广东省珠海一中等六校2014届高三第三次联考数学文试题

合集下载

2024届广东省高三第三次六校联考数学试题及答案

2024届广东省高三第三次六校联考数学试题及答案

东莞中学、广州二中、惠州一中、深圳实验、珠海一中、中山纪念中学2024届高三第三次六校联考试题数学一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}0,1,2A =,集合{}2,0,1B =-,则A B = ( )A. {}0,1B. {}2,0- C. {}2,1,0- D. {}0,1,22. 若复数z 满足()34i 1z -=,则z =( )A. 1B.15C.17 D.1253. 已知非零向量a 、b 满足2b a = ,且()a a b ⊥- ,则a 与b夹角为( )A.π3B.π2C.2π3D.5π64. 已知π17tan tan 422θθ⎛⎫+=- ⎪⎝⎭,则cos 2θ=( )A. 12-B.12C. 45-D.455. 已知函数()sin2f x x =和直线l :2y x a =+,那么“直线l 与曲线()y f x =相切”是“0a =”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6. 已知a ,b 为正实数,且21a b +=,则22121a b a b+++的最小值为( )A. 1+B. 2+C. 3+D. 4+7. 已知三棱锥S ABC -如图所示,AS 、AB 、AC两两垂直,且AS AB AC ===E 、F 分别是棱AS 、BS 的中点,点G 是棱SC 靠近点C 的四等分点,则空间几何体EFG ABC -的体积为( )的A.B.C.D.8. 已知数列{}k a 为有穷整数数列,具有性质p :若对任意的{}1,2,3,4n ∈,{}k a 中存在i a ,1i a +,2i a +,…,i j a +(1i ≥,0j ≥,i ,N j *∈),使得12i i i i j a a a a n ++++++⋅⋅⋅+=,则称{}k a 为4-连续可表数列.下面数列为4-连续可表数列的是( )A. 1,1,1B. 1,1,2C. 1,3,1D. 2,3,6二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 关于平面向量,有下列四个命题,其中说法正确的是( )A 9,2a k ⎛⎫= ⎪⎝⎭,(),8b k = ,若//a b r r,则6k =B. 若a c b c =⋅⋅ 且0c ≠,则a b= C. 若点G 是ABC 的重心,则0GA GB GC ++=D. 若向量()1,1a =- ,()2,3b = ,则向量b 在向量a 上投影向量为2a10. 已知函数22si 1()s cos co n f x x x x =+-的图象为C ,以下说法中正确的是( )A. 函数()f xB. 图象C 相邻两条对称轴的距离为π2C. 图象C 关于π,08⎛⎫-⎪⎝⎭中心对称D.要得到函数in y x =的图象,只需将函数()f x 的图象横坐标伸长为原来的2倍,再向右平移π4个单位.的11. 若函数()f x 的定义域为D ,若对于任意1x D ∈,都存在唯一的2x D ∈,使得()()121f x f x +=,则称()f x 为“Ⅰ型函数”,则下列说法正确的是( )A. 函数()ln f x x =是“Ⅰ型函数”B. 函数()sin f x x =是“Ⅰ型函数”C. 若函数()f x 是“Ⅰ型函数”,则函数()1f x -也是“Ⅰ型函数”D. 已知R m ∈,若()sin f x m x =+,ππ,22x ⎡⎤∈-⎢⎥⎣⎦是“Ⅰ型函数”,则12m =12. 已知棱长为1的正方体1111ABCD A B C D -中,P 为线段1AC 上一动点,则下列判断正确的是( )A. 存在点P ,使得11//C P AB B. 三棱锥1P BC D -C. 当P 为1AC 的中点时,过P 与平面1BC DD. 存在点P ,使得点P 到直线11B C 的距离为45三、填空题:本题共45分,共20分.13. 关于x 的不等式()220ax a b x +++>的解集为()3,1-,则a b +=______.14. 已知数列{}n a 的前n 项和,21n n S =-,则210log a =_________.15. 已知函数()()221,12,1x x f x x x ⎧-≤⎪=⎨->⎪⎩,关于x 的方程()()20f x a f x -⋅=有六个不等的实根,则实数a 的取值范围是______.16. 如图,已知函数()()sin f x A x ωϕ=+(其中0A >,0ω>,π2≤ϕ)的图象与x 轴交于点A ,B ,与y 轴交于点C ,2BC BD =,π3OCB ∠=,2OA =,AD =.