来的一半16.(6分)如图,MN为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未画出),一带电粒子从紧贴铝板上表面的P点垂直于铝板向上射出,从Q点穿越铝板后到达PQ的中点O.已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变,不计重力,铝板上方和下方的磁感应强度大小之比为()A.2 B.C.1 D.17.(6分)如图所示,用橡皮筋将一小球悬挂在小车的架子上,系统处于平衡状态,现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定时细线偏离竖直方向到某一角度(橡皮筋在弹性限度内)。

与稳定在竖直位置时相比,小球的高度()A.一定降低B.一定升高C.保持不变D.升高或降低由橡皮筋的劲度系数决定18.(6分)如图(a),线圈ab、cd绕在同一软铁芯上,在ab线圈中通以变化的电流,用示波器测得线圈cd间电压如图(b)所示,已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab中电流随时间变化关系的图中,可能正确的是()A.B.C .D .19.(6分)太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动,当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学家称为“行星冲日”,据报道,2014年各行星冲日时间分别为:1月6日木星冲日;4月9日火星冲日;5月11日土星冲日;8月29日海王星冲日;10月8日天王星冲日.已知地球及各地外行星绕太阳运动的轨道半径如下表所示,则下列判断正确的是()A.各地外行星每年都会出现冲日现象B.在2015年内一定会出现木星冲日C.天王星相邻两次冲日的时间间隔为土星的一半D.地外行星中,海王星相邻两次冲日的时间间隔最短20.(6分)如图,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为L,b与转轴的距离为2L.木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()A.a、b所受的摩擦力始终相等B.b一定比a先开始滑动C.ω=是b开始滑动的临界角速度D.当ω=时,a所受摩擦力的大小为kmg21.(6分)如图,在正电荷Q的电场中有M、N、P、F四点,M、N、P为直角三角形的三个顶点,F为MN的中点,∠M=30°,M、N、P、F四点处的电势分别用φM、φN、φP、φF表示,已知φM=φN、φP=φF,点电荷Q在M、N、P三点所在平面内,则()A.点电荷Q一定在MP的连线上B.连接PF的线段一定在同一等势面上C.将正试探电荷从P点搬运到N点,电场力做负功D.φP>φM三、非选择题:包括必考题和选考题两部分(一)必考题(共129分)22.(6分)某同学利用图甲所示实验装置及数字化信息系统获得了小车加速度a 与钩码的质量m的对应关系图,如图乙所示,实验中小车(含发射器)的质量为200g,实验时选择了不可伸长的轻质细绳和轻定滑轮,小车的加速度由位移传感器及与之相连的计算机得到.回答下列问题:(1)根据该同学的结果,小车的加速度与钩码的质量成(填“线性”或“非线性”)关系;(2)由图乙可知,a﹣m图线不经过原点,可能的原因是;(3)若利用本实验来验证“小车质量不变的情况下,小车的加速度与作用力成正比”的结论,并直接以钩码所受重力mg作为小车受到的合外力,则实验中应采取的改进措施是,钩码的质量应满足的条件是.23.(9分)利用如图(a)所示电路,可以测量电源的电动势和内阻,所用的实验器材有:待测电源,电阻箱R(最大阻值999.9Ω),电阻R0(阻值为3.0Ω),电阻R1(阻值为3.0Ω),电流表(量程为200mA,内阻为R A=6.0Ω),开关S.实验步骤如下:①将电阻箱阻值调到最大,闭合开关S;②多次调节电阻箱,记下电流表的示数I和电阻箱相应的阻值R;③以为纵坐标,R为横坐标,作出﹣R图线(用直线拟合);④求出直线的斜率k和在纵轴上的截距b回答下列问题:(1)分别用E和r表示电源的电动势和内阻,则和R的关系式为;(2)实验得到的部分数据如下表所示,其中电阻R=3.0Ω时电流表的示数如图(b)所示,读出数据,完成下表.答:①,②./A﹣1(3)在图(c)的坐标纸上将所缺数据点补充完整并作图,根据图线求得斜率k=A﹣1Ω﹣1,截距b=A﹣1;(4)根据图线求得电源电动势E=V,内阻r=Ω.24.(12分)公路上行驶的两辆汽车之间应保持一定的安全距离。

2014高考物理课后提分训练16.pdf

2014高考物理课后提分训练16.pdf

2014高考物理课后提分训练16 (时间45分钟,满分100分) 一、单项选择题(本大题共4小题,每小题6分,共24分.在每小题给出的四个选项中,只有一个选项符合题目要求,选对的得6分,选错或不答的得0分.) 1. 图5-3-12 如图5-3-12所示,离水平地面一定高处水平固定一内壁光滑的圆筒,筒内固定一轻质弹簧,弹簧处于自然长度.现将一小球从地面以某一初速度斜向上抛出,刚好能水平进入圆筒中,不计空气阻力.下列说法中正确的是( ) A.弹簧获得的最大弹性势能小于小球抛出时的动能 B.弹簧获得的最大弹性势能等于小球抛出时的动能 C.小球从抛出到将弹簧压缩到最短的过程中小球的机械能守恒 D.小球抛出的初速度大小仅与圆筒离地面的高度有关 2. 图5-3-13 内壁光滑的环形凹槽半径为R,固定在竖直平面内,一根长度为R的轻杆,一端固定有质量m的小球甲,另一端固定有质量为2m的小球乙.现将两小球放入凹槽内,小球乙位于凹槽的最低点(如图5-3-13所示),由静止释放后( ) A.下滑过程中甲球减少的机械能总是等于乙球增加的机械能 B.下滑过程中甲球减少的重力势能总是等于乙球增加的重力势能 C.甲球可沿凹槽下滑到槽的最低点 D.杆从右向左滑回时,乙球一定不能回到凹槽的最低点 3.如图5-3-14所示,一质量为m的滑块以初速度v0从固定于地面上的斜面底端A开始冲上斜面,到达某一高度后返回A,斜面与滑块之间有摩擦.下列各项分别表示它在斜面上运动的速度v、加速度a、势能Ep和机械能E随时间的变化图象,可能正确的是( ) 图5-3-14 4. 图5-3-15 如图5-3-15所示,物体A、B通过细绳及轻质弹簧连接在轻滑轮两侧,物体A、B的质量分别为m、2m,开始时细绳伸直,用手托着物体A使弹簧处于原长且A与地面的距离为h,物体B静止在地面上.放手后物体A下落,与地面即将接触时速度为v,此时物体B对地面恰好无压力,则下列说法中正确的是( ) A.物体A下落过程中的任意时刻,加速度不会为零 B.此时弹簧的弹性势能等于mgh+mv2 C.此时物体B处于平衡状态 D.此过程中物体A的机械能变化量为mgh+mv2 二、双项选择题(本大题共5小题,每小题8分,共40分.在每小题给出的四个选项中,有两个选项符合题目要求,全部选对的得8分,只选1个且正确的得4分,有选错或不答的得0分.) 5.下列说法正确的是( ) A.如果物体所受到的合外力为零,则其机械能一定守恒 B.如果物体所受到的合外力做的功为零,则其机械能一定守恒 C.物体沿光滑曲面自由下滑的过程中,其机械能一定守恒 D.做匀加速运动的物体,其机械能可能守恒 6. 图5-3-16 如图5-3-16所示,A、B两球质量相等,A球用不能伸长的轻绳系于O点,B球用轻弹簧系于O′点,O与O′点在同一水平面上,分别将A、B球拉到与悬点等高处,使绳和轻弹簧均处于水平,弹簧处于自然状态,将两球分别由静止开始释放,当两球达到各自悬点的正下方时,两球仍处在同一水平面上,则( ) A.两球到达各自悬点的正下方时,两球动能相等 B.两球到达各自悬点的正下方时,A球动能较大 C.两球到达各自悬点的正下方时,B球动能较大 D.两球到达各自悬点的正下方时,A球受到向上的拉力较大 7.如图5-3-17所示是全球最高的(高度208米)北京朝阳公园摩天轮,一质量为m的乘客坐在摩天轮中以速率v在竖直平面内做半径为R的匀速圆周运动,假设t=0时刻乘客在轨迹最低点且重力势能为零,那么,下列说法正确的是( ) 图5-3-17 A.乘客运动的过程中,重力势能随时间的变化关系为Ep=mgR(1-cos t) B.乘客运动的过程中,在最高点受到座位的支持力为m-mg C.乘客运动的过程中,机械能守恒,且机械能为E=mv2 D.乘客运动的过程中,机械能随时间的变化关系为E=mv2+mgR(1-cos t) 8. 图5-3-18 如图5-3-18所示,光滑细杆AB、AC在A点连接,AB竖直放置,AC水平放置,两相同的中心有小孔的小球M、N,分别套在AB和AC上,并用一细绳相连,细绳恰好被拉直,现由静止释放M、N,在运动过程中下列说法中正确的是( ) A.M球的机械能守恒 B.M球的机械能减小 C.M和N组成的系统的机械能守恒 D.绳的拉力对N做负功 9. 图5-3-19 如图5-3-19所示为竖直平面内的直角坐标系.一个质量为m的质点,在力F和重力的作用下,从坐标原点O由静止开始沿直线OA斜向下运动,直线OA与y轴负方向成θ角(θ<90°).不计空气阻力,重力加速度为g,则以下说法正确的是( ) A.当F=mgtan θ时,质点的机械能守恒 B.当F=mgsin θ时,质点的机械能守恒 C.当F=mgtan θ时,质点的机械能可能减小也可能增大 D.当F=mgsin θ时,质点的机械能可能减小也可能增大 三、非选择题(本大题共2小题,共36分.按题目要求作答.解答题应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位.) 10. 图5-3-20 (18分)半径R=0.50 m的光滑圆环固定在竖直平面内,轻质弹簧的一端固定在环的最高点A处,另一端系一个质量m=0.20 kg的小球,小球套在圆环上,已知弹簧的原长为L0=0.50 m,劲度系数k=4.8 N/m.将小球从如图5-3-20所示的位置由静止开始释放,小球将沿圆环滑动并通过最低点C,在C点时弹簧的弹性势能EpC=0.6 J.(g取10 m/s2),求: (1)小球经过C点时的速度vC的大小; (2)小球经过C点时对环的作用力的大小和方向. 11.(18分)如图5-3-21所示,倾角为θ的光滑斜面上放有两个质量均为m的小球A和B,两球之间用一根长为L的轻杆相连,下面的小球B离斜面底端的高度为h.两球从静止开始下滑,不计机械能损失,求: 图5-3-21 (1)两球都进入光滑水平面时两小球运动的速度大小; (2)此过程中杆对B球所做的功. 1.【解析】 小球从抛出到弹簧压缩到最短的过程中,只有重力和弹力做功,因此小球和弹簧系统的机械能守恒,即mv=mgh+Ep,由此得到Ep<mv,选项A正确,B、C错误;斜上抛运动可分解为竖直上抛运动和水平方向的匀速直线运动,在竖直方向上有2gh=vsin2θ(θ为v0与水平方向的夹角),解得v0=,由此可知,选项D错误. 【答案】 A 2.【解析】 环形槽光滑,甲、乙组成的系统在运动过程中只有重力做功,故系统机械能守恒,下滑过程中甲减少的机械能总是等于乙增加的机械能,甲、乙系统减少的重力势能等于系统增加的动能;甲减少的重力势能等于乙增加的势能与甲、乙增加的动能之和;由于乙的质量较大,系统的重心偏向乙一端,由机械能守恒,知甲不可能滑到槽的最低点,杆从右向左滑回时乙一定会回到槽的最低点. 【答案】 A 3.【解析】 由牛顿第二定律可知,滑块上滑阶段有mgsin θ+Ff=ma1,下 滑阶段有mgsin θ-Ff=ma2,因此a1>a2,选项B错误;v>0和v<0时,速度图象的斜率不同,故选项A错误;由于摩擦力始终做负功,机械能一直减小,故选项D错误;重力势能先增大后减小,且上滑阶段加速度大,势能变化快,下滑阶段加速度小,势能变化慢,故选项C可能正确. 【答案】 C 4.【解析】 对物体A进行受力分析可知,当弹簧的弹力大小为mg时,物体A的加速度为零,A错误;由题意和功能关系知弹簧的弹性势能为Ep=mgh-mv2,B错误;当物体B对地面恰好无压力时,说明弹簧的弹力大小为2mg,此时B所受合外力为零,恰好处于平衡状态,C正确;弹簧的弹性势能的增加量等于物体A的机械能的减少量(mgh-mv2),D错误. 【答案】 C 5.【解析】 物体受到的合外力为零,机械能不一定守恒,如在竖直方向上物体做匀速直线运动,其机械能不守恒.所以选项A、B错误.物体沿光滑曲面自由下滑的过程中,只有重力做功,所以机械能守恒.选项C正确.做匀加速运动的物体,其机械能可能守恒,如自由落体运动,选项D正确. 【答案】 CD 6.【解析】 两球由水平位置下降到竖直位置,重力势能减少量相同,但B球重力势能减少量有一部分转化为弹簧的弹性势能,由系统机械能守恒定律可知,A球在悬点正下方的动能大,B正确,A、C错误,在最低点,由F-mg=m及vA>vB可知,FA>FB,D正确. 【答案】 BD 7.【解析】 在最高点,根据牛顿第二定律可得,mg-N=m,受到座位的支持力为N=mg-m,B项错误;由于乘客在竖直平面内做匀速圆周运动,其动能不变,重力势能发生变化,所以乘客在运动的过程中机械能不守恒,C项错误;在时间t内转过的弧度为t,所以对应t时刻的重力势能为Ep=mgR(1-cos t),总的机械能为E=Ek+Ep=mv2+mgR(1-cos t),A、D两项正确. 【答案】 AD 8.【解析】 由于杆AB、AC光滑,所以M下降,N向左运动,绳子对N做正功,对M做负功,N的动能增加,机械能增加,M的机械能减少,对M、N系统,杆对M、N均不做功,系统机械能守恒,故B、C两项正确. 【答案】 BC 9.【解析】 如图为力的矢量三角形图示,若F=mgtan θ,则力F可能为b方向或c方向,故力F的方向可能与运动方向成锐角,也可能与运动方向成钝角,除重力外的力F对质点可能做正功,也可能做负功,故质点机械能可能增大,也可能减小,C对A错;当F=mgsin θ,即力F为a方向时,力F垂直质点运动方向,故只有重力对质点做功,机械能守恒,B对D错. 【答案】 BC 10.【解析】 由题图知初始时刻弹簧处于原长. (1)小球从B到C,根据机械能守恒定律有 mg(R+Rcos 60°)=EpC+mv 代入数据求出vC=3 m/s. (2)小球经过C点时受到三个力作用,即重力G、弹簧弹力F、环的作用力FN,设环对小球的作用力方向向上,根据牛顿第二定律有 F+FN-mg=m F=kx x=R 所以FN=m+mg-F FN=3.2 N,方向竖直向上 根据牛顿第三定律得出,小球对环的作用力大小为3.2 N,方向竖直向下. 【答案】 (1)3 m/s (2)3.2 N,方向竖直向下 11.【解析】 (1)由于不计机械能损失,因此两球组成的系统机械能守恒.两球在光滑水平面上运动的速度大小相等,设为v,根据机械能守恒定律有: mgh+mg(h+Lsin θ)=2×mv2, 解得:v=. (2)根据动能定理,对B球有:W+mgh=mv2-0 则W=mv2-mgh=mgLsin θ. 【答案】 (1) (2)mgLsin θ 高考学习网: 高考学习网:。

