辽宁省葫芦岛市连山区2019-2020学年八年级上学期期末数学试题(解析版)

合集下载

2019--2020学年度八年级数学(上学期)期末综合检测卷(解析版)

2019--2020学年度八年级数学(上学期)期末综合检测卷(解析版)

2019--2020学年度八年级数学(上学期)期末综合检测卷姓名分数一、选择题(每小题3分,共30分)1在平面直角坐标系中,点A(1,2)的横坐标乘-1,纵坐标不变,得到点A',则点A与点A'的关系是( )A.关于x轴对称B.将点A向y轴负方向平移2个单位长度得到点A'C.关于y轴对称D.将点A向x轴负方向平移1个单位长度得到点A'2.下列命题为真命题的是()A.五边形的内角和为540°B.证明两个三角形全等的方法有SSS,SAS,ASA,SSA及HL等C.同底数幂相乘,指数不变,底数相加D.分式的分子与分母乘(或除以)同一个整式,分式的值不变3.如图,在△ABC中,AB=AC,∠ABC=75°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为( )A.15°B.17.5C.20°D.22.5°4.8x3y3·(-2xy)3等于()A.0B.-64x6y6C.-16x6y6D.-64x3y55.下列关系式中,正确的是()A.(a+b)2=a2-2ab+b2B.(a-b)2=a2-b2C.(a+b)(-a+b)=b2-a2D.(a+b)(-a-b)=a2-b26.x2y—x—y2y—x化简的结果是A.-x-yB. y-xC.x-yD.x+y7如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别是∠ABC与∠ACB的平分线,且相交于点F,则图中的等腰三角形共有( )A.6个B.7个C.8个D.9个8若m+n=7,mn=12,则m2-mn+n2的值是()A .11 B.13 C.37 D.619.如图,在△ABC中,AB=AC,BC=6,点E,F是中线AD上的两点,且BC边上的高为4,则图中阴影部分的面积是()A.6B.12C.24D.3010.如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC 上有一点P,使PD+PE最小,则这个最小值为()A.1B.2C.4D.8二、填空题(每小题3分,共15分)1.分解因式:a3b—ab= .2.如图,∠AOB=40°,CD⊥OA于点D,CE⊥OB于点E,且CD=CE,则∠DOC的度数是.3.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,交BC于点D,BC=16,且DC:DB=3:5,则点D到AB的距离是.4.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式可以是.(要求写三个)5.如图,在△ABC中,∠B=54°,∠ACB=70°,AD平分∠BAC,MGAD于点G,分别交AB、AC 及BC的延长线于E、F、M,则∠BME的读数为.三、解答题(共75分)1.(8分)(1)因式分解:3x3—12x2y+12xy2;(2)计算:x·x3+(—2x2)2+24x6÷(—4x2)2.(9分)先化简,再求值:x2—2xx2—4÷(x—2—2x—4x+2),其中x=53.(9分)解方程:1x+2—4x4—x 2=3x—24.(9分)已知A=3x2—12,B=5x2y3+10xy3,C=(x+1)(x+3)+1,问:多项式A、B、C是否有公因式?若有,请求出其公因式;若没有,请说明理由。

辽宁省葫芦岛市2019-2020学年数学八上期末模拟试卷(3)

辽宁省葫芦岛市2019-2020学年数学八上期末模拟试卷(3)

辽宁省葫芦岛市2019-2020学年数学八上期末模拟试卷(3)一、选择题1.下列各式计算正确的是( ) A .(a 5)2=a 7 B .2x ﹣2=212xC .3a 2•2a 3=6a 6D .a 8÷a 2=a 62.已知关于x 的方程232x mx +=-的解是正数,那么m 的取值范围为( ) A .m >-6且m≠2B .m <6C .m >-6且m≠-4D .m <6且m≠-23.纳米是非常小的长度单位,已知1纳米610-=毫米,某种病毒的直径为100纳米,若将这种病毒排成1毫米长,则病毒的个数是( )A.410B.610C.810D.910 4.下列各式中不能用完全平方公式分解因式的是( ) A .x 2+2x+1 B .x 2﹣2xy+y 2C .﹣x 2﹣2x+1D .x 2﹣x+0.25 5.已知a+b=3,ab=2,求代数式a 3b+2a 2b 2+ab 3的值为( )A.6B.18C.28D.506.下列运算正确的是( ) A.(x 2)3+(x 3)2=2x 6B.(x 2)3•(x 2)3=2x 12C.x 4•(2x )2=2x 6D.(2x )3•(﹣x )2=﹣8x 57.如图,DE 为ABC V 中AC 边的中垂线,BC 8=,AB 10=,则EBC V 的周长是( )A .16B .18C .26D .288.下列交通标志中,是轴对称图形的是( )A .B .C .D .9.等腰三角形的一个角是80°,则它顶角的度数是( ) A .80°或20° B .80°C .80°或50°D .20°10.如图,、分别是、的中点,过点作∥交的延长线于点,则下列结论正确的是( )A. B. C.<D.>11.如图,AE 垂直于∠ABC 的平分线交于点D ,交BC 于点E ,CE=13BC ,若△ABC 的面积为2,则△CDE 的面积为( )A.13B.16C.18D.11012.用尺规作图,已知三边作三角形,用到的基本作图是()A.作一个角等于已知角B.作一条线段等于已知线段C.作已知直线的垂线D.作角的平分线13.如图,在中,点,,分别是边,,上的点,且,,相交于点,若点是的重心.则以下结论:①线段,,是的三条角平分线;②的面积是面积的一半;③图中与面积相等的三角形有5个;④的面积是面积的.其中一定正确的结论有()A.①②③B.②④C.③④D.②③④14.如图,中,、分别为、的中点,,则阴影部分的面积是()A.18B.10C.5D.115.如图,∠A、∠1、∠2的大小关系是( )A.∠A>∠1>∠2 B.∠2>∠1>∠A C.∠A>∠2>∠1 D.∠2>∠A>∠1二、填空题16.若关于x的方程25--xx+5mx-=0有增根,则m的值是_____.17.已知:10m=2,10n=3,则10m﹣n=_____.18.如图1,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是_________。

2019--2020学年第一学期八年级上册期末考试数学试题及答案

2019--2020学年第一学期八年级上册期末考试数学试题及答案

八年级数学试卷注意:本试卷共 8 页,三道大题, 26 小题。

总分 120 分。

时间 120 分钟。

二 26 总分题号 得分得分 评卷人一、 选择题(本题共16 小题,总分42 分。

1-10 小题,每题3 分; 11-16 小题,每题 2 分。

在每小题给出的四个选项中,只有一项是 符合题目要求的。

请将正确选项的代号填写在下面的表格中)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16题号 答案1.点 P (﹣1,2)关于 y 轴的对称点坐标是( A .(1,2)B .(﹣1,2)C .(1,﹣2),则∠α 等于(C .58°D .50°3.用一条长 16cm 的细绳围成一个等腰三角形,若其中一 )D .(﹣1,﹣2)ABC EF G )边长 4cm ,则该等腰三角形的腰长为( A .4cmB .6cm4.在以下四个图案中,是轴对称图形的是()C .4cm 或 6cmD .4cm 或 8cm)A .B .C .D .5.一个多边形,每一个外角都是 45°,则这个多边形的边数是( A .6 B .7C .8) D .9m的乘积中不含 的一次项,则实数 的值是(x+m 2﹣x与x 6.若 )A .﹣2B .2x+y C .0) D .1x y 7.若 3 =4,3 =6,则 3 的值是(A .24B .10C .3D .28. “已知∠AOB ,求作射线 OC ,使 OC 平分∠AOB ”的作法的合理顺序是()①作射线 OC ; ②在 OA 和 OB 上分别截取 OD 、 OE ,使 OD=OE ;③分别以 D 、E 为圆心,大于 DE 的长为半径作弧,在∠AOB 内,两弧交于 C . A .①②③9. 下列计算中,正确的是( 3 2 4 B .②①③C .②③①D .③②①) 2 2x •x =x (x+y )(x ﹣y )=x +y B .A . 3 2 2 4 x (x ﹣2)=﹣2x+x 2.3xy ÷xy =3x C D .10.下列各式中,从左到右的变形是因式分解的是( )A .2a 2﹣2a+1=2a (a ﹣1)+1(x+y )(x ﹣y )=x 2﹣y 2B .C .x 2﹣6x+5=(x ﹣5)(x ﹣1)D .x 2+y 2=(x ﹣y )2+2xyl)A .30°B .45°C .50°D .75°12. 某市政工程队准备修建一条长 1200 米的污水处理管道。

2020-2021学年辽宁省葫芦岛市连山区八年级(上)期末数学试卷(解析版)

2020-2021学年辽宁省葫芦岛市连山区八年级(上)期末数学试卷(解析版)

