2012青岛市高三统一质量检测 数学试卷分析21页PPT
2012年高考数学试卷分析及2013年复习建议(集宁)
整理课件
24
整理课件
25
整理课件
26
整理课件
27
整理课件
28
整理课件
29
整理课件
30
整理课件
31
整理课件
32
整理课件
33
整理课件
34
整理课件
35
整理课件
36
整理课件
37
整理课件
38
整理课件
39
整理课件
40
整理课件
41
整理课件
42
整理课件
43
整理课件
44
整理课件
整理课件
1
整理课件
2
整理课件
3
整理课件
4
整理课件
5
整理课件
6
整理课件
7
整理课件
8
整理课件
9
整理课件
10
整理课件
11
整理课件
12
整理课件
13
整理课件
14
整理课件
15
整理课件
16
整理课件
17
整理课件
18
整理课件
19
整理课件
20
整理课件
21
整理课件
22
整理课件
23
67
整理课件
68
整理课件
69
整理课件
70
整理课件
71
整理课件
72
整理课件
73
整理课件
74
整理课件
75
整理课件
76
整理课件
77
整理课件
78
整理课件
2012年高考数学卷试卷分析及2013届教学建议
2012年高考数学卷试卷分析及2013届教学建议试卷整体分析2012年高考试卷整体难度略显偏难,各考点分布比较合理,与2011年高考数学卷题型相当,重点考察学生解决问题的能力。
前8题较容易,学生看到题目后就有一些解题想法,9,10,11,12,13各题难度上去了,但学生只要静心计算,认真思考,一定能算出来,14难度太大。
解答题15、16比较平稳,自然过度,受到中等成绩的学生一致好评,17题题目理解有困难,学生不知如何解答,18(1)、(2),19(1)、20(1)算正常考察的题目学生该能做出来,但其它问难度就太大了。
总之整份试题难度比2011年试题难度略显偏大。
对2013年的教学工作起到较好的导向作用。
典型题分析9.本题主要考察向量的计算,矩形的性质,三角形外角性质,两角和的余弦公式,锐角三角函数定义。
解:解法一:由AB AF = cos AB AF FAB ∠=cos =AF FAB DF ∠ 。
∵AB =DF =1DF =。
∴1CF =。
记AE BF 和之间的夹角为,AEB FBC θαβ∠=∠=,,则θαβ=+。
又∵2BC =,点E 为BC 的中点,∴1BE =。
∴()()=cos =cos =cos cos sin sin AE BF AE BF AE BF AE BF θαβαβαβ+- )=cos cos sin sin =121AE BF AE BF BE BC AB CF αβαβ--=⨯=解法二 :本题也可建立以, AB AD 为坐标轴的直角坐标系,求出各点坐标后求解。
10.本题主要周期函数的性质。
最关键的一步是()()11f f -=解:∵()f x 是定义在R 上且周期为2的函数,∴()()11f f -=,即21=2b a +-+①。
又∵311=1222f f a ⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭,1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, ∴141=23b a +-+②。
2012年全国统一高考数学试卷(理科)(新课标)(含解析版)
2012年全国统一高考数学试卷(理科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为( )A.3B.6C.8D.102.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种B.10种C.9种D.8种3.(5分)下面是关于复数z=的四个命题:其中的真命题为( ),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p44.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )A.B.C.D.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=( )A.7B.5C.﹣5D.﹣76.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则( )A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.188.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为( )A.B.C.4D.89.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是( )A.B.C.D.(0,2]10.(5分)已知函数f(x)=,则y=f(x)的图象大致为( )A.B.C.D.11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为( )A.B.C.D.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为( )A.1﹣ln2B.C.1+ln2D.二.填空题:本大题共4小题,每小题5分.13.(5分)已知向量夹角为45°,且,则= .14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为 .15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为 .16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为 . 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+ asinC﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为;求b,c.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为( )A.3B.6C.8D.10【考点】12:元素与集合关系的判断.【专题】5J:集合.【分析】由题意,根据集合B中的元素属性对x,y进行赋值得出B中所有元素,即可得出B中所含有的元素个数,得出正确选项【解答】解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,x=2时,y=1综上知,B中的元素个数为10个故选:D.【点评】本题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数.2.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种B.10种C.9种D.8种【考点】D9:排列、组合及简单计数问题.【专题】11:计算题.【分析】将任务分三步完成,在每步中利用排列和组合的方法计数,最后利用分步计数原理,将各步结果相乘即可得结果【解答】解:第一步,为甲地选一名老师,有=2种选法;第二步,为甲地选两个学生,有=6种选法;第三步,为乙地选1名教师和2名学生,有1种选法故不同的安排方案共有2×6×1=12种故选:A.【点评】本题主要考查了分步计数原理的应用,排列组合计数的方法,理解题意,恰当分步是解决本题的关键,属基础题3.(5分)下面是关于复数z=的四个命题:其中的真命题为( ),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p4【考点】2K:命题的真假判断与应用;A5:复数的运算.【专题】11:计算题.【分析】由z===﹣1﹣i,知,,p 3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,由此能求出结果.【解答】解:∵z===﹣1﹣i,∴,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,故选:C.【点评】本题考查复数的基本概念,是基础题.解题时要认真审题,仔细解答. 4.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选:C.【点评】本题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=( )A.7B.5C.﹣5D.﹣7【考点】87:等比数列的性质;88:等比数列的通项公式.【专题】11:计算题.【分析】由a4+a7=2,及a5a6=a4a7=﹣8可求a4,a7,进而可求公比q,代入等比数列的通项可求a1,a10,即可【解答】解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8∴a4=4,a7=﹣2或a4=﹣2,a7=4当a4=4,a7=﹣2时,,∴a1=﹣8,a10=1,∴a1+a10=﹣7当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1∴a1+a10=﹣7综上可得,a1+a10=﹣7故选:D.【点评】本题主要考查了等比数列的性质及通项公式的应用,考查了基本运算的能力.6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则( )A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数【考点】E7:循环结构.【专题】5K:算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知,该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选:C.【点评】本题主要考查了循环结构,解题的关键是建立数学模型,根据每一步分析的结果,选择恰当的数学模型,属于中档题.7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.18【考点】L!:由三视图求面积、体积.【专题】11:计算题.【分析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V=×6×3×3=9.故选:B.【点评】本题考查三视图与几何体的关系,考查几何体的体积的求法,考查计算能力.8.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为( )A.B.C.4D.8【考点】KI:圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选:C.【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.9.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是( )A.B.C.D.(0,2]【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】11:计算题;16:压轴题.【分析】法一:通过特殊值ω=2、ω=1,验证三角函数的角的范围,排除选项,得到结果.法二:可以通过角的范围,直接推导ω的范围即可.【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.【点评】本题考查三角函数的单调性的应用,函数的解析式的求法,考查计算能力.10.(5分)已知函数f(x)=,则y=f(x)的图象大致为( )A.B.C.D.【考点】4N:对数函数的图象与性质;4T:对数函数图象与性质的综合应用.【专题】11:计算题.【分析】考虑函数f(x)的分母的函数值恒小于零,即可排除A,C,由f(x)的定义域能排除D,这一性质可利用导数加以证明【解答】解:设则g′(x)=∴g(x)在(﹣1,0)上为增函数,在(0,+∞)上为减函数∴g(x)<g(0)=0∴f(x)=<0得:x>0或﹣1<x<0均有f(x)<0排除A,C,又f(x)=中,,能排除D.故选:B.