(新课标)2014高考物理一轮复习课时练33汇总

(新课标)2014高考物理一轮复习课时练33汇总

课时作业(三十三)1.(2012·江苏南通月考)电磁炉的工作原理是利用电磁感应现象产生的涡流,使锅体发热从而加热食物.下列相关的说法中正确的是( ) A.锅体中涡流的强弱与磁场变化的频率有关B.电磁炉中通入电压足够高的直流电也能正常工作C.金属或环保绝缘材料制成的锅体都可以利用电磁炉来烹饪食物D.电磁炉的上表面一般都用金属材料制成,以加快热传递、减少热损耗[解析] 涡流是高频交流电产生的磁场引起的电磁感应现象,故选项A正确、B错误;电磁炉表面一般用绝缘材料制成,避免产生涡流,锅体用金属制成利用涡流加热食物,故选项C、D错误.[答案] A2.(2012·湖南嘉兴模拟)在竖直向下的匀强磁场中,将一水平放置的金属棒PQ以初速度v0水平抛出,如右图所示.棒在运动过程中始终保持水平,空气阻力不计,那么,下列说法中正确的是( ) A.PQ棒两端的电势一定满足φP<φQB.PQ棒中的感应电动势越来越大C.PQ棒中的感应电动势越来越小D.PQ棒中的感应电动势保持不变[解析] PQ棒水平切割磁感线,利用右手定则可判断两端的电势一定满足φP<φQ,A 正确;因PQ棒水平方向速度不变,竖直方向不切割磁感线,所以PQ棒中的感应电动势保持不变,D正确.[答案] AD3.如右图所示,平行导轨间距为d,一端跨接一个电阻R,匀强磁场的磁感应强度为B,方向垂直于平行金属导轨所在平面.一根金属棒与导轨成θ角放置,金属棒与导轨的电阻均不计.当金属棒垂直于棒的方向以恒定的速度v在金属导轨上滑行时,通过电阻R的电流是( )A.BdvR B.Bdv sin θRC.Bdv cos θRD.BdvR sin θ[解析] 导体棒与磁场垂直,速度与磁场垂直且与棒长度方向垂直,由E =Blv ,l =dsin θ得I =E R =BdvR sin θ,D 正确.[答案] D4.(2012·徐州检测)如图所示,A 、B 、C 是相同的白炽灯,L 是自感系数很大、电阻很小的自感线圈.现将S 闭合,下面说法正确的是( )A .B 、C 灯同时亮,A 灯后亮B .A 、B 、C 灯同时亮,然后A 灯逐渐变暗,最后熄灭 C .A 灯一直不亮,只有B 灯和C 灯亮D .A 、B 、C 灯同时亮,并且亮暗没有变化[解析] 由于线圈的自感系数很大,在开关闭合瞬间线圈的阻碍作用很大,线圈中电流为零,所以电流通过A 和B 、C 支路,三灯同时亮;随着L 中的电流增大,A 中电流逐渐减小;由于线圈L 的电阻很小,电路达到稳定时灯泡A 被线圈短路,灯泡A 中电流为零,最后熄灭,故B 项正确.[答案] B5.如右图所示,两块水平放置的金属板距离为d ,用导线、开关S 与一个n 匝的数圈连接,线圈置于方向竖直向上的均匀变化的磁场中.两板间放一台小压力传感器,压力传感器上表面绝缘,在其上表面静止放置一个质量为m 、电荷量为+q 的小球.开关S 闭合前传感器上有示数,开关S 闭合后传感器上的示数变为原来的一半.则线圈中磁场的变化情况和磁通量变化率分别是( )A .正在增强,ΔΦΔt =mgd2q B .正在增强,ΔΦΔt =mgd2nq C .正在减弱,ΔΦΔt =mgd2qD .正在减弱,ΔΦΔt =mgd2nq[解析] 开关S 闭合后传感器示数减小,说明带电小球对传感器的压力变小,小球带正电,说明金属板上极板带负电,由楞次定律判断可知,线圈中感应电流的磁场方向是竖直向下的,从而推知题图中的磁场正在增强;依题意知,闭合开关S 后小球受重力mg .支持力F N 和电场力F 电而处于平衡状态,即F 电+F N =mg ,其中F 电=q ·n ΔΦΔt d ,F N =12mg ,代入解得ΔΦΔt=mgd2nq ,故选项B 正确.[答案] B6.如右图所示的电路中,两个相同的小灯泡L 1和L 2分别串联一个带铁芯的电感线圈L 和一个滑动变阻器R .闭合开关S 后,调整R ,使L 1和L 2发光的亮度一样,此时流过两个灯泡的电流为I .然后,断开S.若t ′时刻再闭合S ,则在t ′前后的一小段时间内,正确反映流过L 1的电流i 1、流过L 2的电流i 2随时间t 变化的图象是[解析] 闭合开关S ,调整R ,使两个灯泡L 1、L 2发光亮度相同,电流为I ,说明R L =R ;若t ′时刻再闭合S ,流过电感线圈L 和灯泡L 1的电流迅速增大,电感线圈L 产生自感电动势,阻碍流过L 1的电流i 1增大,直至达到电流I ,故选项A 错误,B 正确;而对于R 和L 2支路来说,流过灯泡L 2的电流i 2立即达到电流I ,故C 、D 均错误.[答案] B7.如右图,垂直矩形金属框的匀强磁场的磁感应强度为B ,导体棒ab 垂直线框两长边搁在框上,ab 长为l ,在Δt 时间内,ab 向右以速度v 匀速滑过距离d ,则A .因右边面积减小ld ,左边面积增大ld ,则ΔΦ=2Bld ,E =2Bld2ΔtB .因右边面积减小ld ,左边面积增大ld ,减小磁通量与增大磁通量相互抵消,ΔΦ=0,E =0C .ΔΦ=Bld ,E =BldΔtD .因ab 棒做切割磁感线运动,所以不能用E =ΔΦΔt 计算感应电动势,只能用E =Blv 计算感应电动势[解析] 磁通量的变化等于磁感应强度与导线扫过面积的乘积,即ΔΦ=Bld ,故选项A 、B 均错误;感应电动势E =ΔΦΔt =BldΔt 或E =Blv ,故选项C 正确,D 错误.[答案] C8.(2012·扬州检测)面积S =0.2 m 2、n =100匝的圆形线圈,处在如下图所示的匀强磁场内,磁感应强度B 随时间t 变化的规律是B =0.02 t T .电阻R 与电容器C 并联后接在线圈两端,电阻R =3 Ω,电容C =30 μF ,线圈电阻r =1 Ω.求:(1)通过R 的电流的大小和方向; (2)电容器所带的电荷量.[解析] (1)通过圆形线圈的磁通量Φ变大,由楞次定律和安培定则知,线圈中感应电流的方向为逆时针,所以通过R 的电流方向为由b 到a .由法拉第电磁感应定律,线圈产生的感应电动势为E =n ΔΦΔt =nS ΔBΔt =100×0.2×0.02 V=0.4 V ,由闭合电路欧姆定律,通过R 的电流为 I =ER +r =0.43+1 A =0.1 A.(2)电容器两端的电压等于电阻R 两端的电压,即U C =U R =IR =0.1×3 V=0.3 V ,电容器所带的电荷量为Q =CU C =30×10-6×0.3 C=9×10-6 C.[答案] (1)0.1 A ,方向b →R →a (2)9×10-6C9.(2012·无锡检测)如右图所示,在存在右边界的垂直纸面向里、磁感应强度为B 的匀强磁场区域中有一个均匀导线制成的单匝直角三角形线框.现用外力使线框以恒定的速度v 沿垂直磁场方向向右运动,运动中线框的AB 边始终与磁场右边界平行.已知AB =BC =l ,线框导线的总电阻为R .则线框离开磁场的过程中A .线框中的电动势随时间均匀增大B .通过线框截面的电荷量为Bl 22RC .线框所受外力的最大值为2B 2l 2vRD .线框中的热功率与时间成正比[解析] 三角形线框向外匀速运动的过程中,由于有效切割磁感线的长度L =vt ,所以线框中感应电动势的大小E =BLv =Bv 2t ,故选项A 正确;线框离开磁场的运动过程中,通过线圈的电荷量Q =It =ΔΦΔtR ×Δt =Bl 22R ,选项B 正确;当线框恰好刚要完全离开磁场时,线框有效切割磁感线的长度最大,则F =BIl =B 2l 2vR ,选项C 错误;线框的热功率为P =Fv =BIvt ×v =B 2v 4t 2R ,选项D 错误.[答案] AB10.某学习小组设计了一种发电装置如下图甲所示,图乙为其俯视图.将8块外形相同的磁铁交错放置组合成一个高h =0.5 m 、半径r =0.2 m 的圆柱体,其可绕固定轴OO ′逆时针(俯视)转动,角速度ω=100 rad/s.设圆柱外侧附近每个磁场区域的磁感应强度大小均为B =0.2 T 、方向都垂直于圆柱体侧表面.紧靠圆柱外侧固定一根与其等高、电阻R 1=0.5 Ω的细金属杆ab ,杆与轴OO ′平行.图丙中阻值R =1.5 Ω的电阻与理想电流表A 串联后接在杆a 、b 两端.下列说法正确的是( )A .电流表A 的示数约为1.41 AB .杆ab 产生的感应电动势的有效值E =2 VC .电阻R 消耗的电功率为2 WD .在圆柱体转过一周的时间内,流过电流表A 的总电荷量为零 [解析] 圆柱体转过一周为感应电动势的4个周期, T =T 04=142πω=π200 s.金属杆上感应电动势的大小E ′=Blv =Bhr ω=2.0 V ;感应电动势的方向周期性变化,周期为π200 s ,所以有效值E =2.0 V ,则I =ER 1+R =1.0 A ,电阻R 的电功率为P =I 2R =1.5 W .电流在电流表中周期性变化,每个周期的总电流为零.[答案] BD11.如右图所示,金属杆ab 放在光滑的水平金属导轨上,与导轨组成闭合矩形电路,长l 1=0.8 m ,宽l 2=0.5 m ,回路总电阻R =0.2 Ω,回路处在竖直方向的磁场中,金属杆用水平绳通过定滑轮连接质量M =0.04 kg 的木块,磁感应强度从B 0=1 T 开始随时间均匀增加,5 s 末木块将离开水平面,不计一切摩擦,g 取10 m/s 2,求回路中的电流强度.[解析] 设磁感应强度B (t )=B 0+kt ,k 是大于零的常量,于是回路电动势E =S ΔBΔt =kS① S =l 1×l 2② 回路电流I =ER③杆受安培力F (t )=BIl 2=(B 0+kt )Il 2④5秒末有F (5)=B 0+5·k kl 1l 22R=Mg ⑤可以得到k =0.2 T/s 或k =-0.4 T/s(舍去), 解得I =0.4 A. [答案] 0.4 A12.(2012·长春调研)如图甲所示,空间存在一宽度为2L 的有界匀强磁场,磁场方向垂直纸面向里.在光滑绝缘水平面内有一边长为L 的正方形金属线框,其质量m =1 kg 、电阻R =4 Ω,在水平向左的外力F 作用下,以初速度v 0=4 m/s 匀减速进入磁场,线框平面与磁场垂直,外力F 大小随时间t 变化的图线如图乙所示.以线框右边刚进入磁场时开始计时,求:(1)匀强磁场的磁感应强度B ;(2)线框进入磁场的过程中,通过线框的电荷量q ; (3)判断线框能否从右侧离开磁场?说明理由.[解析] (1)由F —t 图象可知,线框加速度a =F 2m =2 m/s 2框的边长L =v 0t -12at 2=(4×1-12×2×12) m =3 mt =0时刻线框中的感应电流I =BLv 0R线框所受的安培力F 安=BIL 由牛顿第二定律F 1+F 安=ma 又F 1=1 N ,联立得B =13 T =0.33 T(2)线框进入磁场的过程中,平均感应电动势E =BL 2t平均电流I =ER 通过线框的电荷量q =I t联立得q=0.75 C(3)设匀减速运动速度减为零的过程中线框通过的位移为x,由运动学公式得0-v20=-2ax代入数值得x=4 m<2L所以线框不能从右侧离开磁场.[答案] (1)0.33 (2)0.75(3)不能从右侧离开磁场理由见解析。

