七数培优竞赛讲座第25讲 奇数、偶数与奇偶分析
高中数学竞赛专题精讲25奇数偶数(含答案)
25奇数偶数将全体整数分为两类,凡是2的倍数的数称为偶数,否则称为奇数.因此,任一偶数可表为2m (m ∈Z ),任一奇数可表为2m+1或2m -1的形式.奇、偶数具有如下性质:(1)奇数±奇数=偶数;偶数±偶数=偶数;奇数±偶数=奇数;偶数×偶数=偶数;奇数×偶数=偶数;奇数×奇数=奇数;(2)奇数的平方都可表为8m +1形式,偶数的平方都可表为8m 或8m +4的形式(m ∈Z ).(3)任何一个正整数n ,都可以写成的形式,其中m 为非负整数,l 为奇数. 这些性质既简单又明显,然而它却能解决数学竞赛中一些难题. 例题讲解1.下列每个算式中,最少有一个奇数,一个偶数,那么这12个整数中,至少有几个偶数?□+□=□,□-□=□,□×□=□,□÷□=□.2.已知n 是偶数,m 是奇数,方程组的解是整数,那么( )(A )p 、q 都是偶数. (B )p 、q 都是奇数.(C )p 是偶数,q 是奇数 (D )p 是奇数,q 是偶数3.在1,2,3…,1992前面任意添上一个正号和负号,它们的代数和是奇数还是偶数.l n m2=⎩⎨⎧=+=-my x n y x 27111988⎩⎨⎧==q y p x4.70个数排成一行,除了两头的两个数以外,每个数的3倍都恰好等于它两边两个数的和,这一行最左边的几个数是这样的:0,1,3,8,21,….问最右边的一个数被6除余几?5.设a 、b 是自然数,且有关系式123456789=(11111+a )(11111-b ), ① 证明a-b 是4的倍数.6.在3×3的正方格(a )和(b )中,每格填“+”或“-”的符号,然后每次将表中任一行或一列的各格全部变化试问重复若干次这样的“变号”程序后,能否从一张表变化为另一张表.a7.设正整数d 不等于2,5,13.证明在集合{2,5,13,d }中可以找到两个元素a ,b ,使得a b -1不是完全平方数.8.设a 、b 、c 、d 为奇数,,证明:如果a +d =2k ,b+c=2m ,bc ad d c b a =<<<<并且,0 bk,m 为整数,那么a =1.9.设是一组数,它们中的每一个都取1或-1,而且a 1a 2a 3a 4+a 2a 3a 4a 5+…+a n a 1a 2a 3=0,证明:n 必须是4的倍数.课后练习1.填空题n a a a ,,,21(1)有四个互不相等的自然数,最大数与最小数的差等于4,最大数与最小数的积是一个奇数,而这四个数的和是最小的两位奇数,那么这四个数的乘积是______.(2)有五个连续偶数,已知第三个数比第一个数与第五个数和的多18,这五个偶数之和是____.(3)能否把1993部电话中的每一部与其它5部电话相连结?答____.2.选择题(1)设a、b都是整数,下列命题正确的个数是()①若a+5b是偶数,则a-3b是偶数;②若a+5b是偶数,则a-3b是奇数;③若a+5b是奇数,则a-3b是奇数;④若a+5b是奇数,则a-3b是偶数.(A)1 (B)2 (C)3 (D)4(2)若n是大于1的整数,则的值().(A)一定是偶数(B)必然是非零偶数(C)是偶数但不是2 (D)可以是偶数,也可以是奇数(3)已知关于x的二次三项式ax2+bx+c(a、b、c为整数),如果当x=0与x=1时,二次三项式的值都是奇数,那么a()(A)不能确定奇数还是偶数(B)必然是非零偶数(C)必然是奇数(D)必然是零3.试证明11986+91986+81986+61986是一个偶数.4.请用0到9十个不同的数字组成一个能被11整除的最小十位数.5.有n 个整数,共积为n,和为零,求证:数n能被4整除6.在一个凸n边形内,任意给出有限个点,在这些点之间以及这些点与凸n边形顶点之间,用线段连续起来,要使这些线段互不相交,而且把原凸n边形分为只朋角形的小块,试证这种小三我有形的个数与n有相同的奇偶性.7.一个四位数是奇数,它的首位数字泪地其余各位数字,而第二位数字大于其它各位数字,第三位数字等于首末两位数字的和的两倍,求这四位数.8.试证:3n+1能被2或22整除,而不能被2的更高次幂整除.课后练习答案1.(1)30.(最小两位奇数是11,最大数与最小数同为奇数)(2)180.设第一个偶数为x,则后面四个衣次为x+2,x+4,x+6,x+8.(3)不能.2.B.B.A3.11986是奇数1,91986的个位数字是奇数1,而81986,61986都是偶数,故最后为偶数.4.仿例51203465879.5.设a1,a2,…,an满足题设即a1+a2+…+an=0①a1·a2……an=n②。
认识奇偶总结知识点
认识奇偶总结知识点一、奇偶数的定义1.1 整数的定义首先,我们来定义奇偶数。
在数学中,整数可以分为两类:奇数和偶数。
对于任意的整数n,如果它可以被2整除,那么这个整数就是偶数,记作n是偶数。
如果一个整数n不能被2整除,即n/2有余数,那么这个整数就是奇数,记作n是奇数。
换句话说,偶数是能被2整除的整数,而奇数是不能被2整除的整数。
1.2 奇偶数的性质奇偶数之间有许多有趣的性质,比如:1)奇数加偶数的和一定是奇数,因为奇数加偶数还是奇数;2)奇数加奇数的和一定是偶数,因为奇数加奇数是偶数;3)偶数加偶数的和一定是偶数,因为偶数加偶数还是偶数。
另外,还有一些规律,比如任何数乘以偶数都是偶数,奇数的整数倍还是奇数等等。
1.3 奇偶数的应用奇偶数的应用非常广泛。
在生活中,很多问题涉及到奇偶性质,比如排队时奇数位和偶数位的规律、奇数月和偶数月等。
在数学问题中,奇偶性质也起到了非常重要的作用,比如整数的性质、多项式的运算、图论等。
二、奇偶数的性质2.1 整数的性质奇偶数有许多重要的性质。
首先,我们来看整数的性质。
任何一个整数都可以表示为奇数或偶数。
当然,0是一个特殊的偶数,因为0是可以被2整除的。
对于任意的整数n,它有以下的性质:1)如果n是偶数,则-n也是偶数;2)如果n是奇数,则-n也是奇数;3)任意两个奇数的乘积一定是奇数;4)任意两个偶数的乘积一定是4的倍数,即偶数。
这些性质可以帮助我们更好地理解奇偶数的规律。
2.2 多项式的性质在代数中,奇偶数也有非常重要的应用。
我们知道,多项式是含有多个项的式子,而奇偶性质可以帮助我们判断多项式的性质。
具体来说,一个多项式的奇偶性与它的最高次项的指数有关。
如果一个多项式的最高次项为偶数,那么这个多项式就是偶函数。
如果一个多项式的最高次项为奇数,那么这个多项式就是奇函数。
对于一个奇函数,如果它的自变量x取负数,那么函数值与x取正数时的函数值互为相反数;对于一个偶函数,如果它的自变量x取负数,函数值与x取正数时的函数值相等。
奇数偶数的讲解方法
奇数偶数的讲解方法奇数和偶数是数学中的基本概念,我们日常生活中也经常会涉及到奇偶性的问题。
了解奇数和偶数的规律和特点,能够帮助我们更好地理解数学知识和解决实际问题。
本文将从基本概念、性质、判断方法和运算规律等几个方面对奇数和偶数进行讲解。
一、基本概念奇数是指不能被2整除的整数,偶数是指能被2整除的整数。
我们将所有的整数分为两个集合,一个集合包含所有的奇数,另一个集合包含所有的偶数。
例如,1、3、5、7是奇数,2、4、6、8是偶数。
二、性质1. 奇数和奇数相加,结果是偶数;偶数和偶数相加,结果也是偶数。
2. 奇数和偶数相加,结果是奇数。
3. 奇数和奇数相乘,结果是奇数;偶数和偶数相乘,结果是偶数。
4. 奇数和偶数相乘,结果是偶数。
5. 偶数加上1可以得到奇数,奇数减1可以得到偶数。
三、判断方法1. 末位判断法:一个整数,如果它的个位数是0、2、4、6、8中的任意一个,则它是一个偶数;如果它的个位数是1、3、5、7、9中的任意一个,则它是一个奇数。
2. 除2余数法:对一个整数进行除2运算,如果余数为0,则该整数是偶数;如果余数为1,则该整数是奇数。
四、运算规律1. 奇数加(或减)偶数的结果是奇数。
2. 奇数加(或减)奇数的结果是偶数。
3. 偶数加(或减)偶数的结果是偶数。
4. 奇数乘以偶数的结果是偶数。
5. 奇数乘以奇数的结果是奇数。
6. 偶数乘以偶数的结果是偶数。
综上所述,奇数和偶数在数学中具有一定的规律和特点。
通过掌握奇数和偶数的基本概念、性质、判断方法和运算规律,我们能够更加深入地理解数学知识,并能够运用到实际问题中。
在解题过程中,我们可以根据所涉及的问题选择合适的方法和运算规律,提高问题解决的效率和准确性。
希望本文对读者理解奇数和偶数的讲解方法有所帮助,也希望读者能够进一步探索和应用数学知识,提升自己的数学水平和解决实际问题的能力。
让我们一起愉快地学习数学吧!。
四年级上册数学奥数讲义-奇数、偶数与奇偶分析 含解析
奇数、偶数与奇偶分析整数按能否被2整除分为两大类:奇数和偶数,奇数与偶数有下列基本性质:1.奇数≠偶数2.两个整数相加(减)或相乘,结果的奇偶性如下表所示3.若干个奇数之积是奇数,偶数与任意整数之积是偶数;偶数个奇数的和为偶数,若干个偶数的和为偶数.4.设m、n是整数,则m土n,nm±的奇偶性相同.5.设m是整数,则m与m,m n的奇偶性相同.奇偶性是整数的固有属性,通过分析整数的奇偶性来解决问题的方法叫奇偶分析法.例题【例1】三个质数之和为86,那么这三个质数是.思路点拨运用奇数、偶数、质数、合数性质,从分析三个加数的奇偶性人手.注:18世纪的哥尼斯堡,有7座桥把这儿的普雷格尔河中两个小岛与河岸联系起来,在这迷人的地方,人们议论着一个有趣的问题.一个游人怎样才能不重复地一次走遍7座桥,而最后又回到出发点.1736年彼得堡院士欧拉巧妙地解决了这个问题.欧拉把一个复杂的实际问题化为一个简单的几何图形,他指出只要我们能从一点出发,不重复地一笔把这样的图形画出来,那么就可说明游人能够不重复地一次走遍这7座桥,这就是著名的“一笔画”问题的来历.利用奇偶分析不难得到一般的结论:凡是能一笔画成的图形,它上面除了起点和终点外的每一个点总是一笔进来,一笔出去.因此,除了起点和终点外的每一个点都有偶数条线和它相连.简单地说,当且仅当图形中的奇结点(每点出发有奇数字线)的个数不大于2时,这个图形才能一笔画.【例2】如果a、b、c是三个任意的整数,那么222accbba+++、、().A.都不是整数B.至少有两个整数C.至少有一个整数D.都是整数思路点拨举例验证或从a、b、c的奇偶性说明.【例3】(1)设1,2,3,…,9的任一排列为a l,a2,a3…,a9.求证:(a l l一1)( a2—2)…(a9—9)是一个偶数.