【点评】本题主要考查了函数解析式与函数图象间的关系,利用导数研究函数性质的应用,排除法解图象选择题,属基础题11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为( )A.B.C.D.【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC 上的高SD,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1==,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴S△ABC=,∴V三棱锥S﹣ABC==.故选:C.【点评】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定点S到面ABC的距离.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为( )A.1﹣ln2B.C.1+ln2D.【考点】4R:反函数;IT:点到直线的距离公式.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由于函数与函数y=ln(2x)互为反函数,图象关于y=x对称,要求|PQ|的最小值,只要求出函数上的点到直线y=x的距离为的最小值,设g(x)=,利用导数可求函数g(x)的单调性,进而可求g(x)的最小值,即可求.【解答】解:∵函数与函数y=ln(2x)互为反函数,图象关于y=x对称,函数上的点到直线y=x的距离为,设g(x)=(x>0),则,由≥0可得x≥ln2,由<0可得0<x<ln2,∴函数g(x)在(0,ln2)单调递减,在[ln2,+∞)单调递增,∴当x=ln2时,函数g(x)min=1﹣ln2,,由图象关于y=x对称得:|PQ|最小值为.故选:B.【点评】本题主要考查了点到直线的距离公式的应用,注意本题解法中的转化思想的应用,根据互为反函数的对称性把所求的点点距离转化为点线距离,构造很好二.填空题:本大题共4小题,每小题5分.13.(5分)已知向量夹角为45°,且,则= 3 .【考点】9O:平面向量数量积的性质及其运算;9S:数量积表示两个向量的夹角.【专题】11:计算题;16:压轴题.【分析】由已知可得,=,代入|2|====可求【解答】解:∵,=1∴=∴|2|====解得故答案为:3【点评】本题主要考查了向量的数量积定义的应用,向量的数量积性质||=是求解向量的模常用的方法14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为 .【考点】7C:简单线性规划.【专题】11:计算题.【分析】先作出不等式组表示的平面区域,由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小,结合函数的图形可求z的最大与最小值,从而可求z的范围【解答】解:作出不等式组表示的平面区域由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小结合函数的图形可知,当直线x﹣2y﹣z=0平移到B时,截距最大,z最小;当直线x﹣2y﹣z=0平移到A时,截距最小,z最大由可得B(1,2),由可得A(3,0)∴Z max=3,Z min=﹣3则z=x﹣2y∈[﹣3,3]故答案为:[﹣3,3]【点评】平面区域的范围问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为 .【考点】CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;16:压轴题.【分析】先根据正态分布的意义,知三个电子元件的使用寿命超过1000小时的概率为,而所求事件“该部件的使用寿命超过1000小时”当且仅当“超过1000小时时,元件1、元件2至少有一个正常”和“超过1000小时时,元件3正常”同时发生,由于其为独立事件,故分别求其概率再相乘即可【解答】解:三个电子元件的使用寿命均服从正态分布N(1000,502)得:三个电子元件的使用寿命超过1000小时的概率为设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}C={该部件的使用寿命超过1000小时}则P(A)=,P(B)=P(C)=P(AB)=P(A)P(B)=×=故答案为【点评】本题主要考查了正态分布的意义,独立事件同时发生的概率运算,对立事件的概率运算等基础知识,属基础题16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为 1830 .【考点】8E:数列的求和;8H:数列递推式.【专题】11:计算题;35:转化思想;4M:构造法;54:等差数列与等比数列.【分析】由题意可得a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97,变形可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a15=2,a16+a14=56,…利用数列的结构特征,求出{a n}的前60项和【解答】解:∵a n+1+(﹣1)n a n=2n﹣1,故有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a11=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前60项和为15×2+(15×8+)=1830【点评】本题考查数列递推式,训练了利用构造等差数列求数列的前n项和,属中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+ asinC﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为;求b,c.【考点】HP:正弦定理.【专题】33:函数思想;4R:转化法;58:解三角形.【分析】(1)已知等式利用正弦定理化简,整理后得到sin(A﹣30°)=.即可求出A的值;(2)若a=2,由△ABC的面积为,求得bc=4.①,再利用余弦定理可得b+c=4.②,结合①②求得b和c的值.【解答】解:(1)由正弦定理得:acosC+asinC﹣b﹣c=0,即sinAcosC+sinAsinC=sinB+sinC∴sinAcosC+sinAsinC=sin(A+C)+sinC,即sinA﹣cosA=1∴sin(A﹣30°)=.∴A﹣30°=30°∴A=60°;(2)若a=2,△ABC的面积=,∴bc=4.①再利用余弦定理可得:a2=b2+c2﹣2bc•cosA=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,∴b+c=4.②结合①②求得b=c=2.【点评】本题考查了正弦定理及余弦定理的应用,考查了三角形面积公式的应用,是中档题.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【考点】CH:离散型随机变量的期望与方差;CS:概率的应用.【专题】15:综合题.【分析】(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)(i)X可取60,70,80,计算相应的概率,即可得到X的分布列,数学期望及方差;(ii)求出进17枝时当天的利润,与购进16枝玫瑰花时当天的利润比较,即可得到结论.【解答】解:(1)当n≥16时,y=16×(10﹣5)=80;当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:(2)(i)X可取60,70,80,当日需求量n=14时,X=60,n=15时,X=70,其他情况X=80,P(X=60)===0.1,P(X=70)=0.2,P(X=80)=1﹣0.1﹣0.2=0.7,X的分布列为X607080P0.10.20.7EX=60×0.1+70×0.2+80×0.7=76DX=162×0.1+62×0.2+42×0.7=44(ii)购进17枝时,当天的利润的期望为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4∵76.4>76,∴应购进17枝【点评】本题考查分段函数模型的建立,考查离散型随机变量的期望与方差,考查学生利用数学知识解决实际问题的能力.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.【考点】LO:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法.【专题】15:综合题.【分析】(1)证明DC1⊥BC,只需证明DC1⊥面BCD,即证明DC1⊥DC,DC1⊥BD ;(2)证明BC⊥面ACC1A1,可得BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,C1H,可得点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角,由此可求二面角A1﹣BD﹣C1的大小.【解答】(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°同理:∠A1DC1=45°,∴∠CDC1=90°∴DC1⊥DC,DC1⊥BD∵DC∩BD=D∴DC1⊥面BCD∵BC⊂面BCD∴DC1⊥BC(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,∵AC⊂面ACC1A1,∴BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH∵A1C1=B1C1,∴C1O⊥A1B1,∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,∴C1O⊥面A1BD而BD⊂面A1BD∴BD⊥C1O,∵OH⊥BD,C1O∩OH=O,∴BD⊥面C1OH∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角设AC=a,则,,∴sin∠C1DO=∴∠C1DO=30°即二面角A1﹣BD﹣C1的大小为30°【点评】本题考查线面垂直,考查面面角,解题的关键是掌握线面垂直的判定,正确作出面面角,属于中档题.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.【考点】J1:圆的标准方程;K8:抛物线的性质;KI:圆锥曲线的综合.【专题】15:综合题;16:压轴题.【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,由△ABD的面积S△ABD=,知=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD=,∴=,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.【点评】本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】15:综合题;16:压轴题;2A:探究型;35:转化思想.【分析】(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b 的最大值【解答】解:(1)f(x)=f'(1)e x﹣1﹣f(0)x+⇒f'(x)=f'(1)e x﹣1﹣f(0)+x令x=1得:f(0)=1∴f(x)=f'(1)e x﹣1﹣x+令x=0,得f(0)=f'(1)e﹣1=1解得f'(1)=e故函数的解析式为f(x)=e x﹣x+令g(x)=f'(x)=e x﹣1+x∴g'(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f'(x)>f'(0)=0;当x<0时,有f'(x)<f'(0)=0得:函数f(x)=e x﹣x+的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)f(x)≥﹣(a+1)x﹣b≥0得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增,x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln(a+1)≥b∴(a+1)b≤(a+1)2﹣(a+1)2ln(a+1),(a+1>0)令F(x)=x2﹣x2lnx(x>0),则F'(x)=x(1﹣2lnx)∴F'(x)>0⇔0<x<当x=时,F(x)max=即当a=时,(a+1)b的最大值为【点评】本题考查导数在最值问题中的应用及利用导数研究函数的单调性,解题的关键是第一题中要赋值求出f′(1),易因为没有将f′(1)看作常数而出错,第二题中将不等式恒成立研究参数关系的问题转化为最小值问题,本题考查了转化的思想,考查判断推理能力,是高考中的热点题型,计算量大,易马虎出错.