2.5 随机变量的均值和方差
高考数学一轮复习知识点与练习均值和方差
1.离散型随机变量的均值与方差一般地,若离散型随机变量X 的概率分布为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n(1)均值:称E (X )=μ=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平.(2)方差:称V (X )=σ2=(x 1-μ)2p 1+(x 2-μ)2p 2+…+(x n -μ)2p n =∑ni =1x 2i p i -μ2为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根σ=V (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)V (aX +b )=a 2V (X ).(a ,b 为常数) 3.两点分布与二项分布的均值、方差(1)若X 服从两点分布,则E (X )=__p __,V (X )=p (1-p ). (2)若X ~B (n ,p ),则E (X )=__np __,V (X )=np (1-p ). 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.( )(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量的平均程度越小.( )(3)若随机变量X 的取值中的某个值对应的概率增大时,期望值也增大.( ) (4)均值是算术平均数概念的推广,与概率无关.( )1.(教材改编)某射手射击所得环数ξ的概率分布如下:ξ 7 8 9 10 Px0.10.3y已知ξ的均值E (ξ)=8.9,则y 的值为________.2.(2014·陕西改编)设样本数据x 1,x 2,…,x 10的均值和方差分别为1和4,若y i =x i +a (a 为非零常数,i =1,2,…,10),则y 1,y 2,…,y 10的均值和方差分别为__________.3.设随机变量X 的概率分布为P (X =k )=15(k =2,4,6,8,10),则V (X )=________.4.(2014·浙江改编)随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则V (ξ)=________.5.(教材改编)抛掷两枚骰子,当至少一枚5点或一枚6点出现时,就说这次试验成功,则在10次试验中成功次数的均值为________.题型一 离散型随机变量的均值、方差命题点1 求离散型随机变量的均值、方差例1 (2015·福建)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X ,求X 的概率分布和均值.命题点2 已知离散型随机变量的均值与方差,求参数值例2 设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的概率分布;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E (η)=53,V (η)=59,求a ∶b ∶c .命题点3 与二项分布有关的均值与方差例3 某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .(1)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;(2)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布及均值E (ξ).思维升华 离散型随机变量的均值与方差的常见类型及解题策略(1)求离散型随机变量的均值与方差.可依题设条件求出离散型随机变量的概率分布,然后利用均值、方差公式直接求解.(2)由已知均值或方差求参数值.可依据条件利用均值、方差公式得出含有参数的方程,解方程即可求出参数值.(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断.(1)(2014·山东)乒乓球台面被球网分隔成甲、乙两部分,如图,甲上有两个不相交的区域A ,B ,乙被划分为两个不相交的区域C ,D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其他情况记0分.对落点在A 上的来球,队员小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在A ,B 上各一次,小明的两次回球互不影响.求:①小明两次回球的落点中恰有一次的落点在乙上的概率; ②两次回球结束后,小明得分之和ξ的概率分布与均值.(2)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示. 将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.①求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率; ②用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的概率分布,均值E (X )及方差V (X ).题型二 均值与方差在决策中的应用例4 (2014·湖北)计划在某水库建一座至多安装3台发电机的水电站.过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的入流量相互独立.(1)求未来4年中,至多有1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:年入流量X 40<X<8080≤X≤120X>120发电机最多可运行台数12 3若某台发电机运行,则该台年利润为5 000万元;若某台发电机未运行,则该台年亏损800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台?思维升华随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变量稳定于均值的程度,它们从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要理论依据.一般先比较均值,若均值相同,再用方差来决定.某投资公司在2015年年初准备将1 000万元投资到“低碳”项目上,现有两个项目供选择:项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率分别为79和29;项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能损失30%,也可能不赔不赚,且这三种情况发生的概率分别为35,13和115.针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.8.离散型随机变量的均值与方差问题典例 (14分)甲袋和乙袋中都装有大小相同的红球和白球,已知甲袋中共有m 个球,乙袋中共有2m个球,从甲袋中摸出1个球为红球的概率为25,从乙袋中摸出1个球为红球的概率为P 2.(1)若m =10,求甲袋中红球的个数;(2)若将甲、乙两袋中的球装在一起后,从中摸出1个红球的概率是13,求P 2的值;(3)设P 2=15,若从甲、乙两袋中各自有放回地摸球,每次摸出1个球,并且从甲袋中摸1次,从乙袋中摸2次.设ξ表示摸出红球的总次数,求ξ的概率分布和均值.求离散型随机变量的均值和方差问题的一般步骤 第一步:确定随机变量的所有可能值. 第二步:求每一个可能值所对应的概率. 第三步:列出离散型随机变量的概率分布. 第四步:求均值和方差.第五步:反思回顾.查看关键点、易错点和答题规范.温馨提醒 (1)本题重点考查了概率、离散型随机变量的概率分布、均值.(2)本题解答中的典型错误是计算不准确以及解答不规范.如第(3)问中,不明确写出ξ的所有可能值,不逐个求概率,这都属于解答不规范.[方法与技巧] 1.均值与方差的性质(1)E (aX +b )=aE (X )+b ,V (aX +b )=a 2V (X )(a ,b 为常数). (2)若X 服从两点分布,则E (X )=p ,V (X )=p (1-p ).(3)若X 服从二项分布,即X ~B (n ,p ),则E (X )=np ,V (X )=np (1-p ).2.求离散型随机变量的均值与方差的基本方法(1)已知随机变量的概率分布求它的均值、方差,按定义求解.(2)已知随机变量X 的均值、方差,求X 的线性函数Y =aX +b 的均值、方差,可直接用X 的均值、方差的性质求解.(3)如果所给随机变量是服从常用的分布(如两点分布、二项分布等),利用它们的均值、方差公式求解. [失误与防范]1.在没有准确判断概率分布模型之前不能随便套用公式.2.对于应用问题,必须对实际问题进行具体分析,一般要将问题中的随机变量设出来,再进行分析,求出随机变量的概率分布,然后按定义计算出随机变量的均值、方差.A 组 专项基础训练(时间:45分钟)1.若X ~B (n ,p ),且E (X )=6,V (X )=3,则P (X =1)的值为________.2.随机变量ξ的概率分布如下,其中a 、b 、c 为等差数列,若E (ξ)=13,则V (ξ)的值为________.ξ -1 0 1 Pabc3.某班从4名男生、2名女生中选出3人参加志愿者服务,若选出的男生人数为ξ,则ξ的方差V (ξ)=________.4.一个袋子中装有6个红球和4个白球,假设每一个球被摸到的可能性是相等的.从袋子中摸出2个球,其中白球的个数为X ,则X 的均值是________.5.