(2)在数11,22,33,44,54,…20022002,20032003,这些数的前面任意放置“+”或“一”号,并顺次完成所指出的运算,求出代数和,证明:这个代数和必定不等于2003.思路点拨(1)转换角度考察问题,化积的奇偶性为和的奇偶性来研究;(2)由于任意添“十”号或“一”号,形式多样,因此不可能一一尝试再作解答,从奇数、偶数的性质人手.【例4】已知n x x x x 、、、、Λ321都是+1或一1,并且011433221=+++++-x x x x x x x x x x n n n Λ,求证:n 是4的倍数.思路点拨 可以分两步,先证n 是偶数2k ,再证明k 是偶数,解题的关键是从已知等式左边各项的特点受到启发,挖掘隐含的一个等式.【例5】 游戏机的“方块”中共有下面?种图形.每种“方块”都由4个l ×l 的小方格组成.现用这7种图形拼成一个7× 4的长方形(可以重复使用某些图形).问:最多可以用这7种图形中的几种图形?思路点拨 为了形象化地说明问题,对7×4的长方形的28个小方格黑白相间染色,除“品字型”必占3个黑格1个白格或3个白格1个黑格,其余6个方格各占2个黑格2个白格.注:对同一个数学对象,从两个方向考虑(n 项和与积),再将这两个方面合在一起整体考虑,得出结论,这叫计算两次原理,通过计算两次可以建立方程,证明恒等式等.在一定的规则下,进行某种操作或变换,问是否(或证明)能够达到一个预期的目的,这就是所谓操作变换问题,此类问题变化多样,解法灵活,解题的关键是在操作变换中,挖掘不变量,不变性.一些非常规数字问题需要恰当地数学化,以便计算或推理.引入字母与赋值法是数学化的两种常用方式方法.所谓赋值法就是在解题时,将问题中的某些元素用适当的数表示,然后利用这些数值的大小,正负性、奇偶性等进行推理论证的一种解题方法.【例6】桌上放着七只杯子;杯口全朝上,每次翻转四个杯子:问能否经过若干次这样的翻动,使全部的杯子口都朝下?思路点拨 这不可能.我们将口向上的杯于记为:“0”,口向下的杯子记为“1”.开始时,由于七个杯子全朝上,所以这七个数的和为0,是个偶数.一个杯子每翻动一次,所记数由0变为1,或由l 变为0,改变了奇偶性.每一次翻动四个杯子,因此,七个之和的奇偶性仍与原来相同.所以,不论翻动多少次,七个数之和仍为偶数.而七个杯子全部朝下,和为7,是奇数,因此,不可能.整数可以分为奇数和偶数两类.【例7】在1,2,3,…,2005前面任意添上一个正号或负号,它们的代数和是奇数还是偶数?思路点拨 两个整数之和与这两个整数之差的奇偶性相同,只要知道1+2+3+…+2005的奇偶性即可.因两个整数的和与差的奇偶性相同,所以,在1,2,3,…,2005中每个数前面添上正号或负号,其代数和应与1+2+3+…+2005的奇偶性相同,而1+2+3+…+2005=21(1+ 2005)×2005=1003 ×2005为奇数;因此,所求代数和为奇数.注:抓住“a+b 与a —b 奇偶性相同”,通过特例1十2十3十…十2005得到答案.【例8】“ 元旦联欢会上,同学们互赠贺卡表示新年的:良好祝愿.“无论人数是什么数,用来交换的贺卡的张数总是偶数.”这句话正确吗?试证明你的结论.思路点拨 用分类讨论的思想方法,从“无论人数是什么数”入手,考虑人数为奇数或偶数的两种情况.这句话是正确的.下面证明之.若联欢会上的人数为偶数,设为2m (m 为整数),则每个人赠送给同学们的贺卡张数为奇数,即(2m —1).那么,贺卡总张数为2m(2m —1)=4m 2-2m ,显然是偶数.若联欢会上的人数为奇数,设为2m+1(m 为整数,则每个人赠送给同学们的贺卡张数应是2m ,为偶数.贺卡总张数为(2m+1)·2m ,仍为偶数.故“用来交换的贺卡张数总是偶数”是对的.注:按奇数和偶数分类考虑问题是常见的解决此类问题的策略之一.【例9】桌面上放有1993枚硬币,第1次翻动1993枚,第2次翻动其中的1992枚,第3次翻动其中的1991枚,…,第1993次翻动其中一枚,试问:能否使桌面上所有的1993枚硬币原先朝下的一面都朝上?并说明理由.思路点拨 若要把一枚硬币原先朝下的一面朝上,应该翻动该硬币奇数次.因此,要把1993枚硬币原先朝下的一面都朝上,应该翻动这1993枚硬币的总次数为奇数.现在1993次翻动的总次数为1+2+3+…+1993=1993×(1+1993)/2=1993×997是个奇数,故猜想可以使桌面上1993枚硬币原先朝下的一面都朝上.理由如下:按规定,1993次翻动的总次数为1+2+3+…+1993=1993×(1+1993)/2=1993×997,所以翻动的次数为奇数,而且可见每个硬币平均翻动了997次.而事实上,只要翻动一枚硬币奇数次,就能使这枚硬币原先朝下的一面朝上.按如下的方法进行翻动: 第1次翻动全部1993枚,第2次翻动其中的1992枚,第1993次翻动第2次未翻动的那1枚,第3次翻动其中的1991枚,第1992次翻动第3次未翻动的2枚,第997次翻动其中的997枚,第998次翻动第997次未翻动的996枚.这样,正好每枚硬币被翻动了997次,就能使每一枚硬币原来朝下的一面都朝上. 注:灵活、巧妙地利用奇俩性分析推理,可以解决许多复杂而有趣的问题,并有意想不到的效果.【例10】在6张纸片的正面分别写上整数:1、2、3、4、5、6,打乱次序后,将纸片翻过来,在它们的反面也随意分别写上1-6这6个整数,然后,计算每张纸片的正面与反面所写数字之差的绝对值,得出6个数.请你证明:所得的6个数中至少有两个是相同的. 思路点拨 从反面人手,即设这6个数两两都不相等,利用bi a i -与i i b a - (i =1,2,3,4,5,6)的奇偶性相同,引入字母进行推理证明.设6张卡片正面写的数是654321a a a a a a 、、、、、,反面写的数对应为654321b b b b b b 、、、、、,则这6张卡片正面写的数与反面写的数的绝对值分别为11b a -,22b a -,33b a -,44b a -,55b a -,66b a -.设这6个数两两都不相等,则它们只能取0,1,2,3,4,5这6个值.于是11b a -+22b a -+33b a -+44b a -+55b a -+66b a -=0+1+2+3+4+5=15是个奇数. 另一方面,bi a i -与i i b a - (i =1,2,3,4,5,6)的奇偶性相同.所以11b a -+22b a -+33b a -+44b a -+55b a -+66b a -与(a 1一b 1)+(a 2一b 2)+(a 3一b 3)+(a 4一b 4)+(a 5一b 5)+(a 6一b 6)= )(654321a a a a a a +++++一)(654321b b b b b b +++++ =(1+2+3+4+5+6)一(1+2+3+4+5+6)=O 的奇偶性相同,而0是个偶数,15是奇数,两者矛盾.所以,11b a -,22b a -,33b a -,44b a -,55b a -,66b a -这6个数中至少有两个是相同的.注:反证法是解决奇、偶数问题中常用的方法.【例11】有一只小渡船往返于一条小河的左右两岸之间,问:(1)若最初小船是在左岸,往返若干次后,它又回到左岸,那么这只小船过河的次数是奇数还是偶数?如果它最后到了右岸,情况又是怎样呢?(2)若小船最初在左岸,它过河99次之后,是停在左岸还是右岸?思路点拨 (1)小船最初在左岸,过一次河就到了右岸,再过一次河就由右岸回到左岸,即每次由左岸出发到右岸后再回到左岸,都过了两次河.因此,小船由左岸开始,往返多次后又回到左岸,则过河的次数必为2的倍数,所以是偶数.同样的道理,不难得出,若小船最后停在右岸,则过河的次数必为奇数.(2)通过(1),我们发现,若小船最初在左岸,过偶数次河后,就回到左岸;过奇数次河后,就停在右岸.现在小船过河99次,是奇数次.因此,最后小船该停在右岸.注 关键是对过河次数的理解:一个单程,即由左岸到右岸(或由右岸到左岸)就过河一次;往返一个来回就过河两次.【例12】黑板上写了三个整数,任意擦去其中一个,把它改写成另两个数的和减去1,这样继续下去,得到1995、1996、1997,问原来的三个数能否是2、2、2?思路点拨 如果原来的三个整数是2、2、2,即三个偶数,操作一次后,三个数变成二偶一奇,这时如果擦去其中的奇数,操作后三个数仍是二偶一奇.如果擦去的是其中的一个偶数,操作后三个数仍是二偶一奇.因此,无论怎样操作,得到的三个数都是二偶一奇,不可能得到1995、1996、1997.所以,原来的三个数不可能是2、2、2.注 解决本题的诀窍在于考查数字变化后的奇偶性.【例13】将正偶数按下表排成五列:第1列 第2列 第3列 第4列 第5列第1行 2 4 6 8第2行 16 14 12 10第3行 18 20 22 24… … 28 26根据上面的排列规律,则2000应位于( )A .第125行,第1列B .第125行,第2列C .第250行,第1列D .第250行,第2列思路点拨 观察表格,第1行最右边的数为8,第2行最左边的数为16,第3行最右边的数为24,于是可猜测:当行数为奇数时,该行最右边的数为8×行数;当行数为偶数时,该行最左边的数为8×行数.通过验证第4行、第5行、第6行知,上述猜想是正确的,因为2000=8×250,所以2000应在第250行,又因为250为偶数,故2000应在第250行最左边,即第250行第1列,故应选C .注:观察、寻找规律是解决这类问题的妙招.【例14】如图18—1,两个标有数字的轮子可以分别绕轮子的中心旋转,旋转停止时,每个轮子上方的箭头各指着轮子上的一个数字.若左轮子上方的箭头指着的数字为a ,右轮子上方的箭头指着的数字为b ,数对(a ,b)所有可能的个数为n ,其中a+b 恰为偶数的不同数对的个数为m ,则nm 等于( ) A .21 B .61 C .125 D .43 思路点拨 依题意可知所有的数对n=4×3=12,其中a+b 恰为偶数的数对m=3×1+1×2=5.因此,n m =125,故选C . 【例15】已知a 、b 、c 中有两个奇数、一个偶数,n 是整数,如果S=(a+2n+1)(b+2n 十2)(c+2n 十3),那么( )A .S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D . S 的奇偶性不能确定思路点拨 弄清a+2n+1,b+2n+2,c+2n+3的奇偶性即可.依题得:(a+2n+1)+(b+2n+2)+(c+2n+3)=a+b+c+6(n+1).