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.【考点】N4:相似三角形的判定.【专题】14:证明题.【分析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF是平行四边形,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.【解答】证明:(1)∵D,E分别为△ABC边AB,AC的中点∴DF∥BC,AD=DB∵AB∥CF,∴四边形BDFC是平行四边形∴CF∥BD,CF=BD∴CF∥AD,CF=AD∴四边形ADCF是平行四边形∴AF=CD∵,∴BC=AF,∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.【点评】本题考查几何证明选讲,考查平行四边形的证明,考查三角形的相似,属于基础题.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【考点】Q4:简单曲线的极坐标方程;Q8:点的极坐标和直角坐标的互化;QL:椭圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]【点评】本题考查极坐标与直角坐标的互化,考查圆的参数方程的运用,属于中档题.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】17:选作题;59:不等式的解法及应用;5T:不等式.【分析】①不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.②原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即,可得x≤1;,可得x∈∅;,可得x≥4.取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].【点评】本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论的数学思想,属于中档题.。
2012年高考数学山东文解析版
2012年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若复数z 满足(2)117i(i z i -=+为虚数单位),则z 为 (A)3+5i (B)3-5i (C)-3+5i (D)-3-5i 【答案】A【解析】由题目可知,()()()()11721171525352225i i i iz i ii i +⋅+++====+--⋅+,故答案选A.【点评】本题考查了复数的除法运算,考查了对学生计算能力,属于基础题.明年基本还会考查复数的运算.(2)已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则()U A B ð为 (A){1,2,4} (B){2,3,4} (C){0,2,4} (D){0,2,3,4} 【答案】C【解析】由题意可知,{}{}0,4,0,2,4UUA AB == 故而痧,故而选择答案选C.【点评】本题考查了集合的概念和集合的运算,考查了考生的运算能力,明年可能考到子集与真子集的知识. (3)函数1()ln(1)f x x =++(A)[2,0)(0,2]- (B)(1,0)(0,2]- (C)[2,2]- (D)(1,2]- 【答案】B【解析】要使得函数有意义,应满足21011100240x x x x x ⎧+>⎪+≠⇒-<<<≤⎨⎪-≥⎩或【点评】本题考查函数定义域的求法, 本题中由于分母为ln(1)x +, 很容易忽略ln(1)0x +≠这个条件,另外求上述三个不等式的交集才能得到最后的定义域, 往往求出并集. 明年可以考查函数的值域问题.(4)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是(A)众数 (B)平均数 (C)中位数 (D)标准差 【答案】D【解析】根据特征数的定义和特征是公式已知标准差始终没有改变.【点评】本题考查统计中常见的数字特征, 考查了学生的识记以及公式的应用能力.明年仍然会围绕着数字特征考查.(5)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是(A)p 为真 (B)q ⌝为假 (C)p q ∧为假 (D)p q ∨为真 【答案】C【解析】命题p 中,函数sin 2y x =最小正周期应为22T ππ==,故而命题p 是假命题, 命题q :函数cos y x =的图象关于直线0x =对称,关于,02π⎛⎫⎪⎝⎭成中心对称,故而命题q 也是假命题.所以q ⌝为真, )p q ∨为假, p q ∧为假, 故而正确选项为C.【点评】本题考查简易逻辑中命题的问题,考查了学生的推断能力, “或”“且”联结两个命题,这两个命题的真假确定了“或”命题和“且”命题的真假,其中“或”命题是一真即真,“且”命题是一假即假,“非”是对一个命题的否定,命题与其“非”命题一真一假.明年可能考查全称命题与特称命题关系.明年可能结合命题考查充要条件.(6)设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是(A)3[,6]2- (B)3[,1]2-- (C)[1,6]- (D)3[6,]2-【答案】A【解析】由所给的不等式组可知所表示的可行域如图所示,而目标函数可以看做3y x z =-,截距最小时z 值最大,当截距最大时z 值最小,根据条件242220x y x x y y +==⎧⎧⇒⎨⎨+==⎩⎩,故当目目标函数过()2,0时,取到z 的最大,m a x 6z =,由1412243x y x x y y ⎧-=-=⎧⎪⇒⎨⎨+=⎩⎪=⎩,当目标函数经过1,32⎛⎫⎪⎝⎭时,z 取到最小值,m in 32z =-,故而答案为A.【点评】本题考查了线性规划问题,是典型的线性规划求最值问题,体现了数形结合法思想的应用.在线性约束条件下,线性约束条件所表示的区域一般是一个多边形区域或者一个以直线为边界的无限区域,如果目标函数是线性的,则可以根据目标函数的几何意义确定目标函数取得最大值和最小值的位置,如本题中的目标函数3z x y =-变换后即3y x z =- z ,则目标函数z 的几何意义即直线3y x z =-在y 轴上的截距相反数,截距最大(小)时的位置就是目标函数取得最小(大)值的位置,在一些含有参数的线性规划问题中这个思想显得更为重要;明年可能结合线性规划考查参数的取值.(7)执行右面的程序框图,如果输入a =4,那么输出的n 的值为 (A)2 (B)3 (C)4 (D)5 【答案】B【解析】由题意可知,当第一次执行循环体时,1,3,1P Q n ===这时,当第二次执行循环体时,145,2317,P Q n =+==⨯+==这时,当第三次执行循环体时,214421,27115,3P Q n =++==⨯+==这时,而此时Q P <,故而程序结束,这时3n =,故答案选B.【点评】本题考察了程序框图的应用,根据程序框图推算结果,程序框图明年还会进行考查. (8)函数2sin (09)63x y x ππ⎛⎫=-≤≤⎪⎝⎭的最大值与最小值之和为(A)2- (B)0 (C)-1 (D)1--【答案】A【解析】因为09x ≤≤,所以73636x ππππ-≤-≤,结合函数图象易知sin 1263x ππ⎛⎫-≤-≤ ⎪⎝⎭,即2y ≤≤, 故最大值为2,而最小值为, 所以最大值与最小值之和为2-【点评】本题考查本题考查了三角函数图象与性质,预测明年结合图象的变换考查. (9)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为 (A)内切 (B)相交 (C)外切 (D)相离 【答案】B【解析】由题意可知,两个圆的圆心分别为()122,0,(2,1)O Q -, 对应的半径为122,3r r ==,两个圆圆心距为12O O ==,所以211212r r O O r r -<<+, 故而两个圆相交.【点评】本题考查判断圆与圆位置关系的方法;预测明年考查求圆的方程. (10)函数cos 622xxx y -=-的图象大致为【答案】D【解析】根据条件cos(6)cos 6()()2222xxxxx x f x f x ----==-=---,所以函数为奇函数,排除选项A,由因为,当x 取很小的正数时有cos 60,220,xxx ->->故而()0f x >,故而排除B,当x 取很大的正数时,分母为非常大的正数,而分子始终[]1,1-之间,故而排除C,所以选D.【点评】】本题考查了函数的奇偶性的性质特点,结合图象语言,考查了数形结合法的思想. 图象的考查也是固定的考点,预测明年可能结合函数的性质考查. (11)已知双曲线1C :22221(0,0)x y a b ab-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为(A) 23x y=(B) 23x y=(C)28x y = (D)216x y =【答案】D【解析】双曲线的一条渐近线为by x a =, 即0bx ay -=,抛物线的焦点为,2p o ⎛⎫ ⎪⎝⎭,抛物线焦点到渐近线距离为2482a p d p e c==⋅=⇒==,故而抛物线方程为216x y =.【点评】本题考查圆锥曲线的性质,点的直线的距离公式等解析几何知识,属于知识的综合考察.预测明年结合抛物线的概念与性质考查. (12)设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是 (A)12120,0x x y y +>+> (B)12120,0x x y y +>+< (C)12120,0x x y y +<+> (D)12120,0x x y y +<+< 【答案】B【解析】设32()1F x x bx =-+,则方程()0F x =与()()f x g x =同解,故其有且仅有两个不同零点12,x x .由()0F x '=得0x =或23x b=.这样,必须且只须(0)0F =或2()03F b =,因为(0)1F =,故必有2()03F b =由此得b =.不妨设12x x <,则223x b ==.所以21()()(2)F x x x =-,比较系数得1x -=,故1x =-120x x +=>,由此知12121212110x x y y x x x x ++=+=<,故答案为B.【点评】本题考察了函数与方程知识,反比例函数与二次函数图象的应用是数形结合法思想的应用;明年预测结合函数零点考查.第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上的一点,则三棱锥1A DED -的体积为_____. 【答案】16【解析】由题意可知,11111111113326DE D FF D E D D E D V V D C S --==⨯⨯∆=⨯⨯⨯⨯=.【点评】本题考察多面体与体积公式的应用,同时考察了学生的空间想象能力;预测明年结合三视图考查体积与表面积.(14)右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____. 【答案】9【解析】 最左边两个矩形面积之和为0.10×1+0.12×1=0.22,总城市数为11÷0.22=50,最右面矩形面积为0.18×1=0.18,50×0.18=9.【点评】本题考查直方图的应用,考察了学生的识图、用图能力,频率分布直方图直观形象地表示了样本的频率分布,从这个直方图上可以求出样本数据在各个组的频率分布.