2020-2021学年辽宁省葫芦岛市连山区八年级第一学期期末数学试卷一、选择题(共10小题).1.下列各代数式,x2y,﹣,,中,分式有()A.1个B.2个C.3个D.4个2.使分式在实数范围内有意义,则实数m的取值范围是()A.m≠1B.m≠3C.m≠3且m≠1D.m=13.一个多边形每一个外角都等于18°,则这个多边形的边数为()A.10B.12C.16D.204.具备下列条件的△ABC,不是直角三角形的是()A.∠A+∠B=∠C B.∠A=∠B=∠CC.∠A=2∠B=3∠C D.∠A:∠B:∠C=1:3:45.下列运算中,计算正确的是()A.a3+a3=a6B.(2a2)3=6a6C.a2•a3=a6D.(2a3)2=4a6 6.如果x2+(m﹣1)x+9是一个完全平方式,那么m的值是()A.7B.﹣7C.﹣5或7D.﹣5或57.下列代数式中能用平方差公式计算的是()A.(x+y)(x+y)B.(2x﹣y)(y+2x)C.D.(﹣x+y)(y﹣x)8.如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为()A.45°B.60°C.90°D.100°9.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=60°,AD=2,则BD=()A.2B.4C.6D.810.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过O点作EF∥BC交AB 于点E,交AC于点F,过点O作OD⊥AC于D,下列四个结论.①EF=BE+CF;②∠BOC=90°+∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S△AEF=mn,正确的结论有()个.A.1个B.2个C.3个D.4个二.填空题(每小题3分,共24分)11.自然界中,花粉的质量很小,一粒某种植物花粉的质量约为0.000042毫克,0.000042用科学记数法表示为.12.计算:﹣32021×(﹣)2020=.13.把多项式ax2﹣4ax+4a因式分解的结果是.14.已知关于x的分式方程﹣3=的的解为正数,则k的取值范围为.15.如图,已知AD为△ABC的中线,AB=12cm,AC=9cm,△ACD的周长为27cm,则△ABD的周长为cm.16.如图,AD是∠BAC的平分线,EF垂直平分AD交BC的延长线于点F,若∠FAC=65°,则∠B的度数为.17.如图,在△ABC中,DE是AC的垂直平分线,△BCD的周长为13,△ABC的周长是19,若∠ACD=60°,则AD=.18.如图,已知等边△AOC的边长为1,作OD⊥AC于点D,在x轴上取点C1,使CC1=DC,以CC1为边作等边△A1CC1;作CD1⊥A1C1于点D1,在x轴上取点C2,使C1C2=D1C1,以C1C2为边作等边△A2C1C2;作C1D2⊥A2C2于点D2,在x轴上取点C3,使C2C3=D2C2,以C2C3为边作等边△A3C2C3;…,且点A,A1,A2,A3,…都在第一象限,如此下去,则等边△A2021C2020C2021的边A2021C2021中点D2021横坐标为.三.解答题(19题每小题10分,20题小每题6分,21题12分,共34分)19.(1)(x+2)(2x﹣1);(2)(15x3y5﹣10x4y4﹣20x3y2)÷(﹣5x3y2).20.解下列分式方程(1)=1.(2).21.化简并计算:,其中x=3.四.解答题(每小题12分,共24分)22.已知,如图,在平面直角坐标系中,A(﹣1,4),B(﹣2,1),C(﹣4,1).(1)请作出△ABC关于y轴的对称图形△A1B1C1;(2)直接写出点A1,B1,C1的坐标,A1B1C1.(3)P为y轴上一点,在图中画出使△PAB的周长最小时的点P,并直接写出此时点P 的坐标.23.如图,BD为△ABC的角平分线,且BD=BC,E在BD的延长线上,连接AE,∠BAE =∠BEA,连接CE.求证:(1)△ABD≌△EBC;(2)∠BCE+∠BCD=180°.五.解答题(本题12分)24.为应对疫情,某药店到厂家选购A、B两种品牌的医用外科口罩,B品牌口罩每个进价比A品牌口罩每个进价多0.7元,若用7200元购进A品牌数量是用5000元购进B品牌数量的2倍.(1)求A、B两种品牌的口罩每个进价分别为多少元?(2)若A品牌口罩每个售价为2元,B品牌口罩每个售价为3元,药店老板决定一次性购进A、B两种品牌口罩共6000个,在这批口罩全部出售后所获利润不低于1800元.则最少购进B品牌口罩多少个?六.解答题(本题12分)25.阅读下面的材料,并解答后面的问题材料:将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式.解:由分母为x+1,可设3x2+4x﹣1=(x+1)(3x+a)+b.因为(x+1)(3x+a)+b=3x2+ax+3x+a+b=3x2+(a+3)x+a+b,所以3x2+4x﹣1=3x2+(a+3)x+a+b.所以,解得.所以==﹣=3x+1﹣.这样,分式就被拆分成了一个整式3x+1与一个分式的差的形式.根据你的理解解决下列问题:(1)请将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式;(2)若分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式为:5m﹣11+,求m2+n2+mn的最小值.七.解答题(本题14分)26.如图,在等边△ABC中,点D,E分别是AC,AB上的动点,且AE=CD,BD交CE 于点P.(1)如图1,求证:∠BPC=120°;(2)点M是边BC的中点,连接PA,PM,延长BP到点F,使PF=PC,连接CF,①如图2,若点A,P,M三点共线,则AP与PM的数量关系是.②如图3,若点A,P,M三点不共线,问①中的结论还成立吗?若成立,请给出证明,若不成立,说明理由.参考答案一.选择题(共10小题).1.下列各代数式,x2y,﹣,,中,分式有()A.1个B.2个C.3个D.4个解:代数式,是分式,共2个,故选:B.2.使分式在实数范围内有意义,则实数m的取值范围是()A.m≠1B.m≠3C.m≠3且m≠1D.m=1解:由题意得:m﹣3≠0,解得:m≠3,故选:B.3.一个多边形每一个外角都等于18°,则这个多边形的边数为()A.10B.12C.16D.20解:∵一个多边形的每一个外角都等于18°,且多边形的外角和等于360°,∴这个多边形的边数是:360°÷18°=20,故选:D.4.具备下列条件的△ABC,不是直角三角形的是()A.∠A+∠B=∠C B.∠A=∠B=∠CC.∠A=2∠B=3∠C D.∠A:∠B:∠C=1:3:4【分析】分别求出各个选项中,三角形的最大的内角,即可判断.解:A、由∠A+∠B=∠C,可以推出∠C=90°,本选项不符合题意.B、由∠A=∠B=∠C,可以推出∠C=90°,本选项不符合题意.C、由∠A=2∠B=3∠C,推出∠A=()°,△ABC是钝角三角形,本选项符合题意.D、由∠A:∠B:∠C=1:3:4,可以推出∠C=90°,本选项不符合题意,故选:C.【点评】本题考查三角形内角和定理,解题的关键是灵活运用所学知识,属于中考常考题型.5.下列运算中,计算正确的是()A.a3+a3=a6B.(2a2)3=6a6C.a2•a3=a6D.(2a3)2=4a6【分析】分别根据合并同类项法则,幂的乘方与积的乘方运算法则,同底数幂的乘法法则逐一判断即可.解:A.a3+a3=2a3,故本选项不合题意;B.(2a2)3=8a6,故本选项不合题意;C.a2•a3=a5,故本选项不合题意;D.(2a3)2=4a6,故本选项符合题意.故选:D.【点评】本题主要考查了合并同类项,同底数幂的乘法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.6.如果x2+(m﹣1)x+9是一个完全平方式,那么m的值是()A.7B.﹣7C.﹣5或7D.﹣5或5【分析】根据完全平方式的特点得出(m﹣1)x=±2•x•3,再求出即可.解:∵x2+(m﹣1)x+9是一个完全平方式,∴(m﹣1)x=±2•x•3,∴m﹣1=±6,∴m=﹣5或7,故选:C.【点评】本题考查了完全平方式,能熟记完全平方式的特点是解此题的关键,注意:完全平方公式有a2+2ab+b2和a2﹣2ab+b2两个.7.下列代数式中能用平方差公式计算的是()A.(x+y)(x+y)B.(2x﹣y)(y+2x)C.D.(﹣x+y)(y﹣x)【分析】平方差公式为:(a+b)(a﹣b)=a2﹣b2,即一个数与另一个数的和乘以这个数与另一个数的差,等于相同数字的平方减去相反数字的平方.据此分析即可.解:A、两个括号内的数字完全相同,不符合平方差公式,故不符合题意;B、两个括号内的相同数字是2x,相反数字是(﹣y)与y,故可用平方差公式计算,该选项符合题意;C、没有完全相同的数字,也没有完全相反的数字,故不符合题意;D、两个括号内只有相同项,没有相反项,故不符合题意.故选:B.【点评】本题考查了对平方差公式的识别,掌握平方差公式的实质是解题的关键.8.如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为()A.45°B.60°C.90°D.100°【分析】首先证明△ABC≌△DFE,根据全等三角形的性质可得∠1=∠BAC,再根据余角的定义可得∠BAC+∠2=90°,再根据等量代换可得∠1与∠2的和为90°.解:在△ABC和△DFE中,,∴△ABC≌△DFE(SAS),∴∠1=∠BAC,∵∠BAC+∠2=90°,∴∠1+∠2=90°,故选:C.【点评】此题主要考查了全等图形,关键是掌握全等三角形的判定和性质.9.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=60°,AD=2,则BD=()A.2B.4C.6D.8【分析】根据同角的余角相等求出∠BCD=∠A=60°,再根据30°角所对的直角边等于斜边的一半求出AC、AB的长,然后根据BD=AB﹣AD计算即可得解.解:∵∠ACB=90°,CD⊥AB,∴∠BCD+∠ACD=90°,∠A+∠ACD=90°,∴∠BCD=∠A=60°,∴∠ACD=∠B=30°,∵AD=2,∴AC=2AD=4,∴AB=2AC=8,∴BD=AB﹣AD=8﹣2=6.故选:C.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,同角的余角相等的性质,熟记性质是解题的关键.10.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过O点作EF∥BC交AB 于点E,交AC于点F,过点O作OD⊥AC于D,下列四个结论.①EF=BE+CF;②∠BOC=90°+∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S△AEF=mn,正确的结论有()个.A.1个B.2个C.3个D.4个【分析】由在△ABC中,∠ABC和∠ACB的平分线相交于点O,根据角平分线的定义与三角形内角和定理,即可求得②∠BOC=90°+∠A正确;由平行线的性质和角平分线的定义得出△BEO和△CFO是等腰三角形得出EF=BE+CF故①正确;由角平分线的性质得出点O到△ABC各边的距离相等,故③正确;由角平分线定理与三角形面积的求解方法,即可求得③设OD=m,AE+AF=n,则S△AEF=mn,故④正确.解:∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°﹣∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+∠A;故②正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=AE•OM+AF•OD=OD•(AE+AF)=mn;故④正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故③正确.故选:D.【点评】此题考查了角平分线的定义与性质,等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.二.填空题(每小题3分,共24分)11.自然界中,花粉的质量很小,一粒某种植物花粉的质量约为0.000042毫克,0.000042用科学记数法表示为 4.2×10﹣5.【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000042=4.2×10﹣5.故答案为:4.2×10﹣5.【点评】此题主要考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.计算:﹣32021×(﹣)2020=﹣3.【分析】首先变成同指数幂,再利用积的乘方的运算性质进行计算即可.解:﹣32021×(﹣)2020=﹣32020×3×(﹣)2020=﹣[3×(﹣)]2020×3=﹣1×3=﹣3,故答案为:﹣3.【点评】此题主要考查了积的乘方,关键是掌握(ab)n=a n b n(n是正整数).13.把多项式ax2﹣4ax+4a因式分解的结果是a(x﹣2)2.【分析】直接提取公因式a,进而利用完全平方公式分解因式得出答案.解:ax2﹣4ax+4a=a(x2﹣4x+4)=a(x﹣2)2.故答案为:a(x﹣2)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.14.已知关于x的分式方程﹣3=的的解为正数,则k的取值范围为k<且k.【分析】先求解分式方程,用含k的代数式表示x,根据方程的解为正数,得不等式,求解即可.解:去分母,得x﹣3(x﹣1)=2k,解得x=.∵分式方程的解为正数,∴>0且≠1.解得,k<且k.故答案为:k<且k.【点评】本题考查了解分式方程、解一元一次不等式.掌握分式方程、一元一次不等式的解法是解决本题的关键.本题易错,只关注不等式的解,而忽略了分式方程的分母不为0条件.15.如图,已知AD为△ABC的中线,AB=12cm,AC=9cm,△ACD的周长为27cm,则△ABD的周长为30cm.【分析】利用中线定义可得BD=CD,进而可得AD+DC=AD+BD,然后再求△ABD的周长即可.解:∵△ACD的周长为27cm,∴AC+DC+AD=27cm,∵AC=9cm,∴AD+CD=18cm,∵AD为△ABC的中线,∴BD=CD,∴AD+BD=18cm,∵AB=12cm,∴AB+AD+BD=30cm,∴△ABD的周长为30cm,故答案为:30,【点评】此题主要考查了三角形的中线,关键是掌握三角形的中线定义.16.如图,AD是∠BAC的平分线,EF垂直平分AD交BC的延长线于点F,若∠FAC=65°,则∠B的度数为65°.【分析】根据角平分线的定义得出∠CAD=∠BAD,根据线段垂直平分线的性质得出FA =FD,推出∠FDA=∠FAD,根据三角形的外角性质得出∠FDA=∠B+∠BAD,代入求出即可.解:∵AD平分∠CAB,∴∠CAD=∠BAD,设∠CAD=∠BAD=x°,∵EF垂直平分AD,∴FA=FD,∴∠FDA=∠FAD,∵∠FAC=65°,∴∠FAD=∠FAC+∠CAD=65°+x°,∵∠FDA=∠B+∠BAD=∠B+x°,∴65°+x°=∠B+x°,∴∠B=65°,故答案为:65°.【点评】本题考查了线段垂直平分线的性质,等腰三角形的性质,三角形的外角性质等知识点,能求出∠FDA=∠FAD是解此题的关键.17.如图,在△ABC中,DE是AC的垂直平分线,△BCD的周长为13,△ABC的周长是19,若∠ACD=60°,则AD=6.【分析】根据线段的垂直平分线的性质得到DA=DC,根据等边三角形的性质得到AD=AC,根据三角形的周长公式计算,得到答案.解:∵DE是AC的垂直平分线,∴DA=DC,∵∠ACD=60°,∴△ADC为等边三角形,∴AD=AC,∵△ABC的周长是19,∴AB+BC+AC=19,∵△BCD的周长为13,∴BD+DC+BC=BD+DA+BC=AB+BC=13,∴AC=19﹣13=6,∴AD=AC=6,故答案为:6.【点评】本题考查的是线段的垂直平分线的性质、等边三角形的判定和性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.18.如图,已知等边△AOC的边长为1,作OD⊥AC于点D,在x轴上取点C1,使CC1=DC,以CC1为边作等边△A1CC1;作CD1⊥A1C1于点D1,在x轴上取点C2,使C1C2=D1C1,以C1C2为边作等边△A2C1C2;作C1D2⊥A2C2于点D2,在x轴上取点C3,使C2C3=D2C2,以C2C3为边作等边△A3C2C3;…,且点A,A1,A2,A3,…都在第一象限,如此下去,则等边△A2021C2020C2021的边A2021C2021中点D2021横坐标为.【分析】根据等边三角形的性质分别求出C1C2,C2C3,C3C4,…,C2020C2021的边长即可解决问题.解:∵等边△AOC的边长为1,作OD⊥AC于点D,∴OC=1,C1C2=CD=OC=,∴OC,CC1,C1C2,C2C3,…,C2020C2021的长分别为1,,,,…,,OC2021=OC+CC1+C1C2+C2C3,…+C2020C2021=1++++…+=,∴等边△A2021C2020C2021顶点A2021的横坐标=﹣×=,∴等边△A2021C2020C2021的边A2021C2021中点D2021横坐标为(+)×=.故答案为:.【点评】本题考查了规律型:点的坐标和等边三角形的性质、解题的关键是A n点的横坐标变化规律.三.解答题(19题每小题10分,20题小每题6分,21题12分,共34分)19.(1)(x+2)(2x﹣1);(2)(15x3y5﹣10x4y4﹣20x3y2)÷(﹣5x3y2).【分析】(1)直接利用多项式乘多项式运算法则计算得出答案;(2)直接利用整式的除法运算法则计算得出答案.解:(1)(x+2)(2x﹣1)=2x2﹣x+4x﹣2=2x2+3x﹣2;(2)(15x3y5﹣10x4y4﹣20x3y2)÷(﹣5x3y2)=15x3y5÷(﹣5x3y2)﹣10x4y4÷(﹣5x3y2)﹣20x3y2÷(﹣5x3y2)=﹣3y3+2xy2+4.【点评】此题主要考查了整式的除法以及多项式乘多项式,正确掌握相关运算法则是解题关键.20.解下列分式方程(1)=1.(2).【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到未知数的值,经检验即可得到分式方程的解.解:(1)去分母得:1﹣a=a﹣1,解得:a=1,经检验a=1是增根,分式方程无解;(2)去分母得:2x﹣1﹣6=1,解得:x=4,经检验x=4是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.化简并计算:,其中x=3.【分析】先把分子分母因式分解,约分后进行同分母的减法运算得到原式=,然后把x的值代入计算即可.解:原式=•﹣=﹣=,当x=3时,原式==3.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.当未知数的值没有明确给出时,所选取的未知数的值必须使原式中的各分式都有意义,且除数不能为0.四.解答题(每小题12分,共24分)22.已知,如图,在平面直角坐标系中,A(﹣1,4),B(﹣2,1),C(﹣4,1).(1)请作出△ABC关于y轴的对称图形△A1B1C1;(2)直接写出点A1,B1,C1的坐标,A1(1,4)B1(2,1)C1(4,1).(3)P为y轴上一点,在图中画出使△PAB的周长最小时的点P,并直接写出此时点P 的坐标.【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(2)根据所作图形可得答案;(3)连接AB1,与y轴的交点即为点P.解:(1)如图所示,△A1B1C1即为所求.(2)由图知,A1(1,4),B1(2,1),C1(4,1),故答案为:(1,4),(2,1),(4,1);(3)如图所示,点P即为所求,其坐标为(0,3).【点评】本题主要考查作图﹣轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.23.如图,BD为△ABC的角平分线,且BD=BC,E在BD的延长线上,连接AE,∠BAE =∠BEA,连接CE.求证:(1)△ABD≌△EBC;(2)∠BCE+∠BCD=180°.【分析】(1)先由等角对等边得BA=BE,再由角平分线定义得∠ABD=∠EBC,然后由SAS即可得出△ABD≌△EBC;(2)由全等三角形的性质得∠ADB=∠BCE,由等腰三角形的性质得∠BDC=∠BCD,再由平角定义∠ADB+∠BDC=180°,即可得出结论.【解答】证明:(1)∵∠BAE=∠BEA,∴BA=BE,∵BD为△ABC的角平分线,∴∠ABD=∠EBC,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS);(2)由(1)得:△ABD≌△EBC,∴∠ADB=∠BCE,∵BD=BC,∴∠BDC=∠BCD,又∵∠ADB+∠BDC=180°,∴∠BCE+∠BCD=180°.【点评】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质等知识;熟练掌握等腰三角形的判定与性质,证明三角形全等是解题的关键,属于中考常考题型.五.解答题(本题12分)24.为应对疫情,某药店到厂家选购A、B两种品牌的医用外科口罩,B品牌口罩每个进价比A品牌口罩每个进价多0.7元,若用7200元购进A品牌数量是用5000元购进B品牌数量的2倍.(1)求A、B两种品牌的口罩每个进价分别为多少元?(2)若A品牌口罩每个售价为2元,B品牌口罩每个售价为3元,药店老板决定一次性购进A、B两种品牌口罩共6000个,在这批口罩全部出售后所获利润不低于1800元.则最少购进B品牌口罩多少个?【分析】(1)设A品牌口罩每个进价为x元,则B品牌口罩每个进价为(x+0.7)元,根据用7200元购进A品牌数量是用5000元购进B品牌数量的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进B品牌口罩m个,则购进A品牌口罩(6000﹣m)个,根据总利润=每个的利润×销售数量(购进数量)结合这批口罩全部出售后所获利润不低于1800元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.解:(1)设A品牌口罩每个进价为x元,则B品牌口罩每个进价为(x+0.7)元,依题意,得:=2×,解得:x=1.8,经检验,x=1.8是原方程的解,且符合题意,∴x+0.7=2.5,答:A品牌口罩每个进价为1.8元,B品牌口罩每个进价为2.5元.(2)设购进B品牌口罩m个,则购进A品牌口罩(6000﹣m)个,依题意,得:(2﹣1.8)(6000﹣m)+(3﹣2.5)m≥1800,解得:m≥2000.答:最少购进B品牌口罩2000个.六.解答题(本题12分)25.阅读下面的材料,并解答后面的问题材料:将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式.解:由分母为x+1,可设3x2+4x﹣1=(x+1)(3x+a)+b.因为(x+1)(3x+a)+b=3x2+ax+3x+a+b=3x2+(a+3)x+a+b,所以3x2+4x﹣1=3x2+(a+3)x+a+b.所以,解得.所以==﹣=3x+1﹣.这样,分式就被拆分成了一个整式3x+1与一个分式的差的形式.根据你的理解解决下列问题:(1)请将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式;(2)若分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式为:5m﹣11+,求m2+n2+mn的最小值.解:(1)由分母为x﹣1,可设2x2+3x+6=(x﹣1)(2x+a)+b.因为(x﹣1)(2x+a)+b=2x2+ax﹣2x﹣a+b=2x2+(a﹣2)x﹣a+b,所以2x2+3x+6=2x2+(a﹣2)x﹣a+b,因此有,解得,所以==2x+5+;(2)由分母为x+2,可设5x2+9x﹣3=(x+2)(5x+a)+b,因为(x+2)(5x+a)+b=5x2+ax+10x+2a+b=5x2+(a+10)x+2a+b,所以5x2+9x﹣3=5x2+(a+10)x+2a+b,因此有,解得,所以==5x﹣1﹣,所以5m﹣11+=5x﹣1﹣,因此5m﹣11=5x﹣1,n﹣6=﹣x﹣2,所以m=x+2,n=﹣x+4,所以m2+n2+mn=x2﹣2x+28=(x﹣1)2+27,因为(x﹣1)2≥0,所以(x﹣1)2+27≥27,所以m2+n2+mn的最小值为27.七.解答题(本题14分)26.如图,在等边△ABC中,点D,E分别是AC,AB上的动点,且AE=CD,BD交CE 于点P.(1)如图1,求证:∠BPC=120°;(2)点M是边BC的中点,连接PA,PM,延长BP到点F,使PF=PC,连接CF,①如图2,若点A,P,M三点共线,则AP与PM的数量关系是AP=2PM.②如图3,若点A,P,M三点不共线,问①中的结论还成立吗?若成立,请给出证明,若不成立,说明理由.【解答】(1)证明:∵△ABC为等边三角形,∴AB=AC=BC,∠A=∠ABC=∠ACB=60°,在△AEC和△CDB中,,∴△AEC≌△CDB(SAS),∴∠ACE=∠CBD,∵∠BPC+∠DBC+∠BCP=180°,∴∠BPC+∠ACE+∠BCP=180°,∴∠BPC=180°﹣60°=120°;(2)①解:AP=2PM,理由如下:∵△ABC为等边三角形,点M是边BC的中点,∴AM⊥BC,∠BAM=∠CAM=30°,∵AM⊥BC,点M是边BC的中点,∴PB=PC,∵∠BPC=120°,∴∠PBC=∠PCB=30°,∴PC=2PM,∠ACP=30°,∴∠PAC=∠PCA,∴PA=PC,∴AP=2PM,故答案为:AP=2PM;②解:①中的结论成立,理由如下:延长PM至H,是MH=PM,连接AF、CH,∵∠BPC=120°,∴∠CPF=60°,∵PF=PC,∴△PCF为等边三角形,∴CF=PF=PC,∠PCF=∠PFC=60°,∵△ABC为等边三角形,∴BC=AC,∠ACB=60°=∠PCF,∴∠BCP=∠ACF,在△BCP和△ACF中,,∴△BCP≌△ACF(SAS),∴AF=BP,∠AFC=∠BPC=120°,∴∠AFP=60°,在△CMH和△BMP中,,∴△CMH≌△BMP(SAS),∴CH=BP=AF,∠MCH=∠MBP,∴CH∥BP,∴∠HCP+∠BPC=180°,∴∠HCP=60°=∠AFP,在△AFP和△HCP中,,∴△AFP≌△HCP(SAS),∴AP=PH=2PM.。