∵a+b+c 为偶数,6(n+1)为偶数,∴a+b+c+6(n+1)为偶数∴a+2n+1,b+2n+2,c+2n+3中至少有一个为偶数,∴S 是偶数.故选A .注:三个数的和为偶数,则至少有一个为偶数;三个数中有一个为偶数,则三数之和为偶数.学力训练 1.若按奇偶性分类,则12+22+32+…+20022002是 数.2.能不能在下式, 的各个方 框中分别填人“+”号或“一”号,使等式成立?答: .3.已知三个质数a 、b 、c 满足a+b+c+abc =99,那么a c c b b a -+-+-的值等于 .4.已知n 为整数,现有两个代数式:(1)2n+3,(2)4n 一1,其中,能表示“任意奇数”的( )A .只有(1)B .只有(2)C .有(1)和(2)D .一个也没有5.如果a ,b ,c 都是正整数,且a ,b 是奇数,则3a +(b 一1)2c 是( ).A .只当c 为奇数时,其值为奇数B .只当c 为偶数时,其值为奇数C .只当c 为3的倍数,其值为奇数D .无论c 为任何正楚数,其值均为奇数6.已知a ,b ,c 三个数中有两个奇数、一个偶数,n 是整数,如果S=(a+n+1)(b+ 2n+2)(c+3n+3),那么( ).A . S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D .S 的奇偶性不能确定7.(1)是否有满足方程x 2-y 2=1998的整数解x 和y?如果有,求出方程的解;如果没有,说明理由.(2)一个立方体的顶点标上+1或一1,面上标上一个数,它等于这个面的4个顶点处的数的乘积,这样所标的14个数的和能否为0?8.甲、乙两人玩纸牌游戏,甲持有全部的红桃牌(A 作1,J ,Q ,K 分别作11,12,13,不同),乙持有全部的黑桃牌,两人轮流出牌,每次出一张,得到一对牌,出完为止,共得到13对牌,每对牌彼此相减,问这13个差的乘积的奇偶性能否确定?9.在1,2,3,…,1998之前任意添上“十”或“一”号,然后相加,这些和中最小的正整数是 .10.1,2,3,…,98共98个自然数,能够表示成两整数平方差的数的个数是 .11.在一次象棋比赛中,每两个选手恰好比赛一局,每局赢者记2分,输者记0分,平局每个选手各记1分,今有4个人统计百这次比赛中全部得分总数,由于有的人粗心,其数据各不相同,分别为1979,1980,1984,1985,经核实,其中有一人统计无误,则这次比赛共有 名选手参加.12.已知p 、q 、pq+1都是质数,且p 一q>40,那么满足上述条件的最小质数p = ; q = .13.设a ,b 为整数,给出下列4个结论(1)若a+5b 是偶数,则a 一3b 是偶数;(2)若a 十5b 是偶数,则a 一3b 是奇数;(3)若a+5b 是奇数,则a 一3b 是偶数;(4)若a+5b 是奇数,则a 一3b 是奇数,其中结论正确的个数是( ).A .0个B .2个C .4个D . 1个或3个14.下面的图形,共有( )个可以一笔画(不重复也不遗漏;下笔后笔不能离开纸) .A .0B .1C .2D .315.π的前24位数值为3.14159265358979323846264…,在这24个数字中,随意地逐个抽取1个数字,并依次记作a1,a2,…a24,则(a1一a2)( a3一a4)…(a23一a24)为( ).A.奇数B.偶数C.奇数或偶数D.质数16.没标有A、B、C、D、C、F、G记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A、C、E、G 4盏灯开着,其余3盏灯是关的,小刚从灯A开始,顺次拉动开关,即从A 到G,再从A始顺次拉动开关,即又从A到G…,他这样拉动了1999次开关后,问哪几盏是开的?17.有1997枚硬币,其中1000枚国徽朝上,997枚国徽朝下.现要求每一次翻转其中任意6枚,使它们的国徽朝向相反,问能否经过有限次翻转之后,使所有硬币的国徽都朝上?给出你的结论,并给予证明.18.对一个正整数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到1时操作停止,求经过9次操作变为l的数有多少个?19.高为50cm,底面周长为50cm的圆柱,在此圆柱的侧面上划分(如图所示)边长为lcm的正方形,用四个边长为lcm的小正方形构成“T”字形,用此图形是否能拼成圆柱侧面?试说明理由.参考答案。
让你爱上数学认识数的奇偶性
让你爱上数学认识数的奇偶性数学是一门令人又爱又恨的学科。
对于一些人来说,数学是一个令人头疼的问题,充满了复杂的符号和抽象的概念。
然而,如果我们能够正确理解数的奇偶性,那么数学将变得更加有趣和容易上手。
1. 数的奇偶性概念数是我们生活中常见的一种概念,它是用来表达事物的量的。
在数学中,数可以分为奇数和偶数两种类型。
奇数是指不能被2整除的数,而偶数则正好相反,能被2整除的数。
通过这个简单的概念,我们可以将不同的数进行分类,进一步探索数的特性和性质。
2. 奇偶性的判断规则判断一个数的奇偶性并不困难,我们只需要看这个数是否能被2整除即可。
如果一个数能被2整除,那么它就是偶数;如果一个数不能被2整除,那么它就是奇数。
以此类推,我们可以通过简单的计算和观察,轻松地判断出一个数的奇偶性。
3. 奇数的特性和性质奇数有一些独特的特性和性质,深入了解这些将为我们进一步探索数学世界打下基础。
首先,任何奇数加上偶数都等于奇数。
其次,两个奇数相加的结果是偶数。
此外,奇数也具有呈现规律的特性,如每两个相邻的奇数之间的差都为2。
这些特性和性质的发现可以帮助我们更好地理解奇数的本质。
4. 偶数的特性和性质偶数同样有其独特的特性和性质。
与奇数相反,任何偶数加上偶数的结果还是偶数。
此外,偶数与偶数相加的结果也是偶数。
同样地,偶数之间的差也有规律可循,相邻的两个偶数之间的差也为2。
了解偶数的特性不仅可以帮助我们更加深入地理解数学,还能够为我们解决问题和推导数学公式提供指导。
5. 奇偶性在数学中的应用奇偶性是数学中广泛应用的概念之一。
在代数和数论中,奇偶性的概念被广泛运用于分析和证明问题。
例如,通过奇偶性的判断,我们可以快速判定一个数的质数性质,从而简化了问题的求解过程。
此外,奇偶性概念也在组合数学、离散数学等领域中找到了重要的应用。
6. 培养对数学的兴趣和热爱当我们深入了解数的奇偶性,掌握了相关的概念和性质后,数学将不再是一门难以逾越的学科,而是变成一种有趣的游戏。
初中竞赛数学25.奇数、偶数与奇偶分析(含答案)
25.奇数、偶数与奇偶分析知识纵横整数按能否被2整除分为两大类:奇数和偶数,奇数与偶数有下列基本性质:1.奇数≠偶数2.两个整数相加(减)或相乘,结果的奇偶性如下表所示3.若干个奇数之积是奇数,偶数与任意整数之积是偶数;偶数个奇数的和为偶数,若干个偶数的和为偶数.4.设m 、n 是整数,则m ±n,│m ±n │的奇偶性相同.5.设m 是整数,则m 与│m │、m 的奇偶性相同.奇偶性是整数的固有属性,•通过分析整数的奇偶性来解决问题的方法叫奇偶分析法.例题求解【例1】三个质数之和为86,那么这三个质数是______.(“希望杯”邀请赛试题)思路点拨 运用奇数、偶数、质数、合数性质,从分析三个加数的奇偶性入手。
解:(2,5,79),(2,11,73),(2,13,71),(2,23,61),(2,31,53),(2,37,47),(2,41,43)【例2】如果a 、b 、c 是三个任意整数,那么2a b +、2b c +、2c a +( ). A.都不是整数 B.至少有两个整数C.至少有一个整数D.都是整数 (2001年TI 杯全国初中数学竞赛题)思路点拨 举例验证或从a 、b 、c 的奇偶性说明.解:选C 提示:a 、b 、c 中至少有两个数的奇偶性相同,则a+b 、b+c 、c+a 中至少有一个为偶数.【例3】(1)设1,2,3,9的任一排列为a 1,a 2,a 3,…,a 9。
求证:(a 1-1)·(a 2-2)…(a 9-9)•是一个偶数.(2)在数11,22,33,44,55,…20022002,20032003,这些数的前面任意放置“+”或“-”号,并顺次完成所指出的运算,求出代数和,证明:这个代数和必定不等于2003.思路点拨 (1)转换角度考察问题,化积的奇偶性为和的奇偶性来研究;(2)由于任意添“+”号或“-”号,形式多样,因此不可能一一尝试再作解答,从奇数、•偶数的性质入手.解:(1)因(a 1-1)+(a 2-2)+…+(a 9-9)=(a 1+a 2+…+a 9)-(1+2+…+9)=0,故a 1-1、a 2-2…a 9-9这9个数不可能全为奇数,即这9个数中至少有一个为偶数,从而它们的积必为偶数.(2)11,22,33,20022002,20032003的奇偶性依次与1,2,3,…2002,2003的奇偶性相同,因此,•在11,22,33…20022002,20032003的前面任意放置“+”或“-”的代数和的奇偶性与1+2+3+…+2003的奇偶性相同为偶数,而2003为奇数.【例4】已知x 1,x 2,x 3,…,x n 都是+1或-1,并且12x x + 23x x + 34x x + …+1n n x x +1n x x =0。
透析奇偶分析法在竞赛中的运用
另 一 方 面 ,若 a、b之 积 是 奇 数 ,则 a、b都一定是奇数. 不妨设a=2k1+1,b= 2k2+1, 则a2+b2=(2k1+1)2+(2k2+1)2=4· [k1·(k1+1)+k2(k2+1)]+2. 而 k1(k1+1) 与k2·(k2+1) 都是两个连续整数的乘 积, 他们的积一定是2的倍数. 这样 a2+b2就 一 定 是 可 以 表 示 成 8k+2(其中 k是整数)的 形 式 ,这 样 由a2+b2+c2=d2 就可以得到d2-c2=8k+2, 即d2-c2=(d+ c)(d-c)=8k+2. 又 由 于 整 数c、d的 和 c+d与c、d的差c-d具有相同的奇偶性, 而 且8k+2为 偶 数 ,因 此 c+d与 c-d一 定 都是偶数.
襛 奇、偶数问题 例1 (第16届江苏竞赛题)已知a、b、 c三个数中有两个奇数, 一个偶数,n是整 数,如果S=(a+n+1)(b+2n+2)(c+3n+3),那
么( ) A. S是偶数 B. S是奇数 C. S的奇偶性与n的奇偶性相同 D. S的奇偶性不能确定 解 选A. 理由:考虑S中三个因数的
解 一方面,若a、b之积为偶数, 则a、b中至少有一个为偶数.