设随机变量ξ~B (5,0.5),又η=5ξ,则E (η)和V (η)的值分别是________.6.已知随机变量ξ的概率分布为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________.7.签盒中有编号为1、2、3、4、5、6的六支签,从中任意取3支,设X 为这3支签的号码之中最大的一个,则X 的均值为________.8.某超市为了响应环保要求,鼓励顾客自带购物袋到超市购物,采取了如下措施:对不使用超市塑料购物袋的顾客,超市给予9.6折优惠;对需要超市塑料购物袋的顾客,既要付购买费,也不享受折扣优惠.假设该超市在某个时段内购物的人数为36人,其中有12位顾客自己带了购物袋,现从这36人中随机抽取两人.(1)求这两人都享受折扣优惠或都不享受折扣优惠的概率;(2)设这两人中享受折扣优惠的人数为ξ,求ξ的概率分布和均值.9.现有一游戏装置如图,小球从最上方入口处投入,每次遇到黑色障碍物等可能地向左、右两边落下.游戏规则为:若小球最终落入A槽,得10张奖票;若落入B槽,得5张奖票;若落入C槽,得重投一次的机会,但投球的总次数不超过3次.(1)求投球一次,小球落入B槽的概率;(2)设玩一次游戏能获得的奖票数为随机变量X,求X的概率分布及均值.B组专项能力提升(时间:30分钟)10.老师为研究男女同学数学学习的差异情况,对某班50名同学(其中男同学30名,女同学20名)采取分层抽样的方法,抽取一个样本容量为10的样本进行研究,某女同学甲被抽到的概率为________.11.袋中装有大小完全相同,标号分别为1,2,3,…,9的九个球.现从袋中随机取出3个球.设ξ为这3个球的标号相邻的组数(例如:若取出球的标号为3,4,5,则有两组相邻的标号3,4和4,5,此时ξ的值是2),则随机变量ξ的均值E(ξ)为________.12.马老师从课本上抄录一个随机变量ξ的概率分布如下表:x 12 3P(ξ=x)?!?请小牛同学计算ξ的均值.尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E(ξ)=________.13.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,对人体健康和大气环境质量的影响很大.我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某市环保局从360天的市区PM2.5监测数据中,随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).(1)在这15天的数据中任取3天的数据,记ξ表示空气质量达到一级的天数,求ξ的概率分布;(2)以这15天的PM2.5日均值来估计这360天的空气质量情况,则其中大约有多少天的空气质量达到一级.14.气象部门提供了某地区今年六月份(30天)的日最高气温的统计表如下:日最高气温t(单位:℃)t≤2222<t≤28 28<t≤32 t>32天数612Y Z由于工作疏忽,统计表被墨水污染,Y和Z数据不清楚,但气象部门提供的资料显示,六月份的日最高气温不高于32℃的频率为0.9.某水果商根据多年的销售经验,六月份的日最高气温t(单位:℃)对西瓜的销售影响如下表:日最高气温t(单位:℃)t≤2222<t≤28 28<t≤32 t>32日销售额X (单位:千元)2568(1)求Y,Z的值;(2)若视频率为概率,求六月份西瓜日销售额的均值和方差;(3)在日最高气温不高于32℃时,求日销售额不低于5千元的概率.专注·专业·口碑·极致- 11 -。
第二章 5离散型随机变量的均值与方差(一)
§5离散型随机变量的均值与方差(一)[学习目标]1.通过实例理解离散型随机变量均值的概念,能计算简单离散型随机变量的均值.2.会利用离散型随机变量的均值,反映离散型随机变量取值水平,解决一些相关的实际问题.[知识链接]1.某商场要将单价分别为18元/kg、24元/kg、36元/kg的3种糖果按3∶2∶1的比例混合销售,如何对混合糖果定价才合理?答由于平均在每1 kg的混合糖果中,3种糖果的质量分别是12kg、13kg和16kg,所以混合糖果的合理价格应该是18×12+24×13+36×16=23(元/kg).这里的23元/kg就是混合糖果价格的均值.2.已知随机变量ξ的分布列为则x=________,P(1≤ξ<3)=________.答x=1-(0.1+0.2+0.3+0.1)=0.3;P(1≤ξ<3)=P(ξ=1)+P(ξ=2)=0.2+0.3=0.5.[预习导引]1.离散型随机变量的均值或数学期望一般地,设一个离散型随机变量X所有可能取的值是x1,x2,…,x n,这些值对应的概率是p1,p2,…,p n,则E(X)=x1p1+x2p2+…+x i p i+…+x n p n叫作这个离散型随机变量X的均值或数学期望(简称期望),它反映了离散型随机变量取值的平均水平.2.离散型随机变量的性质如果X为(离散型)随机变量,则Y=aX+b(其中a,b为常数)也是(离散型)随机变量,且P(X=x i)=P(Y=ax i+b),i=1,2,3,…,n.E(Y)=E(aX+b)=aE(X)+b.3.三种常见的分布的数学期望(1)如果随机变量X服从二项分布,即X~B(n,p),则E(X)=np.(2)若离散型随机变量X服从参数为N,M,n的超几何分布,则E(X)=nM N.要点一利用定义求离散型随机变量的数学期望例1袋中有4只红球,3只黑球,今从袋中随机取出4只球,设取到一只红球得2分,取得一只黑球得1分,试求得分X的数学期望.解取出4只球颜色及得分分布情况是4红得8分,3红1黑得7分,2红2黑得6分,1红3黑得5分,因此,P(X=5)=C14C33C47=435,P(X=6)=C24C23C47=1835,P(X=7)=C34C13C47=1235,P(X=8)=C44C03C47=135,故X的分布列如下:∴E(X)=5×435+6×1835+7×1235+8×135=447(分).规律方法求随机变量的期望关键是写出分布列,一般分为四步:(1)确定ξ的可能取值;(2)计算出P(ξ=k);(3)写出分布列;(4)利用E(ξ)的计算公式计算E(ξ).跟踪演练1在10件产品中,有3件一等品、4件二等品、3件三等品.从这10件产品中任取3件,求取出的3件产品中一等品件数X的分布列和数学期望.解从10件产品中任取3件,共有C310种结果.从10件产品中任取3件,其中恰有k 件一等品的结果数为C k 3C 3-k7,其中k =0,1,2,3. ∴P (X =k )=C k 3C 3-k7C 310,k =0,1,2,3.所以随机变量X 的分布列为∴E (X )=0×724+1×2140+2×740+3×1120=910. 要点二 二项分布、超几何分布的数学期望例2 某广场上有4盏装饰灯,晚上每盏灯都随机地闪烁红灯或绿灯,每盏灯出现红灯的概率都是23,出现绿灯的概率都是13.记这4盏灯中出现红灯的数量为ξ,当这4盏装饰灯闪烁一次时:(1)求ξ=2时的概率;(2)求ξ的数学期望.解 (1)依题意知:ξ=2表示4盏装饰灯闪烁一次时,恰好有2盏灯出现红灯,而每盏灯出现红灯的概率都是23,故ξ=2时的概率P =C 24(23)2(13)2=827. (2)法一 ξ的所有可能取值为0,1,2,3,4, 依题意知:P (ξ=k )=C k 4(23)k (13)4-k (k =0,1,2,3,4). ∴ξ的概率分布列为∴E (ξ)=0×18+1×881+2×2481+3×3281+4×1681=83.法二 ∵ξ服从二项分布,即ξ~B (4,23),∴E (ξ)=4×23=83.规律方法 将实际问题转化为独立重复试验的概率问题是解决二项分布问题的关键.二项分布满足的条件①每次试验中,事件发生的概率是相同的; ②每次试验中的事件是相互独立的;③每次试验只有两种结果:事件要么发生,要么不发生; ④随机变量ξ是这n 次独立重复试验中某事件发生的次数.跟踪演练2 从4名男生和2名女生中任选3人参加纪念新中国成立65周年演讲活动,设随机变量X 表示所选3人中女生的人数. (1)求X 的分布列; (2)求X 的数学期望.解 (1)X 可能取的值为0,1,2.P (X =k )=C k 2·C 3-k4C 36,k =0,1,2.∴X 的分布列为(2)法一 该题服从超几何分布,则EX =nM N =6=1. 法二 由(1)知,X 的均值为 EX =0×15+1×35+2×15=1.要点三 离散型随机变量均值的应用例3 某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(1)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P (A );(2)求η的分布列及期望E (η).解 (1)由题意可知每一位顾客不采用1期付款的概率为0.6,记A 的对立事件“购买该商品的3位顾客中,都不采用1期付款”为A -,则P (A )=0.6=0.216,∴P (A )=1-P (A -)=0.784.(2)由题意可知η可以取200,250,300,分布列如下∴E (η)=200×0.4+250×0.4+300×0.2=240.规律方法 解答此类题目时,应首先把实际问题概率模型化,然后利用有关概率的知识去分析相应各事件可能性的大小,并列出分布列,最后利用公式求出相应数学期望.跟踪演练3 据统计,一年中一个家庭万元以上的财产被盗的概率为0.01.保险公司开办一年期万元以上家庭财产保险,参加者需交保险费100元,若在一年以内,万元以上财产被盗,保险公司赔偿a 元(a >100).问a 如何确定,可使保险公司期望获利?解 设X 表示“保险公司在参加保险人身上的收益”, 则X 的取值为X =100和X =100-a , 则P (X =100)=0.99. P (X =100-a )=0.01,所以E (X )=0.99×100+0.01×(100-a )=100-0.01a >0, 所以a <10 000.