2014届高考物理一轮复习同步课时作业-课后作业 16汇总

2014届高考物理一轮复习同步课时作业-课后作业 16汇总

课后作业(十六)(时间45分钟,满分100分)一、选择题(本题共10小题,每小题7分,共70分.在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得7分,选对但不全的得4分,有选错的得0分.)1.下列说法正确的是()A.如果物体所受到的合外力为零,则其机械能一定守恒B.如果物体所受到的合外力做的功为零,则其机械能一定守恒C.物体沿光滑曲面自由下滑的过程中,其机械能一定守恒D.做匀加速运动的物体,其机械能可能守恒2.图5-3-12(2013届宝鸡模拟)如图5-3-12所示,a、b两小球静止在同一条竖直线上,离地面足够高,b球质量大于a球质量.两球间用一条细线连接,开始线处于松弛状态.现同时释放两球,球运动过程中所受的空气阻力忽略不计.下列说法正确的是()A.下落过程中两球间的距离保持不变B.下落后两球间距离逐渐增大,一直到细线张紧为止C.下落过程中,a、b两球都处于失重状态D.整个下落过程中,系统的机械能守恒3.(2013届南通模拟)如图5-3-13所示,A、B两球质量相等,A球用不能伸长的轻绳系于O点,B球用轻弹簧系于O′点,O与O′点在同一水平面上,分别将A、B球拉到与悬点等高处,使绳和轻弹簧均处于水平,弹簧处于自然状态,将两球分别由静止开始释放,当两球达到各自悬点的正下方时,两球仍处在同一水平面上,则()图5-3-13A .两球到达各自悬点的正下方时,两球动能相等B .两球到达各自悬点的正下方时,A 球动能较大C .两球到达各自悬点的正下方时,B 球动能较大D .两球到达各自悬点的正下方时,A 球受到向上的拉力较大4.(2013届延安模拟)如图5-3-14所示是全球最高的(高度208米)北京朝阳公园摩天轮,一质量为m 的乘客坐在摩天轮中以速率v 在竖直平面内做半径为R 的匀速圆周运动,假设t =0时刻乘客在轨迹最低点且重力势能为零,那么,下列说法正确的是( )图5-3-14A .乘客运动的过程中,重力势能随时间的变化关系为E p =mgR (1-cos v R t )B .乘客运动的过程中,在最高点受到座位的支持力为m v 2R -mgC .乘客运动的过程中,机械能守恒,且机械能为E =12m v 2D .乘客运动的过程中,机械能随时间的变化关系为E =12m v 2+mgR (1-cosv R t )5.图5-3-15(2013届西安一中检测)如图5-3-15所示,光滑细杆AB、AC在A点连接,AB竖直放置,AC水平放置,两相同的中心有小孔的小球M、N,分别套在AB 和AC上,并用一细绳相连,细绳恰好被拉直,现由静止释放M、N,在运动过程中下列说法中正确的是()A.M球的机械能守恒B.M球的机械能减小C.M和N组成的系统的机械能守恒D.绳的拉力对N做负功6.(2013届山东省实验中学检测)如图5-3-16所示,离水平地面一定高处水平固定一内壁光滑的圆筒,筒内固定一轻质弹簧,弹簧处于自然长度.现将一小球从地面以某一初速度斜向上抛出,刚好能水平进入圆筒中,不计空气阻力.下列说法中正确的是()图5-3-16A.弹簧获得的最大弹性势能小于小球抛出时的动能B.弹簧获得的最大弹性势能等于小球抛出时的动能C.小球从抛出到将弹簧压缩到最短的过程中小球的机械能守恒D.小球抛出的初速度大小仅与圆筒离地面的高度有关7.图5-3-17内壁光滑的环形凹槽半径为R,固定在竖直平面内,一根长度为2R的轻杆,一端固定有质量m的小球甲,另一端固定有质量为2m的小球乙.现将两小球放入凹槽内,小球乙位于凹槽的最低点(如图5-3-17所示),由静止释放后() A.下滑过程中甲球减少的机械能总是等于乙球增加的机械能B.下滑过程中甲球减少的重力势能总是等于乙球增加的重力势能C.甲球可沿凹槽下滑到槽的最低点D.杆从右向左滑回时,乙球一定不能回到凹槽的最低点8.(2013届西安一中模拟)如图5-3-18所示,一质量为m的滑块以初速度v0从固定于地面上的斜面底端A开始冲上斜面,到达某一高度后返回A,斜面与滑块之间有摩擦.下列各项分别表示它在斜面上运动的速度v、加速度a、势能E p和机械能E随时间的变化图象,可能正确的是()图5-3-189.图5-3-19如图5-3-19所示为竖直平面内的直角坐标系.一个质量为m的质点,在力F和重力的作用下,从坐标原点O由静止开始沿直线OA斜向下运动,直线OA与y轴负方向成θ角(θ<90°).不计空气阻力,重力加速度为g,则以下说法正确的是()A.当F=mg tan θ时,质点的机械能守恒B.当F=mg sin θ时,质点的机械能守恒C.当F=mg tan θ时,质点的机械能可能减小也可能增大D.当F=mg sin θ时,质点的机械能可能减小也可能增大10.图5-3-20(2013届咸阳检测)如图5-3-20所示,物体A、B通过细绳及轻质弹簧连接在轻滑轮两侧,物体A、B的质量分别为m、2m,开始时细绳伸直,用手托着物体A使弹簧处于原长且A与地面的距离为h,物体B静止在地面上.放手后物体A下落,与地面即将接触时速度为v,此时物体B对地面恰好无压力,则下列说法中正确的是()A.物体A下落过程中的任意时刻,加速度不会为零B.此时弹簧的弹性势能等于mgh+12m v2C.此时物体B处于平衡状态D.此过程中物体A的机械能变化量为mgh+12m v2二、非选择题(本题共2小题,共30分.计算题要有必要的文字说明和解题步骤,有数值计算的要注明单位.)11.(15分)(2012·海南国兴中学模拟)半径R=0.50 m的光滑圆环固定在竖直平面内,轻质弹簧的一端固定在环的最高点A处,另一端系一个质量m=0.20 kg 的小球,小球套在圆环上,已知弹簧的原长为L0=0.50 m,劲度系数k=4.8 N/m.将小球从如图5-3-21所示的位置由静止开始释放,小球将沿圆环滑动并通过最低点C,在C点时弹簧的弹性势能E p C=0.6 J.(g取10 m/s2),求:图5-3-21(1)小球经过C点时的速度v C的大小;(2)小球经过C点时对环的作用力的大小和方向.12.(15分)(2013届杭州学军中学质检)如图5-3-22所示,倾角为θ的光滑斜面上放有两个质量均为m的小球A和B,两球之间用一根长为L的轻杆相连,下面的小球B离斜面底端的高度为h.两球从静止开始下滑,不计机械能损失,求:图5-3-22(1)两球都进入光滑水平面时两小球运动的速度大小;(2)此过程中杆对B球所做的功.答案与解析1.【解析】物体受到的合外力为零,机械能不一定守恒,如在竖直方向上物体做匀速直线运动,其机械能不守恒.所以选项A、B错误.物体沿光滑曲面自由下滑的过程中,只有重力做功,所以机械能守恒.选项C正确.做匀加速运动的物体,其机械能可能守恒,如自由落体运动,选项D正确.【答案】CD2.【解析】两球同时释放后,均做自由落体运动,加速度均为g,故两球均处于失重状态,且机械能守恒,两球间距也保持不变,A、C、D均正确,B 错误.【答案】ACD3.【解析】两球由水平位置下降到竖直位置,重力势能减少量相同,但B球重力势能减少量有一部分转化为弹簧的弹性势能,由系统机械能守恒定律可知,A 球在悬点正下方的动能大,B 正确,A 、C 错误,在最低点,由F -mg =m v 2l 及v A >v B 可知,F A >F B ,D 正确.【答案】 BD4.【解析】 在最高点,根据牛顿第二定律可得,mg -N =m v 2R ,受到座位的支持力为N =mg -m v 2R ,B 项错误;由于乘客在竖直平面内做匀速圆周运动,其动能不变,重力势能发生变化,所以乘客在运动的过程中机械能不守恒,C 项错误;在时间t 内转过的弧度为v R t ,所以对应t 时刻的重力势能为E p =mgR (1-cos v R t ),总的机械能为E =E k +E p =12m v 2+mgR (1-cos v R t ),A 、D 两项正确.【答案】 AD5.【解析】 由于杆AB 、AC 光滑,所以M 下降,N 向左运动,绳子对N 做正功,对M 做负功,N 的动能增加,机械能增加,M 的机械能减少,对M 、N 系统,杆对M 、N 均不做功,系统机械能守恒,故B 、C 两项正确.【答案】 BC6.【解析】 小球从抛出到弹簧压缩到最短的过程中,只有重力和弹力做功,因此小球和弹簧系统的机械能守恒,即12m v 20=mgh +E p ,由此得到E p <12m v 20,选项A 正确,B 、C 错误;斜上抛运动可分解为竖直上抛运动和水平方向的匀速直线运动,在竖直方向上有2gh =v 20sin 2θ(θ为v 0与水平方向的夹角),解得v 0=2ghsin θ,由此可知,选项D 错误.【答案】 A7.【解析】 环形槽光滑,甲、乙组成的系统在运动过程中只有重力做功,故系统机械能守恒,下滑过程中甲减少的机械能总是等于乙增加的机械能,甲、乙系统减少的重力势能等于系统增加的动能;甲减少的重力势能等于乙增加的势能与甲、乙增加的动能之和;由于乙的质量较大,系统的重心偏向乙一端,由机械能守恒,知甲不可能滑到槽的最低点,杆从右向左滑回时乙一定会回到槽的最低点.【答案】 A8.【解析】由牛顿第二定律可知,滑块上滑阶段有mg sin θ+F f=ma1,下滑阶段有mg sin θ-F f=ma2,因此a1>a2,选项B错误;v>0和v<0时,速度图象的斜率不同,故选项A错误;由于摩擦力始终做负功,机械能一直减小,故选项D错误;重力势能先增大后减小,且上滑阶段加速度大,势能变化快,下滑阶段加速度小,势能变化慢,故选项C可能正确.【答案】 C9.【解析】如图为力的矢量三角形图示,若F=mg tan θ,则力F可能为b方向或c方向,故力F的方向可能与运动方向成锐角,也可能与运动方向成钝角,除重力外的力F对质点可能做正功,也可能做负功,故质点机械能可能增大,也可能减小,C对A错;当F=mg sin θ,即力F为a方向时,力F垂直质点运动方向,故只有重力对质点做功,机械能守恒,B对D错.【答案】BC10.【解析】对物体A进行受力分析可知,当弹簧的弹力大小为mg时,物体A 的加速度为零,A 错误;由题意和功能关系知弹簧的弹性势能为E p =mgh -12m v 2,B 错误;当物体B 对地面恰好无压力时,说明弹簧的弹力大小为2mg ,此时B 所受合外力为零,恰好处于平衡状态,C 正确;弹簧的弹性势能的增加量等于物体A 的机械能的减少量(mgh -12m v 2),D 错误.【答案】 C11.【解析】 由题图知初始时刻弹簧处于原长.(1)小球从B 到C ,根据机械能守恒定律有mg (R +R cos 60°)=E p C +12m v 2C代入数据求出v C =3 m/s.(2)小球经过C 点时受到三个力作用,即重力G 、弹簧弹力F 、环的作用力F N ,设环对小球的作用力方向向上,根据牛顿第二定律有F +F N -mg =m v 2C RF =kxx =R所以F N =m v 2C R +mg -FF N =3.2 N ,方向竖直向上根据牛顿第三定律得出,小球对环的作用力大小为3.2 N ,方向竖直向下.【答案】 (1)3 m/s (2)3.2 N ,方向竖直向下12.【解析】 (1)由于不计机械能损失,因此两球组成的系统机械能守恒.两球在光滑水平面上运动的速度大小相等,设为v ,根据机械能守恒定律有:mgh +mg (h +L sin θ)=2×12m v 2,解得:v =2gh +gL sin θ.(2)根据动能定理,对B 球有:W +mgh =12m v 2-0则W =12m v 2-mgh =12mgL sin θ.【答案】 (1)2gh +gL sin θ (2)12mgL sin θ。