高一数学精讲精练讲义(25)奇偶分析
高一数学讲义(25)奇偶分析【知识要点】整数按照能否被2整除可以分为两类,一类余数为0,称为偶数,一类余数为1,称为奇数.偶数可以表示为2n ,奇数可以表示为21n -或21n +.一、奇数和偶数的性质:(1)奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数,偶数⨯偶数=偶数,奇数⨯偶数=偶数,奇数⨯奇数=奇数;即任意多个偶数的和、差、积仍为偶数,奇数个奇数的和、差仍为奇数,偶数个奇数的和、差为偶数,奇数与偶数的和为奇数,和为偶数;(2)奇数的平方都可以表示成18+m 的形式,偶数的平方可以表示为m 8或48+m 的形式;(3)任何一个正整数n ,都可以写成l n m2=的形式,其中m 为非负整数,l 为奇数。
(4)若有限个整数之积为奇数,则其中每个整数都是奇数;若有限个整数之积为偶数,则这些整数中至少有一个是偶数;两个整数的和与差具有相同的奇偶性;偶数的平方根若是整数,它必为偶数。
二、完全平方数及其性质能表示为某整数的平方的数称为完全平方数,简称平方数。
平方数有以下性质与结论:(1)平方数的个位数字只可能是0,1,4,5,6,9;(2)偶数的平方数是4的倍数,奇数的平方数被8除余1,即任何平方数被4除的余数只有可能是0或1;(3)奇数平方的十位数字是偶数;(4)十位数字是奇数的平方数的个位数一定是6;(5)不能被3整除的数的平方被3除余1,能被3整数的数的平方能被3整除。
因而,平方数被9也合乎的余数为0,1,4,7,且此平方数的各位数字的和被9除的余数也只能是0,1,4,7;(6)平方数的约数的个数为奇数;(7)任何四个连续整数的乘积加1,必定是一个平方数。
判断一个数是是否是平方数的常用证明方法:(1)反证法.(2)恒等变形法:若()221n x n <<+,则x 不是平方数.(3)分解法.设a 为平方数,且a bc =,(),1b c =,则,b c均为平方数.(4)约数法.证明该数有奇数个约数.通过数字奇偶性质的分析而获得解题重大进展的技巧,常称作奇偶分析,这种技巧与分类、染色、数字化都有联系,在数学竞赛中有广泛的应用.【例题精析】例1..已知:如图1,共有九个房间,每个房间都与隔壁的房间相通,问:能否从1号房间出发,不重复地走遍所有房间再回到1号房间。
初中数学培优竞赛讲座第25讲--奇数、偶数与奇偶分析
第二十五讲 奇数、偶数与奇偶分析整数按能否被2整除分为两大类:奇数和偶数,奇数与偶数有下列基本性质:1.奇数≠偶数2.两个整数相加(减)或相乘,结果的奇偶性如下表所示3.若干个奇数之积是奇数,偶数与任意整数之积是偶数;偶数个奇数的和为偶数,若干个偶数的和为偶数.4.设m 、n 是整数,则m 土n ,n m ±的奇偶性相同. 5.设m 是整数,则m 与m ,m n 的奇偶性相同.奇偶性是整数的固有属性,通过分析整数的奇偶性来解决问题的方法叫奇偶分析法.例题【例1】 三个质数之和为86,那么这三个质数是 . (“希望杯”邀请赛试题) 思路点拨 运用奇数、偶数、质数、合数性质,从分析三个加数的奇偶性人手.注: 18世纪的哥尼斯堡,有7座桥把这儿的普雷格尔河中两个小岛与河岸联系起来,在这迷人的地方,人们议论着一个有趣的问题.一个游人怎样才能不重复地一次走遍7座桥,而最后又回到出发点.1736年彼得堡院士欧拉巧妙地解决了这个问题.欧拉把一个复杂的实际问题化为一个简单的几何图形,他指出只要我们能从一点出发,不重复地一笔把这样的图形画出来,那么就可说明游人能够不重复地一次走遍这7座桥,这就是著名的“一笔画”问题的来历.利用奇偶分析不难得到一般的结论:凡是能一笔画成的图形,它上面除了起点和终点外的每一个点总是一笔进来,一笔出去.因此,除了起点和终点外的每一个点都有偶数条线和它相连.简单地说,当且仅当图形中的奇结点(每点出发有奇数字线)的个数不大于2时,这个图形才能一笔画.【例2】 如果a 、b 、c 是三个任意的整数,那么222a c c b b a +++、、( ). A .都不是整数 B .至少有两个整数 C .至少有一个整数 D .都是整数(2001年TI 杯全国初中数学竞赛题)思路点拨 举例验证或从a 、b 、c 的奇偶性说明.【例3】 (1)设1,2,3,…,9的任一排列为a l ,a 2,a 3…,a 9.求证:(a l l 一1)( a 2 —2)…(a 9—9)是一个偶数.(2)在数11,22,33,44,54,…20022002,20032003,这些数的前面任意放置“+”或“一”号,并顺次完成所指出的运算,求出代数和,证明:这个代数和必定不等于2003.思路点拨 (1)转换角度考察问题,化积的奇偶性为和的奇偶性来研究;(2)由于任意添“十”号或“一”号,形式多样,因此不可能一一尝试再作解答,从奇数、偶数的性质人手.【例4】已知n x x x x 、、、、Λ321都是+1或一1,并且011433221=+++++-x x x x x x x x x x n n n Λ,求证:n 是4的倍数.思路点拨 可以分两步,先证n 是偶数2k ,再证明k 是偶数,解题的关键是从已知等式左边各项的特点受到启发,挖掘隐含的一个等式.【例5】 游戏机的“方块”中共有下面?种图形.每种“方块”都由4个l ×l 的小方格组成.现用这7种图形拼成一个7× 4的长方形(可以重复使用某些图形).问:最多可以用这7种图形中的几种图形?思路点拨 为了形象化地说明问题,对7×4的长方形的28个小方格黑白相间染色,除“品字型”必占3个黑格1个白格或3个白格1个黑格,其余6个方格各占2个黑格2个白格.注:对同一个数学对象,从两个方向考虑(n 项和与积),再将这两个方面合在一起整体考虑,得出结论,这叫计算两次原理,通过计算两次可以建立方程,证明恒等式等.在一定的规则下,进行某种操作或变换,问是否(或证明)能够达到一个预期的目的,这就是所谓操作变换问题,此类问题变化多样,解法灵活,解题的关键是在操作变换中,挖掘不变量,不变性.一些非常规数字问题需要恰当地数学化,以便计算或推理.引入字母与赋值法是数学化的两种常用方式方法.所谓赋值法就是在解题时,将问题中的某些元素用适当的数表示,然后利用这些数值的大小,正负性、奇偶性等进行推理论证的一种解题方法.【例6】桌上放着七只杯子;杯口全朝上,每次翻转四个杯子:问能否经过若干次这样的翻动,使全部的杯子口都朝下?思路点拨 这不可能.我们将口向上的杯于记为:“0”,口向下的杯子记为“1”.开始时,由于七个杯子全朝上,所以这七个数的和为0,是个偶数.一个杯子每翻动一次,所记数由0变为1,或由l 变为0,改变了奇偶性.每一次翻动四个杯子,因此,七个之和的奇偶性仍与原来相同.所以,不论翻动多少次,七个数之和仍为偶数.而七个杯子全部朝下,和为7,是奇数,因此,不可能.整数可以分为奇数和偶数两类.【例7】在1,2,3,…,2005前面任意添上一个正号或负号,它们的代数和是奇数还是偶数?思路点拨 两个整数之和与这两个整数之差的奇偶性相同,只要知道1+2+3+…+2005的奇偶性即可. 因两个整数的和与差的奇偶性相同,所以,在1,2,3,…,2005中每个数前面添上正号或负号,其代数和应与1+2+3+…+2005的奇偶性相同,而1+2+3+…+2005=21(1+ 2005)×2005=1003 ×2005为奇数;因此,所求代数和为奇数.注:抓住“a+b 与a —b 奇偶性相同”,通过特例1十2十3十…十2005得到答案.【例8】“ 元旦联欢会上,同学们互赠贺卡表示新年的:良好祝愿.“无论人数是什么数,用来交换的贺卡的张数总是偶数.”这句话正确吗?试证明你的结论.思路点拨 用分类讨论的思想方法,从“无论人数是什么数”入手,考虑人数为奇数或偶数的两种情况.这句话是正确的.下面证明之.若联欢会上的人数为偶数,设为2m (m 为整数),则每个人赠送给同学们的贺卡张数为奇数,即(2m —1).那么,贺卡总张数为2m(2m —1)=4m 2-2m ,显然是偶数.若联欢会上的人数为奇数,设为2m+1(m 为整数,则每个人赠送给同学们的贺卡张数应是2m ,为偶数.贺卡总张数为(2m+1)·2m ,仍为偶数.故“用来交换的贺卡张数总是偶数”是对的.注:按奇数和偶数分类考虑问题是常见的解决此类问题的策略之一.【例9】桌面上放有1993枚硬币,第1次翻动1993枚,第2次翻动其中的1992枚,第3次翻动其中的1991枚,…,第1993次翻动其中一枚,试问:能否使桌面上所有的1993枚硬币原先朝下的一面都朝上?并说明理由.思路点拨 若要把一枚硬币原先朝下的一面朝上,应该翻动该硬币奇数次.因此,要把1993枚硬币原先朝下的一面都朝上,应该翻动这1993枚硬币的总次数为奇数.现在1993次翻动的总次数为1+2+3+…+1993=1993×(1+1993)/2=1993×997是个奇数,故猜想可以使桌面上1993枚硬币原先朝下的一面都朝上. 理由如下:按规定,1993次翻动的总次数为1+2+3+…+1993=1993×(1+1993)/2=1993×997,所以翻动的次数为奇数,而且可见每个硬币平均翻动了997次.而事实上,只要翻动一枚硬币奇数次,就能使这枚硬币原先朝下的一面朝上.按如下的方法进行翻动:第1次翻动全部1993枚,第2次翻动其中的1992枚,第1993次翻动第2次未翻动的那1枚,第3次翻动其中的1991枚,第1992次翻动第3次未翻动的2枚,第997次翻动其中的997枚,第998次翻动第997次未翻动的996枚.这样,正好每枚硬币被翻动了997次,就能使每一枚硬币原来朝下的一面都朝上.注:灵活、巧妙地利用奇俩性分析推理,可以解决许多复杂而有趣的问题,并有意想不到的效果.【例10】在6张纸片的正面分别写上整数:1、2、3、4、5、6,打乱次序后,将纸片翻过来,在它们的反面也随意分别写上1-6这6个整数,然后,计算每张纸片的正面与反面所写数字之差的绝对值,得出6个数.请你证明:所得的6个数中至少有两个是相同的.思路点拨 从反面人手,即设这6个数两两都不相等,利用bi a i -与i i b a - (i =1,2,3,4,5,6)的奇偶性相同,引入字母进行推理证明.设6张卡片正面写的数是654321a a a a a a 、、、、、,反面写的数对应为654321b b b b b b 、、、、、,则这6张卡片正面写的数与反面写的数的绝对值分别为11b a -,22b a -,33b a -,44b a -,55b a -,66b a -.设这6个数两两都不相等,则它们只能取0,1,2,3,4,5这6个值.于是11b a -+22b a -+33b a -+44b a -+55b a -+66b a -=0+1+2+3+4+5=15是个 奇数. 另一方面,bi a i -与i i b a - (i =1,2,3,4,5,6)的奇偶性相同.所以11b a -+22b a -+33b a -+44b a -+55b a -+66b a -与(a 1一b 1)+(a 2一b 2)+(a 3一b 3)+(a 4一b 4)+(a 5一b 5)+(a 6一b 6)= )(654321a a a a a a +++++一)(654321b b b b b b +++++ =(1+2+3+4+5+6)一(1+2+3+4+5+6)=O 的奇偶性相同,而0是个偶数,15是奇数,两者矛盾.