根据频率分布直方图估计样本(或者总体)的平均值时,一般是采取组中值乘以各组的频率的方法.茎叶图也是统计中重要的知识点,预测明年结合茎叶图考查.(15)若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-在[0,)+∞上是增函数,则a =____.【答案】14【解析】 当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x =合题意.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意.【点评】本题考查本函数单调性与最值问题,属于对应初等函数的综合考察.可以结合分段函数考查基本初等函数,估计明年可能这样考查.(16)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP的坐标为____.【答案】()2sin 2,1cos 2--【解析】根据题意可知圆滚动了2单位个弧长,点P 旋转 了212=弧度,此时点P 的坐标为)2cos 1,2sin 2(,2cos 1)22sin(1,2sin 2)22cos(2--=-=-+=-=--=OP y x P P ππ.另解1:根据题意可知滚动制圆心为(2,1)时的圆的参数方程为⎩⎨⎧+=+=θθsin 1cos 2y x ,且223,2-==∠πθPCD ,则点P 的坐标为⎪⎩⎪⎨⎧-=-+=-=-+=2cos 1)223sin(12sin 2)223cos(2ππy x ,即)2c o s 1,2s i n 2(--=OP .【点评】本题考察了三角函数与向量知识的灵活应用,属于知识点交汇处的题目.解决好本题的关键是充分利用图象语言,属于典型的数形结合法思想的应用,数形结合的重点是研究“以形助数”,这在解选择题、填空题中更显其优越,要注意培养这种思想意识,做到心中有图,见数想图,以开拓自己的思维视野.这种创新情景题明年还会继续考察. 三、解答题:本大题共6小题,共74分. (17)(本小题满分12分)在△ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sin (tan tan )tan tan B A C A C +=. (Ⅰ)求证:,,a b c 成等比数列; (Ⅱ)若1,2a c ==,求△ABC 的面积S .【解析】(I)由已知得:sin (sin cos cos sin )sin sin B A C A C A C +=,sin sin()sin sin B A C A C +=,2sin sin sin B A C =,再由正弦定理可得:2b ac =, 所以,,a b c 成等比数列.(II)若1,2a c ==,则22b ac ==, ∴2223cos 24a c bB ac+-==,sin 4C ==,∴△ABC 的面积11sin 122244S ac B ==⨯⨯⨯=.【点评】本题考查三角恒等变换和解三角形知识,是对应三角部分内容的综合考察.解三角形依靠的就是正弦定理和余弦定理.正弦定理解决的是已知三角形两边和一边的对角、三角两内角和其中一边两类问题,余弦定理解决的是已知三角形两边及其夹角、已知三角形三边的两类问题.在解题中只要分析清楚了三角形中的已知元素,就可以选用这两个定理中的一个求解三角形中的未知元素.本例的第二小题中的不等式看上去是角的正弦的一个不等式,实际上给出的是边的不等式,正弦定理在三角形的边角关系互化中起关键作用.三角函数的性质也是常考内容,故而明年会这样考查.(18)(本小题满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率; (Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.【解析】(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为310P =.(II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为815P =.【点评】本题考查古典概型的应用,属于典型考法,考察了学生的计算能力,明年还会继续考察.(19) (本小题满分12分)如图,几何体E ABC D -是四棱锥,△ABD 为正三角形,,C B C D E C B D =⊥. (Ⅰ)求证:BE DE =;(Ⅱ)若∠120BC D =︒,M 为线段AE 的中点, 求证:D M ∥平面BEC .【解析】 (I)设BD 中点为O ,连接OC ,OE ,则由B C C D =知,C O BD⊥,又已知C E BD ⊥,所以BD ⊥平面OCE . 所以BD O E ⊥,即OE 是BD 的垂直平分线, 所以BE DE =.(II)取AB 中点N ,连接,M N D N , ∵M 是AE 的中点,∴M N ∥BE , ∵△ABD 是等边三角形,∴D N AB ⊥.由∠BCD =120°知,∠CBD =30°,所以∠ABC =60°+30°=90°,即BC AB ⊥, 所以ND ∥BC ,所以平面MND ∥平面BEC ,故DM ∥平面BEC .【点评】本题考查空间几何中量的关系,以及证明线面平行的方法,考察了学生的空间想象能力以及推理证明能力;垂直问题同样重要,故明年可能围绕线面或者面面垂直考察. (20) (本小题满分12分)已知等差数列{}n a 的前5项和为105,且2052a a = (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m 的项的个数记为m b .求数列{}m b 的前m 项和m S .【解析】 (I)由已知得:111510105,92(4),a d a d a d +=⎧⎨+=+⎩ 解得17,7a d ==,所以通项公式为7(1)77n a n n =+-⋅=. (II)由277m n a n =≤,得217m n -≤, 即217m m b -=. ∵211217497m k m k b b ++-==,∴{}m b 是公比为49的等比数列,∴7(149)7(491)14948mmm S -==--.【点评】本题考查本题考察了数列的求通项与求和的方法,属于数列的典型问题.考查灵活运用基本知识解决问题的能力,运算求解能力和创新思维能力.在等差数列问题中其最基本的量是其首项和公差,在解题时根据已知条件求出这两个量,其他的问题也就随之解决了,这就是解决等差数列问题的基本方法,其中蕴含着方程思想的运用.数列求通项与求和是常见的考法,故而明年会继续围绕这些内容进行考察.(21) (本小题满分13分)如图,椭圆2222:1(0)x y M a b ab+=>>2,直线x a =±和y b =±所围成的矩形ABCD 的面积为8.(Ⅰ)求椭圆M 的标准方程;(Ⅱ) 设直线:()l y x m m =+∈R 与椭圆M 有两个不同的交点,,P Q l 与矩形ABCD 有两个不同的交点,S T .求||||P Q ST 的最大值及取得最大值时m 的值.【解析】(21)(I)222324c a b e a a-==⇒=……①矩形ABCD 面积为8,即228a b ⋅=……② 由①②解得:2,1a b ==, ∴椭圆M 的标准方程是2214xy +=.(II)222244,58440,x y x m x m y x m ⎧+=⇒++-=⎨=+⎩,设1122(,),(,)P x y Q x y ,则21212844,55m x x m x x -+=-=,由226420(44)0m m ∆=-->得m <.||PQ =.当l 过A 点时,1m =,当l 过C 点时,1m =-.①当1m <-时,有(1,1),(2,2),||)S m T m ST m ---+=+,||||PQ ST =其中3t m =+,由此知当134t=,即45,(1)33t m ==-∈-时,||||P Q ST .②由对称性,可知若1m <<53m =时,||||P Q ST .③当11m -≤≤时,||ST =||||PQ ST =,由此知,当0m =时,||||P Q ST .综上可知,当53m =±和0时,||||P Q ST .一是点明本题体现了今年考纲中的哪一点,二是本题对明年高考命题的指导意义.【点评】本题考查椭圆方程的求法以及直线与椭圆的位置关系问题.解决圆锥曲线中最值、范围问题的基本思想是建立目标函数和建立不等关系,根据目标函数和不等式求最值、范围,因此这类问题的难点,就是如何建立目标函数和不等关系.建立目标函数或不等关系的关键是选用一个合适变量,其原则是这个变量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据问题的实际情况灵活处理.估计明年还会这样考查.(22) (本小题满分13分) 已知函数ln ()(e x x kf x k +=为常数,e=2.71828…是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.(Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设()()g x xf x '=,其中()f x '为()f x 的导函数.证明:对任意20,()1e x g x -><+.【解析】 (I)1ln ()e x x kxf x --'=,由已知,1(1)0e k f -'==,∴1k =.(II)由(I)知,1ln 1()e x x x f x --'=. 设1()ln 1k x x x =--,则211()0k x x x '=--<,即()k x 在(0,)+∞上是减函数,由(1)0k =知,当01x <<时()0k x >,从而()0f x '>,当1x >时()0k x <,从而()0f x '<.综上可知,()f x 的单调递增区间是(0,1),单调递减区间是(1,)+∞.(III)由(II)可知,当1x ≥时,()()g x xf x '=≤0<1+2e -,故只需证明2()1e g x -<+在01x <<时成立.当01x <<时,e x >1,且()0g x >,∴1ln ()1ln e x x x xg x x x x --=<--.设()1ln F x x x x =--,(0,1)x ∈,则()(ln 2)F x x '=-+,当2(0,e )x -∈时,()0F x '>,当2(e ,1)x -∈时,()0F x '<,所以当2e x -=时,()F x 取得最大值22()1e F e --=+.所以2()()1e g x F x -<≤+.综上,对任意0x >,2()1e g x -<+.【点评】本题考察了导数的几何意义,利用导数求函数的单调区间以及导数在函数与不等式中的应用,体现了等价转换思想应用.函数与导数考查属于固定题型,明年也不例外.。
青岛一模试题分析
青岛一模试题分析青岛九中张文澜2013-4-3一、2012高考与2013一摸知识点的对比二、由对比所想到的:1、知识点覆盖全面且重点突出。
而且青岛一摸显然考察更全面。
全卷涵盖了数学课程标准中的大部分知识点,像集合、复数、充要条件、线性规划、系统抽样、程序框图等这些了解层次的基本概念和基本运算进行了客观题的前半段考查,有效检测了考生对知识掌握的程度。
在全面考查的同时,对支撑高中数学学科体系的主干内容也做到了重点考查,对于考纲中要求较高的三角函数、立体几何、概率统计、数列、函数和导数的应用、圆锥曲线等主干知识均以解答题形式出现,并都达到了一定的考查深度。
2、重视知识网络的交汇,强化对知识和能力的综合考查试题强化了对考生所学数学知识和能力的综合考查,对各考点进行了综合设计,以考查考生的数学思想和数学素养为目的,知识点纵横交错,对知识和能力进行了网络式布题。
如17题,文理都考查了三角函数的周期性,单调性,三角恒等变换,解三角形知识,而理科还加上了给定区间上的最值问题。
等于以前的两个题合成一个,对学生的运算以及推理能力的要求都很高。
如20数列题,对等差数列和等比数列中的通项公式以及求和公式进行综合考查,进一步挖掘了等差数列和等比数列的内在联系,从本质上揭示了二者的内在统一性。
这一点和2012年高考的考查方式相似,对学生把握信息挖掘信息的能力要求很高。
3、对学生的运算要求似乎更高。
记得去年理科数学划到111分的一本线,文科是122分,而今年文理的一本线均为101分,运算始终是软肋,尤其是文科。