辽宁省2019-2020学年八年级上学期数学期末考试试卷(II)卷(模拟)

辽宁省2019-2020学年八年级上学期数学期末考试试卷(II)卷(模拟)

辽宁省2019-2020学年八年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017八上·深圳月考) 下列说法正确的是()A . 4的平方根是±2B . 8的立方根是±2C .D .2. (2分)(2019·太仓模拟) 函数中自变量的取值范围是()A .B .C .D .3. (2分)若分式的值为0,则x的值为()A . 1B . -1C . ±1D . 24. (2分) (2019八上·信阳期末) 下列世界博览会会徽图案中是轴对称图形的是()A .B .C .D .5. (2分)把化为最简二次根式是().A .B .C .D .6. (2分)计算的结果是()A .B . 1C .D . 07. (2分)如图是一些卡片,它们的背面都一样,先将它们背面朝上,从中任意摸一张卡片,则摸到奇数卡片的概率是()A .B .C .D .8. (2分) (2016八上·桐乡月考) 下列说法中:①三边对应相等的两个三角形全等;②三角对应相等的两个三角形全等;③两边和它们的夹角对应相等的两个三角形全等;④两角及其中一角的对边对应相等的两个三角形全等;⑤两边及其中一边的对角对应相等的两个三角形全等;不正确的是()A . ①②B . ②④C . ④⑤D . ②⑤9. (2分)如图,△AOB中,∠B=25°,将△AOB绕点O顺时针旋转60°,得到△A′OB′,边A′B′与边OB交于点C(A′不在 OB上),则∠A′CO的度数为()A . 85°B . 75°C . 95°D . 105°10. (2分) (2017八下·宁城期末) 如图,以直角三角形a,b,c为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A . 1B . 2C . 3D . 4二、填空题 (共6题;共6分)11. (1分)(2019·宣城模拟) 若有意义,则a的取值范围为________12. (1分) (2018九上·许昌月考) 已知的值为,则代数式的值为________.13. (1分)(2019·广安) 等腰三角形的两边长分别为,其周长为________cm.14. (1分) (2017七上·拱墅期中) 下列各个数据∣-22-2 ∣,,,,− (−3 ) 2 ,∣-3|在这些数中最大的有理数与最小的有理数的差是________.15. (1分) (2018七上·桥东期中) 已知代数式的值是1,则代数式值是________.16. (1分) (2019八上·东莞期中) 如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE⊥BC 于E,AD=3,DC=4,则DE=________。

2019-2020学年辽宁省葫芦岛市连山区八年级(上)期末数学试卷 及答案解析

2019-2020学年辽宁省葫芦岛市连山区八年级(上)期末数学试卷 及答案解析

2019-2020学年辽宁省葫芦岛市连山区八年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列是轴对称图形的是()A. B. C. D.2.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A. 1,2,6B. 2,2,4C. 1,2,3D. 2,3,43.代数式x+y6,x2x,x−ya+b,xπ中,分式有()A. 4个B. 3个C. 2个D. 1个4.随着电子技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积0.00000065mm2,0.00000065用科学记数法表示为()A. 6.5×107B. 6.5×10−6 C. 6.5×10−8D. 6.5×10−75.在平面直角坐标系中,点A关于x轴的对称点为A1(3,−2),则点A的坐标为()A. (−3,−2)B. (3,2)C. (3,−2)D. (−3,2)6.下列运算正确的是()A. (−a2)3=−a5B. a3⋅a5=a15C. (−a2b3)2=a4b6D. 3a3÷3a2=17.若2x=a,2y=b,则2x+y=()A. a+bB. abC. a bD. b a8.若等腰三角形的两条边的长分别为3和1,则该等腰三角形的周长为()A. 5B. 7C. 5或7D. 无法确定9.如图,在四边形ABCD中,AC是对称轴,若连接AC、BD,相交于点O,则图中的全等三角形共有()A. 1对B. 2对C. 3对D. 4对10.如图,△ABC的面积为9cm2,BP平分∠ABC,AP⊥BP于P,连接PC,则△PBC的面积为()A. 3cm2B. 4cm2C. 4.5cm2D. 5cm2二、填空题(本大题共8小题,共24.0分)11.在Rt△ABC中,∠C=90°,∠A=3∠B,则∠B=______ °.)−2−(2013−π)0.12.计算:(−1213.若关于x的二次三项式9x2+2(a−4)x+16是一个完全平方式,则a的值为______ .=2的解为非负数,则m的取值范围是____________。