所以,11b a -,22b a -,33b a -,44b a -,55b a -,66b a -这6个数中至少有两个是相同的. 注:反证法是解决奇、偶数问题中常用的方法.【例11】有一只小渡船往返于一条小河的左右两岸之间,问:(1)若最初小船是在左岸,往返若干次后,它又回到左岸,那么这只小船过河的次数是奇数还是偶数? 如果它最后到了右岸,情况又是怎样呢?(2)若小船最初在左岸,它过河99次之后,是停在左岸还是右岸?思路点拨 (1)小船最初在左岸,过一次河就到了右岸,再过一次河就由右岸回到左岸,即每次由左岸出发到右岸后再回到左岸,都过了两次河.因此,小船由左岸开始,往返多次后又回到左岸,则过河的次数必为2的倍数,所以是偶数.同样的道理,不难得出,若小船最后停在右岸,则过河的次数必为奇数.(2)通过(1),我们发现,若小船最初在左岸,过偶数次河后,就回到左岸;过奇数次河后,就停在右岸.现在小船过河99次,是奇数次.因此,最后小船该停在右岸.注 关键是对过河次数的理解:一个单程,即由左岸到右岸(或由右岸到左岸)就过河一次;往返一个来回就过河两次.【例12】黑板上写了三个整数,任意擦去其中一个,把它改写成另两个数的和减去1,这样继续下去,得到1995、1996、1997,问原来的三个数能否是2、2、2?思路点拨 如果原来的三个整数是2、2、2,即三个偶数,操作一次后,三个数变成二偶一奇,这时如果擦去其中的奇数,操作后三个数仍是二偶一奇.如果擦去的是其中的一个偶数,操作后三个数仍是二偶一奇.因此,无论怎样操作,得到的三个数都是二偶一奇,不可能得到1995、1996、1997.所以,原来的三个数不可能是2、2、2.注 解决本题的诀窍在于考查数字变化后的奇偶性.【例13】(苏州市中考题)将正偶数按下表排成五列:第1列 第2列 第3列 第4列 第5列第1行 2 4 6 8第2行 16 14 12 10第3行 18 20 22 24… … 28 26根据上面的排列规律,则2000应位于( )A .第125行,第1列B .第125行,第2列C .第250行,第1列D .第250行,第2列思路点拨 观察表格,第1行最右边的数为8,第2行最左边的数为16,第3行最右边的数为24,于是可猜测:当行数为奇数时,该行最右边的数为8×行数;当行数为偶数时,该行最左边的数为8×行数.通过验证第4行、第5行、第6行知,上述猜想是正确的,因为2000=8×250,所以2000应在第250行,又因为250为偶数,故2000应在第250行最左边,即第250行第1列,故应选C .注:观察、寻找规律是解决这类问题的妙招.【例14】(2000年山东省竞赛题)如图18—1,两个标有数字的轮子可以分别绕轮子的中心旋转,旋转停止时,每个轮子上方的箭头各指着轮子上的一个数字.若左轮子上方的箭头指着的数字为a ,右轮子上方的箭头指着的数字为b ,数对(a ,b)所有可能的个数为n ,其中a+b 恰为偶数的不同数对的个数为m ,则nm 等于( ) A .21 B .61 C .125 D .43 思路点拨 依题意可知所有的数对n=4×3=12,其中a+b 恰为偶数的数对m=3×1+1×2=5.因此,n m =125,故选C . 【例15】(第江苏省竞赛题)已知a 、b 、c 中有两个奇数、一个偶数,n 是整数,如果S=(a+2n+1)(b+2n 十2)(c+2n 十3),那么( )A .S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D . S 的奇偶性不能确定思路点拨 弄清a+2n+1,b+2n+2,c+2n+3的奇偶性即可.依题得:(a+2n+1)+(b+2n+2)+(c+2n+3)=a+b+c+6(n+1).∵a+b+c 为偶数,6(n+1)为偶数,∴a+b+c+6(n+1)为偶数∴a+2n+1,b+2n+2,c+2n+3中至少有一个为偶数,∴S 是偶数.故选A .注:三个数的和为偶数,则至少有一个为偶数;三个数中有一个为偶数,则三数之和为偶数.学力训练1.若按奇偶性分类,则12+22+32+…+20022002是 数.2.能不能在下式, 的各个方 框中分别填入“+”号或“一”号,使等式成立?答: .3.已知三个质数a 、b 、c 满足a+b+c+abc =99,那么a c c b b a -+-+-的值等于 .4.已知n 为整数,现有两个代数式:(1)2n+3,(2)4n 一1,其中,能表示“任意奇数”的( )A .只有(1)B .只有(2)C .有(1)和(2)D .一个也没有5.如果a ,b ,c 都是正整数,且a ,b 是奇数,则3a +(b 一1)2c 是( ).A .只当c 为奇数时,其值为奇数B .只当c 为偶数时,其值为奇数C .只当c 为3的倍数,其值为奇数D .无论c 为任何正楚数,其值均为奇数6.已知a ,b ,c 三个数中有两个奇数、一个偶数,n 是整数,如果S=(a+n+1)(b+ 2n+2)(c+3n+3),那么( ).A . S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D .S 的奇偶性不能确定(第16届江苏省竞赛题)7.(1)是否有满足方程x 2-y 2=1998的整数解x 和y?如果有,求出方程的解;如果没有,说明理由.(2)一个立方体的顶点标上+1或一1,面上标上一个数,它等于这个面的4个顶点处的数的乘积,这样所标的14个数的和能否为0?8.甲、乙两人玩纸牌游戏,甲持有全部的红桃牌(A 作1,J ,Q ,K 分别作11,12,13,不同),乙持有全部的黑桃牌,两人轮流出牌,每次出一张,得到一对牌,出完为止,共得到13对牌,每对牌彼此相减,问这13个差的乘积的奇偶性能否确定?9.在1,2,3,…,1998之前任意添上“十”或“一”号,然后相加,这些和中最小的正整数是 . 10.1,2,3,…,98共98个自然数,能够表示成两整数平方差的数的个数是 .(全国初中数学联赛试题)11.在一次象棋比赛中,每两个选手恰好比赛一局,每局赢者记2分,输者记0分,平局每个选手各记1分,今有4个人统计百这次比赛中全部得分总数,由于有的人粗心,其数据各不相同,分别为1979,1980,1984,1985,经核实,其中有一人统计无误,则这次比赛共有 名选手参加.12.已知p 、q 、pq+1都是质数,且p 一q>40,那么满足上述条件的最小质数p = ;q = .(第15届“希望杯”邀请赛试题)13.设a ,b 为整数,给出下列4个结论:(1)若a+5b 是偶数,则a 一3b 是偶数; (2)若a 十5b 是偶数,则a 一3b 是奇数;(3)若a+5b 是奇数,则a 一3b 是偶数; (4)若a+5b 是奇数,则a 一3b 是奇数其中结论正确的个数是( ).A .0个B .2个C .4个D . 1个或3个14.下面的图形,共有( )个可以一笔画(不重复也不遗漏;下笔后笔不能离开纸) .A .0B .1C .2D .3 ( “五羊杯”竞赛题)15.π的前24位数值为3.14159265358979323846264…,在这24个数字中,随意地逐个抽取1个数字,并依次记作a 1,a 2,…a 24,则(a 1一a 2)( a 3一a 4)…(a 23一a 24)为( ).A .奇数B .偶数C .奇数或偶数D .质数16.没标有A、B、C、D、C、F、G记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A、C、E、G 4盏灯开着,其余3盏灯是关的,小刚从灯A开始,顺次拉动开关,即从A到G,再从A始顺次拉动开关,即又从A到G…,他这样拉动了1999次开关后,问哪几盏是开的?17.有1997枚硬币,其中1000枚国徽朝上,997枚国徽朝下.现要求每一次翻转其中任意6枚,使它们的国徽朝向相反,问能否经过有限次翻转之后,使所有硬币的国徽都朝上?给出你的结论,并给予证明.(太原市竞赛题)18.对一个正整数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到1时操作停止,求经过9次操作变为l的数有多少个?( “华杯赛”决赛题) 19.高为50cm,底面周长为50cm的圆柱,在此圆柱的侧面上划分(如图所示)边长为lcm的正方形,用四个边长为lcm的小正方形构成“T”字形,用此图形是否能拼成圆柱侧面?试说明理由.(汉城国际数学竞赛题)参考答案。
竞赛专题:奇数、偶数及奇偶分析
奇数、偶数及奇偶分析一、填空题(共8小题,每小题4分,满分32分)1.若按奇偶性分类,则12+22+32+…+20022002是_________数.2.能不能在下式的各个方框中分别填入“+”号或“一”号,使等式成立?答:_________.3.已知三个质数a、b、c满足a+b+c+abc=99,那么|a﹣b|+|b﹣c|+|c﹣a|的值等于_________.4.在1,2,3,…,1998之前任意添上“十”或“一”号,然后相加,这些和中最小的正整数是_________.5.1,2,3,…,98共98个自然数中,能够表示成两整数的平方差的个数是_________.6.在一次象棋比赛中,每两个选手恰好比赛一局,每局赢者记2分,输者记0分,平局每个选手各记1分,今有4个人统计百这次比赛中全部得分总数,由于有的人粗心,其数据各不相同,分别为1979,1980,1984,1985,经核实,其中有一人统计无误,则这次比赛共有_________名选手参加.7.已知p、q、pq+1都是质数,且p﹣q>40,那么满足上述条件的最小质数p=_________,q=_________.8.三个质数之和为86,那么这三个质数是_________.二、选择题(共10小题,每小题3分,满分30分)9.已知n为整数,现有两个代数式:(1)2n+3,(2)4n﹣1,其中,能表示“任意奇数”的()A.只有(1)B.只有(2)C.有(1)和(2)D.一个也没有10.如果a,b,c都是正整数,且a,b是奇数,则3a+(b﹣1)2c是()A.只当c为奇数时,其值为奇数B.只当c为偶数时,其值为奇数C.只当c为3的倍数,其值为奇数D.无论c为任何正楚数,其值均为奇数11.设a,b为整数,给出下列4个结论:(1)若a+5b是偶数,则a﹣3b是偶数;(2)若a+5b是偶数,则a﹣3b是奇数;(3)若a+5b是奇数,则a﹣3b是偶数;(4)若a+5b是奇数,则a﹣3b是奇数,其中结论正确的个数是()A.0个B.2个C.4个D.1个或3个12.下面的图形,共有()个可以一笔画(不重复也不遗漏;下笔后笔不能离开纸)A.0 B.1 C.2 D.313.π的前24位数值为3.14159265358979323846264…,在这24个数字中,随意地逐个抽取1个数字,并依次记作a1,a2,…a24,则(a1﹣a2)(a3﹣a4)…(a23﹣a24)为()A.奇数B.偶数C.奇数或偶数D.质数14.如a、b、c是三个任意整数,那么、、()A.都不是整数B.至少有两个整数C.至少有一个整数D.都是整数15.(2001•荆州)将正偶数按下表排成五列:第1列第2列第3列第4列第5列第1行 2 4 6 8第2行16 14 12 10第3行18 20 22 24………28 26根据上面排列规律,则2000应在()A.