(新课标)2014高考物理一轮复习课时练8汇总

(新课标)2014高考物理一轮复习课时练8汇总

课时作业(八)1.如右图所示,一运送救灾物资的直升飞机沿水平方向匀速飞行.已知物资的总质量为m ,吊运物资的悬索与竖直方向成θ角.设物资所受的空气阻力为F f ,悬索对物资的拉力为F ,重力加速度为g ,则( )A .F f =mg sin θB .F f =mg tan θC .F =mg cos θD .F =mgtan θ[解析] 救灾物资匀速飞行,受力平衡,它受到向下的重力mg ,向右的阻力F f 和沿细绳斜向上的拉力,可得F f =mg tan θ,A 错误、B 正确;F =mgcos θ,C 、D 错误.[答案] B 2.(2012·泉州质检)滑滑梯是小孩子很喜欢的娱乐活动.如右图所示,一个小孩正在滑梯上匀速下滑,则( )A .小孩所受的重力与小孩所受的弹力大小相等B .小孩所受的重力与小孩所受的摩擦力大小相等C .小孩所受的弹力和摩擦力的合力与小孩所受的重力大小相等D .小孩所受的重力和弹力的合力与小孩所受的摩擦力大小相等 [解析] 小孩在滑梯上受力如图所示,设滑梯斜面倾角为θ,则F N=mg cosθ,F f=mg sinθ,所以A、B错误;小孩在重力、弹力和摩擦力三个力作用下处于平衡状态,其中任意两个力的合力一定与第三个力大小相等,方向相反,故C、D正确.[答案] CD3.(2012·潍坊市联考)如右图所示,斜面A和物块B静置在水平地面上,某时刻起,对B施加一个沿斜面向上的拉力F,力F从零开始随时间均匀增大,在这一过程中,A、B始终保持静止.则地面对A 的( ) A.支持力不变B.支持力减小C.摩擦力增大D.摩擦力减小[解析] 设斜面的倾角为θ,以A、B整体为研究对象,因为A、B始终保持静止,由平衡条件得F f=F cosθ,(m A+m B)g=F N+F sinθ,又F均匀增大,故摩擦力F f增大,支持力F N减小,选项B、C正确.[答案] BC4.如图所示,轻杆A端用光滑水平铰链装在竖直墙面上,B端用水平绳连在墙C处,在B端悬挂一重物P,在水平向右的力F缓慢拉起重物P的过程中,杆AB所受压力的变化情况是A.变大B.变小C.先变小再变大D.不变[解析] 根据力的合成与分解可知,CB绳的拉力增大,BP绳的拉力也增大,但杆与竖直方向的夹角不变,杆所受压力沿竖直方向的分力始终与重物的重力大小相等,故杆所受压力也不变,D正确.[答案] D5.(2012·安徽省省城名校联考)如图所示,放在粗糙水平面上的“L型”物体A,上表面光滑,下表面粗糙.A和B之间用一根弹簧连接,物体A始终静止在水平地面上,某时刻物体A受到地面水平向右的摩擦力作用.关于此时刻,下列说法中正确的是A.弹簧处于伸长状态B.弹簧处于原长状态C.弹簧处于压缩状态D.B一定静止在物体A上[解析] 某时刻物体A受到地面水平向右的摩擦力作用,隔离物体A,根据平衡条件,A一定受到弹簧对A向左的弹力,弹簧处于伸长状态,选项A正确.[答案] A6.(2012·安徽省省城名校联考)如图所示,在竖直墙壁的A点处有一根水平轻杆a,杆的左端有一个轻滑轮O.一根细线上端固定在该天花板的B点处,细线跨过滑轮O,下端系一个重为G的物体,开始时BO段细线与天花板的夹角为θ=30°.系统保持静止,当轻杆a缓慢向下移动的过程中,不计一切摩擦.下列说法中正确的是A.细线BO对天花板的拉力不变B.a杆对滑轮的作用力逐渐减小C.a杆对滑轮的作用力的方向沿杆水平向右D.墙壁对a杆的作用力不变[解析] 细线BO对天花板的拉力大小等于物体重力,当轻杆a缓慢向下移动的过程中,拉力大小不变,方向改变,选项A错误;以滑轮为研究对象,画出受力分析图,当轻杆a 缓慢向下移动的过程中,a杆对滑轮的作用力逐渐减小,选项B正确;a杆对滑轮的作用力的方向偏向右上,选项C错误;以杆为研究对象,分析受力可得,墙壁对a杆的作用力方向改变,大小减小,选项D错误。