从一模后试卷分析的情况来看,几乎所有的主观题都指出学生的解题规范以及运算能力不强的事实。
4、一模与高考题总是源于教材而又高于教材。
例如文理的12题,其来源就是取整函数y= [x],其越度为1,可以联想到必修一课本中有关于出租车计费的分段函数。
{x}= x-[x]非负纯小数,y={X}的图像与性质之前有过探究:如][xy=的定义域为R,值域为Z;}{xy=的定义域为R,值域为)1,0[,}{xy=是以1为周期的周期函数等。
高三数学质量分析
高三数学质量分析高三模考数学考试质量分析一、试卷评价全卷试题基本以容易题为主,有少量难题,最后一个大题中有一个寒假作业类似的原题。
文、理科合卷。
理科加试附加卷。
试题突出数学主干知识,以重点知识构建试题的主体,注重加强对基础知识、基本技能的考查,如从高中数学中的概念、性质、法则、定理及其由内容反映出来的数学思想和方法出发,从课本例题和习题出发;从一些高考题出发,通过改造、延伸和拓展,形成试题(许多题方法多样,立足于考查学生对基础概念、关系的理解,有利于学生形成基础知识网络(还有许多题能产生很多变化。
重视对数学思想方法的考查,将中学数学中一些比较基本的数学思想和方法,以各种不同的层次融入试题中(涉及到数形结合思想;体现了分类讨论思想;体现了函数与方程的思想。
试题在一定程度上体现了平常教学的要求,做到了考学生知识,考老师的教法的目的(试题对全校学生而言有一定的区分度,但对好班学生就区分度较小。
通过本次考试,能有效的找出教与学中存在的问题,明确下阶段努力的方向。
二、数据分析分数段 >=135 >=119 >=112 >=96 >=80 >=70 >=60 <60 全校数学统计参加考试人数:324人,均分:71.6分,人数 51 1 9 20 49 62 36 105 表1 全校各分数段的情况优秀率:0.93%,及格率:21.3%,低分率:59.57%。
最高分143分,最低分0分。
表二:闪光/薄班级总分均分试题类型试题描述满分平均分最高分最低分得分率优秀率及格率低分率方差标准差弱点全市全部 94.7 试卷数学 160 71.6 138.0 0.0 45 0.93 21.30 59.57 688.26 26.23 二中全部 71.6主观题 1-3 15 10.5 15.0 0.0 70 31.48 81.17 18.83 14.46 3.80 10301班49.8主观题 4-6 15 9.6 15.0 0.0 64 31.17 68.21 31.79 21.20 4.60 10302班54.8主观题 7-9 15 8.4 15.0 0.0 56 20.68 60.19 39.81 21.79 4.67 10303班75.6主观题 10-12 15 12.1 15.0 0.0 80 58.64 86.11 13.89 16.75 4.09 10304班 64.6主观题 13-14 10 3.0 10.0 0.0 30 16.98 16.98 56.17 14.49 3.81 薄弱点10305班 60.0主观题 15 14 8.1 14.0 0.0 58 24.38 42.59 25.31 16.01 4.00 10306班77.7主观题 16 14 6.3 14.0 0.0 45 12.35 17.59 31.79 14.80 3.85 10307班92.8主观题 17 14 4.5 14.0 0.0 32 10.80 11.73 51.23 20.24 4.50 薄弱点10308班 102.2主观题 18 16 2.7 16.0 0.0 17 1.54 7.41 87.65 12.97 3.60 薄弱点主观题 19 16 3.9 16.0 0.0 24 2.16 2.47 90.43 11.00 3.32 薄弱点主观题 20 16 2.3 10.5 0.0 14 0.00 1.23 97.53 4.45 2.11 薄弱点第 1 页共 2 页三、试卷分析通过对学生答题情况的分析,学生主要在以下几个方面存在问题:1(对基本的数学概念、定理理解和掌握不到位,对一些基本的解题方法不清晰(这些题涉及的解决方法比较常规,但从考试情况看,学生掌握情况还不够理想(这说明学生知道一点,但还是有点乱,不能很快的检索到解题方法,不能选择好的解题方法(这种现象是下一个阶段必须要重点解决的问题(2(重点知识和重要方法(如函数与导数、三角函数等)在高考中常考,也比较容易得分(此次考试学生在推理、文科数列等问题上得分情况不够理想(简单问题复杂化,思路不清晰,计算(特别是有关字母的运算)不过关;第17题,解决的方法是常规方法,但实际情况是“好象知道一点,但实际操作时,丢三落四,处处有问题。
2012市质检试卷分析
作者正是通过对紫牡丹和白牡丹这一动一静、一热一冷的对照 描写,不加一句褒贬,不作任何说明,而寓意自显。为豪贵所争赏 的紫牡丹尽管名贵却显得庸俗,相反,无人看的白牡丹却超尘脱俗, 幽雅高尚,给人以冰清玉洁之感。
诗人对白牡丹的赞美和对它处境的同情,寄托了对人生的感慨。 末句“无人起就月中看”之“无人”,承上面豪贵而言,豪贵争赏 紫牡丹,而“无人”看裴给事的白牡丹。即言裴给事之高洁,朝中 竟无人赏识。诗题中特别点出“裴给事宅”,便是含蓄地点出这层 意思。
子曰:“质胜文则野,文胜质则史,文质彬彬,然后君 子。”(雍也) 孔子说:“质朴超过文采就显得粗俗,文采超过质朴就 显得虚浮,文采和质朴搭配得当,这样才可以成为君 子。”
有子曰:"礼之用,和为贵。先王之道,斯为美,小 大由之。有所不行,知和而和,不以礼节之,亦不可行 也。" 有子说:"礼的施行,以和谐为贵。以前圣王的治理 之道,好就好在这里,不管小事大事都遵循这一原则。 倡有行不通的地方,只知一味地为求和谐而求和谐,不 用礼仪来加以节制,那也是不行的。" 礼本来指的是区别尊卑贵贱的等级制度及与之相应的 礼节仪式。但礼的根本目的又在于起中和作用,也是要 达和谐的境界。这样就造成了礼与和之间既相矛盾又相 统一的辩证关系。
(例文一) 警方在火车站挂出提示牌的行为不妥。 第一、警方初衷虽好,但把所有人都当作了 为非作歹的“假想敌”,让人看了不舒服,也 把初到武汉而不熟悉道路的客人推到了无助的 境地。 第二、面对火车站治安秩序不好的状况,及 时打击违法活动,维护正常社会秩序,才是警 察的职责所在。
(例文二) 警方悬挂提示牌,这一行为不妥。 首先,在一个正常的社会,搭理陌生人的问 话,为他人提供热情帮助,这类向善的行为彰显 了一个社会的文明程度。 其次,这既是中华民族的优良传统,也是 建设社会主义精神文明的必需。 因此,警方这一提示反其道而行之,不利 于和谐社会的构建。
2012年山东高考数学试卷分析
2012年高考数学试卷分析特邀名师:牛瑞兰(山大附中实验班班主任、备课组组长、省教学能手)总体来看,今年的高考数学题型不变,各题型内容所占比例也基本不变,各题型顺序大同小异,但在传统题目上却非常新颖,别具一格。
在难易的顺序上可谓是在挑战极限。
具体来讲:集合内容占0.03%、排列组合占0.03%、复数占0.03%、向量占0.03%、线性规划占0.03%、算法占0.03%、数列占0.06%、概率占0.114%、立体几何占0.15%、解析几何占0.15%、函数占0.15%、三角函数占0.114%,试题覆盖面广,涉猎高中数学的所有内容。
当学生满怀信心,摩拳擦掌地投入到战斗中去时,才恍然发觉,今非昔比。
和去年相比较,试题的难度着实上了一个很高的台阶。
第一题,第二题是常规的集合和排列组合题,属容易题,所有考生都能轻松应对。
第三题是复数题,应该属于基础题,但却比往常加大了运算量,考查了复数的代数运算,复数的模,共轭复数,复数的实部与虚部。
一道题考查了复数的所有内容,学生大抵从这道题便开始慌乱起来。
接下来的第四第五题比较简单,是解析几何和数列题,属于基础题。
第六题是算法题,新课程改革后,算法题都是最基本题,学生都可以目测得到结论,但今年的算法题学生却让四个选项给唬住了。
情绪再一次波动。
但冷静下来后会发现还是基础题。
其实很简单。
恍惚一种被欺骗的感觉。
静下心来再做第七第八题,是立体几何三视图,解析几何题题,比较容易。
第九题是三角函数题,和以往的题型有所不同,如果用排除法会比较简单快速。
概念清晰时计算也不难。
接下来的第十第十二题是函数图象,函数的最值问题,但都和导数有关,尤其第十二题,综合了反函数的概念,超越函数最值的求法(转化法),如果转化不成,是断然难求出结果的。
第十一题是立体几何题,常规的三棱锥的外接球题型,同十二题,如果不能很好转化的话,也是一只拦路虎。
回顾十二个选择题,考生需要经过三波三折,才能闯关成功,时间也会耗去多半。
2012年普通高等学校招生全国统一考试 文科数学(山东卷)【word精析版】
2012年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)【试卷总评】本试题在承袭了山东自行命题风格的同时,积极进行创新与突破,呈现出诸多亮点。
试卷全面考查了基本知识与方法,注重对数学能力及数学素养的考查。
并进一步对分值结构进行调整,淡化压轴题的概念,后面几道题难度较大,都有一定的思维量,梯度设置科学合理,体现了高考的选拔作用.1.若复数满足(为虚数单位),则为(A)(B)(C)(D)2.已知全集,集合,,则为(A) (B) (C) (D)3.函数的定义域为(A) (B) (C) (D)3.【答案】:B【解析】:4.在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是(A)众数(B)平均数(C)中位数(D)标准差5.设命题p:函数的最小正周期为;命题q:函数的图象关于直线对称.则下列判断正确的是(A)p为真(B)为假(C)为假(D)为真6.已知变量满足约束条件,则目标函数的取值范围是(A)(B)(C)(D)7.执行下面的程序图,如果输入,那么输出的的值为(A)(B)(C)(D)8.函数的最大值与最小值之和为(A)(B) (C)(D)8.【答案】:A【解析】:由可知,可知,则,则最大值与最小值之和为,答案应选A。
【考点定位】9.圆与圆的位置关系为(A)内切(B)相交(C)外切(D)相离10.函数的图像大致为11.已知双曲线:的离心率为.若抛物线的焦点到双曲线的渐近线的距离为2,则抛物线的方程为(A) (B)(C)(D)12.设函数,.若的图象与的图象有且仅有两个不同的公共点,则下列判断正确的是(A)(B)(C)(D)【考点定位】本题从最常见了两类函数出发进行了巧妙组合,考查数形结合思想、分类讨论思想,函数与方程思想等,难度很大,不易入手,具有很强的区分度.第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.如图,正方体的棱长为1,E为线段上的一点,则14.右图是根据部分城市某年6月份的平均气温(单位:℃) 数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为,,,,,.已知样本中平均气温低于的城市个数为11,则样本中平均气温不低于的城市个数为_.15.若函数在[-1,2]上的最大值为,最小值为,且函数在上是增函数,则_.16.如图,在平面直角坐标系中,一单位圆的圆心的初始位置在,此时圆上一点的位置在,圆在轴上沿正向滚动。
文数高考试题答案及解析-山东.pptx
__.
答案: (2sin2,1cos2) 解析:根据题意可知圆滚动了 2 单位个弧长,点 P 旋转
了 2 弧度,此时点 P 的坐标为
x
P
2
c
o
s
(
2
) 2
2
s
in2,
C
yP
1sin(2
) 1cos2, 2
.
D
OP(2sin2,1cos2)
另解:根据题意可知滚动制圆心为(2,1)时的圆的参数方程
x 2 cos
解析: C U A { 0 , 4 } ( C U , A ) B { 0 , 2 , 。答案选 C。
(3)函数 f ( x ) 1 4 x 2 的定义域为 ln(x1)
(A)[2,0)U(0,2]
(B)(1,0)U(0,2] (C) [2,2] (D) (1,2]
解析:要使函数
f
(x)
(II)若 a 1 , c 2 , 则 b2 a c 2 , ∴ c o s B a 2 c 2 b 2 3 ,
2ac
4
学海无涯
sin C 1 cos2 C 7 , 4
∴△ ABC 的面积 S 1 acs i n B 1 1 2 7 7 .