第125行第1列B.第125行第2列C.第250行第1列D.第250行第2列16.如图,两个标有数字的轮子可以分别绕轮子的中心旋转,旋转停止时,每个轮子上方的箭头各指着轮子上的一个数字,若左图轮子上方的箭头指着的数字为a,右图轮子上方的箭头指着的数字为b,数对(a,b)所有可能的个数为n,其中a+b恰为偶数的不同数对的参数为m,则m/n等于()A.B.C.D.17.已知a、b、c中有两个奇数、一个偶数,n是整数,如果S=(a+2n+1)(b+2n+2)(c+2n+3),那么()A.S是偶数B.S是奇数C.S的奇偶性与n的奇偶性相同D.S的奇偶性不能确定三、解答题(共16小题,满分88分)18.(1)是否有满足方程x2﹣y2=1998的整数解x和y?如果有,求出方程的解;如果没有,说明理由.(2)一个立方体的顶点标上+1或一1,面上标上一个数,它等于这个面的4个顶点处的数的乘积,这样所标的14个数的和能否为0?19.甲、乙两人玩纸牌游戏,甲持有全部的红桃牌(A作1,J,Q,K分别作11,12,13,不同),乙持有全部的黑桃牌,两人轮流出牌,每次出一张,得到一对牌,出完为止,共得到13对牌,每对牌彼此相减,问这13个差的乘积的奇偶性能否确定?20.没标有A、B、C、D、C、F、G记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A、C、E、G4盏灯开着,其余3盏灯是关的,小刚从灯A开始,顺次拉动开关,即从A到G,再从A始顺次拉动开关,即又从A到G…,他这样拉动了1999次开关后,问哪几盏是开的?21.有1997枚硬币,其中1000枚国徽朝上,997枚国徽朝下.现要求每一次翻转其中任意6枚,使它们的国徽朝向相反,问能否经过有限次翻转之后,使所有硬币的国徽都朝上?给出你的结论,并给予证明.22.对一个正整数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到1时操作停止,求经过9次操作变为l的数有多少个?23.高为50cm,底面周长为50cm的圆柱,在此圆柱的侧面上划分(如图所示)边长为lcm的正方形,用四个边长为lcm的小正方形构成“T”字形,用此图形是否能拼成圆柱侧面?试说明理由.24.(1)设1,2,3,…,9的任一排列为a l,a2,a3…,a9.求证:(a l l一1)(a2﹣2)…(a9﹣9)是一个偶数.(2)在数11,22,33,44,54,…20022002,20032003,这些数的前面任意放置“+”或“一”号,并顺次完成所指出的运算,求出代数和,证明:这个代数和必定不等于2003.25.已知x1、x2、x3、…、x n都是+1或﹣1,并且,求证:n是4的倍数.26.游戏机的“方块”中共有下面7种图形.每种“方块”都由4个l×l的小方格组成.现用这7种图形拼成一个7×4的长方形(可以重复使用某些图形).问:最多可以用这7种图形中的几种图形?27.桌上放着七只杯子;杯口全朝上,每次翻转四个杯子:问能否经过若干次这样的翻动,使全部的杯子口都朝下_________(能或不能)?28.在1,2,3,…,2005前面任意添上一个正号或负号,它们的代数和是奇数还是偶数_________?29.“元旦联欢会上,同学们互赠贺卡表示新年的:良好祝愿.“无论人数是什么数,用来交换的贺卡的张数总是偶数.”这句话正确吗?试证明你的结论.30.桌面上放有1993枚硬币,第1次翻动1993枚,第2次翻动其中的1992枚,第3次翻动其中的1991枚,…,第1993次翻动其中一枚,试问:能否使桌面上所有的1993枚硬币原先朝下的一面都朝上?并说明理由.31.在6张纸片的正面分别写上整数:1、2、3、4、5、6,打乱次序后,将纸片翻过来,在它们的反面也随意分别写上1﹣6这6个整数,然后,计算每张纸片的正面与反面所写数字之差的绝对值,得出6个数.请你证明:所得的6个数中至少有两个是相同的.32.有一只小渡船往返于一条小河的左右两岸之间,问:(1)若最初小船是在左岸,往返若干次后,它又回到左岸,那么这只小船过河的次数是奇数还是偶数?如果它最后到了右岸,情况又是怎样呢?(2)若小船最初在左岸,它过河99次之后,是停在左岸还是右岸?33.黑板上写了三个整数,任意擦去其中一个,把它改写成另两个数的和减去1,这样继续下去,得到1995、1996、1997,问原来的三个数能否是2、2、2?新课标七年级数学竞赛培训第25讲:奇数、偶数及奇偶分析参考答案与试题解析一、填空题(共8小题,每小题4分,满分32分)1.若按奇偶性分类,则12+22+32+…+20022002是奇数.考点:整数的奇偶性问题。
数的奇偶性判断
数的奇偶性判断在数学中,我们经常会遇到需要判断一个数是奇数还是偶数的情况。
奇偶性判断是数学中的基本概念之一,也是很容易理解和应用的。
本文将介绍数的奇偶性判断的方法和应用。
一、奇偶数的定义奇数是指不能被2整除的自然数,例如1、3、5等。
偶数是指能够被2整除的自然数,例如2、4、6等。
二、奇偶性判断的方法1. 除法法则判断一个数的奇偶性最简单的方法就是用该数除以2,如果能整除,那么这个数就是偶数,否则就是奇数。
例如,对于数7来说,用7除以2,得到的商是3余1,不能整除,所以7是奇数。
而对于数12来说,用12除以2,得到的商是6,可以整除,所以12是偶数。
这种方法简单直观,适用于任何自然数。
但对于大数来说,可能需要进行较复杂的运算,效率较低。
2. 末位法则我们发现,一个数是奇数还是偶数,主要取决于它的末位数字。
奇数的末位数字一定是1、3、5、7、9中的一个,而偶数的末位数字一定是0、2、4、6、8中的一个。
因此,判断一个数的奇偶性,只需要查看它的末位数字即可。
例如,对于数27来说,它的末位数字是7,属于奇数,所以27是奇数。
对于数48来说,它的末位数字是8,属于偶数,所以48是偶数。
这种方法简单快捷,适用于任何自然数。
对于大数来说,只需查看末位数字,无需进行除法运算,效率较高。
三、奇偶性判断的应用1. 奇偶性判断在计算机科学中的应用在计算机科学中,奇偶性判断常常作为编程语言中的基本操作。
比如,在循环中判断某个数的奇偶性,可以通过位运算操作来实现,提高程序的执行效率。
2. 奇偶性判断在数学问题中的应用奇偶性判断在解决数学问题时也经常会用到。
比如,判断两个数的和、差、积、商的奇偶性,可以根据奇偶性的性质来进行推导和分析。
四、总结通过除法法则和末位法则,我们可以方便地判断一个数的奇偶性。
奇偶性判断在数学中有广泛的应用,也是计算机科学中的基本操作之一。
在实际应用中,我们根据具体问题的需要,选择合适的方法进行奇偶性判断,以提高计算效率和问题求解的准确性。
奇数偶数的讲解方法
奇数偶数的讲解方法在数学中,奇数和偶数是一对重要的概念。
学好奇数偶数的概念和判断方法,对于学习数学以及解决实际问题都具有重要意义。
本文将为大家介绍奇数和偶数的定义、性质以及判断方法。
一、奇数的定义和性质奇数是自然数中不能被2整除的数,用符号n表示。
奇数的性质有以下几个方面:1. 奇数与2的关系:任何奇数n都可以表示为2k+1的形式,其中k为整数。
例如,3是奇数,可以表示为2×1+1。
2. 奇数的特点:奇数末尾的数字只能是1、3、5、7、9。
3. 奇数相加的结果:任何两个奇数相加,其结果一定是偶数。
例如,3+5=8。
4. 奇数相乘的结果:任何两个奇数相乘,其结果仍然是奇数。
例如,3×5=15。
二、偶数的定义和性质偶数是自然数中可以被2整除的数,用符号n表示。
偶数的性质有以下几个方面:1. 偶数与2的关系:任何偶数n都可以表示为2k的形式,其中k为整数。
例如,4是偶数,可以表示为2×2。
2. 偶数的特点:偶数末尾的数字只能是0、2、4、6、8。
3. 偶数相加的结果:任何两个偶数相加,其结果仍然是偶数。
例如,4+6=10。
4. 偶数相乘的结果:任何两个偶数相乘,其结果仍然是偶数。
例如,2×8=16。
三、奇数偶数的判断方法判断一个数是奇数还是偶数有以下几种方法:1. 末位判断法:直接观察数的末尾数字,如果是1、3、5、7、9,则为奇数;如果是0、2、4、6、8,则是偶数。
2. 除法判断法:用给定的数除以2,如果能整除,则是偶数;如果不能整除,则是奇数。
3. 二进制判断法:将给定数转换为二进制表示形式,如果最后一位是0,则是偶数;如果最后一位是1,则是奇数。
四、奇数偶数在实际问题中的应用奇数偶数的概念和判断方法在实际生活和解决问题中有广泛应用。
以下是一些例子:1. 分组:在分组活动中,可以利用奇数偶数的判断方法将人员或物品分为两组。
例如,将奇数号码分为一组,偶数号码分为另一组。
奇数和偶数ppt课件
奇数和偶数的分解质因数
奇数的质因数分解形式为
(p_1^{a_1} p_2^{a_2} ldots p_n^{a_n}),其中(p_i)是质数,(a_i)是正整数。
偶数的质因数分解形式为
(p_1^{a_1} p_2^{a_2} ldots p_n^{a_n} times 2^m),其中(p_i)是质数,(a_i) 是正整数,(m)是非负整数。
02
奇数和偶数的应用
日常生活中的应用
01
02
03
建筑学
建筑设计中的对称性常常 涉及到奇数和偶数的概念 ,例如建筑物的中心点、 对称轴等。
交通规则
在道路交通中,车辆的行 驶规则常涉及到奇数和偶 Байду номын сангаас的概念,例如单行道、 限行规则等。
体育比赛
在体育比赛中,比赛结果 常常涉及到奇数和偶数的 概念,例如得分、胜负关 系等。
在密码学中,奇偶性常常被用于加密 和解密算法,例如奇偶校验码等。
算法设计
在算法设计中,奇偶性常常被用于优 化算法的性能,例如快速排序算法中 的奇偶交替下沉等。
03
奇数和偶数的数学性质
奇数和偶数的和与积的性质
奇数与奇数相加得偶数: 如3+5=8
偶数与偶数相加得偶数: 如4+6=10
奇数与偶数相乘得奇数: 如3x4=12
艺术中的奇偶数
01
介绍艺术作品中如何运用奇偶数的元素,如绘画、音乐、建筑
等,探讨它们所表达的美感和意义。
文学作品中的奇偶数
02
解析文学作品中的奇偶数运用,如诗歌、小说等,探讨它们所
传达的思想和情感。
生活中的奇偶数
03
让孩子们观察生活中的奇偶数现象,如物品的排列、建筑的对
奇偶分析法
由于奇偶性是整数的固有属性,是整数的不 变性,通过分析整数的奇偶性来推理、论证 有关问题的方法称为“奇偶分析法”,本讲 我们将举例说明“奇偶分析法”的应用。
奇数和偶数具有以下运算性质: ①奇数±奇数=偶数 ②偶数±偶数=偶数 ③奇数±偶数=奇数 ④a+(a+1)=奇数,相邻两个整数相加是奇数; a×(a+1)=偶数,相邻的两个整数之积必为偶数; ⑤奇数个奇数之和为奇数,偶数个奇数之和为偶数; ⑥若干个奇数之积是奇数;若干个整数相乘,如果 其中有一个数是偶数,那么乘积是偶数;
【练习1】已知A,B,C是任意整数, 试问: (A-B)×(B-C)×(C-A),可以是奇 数吗?为什么?
分析:由抽屉原理可知,A.B.C三个数中必有两个数具有相 同奇偶数,即A-B,B-C,C-A中必有一个偶数。
【例题2】在图9-1中有15个数,选出5个数,使它们之和等 于30,你能做到吗?为什么?