辽宁省葫芦岛市连山区2023年数学八年级第一学期期末达标测试试题【含解析】

辽宁省葫芦岛市连山区2023年数学八年级第一学期期末达标测试试题【含解析】

辽宁省葫芦岛市连山区2023年数学八年级第一学期期末达标测试试题试试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每小题3分,共30分)1.如图,点D ,E 分别在AC ,AB 上,BD 与CE 相交于点O ,已知∠B =∠C ,现添加下面的哪一个条件后,仍不能判定△ABD ≌△ACE 的是()A .AD =AEB .AB =AC C .BD =CE D .∠ADB =∠AEC 2.如图,A ,B ,C ,D 是数轴上的四个点,其中最适合表示无理数π的点是()A .点AB ..点BC .点CD .点D3.如图,△ABM 与△CDM 是两个全等的等边三角形,MA ⊥MD .有下列四个结论:(1)∠MBC=25°;(2)∠ADC+∠ABC=180°;(3)直线MB 垂直平分线段CD ;(4)四边形ABCD 是轴对称图形.其中正确结论的个数为()A .1个B .2个C .3个D .4个4.下列选项中最简分式是()A .211x +B .224x C .211x x +-D .23x x x +5.立方根等于它本身的有()A .0,1B .-1,0,1C .0,D .16.已知一粒米的质量是0.00021kg ,这个数用科学记数法表示为()A .4 2.110-⨯kg B .52.110-⨯kg C .42110-⨯kg D .62.110-⨯kg7.已知,如图点A(1,1),B(2,﹣3),点P 为x 轴上一点,当|PA﹣PB|最大时,点P 的坐标为()A .(﹣1,0)B .(12,0)C .(54,0)D .(1,0)8.下列各数中,无理数的个数为().-0.101001,14,2π-,227,0,,0.1.A .1个B .2个C .3个D .4个9.下列各多项式中,能运用公式法分解因式的有()①2m 4-+②22x y --③22x y 1-④()()22m a m a --+⑤222x 8y -⑥22x 2xy y ---⑦229a b 3ab 1-+A .4个B .5个C .6个D .7个10.下列各式中是完全平方式的是()A .214x x -+B .21x -C .22x xy y ++D .221x x +-二、填空题(每小题3分,共24分)11.如图,已知△ABC 的面积为12,将△ABC 沿BC 平移到△A'B'C',使B'和C 重合,连接AC'交A'C 于D ,则△C'DC 的面积为_____12.如图,∠ABC ,∠ACB 的平分线相交于点F ,过点F 作DE ∥BC ,交AB 于D ,交AC 于E ,那么下列结论:①△BDF ,△CEF 都是等腰三角形;②DE=BD+CE ;③△ADE 的周长为AB+AC ;④BD=CE .其中正确的是____.13.将一张长方形纸片按如图5所示的方式折叠,BC 、BD 为折痕,则∠CBD 为___度.14.如图,=30∠︒AOB ,点P 在AOB ∠的内部,点C ,D 分别是点P 关于OA 、OB 的对称点,连接CD 交OA 、OB 分别于点E 、F ;若PEF 的周长的为10,则线段=OP _____.15.已知正比例函数y kx =的图象经过点()3,6则k =___________.16.如图,△ABC 中,AB=AC=13cm ,AB 的垂直平分线交AB 于D,交AC 于E,若△EBC 的周长为21cm,则BC=cm .17.若13x x +=,则221x x+=___.18.已知线段AB//x 轴,且AB=3,若点A 的坐标为(-1,2),则点B 的坐标为_______;三、解答题(共66分)19.(10分)如图,在平面直角坐标系xOy 中,一次函数16y k x =+与x 轴、y 轴分别交于点A 、B 两点,与正比例函数2y k x =交于点(2,2)D .(1)求一次函数和正比例函数的表达式;(2)若点P 为直线2y k x =上的一个动点(点P 不与点D 重合),点Q 在一次函数16y k x =+的图象上,//PQ y 轴,当23PQ OA =时,求点P 的坐标.20.(6分)已知12x x +=,求221x x +,441x x+的值.21.(6分)如图所示,点O 是等边三角形ABC 内一点,∠AOB=110°,∠BOC=α,以OC 为边作等边三角形OCD ,连接AD .(1)当α=150°时,试判断△AOD 的形状,并说明理由;(2)探究:当a 为多少度时,△AOD 是等腰三角形?22.(8分)已知函数()1y m x n =-+,(1)m 为何值时,该函数是一次函数(2)m n 、为何值时,该函数是正比例函数.23.(8分)解方程组:25,3 6.x y x y +=⎧⎨-=⎩24.(8分)问题原型:如图①,在锐角△ABC 中,∠ABC=45°,AD⊥BC 于点D,在AD 上取点E,使DE=CD,连结BE.求证:BE=AC.问题拓展:如图②,在问题原型的条件下,F 为BC 的中点,连结EF 并延长至点M,使FM=EF,连结CM.(1)判断线段AC 与CM 的大小关系,并说明理由.(2)若AC 5,直接写出A、M 两点之间的距离.∠=︒,25.(10分)已知ABC在平面直角坐标系内的位置如图,ACB90 ==,OA、OC的长满足关系式()2AC BC5-+-=.OA4OC30(1)求OA、OC的长;(2)求点B的坐标;(3)在x轴上是否存在点P,使ACP是以AC为腰的等腰三角形.若存在,请直接写出点P的坐标,若不存在,请说明理由.26.(10分)如图,在△ABC中,AB=AC,∠BAC=36°,BD是∠ABC的平分线,交AC于点D,E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF.求证:(1)EF⊥AB;(2)△ACF为等腰三角形.参考答案一、选择题(每小题3分,共30分)1、D【分析】用三角形全等的判定知识,便可求解.【详解】解:已知∠B=∠C,∠BAD=∠CAE,若添加AD=AE,可利用AAS定理证明△ABE≌△ACD,故A选项不合题意;若添加AB=AC,可利用ASA定理证明△ABE≌△ACD,故B选项不合题意;若添加BD=CE,可利用AAS定理证明△ABE≌△ACD,故C选项不合题意;若添加∠ADB=∠AEC,没有边的条件,则不能证明△ABE≌△ACD,故D选项合题意.故选:D.【点睛】熟悉全等三角形的判定定理,是必考的内容之一.2、D【分析】能够估算无理数π的范围,结合数轴找到点即可.【详解】因为无理数π大于3,在数轴上表示大于3的点为点D;故选D.【点睛】本题考查无理数和数轴的关系;能够准确估算无理数π的范围是解题的关键.3、C【详解】(1)∵△ABM≌△CDM,△ABM、△CDM都是等边三角形,∴∠ABM=∠AMB=∠BAM=∠CMD=∠CDM=∠DCM=60°,AB=BM=AM=CD=CM=DM,又∵MA⊥MD,∴∠AMD=90°,∴∠BMC=360°−60°−60−90°=150°,又∵BM=CM,∴∠MBC=∠MCB=15°;(2)∵AM⊥DM,∴∠AMD=90°,又∵AM=DM,∴∠MDA=∠MAD=45°,∴∠ADC=45°+60°=105°,∠ABC=60°+15°=75°,∴∠ADC+∠ABC=180°;(3)延长BM 交CD 于N ,∵∠NMC 是△MBC 的外角,∴∠NMC=15°+15°=30°,∴BM 所在的直线是△CDM 的角平分线,又∵CM=DM ,∴BM 所在的直线垂直平分CD ;(4)根据(2)同理可求∠DAB=105°,∠BCD=75°,∴∠DAB+∠ABC=180°,∴AD ∥BC ,又∵AB=CD ,∴四边形ABCD 是等腰梯形,∴四边形ABCD 是轴对称图形.故(2)(3)(4)正确.故选C.4、A【解析】一个分式的分子与分母没有非零次的公因式时(即分子与分母互素)叫最简分式.【详解】A.211x +,是最简分式;B.222142x x =,不是最简分式;C.211x x +-=1x 1-,不是最简分式;D.23x x x+=3x+1,不是最简分式.故选:A【点睛】本题考核知识点:最简分式.解题关键点:理解最简分式的意义.5、B【分析】根据立方根性质可知,立方根等于它本身的实数2、1或-1.【详解】解:∵立方根等于它本身的实数2、1或-1.故选B .【点睛】本题考查立方根:如果一个数x 的立方等于a ,那么这个数x 就称为a 的立方根,例如:x 3=a ,x 就是a 的立方根;任意一个数都有立方根,正数的立方根是正数,负数的立方根是负数,2的立方根是2.6、A【分析】科学记数法的形式是:10n a ⨯,其中1a ≤<10,n 为整数.所以 2.1,a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数。

辽宁省葫芦岛市2019-2020学年数学八上期末模拟试卷(4)

辽宁省葫芦岛市2019-2020学年数学八上期末模拟试卷(4)

辽宁省葫芦岛市2019-2020学年数学八上期末模拟试卷(4)一、选择题1.已知甲车行驶30千米与乙车行驶40千米所用时间相同,并且乙车每小时比甲车多行驶15千米.若设甲车的速度为x 千米/时,依题意列方程正确的是( )A .3015x -=40xB .3015x +=40xC .30x =4015x +D .30x =4015x - 2.某种感冒病毒的直径为0.0000000031米,用科学记数法表示为 ( )A .3.1×10-8米B .3.1×10-9米C .3.1×109米D .3.1×108米3.甲、乙两班学生参加植树造林活动,已知甲班每天比乙班少植2棵树,甲班植树60棵所用天数与乙班植树70棵所用天数相等,若设甲班每天植树x 棵,则根据题意列出的方程正确的是A. B. C. D.4.计算 2x 2·(-3x 3)的结果是( )A .-6x 5B .6x 5C .-2x 6D .2x 65.如果924a ka -+是完全平方式,那么k 的值是( )A .一12B .±12C .6D .±6 6.下列各式中不能用公式法分解因式的是A .x 2-6x+9B .-x 2+y 2C .x 2+2x+4D .-x 2+2xy-y 2 7.下列图形中,既是中心对称图形也是轴对称图形的是A .B .C .D .8.Rt △ABO 与Rt △CBD 在平面直角坐标系中的位置如图所示,∠ABO =∠CBD =90°,若点A (23,﹣2),∠CBA =60°,BO =BD ,则点C 的坐标是( )A .(2,23)B .(1,3)C .(3,1)D .(23,2) 9.已知△ABC ≌△DEF ,BC=EF=6cm ,△ABC 面积为18cm 2,则EF 边上的高是( ). A.3cm B.4cm C.5cmD.6cm 10.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,AD=8,AB=7,则BC+CD 等于( )A .3B .3C .3D .311.如图,锐角三角形ABC 中,BC >AB >AC ,小靖依下列步骤作图:(1)作∠A 的平分线交BC 于D 点;(2)作AD 的中垂线交AC 于E 点;(3)连接DE.根据他画的图形,判断下列关系何者正确?( )A.DE ⊥ACB.DE ∥ABC.CD =DED.CD =BD12.如图,已知AB =AC ,AD ⊥BC ,AE =AF ,图中共有( )对全等三角形.A.5B.6C.7D.8 13.如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线,若∠B =56°,∠C =42°,则∠DAE的度数为( )A.3°B.7°C.11°D.15°14.一个多边形的边数增加1,则内角和与外角和增加的度数之和是( )A .60° B.90° C.180° D.360°15.若△ABC 的三个内角的比为2:5:3,则△ABC 的形状是( )A .等腰三角形B .锐角三角形C .直角三角形D .钝角三角形 二、填空题16.关于的x 方程5m x -=1的解是正数,则m 的取值范围是_____. 17.若式子x 2+4x+m 2是一个含x 的完全平方式,则m =_____.【答案】±218.如图,点P 是等边三角形ABC 内一点,将CP 绕点C 逆时针旋转060得到CQ ,连接AP ,BP ,BQ ,PQ ,若040PBQ ∠=,下列结论:①ACP ∆≌BCQ ∆;②0100APB ∠=;③050=∠BPQ ,其中一定..成立的是_________(填序号).19.如图,直线AB 与CD 相交于O ,已知∠BOD=30°,OE 是∠BOC 的平分线,则∠EOA=______.20.如图,直线12l l ∕∕,点A 在直线2l 上,以点A 为圆心,适当长为半径画弧,分别交直线12,l l 于点,C B ,连接,AC BC . 若54ABC ∠=︒,则1∠的度数为____________.三、解答题21.计算: (1) 6×33-21()2-+|1-2|; (2) 2m n m m n n m++--. 22.先化简,再求值:[(2x+y )(2x ﹣y )﹣5x (x+2y )+(x+2y )2]÷(﹣3y ),其中x =1,y =2.23.如图,在平面直角坐标系中,△ABC 顶点的坐标分别是A (﹣1,3)、B (﹣5,1)、C (﹣2,﹣2).(1)画出△ABC 关于y 轴对称的△A′B′C′,并写出△A′B′C′各顶点的坐标;(2)求出△ABC 的面积.24.在△ABC 和△DCE 中,CA=CB ,CD=CE ,∠CAB= ∠CED=α.(1)如图1,将AD 、EB 延长,延长线相交于点0.①求证:BE= AD;②用含α的式子表示∠AOB的度数(直接写出结果);(2)如图2,当α=45°时,连接BD、AE,作CM⊥AE于M点,延长MC与BD交于点N.求证:N是BD的中点. 注:第(2)问的解答过程无需注明理由.25.如图所示,O是直线AC上一点,OB是一条射线,OD平分∠AOB,OE在∠BOC内.(1)若OE平分∠BOC,则∠DOE等于多少度?(2)若∠BOE=13∠EOC,∠DOE=60°,则∠EOC是多少度?【参考答案】***一、选择题题号1 2 3 4 5 6 7 8 9 10 11 12 13 14 15答案C BD A B C D C D B B C B C C16.m>﹣5且m≠017.无18.①②19.105°20.72︒三、解答题21.(1) 225;(2) -122.23.(1)图形见解析;(2)9.【解析】【分析】(1)根据网格结构找出点A、B、C关于y轴的对称点A'、B'、C'的位置,然后顺次连接即可;根据平面直角坐标系写出各点的坐标即可;(2)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积列式计算即可得解.【详解】(1)如图所示,△A′B′C′即为所求,由图知A′(1,3),B′(5,1),C′(2,﹣2);(2)△ABC的面积为5×4﹣12×1×5﹣12×3×3﹣12×2×4=9.【点睛】本题考查了利用轴对称变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.24.(1)①见解析②∠BOA=2α(2)见解析【解析】【分析】(1)①根据等腰三角形的性质和三角形的内角和得到∠ACB=∠DCE,根据全等三角形的性质即可得到结论;②根据全等三角形的性质得到∠CAD=∠CBE=α+∠BAO,根据三角形的内角和即可得到结论;(2)如图2,作BP⊥MN的延长线上于点P,作DQ⊥MN于Q,根据全等三角形的性质得到MC=BP,同理CM=DQ,等量替换得到DQ=BP,根据全等三角形的性质即可得到结论.【详解】(1)①∵CA=CB,CD=CE,∠CAB=∠CED=α,∴∠ACB=180°-2α,∠DCE=180°-2α,∴∠ACB=∠DCE∴∠ACB-∠DCB=∠DCE-∠DCB∴∠ACD=∠BCE在△ACD和△BCE中AC BCACD BCE DC CE=⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△BCE∴BE=AD;②∵△ACD≌△BCE∴∠CAD=∠CBE=α+∠BAO,∵∠ABE=∠BOA+∠BAO∴∠CBE+α=∠BOA+∠BAO∴∠BAO+α+α=∠BOA+∠BAO∴∠BOA=2α(2)如图2,作BP⊥MN的延长线上于点P,作DQ⊥MN于Q,∵∠BCP+∠BCA=∠CAM+∠AMC∴∠BCA=∠AMC∴∠BCP=∠CAM在△CBP和△ACM中AC BCBPC AMCBCP CAM=⎧⎪∠=∠⎨⎪∠=∠⎩∴△CBP≌△ACM(AAS)∴MC=BP.同理△CDQ≌△ECM∴CM=DQ∴DQ=BP在△BPN和△DQN中BP DQBNP DNQBPC DQN=⎧⎪∠=∠⎨⎪∠=∠⎩∴△BPN≌△DQN∴BN=ND,∴N是BD中点.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是根据题意作出辅助线进行求解. 25.(1)∠DOE=90°;(2)∠EOC =90°.。