又a >100,所以100<a <10 000.即当a 在100和10 000之间取值时保险公司可望获利.1.随机抛掷一枚骰子,则所得骰子点数ξ的期望为( ) A .0.6 B .1 C .3.5 D .2解析 抛掷骰子所得点数ξ的分布列为所以,E (ξ)=1×16+2×16+3×16+4×16+5×16+6×16=(1+2+3+4+5+6)×16=3.5.2.若随机变量ξ~B (n ,0.6),且E (ξ)=3,则P (ξ=1)的值是( ) A .2×0.44 B .2×0.45 C .3×0.44 D .3×0.64 答案 C解析 ∵ξ~B (n ,0.6),E (ξ)=3,∴0.6n =3,即n =5.故P (ξ=1)=C 15×0.6×(1-0.6)4=3×0.44.3.设随机变量X 的分布列为P (X =k )=C k 300·(13)k ·(23)300-k (k =0,1,2,…,300),则E (X )=________. 答案 100解析 由P (X =k )=C k 300·(13)k ·(23)300-k , 可知X ~B (300,13),∴E (X )=300×13=100.4.A 、B 两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是A 1、A 2、A 3,B 队队员是B 1、B 2、B 3,按以往多次比赛的统计,对阵队员之间的胜负概率如下:现按表中对阵方式出场胜队得1分,负队得0分,设A 队,B 队最后所得总分分别为X ,Y .(1)求X ,Y 的分布列;(2)求E (X ),E (Y ).解(1)X,Y的可能取值分别为3,2,1,0.P(X=3)=23×25×25=875,P(X=2)=23×25×35+13×25×25+23×35×25=2875,P(X=1)=23×35×35+13×25×35+13×35×25=25,P(X=0)=13×35×35=325;根据题意X+Y=3,所以P(Y=0)=P(X=3)=875,P(Y=1)=P(X=2)=2875;P(Y=2)=P(X=1)=25,P(Y=3)=P(X=0)=325.X的分布列为Y的分布列为(2)E(X)=3×875+2×2875+1×25+0×325=2215;因为X+Y=3,所以E(Y)=3-E(X)=23 15.1.求离散型随机变量均值的步骤:(1)确定离散型随机变量X的取值;(2)写出分布列,并检查分布列的正确与否;(3)根据公式求出均值.2.若X,Y是两个随机变量,且Y=aX+b,则E(Y)=aE(X)+b;如果一个随机变量服从超几何分布或二项分布,可直接利用公式计算均值.一、基础达标1.(2013·广东理)已知离散型随机变量X的分布列为则X 的数学期望E (X )等于( )A.32B .2C.52D .3答案 A解析 E (X )=1×35+2×310+3×110=1510=32,故选A.2.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分.已知某运动员罚球的命中率是0.7,则他罚球6次的总得分的均值是 ( )A .0.7B .6C .4.2D .0.42答案 C解析 总得分X ~B (6,0.7),E (X )=6×0.7=4.2.3.已知ξ~B (n ,12),η~B (n ,13),且E (ξ)=15,则E (η)等于 ( )A .5B .10C .15D .20答案 B解析 ∵E (ξ)=12n =15,∴n =30, ∴η~B (30,13),∴E (η)=30×13=10.4.口袋中有编号分别为1,2,3的三个大小和形状相同的小球,从中任取2个,则取出的球的最大编号X 的期望为 ( )A.13B.23C .2D.83答案 D解析 X =2,3.P (X =2)=1C 23=13,P (X =3)=C 12C 23=23.故E (X )=2×13+3×23=83.5.设15 000件产品中有1 000件次品,从中抽取150件进行检查,由于产品数量较大,每次检查的次品率看作不变,则查得次品数的数学期望为________. 答案 10解析 次品率为p =1 00015 000=115,由于产品数量特别大,次品数服从二项分布,由公式,得E (X )=np =150×115=10.6.今有两台独立工作在两地的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达台数为X ,则E (X )=________. 答案 1.75解析 P (X =0)=(1-0.9)×(1-0.85)=0.1×0.15=0.015; P (X =1)=0.9×(1-0.85)+0.85×(1-0.9)=0.22; P (X =2)=0.9×0.85=0.765.∴E (X )=0×0.015+1×0.22+2×0.765=1.75.7.已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出此3球所得分数之和. (1)求X 的分布列; (2)求X 的数学期望E (X ).解 (1)X =3,4,5,6,P (X =3)=C 35C 39=542,P (X =4)=C 25C 14C 39=1021,P (X =5)=C 15C 24C 39=514,P (X =6)=C 34C 39=121,所以X 的分布列为(2)X 的数学期望E (X )=42=9121.二、能力提升8.某人进行一项试验,若试验成功,则停止试验,若试验失败,再重新试验一次,若试验3次均失败,则放弃试验.若此人每次试验成功的概率为23,则此人试验次数ξ的期望是( )A.43B.139C.53D.137答案 B解析 试验次数ξ的可能取值为1,2,3, 则P (ξ=1)=23,P (ξ=2)=13×23=29, P (ξ=3)=13×13×(23+13)=19. 所以ξ的分布列为∴E (ξ)=1×23+2×29+3×19=139.9.(2013·湖北理)如图,将一个各面都涂了油漆的正方体,切割成125个同样大小的小正方体.经过搅拌后,从中随机取出一个小正方体,记它的涂油漆面数为X ,则X 的均值E (X )等于( )A.126125B.65C.168125D.75答案 B解析 根据题意易知X =0,1,2,3.分布列如下所以E (X )=0×27125+1×54125+2×36125+3×8125 =150125=65.故选B.10.某电视台开展有奖答题活动,每次要求答30个选择题,每个选择题有4个选项,其中有且只有一个正确答案,每一题选对得5分,选错或不选得0分,满分150分,规定满100分拿三等奖,满120分拿二等奖,满140分拿一等奖,有一选手选对任一题的概率是0.8,则该选手可望能拿到________等奖.答案二解析选对题的个数X~B(30,0.8),所以E(X)=30×0.8=24,由于24×5=120(分),所以可望能得到二等奖.11.春节期间,小王用私家车送4位朋友到三个旅游景点去游玩,每位朋友在每一个景点下车的概率均为13,用ξ表示4位朋友在第三个景点下车的人数,求:(1)随机变量ξ的分布列;(2)随机变量ξ的均值.解法一(1)ξ的所有可能值为0,1,2,3,4.由等可能性事件的概率公式得P(ξ=0)=(23)4=1681,P(ξ=1)=C14·2334=3281,P(ξ=2)=C24·2234=827,P(ξ=3)=C34·234=881,P(ξ=4)=(13)4=181.从而ξ的分布列为(2)由(1)得ξ的均值为E(ξ)=0×1681+1×3281+2×827+3×881+4×181=43.法二(1)考察一位朋友是否在第三个景点下车为一次试验,这是4次独立重复试验.故ξ~B(4,13),即有P(ξ=k)=Ck4(13)k(23)4-k,k=0,1,2,3,4.ξ的分布列如法一.(2)E(ξ)=4×13=43.12.(2013·天津理)一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(1)求取出的4张卡片中,含有编号为3的卡片的概率.(2)在取出的4张卡片中,红色卡片编号的最大值设为X ,求随机变量X 的分布列和数学期望.解 (1)设“取出的4张卡片中,含有编号3的卡片”为事件A ,则P (A )=C 12C 35+C 22C 25C 47=67. 所以,取出的4张卡片中,含有编号3的卡片的概率为67.(2)随机变量X 的所有可能取值为1,2,3,4.P (X =1)=C 33C 47=135,P (X =2)=C 34C 47=435,P (X =3)=C 35C 47=27,P (X =4)=C 36C 47=47.所以随机变量X 的分布列是随机变量X 的数学期望E (X )=1×135+2×435+3×27+4×47=175. 三、探究与创新13.(2013·福建理)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X ≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?解 (1)由已知得:小明中奖的概率为23,小红中奖的概率为25,两人中奖与否互不影响,记“这2人的累计得分X ≤3”的事件为A , 则A 事件的对立事件为“X =5”,∵P(X=5)=23×25=415,∴P(A)=1-P(X=5)=11 15,所以这两人的累计得分X≤3的概率为11 15.(2)设小明、小红都选择方案甲抽奖中奖的次数为X1,都选择方案乙抽奖中奖的次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1),选择方案乙抽奖累计得分的数学期望为E(3X2)由已知:X1~B(2,23),X2~B(2,25)∴E(X1)=2×23=43,E(X2)=2×25=45,∴E(2X1)=2E(X1)=83,E(3X2)=3E(X2)=125.∵E(2X1)>E(3X2)他们都选择方案甲进行抽奖时,累计得分的数学期望最大.。