(新课标)2014高考物理一轮复习课时练35汇总

(新课标)2014高考物理一轮复习课时练35汇总

课时作业(三十五)1.(2012·济宁模拟)水平放置的金属框架cdef 处于如图所示的匀强磁场中,金属棒ab 处于粗糙的框架上且接触良好,从某时刻开始,磁感应强度均匀增大,金属棒ab 始终保持静止,则 ( )A .ab 中电流增大,ab 棒所受摩擦力增大B .ab 中电流不变,ab 棒所受摩擦力不变C .ab 中电流不变,ab 棒所受摩擦力增大D .ab 中电流增大,ab 棒所受摩擦力不变[解析] 由法拉第电磁感应定律E =ΔΦΔt =ΔBΔt ·S 知,磁感应强度均匀增大,则ab 中感应电动势和电流不变,由F f =F 安=BIL 知摩擦力增大,选项C 正确.[答案] C2.如图所示,闭合金属线框从一定高度自由下落进入匀强磁场中,磁场足够大,从ab 边开始进入磁场到cd 边刚进入磁场的这段时间内,线框运动的速度-时间图象不可能是[解析] 当ab 边刚进入磁场时,若线框所受安培力等于重力,则线框在从ab 边开始进入磁场到cd 边刚进入磁场前做匀速运动,故A 是可能的;当ab 边刚进入磁场时,若线框所受安培力小于重力,则线框做加速度逐渐减小的加速运动,最后可能做匀速运动,故C 情况也可能;当ab 边刚进入磁场时,若线框所受安培力大于重力,则线框做加速度逐渐减小的减速运动,最后可能做匀速运动,故D 可能;线框在磁场中不可能做匀变速运动,故B 项是不可能的,故选B.[答案] B3.如右图所示,在粗糙绝缘水平面上有一正方形闭合线框abcd ,其边长为l ,质量为m ,金属线框与水平面的动摩擦因数为μ.虚线框a ′b ′c ′d ′内有一匀强磁场,磁场方向竖直向下.开始时金属线框的ab 边与磁场的d ′c ′边重合.现使金属线框以初速度v 0沿水平面滑入磁场区域,运动一段时间后停止,此时金属线框的dc 边与磁场区域的d ′c ′边距离为l .在这个过程中,金属线框产生的焦耳热为( )A.12mv 20+μmglB.12mv 20-μmglC.12mv 20+2μmgl D.12mv 20-2μmgl [解析] 依题意知,金属线框移动的位移大小为2l ,此过程中克服摩擦力做功为2μmgl ,由能量守恒定律得金属线框中产生的焦耳热为Q =12mv 20-2μmgl ,故选项D 正确.[答案] D4.如图(甲)、(乙)、(丙)中,除导体棒ab 可动外,其余部分均固定不动,(甲)图中的电容器C 原来不带电.设导体棒、导轨和直流电源的电阻均可忽略,导体棒和导轨间的摩擦也不计,图中装置均在水平面内,且都处于方向垂直水平面(即纸面)向下的匀强磁场中,导轨足够长.现给导体棒ab 一个向右的初速度v 0,在(甲)、(乙)、(丙)三种情况下导体棒ab 的最终运动状态是 ( )A .三种情形下导体棒ab 最终都做匀速运动B .(甲)、(丙)中, ab 棒最终将以不同速度做匀速运动;(乙)中,ab 棒最终静止C .(甲)、 (丙)中,ab 棒最终将以相同速度做匀速运动;(乙)中,ab 棒最终静止D .三种情形下导体棒ab 最终都静止[解析] 题图(甲)中ab 棒运动后给电容器充电,当充电完成后,棒以一个小于v 0的速度向右匀速运动.题图(乙)中构成了回路,最终棒的动能完全转化为电热,棒停止运动.题图(丙)中棒先向右减速为零,然后反向加速至匀速.故正确选项为B.[答案] B5.(2012·温州模拟)如图所示电路,两根光滑金属导轨,平行放置在倾角为θ的斜面上,导轨下端接有电阻R ,导轨电阻不计,斜面处在竖直向上的匀强磁场中,电阻可略去不计的金属棒ab 质量为m ,受到沿斜面向上且与金属棒垂直的恒力F 的作用,金属棒沿导轨匀速下滑,则它在下滑高度h 的过程中,以下说法正确的是A .作用在金属棒上各力的合力做功为零B .重力做的功等于系统产生的电能C .金属棒克服安培力做的功等于电阻R 上产生的焦耳热D .金属棒克服恒力F 做的功等于电阻R 上产生的焦耳热[解析] 根据动能定理可知,合力做的功等于动能的变化量,故选项A 正确;重力做的功等于重力势能的变化量,重力做的功等于克服F 所做的功与产生的电能之和,而克服安培力所做的功等于电阻R 上产生的焦耳热,故选项B 、D 均错误,C 正确.[答案] AC6.如右图所示,匀强磁场的磁感应强度为B ,方向竖直向下,在磁场中有一个边长为L 的正方形刚性金属框,ab 边的质量为m ,电阻为R ,其他三边的质量和电阻均不计.cd 边上装有固定的水平轴,将金属框自水平位置由静止释放,第一次转到竖直位置时,ab 边的速度为v ,不计一切摩擦,重力加速度为g ,则在这个过程中,下列说法正确的是A .通过ab 边的电流方向为a →bB .ab 边经过最低点时的速度v =2gLC .a 、b 两点间的电压逐渐变大D .金属框中产生的焦耳热为mgL -12mv 2[解析] ab 边向下摆动过程中,磁通量逐渐减小,根据楞次定律及右手定则可知感应电流方向为b →a ,选项A 错误;ab 边由水平位置到达最低点过程中,机械能不守恒,所以选项B 错误;金属框摆动过程中,ab 边同时受安培力作用,故当重力与安培力沿其摆动方向分力的合力为零时,a 、b 两点间电压最大,选项C 错误;根据能量转化和守恒定律可知,金属框中产生的焦耳热应等于此过程中机械能的损失,故选项D 正确.[答案] D7.如右图所示,光滑的“Π”形金属导体框竖直放置,质量为m 的金属棒MN 与框架接触良好.磁感应强度分别为B 1、B 2的有界匀强磁场方向相反,但均垂直于框架平面,分别处在abcd 和cdef 区域.现从图示位置由静止释放金属棒MN ,当金属棒进入磁场B 1区域后,恰好做匀速运动.以下说法中正确的是 ( )A .若B 2=B 1,金属棒进入B 2区域后将加速下滑B .若B 2=B 1,金属棒进入B 2区域后仍将保持匀速下滑C .若B 2<B 1,金属棒进入B 2区域后将先加速后匀速下滑D .若B 2>B 1,金属棒进入B 2区域后将先减速后匀速下滑[解析] 当金属棒MN 进入磁场B 1区域时,金属棒MN 切割磁感线而使回路中产生感应电流,当金属棒MN 恰好做匀速运动时,其重力和安培力平衡,即有B 21l 2v R =mg .金属棒MN 刚进入B 2区域时,速度仍为v ,若B 2=B 1,则仍满足B 22l 2v R =mg ,金属棒MN 仍保持匀速下滑,选项A 错误,B 正确;若B 2<B 1,则金属棒MN 刚进入B 2区域时B 22l 2v R <mg ,金属棒MN 先加速运动,当速度增大到使安培力等于mg 时,金属棒MN 在B 2区域内匀速下滑,故选项C 正确;同理可知选项D 也正确.[答案] BCD9.如图所示,水平地面上方矩形区域内存在垂直纸面向里的匀强磁场,两个边长相等的单匝闭合正方形线圈Ⅰ和Ⅱ,分别用相同材料、不同粗细的导线绕制(Ⅰ为细导线).两线圈在距磁场上界面h 高处由静止开始自由下落,再进入磁场,最后落到地面.运动过程中,线圈平面始终保持在竖直平面内且下边缘平行于磁场上边界.设线圈Ⅰ、Ⅱ落地时的速度大小分别为v 1、v 2,在磁场中运动时产生的热量分别为Q 1、Q 2.不计空气阻力,则A .v 1<v 2,Q 1<Q 2B .v 1=v 2,Q 1=Q 2C .v 1<v 2,Q 1>Q 2D .v 1=v 2,Q 1<Q 2 [解析] 线圈进入磁场前机械能守恒,进入磁场时速度均为v =2gh ,设线圈材料的密度为ρ1,电阻率为ρ2,线圈边长为L ,导线横截面积为S ,则线圈的质量m =ρ14LS ,电阻R =ρ24L S ,由牛顿第二定律得mg -B 2L 2v R =ma ,解得a =g -B 2v16ρ1ρ2,可见两线圈在磁场中运动的加速度相同,两线圈落地时速度相同,即v 1=v 2,故A 、C 选项错误;线圈在磁场中运动时产生的热量等于克服安培力做的功,Q =W 安,而F 安=B 2L 2v R =B 2Lv4ρ2S ,线圈Ⅱ横截面积S大,F 安大,故Q 2>Q 1,故选项D 正确,B 错误.[答案] D10.(2012·海淀一模)光滑平行金属导轨M 、N 水平放置,导轨上放一根与导轨垂直的导体棒PQ .导轨左端与由电容为C 的电容器、单刀双掷开关和电动势为E 的电源组成的电路相连接,如图所示.在导轨所在的空间存在方向垂直于导轨平面的匀强磁场(图中未画出).先将开关接在位置a ,使电容器充电并达到稳定后,再将开关拨到位置b ,导体棒将会在磁场的作用下开始向右运动,设导轨足够大,则以下说法中正确的是A .空间存在的磁场方向竖直向下B .导体棒向右做匀加速运动C .当导体棒向右运动的速度达到最大值,电容器的电荷量为零D .导体棒运动的过程中,通过导体棒的电荷量Q <CE[解析] 充电后电容器的上极板带正电,将开关拨向位置b ,PQ 中的电流方向是由P →Q ,由左手定则判断可知,导轨所在处磁场的方向竖直向下,选项A 正确;随着放电的进行,导体棒速度增大,由于它所受的安培力大小与速度有关,所以由牛顿第二定律可知导体棒不能做匀加速运动,选项B 错误;运动的导体棒在磁场中切割磁感线,由右手定则判断可知,感应电动势方向由Q →P ,当其大小等于电容器两极板间电势差大小时,导体棒速度最大,此时电容器的电荷量并不为零,故选项C 错误;由以上分析可知,导体棒从开始运动到速度达到最大时,电容器所带电荷量并没有放电完毕,故通过导体棒的电荷量Q <CE ,选项D 正确.[答案] AD11.如图所示,足够长的光滑平行金属导轨cd 和ef ,水平放置且相距L ,在其左端各固定一个半径为r 的四分之三光滑金属圆环,两圆环面平行且竖直.在水平导轨和圆环上各有一根与导轨垂直的金属杆,两金属杆与水平导轨、金属圆环形成闭合回路,两金属杆质量均为m ,电阻均为R ,其余电阻不计.整个装置放在磁感应强度大小为B 、方向竖直向上的匀强磁场中.当用水平向右的恒力F =3mg 拉细杆a ,达到匀速运动时,杆b 恰好静止在圆环上某处,试求:(1)杆a 做匀速运动时,回路中的感应电流;(2)杆a 做匀速运动时的速度;(3)杆b 静止的位置距圆环最低点的高度.[解析] (1)匀速时,拉力与安培力平衡,F =BIL得:I =3mgBL(2)金属棒a 切割磁感线,产生的电动势E =BLv回路中电流I =E2R联立得:v =23mgRB 2L 2(3)设平衡时棒b 和圆心的连线与竖直方向的夹角为θ则tan θ=Fmg =3,得θ=60°h =r (1-cos θ)=r2[答案] (1)3mg BL (2)23mgR B 2L 2 (3)r212.(2012·安徽六校联考)相距L =1.5 m 的足够长金属导轨竖直放置,质量为m 1=1 kg 的金属棒ab 和质量为m 2=0.27 kg 的金属棒cd 均通过棒两端的套环水平地套在金属导轨上,如图(甲)所示,虚线上方磁场方向垂直纸面向里,虚线下方磁场方向竖直向下,两处磁场磁感应强度大小相同.ab 棒光滑,cd 棒与导轨间动摩擦因数为μ=0.75,两棒总电阻为1.8 Ω,导轨电阻不计.ab 棒在方向竖直向上、大小按图(乙)所示规律变化的外力F 作用下,从静止开始沿导轨匀加速运动,同时cd 棒也由静止释放.(g =10 m/s 2)(1)求磁感应强度B 的大小和ab 棒加速度的大小;(2)已知在2 s 内外力F 做功40 J ,求这一过程中两金属棒产生的总焦耳热;(3)判断cd 棒将做怎样的运动,求出cd 棒达到最大速度所需的时间t 0,并在图(丙)中定性画出cd 棒所受摩擦力F f cd 随时间变化的图象.[解析] (1)经过时间t ,ab 棒的速率:v =at ,此时,回路中的感应电流为:I =E R =BLv R ,对ab 棒,由牛顿第二定律得:F -BIL -m 1g =m 1a ,由以上各式整理得:F =m 1a +m 1g +B 2L 2R at ,在题图(乙)图线上取两点:t 1=0,F 1=11 N ;t 2=2 s ,F 2=14.6 N ,代入上式得a =1 m/s 2,B =1.2 T.(2)在2 s 末ab 棒的速率v 1=at =2 m/s ,所发生位移x =12at 2=2 m ,由动能定理得W F -m 1gx -W 安=12m 1v 21,又Q =W 安,联立以上方程,解得:Q =18 J.(3)cd 棒先做加速度逐渐减小的加速运动,当cd 棒所受重力与滑动摩擦力相等时,速度达到最大;然后做加速度逐渐增大的减速运动,最后停止运动.当cd 棒速度达到最大时,有m 2g =μF N 又F N =F 安,F 安=BIL ,I =E R =BLv m R ,v m =at 0,整理解得:t 0=m 2gRμB 2L 2a =2 s.F f cd 随时间变化的图象如图所示.[答案] (1)1.2 T 1 m/s 2(2)18 J (3)见解析。

高考物理一轮总复习人教版课时作业Word版含解析(16)

高考物理一轮总复习人教版课时作业Word版含解析(16)

课时作业(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(1~5题为单项选择题,6~9题为多项选择题) 1.在阴极射线管中电子流方向由左向右,其上方置一根通有如图所示电流的直导线,导线与阴极射线管平行,则阴极射线将会( )A .向上偏转B .向下偏转C .向纸内偏转D .向纸外偏转解析: 由题意可知,直线电流的方向由左向右,根据安培定则,可判定直导线下方的磁场方向为垂直纸面向里,而阴极射线电子运动方向由左向右,由左手定则知(电子带负电,四指要指向其运动方向的反方向),阴极射线将向下偏转,故B 选项正确。