辽宁省葫芦岛市八年级上学期数学期末考试试卷

辽宁省葫芦岛市八年级上学期数学期末考试试卷

辽宁省葫芦岛市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·高阳模拟) 函数y=中,自变量x的取值范围是()A . x>5B . x≥5C . x≤5D . x<52. (2分)(2019·温州模拟) 如图,在平面直角坐标系中,△ABC位于第二象限,点B的坐标是(﹣5,2),先把△ABC向下平移4个单位长度得到△A1B1C1 ,再作与△A1B1C1关于y轴对称的△A2B2C2 ,则点B对应点B2的坐标是()A . (﹣5,﹣2)B . (﹣2,﹣5)C . (2,﹣5)D . (5,﹣2)3. (2分)下列计算正确的是()A . b2•b2=b8B . x2+x4=x6C . a3•a3=a9D . a8•a=a94. (2分)下列说法正确的是()A . 全等三角形是指形状相同的两个三角形B . 全等三角形的周长和面积分别相等C . 全等三角形是指面积相等的两个三角形D . 所有的等边三角形都是全等三角形5. (2分) (2017八下·鹿城期中) 如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4.将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E,F,则线段B′F的长为()A .B .C .D .6. (2分) (2020九下·无锡期中) 2019年2月,全球首个5G火车站在上海虹桥火车站启动.虹桥火车站中5G网络峰值速率为4G网络峰值速率的10倍.在峰值速率下传输8千兆数据,5G网络比4G网络快720秒,求这两种网络的峰值速率.设4G网络的峰值速率为每秒传输x千兆数据,依题意,可列方程为()A .B .C .D .7. (2分) (2017七下·湖州月考) 世界上最轻的昆虫是一种寄生蜂,该寄生蜂的卵每个重量仅有2×10-4毫克,将2×10-4用小数表示为()A . 20000B . 0.00002C . 0.0002D . 0.20008. (2分)(2020·绵阳) 在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=()A . 16°B . 28°C . 44°D . 45°9. (2分) (2017八上·涪陵期中) 如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A . 90°B . 135°C . 270°D . 315°10. (2分) (2019八下·武城期末) 如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为()A . 150°B . 130°C . 120°D . 100°二、填空题 (共8题;共8分)11. (1分)(2018·本溪) 分解因式:xy2﹣9x=________.12. (1分) (2020八上·前郭尔罗斯期末) 计算: ________.13. (1分)化简x÷ · 的结果为________.14. (1分) (2019八下·防城期末) 如图,在中,,分别以两直角边,为边向外作正方形和正方形,为的中点,连接,,若,则图中阴影部分的面积为________ .15. (1分) (2018八上·阿城期末) 如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D 的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是________.16. (1分) (2018八上·甘肃期中) 多项式加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是________.(填上一个你认为正确的即可)17. (1分)(2017·百色) 如图,是一个简单的数值运算程序,当输入x的值为﹣2时,则输出的结果为________.18. (1分)(2017·盂县模拟) 在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①,然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,②﹣①得,3S﹣S=39﹣1,即2S=39﹣1,所以S= .得出答案后,爱动脑筋的张红想:如果把“3”换成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正确答案是________.三、解答题 (共8题;共50分)19. (5分)解下列方程(1)(2).20. (5分) (2019八上·长安期中) 如图,点D是△ABC的边AB上一点,点E为AC的中点,过点C作CF∥AB 交DE延长线于点F .求证:点E平分DF .21. (5分)先化简再求值:其中x =- 2.22. (5分)(2018·湘西模拟) 如图(1),AB=CD,AD=BC,O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由;若过O点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的∠1与∠2的关系成立吗?请说明理由.23. (5分) (2017八上·重庆期中) 如图,在△ABC中,AD⊥BC于D,AE平分∠DAC,∠BAC=80°,∠B=60°,求∠AEC的度数.24. (5分) 5月份某厂甲乙两个车间生产同一型号的汽车零件1800个,已知甲车间比乙车间人均多做4个,甲车间的人数比乙车间的人数少10%(1)甲乙两个车间各有多少人?(2)该月甲乙两个车间人均生产多少个零件?25. (5分) (2018七上·利川期末) 如图,AB∥CD,E是BC的中点,DE平分∠ADC,DE的延长线交AB于点F,求证:AE平分∠DAF26. (15分) (2019八上·武汉月考) 在△ABC 中,AE、BF 是角平分线,交于 O 点.(1)如图 1,AD 是高,∠BAC=50°,∠C=70°,求∠DAC 和∠BOA 的度数;(2)如图 2,若 OE=OF,求∠C 的度数;(3)如图 3,若∠C=90°,BC=8,AC=6,S△CEF=4,求S△AOB.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共8题;共8分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共8题;共50分)答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、考点:解析:答案:23-1、考点:解析:答案:24-1、考点:解析:答案:25-1、考点:解析:答案:26-1、答案:26-2、答案:26-3、考点:解析:。