方差、标准差、均方差、均方误差的区别及意义
方差、标准差、均方差、均方误差的区别及意义百度百科上的方差定义如下:(方差)是用概率论和统计方差来度量随机变量或一组数据的离散程度概率论中的方差用来衡量随机变量与其数学期望(即平均值)之间的偏离程度统计学中的方差(样本方差)是每个数据与其平均值之差的平方和的平均值在许多实际问题中,研究方差,即偏离的程度具有重要意义。
如果看这样一段文字,可能会有点费解。
首先,从公式开始。
对于一组随机变量或统计数据,的期望值用E(X)表示,即随机变量或统计数据的平均值,,然后在找到期望值之前将每个数据与平均值之间服从正态分布。
那么我们就不能通过方差直接确定学生偏离平均值多少分。
通过标准差,我们可以直观地得到学生分数分布在0.6826范围内的概率,大约等于34.2%*23,均方差是多少?标准偏差,在中国环境中通常也称为均方误差,不同于均方误差(均方误差是距离每个数据真实值的平方的平均值,即误差平方的平均值)。
计算公式在形式上接近方差。
它的根叫做均方根误差,在形式上接近标准偏差)。
标准偏差是偏离平均值的平方的平均值后的平方根,用σ表示标准差是方差的算术平方根从上面的定义,我们可以得到以下几点:1 .均方偏差是标准偏差,标准偏差是标准偏差2,均方误差不同于均方误差3,均方误差是距离每个数据真实值的平方和的平均值。
例如,我们想测量房间的温度,不幸的是我们的温度计不够精确。
因此,有必要测量5次以获得一组数据[x1,x2,x3,x4,x5]。
假设温度的实际值是x,数据和实际值之间的误差e是x-Xi,那么均方误差MSE=一般来说,均方误差是数据序列和平均值之间的关系,而均方误差是数据序列和实际值之间的关系,所以我们只需要了解实际值和平均值之间的关系。
随机变量的数学期望和方差
随机变量的数学期望和方差随机变量是概率论中的重要概念,用来描述一个随机事件可能取到的不同值及其对应的概率。
对于一个随机变量而言,数学期望和方差是常用的统计量,用于描述随机变量的平均水平和离散程度。
一、数学期望数学期望是随机变量的平均值,表示了随机变量在大量重复实验中的长期平均表现。
通常用E(X)或μ来表示,其中X为随机变量。
对于离散型随机变量,数学期望的计算公式为:E(X) = ΣxP(X=x)其中,x为随机变量X可能取到的值,P(X=x)为其对应的概率。
以掷骰子为例,假设随机变量X表示掷骰子的点数,点数可能取到1、2、3、4、5、6,每个点数的概率相等。
则计算掷骰子的数学期望为:E(X) = 1/6 × 1 + 1/6 × 2 + 1/6 × 3 + 1/6 × 4 + 1/6 × 5 + 1/6 × 6 = 3.5对于连续型随机变量,数学期望的计算公式为:E(X) = ∫xf(x)dx其中,f(x)为随机变量X的概率密度函数。
二、方差方差是随机变量取值与其数学期望的偏差的平方的平均值,用于衡量随机变量的离散程度。
通常用Var(X)或σ^2来表示,其中X为随机变量。
对于离散型随机变量,方差的计算公式为:Var(X) = Σ(x-E(X))^2P(X=x)以掷骰子为例,假设随机变量X表示掷骰子的点数,其数学期望为3.5。
则计算掷骰子的方差为:Var(X) = (1-3.5)^2 ×1/6 + (2-3.5)^2 ×1/6 + (3-3.5)^2 ×1/6 + (4-3.5)^2 ×1/6 + (5-3.5)^2 ×1/6 + (6-3.5)^2 ×1/6 = 2.9167对于连续型随机变量,方差的计算公式为:Var(X) = ∫(x-E(X))^2f(x)dx方差的平方根被称为标准差,用于度量随机变量的离散程度。
高中数学第二章概率2.5随机变量的均值和方差概率论与数理统计公式整理素材苏教版选修2_3202012251156
②正概率密度区间为矩形
二维正态分布
=0
随机变量的函数
若X1,X2,…Xm,Xm+1,…Xn相互独立,h,g为连续函数,则:
h(X1,X2,…Xm)和g(Xm+1,…Xn)相互独立。
特例:若X与Y独立,则:h(X)和g(Y)独立。
例如:若X与Y独立,则:3X+1和5Y-2独立。
(8)二维均匀分布
当x2>x1时,有F(x2,y)≥F(x1,y);当y2>y1时,有F(x,y2)≥F(x,y1);
(3)F(x,y)分别对x和y是右连续的,即
(4)
(5)对于
.
(4)离散型与连续型的关系
(5)边缘分布
离散型
X的边缘分布为
;
Y的边缘分布为
。
连续型
X的边缘分布密度为
Y的边缘分布密度为
(6)条件分布
离散型
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
)事件的关系与运算
①关系:
如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):
如果同时有,,则称事件A与事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:AB,或者A+B。
加法公式
P(A+B)=P(A)+P(B)-P(AB)
当P(AB)=0时,P(A+B)=P(A)+P(B)
减法公式
P(A-B)=P(A)-P(AB)
当BA时,P(A-B)=P(A)-P(B)
当A=Ω时,P()=1- P(B)
条件概率
高中数学第2章概率5离散型随机变量的均值与方差第1课时离散型随机变量的均值课件北师大版选修2_3
x(0≤x≤0.29).
依题意,EX≥4.73,即 4.76-x≥4.73,
解得 x≤0.03,所以三等品率最多为 3%.
1.实际问题中的均值问题 均值在实际生活中有着广泛的应用,如对体育比赛的成绩预测, 消费预测,工程方案的预测,产品合格率的预测,投资收益的预测等 方面,都可以通过随机变量的均值来进行估计.
0.2
Eη=200×0.4+250×0.4+300×0.2=240(元).
1.求随机变量的数学期望的方法步骤: (1)写出随机变量所有可能的取值. (2)计算随机变量取每一个值对应的概率. (3)写出分布列,求出数学期望.
2.离散型随机变量均值的性质 (1)Ec=c(c 为常数); (2)E(aX+b)=aEX+b(a,b 为常数); (3)E(aX1+bX2)=aEX1+bEX2(a,b 为常数).
4.已知 X~B100,12,则 E(2X+3)=________. 103 [EX=100×12=50,E(2X+3)=2EX+3=103.]
5.某运动员投篮投中的概率 P=0.6.
(1)求一次投篮时投中次数 ξ 的均值;
(2)求重复 5 次投篮时投中次数 η 的均值.
[解] (1)ξ 的分布列为:
2.均值的性质 (1)若 X 为常数 C,则 EX=_C_. (2)若 Y=aX+b,其中 a,b 为常数,则 Y 也是随机变量,且 EY =E(aX+b)=__a_E_X_+__b___.
(3)常见的离散型随机变量的均值
分布名称
参数
超几何分布
N,M,n
二项分布
n,p
均值 M nN
_n_p__
思考:两点分布与二项分布有什么关系?
[母题探究 1] 本例条件不变,若 Y=2X-3, 求 EY.
随机变量――平均、方差、标准差
01X =随机变量可能值随机事件例子:抛一个不公平的骰子想象一个加重了的骰子(蒙人!)。
概率是:1234560.10.10.10.10.10.5例子(续):x123456p0.10.10.10.10.10.5xp0.10.20.30.40.53μ = Σxp = 0.1+0.2+0.3+0.4+0.5+3 = 4.5期望值是 4.5注意:这是 加权平均值:高概率的数值在平均里有较高的比重。
方差:Var(X)方差是:Var(X) = Σx2p − μ2计算方差:把每个数值的平方乘以其概率把结果加起来:Σx2p减去期望值的平方 μ2例子(续):x123456p0.10.10.10.10.10.5x2p0.10.40.9 1.6 2.518Σx2p = 0.1+0.4+0.9+1.6+2.5+18 = 23.5Var(X) = Σx2p − μ2 = 23.5 - 4.52 = 3.25方差是 3.25标准差:σ标准差是方差的平方根:σ = √Var(X)例子(续):x123456p0.10.10.10.10.10.5x2p0.10.40.9 1.6 2.518σ = √Var(X) = √3.25 = 1.803...标准差是 1.803……再来一个例子!(注意这次的列表是垂直排列的。
)你打算开一家麦德劳炸鸡店。
这是市场调查数据:百分比每年收益20%¥50,000 亏蚀30%¥040%¥50,000 利润10%¥150,000 利润用这些概率来计算,你的利润期望值和标准差是多少?随机变量是 X = '可能利润'。
求 xp 和 x2p 的总和:黛绿p 收益(¥'000)x xp x2p0.2-50-105000.30000.4502010000.1150152250Σp = 1Σxp = 25Σx2p = 3750μ = Σxp = 25Var(X) = Σx2p − μ2 = 3750 − 252 = 3750 − 625 = 3125σ = √3125 = 56(到最近的整数)这些数值的单位是千元,所以:μ = ¥25,000σ = ¥56,000所以你预期可以转到 ¥25,000,但可能有很大的误差。
高中数学离散型随机变量的分布列、均值与方差
离散型随机变量的分布列、均值与方差 结 束
抓高考命题的“形”与“神” 离散型随机变量均值与方差的计算
1.均值与方差的一般计算步骤 (1)理解X的意义,写出X的所有可能取的值; (2)求X取各个值的概率,写出分布列; (3)根据分布列,由均值的定义求出均值E(X),进一步由公
n
式D(X)= xi-EX2pi=E(X2)-(E(X))2求出D(X).