2
2
44
(18)(本小题满分 12 分) 袋中有五张卡片,其中红色卡片三张,标号分别为 1,2,3;蓝色卡片两张,标号分别为
根据复数相等可知2 a b 1 , 2 1 b a , 解得a 3 , b 5 , 于是 z 3 5 i 。
(2)已知全集U{0,1,2,3,4},集合 A{1,2,3}, B {2, 4},则 (ðUA ) U B 为
(A){1,2,4}
(B){2,3,4}
2012年高考数学山东理解析版
2012年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I 卷和第II 卷两部分,共4页.满分150分.考试用时120分钟,考试结束,务必将试卷和答题卡一并上交. 注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式: 锥体的体积公式:V=13Sh ,其中S 是锥体的底面积,h 是锥体的高. 如果事件A ,B 互斥,那么P (A+B )=P (A )+P(B);如果事件A,B 独立,那么P (AB )=P (A )·P (B ).第I 卷(共60分)一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1 若复数x 满足z(2-i)=11+7i(i 为虚数单位),则z 为 A.3+5i B.3-5i C.-3+5i D.-3-5i 【答案】A 【解析】i ii i i i z 535)1114(7225)2)(711(2711+=++-=++=-+=.答案选A. 另解:设),(R b a bi a z ∈+=,则i i a b b a i bi a 711)2(2)2)((+=-++=-+,根据复数相等可知72,112=-=+a b b a ,解得5,3==b a ,于是i z 53+=. 【点评】本题考查了复数的除法运算,考查了对学生计算能力,属于基础题.明年可能结合复数概念或者几何意义考查.2.已知全集 ={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则U A B ð为 A.{1,2,4} B.{2,3,4} C .{0,2,4} D.{0,2,3,4} 【答案】C【解析】由题意可知,{}{}0,4,0,2,4U U A A B == 故而痧,故而选择答案C.【点评】本题考查了集合的概念和集合的运算,考查了考生的运算能力;子集与真子集也是常常考查内容,估计明年会结合子集考查.3.设a >0 a ≠1 ,则“函数f(x)= a x在R 上是减函数 ”,是“函数g(x)=(2-a) 3x 在R 上是增函数”的A .充分不必要条件 B.必要不充分条件 C .充分必要条件 D.既不充分也不必要条件 【答案】A【解析】由题意可知,()012-0()f x R a a g x R <<>在上单调递减,故而,所以,故在上单调递增,反之,由于()g x R 在上单调递增,可知202,0,02a a a a ->⇒<><< 又可知,,当1a =时,()1f x =,函数()f x 并不单调递减,故而“函数f(x)= a 3在R 上是减函数 ”,是“函数g(x)=(2-a) 3x 在R 上是增函数”的 充分不必要条件,答案选A.【点评】本题考查了函数的性质和充要条件的判断,体现了学生的推论能力.判断充要条件的方法,一是结合充要条件的定义;二是根据充要条件与集合之间的对应关系,把命题对应的元素用集合表示出来,根据集合之间的包含关系进行判断,在以否定形式给出的充要条件判断中可以使用命题的等价转化方法.简易逻辑是高考中必考内容,明年可能结合命题考察. 4.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C.则抽到的人中,做问卷B 的人数为(A )7 (B ) 9 (C ) 10 (D )15 【答案】C【解析】采用系统抽样方法从960人中抽取32人,将整体分成32组,每组30人,即30=l ,第k 组的号码为930)1(+-k ,令750930)1(451≤+-≤k ,而z k ∈,解得2516≤≤k ,则满足2516≤≤k 的整数k 有10个,故答案应选C.【点评】本题考查了抽样方法,注意到系统抽样原则的应用,是对学生推理能力的考查.分层抽样也是重要考点,明年可能考分层抽样.【答案】A【解析】由所给的不等式组可知所表示的可行域如图所示,而目标函数可以看做3y x z =-,截距最小时z 值最大,当截距最大时z 值最小,根据条件242220x y x x y y +==⎧⎧⇒⎨⎨+==⎩⎩,故当目目标函数过()2,0时,取到z 的最大,ma x 6z =,由1412243x y x x y y ⎧-=-=⎧⎪⇒⎨⎨+=⎩⎪=⎩,当目标函数经过1,32⎛⎫⎪⎝⎭时,z 取到最小值,min 32z =-,故而答案为A.【点评】本题考查了线性规划问题,是典型的线性规划求最值问题,体现了数形结合法思想的应用.在线性约束条件下,线性约束条件所表示的区域一般是一个多边形区域或者一个以直线为边界的无限区域,如果目标函数是线性的,则可以根据目标函数的几何意义确定目标函数取得最大值和最小值的位置,如本题中的目标函数3z x y =-变换后即3y x z =- z ,则目标函数z 的几何意义即直线3y x z =-在y 轴上的截距相反数,截距最大(小)时的位置就是目标函数取得最小(大)值的位置,在一些含有参数的线性规划问题中这个思想显得更为重要.线性规划是高考必考内容,估计明年还会考到.(6)执行下面的程序图,如果输入a=4,那么输出的n 的值为(A )2(B )3(C )4(D )5 【答案】B【解析】312,140,00=+==+==q p n ;716,541,11=+==+==q p n ;15114,2145,22=+==+==q p n ,q p n >=,3.答案应选B.【点评】本题考察了程序框图的应用,根据程序框图推算结果.程序框图也是常考内容,明年还会结合这些知识考察.(7)若42ππθ⎡⎤∈⎢⎥⎣⎦,, sin 2θ,则sin θ=(A )35 (B )45 (C(D )34 【答案】D【解析】由42ππθ⎡⎤∈⎢⎥⎣⎦,可得],2[2ππθ∈,812sin 12cos 2-=--=θθ,4322cos 1sin =-=θθ,答案应选D.另解:由42ππθ⎡⎤∈⎢⎥⎣⎦,及sin 2=8θ可得 434716776916761687312sin 1cos sin +=++=+=+=+=+θθθ, 而当42ππθ⎡⎤∈⎢⎥⎣⎦,时θθcos sin >,结合选项即可得47cos ,43sin ==θθ.答案应选D.【点评】本题考察了二倍角公式和同角基本关系的应用,考察了学生的运算能力;三角恒等变换往往结合三角函数图象与性质考察,故而明年可能出现三角函数图象与性质考点.8.定义在R 上的函数f (x )满足f (x+6)=f (x ),当-3≤x <-1时,f (x )=-(x+2)2,当-1≤x <3时,f (x )=x.则f (1)+f (2)+f (3)+…+f (2012)= (A )335 (B )338 (C )1678 (D )2012 【答案】B【解析】根据条件(6)f x f x +=()可知函数是周期为6的周期函数,由因为当-3≤x <-1时,f (x )=2(2)x -+,当-1≤x <3时,f (x )=x 可知,22(1)1,(2)2,(3)(3)(32)1,(4)(2)(22)0,f f f f f f ===-=--+=-=-=--+=(5)(1)1,(6)(0)0f f f f =-=-==,故而(1)+(2)(3)(4)(5)=f f f f f f ++++(6)1,故而f (1)+f (2)+f (3)+…+f (2012)=3351(1)(2)338f f ⨯++=【点评】本题考查了函数的周期性的应用,属于函数的性质的考查,这种性质的考察是常见的形式,故而明年会继续考察,可能结合初等函数出现. (9)函数的图像大致为【答案】D【解析】函数x x x x f --=226cos )(,)(226cos )(x f xx f xx -=-=--为奇函数, 当0→x ,且0>x 时+∞→)(x f ;当0→x ,且0<x 时-∞→)(x f ; 当+∞→x ,+∞→--xx22,0)(→x f ;当-∞→x ,-∞→--x x 22,0)(→x f .答案应选D.【点评】本题考查了函数的奇偶性的性质特点,结合图象语言,考查了数形结合法的思想,函数图象是考点中重要内容,估计明年还会继续考察. (10)已知椭圆C :的离心率为,双曲线x ²-y ²=1的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆c 的方程为【答案】D【解析】双曲线x ²-y ²=1的渐近线方程为x y ±=,代入可得164,222222==+=x S b a b a x ,则)(42222b a b a +=,又由23=e 可得b a 2=,则245b b =,于是20,522==a b .椭圆方程为152022=+y x ,答案应选D. 【点评】本题考察了双曲线与椭圆的基本性质,属于运算能力的考察,求圆锥曲线方程的基本方法之一就是待定系数法,就是根据已知条件得到圆锥曲线方程中系数的方程或者方程组,通过解方程或者方程组求得系数值.(11)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为 (A )232 (B)252 (C)472 (D)484 【答案】C【解析】由题意可知,抽取的三张卡可以分为两类,一类为不含红色的卡,一类是含一张红色的卡片,第一类的抽取法的种数为331243208C C -=,第二类抽取法的种数为12412264C C ⋅=,故而总的种数为208264472+=【点评】本题考察排列组合知识,属于推论能力的考察.排列组合、二项式定理属于高考考点,估计明年可能结合二项式定理考察. (12)设函数f (x )=,g (x )=ax 2+bx若y=f(x)的图像与y=g(x)图像有且仅有两个不同的公共点A (x 1,y 1),B(x 2,y 2),则下列判断正确的是 A.当a<0时,x 1+x 2<0,y 1+y 2>0 B. 当a<0时, x 1+x 2>0, y 1+y 2<0 C.当a>0时,x 1+x 2<0, y 1+y 2<0 D. 当a>0时,x 1+x 2>0, y 1+y 2>0 【答案】B【解析】令bx ax x+=21,则)0(123≠+=x bx ax ,设23)(bx ax x F +=,bx ax x F 23)(2+='.令023)(2=+='bx ax x F ,则abx 32-=,要使y=f(x)的图像与y=g(x)图像有且仅有两个不同的公共点只需1)32()32()32(23=-+-=-abb a b a a b F ,整理得23274a b =,于是可取3,2=±=b a 来研究,当3,2==b a 时,13223=+x x ,解得21,121=-=x x ,此时2,121=-=y y ,此时0,02121>+<+y y x x ;当3,2=-=b a 时,13223=+-x x ,解得21,121-==x x ,此时2,121-==y y ,此时0,02121<+>+y y x x .答案应选B.另解:令)()(x g x f =可得b ax x +=21. 