辽宁省葫芦岛市连山区2023年八年级数学第一学期期末学业质量监测试题【含解析】

辽宁省葫芦岛市连山区2023年八年级数学第一学期期末学业质量监测试题【含解析】

辽宁省葫芦岛市连山区2023年八年级数学第一学期期末学业质量监测试题量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(每题4分,共48分)1.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个C.5个D.无数个2.下列图形是轴对称图形的是()A.B.C.D.3.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,点D是线段AE上的一点,则下列结论错误的是()A .AE ⊥BCB .BE =CEC .∠ABD =∠DBED .△ABD ≌△ACD4.下列美术字中,不属于轴对称图形的是()A .B .C .D .5.对不等式a b >进行变形,结果正确的是()A .0a b -<B .22a b ->-C .22a b<D .11a b->-6.下列说法正确的是()A .(-2)2的平方根是-2B .-3是-9的负的平方根C .642D .(-1)2的立方根是-17.已知a ﹣b =2,则a 2﹣b 2﹣4b 的值为()A .2B .4C .6D .88.下面是课本中“作一个角等于已知角”的尺规作图过程.已知:∠AOB .求作:一个角,使它等于∠AOB .作法:如图(1)作射线O'A';(2)以O 为圆心,任意长为半径作弧,交OA 于C ,交OB 于D ;(3)以O'为圆心,OC 为半径作弧C'E',交O'A'于C';(4)以C'为圆心,CD 为半径作弧,交弧C'E'于D';(5)过点D'作射线O'B'.则∠A'O'B'就是所求作的角.请回答:该作图的依据是()A .SSSB .SASC .ASAD .AAS9.如图,O 是矩形ABCD 对角线AC 的中点,M 是AD 的中点,若8,5BC OB ==,则OM 的长为()A .3B .4C .5D .610.如图,在△ABC 中,AC 的垂直平分线分别交AC 、BC 于E ,D 两点,EC =4,△ABC 的周长为23,则△ABD 的周长为()A .13B .15C .17D .1911.下列各式可以用完全平方公式分解因式的是()A .221x x +-B .21x +C . 1x xy ++D .221x x -+12.下列命题是假命题的是()A .所有的实数都可用数轴上的点表示B .三角形的一个外角等于它的两个内角的和C .方差能反映一组数据的波动大小D .等角的补角相等二、填空题(每题4分,共24分)13.使分式32xx +有意义的x 的取值范围是_____.14.一个多边形的各内角都相等,且每个内角与相邻外角的差为100°,那么这个多边形的边数是__________.15.已知关于x 的方程232x mx +=-的解是正数,则m 的取值范围为__________.16.如图,ABC 中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于D ,DE AB ⊥交AB 的延长线于E ,DF AC ⊥于F ,现有下列结论:①=DE DF ;②DE DF AD +=;③DM 平分EDF ∠;④2AB AC AE +=.其中正确的有________.(填写序号)17.关于x 的分式方程3111m x x+=--的解为负数,则m 的取值范围是_____.18.已知3a b -=,2ab =,则22a b ab -=_________三、解答题(共78分)19.(8分)两个工程队共同参与一项筑路工程,若先由甲、乙两队合作30天,剩下的工程再由乙队单独做15天可以完成,共需施工费810万元;若由甲、乙合作完成此项工程共需36天,共需施工费828万元.(1)求乙队单独完成这项工程需多少天?(2)甲、乙两队每天的施工费各为多少万元?(3)若工程预算的总费用不超过840万元,则乙队最少施工多少天?20.(8分)已知:如图,,,,ACB DCE AC BC CD CE AD ∠=∠==交BC 于点F ,连结BE .(1)求证:≌ACD BCE V V .(2)延长AD 交BE 于点H ,若30ACB ∠=︒,求BHF ∠的度数.21.(8分)如图,在正方形网格中,每个小正方形的边长为1,格点三角形(顶点在网格线的交点的三角形)ABC 的顶点A ,C 坐标分别是(a ,5),(﹣1,b ).(1)求a ,b 的值;(2)在图中作出直角坐标系;(3)在图中作出△ABC关于y轴对称的图形△A'B'C'.22.(10分)如图,△ABC中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且BE∥CF.求证:BE=CF.23.(10分)分解因式:(1)a3﹣4a;(2)4ab2﹣4a2b﹣b3 24.(10分)解不等式组240 420xxì+£ïïíï-ïî>.25.(12分)解下列方程.(1)21122xx x=+--(2)22211 41242 xx x+=--26.已知3既是x-1的平方根,又是x-2y+1的立方根,求x2-y2的平方根.参考答案一、选择题(每题4分,共48分)1、C【分析】结合正方形的特征,可知平移的方向只有5个,向上,下,右,右上45°,右下45°方向,否则两个图形不轴对称.【详解】因为正方形是轴对称图形,有四条对称轴,因此只要沿着正方形的对称轴进行平移,平移前后的两个图形组成的图形一定是轴对称图形,观察图形可知,向上平移,向上平移、向右平移、向右上45°、向右下45°平移时,平移前后的两个图形组成的图形都是轴对称图形,故选C.【点睛】本题考查了图形的平移、轴对称图形等知识,熟练掌握正方形的结构特征是解本题的关键.2、B【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;B、有六条对称轴,是轴对称图形,故本选项正确;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误.故选B.3、C【分析】根据等腰三角形的性质以及三角形全等的判定定理,逐一判断选项,即可.【详解】∵在△ABC中,AB=AC,AE是∠BAC的平分线,∴AE⊥BC,故选项A正确;∴BE=CE,故选项B正确;在△ABD和△ACD中,∵AB ACBAD CAD AD AD=⎧⎪=⎨⎪=⎩∠∠,∴△ABD≌△ACD(SAS),故选项D正确;∵D为线段AE上一点,BD不一定是∠ABC的平分线,∴∠ABD与∠DBE不一定相等,故选项C错误;故选:C.【点睛】本题主要考查等腰三角形的性质以及三角形全等的判定定理,掌握等腰三角形三线合一,是解题的关键.4、A【解析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】由轴对称图形的定义定义可知,A 不是轴对称图形,B 、C 、D 都是轴对称图形.故选A .【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.5、B【分析】根据不等式的基本性质进行逐一判断即可得解.【详解】A.a b >不等式两边同时减b 得0a b ->,A 选项错误;B.a b >不等式两边同时减2得22a b ->-,B 选项正确;C.a b >不等式两边同时乘2得22a b >,C 选项错误;D.a b >不等式两边同时乘1-得a b -<-,不等式两边再同时加1得11a b -<-,D 选项错误,故选:B.【点睛】本题主要考查了不等式的基本性质,注意不等式两边同时乘或除以一个负数,要改变不等号的方向.6、C【分析】根据平方根的定义和立方根的定义逐一判断即可.【详解】A .(-2)2=4的平方根是±2,故本选项错误;B .-3是9的负的平方根,故本选项错误;C .=8的立方根是2,故本选项正确;D .(-1)2=1的立方根是1,故本选项错误.故选C .【点睛】此题考查的是平方根和立方根的判断,掌握平方根的定义和立方根的定义是解决此题的关键.7、B【分析】原式变形后,把已知等式代入计算即可求出值.【详解】∵a ﹣b =2,∴原式=(a +b )(a ﹣b )﹣1b =2(a +b )﹣1b =2a +2b ﹣1b =2(a ﹣b )=1.故选:B .【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.8、A【分析】根据作图可得DO=D′O′,CO=C′O′,CD=C′D′,再利用SSS 判定△D′O′C′≌△DOC 即可得出∠A'O'B'=∠AOB ,由此即可解决问题.【详解】解:由题可得,DO=D′O′,CO=C′O′,CD=C′D′,∵在△COD 和△C′O′D′中,CO C O DO D O CD C D '''''=⎧'⎪=⎨⎪=⎩∴△D′O′C′≌△DOC (SSS ),∴∠A'O'B'=∠AOB 故选:A 【点睛】此题主要考查了基本作图---作一个角等于已知角,三角形全等的性质与判定,熟练掌握相关知识是解题的关键.9、A【分析】首先由O 是矩形ABCD 对角线AC 的中点,可求得AC 的长,然后由勾股定理求得AB 的长,即CD 的长,又由M 是AD 的中点,可得OM 是△ACD 的中位线,继而求得答案.【详解】解:∵O 是矩形ABCD 对角线AC 的中点,OB =5,∴AC =BD =2OB =10,∴CD =AB6=,∵M 是AD 的中点,∴OM =12CD =1.故选:A .【点睛】此题考查了矩形的性质、勾股定理以及三角形中位线的性质,利用勾股定理求得AB 的长是解题关键.10、B【解析】∵DE 垂直平分AC ,∴AD=CD ,AC=2EC=8,∵C △ABC =AC+BC+AB=23,∴AB+BC=23-8=15,∴C △ABD =AB+AD+BD=AB+DC+BD=AB+BC=15.故选B.11、D【分析】可以用完全平方公式分解因式的多项式必须是完全平方式,符合222a ab b ±+结构,对各选项分析判断后利用排除法求解.【详解】解:A 、两平方项符号相反,不能用完全平方公式,故本选项错误;B 、缺少乘积项,不能用完全平方公式,故本选项错误;C 、乘积项不是这两数积的两倍,不能用完全平方公式,故本选项错误;D 、2221(1)x x x -+=-,故本选项正确;故选:D .【点睛】本题考查了用完全公式进行因式分解的能力,解题的关键了解完全平方式的结构特点,准确记忆公式,会根据公式的结构判定多项式是否是完全平方式.12、B【解析】根据实数和数轴的一一对应关系,可知所有的实数都可用数轴上的点表示,故是真命题;根据三角形的外角的性质,可知三角形的一个外角等于它的不相邻两内角的和,故是假命题;根据方差的意义,可知方差越大,波动越大,方差越小,波动越小,故是真命题;根据互为补角的两角的性质,可知等角的补角相等,故是真命题.故选B.二、填空题(每题4分,共24分)13、x ≠﹣1.【分析】直接利用分式有意义则分母不为零进而得出答案.【详解】解:∵分式32x x +有意义,∴x +1≠0,故x ≠﹣1.故答案为:x ≠﹣1.【点睛】本题主要考查分式有意义的条件,掌握分式有意义的条件是解题的关键.14、9【分析】设这个多边形的内角为n °,则根据题意列出方程求出n 的值,再根据多边形的外角和等于360度和多边形的内角和公式求出多边形的边数和内角和.【详解】设这个多边形的内角为n °,则根据题意可得:n−(180−n)=100,解得:n=140.故多边形的外角度数为:180°−140°=40°,∵多边形的外角和等于360度,∴这个多边形的边数为:360°÷40°=9,故答案为9.【点睛】本题考查的是多边形,熟练掌握多边形的边形内角和与外角和是解题的关键.15、6m >-且4m ≠-【分析】首先求出关于x 的方程232x mx +=-的解,然后根据解是正数,再解不等式求出m 的取值范围.【详解】解关于x 的方程232x mx +=-得x =m +6,∵x−2≠0,解得x ≠2,∵方程的解是正数,∴m +6>0且m +6≠2,解这个不等式得m >−6且m ≠−1.故答案为:m >−6且m ≠−1.【点睛】本题考查了分式方程的解,是一个方程与不等式的综合题目,解关于x 的方程是关键,解关于x 的不等式是本题的一个难点.16、①②④【分析】①由角平分线的性质可知①正确;②由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD ,DF=12AD ,从而可证明②正确;③若DM 平分∠EDF ,则∠EDM=90°,从而得到∠ABC 为直角三角形,条件不足,不能确定,故③错误;④连接BD 、DC ,然后证明△EBD ≌△DFC ,从而得到BE=FC ,从而可证明④.【详解】如图所示:连接BD 、DC.①∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴ED=DF .故①正确.②∵∠EAC=60°,AD 平分∠BAC ,∴∠EAD=∠FAD=30°.∵DE ⊥AB ,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=12AD .同理:DF=12AD .∴DE+DF=AD .故②正确.③由题意可知:∠EDA=∠ADF=60°.假设MD 平分∠ADF ,则∠ADM=30°.则∠EDM=90°,又∵∠E=∠BMD=90°,∴∠EBM=90°.∴∠ABC=90°.∵∠ABC 是否等于90°不知道,∴不能判定MD 平分∠EDF .故③错误.④∵DM 是BC 的垂直平分线,∴DB=DC .在Rt △BED 和Rt △CFD 中DE DF BD DC ⎧⎨⎩==,∴Rt △BED ≌Rt △CFD .∴BE=FC .∴AB+AC=AE-BE+AF+FC又∵AE=AF ,BE=FC ,∴AB+AC=2AE .故④正确.故答案为①②④【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.17、m <2【分析】先将分式方程化为整式方程求出解x=m-2,根据原方程的解是负数得到20m -<,求出m 的取值范围,再由10x -≠得到3m ≠,即可得到答案.【详解】3111m x x+=--,去分母得m-3=x-1,解得x=m-2,∵该分式方程的解是负数,∴20m -<,解得m<2,∵10x -≠,∴210m --≠,解得3m ≠,故答案为:m<2.【点睛】此题考查分式方程的解的情况求方程中未知数的取值范围,正确理解题意列得不等式求出未知数的取值范围是解此题的关键.18、1【分析】根据提公因式得到()22a b ab ab a b -=-,然后利用整体代入的方法计算即可.【详解】解:3a b -=,2ab =,∴()22236a b ab ab a b -=-=⨯=,故答案是:1.【点睛】本题考查了提公因式和整体代入的方法,熟悉相关性质是解题的关键.三、解答题(共78分)19、(1)乙队单独完成这项工程需90天;(2)甲队每天的施工费为15万元,乙队每天的施工费为8万元;(3)乙队最少施工30天【分析】(1)设乙队单独完成这项工程需x天,根据“甲、乙合作30天的工作量+乙队15天的工作量=1”列分式方程即可;(2)设甲队每天的施工费为a万元,乙队每天的施工费为b万元,根据题意列二元一次方程组即可求出a、b的值;(3)先求出甲的效率,设乙队施工y天,则甲队还需施工119060y⎛⎫-÷⎪⎝⎭天完成任务,然后根据“总费用不超过840万元”列出不等式即可得出结论.【详解】解:(1)设乙队单独完成这项工程需x天由题意可得:11×30+151 36x⨯=解得:x=90经检验:x=90是原方程的解答:乙队单独完成这项工程需90天.(2)设甲队每天的施工费为a万元,乙队每天的施工费为b万元由题意可知:()() 3015810 36828a b ba b⎧++=⎪⎨+=⎪⎩解得:158 ab=⎧⎨=⎩答:甲队每天的施工费为15万元,乙队每天的施工费为8万元.(3)甲的效率为111 369060 -=设乙队施工y天,则甲队还需施工119060y⎛⎫-÷⎪⎝⎭天完成任务根据题意可得15×119060y⎡⎤⎛⎫-÷⎪⎢⎥⎝⎭⎣⎦+8y≤840解得:y≥30答:乙队最少施工30天.【点睛】此题考查的是分式方程的应用、二元一次方程组的应用和不等式的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.20、(1)见解析;(2)30°【分析】(1)根据题意,利用公共角的条件通过边角边的证明方法求解即可得解;(2)根据三角形全等的性质及内角和定理进行计算即可得解.【详解】(1)ACB DCE∠=∠ACB DCB DCE DCB∴∠+∠=∠+∠即ACD BCE∠=∠CA CB CD CE==,()ACD BCE SAS ∴∆≅∆;(2)如下图:ACD BCE∆≅∆A B∴∠=∠BFH AFC ∠=∠,30ACB ∠=︒30BHF ACB ∴∠=∠=︒.【点睛】本题主要考查了全等三角形的判定与形式,熟练掌握全等三角形的证明是解决本题的关键.21、(1)a =﹣4,b =3;(2)如图所示,见解析;(3)△A 'B 'C '如图所示,见解析.【分析】(1)根据点A 的纵坐标和点C 的横坐标即可画出直角坐标系,即可判定a ,b 的值;(2)根据点A 的纵坐标和点C 的横坐标即可画出直角坐标系;(3)根据轴对称的性质,先找出各点的对称点,然后连接即可.【详解】(1)由题意平面直角坐标系如图所示,可得:a=﹣4,b=3(2)如图所示:(3)△A'B'C'如图所示:【点睛】此题主要考查平面直角坐标系的确定以及轴对称图形的画法,熟练掌握,即可解题.22、见解析【分析】由AD是△ABC的中线就可以得出BD=CD,再由平行线的性质得到∠FCD=∠EBD,∠DFC=∠DE B,推出△CDF≌△BDE,就可以得出BE=CF.【详解】∵AD是△ABC的中线,∴BD=CD ,∵BE ∥CF ,∴∠FCD=∠EBD ,∠DFC=∠DEB ,在△CDF 和△BDE 中,FCD EBD DFC DEB CD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDF ≌△BDE (AAS ),∴BE=CF .【点睛】本题考查了全等三角形的判定及性质、平行线的性质等知识,解答时证明三角形全等是关键.23、(1)a (a +1)(a ﹣1);(1)﹣b (b ﹣1a )1.【分析】(1)由题意先提公因式,再运用公式法进行因式分解即可;(1)根据题意先提公因式,再运用公式法进行因式分解即可.【详解】解:(1)a 3﹣4a ;=a(a 1﹣4)=a(a+1)(a ﹣1);(1)4ab 1﹣4a 1b ﹣b 3=﹣b(b 1﹣4ab+4a 1)=﹣b(b ﹣1a)1.【点睛】本题主要考查提公因式法与公式法的运用,解决问题的关键是掌握乘法公式的运用.24、不等式组的解为x ≤-1.【分析】分别求出每一个不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来,即可得不等式组的解集.【详解】解:240{420x x +≤-①>②由①得x ≤-1,由②得x <1,把①,②两个不等式的解表示在数轴上,如下图:∴不等式组的解为x ≤-1.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.25、(1)3x =-是该方程的解;(2)0x =是该方程的解.【分析】(1)方程两边同时乘以(2x -),化为整式方程后求解,然后进行检验即可得;(2)方程两边同时乘以()()22121x x +-,化为整式方程后求解,最后进行检验即可得.【详解】(1)21122x x x=+--方程两边同时乘以(2x -),得:221x x =--,解得:3x =-,经检验: 3x =-是原分式方程的解;(2)2221141242x x x +=--方程两边同时乘以()()22121x x +-,得:()()()24212121x x x x -+=+-,解得:0x =,经检验: 0x =是原分式方程的解.【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤以及注意事项是解题的关键.26、±1【分析】根据题意得x-1=9,x-2y+1=27,再解方程组求得x ,y 的值,代入即可得出答案.【详解】解:根据题意得192127x x y -⎧⎨-+⎩=①=②,由①得:x=10,把x=10代入②得:y=-8,∴108x y ⎧⎨-⎩==,∴x 2-y 2=102-(-8)2=31,∵31的平方根是±1,∴x 2-y 2的平方根是±1.【点睛】本题考查了平方根和立方根,是基础知识比较简单.注意:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.。

辽宁省葫芦岛市2019年八年级上学期数学期末调研测试题(模拟卷四)

辽宁省葫芦岛市2019年八年级上学期数学期末调研测试题(模拟卷四)