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
[易错提醒] 利用分布列中各概率之和为1可求参数的值,此 时要注意检验,以保证每个概率值均为非负数.
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
求离散型随机变量的分布列 [例2] 某商店试销某种商品20天,获得如下数据:
i=1
了随机变量X与其均值E(X)的_平__均__偏__离__程__度__,其算术平方根 DX为随机变量X的标准差. 2.均值与方差的性质 (1)E(aX+b)=_a_E__(X__)+__b__, (2)D(aX+b)=_a_2_D_(_X_)_ (a,b为常数).
突破点一
突破点二
课时达标检测
考点贯通
(2)设X为选出的2人参加义工活动次数之差的绝对值,求 随机变量X的分布列.
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
[解] (1)由已知,有P(A)=C31CC41+120 C23=13.
所以事件A发生的概率为13.
(2)随机变量X的所有可能取值为0,1,2.
P(X=0)=C23+CC21320+C24=145,
突破点一
2.5.2离散型随机变量的方差和标准差
从均值看,E( X 1 ), E( X 2 ) 都是0.7,那么,
0 C 0.05 0.95 ... 10 C10 0.0510 0.95 0 0.52 10
2 2 0 10 0 10 2
i 1
故标准差 0.6892
0.725 0.25 0.475
分层训练
必做题 P70 练习 2,P71 6(2)
选做题 P71 2
一般地,若离散型随机变量X的概率分布为 X P x1 p1 x2 p2 … … xn pn
则称 E(X)=x1p1+x2p2+…+xnpn为X的均值或数学 期望,记为E(X)或μ. 其中pi≥0,i=1,2,…,n;p1+p2+…+pn=1
注: 离散型随机变量X的均值也称为X的概率分布的均值.
引入:
2 2 2
X P x1 p1 x2 p2
n
… …
xn pn
方差也可用公式 V ( X ) xi2 pi u 2计算。
i 1
随机变量 X的方差也称为 X概率分布的方差, X 的方差 V ( X )的算术平方根称为 X的标准差,即
V (X )
思考:随机变量的方差与样本方差有和区别和联系?
例1若随机变量 X的分布如表所示,求方 差V ( X ) 和标准差 V ( X )
x
0
1
2
3
4
p k C p 1 p
6 10 6
随机变量的均值和方差
随机变量的均值和方差自主梳理1.离散型随机变量的均值与方差 若离散型随机变量(1)均值μ=E (X )=________________________________为随机变量X 的均值或______________,它反映了离散型随机变量取值的____________.(2)方差σ2=V (X )=_________________________________=∑ni =1x 2i p i -μ2为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的______________,其________________________为随机变量X 的标准差,即σ=V (x ).2.均值与方差的性质 (1)E (aX +b )=________.(2)V (aX +b )=________(a ,b 为实数). 3.两点分布与二项分布的均值、方差 (1)若X 服从两点分布,则E (X )=____,V (X )=____________________________________.(2)若X ~B (n ,p ),则E (X )=____,V (X )=________. 1.若η=aξ+b ,则E (η)=aE (ξ)+b ,V (η)=a 2V (ξ). 2.若ξ~B (n ,p ),则E (ξ)=np ,V (ξ)=np (1-p ).自我检测1.若随机变量X2.已知随机变量X n ,p 的值分别为________和________.3.(2010·课标全国改编)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需要再补种2粒,补种的种子数记为X ,则X 的数学期望为________.4.(2011·浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的,记X 为该毕业生得到面试的公司个数.若P (X =0)=112,则随机变量X 的数学期望E (X )=________.5.随机变量ξ其中a ,b ,c 成等差数列.若E (ξ)=13,则V (ξ)=________.探究点一 离散型随机变量的期望与方差的求法例1 袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,ξ表示所取球的标号.(1)求ξ的概率分布、期望和方差;(2)若η=aξ+b ,E (η)=1,V (η)=11,试求a ,b 的值.变式迁移1 编号1,2,3的三位学生随意入座编号为1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生的个数是X .(1)求随机变量X 的概率分布;(2)求随机变量X 的数学期望和方差.探究点二 二项分布的期望与方差例2 A 、B 是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A ,另2只服用B ,然后观察疗效.若在一个试验组中,服用A 有效的小白鼠的只数比服用B 有效的多,就称该试验组为甲类组.设每只小白鼠服用A 有效的概率为23,服用B 有效的概率为12.(1)求一个试验组为甲类组的概率; (2)观察3个试验组,用ξ表示这3个试验组中甲类组的个数,求ξ的概率分布和数学期望.变式迁移2 (2010·泰州模拟)在一次抗洪抢险中,准备用射击的方法引爆从桥上游漂流而下的一巨大汽油罐.已知只有5发子弹备用,且首次命中只能使汽油流出,再次命中才能引爆成功,每次射击命中率都是23,每次命中与否互相独立.(1)求油罐被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为ξ,求ξ的概率分布及ξ的数学期望.探究点三 离散型随机变量期望与方差的 实际应用例3购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为1-0.999104.(1)求一投保人在一年度内出险的概率p;(2)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).变式迁移3(2010·江苏)某工厂生产甲、乙两种产品.甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元.设生产各件产品相互独立.(1)记X(单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X的概率分布;(2)求生产4件甲产品所获得的利润不少于10万元的概率.练习一、填空题(每小题6分,共48分)1.(2010·福州质检)已知某一随机变量ξ的概率分布如下,且E(ξ)=6.3,则a的值为________.2.设ξ~B (n ,p ),若有E (ξ)________________. 3.随机变量X则E (5X +4)=________. 4.(2010·成都毕业班第一次诊断)已知抛物线y =ax 2+bx +c (a ≠0)的对称轴在y 轴的左侧,其中a 、b 、c ∈{-3,-2,-1,0,1,2,3},在这些抛物线中,记随机变量ξ为“|a -b |的取值”,则ξ的数学期望E (ξ)=________.5.(2011·上海)请小牛同学计算ξ且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E (ξ)=________.6.设离散型随机变量X 的可能取值为1,2,3,4.P (X =k )=ak +b (k =1,2,3,4).又X 的均值E (X )=3,则a +b =________.7.(2010·辽宁改编)两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰好有一个一等品的概率为________.8.(2010·重庆)某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为________.二、解答题(共42分) 9.(14分)(2011·江西)某饮料公司招聘了一名员工,现对其进行一次测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X 表示此人选对A 饮料的杯数.假设此人对A 和B 两种饮料没有鉴别能力.(1)求X 的概率分布;(2)求此员工月工资的期望.10.(14分)(2011·山东)红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A 、乙对B 、丙对C 各一盘.已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的概率分布和数学期望E (ξ).11.(14分)现有甲、乙两个项目,对甲项目每投资十万元,一年后利润是1.2万元、1.18万元、1.17万元的概率分别为16、12、13;已知乙项目的利润与产品价格的调整有关,在每次调整中,价格下降的概率都是p(0<p<1).设乙项目产品价格在一年内进行2次独立的调整,记乙项目产品价格在一年内的下降次数为ξ,对乙项目投资十万元,ξ取0、1、2时,一年后相应利润是1.3万元、1.25万元、0.2万元.随机变量ξ1、ξ2分别表示对甲、乙两项目各投资十万元一年后的利润.(1)求ξ1、ξ2的概率分布和数学期望E(ξ1)、E(ξ2);(2)当E(ξ1)<E(ξ2)时,求p的取值范围.。
072随机变量的均值与方差
§16.1 随机变量的均值与方差1.所示,则称n n 2211为离散型随机变量X 的均值或数学期望,记为E(X)或μ,即E(X)=n n p x p x p x +++ 2211,其中i x 是随机变量X 的可能取值,i p 是概率,i p ≥0;n i ,,2,1 =,121=+++n p p p性质:①E(C)=C ;②E(aX)=aE(X);③E(aX+b)=aE(X)+b ;④超几何分布X ~H(n,M,N)的数学期望为NnM X E =)(,二项分布X ~B(n ,p)的数学期望为np X E =)(。