设b ax y x y +=''=',12,不妨设21x x <,结合图形可知, 当0>a 时如右图,此时21x x >,即021>>-x x ,此时021<+x x ,112211y x x y -=->=,即021>+y y ;同理可由图形经过推理可得当0<a 时0,02121<+>+y y x x .答案应选B.【点评】题考察了函数与方程知识,反比例函数与二次函数图象的应用是数形结合法思想的应用, 函数的零点、方程的根,都可以转化为函数图象与x 轴的交点,数形结合法是解决函数零点、方程根的分布、零点个数、方程根的个数的一个有效方法.在解决函数零点问题时,既要注意利用函数的图象,也要注意根据函数的零点存在定理、函数的性质等进行相关的计算,把数与形紧密结合起来, 函数零点问题是函数与方程思想的考法,估计明年可能结合基本初等函数考察.第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分. (13)若不等式的解集为,则实数k=__________.【答案】2【解析】4224226kx kx kx -≤⇔-≤-≤⇔≤≤,根据解集为{}13x x ≤≤,故而0k >,这是26x k k ≤≤故而2613k k==且得2k =另解:由题意可知3,1==x x 是24=-kx 的两根,则⎩⎨⎧=-=-24324k k ,解得2=k . 【点评】本题考察了绝对值不等式的解法,属于对学生计算能力考察,绝对值不等式性质也是常考知识,估计明年可能考查. 解析:由可得242≤-≤-kx ,即62≤≤kx ,而31≤≤x ,所以2=k .(14)如图,正方体ABCD-A 1B 1C 1D 1的棱长为1,E,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为____________.【答案】16【解析】由题意可知,11111111113326D EDF F D ED D ED V V DC S --==⨯⨯∆=⨯⨯⨯⨯= 【点评】本题考察多面体与体积公式的应用,同时考察了学生的空间想象能力;明年有可能结合三视图考查. (15)设a >0.若曲线与直线x =a ,y=0所围成封闭图形的面积为a ,则a=______.【答案】94【解析】33220229334a S x a a a ====⇒=⎰【点评】考察了微积分的应用,属于计算能力的考察.这是理科的特色,估计明年还会考查. (16)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP的坐标为______________.【答案】()2sin 2,1cos2--【解析】根据题意可知圆滚动了2单位个弧长,点P 旋转了212=弧度,此时点P 的坐标为 )2cos 1,2sin 2(,2cos 1)22sin(1,2sin 2)22cos(2--=-=-+=-=--=y x P P ππ另解1:根据题意可知滚动自圆心为(2,1)时的圆的参数方程为⎩⎨⎧+=+=θθsin 1cos 2y x ,且C D223,2-==∠πθPCD ,则点P 的坐标为⎪⎩⎪⎨⎧-=-+=-=-+=2c o s 1)223s i n (12s i n 2)223c o s (2ππy x ,即)2c o s 1,2s i n 2(--=OP .【点评】本题考察了三角函数与向量知识的灵活应用,属于知识点交汇处的题目.解决好本题的关键是充分利用图象语言,属于典型的数形结合法思想的应用,数形结合的重点是研究“以形助数”,这在解选择题、填空题中更显其优越,要注意培养这种思想意识,做到心中有图,见数想图,以开拓自己的思维视野;结合新情境考查明年还会继续.三、解答题:本大题共6小题,共74分. (17)(本小题满分12分) 已知向量m=(sinx ,1),函数f (x )=m ·n 的最大值为6.(Ⅰ)求A ;(Ⅱ)将函数y=f (x )的图象像左平移12π个单位,再将所得图象各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y=g (x )的图象.求g (x )在上的值域.【解析】(Ⅰ)⎪⎭⎫ ⎝⎛+=+=+=⋅=62sin 2cos 22sin 232cos 2sin cos 3)(πx A x A x A x A x x A x f , 则6=A ;(Ⅱ)函数y=f (x )的图象像左平移12π个单位得到函数]6)12(2sin[6ππ++=x y 的图象, 再将所得图象各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数)34sin(6)(π+=x x g .当]245,0[π∈x 时,]1,21[)34sin(],67,3[34-∈+∈+ππππx x ,]6,3[)(-∈x g . 故函数g (x )在上的值域为]6,3[-.另解:由)34sin(6)(π+=x x g 可得)34cos(24)(π+='x x g ,令0)(='x g ,则)(234Z k k x ∈+=+πππ,而]245,0[π∈x ,则24π=x ,于是367sin 6)245(,62sin6)24(,333sin6)0(-======πππππg g g , 故6)(3≤≤-x g ,即函数g (x )在上的值域为]6,3[-.【点评】本题考查向量的坐标运算、三角恒等变换和三角函数图象与性质,是对三角和向量的综合考察,考察了学生的计算能力,属于基础题.解答三角函数的图象与性质类的试题,变换是其中的核心,把三角函数的解析式通过变换,化为正弦型、余弦型、正切型函数,然后再根据正弦函数、余弦函数和正切函数的性质进行研究.明年可能结合解三角形来考察. (18)(本小题满分12分)在如图所示的几何体中,四边形ABCDAE ⊥BD ,CB=CD=CF.(Ⅰ)求证:BD ⊥平面AED ;(Ⅱ)求二面角F-BD-C 的余弦值. 【解析】(Ⅰ)在等腰梯形ABCD 中,AB ∥CD 由余弦定理可知202223)180cos(2CD DAB CB CD CB CD BD =∠-⋅⋅-+=,即AD CD BD 33==,在ABD ∆中,∠DAB=60°,AD BD 3=,则ABD ∆为直角三角形,且DB AD ⊥.又AE ⊥BD ,⊂AD 平面AED ,⊂AE 平面AED ,且A AE AD = ,故BD ⊥平面AED ;(Ⅱ)由(Ⅰ)可知CB AC ⊥,设1=CB ,则3==BD CA ,建立如图所示的空间直角坐标系,)0,21,23(),0,1,0(),01,0(-D B F ,向量)1,0,0(=n 为平面BDC 的一个法向量. 设向量),,(z y x m =为平面BDF 的法向量,则⎪⎩⎪⎨⎧=⋅=00FB m m ,即⎪⎩⎪⎨⎧=-=-002323z y y x , 取1=y ,则1,3==z x ,则)1,1,3(=m 为平面BDF 的一个法向量.5551,cos ==>=<n m ,而二面角F-BD-C 的平面角为锐角,则 二面角F-BD-C 的余弦值为55.【点评】本题考查本题考察了线面垂直的位置关系的判断,和利用空间向量来求二面角的余弦问题. 明年可以结合线面平行的知识进行考察,二面角或者线面角的形式考察空间向量的应用.(19)(本小题满分12分)现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击. (Ⅰ)求该射手恰好命中一次得的概率;(Ⅱ)求该射手的总得分X 的分布列及数学期望EX 【解析】(Ⅰ)367323141)31(43122=⋅⋅⋅+⋅=C P ; (Ⅱ)5,4,3,2,1,0=X91323141)2(,121)31(43)1(.361)31(41)0(1222=⋅===⋅===⋅==C X P X P X P , 1)2(3)5(,1)2(1)4(,1213)3(2212=⋅===⋅===⋅==X P X P C X PEX=0×36+1×12+2×9+3×3+4×9+5×3=12312=. 【点评】本题考查了概率、随机变量、分布列和数学期望属于对概率知识的综合考察,考察了学生的计算能力和逻辑推理能力;这种考法在山东卷中相对固定,明年还会继续考察. (20)(本小题满分12分)在等差数列{a n }中,a 3+a 4+a 5=84,a 9=73. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)对任意m ∈N ﹡,将数列{a n }中落入区间(9m ,92m)内的项的个数记为bm ,求数列{b m }的前m 项和S m .【解析】(Ⅰ)由a 3+a 4+a 5=84,a 5=73可得,28,84344==a a 而a 9=73,则9,45549==-=d a a d ,12728341=-=-=d a a ,于是899)1(1-=⨯-+=n n a n ,即89-=n a n .(Ⅱ)对任意m ∈N ﹡,mm n 29899<-<,则899892+<<+mm n ,即989989121+<<+--m m n ,而*N n ∈,由题意可知11299---=m m m b , 于是)999(999110123121--+++-+++=+++=m m m m b b b S8980198019109819809991919199121212212m m m m m m m m -+=+⋅-=---=-----=++++, 即89801912mm m S -+=+. 【点评】本题考查本题考察了数列的求通项与求和的方法,属于数列的典型问题.考查灵活运用基本知识解决问题的能力,运算求解能力和创新思维能力.数列求通项与求和是常见的考法,故而明年会继续围绕这些内容进行考察..(21)(本小题满分13分)在平面直角坐标系xOy 中,F 是抛物线C :x 2=2py (p >0)的焦点,M 是抛物线C 上位于第一象限内的任意一点,过M ,F ,O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为34. (Ⅰ)求抛物线C 的方程;(Ⅱ)是否存在点M ,使得直线MQ 与抛物线C 相切于点M ?若存在,求出点M 的坐标;若不存在,说明理由;(Ⅲ)若点Ml :y=kx+14与抛物线C 有两个不同的交点A ,B ,l 与圆Q 有两个不同的交点D ,E ,求当12≤k ≤2时,的最小值.【解析】(Ⅰ)F 抛物线C :x 2=2py (p >0)的焦点F )2,0(p,设M )0)(2,(0200>x px x ,),(b a Q ,由题意可知4p b =,则点Q 到抛物线C 的准线的距离为==+=+p p p p b 4324234,解得1=p ,于是抛物线C 的方程为y x 22=.(Ⅱ)假设存在点M ,使得直线MQ 与抛物线C 相切于点M ,而)2,(),0,0(),21,0(200x x M O F ,)41,(a Q ,QF OQ MQ ==,161)412()(222020+=-+-a x a x ,030838x x a -=,由y x 22=可得x y =',03020838241x x x x k --==,则20204021418381x x x -=-, 即022040=-+x x ,解得10=x ,点M 的坐标为)21,1(.(Ⅲ)若点MM )1,2(,)41,82(-Q . 