辽宁省葫芦岛市2019年八年级上学期数学期末调研测试题(模拟卷四)一、选择题1.把分式6228a b 12a b-约分结果是( ) A .4a 4b- B .3a 4b - C .42a 3b - D .32a 3b - 2.如果把分式中的和都扩大3倍,那么分式的值( ) A.扩大3倍 B.缩小为原来的 C.扩大6倍 D.不变3.甲队修路120m 与乙队修路100m 所用天数相同,已知甲队比乙队每天多修10m ,设甲队每天修路xm .依题意,下面所列方程正确的是( )A.=B.=C.=D.=4.多项式2ax a -与多项式22ax ax a -+的公因式是A .aB .1x -C .()1a x -D .()21a x - 5.下列运算中,正确的是( )A .a 2+a 2=2a 4B .(a-b )2=a 2-b 2C .(-x 6)•(-x )2=x 8D .(-2a 2b )3÷4a 5=-2ab 36.如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A .2a+bB .4a+bC .a+2bD .a+3b 7.如果点P (2,b )和点Q (a ,﹣3)关于x 轴对称,则a+b 的值是( )A .﹣1B .1C .﹣5D .5 8.如图,在△ABC 中,∠CAB =75°,在同一平面内,将△ABC 绕点A 逆时针旋转到△AB′C′的位置,使得CC′∥AB ,则∠CAC′为( )A .30°B .35°C .40°D .50°9.如图,在△ABC 中,点D 在BC 上,AB =AD =DC ,∠B =72°,那么∠DAC 的大小是( )A.30°B.36°C.18°D.40°10.如图,△ABC≌△DEF,DF和AC,FE和CB是对应边.若∠A=100°,∠F=46°,则∠DEF等于()A.100°B.54°C.46°D.34°11.如图,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.其中正确的是( )A.①②B.②③C.①③D.①②③12.下列选项中的尺规作图,能推出PA=PC的是()A. B.C. D.13.如果三角形的两边长分别为5和7,第三边长为偶数,那么这个三角形的周长可以是()A.10 B.11 C.16 D.2614.只用一种正六边形地砖密铺地板,则能围绕在正六边形的一个顶点处的正六边形地砖有()A.3块B.4块C.5块D.6块15.如图,△ABC中,∠C=44°,∠B=70°,AD是BC边上的高,DE∥AC,则∠ADE的度数为()A.46°B.56°C.44°D.36°二、填空题16.若关于x的方程1x2-=2m xx---3有增根,则增根为x=_______.17.多项式3x﹣6与x2﹣4x+4有相同的因式是_________.18.如图,在Rt△ABC中,∠C=90°,AC=3,AB=5,以点A为圆心,以任意长为半径作弧,分别交AB、AC于点M、N,再分别以M、N为圆心,以大于12MN的长为半径作弧,两弧交于点P,作射线AP交BC于点D,则CD的长是_____.19.长方形ABCD中,∠ADB=20°,现将这一长方形纸片沿AF折叠,当折痕AF与AB的夹角∠BAF为________时,'.AB BD20.如图,在等腰直角△ABC中,∠BAC=90°,∠BAD=30°,AD=AE,则∠EDC的度数是______.三、解答题21.湖州奥体中心是一座多功能的体育场,目前体育场内有一块长80m,宽60m的长方形空地,体育局希望将其改建成花园小广场,设计方案如图,阴影区域是面积为192平方米的绿化区(四块相同的直角三角形),空白区域为活动区,且四周出口宽度一样..........(1)体育局先对四个绿化区域进行绿化,在完成工作量的13后,施工方进行了技术改进,每天的绿化面积是原计划的两倍,结果提前四天完成四个绿化区域的改造,问原计划每天绿化多少平方米?(2)老师提出了一个问题:你能不能求出活动区的出口宽度是多少呢?请你根据小丽的方法求出活动区的出口宽度,并把过程写下来.22.因式分解:(1)269x x -+.(2)2()4()a x y x y ---.23.如图,CD 平分∠ACB ,DE ∥BC ,∠AED=46°,求∠CDE 的度数.24.如图,在Rt ACB 中,90C =∠,BE 平分ABC ∠,ED 垂直平分AB 于点D ,若9AC =,求AE 的长.25.如图,O 是直线AB 上一点,∠COD =90°,OE 、OF 分别是∠COB 、∠AOD 的平分线,且∠COB :∠AOD =4:9.(1)写出图中∠BOD 的余角和补角;(2)求∠AOC 的度数【参考答案】***一、选择题16.217.x ﹣218.519.55°.20.15°三、解答题21.(1)16平方米;(2)48米22.(1)2(3)x - (2)()(2)(2)x y a a -+-23.∠CDE=23°.【解析】【分析】由两直线平行,同位角相等求出∠ACB 度数,再由CD 为角平分线求出∠BCD 度数,再利用两直线平行,内错角相等即可求出所求.【详解】∵DE ∥BC ,∠AED=46°,∴∠ACB=∠AED=46°,∵CD 平分∠ACB ,∴∠BCD=∠ACB=23°,∵DE ∥BC ,∴∠CDE=∠BCD=23°.【点睛】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.24.AE 的长为6.【解析】【分析】根据角平分线的性质可得DE=CE ,根据垂直平分线可得AE=BE ,进而得到30A ABE CBE ∠=∠=∠=,设AE x =,则9DE CE x ==-,根据直角三角形30°角所对直角边为斜边的一半得到关于x 的方程,然后求解方程即可.【详解】解:设AE x =,则9CE x =-,BE 平分ABC ∠,CE CB ⊥,ED AB ⊥,9DE CE x ∴==-,又ED 垂直平分AB ,AE BE ∴=,A ABE CBE ∴∠=∠=∠,在Rt ACB 中,90A ABC ∠+∠=,30A ABE CBE ∴∠=∠=∠=,12DE AE ∴=,即192x x -=, 解得6x =.即AE 的长为6.【点睛】本题主要考查角平分线的性质,垂直平分线的性质,直角三角形30°角所对直角边为斜边的一半等,解此题的关键在于熟练掌握其知识点.25.(1)∠BOD 的余角为∠BOC ,∠BOD 的补角为∠AOD ;(2)∠AOC =108°.。