2.X 的概率分布如表所示,则称n n p x p x p x 22211)()()(μ-++-+- 为离散型随机变量X 的方差,记为V(X)或2σ,即V(X)= n n p x p x p x 2222121)()()(μμμ-++-+- (其中)(X E =μ,i p ≥0;n i ,,2,1 =,121=+++n p p p ),方差也可用公式212)(μ-=∑=i ni i p x X V ,即22)()()(X E X E X V -=,V(X)的算术平方根称为X 的标准差,即)(X V =σ。
性质:①0)(=C V ;②)()(2X V a b aX V =+;③超几何分布X ~H(n,M,N)的方差为)1())(()(2---=N N n N M N nM X V ,二项分布X ~B(n ,p)的方差为)1()(p np X V -=。
注:随机变量的方差和标准差都反映了随机变量的取值偏离于均值的平均程度。
方差或标准差越小,随机变量偏离于均值的平均程度越小。
三、典型例题例1:有10张卡片,其中8张标有数字2,有2张标有数字5,从中随即地抽取3张卡片,设3 张卡片上的数字之和为随机变量ξ,求E(ξ)、V(ξ)例2:假定某射手每次射击命中目标的概率为32,且只有3发子弹。
数学期望(均值)、方差和协方差的定义与性质
均值、方差和协方差的定义和基本性质1 数学期望(均值)的定义和性质定义:设离散型随机变量X 的分布律为{}, 1,2,k k P X x p k === 若级数1k k k xp ∞=∑绝对收敛,则称级数1k k k xp ∞=∑的和为随机变量X 的数学期望,记为()E X 。
即()1k k k E X x p ∞==∑。
设连续型随机变量X 的概率密度为()f x ,若积分()xf x dx ∞−∞⎰ 绝对收敛,则称积分()xf x dx ∞−∞⎰的值为随机变量X 的数学期望,记为()E X 。
即 ()()E X xf x dx ∞−∞=⎰ 数学期望简称期望,又称为均值。
性质:下面给出数学期望的几个重要的性质(1)设C 是常数,则有()E C C =;(2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =;(3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推广至任意有限个随机变量之和的情况;(4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。
2 方差的定义和性质定义:设X 是一个随机变量,若(){}2E X E X −⎡⎤⎣⎦存在,则称(){}2E X E X −⎡⎤⎣⎦为X的方差,记为()D X 或()Var X ,即性质:下面给出方差的几个重要性质(1)设C 是常数,则有()0D C =;(2)设X 是一个随机变量,C 是常数,则有()()2D CX C D X =,()()D X C D X +=;(3)设X 和Y 是两个随机变量,则有()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++−−特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。
概率分布的期望与方差
概率分布的期望与方差在概率论与统计学中,期望与方差是概率分布的两个重要的统计度量。
期望代表了随机变量的平均值,方差则衡量了其离散程度。
本文将详细探讨概率分布的期望与方差以及其在实际应用中的意义。
一、期望的定义与计算方法期望是对随机变量的平均值的度量。
对于离散随机变量X,其期望E(X)的计算方法为:E(X) = Σ( xi * P(xi) ),其中xi代表随机变量X的取值,P(xi)代表X取值为xi的概率。
也可以用数学期望符号表示为:E(X) = Σ( xi ) * P(xi),即随机变量取值乘以对应的概率之后的总和。
以掷骰子为例,假设一枚骰子的取值范围为{1, 2, 3, 4, 5, 6},每个值出现的概率都为1/6。
根据期望的计算公式,可以得到期望E(X) = (1*1/6) + (2*1/6) + (3*1/6) + (4*1/6) + (5*1/6) + (6*1/6) = 3.5。
因此,掷骰子的期望值为3.5。
二、方差的定义与计算方法方差是对随机变量离散程度的度量。
对于离散随机变量X,其方差Var(X)的计算方法为:Var(X) = Σ( (xi-E(X))^2 * P(xi) ),其中xi代表随机变量X的取值,E(X)代表X的期望。
也可以用数学符号表示为:Var(X) = Σ( xi^2 ) * P(xi) - (E(X))^2。
仍以掷骰子为例,已知掷骰子的期望值E(X)为3.5。
根据方差的计算公式,可以得到方差Var(X) = (1-3.5)^2 * 1/6 + (2-3.5)^2 * 1/6 + (3-3.5)^2 * 1/6 + (4-3.5)^2 * 1/6 + (5-3.5)^2 * 1/6 + (6-3.5)^2 * 1/6 = 35/12 ≈ 2.917。
因此,掷骰子的方差为2.917。
三、期望与方差的意义与应用期望和方差是概率分布的重要度量指标,对于理解和分析随机变量的分布特征十分关键。
第三章方差与协方差
四. 方差的性质
(1) 对任意常数 k 与 c 有: D( k X + c ) = k 2 D(X). (2) 设 X 与 Y 相互独立 则 相互独立 独立, D(X+Y) = D(X) + D(Y), D(X−Y) = D(X) + D(Y). 进一步, 若 X1 ,… , Xn 相互独立 则对任意常数 相互独立, 进一步 c1 ,…, cn 有: … D( c1 X1+ … + cn Xn ) = c12 D( X1 ) + … + cn2 D( Xn ). (3) D(X) = 0 的充要条件是 X 以概率 1 取常数 C , 即 P{X = C } = 1 .
+∞ +∞
∫
1
∫
1
1 0
11 , D( X) = E( X ) −[E( X)] = 225 1 1 4 x E(Y )= ∫ dx∫ y ⋅ 8x ydy= , 0 x 5 1 1 2 2 2 E(Y )= ∫ dx∫ y ⋅ 8x ydy= , x 0 3 2 2 2 D(Y ) = E(Y ) −[E(Y )] = . 75
2. 相关系数的性质 相关系数的性质:
(1) | ρXY |≤ 1 (2) | ρXY |= 1
存在常数a, 存在常数 b 使 P{Y = a + bX } = 1,
线性相关. 即 X 和 Y 以概率 1 线性相关
| ρXY | ρXY | 的值越接近于 0, Y 与 X 的线性相关程度越弱; 的线性相关程度越弱 若 | ρXY |= 1, 则 Y 与 X 有严格线性关系 有严格线性关系;
随机游走模型的均值和方差
随机游走模型的均值和方差随机游走模型是一种经典的时间序列模型,用于描述无趋势和随机波动的数据序列。
它是一个简单且直观的模型,可以帮助我们理解和预测一些具有随机性的现象。
在随机游走模型中,我们假设序列的下一个观测值是当前观测值加上一个随机误差。
也就是说,当前的观测值是一个随机游走的结果。
这个随机误差通常被认为是一个符合均值为0、方差为σ^2的正态分布的随机变量。
因此,随机游走模型可以用以下的数学表达式来表示:Y_t = Y_(t-1) + ε_t其中,Y_t表示时间t的观测值,Y_(t-1)表示时间t-1的观测值,ε_t表示随机误差。
随机游走模型的均值可以通过对上述表达式的期望值进行计算得到。
由于随机误差是一个均值为0的正态分布,所以它的期望值为0。
因此,随机游走模型的均值可以简化为:E(Y_t) = E(Y_(t-1) + ε_t)= E(Y_(t-1)) + E(ε_t)= E(Y_(t-1)) + 0= E(Y_(t-1))从上述计算中可以看出,随机游走模型的均值只与上一个观测值有关。
这意味着在随机游走模型中,均值随着时间的推移不会发生变化,因为随机游走模型是一个无趋势的模型。
随机游走模型的方差可以通过计算误差的方差来得到。
根据上述的数学表达式,我们可以得到误差项的方差:Var(Y_t) = Var(Y_(t-1) + ε_t)= Var(Y_(t-1)) + Var(ε_t) + 2Cov(Y_(t-1), ε_t)由于上述模型中假设误差项是相互独立的,所以它们的协方差为0。
因此,上述方程可以简化为:Var(Y_t) = Var(Y_(t-1)) + Var(ε_t)同样地,由于上述模型中假设误差项的方差为常数σ^2,所以方程可以进一步简化为:Var(Y_t) = Var(Y_(t-1)) + σ^2从上述计算中可以看出,在随机游走模型中,方差随着时间的推移逐渐累积,因为每个时间点的方差都包含了上一个时间点方差的贡献。
随机游走模型的均值和方差
随机游走模型是一种描述随机过程的模型,它假设在每个时间步长内,随机变量的增量是独立同分布的。
随机游走模型的均值和方差是描述其统计特征的重要参数。
对于随机游走模型,其均值可以表示为:
$\mu = E[X_t] = E[X_{t-1} + \epsilon_t] = E[X_{t-1}] + E[\epsilon_t] = \mu_{t-1} + 0 = \mu_{t-1}$
其中,$X_t$表示在$t$时刻的随机变量,$\epsilon_t$表示在$t$时刻的随机增量,$E$表示期望值。
可以看出,随机游走模型的均值是一个常数,它等于前一时刻的均值。
随机游走模型的方差可以表示为:
$Var[X_t] = Var[X_{t-1} + \epsilon_t] = Var[X_{t-1}] + Var[\epsilon_t] = Var[X_{t-1}]$
可以看出,随机游走模型的方差也是一个常数,它等于前一时刻的方差。
需要注意的是,随机游走模型的均值和方差只在时间步长趋于零时才有意义。
在实际应用中,由于时间步长通常是有限的,因此随机游走模型的均值和方差可能会存在一定的偏差。
随机变量的方差与样本方差
2. 概率论中的数学期望与方差
在概率论中, 在已知随机变量期望 E (X ) (或 µ) 的情况下, 随机变量的 方差定义如下: 定义 1. 设 X 为随机变量, 若 E ((X − E (X ))2 ) 存在, 则称 E ((X − E (X ))2 ) 为 X 的 方差 (variance), 记作 D(X ), 即 D(X ) = E ((X − E (X ))2 ). 同时, 称 σX , 即 σX = √ D(X ) 为 X 的 标准差 (standard deviation) 或 均方差, 记作 √ D(X ).