答案: B2.(2017·长春模拟)如图所示,斜面顶端在同一高度的三个光滑斜面AB 、AC 、AD ,均处于水平方向的匀强磁场中。

一个带负电的绝缘物块,分别从三个斜面顶端A 点由静止释放,设滑到底端的时间分别为t AB 、t AC 、t AD ,则( )A .t AB =t AC =t AD B .t AB >t AC >t AD C .t AB <t AC <t AD D .无法比较解析: 带负电物块在磁场中的光滑斜面上受重力、支持力和垂直斜面向下的洛伦兹力,设斜面的高度为h ,倾角为θ,可得物块的加速度为a =g sin θ,由公式x =12at 2=h sin θ解得t=2hg sin 2θ,可知θ越大,t 越小,选项C 正确。

答案: C 3.如图所示,a 、b 是两个匀强磁场边界上的两点,左边匀强磁场的磁感线垂直纸面向里,右边匀强磁场的磁感线垂直纸面向外,两边的磁感应强度大小相等。

电荷量为2e 的正离子以某一速度从a 点垂直磁场边界向左射出,当它运动到b 点时,击中并吸收了一个处于静止状态的电子,不计正离子和电子的重力且忽略正离子和电子间的相互作用,则它们在磁场中的运动轨迹是( )解析: 正离子以某一速度击中并吸收了一个处于静止状态的电子后,速度不变,电荷量变为+e ,由左手定则可判断出正离子过b 点时所受洛伦兹力方向向下,由r =m v /qB 可知,轨迹半径增大到原来的2倍,所以在磁场中的运动轨迹是图D 。

(新课标)2014高考物理一轮复习课时练5

(新课标)2014高考物理一轮复习课时练5

课时作业(五)1.关于力的概念,下列说法正确的是( )A.一个力必定联系着两个物体,其中每个物体既是受力物体,又是施力物体B.放在桌面上的木块受到桌面对它向上的弹力,这是由于木块发生微小形变而产生的C.压缩弹簧时,手先给弹簧一个压力F,等弹簧再压缩x距离后才反过来给手一个弹力D.根据力的作用效果命名的不同名称的力,性质可能也不相同[解析] 力是物体间的相互作用,受力物体同时也是施力物体,施力物体同时也是受力物体,所以A正确;产生弹力时,施力物体和受力物体同时发生形变,放在桌面上的木块受到桌面给它向上的弹力,这是由于桌面发生微小形变而产生的,故B不正确;力的作用是相互的,作用力和反作用力同时产生、同时消失,故C选项错误;根据力的作用效果命名的力,性质可能相同,也可能不相同,D选项正确.[答案] AD2.(2012·杭州高三检测)如下图所示,下列四个图中,所有的球都是相同的,且形状规则质量分布均匀.甲球放在光滑斜面和光滑水平面之间,乙球与其右侧的球相互接触并放在光滑的水平面上,丙球与其右侧的球放在另一个大的球壳内部并相互接触,丁球用两根轻质细线吊在天花板上,且其中右侧一根线是沿竖直方向.关于这四个球的受力情况,下列说法正确的是( )A.甲球受到两个弹力的作用B.乙球受到两个弹力的作用C.丙球受到两个弹力的作用D.丁球受到两个弹力的作用[解析] 甲球受水平面的弹力,斜面对甲球无弹力,乙球受水平面的弹力,乙与另一球之间无弹力,丙球受右侧球和地面的两个弹力作用,丁球受竖直细线的拉力,倾斜细线的拉力刚好为零,故C对,A、B、D错.[答案] C3.(2012·台州质检)一根轻质弹簧,当它上端固定、下端悬挂重为G的物体时,长度为L 1;当它下端固定在水平地面上,上端压一重为G 的物体时,其长度为L 2,则它的劲度系数是( )A.G L 1B.G L 2C.GL 1-L 2D.2GL 1-L 2[解析] 由胡克定律知,G =k (L 1-L 0),G =k (L 0-L 2),联立可得k =2GL 1-L 2,D 对. [答案] D4.一根轻质弹簧一端固定,用大小为F 1的力压弹簧的另一端,平衡时长度为l 1;改用大小为F 2的力拉弹簧,平衡时长度为l 2.弹簧的拉伸或压缩均在弹性限度内,该弹簧的劲度系数为( )A.F 2-F 1l 2-l 1 B.F 2+F 1l 2+l 1 C.F 2+F 1l 2-l 1D.F 2-F 1l 2+l 1[解析] 根据胡克定律有F 1=k (l 0-l 1),F 2=k (l 2-l 0),解得k =F 2+F 1l 2-l 1,C 正确. [答案] C5.如右图所示,小球A 的重力为G =20 N ,上端被竖直悬线挂于O 点,下端与水平桌面相接触,悬线对球A 、水平桌面对球A 的弹力大小可能为( )A .0,GB .G,0 C.G 2,G2D.12G ,32G[解析] 球A 处于静止状态,球A 所受的力为平衡力,即线对球的拉力F T 及桌面对球的支持力F N 共同作用与重力G 平衡,即F T +F N =G ,若绳恰好伸直,则F T =0,F N =G ,A 对;若球刚好离开桌面,则F N =0,F T =G ,B 对;也可能F N =F T =G2,C 对.[答案] A BC6.(2012·浙江宁波联考)实验室常用的弹簧测力计如(图甲)所示,有挂钩的拉杆与弹簧相连,并固定在外壳的一端上,外壳上固定一个圆环,可以认为弹簧测力计的总质量主要集中在外壳(重量为G )上,弹簧和拉杆的质量忽略不计.再将该弹簧测力计以两种方式固定于地面上,如图(乙)、(丙)所示,分别用恒力F 0竖直向上拉弹簧测力计,静止时弹簧测力计的读数为( )A .(乙)图读数F 0-G ,(丙)图读数F 0+GB .(乙)图读数F 0+G ,(丙)图读数F 0-GC .(乙)图读数F 0,(丙)图读数F 0-GD .(乙)图读数F 0-G ,(丙)图读数F 0 [解析]对(乙)中弹簧测力计的外壳受力分析可知,受重力G 、拉力F 0和弹簧的拉力F 1,如右图所示,则弹簧测力计的读数为F 1=F 0-G ;由于弹簧和拉杆的质量忽略不计,所以(丙)中弹簧的拉力等于F 0,即弹簧测力计的读数为F 2=F 0,故D 正确.[答案] D 7.如右图所示,质量为m 的物体悬挂在轻质支架上,斜梁OB 与竖直方向的夹角为θ,设水平横梁OA 和斜梁OB 作用于O 点的弹力分别为F 1和F 2,以下结果正确的是A .F 1=mg sin θB .F 1=mgsin θC .F 2=mg cos θD .F 2=mgcos θ[解析]由题可知,对悬挂的物体由力的平衡条件可知绳子的拉力等于其重力,则绳子拉O 点的力也等于重力.求OA 和OB 的弹力,选择的研究对象为作用点O ,受力分析如图,由平衡条件可知,F 1和F 2的合力与F T 等大反向,则由平行四边形定则和几何关系可得:F 1=mg tan θ,F 2=mgcos θ,故D 正确.[答案] D8.(2012·山东烟台市测试)如右图所示,两根相距为L 的竖直固定杆上各套有质量为m 的小球,小球可以在杆上无摩擦地自由滑动,两小球用长为2L 的轻绳相连,今在轻绳中点施加一个竖直向上的拉力F ,恰能使两小球沿竖直杆向上匀速运动.则每个小球所受的拉力大小为(重力加速度为g )A.mg2B .mg C.3F /3D .F[解析] 根据题意可知:两根轻绳与竖直杆间距正好组成等边三角形,每个小球所受的拉力大小为F ′,对结点进行受力分析,根据平衡条件可得,F =2F ′cos30°,解得小球所受拉力F ′=3F3,C 正确. [答案] C9.(2012·江西师大附中、临川联考)如右图所示,完全相同的质量为m 的A 、B 两球,用两根等长的细线悬挂在O 点,两球之间夹着一根劲度系数为k 的轻弹簧,静止不动时,弹簧处于水平方向,两根细线之间的夹角为θ,则弹簧的长度被压缩了A.mg tan θk B.2mg tan θkC.mg tanθ2kD.2mg tanθ2k[解析] 考查受力分析、物体的平衡.对A 受力分析可知,有竖直向下的重力mg 、沿着细线方向的拉力F T 以及水平向左的弹簧弹力F ,由正交分解法可得水平方向F T sin θ2=F =k Δx ,竖直方向F T cos θ2=mg ,解得Δx =mg tan θ2k,C 正确.[答案] C10.(2012·洛阳市期中)如图所示,小车上有一根固定的水平横杆,横杆左端固定的轻杆与竖直方向成θ角,轻杆下端连接一小铁球;横杆右端用一根细线悬挂一小铁球,当小车做匀变速直线运动时,细线保持与竖直方向成α角,若θ<α,则下列说法中正确的是A .轻杆对小球的弹力方向沿着轻杆方向向上B .轻杆对小球的弹力方向与细线平行向上C .小车一定以加速度gtg α向右做匀加速运动D .小车一定以加速度gtg θ向右做匀加速运动[解析] 由于两小球加速度方向相同,所受弹力方向也应该相同,所以轻杆对小球的弹力方向与细线平行向上,选项A 错误B 正确;对细线悬挂的小铁球受力分析,由牛顿第二定律可得,小车一定以加速度gtg α向右做匀加速运动,选项C 正确D 错误.[答案] BC11.如右图所示,在动力小车上固定一直角硬杆ABC ,分别系在水平直杆AB 两端的轻弹簧和细线将小球P 悬吊起来.轻弹簧的劲度系数为k ,小球P 的质量为m ,当小车沿水平地面以加速度a 向右运动而达到稳定状态时,轻弹簧保持竖直,而细线与杆的竖直部分的夹角为θ,试求此时弹簧的形变量.[解析] F T sin θ=ma ,F T cos θ+F =mg ,F =kx 联立解得:x =m (g -a cot θ)/k 讨论:(1)若a <g tan θ,则弹簧伸长x =m (g -a cot θ)/k (2)若a =g tan θ,则弹簧伸长x =0(3)若a >g tan θ,则弹簧压缩x =m (a cot θ-g )/k [答案] 见解析12.如右图所示,原长分别为L 1和L 2,劲度系数分别为k 1和k 2的轻质弹簧竖直悬挂在天花板上,两弹簧之间有一质量为m 1的物体,最下端挂着质量为m 2的另一物体,整个装置处于静止状态.(1)求这时两弹簧的总长.(2)若用一个质量为M 的平板把下面的物体竖直缓慢地向上托起,直到两弹簧的总长度等于两弹簧的原长之和,求这时平板对物体m 2的支持力大小.[解析] (1)设上面弹簧的伸长量为Δx 1,下面弹簧的伸长量为Δx 2,由物体的平衡及胡克定律得,k 1Δx 1=(m 1+m 2)g ,Δx 1=m 1+m 2gk 1,k 2Δx 2=m 2g ,Δx 2=m 2g k 2所以总长为L =L 1+L 2+Δx 1+Δx 2 =L 1+L 2+m 1+m 2g k 1+m 2g k 2. (2)要使两个弹簧的总长度等于两弹簧原长之和,必须是上面弹簧伸长Δx ,下面弹簧缩短Δx .对m 2∶F N =k 2Δx +m 2g 对m 1∶m 1g =k 1Δx +k 2ΔxF N =m 2g +k 2k 1+k 2m 1g .[答案] (1)L 1+L 2+m 1+m 2g k 1+m 2g k 2 (2)m 2g +k 2k 1+k 2m 1g。