【分析】如果你一一去找,去试,去算,那就太费事了。因 为你无论选择哪5个数,它们的和总不等于30,而且你又不 能
证实这是做不到的。解决此问题最简单的方法是用奇偶分析 法。
【解答】30是偶数,和为偶数的情数+偶数=偶数
(3)偶数个奇数的和为偶数
因此,不能做到。
【体会】在解决这个问题的过程中,你有什么体会?有什么 需要补充?请你写在下面:
类型三 奇数之积是奇数;等式两边的奇偶性
【例题3】已知等式1993×□+4×□=6063,其 中□都是自然数,试求这两个□的和。
《奇偶性》 讲义
《奇偶性》讲义在数学的广阔天地中,奇偶性是一个既基础又重要的概念。
它看似简单,却蕴含着丰富的规律和应用,就像一把神奇的钥匙,能为我们打开许多数学问题的大门。
让我们先来明确一下什么是奇数和偶数。
能被 2 整除的整数称为偶数,比如 0、2、4、6 等等;不能被 2 整除的整数则称为奇数,像是 1、3、5、7 这样。
奇偶性有一些非常基本的性质。
首先,偶数+偶数=偶数,比如2 + 4 = 6;奇数+奇数=偶数,比如3 + 5 = 8;而偶数+奇数=奇数,例如 2 + 3 = 5。
这几条性质在计算和判断结果的奇偶性时非常有用。
我们再来看乘法的情况。
偶数×偶数=偶数,例如 2×4 = 8;奇数×奇数=奇数,比如 3×5 = 15;偶数×奇数=偶数,像 2×3 = 6。
这些基本性质有什么用呢?其实在解决很多数学问题时,它们能帮我们快速判断结果的大致情况,或者简化计算过程。
比如说,在数列中,如果一个数列的通项公式是关于 n 的一次式,且 n 为自然数,那么通过判断 n 的奇偶性,我们就能知道这个数列中奇数项和偶数项的一些规律。
再看代数运算中的应用。
如果我们要化简一个含有未知数的式子,判断其奇偶性可以帮助我们简化计算。
比如,有一个函数 f(x) = x^3 3x,我们想判断它的奇偶性。
先来看f(x) =(x)^3 3(x) = x^3 + 3x =(x^3 3x) = f(x),所以这个函数是奇函数。
在实际生活中,奇偶性也有不少应用。
比如说,安排座位的时候,如果座位总数是奇数,那么必然会有一排的座位数和其他排不一样;在电路设计中,利用奇偶性可以优化电路布局,提高效率和稳定性。
接下来,我们深入探讨一下奇偶性在方程中的应用。
考虑一个方程 x^2 5x + 6 = 0 ,我们可以通过因式分解得到(x 2)(x 3) = 0 ,从而解得 x = 2 或 x = 3 。
奇偶分析知识讲解
例4奇偶分析我们知道,全体自然数按被2除的余数不同可以划分为奇数与偶数两大类。
被2除余1的属于一类,被2整除的属于另一类。
前一类中的数叫做奇数,后一类中的数叫做偶数。
尖于奇偶数有一些特殊性质,比如,奇数工偶数,奇数个奇数之和是奇数等。
灵活、巧妙、有意识地利用这些性质,加上正确的分析推理,可以解决许多复杂而有趣的问题。
用奇偶数性质解题的方法称为奇偶分析,善于运用奇偶分分析与解:如果一个一个去找、去试、去算,那就太费事了。
因为无论你选择哪5个数,它们的和总不等于30,而且你还不敢马上断言这是做不到的。
最简单的方法是利用奇偶数的性质来解,因为奇数个奇数之和仍是奇数,表中15个数全是奇数,所以要想从中找出5个使它们的和为偶数,是不可能的。
例2小华买了一本共有96张练习纸的练习本,并依次将它的各面编号(即由第1面一直编到第192面)。
小丽从该练习本中撕下其中25张纸,并将写在它们上面的50个编号相加。
试问,小丽所加得的和数能否为2000?解:不能由于每一张上的两数之和都为奇数,而25个奇数之和为奇数,故不可能为2000。
说明:“相邻两个自然数的和一定是奇数”,这条性质几乎是显然的,但在解题过程中,能有意识地运用它却不容易做到,这要靠同学们多练习、多总结。
例3 有98个孩子,每人胸前有一个号码,号码从1到98各不相同。
试问:能否将这些孩子排成若干排,使每排中都有一个孩子的号码数等于同排中其余孩子号码数的和?并说明理由。
解:不能如果可以按要求排成,每排中都有一个孩子的号码数等于同排中其余孩子号码数的和,那么每一排中各号码数之和都是某一个孩子号码数的2倍,是个偶数所以这98个号码数的总和是个偶数,但是这98个数的总和为1+2+…+9499X 49,是个奇数,矛盾!所以不能按要求排成。
圈任意涂上红色或蓝色。
问:有无可能使得在同一条直线上的红圈数都是奇数?请说明理由。
如果每条直线上的红圈数都是奇数,而五角星有五条边,奇数个奇数之和为奇圆圈是两圈都要计算两次,因此,每个红圈也都算了两数,那么五条线上的红圈共有奇数个(包括重复的)。
偶数和奇数的讲解教案及反思
偶数和奇数的讲解教案及反思教案标题:偶数和奇数的讲解教案及反思教学目标:1. 理解和区分偶数和奇数的概念。
2. 能够准确判断给定数字是偶数还是奇数。
3. 能够运用所学概念解决与偶数和奇数相关的问题。
教学准备:1. 教师准备:白板、黑板笔、教学课件、数字卡片、练习题。
2. 学生准备:纸和铅笔。
教学过程:引入活动:1. 教师展示一张数字卡片,上面写着一个数字,例如:8。
2. 教师问学生这个数字是偶数还是奇数,并请学生解释他们的答案。
3. 教师引导学生思考数字的特点,从而引出偶数和奇数的概念。
讲解概念:1. 教师通过展示数字卡片的方式,依次介绍偶数和奇数的定义:- 偶数:能被2整除的数字,如2、4、6、8等。
- 奇数:不能被2整除的数字,如1、3、5、7等。
2. 教师在黑板上绘制一个数字线,从0到10,并在每个数字下方标注是偶数还是奇数,以帮助学生更直观地理解概念。
示范与练习:1. 教师示范判断一个数字是偶数还是奇数的方法,例如:14是偶数,因为它能被2整除。
2. 教师与学生一起进行一些练习题,让学生判断给定数字的属性,并解释他们的答案。
3. 教师提供一些挑战性的问题,鼓励学生主动思考和解决,例如:找到一种方法,能够判断任何一个数字是偶数还是奇数。
巩固与拓展:1. 学生分组进行小组活动,每个小组设计一道关于偶数和奇数的问题,并向其他小组提出挑战。
2. 学生完成练习题,巩固所学知识。
3. 学生自主拓展,寻找日常生活中偶数和奇数的应用场景,并进行分享。
反思:1. 教师与学生共同回顾所学内容,确认学生是否达到了教学目标。
2. 教师鼓励学生分享自己的学习体会和困惑,以促进思维的深化和讨论的展开。
3. 教师总结本节课的教学过程,反思教学方法和教案设计,以便在今后的教学中做出改进。
通过以上教案的设计,学生将能够清晰地理解和区分偶数和奇数的概念,并能够灵活运用所学知识解决相关问题。
教师在教学过程中应注重启发学生的思维,激发学生的兴趣,培养学生的自主学习能力。
奇偶知识点总结
奇偶知识点总结一、奇偶数的定义1. 自然数的分类在自然数中,我们可以将所有的数分为两类:奇数和偶数。
奇数是指能够被2整除,余数为1的自然数,如1、3、5、7等;偶数则是指能够被2整除,余数为0的自然数,如2、4、6、8等。
2. 奇偶数的表示奇偶数可以用数学符号来表示,通常用字母n表示一个任意的自然数,如果n是偶数,则可以表示为n=2k,其中k是一个整数;如果n是奇数,则可以表示为n=2k+1,其中k是一个整数。
3. 奇偶数的判断判断一个数是奇数还是偶数,可以通过对2取余来实现。
如果一个数除以2的余数为0,则它是偶数;如果余数为1,则它是奇数。
二、奇偶数的性质1. 奇数的性质奇数的平方是奇数,奇数与奇数相加得到的结果是偶数,奇数与偶数相乘得到的结果是偶数。
2. 偶数的性质偶数的平方是偶数,偶数与偶数相加得到的结果是偶数,偶数与奇数相乘得到的结果是偶数。
3. 奇偶数的运算在进行奇偶数的运算时,奇数与奇数相加得到的结果是偶数,奇数与偶数相加得到的结果是奇数,偶数与偶数相加得到的结果是偶数;奇偶数相乘得到的结果都是偶数。
4. 奇数的递增规律奇数具有递增的规律,即从1开始,依次加2,就可以得到所有的奇数。
5. 偶数的递增规律偶数也具有递增的规律,即从2开始,依次加2,就可以得到所有的偶数。
三、奇偶数的相关定理1. 奇数与奇数相加等于偶数定理:两个奇数相加得到的结果一定是偶数。
证明:假设有两个奇数a和b,可以表示为a=2m+1,b=2n+1,其中m和n都是整数。
那么a+b=2m+1+2n+1=2(m+n)+2=2(m+n+1),得到的结果是偶数。
因此,两个奇数相加得到的结果一定是偶数。
2. 奇数与偶数相乘等于偶数定理:一个奇数乘以一个偶数得到的结果一定是偶数。
证明:假设有一个奇数a和一个偶数b,则可以表示为a=2m+1,b=2n,其中m和n都是整数。
那么a*b=(2m+1)*2n=2(m+1)2n,得到的结果是偶数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十五讲奇数、偶数与奇偶分析整数按能否被2整除分为两大类:奇数和偶数,奇数与偶数有下列基本性质:1.奇数≠偶数2.两个整数相加(减)或相乘,结果的奇偶性如下表所示3.若干个奇数之积是奇数,偶数与任意整数之积是偶数;偶数个奇数的和为偶数,若干个偶数的和为偶数.4.设m、n是整数,则m土n,nm±的奇偶性相同.5.设m是整数,则m与m,m n的奇偶性相同.奇偶性是整数的固有属性,通过分析整数的奇偶性来解决问题的方法叫奇偶分析法.例题【例1】三个质数之和为86,那么这三个质数是.(“希望杯”邀请赛试题)思路点拨运用奇数、偶数、质数、合数性质,从分析三个加数的奇偶性人手.注:18世纪的哥尼斯堡,有7座桥把这儿的普雷格尔河中两个小岛与河岸联系起来,在这迷人的地方,人们议论着一个有趣的问题.一个游人怎样才能不重复地一次走遍7座桥,而最后又回到出发点.1736年彼得堡院士欧拉巧妙地解决了这个问题.欧拉把一个复杂的实际问题化为一个简单的几何图形,他指出只要我们能从一点出发,不重复地一笔把这样的图形画出来,那么就可说明游人能够不重复地一次走遍这7座桥,这就是著名的“一笔画”问题的来历.利用奇偶分析不难得到一般的结论:凡是能一笔画成的图形,它上面除了起点和终点外的每一个点总是一笔进来,一笔出去.因此,除了起点和终点外的每一个点都有偶数条线和它相连.简单地说,当且仅当图形中的奇结点(每点出发有奇数字线)的个数不大于2时,这个图形才能一笔画.【例2】如果a、b、c是三个任意的整数,那么222accbba+++、、().A.都不是整数B.至少有两个整数C.至少有一个整数D.都是整数(2001年TI杯全国初中数学竞赛题)思路点拨举例验证或从a、b、c的奇偶性说明.【例3】(1)设1,2,3,…,9的任一排列为a l,a2,a3…,a9.求证:(a l l一1)( a2—2)…(a9—9)是一个偶数.(2)在数11,22,33,44,54,…20022002,20032003,这些数的前面任意放置“+”或“一”号,并顺次完成所指出的运算,求出代数和,证明:这个代数和必定不等于2003.思路点拨(1)转换角度考察问题,化积的奇偶性为和的奇偶性来研究;(2)由于任意添“十”号或“一”号,形式多样,因此不可能一一尝试再作解答,从奇数、偶数的性质人手.【例4】已知n x x x x 、、、、 321都是+1或一1,并且011433221=+++++-x x x x x x x x x x n n n ,求证:n 是4的倍数.思路点拨 可以分两步,先证n 是偶数2k ,再证明k 是偶数,解题的关键是从已知等式左边各项的特点受到启发,挖掘隐含的一个等式.【例5】 游戏机的“方块”中共有下面?种图形.每种“方块”都由4个l ×l 的小方格组成.现用这7种图形拼成一个7× 4的长方形(可以重复使用某些图形).问:最多可以用这7种图形中的几种图形?思路点拨 为了形象化地说明问题,对7×4的长方形的28个小方格黑白相间染色,除“品字型”必占3个黑格1个白格或3个白格1个黑格,其余6个方格各占2个黑格2个白格.注:对同一个数学对象,从两个方向考虑(n 项和与积),再将这两个方面合在一起整体考虑,得出结论,这叫计算两次原理,通过计算两次可以建立方程,证明恒等式等.在一定的规则下,进行某种操作或变换,问是否(或证明)能够达到一个预期的目的,这就是所谓操作变换问题,此类问题变化多样,解法灵活,解题的关键是在操作变换中,挖掘不变量,不变性.一些非常规数字问题需要恰当地数学化,以便计算或推理.引入字母与赋值法是数学化的两种常用方式方法.所谓赋值法就是在解题时,将问题中的某些元素用适当的数表示,然后利用这些数值的大小,正负性、奇偶性等进行推理论证的一种解题方法.【例6】桌上放着七只杯子;杯口全朝上,每次翻转四个杯子:问能否经过若干次这样的翻动,使全部的杯子口都朝下?思路点拨 这不可能.我们将口向上的杯于记为:“0”,口向下的杯子记为“1”.开始时,由于七个杯子全朝上,所以这七个数的和为0,是个偶数.一个杯子每翻动一次,所记数由0变为1,或由l 变为0,改变了奇偶性.每一次翻动四个杯子,因此,七个之和的奇偶性仍与原来相同.所以,不论翻动多少次,七个数之和仍为偶数.