因此
1 n
n ∑ i=1
这个结果符合直觉,并且在数学上也是显而易见的. 现在,我们考虑随机变量 X 的数学的期望 µ 是未知的情形. 这时, 我们 ¯ 替换掉上面式子中的 µ. 这样做有什么后果呢? 会倾向于直接用样本均值 X n ∑ 1 ¯ )2 作为估计, 那么你会倾向于低估方 后果就是, 如果直接使用 n (Xi − X
n n
1 ∑ (xi − x ¯)2 . n − 1 i=1
n
为方便起见, 这些观察值也分别称为样本均值、样本方差和样本标准差. 注意到
n ∑ i=1 n ∑ i=1 n ∑ i=1
¯ )2 = (Xi − X = =
¯ Xi2 − 2X
¯2 Xi + nX
n ∑ i=1 n ∑ i=1
¯ 2 + nX ¯2 Xi2 − 2nX ¯ 2, Xi2 − nX
我们只需将
1 n
n ∑ i=1
¯ )2 中的分母 n 换成 (n − 1) 即可, 此时我们就能会 (Xi − X
的对方差的无 bias 得 estimator 了: [ ] [ ∑ ] n−1 n 1 ∑ ¯ )2 = E 1 E ( Xi − X (Xi − µ)2 = σ 2 . n − 1 i=1 n i=1
均值、方差、正态分布——学生用
§12.6 离散型随机变量的均值与方差、正态分布1.离散型随机变量的均值与方差 假设离散型随机变量X X x 1 x 2 … x i … x n Pp 1p 2…p i…p n(1)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (2)方差称D (X )=∑ni =1 (x i -E (X ))2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数) 3.两点分布与二项分布的均值、方差(1)假设X 服从两点分布,则E (X )=__p __,D (X )=p (1-p ). (2)假设X ~B (n ,p ),则E (X )=__np __,D (X )=np (1-p ). 4.正态分布(1)正态曲线:函数φμ,σ(x )=12πσe -(x -μ)22σ2,x ∈(-∞,+∞),其中μ和σ为参数(σ>0,μ∈R ).我们称函数φμ、σ(x )的图象为正态分布密度曲线,简称正态曲线. (2)正态曲线的性质:①曲线位于x 轴上方,与x 轴不相交; ②曲线是单峰的,它关于直线x =μ对称;③曲线在x =μ处到达峰值1σ2π;④曲线与x 轴之间的面积为__1__;⑤当σ一定时,曲线的位置由μ确定,曲线随着__μ__的变化而沿x 轴平移,如图甲所示;⑥当μ一定时,曲线的形状由σ确定,σ__越小__,曲线越“瘦高”,表示总体的分布越集中;σ__越大__,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)正态分布的定义及表示如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=ʃba φμ,σ(x )d x ,则称随机变量X 服从正态分布,记作X ~N (μ,σ2).正态总体在三个特殊区间内取值的概率值 ①P (μ-σ<X ≤μ+σ)=_6; ②P (μ-2σ<X ≤μ+2σ)=_4; ③P (μ-3σ<X ≤μ+3σ)=_4.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.( )(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.( )(3)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的期望,σ是正态分布的标准差.( )(4)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.( )2.设随机变量ξ的分布列为P (ξ=k )=15(k =2,4,6,8,10),则D (ξ)等于( )A .5B .8C .10D .163.设随机变量X 服从正态分布N (2,9),假设P (X >c +1)=P (X <c -1),则c 等于( ) A .1B .2C .3D .44.有一批产品,其中有12件正品和4件次品,有放回地任取3件,假设X 表示取到次品的件数,则D (X )=________.5.在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运发动罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是________.题型一 离散型随机变量的均值、方差例1 (2013·浙江)设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,ξ表示所取球的标号. (1)求ξ的分布列、期望和方差;(2)假设η=aξ+b ,E (η)=1,D (η)=11,试求a ,b 的值.题型二 二项分布的均值、方差例2 (2012·四川)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .(1)假设在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;(2)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列及数学期望E (ξ).X .(1)求X 的分布列;(2)假设此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时该教室里敞开的窗户个数为Y ,求Y 的数学期望.题型三 正态分布的应用例3 在某次大型考试中,某班同学的成绩服从正态分布N (80,52),现已知该班同学中成绩在80~85分的有17人.试计算该班成绩在90分以上的同学有多少人.在某次数学考试中,考生的成绩ξ服从正态分布,即ξ~N (100,100),已知总分值为150分.(1)试求考试成绩ξ位于区间(80,120]内的概率;(2)假设这次考试共有2 000名考生参加,试估计这次考试及格(不小于90分)的人数.离散型随机变量的均值与方差问题典例:(12分)甲袋和乙袋中都装有大小相同的红球和白球,已知甲袋中共有m 个球,乙袋中共有2m 个球,从甲袋中摸出1个球为红球的概率为25,从乙袋中摸出1个球为红球的概率为P 2.(1)假设m =10,求甲袋中红球的个数;(2)假设将甲、乙两袋中的球装在一起后,从中摸出1个红球的概率是13,求P 2的值;(3)设P 2=15,假设从甲、乙两袋中各自有放回地摸球,每次摸出1个球,并且从甲袋中摸1次,从乙袋中摸2次.设ξ表示摸出红球的总次数,求ξ的分布列和均值.思维启迪 (1)概率的应用,知甲袋中总球数为10和摸1个为红球的概率,求红球.(2)利用方程的思想,列方程求解.(3)求分布列和均值,关键是求ξ的所有可能值及每个值所对应的概率. 标准解答解 (1)设甲袋中红球的个数为x ,依题意得x =10×25=4.[3分](2)由已知,得25m +2mP 23m =13,解得P 2=310.[6分](3)ξ的所有可能值为0,1,2,3.P (ξ=0)=35×45×45=48125,P (ξ=1)=25×45×45+35×C 12×15×45=56125, P (ξ=2)=25×C 12×15×45+35×⎝⎛⎭⎫152=19125, P (ξ=3)=25×⎝⎛⎭⎫152=2125.[8分]所以ξ的分布列为ξ 0 1 2 3 P4812556125191252125[10分]所以E (ξ)=0×48125+1×56125+2×19125+3×2125=45.[12分]求离散型随机变量的均值和方差问题的一般步骤: 第一步:确定随机变量的所有可能值. 第二步:求每一个可能值所对应的概率. 第三步:列出离散型随机变量的分布列. 第四步:求均值和方差.第五步:反思回忆.查看关键点、易错点和答题标准.温馨提醒 (1)此题重点考查了概率、离散型随机变量的分布列、均值.(2)此题解答中的典型错误是计算不准确以及解答不标准.如第(3)问中,不明确写出ξ的所有可能值,不逐个求概率,这都属于解答不标准.方法与技巧1.均值与方差的常用性质.掌握下述有关性质,会给解题带来方便: (1)E (aξ+b )=aE (ξ)+b ; E (ξ+η)=E (ξ)+E (η); D (aξ+b )=a 2D (ξ);(2)假设ξ~B (n ,p ),则E (ξ)=np ,D (ξ)=np (1-p ). 2.基本方法(1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的均值 、方差,求ξ的线性函数η=aξ+b 的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)如能分析所给随机变量是服从常用的分布(如二项分布),可直接利用它们的均值、方差公式求解. 3.