高考物理一轮总复习课时规范练_16

高考物理一轮总复习课时规范练_16

课时规范练26基础对点练1.(做功的判断)(2023广东江门模拟)传送带是物料搬运系统机械化和自动化传送用具。

如图所示,传送带靠静摩擦力把货箱从低处匀速送往高处,下列说法正确的是()A.货箱与传送带间无相对滑动,静摩擦力不做功B.货箱所受静摩擦力方向沿传送带向下C.增大传送带斜面倾角,货箱所受静摩擦力变大D.货箱质量越大则越不容易相对传送带滑动答案 C解析货箱与传送带间无相对滑动,向上匀速运动,则静摩擦力方向沿传送带向上,静摩擦力做正功,A、B错误;因静摩擦力F f=mg sinθ,则增大传送带斜面倾角,货箱所受静摩擦力变大,C正确;若货箱相对传送带将要滑动时,则满足最大静摩擦力大小等于重力沿传送带向下的分量,即mg sinθ=μmg cosθ,即μ=tanθ,与货物的质量大小无关,D错误。

2.(功的计算)(人教版教材必修第二册P78T1改编)如图所示,各图的力F大小相等,物体运动位移l 的方向与速度v的方向相同,各图中的位移l均相同,下列关于力F做功的说法正确的是()A.因为有摩擦力存在,计算图甲中力F做的功时,不能用W=Fl计算B.图乙中力F做的功W=Fl cos θC.图丙中力F做的功W=Fl cos(πθ)D.计算图丁中力F做的功时,不能用W=Fl cos θ计算答案 C解析计算力F做的功时,与其他力无关,A错误;图乙中力与位移方向的夹角为πθ,故图乙中力F 做的功为W=Fl cos(πθ),B错误;图丙中力与位移方向的夹角为πθ,故图丙中力F做的功W=Fl cos(πθ),C正确;图丁中力与位移方向的夹角为θ,故图丁中力F做的功W=Fl cosθ,D错误。

3.(功率的计算)(2023河北邯郸模拟)汽车在某上坡的路段以10 m/s的速度匀速行驶,已知汽车总质量为2×103 kg,该上坡的路段与水平面成15°角,假设受到的阻力为1.8×103 N,g取10m/s2,sin 15°=0.26,此时汽车的发动机功率是()A.18 kWB.52 kWC.70 kWD.20 kW答案 C解析汽车的发动机功率P=Fv,汽车匀速行驶时处于平衡状态有F=F阻+mg sin15°,以上两式联立求得P=70kW,故选C。