由⎪⎩⎪⎨⎧+==4122kx y yx 可得02122=--kx x ,设),(),,(2211y x B y x A ,]4))[(1(2122122x x x x k AB -++=)24)(1(22++=k k圆323161642)21()82(:22=+=-++y x Q ,22182182kk kk D +=+-⋅=)1(823])1(32323[422222k k k k DE ++=+-=, 于是)1(823)24)(1(222222k k k k DE AB +++++=+,令]5,45[12∈=+t k 418124812)24()1(823)24)(1(2222222++-=++-=+++++=+t t t t t t t k k k k DE AB ,设418124)(2++-=t t t t g ,28128)(tt t g --=', 当]5,45[∈t 时,08128)(2>--='t t t g ,即当21,45==k t 时101441458145216254)(min =+⨯+⨯-⨯=t g .故当21=k 时,1014)(min 22=+DE AB .【点评】本题考查求曲线方程的方法以及直线与圆锥曲线的位置关系的应用,属于圆锥曲线问题的综合应用,全面考核综合数学素养.明年可能考察直线与椭圆的位置关系考察. 22(本小题满分13分) 已知函数f(x) =xe kx +ln (k 为常数,e=2.71828……是自然对数的底数),曲线y= f(x)在点(1,f(1))处的切线与x 轴平行. (Ⅰ)求k 的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=(x 2+x) '()f x ,其中'()f x 为f(x)的导函数,证明:对任意x >0,21)(-+<e x g .【解析】由f(x) = x e k x +ln 可得=')(x f xexk x ln 1--,而0)1(='f ,即01=-e k ,解得1=k ;(Ⅱ)=')(x f xexx ln 11--,令0)(='x f 可得1=x , 当10<<x 时,0ln 11)(>--='x x x f ;当1>x 时,0ln 11)(<--='x xx f .于是)(x f 在区间)1,0(内为增函数;在),1(+∞内为减函数.简证(Ⅲ)xx ex x x x e xx x x x g ln )(1ln 11)()(222+--=--+=, 当1≥x 时, 0,0,0ln ,0122>>+≥≤-x e x x x x ,210)(-+<≤e x g .当10<<x 时,要证22221ln )(1ln 11)()(-+<+--=--+=e ex x x x e xx x x x g xx . 只需证2221()ln (1)x x x x x e e ---+<+,然后构造函数即可证明.【点评】本题考察了导数的几何意义,利用导数求函数的单调区间以及导数在函数与不等式中的应用,体现了等价转换思想应用.函数与导数结合不等式考察在山东卷中相对固定,明年会继续考察.。
2012年高考数学理试卷分析
2012年高考数学理试卷分析2012年新课标高考理科数学试卷分析一.题型、题量全卷包括第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题.第Ⅱ卷为非选择题.考试时间为120分钟,总分为150分.试题分选择题、填空题和解答题.其中,选择题有12个小题,每题5分,共计60分;填空题有4个小题,每题5分,共计20分;解答题有8个题,其中第17题~21题各12分,第22~24题(各10分)选考一题内容分别为选修4—1(几何选讲)、选修4—4(坐标系与参数方程)、4—5(不等式选讲),共计70分.全部试题都要求在答题卡上作答.题型、题量同教育部考试中心近几年命制的新高考数学理科卷相同.总体来看,今年的高考数学题型不变,各题型内容所占比例也基本不变,各题型顺序大同小异,但在传统题目上却非常新颖,别具一格。
在难易的顺序上可谓是在挑战极限。
具体来讲:集合内容占0.03%、排列组合占0.03%、复数占0.03%、向量占0.03%、线性规划占0.03%、算法占0.03%、数列占0.06%、概率占0.114%、立体几何占0.15%、解析几何占0.15%、函数占0.15%、三角函数占0.114%,试题覆盖面广,涉猎高中数学的所有内容。
当学生满怀信心,摩拳擦掌地投入到战斗中去时,才恍然发觉,今非昔比。
和去年相比较,试题的难度着实上了一个很高的台阶。
题型分布1)注重全面考查2012年课标卷中各种知识点题型起点较高、较综合、不易入手,多数试题源于教材,但考查较深入,强调对基本知识、基本技能和基本方法的考查,又注重考查知识间的紧密联系,第(1)、(2)、(5)、(7)、(9)、(13)、(14)题分别对集合、排列组合、等比数列、三视图、三角函数、平面向量、线性规划等基本概念和基本运算进行了考查。
试卷注重考查通性通法,有效检测考生对数学知识所蕴涵的数学思想和方法的掌握情况,第(3)题考查命题,而内容是复数的计算;第(4)、(8)题考查圆锥曲线的性质,注重联系平面几何与平面坐标系的转化;第(6)、(15)题分别考查了新课改中增加的程序框图、正态分布,更加强调对新知识定义的理解,更加的贴近实际操作;第(10)、(12)题考查了函数的性质和反函数,研究函数图象在解题中的巧妙作用;第(16)题考查了数列的性质和求和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f (x) mn , 若函数 g(x) 的图象与 f (x) 的图象关于坐标原点对称.
(Ⅰ)求函数 g (x)
在区间
4
,
6
上的最大值,并求出此时 x的值;
点评:两题考查三角函数的最值,从方向上看二模是 对高考很好的指导。
(高考12)设函数f(x)= ,g(x)=ax2+bx(a,b∈R,a≠0) 若y=f(x)的图象与y=g(x)图象有且仅有两个不同的公共点 A(x1,y1),B(x2,y2),则下列判断正确的是( ) A.当a<0时,x1+x2<0,y1+y2>0 B.当a<0时,x1+x2>0,y1+y2<0 C.当a>0时,x1+x2<0,y1+y2<0 D.当a>0时,x1+x2>0,y1+y2>0
(青岛二20模 )已知集 A合xx2n1,nN* ,B xx6n3,nN* ,
设Sn是 等 差 数 an列 的 前 n项 和 ,an若 的 任 一an项 AB,且 首a项 1是AB
中类的 比最 可大 得-7:数 50它,S们均3为00与数论有关的数列问题,其实高 10
(一模8) 将函数 y sin(x ) 的图象上所有点的横坐标
3
伸长到原来的2倍(纵坐标不变),再将所得图象向左平移 3
个单位,则所得函数图象对应的解析式为
A.y
sin(
1 2
x
3
)
B. y
sin(2x
6
)C.
y
sin
1 2
x
D.
1
y sin( x )
26
点评:两题均考查三角函数图像变换.高考是先平移后 伸缩,一模是先伸缩后平移。
(高考17)已知向量 m=(sinx,1),n =( Acosx, cos2x)(A>0), 函数f(x)= m • n 的最大值为6. (Ⅱ)将函数y=f(x)的图象向左平移个单位,再将所得图象各 点的横坐标缩短为原来的 1/2 倍,纵坐标不变,得到函数 y=g(x)的图象.求g(x)在[0,5/24 ]上的值域.
(点一评模:12两)题设均f ( x考) 与查g (的x ) 是定函义数在图同象一,区但间若[ a 直, b ] 接上的利两用个图象 函其数实,不若易函数判y断,f(x为)此g(利x)在用上了有构两造个函不同数的的零方点法,,则利称 用f ( x )函 和区联数能下间函g与力进(”数x一)在导。行A.”模f.m数高即(若 ,[x(a试),则知 考 时94b题x], 2识 题 性上2需]3求 是 学是x的要B“解 由 习4取. 读关[值,一,懂g 联1范与要般即(, x0函新围)]求到可 数为定C2具特解”x义. ( 有殊决,、m 区转,问,利[间a化题题2,用]b、目。[在]D0新, .分立目3 ]定( 析 意 的称义94 解 较 是为, 上,“决 高 考)是在关问 。 查“新联关题 学背的 生景
x0
1 2
,x0
[
2
, π ],
2
①f ( x ) 的最大值为 f ( x 0 )
③
f
(x)
在
[
2
, x 0 ]上是增函数
②f (x) ④f ( x )
在的最[ x 0 小, π2 ]值上为是增f ( x 函0 ) 数
A.①③ B.①④
C.②③
D.②④
点评:两题均是函数与三角函数的结合,考查了单 调性、奇偶性,最值等性质。二模题命题组织更具 有综合性,从预测高考的角度来看此题很有价值。
(1考)求题数与a列数n的论通 知项 识公 联系式的;远没有青岛二轮联系的知识点 (2多部题),分,若且学心数高 生 理bn列 考 反 作满题 映 用足 bn的 这 所难 个 致22度题。an比做13n二得9,令 轮不T的好n 要,24(低可b2 ,能b4但是.考学..b后 生2n), 的,试相 心比当 态T较 n一 问与
2019一模、二模与高考 数学对比分析
一、模拟试题总体特点
特点1:突出重点注重双基,主干内容常考常新,对数 学基础知识和基本思想方法的考查达到“横向到边, 纵向到底,不留死角,一网打尽”的境地
特点2:知识能力素质相融,全面检测综合素养,对数 学概念本质和理性思维能力的考查导入“回归源头, 得心应手,先思后解,自在悠闲”的境域
三角函数在高考题中比较稳定,以 考察三角化简求值,图像性质(平移), 解三角形等基础知识为主,每年运算量 都不小。由于学生运算能力相对薄弱, 所以历年三角得分不够理想。
分析3:数列
(20山 12东2高 ) 0 考 在等差 an中 数a , 3列 a4a5 8,4a9 73 (1)求数 an列 的通项公式; ( 2)对m 任 N 意 *,将数 an列 中落入9区 m,92m 间 )内( 的项的个 为 bm,求数 bm列 的m 前 项S 和 m.
(一模9)已知 a b函, 数 f(x)(xa)(x 的b)图象如右图 y
示,则函数 g(x)logaxb 的图象可能为
y
y
y
y
o1
x
1
1
图9
o
x
o1
x
o
x
o1
x
A
B
C
点评:两题虽然形式不一样,但都是研究含参函数。
(高考9)函数y=
的图象大致为( )
A.
B.
C.
D.
(那二么模下10面)已命知题函中数真命f(题x)的co序sx号是12x,x[2,π2],s in
特点3:背景公平似曾相识,巧妙变换引爆思考,对自 主探究和创新意识考查的命题设计步入“路径宽敞, 寓意深厚,淡中见隽,出奇制胜”的境界
二、试卷对比分析
分析1:函数与导数
(高考3)设a>0 a≠1,则“函数f(x)=ax在R上是减 函数”,是“函数g(x)=(2﹣a)x3在R是增函数”的 ()
A.充分不必要条件B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
分析问题、解决问题的能力,考生需要抓住本质进行
做答,是一道好题,思维灵活
分析2:三角函数
(高考17)已知向量 m=(sinx,1),n =( Acosx, cos2x)(A>0), 函数f(x)= m • n 的最大值为6. (Ⅱ)将函数y=f(x)的图象像左平移个单位,再将所得图象各 点的横坐标缩短为原来的 1/2 倍,纵坐标不变,得到函数 y=g(x)的图象.求g(x)在[0,5/24 ]上的值域.