而七个杯子全部朝下,和为7,是奇数,因此,不可能.整数可以分为奇数和偶数两类.【例7】在1,2,3,…,2005前面任意添上一个正号或负号,它们的代数和是奇数还是偶数?思路点拨 两个整数之和与这两个整数之差的奇偶性相同,只要知道1+2+3+…+2005的奇偶性即可.因两个整数的和与差的奇偶性相同,所以,在1,2,3,…,2005中每个数前面添上正号或负号,其代数和应与1+2+3+…+2005的奇偶性相同,而1+2+3+…+2005=21(1+ 2005)×2005=1003 ×2005为奇数;因此,所求代数和为奇数.注:抓住“a+b 与a —b 奇偶性相同”,通过特例1十2十3十…十2005得到答案.【例8】“ 元旦联欢会上,同学们互赠贺卡表示新年的:良好祝愿.“无论人数是什么数,用来交换的贺卡的张数总是偶数.”这句话正确吗?试证明你的结论.思路点拨 用分类讨论的思想方法,从“无论人数是什么数”入手,考虑人数为奇数或偶数的两种情况.这句话是正确的.下面证明之.若联欢会上的人数为偶数,设为2m (m 为整数),则每个人赠送给同学们的贺卡张数为奇数,即(2m —1).那么,贺卡总张数为2m(2m —1)=4m 2-2m ,显然是偶数.若联欢会上的人数为奇数,设为2m+1(m 为整数,则每个人赠送给同学们的贺卡张数应是2m ,为偶数.贺卡总张数为(2m+1)·2m ,仍为偶数.故“用来交换的贺卡张数总是偶数”是对的.注:按奇数和偶数分类考虑问题是常见的解决此类问题的策略之一.【例9】桌面上放有1993枚硬币,第1次翻动1993枚,第2次翻动其中的1992枚,第3次翻动其中的1991枚,…,第1993次翻动其中一枚,试问:能否使桌面上所有的1993枚硬币原先朝下的一面都朝上?并说明理由.思路点拨 若要把一枚硬币原先朝下的一面朝上,应该翻动该硬币奇数次.因此,要把1993枚硬币原先朝下的一面都朝上,应该翻动这1993枚硬币的总次数为奇数.现在1993次翻动的总次数为1+2+3+…+1993=1993×(1+1993)/2=1993×997是个奇数,故猜想可以使桌面上1993枚硬币原先朝下的一面都朝上.理由如下:按规定,1993次翻动的总次数为1+2+3+…+1993=1993×(1+1993)/2=1993×997,所以翻动的次数为奇数,而且可见每个硬币平均翻动了997次.而事实上,只要翻动一枚硬币奇数次,就能使这枚硬币原先朝下的一面朝上.按如下的方法进行翻动: 第1次翻动全部1993枚,第2次翻动其中的1992枚,第1993次翻动第2次未翻动的那1枚,第3次翻动其中的1991枚,第1992次翻动第3次未翻动的2枚,第997次翻动其中的997枚,第998次翻动第997次未翻动的996枚.这样,正好每枚硬币被翻动了997次,就能使每一枚硬币原来朝下的一面都朝上. 注:灵活、巧妙地利用奇俩性分析推理,可以解决许多复杂而有趣的问题,并有意想不到的效果.【例10】在6张纸片的正面分别写上整数:1、2、3、4、5、6,打乱次序后,将纸片翻过来,在它们的反面也随意分别写上1-6这6个整数,然后,计算每张纸片的正面与反面所写数字之差的绝对值,得出6个数.请你证明:所得的6个数中至少有两个是相同的. 思路点拨 从反面人手,即设这6个数两两都不相等,利用bi a i -与i i b a - (i =1,2,3,4,5,6)的奇偶性相同,引入字母进行推理证明.设6张卡片正面写的数是654321a a a a a a 、、、、、,反面写的数对应为654321b b b b b b 、、、、、,则这6张卡片正面写的数与反面写的数的绝对值分别为11b a -,22b a -,33b a -,44b a -,55b a -,66b a -.设这6个数两两都不相等,则它们只能取0,1,2,3,4,5这6个值.于是11b a -+22b a -+33b a -+44b a -+55b a -+66b a -=0+1+2+3+4+5=15是个奇数. 另一方面,bi a i -与i i b a - (i =1,2,3,4,5,6)的奇偶性相同.所以11b a -+22b a -+33b a -+44b a -+55b a -+66b a -与(a 1一b 1)+(a 2一b 2)+(a 3一b 3)+(a 4一b 4)+(a 5一b 5)+(a 6一b 6)= )(654321a a a a a a +++++一)(654321b b b b b b +++++ =(1+2+3+4+5+6)一(1+2+3+4+5+6)=O 的奇偶性相同,而0是个偶数,15是奇数,两者矛盾. 所以,11b a -,22b a -,33b a -,44b a -,55b a -,66b a -这6个数中至少有两个是相同的.注:反证法是解决奇、偶数问题中常用的方法.【例11】有一只小渡船往返于一条小河的左右两岸之间,问:(1)若最初小船是在左岸,往返若干次后,它又回到左岸,那么这只小船过河的次数是奇数还是偶数?如果它最后到了右岸,情况又是怎样呢?(2)若小船最初在左岸,它过河99次之后,是停在左岸还是右岸?思路点拨 (1)小船最初在左岸,过一次河就到了右岸,再过一次河就由右岸回到左岸,即每次由左岸出发到右岸后再回到左岸,都过了两次河.因此,小船由左岸开始,往返多次后又回到左岸,则过河的次数必为2的倍数,所以是偶数.同样的道理,不难得出,若小船最后停在右岸,则过河的次数必为奇数.(2)通过(1),我们发现,若小船最初在左岸,过偶数次河后,就回到左岸;过奇数次河后,就停在右岸.现在小船过河99次,是奇数次.因此,最后小船该停在右岸.注 关键是对过河次数的理解:一个单程,即由左岸到右岸(或由右岸到左岸)就过河一次;往返一个来回就过河两次.【例12】黑板上写了三个整数,任意擦去其中一个,把它改写成另两个数的和减去1,这样继续下去,得到1995、1996、1997,问原来的三个数能否是2、2、2?思路点拨 如果原来的三个整数是2、2、2,即三个偶数,操作一次后,三个数变成二偶一奇,这时如果擦去其中的奇数,操作后三个数仍是二偶一奇.如果擦去的是其中的一个偶数,操作后三个数仍是二偶一奇.因此,无论怎样操作,得到的三个数都是二偶一奇,不可能得到1995、1996、1997.所以,原来的三个数不可能是2、2、2.注 解决本题的诀窍在于考查数字变化后的奇偶性.【例13】(苏州市中考题)将正偶数按下表排成五列:第1列 第2列 第3列 第4列 第5列第1行 2 4 6 8第2行 16 14 12 10第3行 18 20 22 24… … 28 26根据上面的排列规律,则2000应位于( )A .第125行,第1列B .第125行,第2列C .第250行,第1列D .第250行,第2列思路点拨 观察表格,第1行最右边的数为8,第2行最左边的数为16,第3行最右边的数为24,于是可猜测:当行数为奇数时,该行最右边的数为8×行数;当行数为偶数时,该行最左边的数为8×行数.通过验证第4行、第5行、第6行知,上述猜想是正确的,因为2000=8×250,所以2000应在第250行,又因为250为偶数,故2000应在第250行最左边,即第250行第1列,故应选C .注:观察、寻找规律是解决这类问题的妙招.【例14】(2000年山东省竞赛题)如图18—1,两个标有数字的轮子可以分别绕轮子的中心旋转,旋转停止时,每个轮子上方的箭头各指着轮子上的一个数字.若左轮子上方的箭头指着的数字为a ,右轮子上方的箭头指着的数字为b ,数对(a ,b)所有可能的个数为n ,其中a+b 恰为偶数的不同数对的个数为m ,则n m 等于( ) A .21 B .61 C .125 D .43 思路点拨 依题意可知所有的数对n=4×3=12,其中a+b 恰为偶数的数对m=3×1+1×2=5.因此,n m =125,故选C . 【例15】(第江苏省竞赛题)已知a 、b 、c 中有两个奇数、一个偶数,n 是整数,如果S=(a+2n+1)(b+2n 十2)(c+2n 十3),那么( )A .S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D . S 的奇偶性不能确定思路点拨 弄清a+2n+1,b+2n+2,c+2n+3的奇偶性即可.依题得:(a+2n+1)+(b+2n+2)+(c+2n+3)=a+b+c+6(n+1).∵a+b+c 为偶数,6(n+1)为偶数,∴a+b+c+6(n+1)为偶数∴a+2n+1,b+2n+2,c+2n+3中至少有一个为偶数,∴S 是偶数.故选A .注:三个数的和为偶数,则至少有一个为偶数;三个数中有一个为偶数,则三数之和为偶数.学力训练1.若按奇偶性分类,则12+22+32+…+20022002是 数.2.能不能在下式, 的各个方 框中分别填人“+”号或“一”号,使等式成立?答: .3.已知三个质数a 、b 、c 满足a+b+c+abc =99,那么a c c b b a -+-+-的值等于 .4.已知n 为整数,现有两个代数式:(1)2n+3,(2)4n 一1,其中,能表示“任意奇数”的( )A .只有(1)B .只有(2)C .有(1)和(2)D .一个也没有5.如果a ,b ,c 都是正整数,且a ,b 是奇数,则3a +(b 一1)2c 是( ).A .只当c 为奇数时,其值为奇数B .只当c 为偶数时,其值为奇数C .只当c 为3的倍数,其值为奇数D .无论c 为任何正楚数,其值均为奇数6.已知a ,b ,c 三个数中有两个奇数、一个偶数,n 是整数,如果S=(a+n+1)(b+ 2n+2)(c+3n+3),那么( ).(第16届江苏省竞赛题)A . S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D .S 的奇偶性不能确定7.(1)是否有满足方程x 2-y 2=1998的整数解x 和y?如果有,求出方程的解;如果没有,说明理由.(2)一个立方体的顶点标上+1或一1,面上标上一个数,它等于这个面的4个顶点处的数的乘积,这样所标的14个数的和能否为0?8.甲、乙两人玩纸牌游戏,甲持有全部的红桃牌(A 作1,J ,Q ,K 分别作11,12,13,不同),乙持有全部的黑桃牌,两人轮流出牌,每次出一张,得到一对牌,出完为止,共得到13对牌,每对牌彼此相减,问这13个差的乘积的奇偶性能否确定?9.在1,2,3,…,1998之前任意添上“十”或“一”号,然后相加,这些和中最小的正整数是 .10.1,2,3,…,98共98个自然数,能够表示成两整数平方差的数的个数是 .(全国初中数学联赛试题)11.在一次象棋比赛中,每两个选手恰好比赛一局,每局赢者记2分,输者记0分,平局每个选手各记1分,今有4个人统计百这次比赛中全部得分总数,由于有的人粗心,其数据各不相同,分别为1979,1980,1984,1985,经核实,其中有一人统计无误,则这次比赛共有 名选手参加.12.已知p 、q 、pq+1都是质数,且p 一q>40,那么满足上述条件的最小质数p = ; q = .(第15届“希望杯”邀请赛试题)13.设a ,b 为整数,给出下列4个结论(1)若a+5b 是偶数,则a 一3b 是偶数;(2)若a 十5b 是偶数,则a 一3b 是奇数;(3)若a+5b 是奇数,则a 一3b 是偶数;(4)若a+5b 是奇数,则a 一3b 是奇数,其中结论正确的个数是( ).A .0个B .2个C .4个D . 1个或3个14.下面的图形,共有( )个可以一笔画(不重复也不遗漏;下笔后笔不能离开纸) .A .0B .1C .2D .3( “五羊杯”竞赛题)15.π的前24位数值为3.14159265358979323846264…,在这24个数字中,随意地逐个抽取1个数字,并依次记作a1,a2,…a24,则(a1一a2)( a3一a4)…(a23一a24)为( ).A.奇数B.偶数C.奇数或偶数D.质数16.没标有A、B、C、D、C、F、G记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A、C、E、G 4盏灯开着,其余3盏灯是关的,小刚从灯A开始,顺次拉动开关,即从A 到G,再从A始顺次拉动开关,即又从A到G…,他这样拉动了1999次开关后,问哪几盏是开的?17.有1997枚硬币,其中1000枚国徽朝上,997枚国徽朝下.现要求每一次翻转其中任意6枚,使它们的国徽朝向相反,问能否经过有限次翻转之后,使所有硬币的国徽都朝上?给出你的结论,并给予证明.(太原市竞赛题) 18.对一个正整数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到1时操作停止,求经过9次操作变为l的数有多少个?( “华杯赛”决赛题)19.高为50cm,底面周长为50cm的圆柱,在此圆柱的侧面上划分(如图所示)边长为lcm的正方形,用四个边长为lcm的小正方形构成“T”字形,用此图形是否能拼成圆柱侧面?试说明理由.(汉城国际数学竞赛题)参考答案。