届高考物理一轮复习第四章课时作业16

届高考物理一轮复习第四章课时作业16

课时作业 16[双基过关练]1.如图所示,李明同学站在处于静止状态的倾斜电梯上,电梯从静止开始启动后匀加速上升,到达一定速度后再匀速上升.电梯与水平地面成θ角.若以F N 表示水平梯板对李明的支持力,G 为李明受到的重力,F f 为电梯对李明的静摩擦力,则下列结论正确的是( )A .加速过程中F f ≠0,F f 、F N 、G 都做功B .加速过程中F f ≠0,F N 不做功C .加速过程中F f =0,F N 、G 都做功D .匀速过程中F f =0,F N 、G 都不做功解析:加速过程中,水平方向的加速度由静摩擦力F f 提供,所以F f ≠0,F f 、F N 做正功,G 做负功,选项A 正确,B 、C 错误;匀速过程中,水平方向不受静摩擦力作用,F f =0,F N 做正功,G 做负功,选项D 错误.答案:A2.(2020·郑州模拟)如图所示,小球置于倾角为45°斜面上被竖直挡板挡住,整个装置匀速竖直下降一段距离,此过程中,小球重力大小为G ,做功为W G ;斜面对小球的弹力大小为F 1,小球克服F 1做功为W 1;挡板对小球的弹力大小F 2,做功为W 2,不计一切摩擦,则下列判断正确的是( )A .F 2=G ,W 2=0B .F 1=G ,W 1=W GC .F 1>G ,W 1>W GD .F 2>G ,W 2>W G解析:小球匀速竖直下降,由平衡条件得,F 1cos45°=G ,F 1sin45°=F 2,联立解得F 2=G ,F 1=2G.由于F 2与位移方向垂直,则F 2不做功,故W 2=0,F 1做功大小为W 1=F 1hcos45°=Gh ,重力做功大小为W G =Gh ,因此W 1=W G ,故选项A 正确.答案:A3.(多选)如图是一种工具——石磨,下面磨盘固定,上面磨盘可绕过中心的竖直转轴,在推杆带动下在水平面内转动.若上面磨盘直径为D ,质量为m 且均匀分布,磨盘间动摩擦因数为μ.若推杆在外力作用下以角速度ω匀速转动,磨盘转动一周,外力克服磨盘间摩擦力做功为W ,则( )A .磨盘边缘的线速度为ωD2B .磨盘边缘的线速度为ωDC .摩擦力的等效作用点离转轴距离为WπμmgD .摩擦力的等效作用点离转轴距离为W2πμmg解析:由v =ωr 得,v =ωD2,故选项A 正确、B 错误;摩擦力的方向与运动方向始终相反,用微元法,在很小的一段位移内可以看成恒力,磨盘转一周克服摩擦力做功W =μmgs,对应圆的周长s =2πr,解得r =W2πμmg,故选项C 错误、D 正确.答案:AD4.(2020·南通、扬州、泰州三模)竹蜻蜓是我国古代发明的一种儿童玩具,上世纪三十年代,人们根据竹蜻蜓原理设计了直升机的螺旋桨.如图,一小孩搓动质量为20 g的竹蜻蜒,松开后竹蜻蜓能上升到二层楼房顶高处.在搓动过程中手对竹蜻蜒做的功可能是( )A.0.2 J B.0.6 JC.1.0 J D.2.5 J解析:竹蜻蜓在上升到最高点的过程中,动能转化为重力势能和内能,一般每层楼房的高度为3 m,二层也就是6 m,所以重力势能的增加量为E p=mgh=1.2 J,则在搓动过程中手对竹蜻蜓做的功要大于1.2 J,A、B、C选项错误,D项正确.答案:D5.(2020·湖南省五市十校高三联考)通过认真学习,同学们掌握了丰富的物理知识.下列说法中正确的是( )A.汽车在光滑的水平面上运动时,驾驶员通过操作方向盘,可以使汽车转弯B.在某一过程中,只要物体的位移为0,任何力对该物体所做的功就为0C.物体的速度为0时,其加速度可能不为0D.静摩擦力对受力物体可以做正功,滑动摩擦力对受力物体一定做负功解析:汽车在水平面上转弯时,向心力的来源是静摩擦力,所以在光滑水平面上,通过操作方向盘,不能使汽车转弯,A项错误;B选项容易片面地理解为W=Fx,因为位移x=0,所以W=0,但该公式只适用于恒力做功,例如汽车绕操场一圈回到出发点,虽然汽车的位移为零,但牵引力对汽车做了功,牵引力做的功为牵引力乘以路程,B项错误;物体的速度与加速度没有必然联系,例如汽车启动的瞬间,虽然汽车的速度为0,但加速度不为0,C项正确;摩擦力可以对物体做正功、做负功或不做功,D项错误.答案:C6.一汽车以速度v0在平直路面上匀速行驶,在t=0时该汽车进入一定倾角的上坡路段,设汽车行驶过程中受到的阻力大小恒定不变,发动机的输出功率不变,已知汽车上坡路面足够长.从t=0时刻开始,汽车运动的v-t图象可能正确的有( )解析:汽车在平直路面上以速度v0匀速行驶时,设汽车受到的阻力大小为F f,汽车的牵引力大小为F,t=0时刻汽车上坡,加速度以a=F f+mgsinθ-Fm,汽车立即减速,又牵引力F=Pv随速度减小而增大,汽车做加速度减小的减速运动,当加速度减小为0时,汽车匀速运动,选项D正确.答案:D7.A、B两物体的质量之比m A:m B=2:1,它们以相同的初速度v0在水平面上做匀减速直线运动,直到停止,其速度—时间图象如图所示.那么,A、B两物体所受摩擦阻力之比F A F B与A、B两物体克服摩擦阻力做功之比W A W B分别为( )A.2:1,4:1 B.4:1,2:1C.1:4,1:2 D.1:2,1:4解析:由v-t图象可知:a A:a B=2:1,又由F=ma,m A:m B=2:1,可得F A:F B=4:1;又由题图中面积关系可知A、B位移之比x A:x B=1:2,由做功公式W=Fx,可得W A:W B=2:1,故选B.答案:B8.质量为5×103kg的汽车在t=0时刻速度v0=10 m/s,随后以P=6×104W的额定功率沿平直公路继续前进,经72 s达到最大速度,设汽车受恒定阻力,其大小为2.5×103 N.求:(1)汽车的最大速度v m;(2)汽车在72 s 内经过的路程x.解析:(1)汽车达到最大速度时,牵引力等于阻力,由P =F f v m ,得v m =P F f =6×1042.5×103 m/s =24 m/s(2)由动能定理得Pt -F f x =12mv 2m -12mv 2故x =2Pt -m v 2m -v 22F f=1 252 m答案:(1)24 m/s (2)1 252 m [能力提升练]9.一木块前端有一滑轮,绳的一端系在右方固定处,水平穿过滑轮,另一端用恒力F 拉住,保持两股绳之间的夹角θ不变,如图所示,当用力F 拉绳使木块前进x 时,力F 对木块做的功(不计绳重和滑轮摩擦)是( )A .Fxcosθ B.Fx(1+cosθ) C .2Fxcosθ D.2Fx解析:根据动滑轮的特点可求出绳子在F 方向上的位移为x =x(1+cosθ),根据恒力做功公式得W =Fx =Fx(1+cosθ),或可看成两股绳都在对木块做功W =Fx +Fxcosθ=Fx(1+cosθ),则选项B 正确.答案:B10.(多选)发动机额定功率为80 kW 的汽车,质量为2×103kg ,在水平路面上行驶时汽车所受摩擦阻力恒为4×103N ,若汽车在平直公路上以额定功率启动,则下列说法中正确的是( )A .汽车的加速度和速度都逐渐增加B .汽车匀速行驶时,所受的牵引力为零C .汽车的最大速度为20 m/sD .当汽车速度为5 m/s 时,其加速度为6 m/s 2解析:由P =Fv ,F -F f =ma 可知,在汽车以额定功率启动的过程中,F 逐渐变小,汽车的加速度a 逐渐减小,但速度逐渐增加,当匀速行驶时,F =F f ,此时加速度为零,速度达到最大值,则v m =P F f =80×1034×103m/s =20 m/s ,故A 、B 错误,C 正确;当汽车速度为5 m/s 时,由牛顿第二定律得P v-F f =ma ,解得a =6 m/s 2,故D 正确.答案:CD11.(2020·江西省吉安市一中段考)如图所示为牵引力F 和车速倒数1v的关系图象,若汽车质量为2×103kg ,它由静止开始沿平直公路行驶,且行驶中阻力恒定,设其最大车速为30 m/s ,则正确的是( )A .汽车所受阻力为2×103NB .汽车车速为15 m/s ,功率为3×104WC .汽车匀加速的加速度为3 m/s 2D .汽车匀加速所需时间为4.5 s解析:当速度为30 m/s 时,牵引车的速度达到最大,做匀速直线运动,此时F =F f ,所以F f =2×103N ,故A 正确;牵引车的额定功率P =F f v =2×103×30 W=6×104W ,匀加速直线运动的加速度a =F -F f m=6 000-2 0002 000 m/s 2=2 m/s 2,匀加速直线运动的末速度v =P F =6×1046×103 m/s =10m/s ,匀加速直线运动的时间t=va=5 s,因为15 m/s>10 m/s,所以汽车速度为15 m/s时,功率已达到额定功率,故B、C、D错误.答案:A12.如图(a)所示,“”型木块放在光滑水平地面上,木块上表面AB水平粗糙足够长,BC 表面光滑且与水平面夹角为θ=37°.木块右侧与竖直墙壁之间连接着一个力传感器,当力传感器受压时,其示数为正值;当力传感器被拉时,其示数为负值.一个可视为质点的滑块从C点由静止开始下滑,运动过程中,传感器记录到的力和时间的关系如图(b)所示,滑块经过B点时无能量损失.已知sin37°=0.6,cos37°=0.8,g取10 m/s2.求:(1)斜面BC的长度;(2)运动过程中滑块克服摩擦力做的功.解析:(1)滑块沿BC滑下时有a=gsinθ=6 m/s2由图(b)可知,经时间1 s,力传感器受力反向,故滑块沿BC滑下的时间t1=1 s所以斜面BC的长度为:x1=12at21=3 m(2)滑块滑到B点时的速度大小为:v=at1=6 m/s由题意及图(b)可知,滑块在AB表面滑行时间t2=3 s后停止,滑块在其表面滑行的距离为:x2=v+02t2=9 m由图可得滑块在AB上所受摩擦力大小F f=5 N所以滑块运动过程中克服摩擦力做的功为W=F f x2=45 J. 答案:(1)3 m (2)45 J2019-2020学年高考物理模拟试卷一、单项选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.如图所示,木板A的质量为m,滑块B的质量为M,木板A用绳拴住,绳与斜面平行,B沿倾角为θ的斜面在A下匀速下滑,若M=2m,A、B间以及B与斜面间的动摩擦因数相同,则动摩擦因数μ为()A.tanθ B.2tanθ C.12tanθ D.13tanθ2.如图(甲)所示,质最m=2kg的小物体放在长直的水平地面上,用水平细线绕在半径R=0.5m的薄圆筒上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业(十六)1.对万有引力定律的表达式F =Gm 1m 2r 2,下列说法正确的是 ( )A .公式中G 为常量,没有单位,是人为规定的B .r 趋向于零时,万有引力趋近于无穷大C .两物块之间的万有引力总是大小相等,与m 1、m 2是否相等无关D .两个物体间的万有引力总是大小相等,方向相反的,是一对平衡力[解析] 引力常量G 为比例常数,由G =F r 2m 1m 2可得,G 的单位是一个推导单位,它的数值是由英国物理学家卡文迪许在实验室里通过几个铅球之间万有引力的测量比较准确地得出的,A 错;当r 趋近于零时,物体已经不能被看作质点,故不再适用万有引力定律的公式,因此,也就推不出万有引力趋近于无穷大的结论,故B 错;两物体之间的万有引力是作用力与反作用力,与m 1、m 2是否相等无关,故C 对,D 错.[答案] C2.原香港中文大学校长、被誉为“光纤之父”的华裔科学家高锟和另外两名美国科学家共同分享了2009年度的诺贝尔物理学奖.早在1996年中国科学院紫金山天文台就将一颗于1981年12月3日发现的国际编号为“3463”的小行星命名为“高锟星”.假设“高锟星”为均匀的球体,其质量为地球质量的1k ,半径为地球半径的1q,则“高锟星”表面的重力加速度是地球表面的重力加速度的( )A.q kB.k qC.q 2kD.k 2q[解析] 根据黄金代换式g =Gm 星R 2,并利用题设条件,可求出C 项正确. [答案] C3.两个大小相同的实心小铁球紧靠在一起时,它们之间的万有引力为F .若两个半径为实心小铁球半径2倍的实心大铁球紧靠在一起,则它们之间的万有引力为A .2FB .4FC .8FD .16F[解析] 小铁球之间的万有引力F =Gmm2r =G m 24r.对小铁球和大铁球分别有m =ρV =ρ·43πr 3,M =ρV ′=ρ·43π(2r )3=8ρ(43πr 3)=8m ,故两大铁球间的万有引力F ′=G 8m ·8m 2×2r 2=16G m 24r2=16F . [答案] D4.(2012·安徽期末)2011年8月26日消息,英国曼彻斯特大学的天文学家认为,他们已经在银河系里发现一颗由曾经的庞大恒星转变而成的体积较小的行星,这颗行星完全由钻石构成.若已知万有引力常量,还需知道哪些信息可以计算该行星的质量A .该行星表面的重力加速度及绕行星运行的卫星的轨道半径B .该行星的自转周期与星体的半径C .围绕该行星做圆周运动的卫星的公转周期及运行半径D .围绕该行星做圆周运动的卫星的公转周期及公转线速度[解析] 由万有引力定律和牛顿第二定律得卫星绕中心天体运动的向心力由中心天体对卫星的万有引力提供,利用牛顿第二定律得G Mm r 2=m v 2r =mr ω2=mr 4π2T2;若已知卫星的轨道半径r 和卫星的运行周期T 、角速度ω或线速度v 、可求得中心天体的质量为M =rv 2G =4π2r 3GT 2=ω2r3G,所以选项CD 正确. [答案] CD5.(2012·武汉联考)如右图所示,地球的公转轨道接近圆,但彗星的运动轨道则是一个非常扁的椭圆.天文学家哈雷曾经在1662年跟踪过一颗彗星,他算出这颗彗星轨道的半长轴约等于地球公转半径的18倍,并预言这颗彗星将每隔一定时间就会再次出现.这颗彗星最近出现的时间是1986年,它下次飞近地球大约是哪一年( )A .2042年B .2052年C .2062年D .2072年[解析] 根据开普勒第三定律有T 彗T 地=(R 彗R 地)32=1832=76.4,又T 地=1年,所以T 彗≈76年,彗星下次飞近地球的大致年份是1986+76=2062年.[答案] C6.(2012·浙江卷)如下图所示,在火星与木星轨道之间有一小行星带.假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动.下列说法正确的是A .太阳对小行星的引力相同B .各小行星绕太阳运动的周期小于一年C .小行星带内侧小行星的向心加速度值大于小行星带外侧小行星的向心加速度值D .小行星带内各小行星圆周运动的线速度值大于地球公转的线速度值[解析] 根据行星运行模型,离地球越远,线速度越小,周期越大,角速度越小;向心加速度等于万有引力加速度,越远越小,各小行星所受万有引力大小与其质量有关,所以只有C 项对.[答案] C7.(2011·浙江卷)为了探测X 星球,载着登陆舱的探测飞船在以该星球中心为圆心,半径为r 1的圆轨道上运动,周期为T 1,总质量为m 1.随后登陆舱脱离飞船,变轨到离星球更近的半径为r 2的圆轨道上运动,此时登陆舱的质量为m 2,则A .X 星球的质量为M =4π2r 31GT 21B .X 星球表面的重力加速度为gx =4π2r 1T 21C .登陆舱在r 1与r 2轨道上运动时的速度大小之比为v 1v 2=m 1r 2m 2r 1 D .登陆舱在半径为r 2轨道上做圆周运动的周期为T 2=T 1r 32r 31[解析] 由飞船环绕X 星球做圆周运动得G Mm r 21=mr 1(2πT 1)2,得X 星的质量为M =4π2r 31GT 21,A项正确;G Mm r 21=mr 1(2πT 1)2=mg ′,得g ′=4π2r 1T 21,为飞船轨道所在处的重力加速度,B 项错误;由G Mm r 2=m v 2r得v =GM r ,与飞船质量无关,C 项错误;由G Mm r 2=mr (2πT )2,可得r 31T 21=r 32T 22,D 项正确.[答案] AD8.(2012·北京海淀区期中统考)天宫一号于2011年9月29日成功发射,它将和随后发射的神舟飞船在空间完成交会对接,实现中国载入航天工程的一个新的跨越.天宫一号进入运行轨道后,其运行周期为T ,距地面的高度为h ,已知地球半径为R ,万有引力常量为G .若将天宫一号的运行轨道看做圆轨道,求:(1)地球质量M ; (2)地球的平均密度.[解析] (1)因为将天宫一号的运行轨道看做圆轨道,万有引力充当向心力,即GMm R +h 2=m4π2T 2(R +h ),解得地球的质量M =4π2R +h 3GT2.(2)由地球的质量M =4π2R +h 3GT2,地球的体积V =43πR 3,可得地球的平均密度:ρ=M43πR 3=3πR +h 3GT 2R 3.[答案] (1)4π2R +h 3GT2(2)3πR +h 3GT 2R 39.如右图所示,天文学家观测到某行星和地球在同一轨道平面内绕太阳做同向匀速圆周运动,且行星的轨道半径比地球的轨道半径小,已知地球的运转周期为T .地球和太阳中心的连线与地球和行星的连线所夹的角叫做地球对该行星的观察视角(简称视角).已知该行星的最大视角为θ,当行星处于最大视角处时,是地球上的天文爱好者观察该行星的最佳时期.则此时行星绕太阳转动的角速度ω行与地球绕太阳转动的角速度ω地的比值ω行∶ω地为A.tan 3θ B.cos 3θ C.1sin 3θD.1tan 3θ[解析] 当行星处于最大视角处时,地球和行星的连线与行星和太阳的连线垂直,三星球的连线构成直角三角形,有sin θ=r 行r 地,据G Mm r 2=m ω2r ,得ω行ω地=r 3地r 3行=1sin 3θ,选项C 正确.[答案] C10.(2012·新课标全国卷)假设地球是一半径为R 、质量分布均匀的球体.一矿井深度为d .已知质量分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处的重力加速度大小之比为( )A .1-d RB .1+d RC .(R -d R)2D .(RR -d)2[解析] 设位于矿井底部的小物体的质量为m ,有mg ′=GM ′mR -d 2;对位于地球表面的物体m 有mg =GMm R 2,根据质量分布均匀的物体的质量和体积成正比可得M ′M =R -d 3R 3,由以上三式可得g ′g =1-d R. [答案] A11.宇航员在一星球表面上的某高处,沿水平方向抛出一小球.经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L .若抛出时初速度增大到2倍,则抛出点与落地点之间的距离为3L .已知两落地点在同一水平面上,该星球的半径为R ,万有引力常量为G .求该星球的质量M .[解析] 设第一次抛出速度为v 、高度为h ,根据题意可得下图:依图可得:⎩⎪⎨⎪⎧L 2=h 2+vt 23L 2=h 2+2vt 2h =12gt 2解方程组得g =23L 3t2 质量为m 的物体在星球表面所受重力等于万有引力,得mg =G Mm R2解得星球质量M =R 2g G =23LR 23Gt2.[答案] 23LR23Gt212.(2012·湖北百所重点中学联考)宇宙中存在由质量相等的四颗星组成的四星系统,四星系统离其他恒星较远,通常可忽略其他星体对四星系统的引力作用.已观测到稳定的四星系统存在两种基本的构成形式:一种是四颗星稳定地分布在边长为a 的正方形的四个顶点上,均围绕正方形对角线的交点做匀速圆周运动,其运动周期为T 1;另一种形式是有三颗星位于边长为a 的等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运动,其运动周期为T 2,而第四颗星刚好位于三角形的中心不动.试求两种形式下,星体运动的周期之比T 1/T 2.[解析] 如下图所示,对于第一种形式:一个星体在其他三个星体的万有引力作用下围绕正方形对角线的交点做匀速圆周运动,其轨道半径为:r 1=22a ,由万有引力定律和向心力公式得:G m 22a 2+2G m 2a 2cos45°=mr 14π2T 21, 解得周期:T 1=2πa2a4+2Gm.对于第二种形式,其轨道半径为:r 2=33a ,由万有引力定律和向心力公式得: G m 2r 22+2G m 2a 2cos30°=mr 24π2T 22. 解得周期:T 2=2πaa31+3Gm,解得:T 1T 2=6+634+2.[答案]6+634+2。

相关文档
最新文档