辽宁省葫芦岛市2020年八年级上学期数学期末考试试卷(II)卷

辽宁省葫芦岛市2020年八年级上学期数学期末考试试卷(II)卷

辽宁省葫芦岛市2020年八年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题(本题有10小题,每小题3分,共30分) (共10题;共30分)1. (3分) (2018八上·汉滨期中) 下列大学的校徽图案是轴对称图形的是()A .B .C .D .2. (3分)(2017·北仑模拟) 设M(m,n)在反比例函数y=﹣上,其中m是分式方程﹣1= 的根,将M点先向上平移4个单位,再向左平移1个单位,得到点N.若点M,N都在直线y=kx+b上,直线解析式为()A . y=﹣ x﹣B . y= x+C . y=4x﹣5D . y=﹣4x+53. (3分) (2018八上·仙桃期末) 若等腰三角形一个外角等于100° ,则它的顶角度数为().A . 20°B . 80°C . 20°或80°D . 无法确定4. (3分)(2017·雅安模拟) 已知关于x的分式方程﹣1= 的解是正数,则m的取值范围是()A . m<4且m≠3B . m<4C . m≤4且m≠3D . m>5且m≠65. (3分)将一副三角板按如图所示摆放,图中∠α的度数是()A . 75°B . 90°C . 105°D . 120°6. (3分)如图,若△ABC≌△DEF,∠A=45°,∠F=35°,则∠E等于()A . 35°B . 45°C . 60°D . 100°7. (3分) (2019八上·贵阳期末) 下列命题中真命题是()A . 若a2=b2,则a=bB . 4的平方根是±2C . 两个锐角之和一定是钝角D . 相等的两个角是对顶角8. (3分)已知等腰三角形的一边长为4cm,另一边长为9cm,则它的周长为()A . 13cmB . 17cmC . 22cmD . 17cm或22cm9. (3分) (2017九下·富顺期中) 如图,在Rt△ABC中,AB=CB,BO⊥AC ,把△ABC折叠,使AB落在AC 上,点B与AC上的点E重合,展开后折痕AD交BO与点F,连接DE,EF,下列结论:①AB=2BD;②图中有4对全等三角形;③若将△DEF沿EF折叠,则点D不一定落在AC上;④BD=BF;⑤ ,其中正确的有()A . 4个B . 3个C . 2个D . 1个10. (3分)如图,直线y=﹣x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,﹣1),则关于x的不等式﹣x+2≥ax+b的解集为()A . x≥﹣1B . x≥3C . x≤﹣1D . x≤3二、填空题(本题有8小题,每小题3分,共24分) (共8题;共23分)11. (3分)不等式两边乘(或除以)同一个________数,不等号的方向改变,即如果a>b,c<0,那么ac < bc.(或 ________ )12. (3分)在平面直角坐标系中,一只蚂蚁由(0,0)点先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年八年级(上)期末数学试卷一.选择题(共10小题)1.下列图形中,是轴对称图形的是()A. B. C. D. 【答案】C【解析】【分析】根据轴对称的定义,逐项进行分析即可;【详解】A选项中,没有对称轴,不是轴对称图形,不符合题意;B选项中,没有对称轴,不是轴对称图形,不符合题意;C选项中,有对称轴,是轴对称图形,符合题意;D选项中,没有对称轴,不是轴对称图形,不符合题意;故答案为:C.【点睛】本题主要考查了轴对称图形,掌握轴对称图形的定义是解题的关键.2.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )A. 3,3,6B. 1,5,5C. 1,2,3D. 8,3,4【答案】B【解析】【分析】根据三角形的三边关系:三角形两边之和大于第三边.【详解】解:A、3+3=6,不能组成三角形,故此选项错误;B、1+5>5,能组成三角形,故此选项正确;C、1+2=3,不能组成三角形,故此选项错误;D 、3+4<8,不能组成三角形,故此选项错误;故选B .【点睛】本题主要考查了三角形的三边关系,关键是掌握三角形的三边关系.3.下列代数式,3x ,3x ,1a a -,35y -+,2x x y -,2n π-,32x +,x y x +中,分式有( )个. A. 5B. 4C. 3D. 2【答案】A【解析】【分析】根据分式的定义逐个判断即可.形如(A 、B 是整式,B 中含有字母)的式子叫做分式. 【详解】解:分式有:3x ,1a a -,﹣35y +,2x x y -,x y x+,共5个, 故选:A .【点睛】本题考查的知识点是分式的定义,熟记定义是解此题的关键.4.随着电子技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积0.00000065mm 2,0.00000065用科学计数法表示为A. 6.5×107B. 6.5×10-6C. 6.5×10-8D. 6.5×10-7【答案】D【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:70.00000065 6.510-=⨯.故答案为D .【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.在平面直角坐标系中,点A 关于x 轴的对称点为A 1(3,-2),则点A 的坐标为( )A. (-3,-2)B. (3,2)C. (3,-2)D. (-3、2)【答案】B【解析】【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”进行求解即可.【详解】∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,且A1(3,-2)∴A的坐标为(3,2).所以答案为B选项.【点睛】本题主要考查了点关于x轴对称相关问题,熟练掌握相关规律是解题关键.6.下列运算正确的是()A. (3a2)3=27a6B. (a3)2=a5C. a3•a4=a12D. a6÷a3=a2【答案】A【解析】【分析】根据同底数幂的除法的运算方法,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,逐项判断即可.【详解】解:∵(3a2)3=27a6,∴选项A符合题意;∵(a3)2=a6,∴选项B不符合题意;∵a3•a4=a7,∴选项C不符合题意;∵a6÷a3=a3,∴选项D不符合题意.故选:A.【点睛】本题考查的知识点是同底数幂的乘除法的运算法则以及幂的乘方,积的乘方的运算法则,熟练掌握以上知识点的运算法则是解此题的关键.7.已知:2m=1,2n=3,则2m+n=()A. 2B. 3C. 4D. 6【答案】B【分析】根据同底数幂的乘法法则解答即可.【详解】解:∵2m=1,2n=3,∴2m+n=2m·2n=1×3=3.故选:B.【点睛】本题考查的知识点是同底数幂的乘法的逆运算,掌握同底数幂的乘法法则是解题的关键.8.等腰三角形的周长为18,其中一条边的长为8,则另两条边的长是()A. 5、5B. 2、8C. 5、5或2、8D. 以上结果都不对【答案】C【解析】【分析】根据腰的情况分类讨论,再根据等腰三角形的周长求另两条边的长即可.【详解】当腰长为8时,底长为:18﹣8×2=2;2+8>8,能构成三角形;当底长为8时,腰长为:(18﹣8)÷2=5;5+5>8,能构成三角形.故另两条边的长是5、5或2、8.故选C.【点睛】此题考查的是等腰三角形的定义和构成三角形的条件,根据等腰三角形腰的情况分类讨论和掌握三角形的任意两边之和大于第三边是解决此题的关键.9.如图,AB=AC,AD=AE,BE,CD交于点O,则图中全等的三角形共有()A. 0对B. 1对C. 2对D. 3对【答案】C【分析】由“SAS”可证△ABE≌△ACE,可得∠B=∠C,由“AAS”可证△BDO≌△CEO,即可求解.【详解】解:∵AB=AC,∠A=∠A,AD=AE,∴△ABE≌△ACE(SAS)∴∠B=∠C,∵AB=AC,AD=AE,∴BD=CE,且∠B=∠C,∠BOD=∠COE,∴△BDO≌△CEO(AAS)∴全等的三角形共有2对,故选C.【点睛】本题考查三角形全等的性质,熟练掌握全等三角形的判定定理是解题关键.10.如图,△ABC中,AD⊥BC交BC于D,AE平分∠BAC交BC于E,F为BC的延长线上一点,FG⊥AE交AD的延长线于G,AC的延长线交FG于H,连接BG,下列结论:①∠DAE=∠F;②∠DAE=12(∠ABD﹣∠ACE);③S△AEB:S△AEC=AB:AC;④∠AGH=∠BAE+∠ACB,其中正确的结论有()个.A. 1B. 2C. 3D. 4【答案】D【解析】【分析】如图,①根据三角形的内角和即可得到∠DAE=∠F;②根据角平分线的定义得∠EAC=12BAC,由三角形的内角和定理得∠DAE=90°﹣∠AED,变形可得结论;③根据三角形的面积公式即可得到S△AEB:S△AEC =AB:CA;④根据三角形的内角和和外角的性质即刻得到∠AGH=∠BAE+∠ACB.【详解】解:如图,AE交GF于M,①∵AD⊥BC,FG⊥AE,∴∠ADE=∠AMF=90°,∵∠AED=∠MEF,∴∠DAE=∠F;故①正确;②∵AE平分∠BAC交BC于E,∴∠EAC=12BAC ∠,∠DAE=90°﹣∠AED,=90°﹣(∠ACE+∠EAC),=90°﹣(∠ACE+12BAC ∠),=12(180°﹣2∠ACE﹣∠BAC),=12(∠ABD﹣∠ACE),故②正确;③∵AE平分∠BAC交BC于E,∴点E到AB和AC的距离相等,∴S△AEB:S△AEC=AB:CA;故③正确,④∵∠DAE=∠F,∠FDG=∠FME=90°,∴∠AGH=∠MEF,∵∠MEF=∠CAE+∠ACB,∴∠AGH=∠CAE+∠ACB,∴∠AGH=∠BAE+∠ACB;故④正确;故选:D.【点睛】本题考查的知识点是关于角平分线的计算,利用三角形的内角和定理灵活运用角平分线定理是解此题的关键.二.填空题(共8小题)11.在Rt△ABC 中,∠C=90°,∠A=70°,则∠B=_________.【答案】20°【解析】∵Rt △ABC 中,∠C=90°,∴∠A+∠B=90°,∵∠A=70°,∴∠B=90°-70°=20°,故答案为20°.12.计算 ()2013π-⎛⎫- ⎪⎝⎭+-=_____. 【答案】10【解析】【分析】根据零指数幂的意义以及负整数幂的意义即可求出答案.【详解】解:原式=9+1=10,故答案为:10【点睛】本题考查的知识点是零指数幂以及负整指数幂,掌握零指数幂的意义以及负整数幂的意义是解此题的关键.13.如果关于x 的二次三项式294x mx -+是完全平方式,那么m 的值是__________.【答案】12±【解析】【分析】根据两平方项确定出这两个数,再根据乘积二倍项列式求解即可.【详解】解:∵294x mx -+是完全平方式∴-mx=±2×2•3x,解得:m=±12.故答案为±12.【点睛】本题是完全平方公式的考查,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.14.若关于x的分式方程311mx x---=1的解是非负数,则m的取值范围是_____.【答案】m≥﹣4且m≠﹣3【解析】【分析】分式方程去分母转化为整式方程,由分式的解是非负数确定出m的范围即可.【详解】去分母得:m+3=x﹣1,解得:x=m+4,由分式方程的解为非负数,得到m+4≥0,且m+4≠1,解得:m≥﹣4且m≠﹣3.故答案为m≥﹣4且m≠﹣3【点睛】本题考查分式方程的解,解一元一次不等式,解决此题时一定要注意解分式方程时分式的分母不能为0.15.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于12EF长为半径作圆弧,两条圆弧交于点P,连接AP,交CD于点M,若∠ACD=110°,求∠CMA的度数______.【答案】∠CMA =35°.【解析】【分析】根据两直线平行,同旁内角互补得出70CAB ∠=︒,再根据AM 是CAB ∠的平分线,即可得出MAB ∠的度数,再由两直线平行,内错角相等即可得出结论.【详解】∵AB ∥CD ,∥∥ACD +∥CAB =180°.又∵∥ACD =110°,∥∥CAB =70°,由作法知,AM 是CAB ∠的平分线,∥1352MAB CAB ∠=∠=︒. 又∵AB ∥CD ,∥∥CMA =∥BAM =35°.【点睛】本题考查了角平分线的作法和意义,平行线的性质等知识解决问题.解题时注意:两直线平行,内错角相等.16.如图,△ABC 中,BD 为∠ABC 的平分线,DE ⊥AB 于点E ,AB =16,BC =12,△ABC 的面积为70,则DE =_________【答案】5【解析】分析】过点D 作DF ⊥BC 于点F ,根据角平分线定理得到DF=DE ,根据图形可知ABC ABD BDC S S S ∆∆∆=+,再利用三角形面积公式即可解答. 【详解】如图,过点D 作DF ⊥BC 于点F∵BD 为∠ABC 的平分线,DE ⊥AB 于点E ,∴DF=DE1122ABC ABD BDC S S S AB DE BC DF ∆∆∆=+=⨯⨯+⨯⨯ 1116127022DE DF =⨯⨯+⨯⨯= ∴5DE =故答案为5【点睛】本题考点涉及角平分线定理和三角形的面积,熟练掌握以上知识点是解题关键. 17.如图,点P 是AOB 内任意一点,OP =10cm ,点P 与点1P 关于射线OA 对称,点P 与点2P 关于射线OB 对称,连接12PP 交OA 于点C ,交OB 于点D ,当.PCD 的周长是10cm 时,∠AOB 的度数是______度.【答案】30°【解析】【分析】连接OP 1,OP 2,据轴对称的性质得出∠P 1OA =∠AOP =12∠P 1OP ,∠P 2OB =∠POB =12∠POP 2,PC =CP1,OP=OP1=10cm,DP2=PD,OP=OP2=10cm,求出△P1OP2是等边三角形,即可得出答案.【详解】解:如图:连接OP1,OP2,∵点P关于射线OA对称点为点P1∴OA为PP1的垂直平分线∴∠P1OA=∠AOP=12∠P1OP,∴PC=CP1,OP=OP1=10cm,同理可得:∠P2OB=∠POB=12∠POP2,DP2=PD,OP=OP2=10cm,∴△PCD的周长是=CD+PC+PD=CD+CP1+DP2=P1 P2=10cm∴△P1OP2是等边三角形,∴∠P1OP2=60°,∴∠AOB=30°,故答案为30°【点睛】本题考查了线段垂直平分线性质、轴对称性质以及等边三角形的性质和判定,证明△P1OP2是等边三角形是解答本题的关键.18.如图,∠MON=30°,点A1、A2、A3、……在射线ON上,点B1、B2、B3、……在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4,……均为等边三角形,若OA1=1,则△A2019B2019A2020的边长为__________【答案】22019【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…则△A n-1B n A n+1的边长为2n-1,即可得出答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2=16,以此类推:△A n-1B n A n+1的边长为 2n-1.则△A 2019B 2019A 2020的边长为22019.故答案是22019.【点睛】本题考查等边三角形性质以及等腰三角形的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题关键.三.解答题(共8小题)19.因式分解:(1)()()131x x +--(2)()()224a x y b y x -+-【答案】(1)()22x -;(2) ()()()22x y a b a b +--.【解析】【分析】(1)直接去括号进而合并同类项,再利用完全平方公式分解因式即可;(2)直接提取公因式(x ﹣y ),进而利用平方差公式分解因式即可.【详解】解:(1)(x ﹣1)(x ﹣3)+1=x 2﹣4x +3+1=(x ﹣2)2;(2)a 2(x ﹣y )+4b 2(y ﹣x )=(x ﹣y )(a 2﹣4b 2) =()()()22xy a b a b +﹣﹣. 【点睛】本题考查的知识点是因式分解,熟练掌握分解因式的方法是解此题的关键.20.解方程:的(1)x 21x 1x-=- (2)544101236x x x x -+=---. 【答案】(1) x =2 ;(2) x =2是增根,分式方程无解.【解析】【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 详解】解:(1)去分母得:x 2﹣2x +2=x 2﹣x ,移项合并得:﹣x =﹣2,解得:x =2, 经检验x =2是分式方程的解;(2)去分母得:15x ﹣12=4x +10﹣3x +6, 移项合并得:14x =28,解得:x =2,经检验x =2是增根,分式方程无解.【点睛】本题考查的知识点是解分式方程,掌握解分式方程的一般步骤是解此题的关键,需注意方式方程最后要验根.21.先化简,再求值2244111x x x x x x -+⎛⎫+÷ ⎪---⎝⎭,其中x =5. 【答案】12x -;13. 【解析】【分析】直接将括号里面通分进而利用分式的混合运算法则计算得出答案. 【详解】解:原式=()2211122x x x x x --⨯=---, 当x =5时, 原式=13. 【点睛】本题考查的知识点是分式的混合运算——化简求值,熟练掌握分式的运算顺序以及运算法则是解【此题的关键.22.如图,△ABC 的顶点坐标分别为A(2,3),B(1,1),C(3,2).(1)将△ABC 向下平移4个单位长度,画出平移后的△A 1B 1C 1;(2)画出△ABC 关于y 轴对称的△A 2B 2C 2. 并写出点A 2,B 2,C 2的坐标.【答案】(1)见解析;(2)作图见解析,()22,1A -- ()21,3B -- ()23,2C --【解析】【分析】根据三角形在坐标中的位置,将每个点分别平移,即可画出平移后的图象.【详解】解:(1)、(2)如图:∴点A 2,B 2,C 2的坐标分别为:()22,1A --,()21,3B --,()23,2C --.【点睛】本题考查了平移,轴对称的知识,解题的关键是熟练掌握作图的方法.23.已知:在△ABC 中,∠B =∠C ,D ,E 分别是线段BC ,AC 上的一点,且AD =AE ,(1)如图1,若∠BAC =90°,D 是BC 中点,则∠2的度数为_____;(2)借助图2探究并直接写出∠1和∠2的数量关系_____.【答案】(1). 22.5(2). ∠1=2∠2【解析】【分析】(1)根据三角形的一个外角等于和它不相邻的两个内角的和,∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,再根据等边对等角的性质∠B=∠C,∠ADE=∠AED,进而得出∠BAD=2∠CDE.(2)根据三角形的一个外角等于和它不相邻的两个内角的和,∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,再根据等边对等角的性质∠B=∠C,∠ADE=∠AED,进而得出∠BAD=2∠CDE.【详解】解:(1)∠AED=∠CDE+∠C,∠ADC=∠B+∠BAD,∵AD=AE,∴∠AED=∠ADE,∵∠B=∠C,∠BAC=90°,D是BC中点,∴∠BAD=45°,∴∠B+∠BAD=∠EDC+∠C+∠CDE,即∠BAD=2∠CDE,∴∠2=22.5°;(2)∠AED=∠CDE+∠C,∠ADC=∠B+∠BAD,∵AD=AE,∴∠AED=∠ADE,∵AB=AC,∴∠B=∠C,∴∠B+∠BAD=∠EDC+∠C+∠CDE,即∠BAD=2∠CDE,∠1=2∠2.【点睛】本题考查的知识点是三角形外角的性质,熟记外角的定义并能够灵活运用是解此题的关键.24.倡导健康生活推进全民健身,某社区去年购进A,B两种健身器材若干件,经了解,B种健身器材的单价是A 种健身器材的1.5倍,用7200元购买A 种健身器材比用5400元购买B 种健身器材多10件. (1)A ,B 两种健身器材的单价分别是多少元?(2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A ,B 两种健身器材共50件,且费用不超过21000元,请问:A 种健身器材至少要购买多少件?【答案】(1) A ,B 单价分别是360元,540元;(2)34件.【解析】【分析】(1)设A 种型号健身器材的单价为x 元/套,B 种型号健身器材的单价为1.5x 元/套,根据“B 种健身器材的单价是A 种健身器材的1.5倍,用7200元购买A 种健身器材比用5400元购买B 种健身器材多10件”,即可得出关于x ,y 的分式方程,解之即可得出结论;(2)设购买A 种型号健身器材m 套,则购买B 种型号的健身器材(50﹣m )套,根据总价=单价×数量结合这次购买两种健身器材的总费用不超过21000元,即可得出关于m 的一元一次不等式,解之取其最小值即可得出结论.【详解】解:(1)设A 种型号健身器材的单价为x 元/套,B 种型号健身器材的单价为1.5x 元/套, 根据题意,可得:72005400101.5x x -=, 解得:x =360,经检验x =360是原方程的根,15×360=540(元),因此,A ,B 两种健身器材的单价分别是360元,540元;(2)设购买A 种型号健身器材m 套,则购买B 种型号的健身器材(50﹣m )套,根据题意,可得:360m +540(50﹣m )≤21000,解得:m ≥1333, 因此,A 种型号健身器材至少购买34套.【点睛】本题考查的知识点是分式方程以及一元一次不等式的实际应用,读懂题意,找出题目中的等量关系式是解此题的关键.25.仔细阅读下面例题,解答问题:例题:已知二次三项式2x 4x m -+有一个因式是()x 3+,求另一个因式以及m 的值. .解:设另一个因式为()x n +,得()()2x 4x m x 3x n -+=++则()22x 4x m x n 3x 3n -+=+++ {n 34m 3n +=-∴=.解得:n 7=-,m 21=- ∴另一个因式为()x 7-,m 值为21-问题:仿照以上方法解答下面问题:已知二次三项式22x 3x k +-有一个因式是()2x 5-,求另一个因式以及k 的值.【答案】()4,x + 20.【解析】【分析】根据例题中的已知的两个式子的关系,二次三项式2x 4x m -+的二次项系数是1,因式是()x 3+的一次项系数也是1,利用待定系数法求出另一个因式.所求的式子22x 3x k +-的二次项系数是2,因式是()2x 5-的一次项系数是2,则另一个因式的一次项系数一定是1,利用待定系数法,就可以求出另一个因式.【详解】解:设另一个因式为()x a +,得()()22x 3x k 2x 5x a +-=-+则()222x 3x k 2x 2a 5x 5a +-=+-- {2a 535a k -=∴-=-解得:a 4=,k 20=故另一个因式为()x 4+,k 的值为20【点睛】正确读懂例题,理解如何利用待定系数法求解是解本题的关键.【此处有视频,请去附件查看】的26.已知,在平面直角坐标系中,()0A m ,、()0B n ,,m 、n 满足()250||m n m +﹣﹣=.C 为AB 的中点,P 是线段AB 上一动点,D 是x 轴正半轴上一点,且PO =PD ,DE ⊥AB 于E .(1)如图1,当点P 在线段AB 上运动时,点D 恰在线段OA 上,则PE 与AB 的数量关系为 . (2)如图2,当点D 在点A 右侧时,(1)中结论是否成立?若成立,写出证明过程;若不成立,说明理由.(3)设AB =,若∠OPD =45°,直接写出点D 的坐标.【答案】(1)AB =2PE ;(2)成立,理由见解析;(3)点D 10()-.【解析】【分析】(1)根据非负数的性质分别求出m 、n ,证明△POC ≌△DPE ,可得出OC =PE ,由AB =2OC ,则结论得出;(2)根据等腰直角三角形的性质得到∠AOC =∠BOC =45°,OC ⊥AB ,证明△POC ≌△DPE ,根据全等三角形的性质得到OC =PE ,可得到答案;(3)证明△POB ≌△DP A ,得到P A =OB =5,DA =PB ,根据坐标与图形性质解答即可.【详解】解:(1)∵(m ﹣n )2+|m ﹣5|=0,∴m ﹣n =0,m ﹣5=0,∴m =n =5,∴A (5,0)、B (0,5),∴AC =BC =5,∴△AOB 为等腰直角三角形,∴∠AOC =∠BOC =45°,OC ⊥AB ,∵PO =PD ,∴∠POD =∠PDO ,∵D 是x 轴正半轴上一点,∴点P 在BC 上,∵∠POD =45°+∠POC ,∠PDO =45°+∠DPE , ∴∠POC =∠DPE ,在△POC 和△DPE 中,POC DPEOCP PED PO PD∠=∠⎧⎪∠=∠⎨⎪=⎩,在此处键入公式。

相关文档
最新文档