关于正态总体在某个区域内取值的概率求法(1)熟记P (μ-σ<X ≤μ+σ),P (μ-2σ<X ≤μ+2σ),P (μ-3σ<X ≤μ+3σ)的值. (2)充分利用正态曲线的对称性和曲线与x 轴之间面积为1.①正态曲线关于直线x =μ对称,从而在关于x =μ对称的区间上概率相等. ②P (X <a )=1-P (X ≥a ),P (x <μ-a )=P (X ≥μ+a ). (3)3σ原则在实际应用中,通常认为服从正态分布N (μ,σ2)的随机变量只取(μ-3σ,μ+3σ]之间的值,取该区间外的值的概率很小,通常认为一次试验几乎不可能发生.失误与防范1.在没有准确判断分布列模型之前不能乱套公式.2.对于应用问题,必须对实际问题进行具体分析,一般要将问题中的随机变量设出来,再进行分析,求出随机变量的分布列,然后按定义计算出随机变量的均值、方差.A 组 专项基础训练一、选择题1.正态总体N (1,9)在区间(2,3)和(-1,0)上取值的概率分别为m ,n ,则( )A .m >nB .m <nC .m =nD .不确定2.已知某一随机变量X 的分布列如下,且E (X )=6.3,则a 的值为( ) X 4 a 9 PbA.5B .6C .7D .83.(2013·湖北) 如图,将一个各面都涂了油漆的正方体,切割为125个同 样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )等于( )A.126125B.65C.168125D.754.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .4005.一射手对靶射击,直到第一次命中为止,每次命中的概率都为0.6,现有4颗子弹,则射击停止后剩余子弹的数目X 的期望值为( )A .2.44B .3.376C .2.376二、填空题6.从装有3个红球、2个白球的袋中随机取出2个球,设其中有X 个红球,则随机变量X 的分布列为X 0 1 2 P7.已知随机变量ξ的分布列为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________.8.已知某次英语考试的成绩X 服从正态分布N (116,64),则10 000名考生中成绩在140分以上的人数为________. 三、解答题9.某超市为了响应环保要求,鼓励顾客自带购物袋到超市购物,采取了如下措施:对不使用超市塑料购物袋的顾客,超市给予9.6折优惠;对需要超市塑料购物袋的顾客,既要付购买费,也不享受折扣优惠.假设该超市在某个时段内购物的人数为36人,其中有12位顾客自己带了购物袋,现从这36人中随机抽取两人.(1)求这两人都享受折扣优惠或都不享受折扣优惠的概率;(2)设这两人中享受折扣优惠的人数为ξ,求ξ的分布列和数学期望.10.为了某项大型活动能够安全进行,警方从武警训练基地挑选防爆警察,从体能、射击、反应三项指标进行检测,如果这三项中至少有两项通过即可入选.假定某基地有4名武警战士(分别记为A 、B 、C 、D )拟参加挑选,且每人能通过体能、射击、反应的概率分别为23,23,12.这三项测试能否通过相互之间没有影响.(1)求A 能够入选的概率;(2)规定:按入选人数得训练经费(每入选1人,则相应的训练基地得到3 000元的训练经费),求该基地得到训练经费的分布列与数学期望.。
变量和的方差
变量和的方差引言在统计学中,方差是一种衡量随机变量离其数学期望的距离的指标,用于描述一组数据的离散程度。
方差在实际问题中有着广泛的应用,特别是在数据分析和模型评估中起着重要的作用。
本文将对变量和的方差进行全面、详细、完整且深入地探讨。
什么是变量和的方差变量和的方差是指在一组数据中,将所有数据相加得到的总和的方差。
在统计学中,常常会遇到需要计算变量和的方差的情况,例如在研究组内变异性、评估模型的性能等方面。
通过计算变量和的方差,我们可以了解到数据的离散程度,进而对数据进行更深入的分析和理解。
如何计算变量和的方差计算变量和的方差需要以下几个步骤:1.计算每个观测值与总体均值之差的平方;2.将所有观测值的差的平方相加得到总和;3.将总和除以观测值的个数得到方差。
具体公式如下所示:nVar(X+Y)=∑(X i+Y i−X‾−Y‾)2i=1其中,X和Y是两个随机变量,X i和Y i分别是它们的观测值,X‾和Y‾分别是X和Y的均值。
n是观测值的个数。
变量和方差的性质变量和的方差具有以下几个性质:1.对于两个独立的随机变量X和Y,它们的变量和的方差等于各自方差的和。
即Var(X+Y)=Var(X)+Var(Y)。
2.对于一个随机变量X和一个常数c,它们的变量和的方差等于X的方差加上常数的平方。
即Var(X+c)=Var(X)+c2。
3.对于一个随机变量X和两个常数a和b,它们的变量和的方差等于X的方差加上常数a和b的乘积的两倍。
即Var(aX+b)=a2Var(X)。
这些性质在实际问题中有着重要的应用,可以在统计分析和模型评估中发挥作用。
计算示例为了更好地理解和应用变量和的方差,我们通过一个计算示例来演示具体的计算过程。
假设有两个随机变量X和Y,它们的观测值分别为:X=[1,2,3,4,5]Y=[6,7,8,9,10]首先,我们需要计算X和Y的均值和方差。
X和Y的均值分别为:X‾=1+2+3+4+55=3Y‾=6+7+8+9+105=8然后,我们计算每个观测值与均值之差的平方,并将它们相加得到总和:Var(X+Y)=(1+6−3−8)2+(2+7−3−8)2+(3+8−3−8)2+(4+9−3−8)2+(5+10−3−8)2=275最后,将总和275除以观测值的个数5,得到变量和的方差:Var(X+Y)=2755=55因此,变量和X+Y的方差为55。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.5随机变量的均值和方差
教学目标:
1.通过实例,理解取有限值的离散型随机变量均值(数学期望)的概念和意义;
2.能计算简单离散型随机变量均值(数学期望),并能解决一些实际问题.
教学重点:
取有限值的离散型随机变量均值(数学期望)的概念和意义.
教学方法:
问题链导学.
教学过程:
一、问题情境
1.情景.
前面所讨论的随机变量的取值都是离散的,我们把这样的随机变量称为离散型随机变量.怎样刻画离散型随机变量取值的平均水平和稳定程度呢?
甲、乙两个工人生产同一种产品,在相同的条件下,他们生产100件产品所出的不合格品数分别用X1,X2表示,X1,X2的概率分布如下.
2.问题.
如何比较甲、乙两个工人的技术?
二、学生活动
1.直接比较两个人生产100件产品时所出的废品数.从分布列来看,甲出0件废品的概率比乙大,似乎甲的技术比乙好;但甲出3件废品的概率也比乙大,似乎甲的技术又不如乙好.这样比较,很难得出合理的结论.
2.学生联想到“平均数”,如何计算甲和乙出的废品的“平均数”?
3.引导学生回顾《数学3(必修)》中样本的平均值的计算方法.
三、建构数学
1.定义.
在《数学3(必修)》“统计”一章中,我们曾用公式x1p1+x2p2+…+x n p n 计算样本的平均值,其中p i为取值为x i的频率值.
类似地,若离散型随机变量X的分布列或概率分布如下:
n 其中,p i≥0,i=1,2,…,n,p1+p2+…+p n=1,则称x1p1+x2p2+…+x n p n为随机变量X的均值或X的数学期望,记为E(X)或μ.
2.性质.
(1)E(c)=c;(2)E(aX+b)=aE(X)+b.(a,b,c为常数)
四、数学应用
1.例题.
例1高三(1)班的联欢会上设计了一项游戏,在一个小口袋中装有10个红球,20个白球,这些球除颜色之外完全相同.某学生一次从中摸出5个球,其中红球的个数为X,求X的数学期望.
分析从口袋中摸出5个球相当于抽取n=5个产品,随机变量X为5个球中的红球的个数,则X服从超几何分布H(5,10,30).
例2从批量较大的成品中随机取出10件产品进行质量检查,若这批产品的不合格品率为0.05,随机变量X表示这10件产品中的不合格品数,求随机变量X的数学期望E(X).
说明例2中随机变量X服从二项分布,根据二项分布的定义,可以得到:当X~B(n,p) 时,E(X)=np.
例3设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜4场,
那么比赛宣告结束,假定A,B在每场比赛中获胜的概率都是1
2
,试求需要比赛
场数的期望.
分析先由题意求出分布列,然后求期望.
2.练习.
根据气象预报,某地区下个月有小洪水的概率为0.25,有大洪水的概率为0.01.现工地上有一台大型设备,为保护设备有以下三种方案:
方案1运走设备,此时需花费3 800元;
方案2建一个保护围墙,需花费2 000元.但围墙无法防止大洪灾,若大洪灾来临,设备受损,损失费为60 000元;
方案3不采取措施,希望不发生洪水,此时大洪水来临损失60 000元,小洪水来临损失1 000元.
尝试选择适当的标准,对3种方案进行比较.
五、要点归纳与方法小结
本节课学习了以下内容:
1.离散型随机变量均值(数学期望)的概念和意义;
2.离散型随机变量均值(数学期望)的计算方法.。