则函数()f x 在[]1,6上的值域为______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知n S 为数列{}n a 的前n 项和,且11a =,()211n n nS n S n n +=+++,n *∈N .(1)证明:数列n S n ⎧⎫⎨⎬⎩⎭为等差数列,并求{}n S 的通项公式;(2)若11n n n b a a +=⋅,设数列{}n b 前n 项和为n T ,求n T .18. 在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且cos cos 2cos b A a B c A +=-.(1)求角A 的值;(2)已知点D 为BC 的中点,且2AD =,求a 的最大值.19. 若二次函数()f x 满足()()25152f x f x x x +=---(1)求()f x 的解析式;(2)若函数()()ln g x x x f x =+,解关于x 的不等式:()()22g x x g +≥.20. 如图(1)所示,在ABC 中,60ABC ∠= ,过点A 作AD BC ⊥,垂足D 在线段BC上,且AD =CD =,沿AD 将CDA 折起(如图(2)),点E 、F 分别为棱AC 、AB 的中点.的(1)证明:AD EF ⊥;(2)若二面角C DA B --所成角的正切值为2,求二面角C DF E --所成角的余弦值.21. 已知数列{}n a 是公比大于0的等比数列,14a =,364a =.数列{}n b 满足:21n n nb a a =+(N n *∈).(1)求数列{}n b 的通项公式;(2)证明:{}22n n b b -是等比数列;(3)证明:)N*k n k =∑<∈22. 已知函数()()ln f x x t x =-,R t ∈(1)讨论函数()f x 的单调区间;(2)当1t =时,设1x ,2x 为两个不相等的正数,且()()12f x f x a ==,证明:121(2e)e ex x a +>-+-..东莞中学、广州二中、惠州一中、深圳实验、珠海一中、中山纪念中学2024届高三第三次六校联考试题数学一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}0,1,2A =,集合{}2,0,1B =-,则A B = ( )A. {}0,1B. {}2,0- C. {}2,1,0- D. {}0,1,2【答案】A 【解析】【分析】根据交集的定义计算可得.【详解】因为{}0,1,2A =,{}2,0,1B =-,所以{}0,1A B = .故选:A2. 若复数z 满足()34i 1z -=( )A. 1 B.15C.17D.125【答案】B 【解析】【分析】利用复数的除法运算及模长公式计算即可.【详解】由()()()134i 34i 3434i 1i 34i 34i 34i 252525z z ++-=⇒====+-+⋅-,所以15z ==.故选:B.3. 已知非零向量a 、b 满足2b a = ,且()a ab ⊥- ,则a 与b的夹角为( )A.π3B.π2C.2π3D.5π6【答案】A【解析】【分析】分析可得()0a a b ⋅-= ,利用平面向量数量积的运算性质可得出cos ,a b的值,结合平面向量夹角的取值范围可得出a 与b的夹角.【详解】因为非零向量a 、b满足2b a = ,且()a ab ⊥- ,则()2222cos ,2cos ,0a a b a a b a a b a b a a a b ⋅-=-⋅=-⋅=-=,所以,1cos ,2a b = ,又因为0,πa b ≤≤ ,故π,3a b = .因此,a 与b 的夹角为π3.故选:A.4. 已知π17tan tan 422θθ⎛⎫+=- ⎪⎝⎭,则cos 2θ=( )A. 12-B.12C. 45-D.45【答案】C 【解析】【分析】利用两角和的正切公式可得出关于tan θ的方程,解出tan θ的值,再利用二倍角的余弦公式以及弦化切可求得cos 2θ的值.【详解】因为πtan tanπtan 1174tan tan π41tan 221tan tan 4θθθθθθ++⎛⎫+===- ⎪-⎝⎭-,整理可得2tan 6tan 90θθ-+=,解得tan 3θ=,所以,222222cos sin 1tan 194cos 2cos sin 1tan 195θθθθθθθ---====-+++.故选:C.5. 已知函数()sin2f x x =和直线l :2y x a =+,那么“直线l 与曲线()y f x =相切”是“0a =”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B 【解析】【分析】根据直线l 与曲线()y f x =相切,求出2π,a k k Z =-∈,利用充分条件与必要条件的定义即可判断出结论.【详解】设函数()sin 2f x x =和直线:2l y x a =+的切点坐标为()00,x y ,则()0000'2cos 22sin 22f x x x x a ⎧==⎨=+⎩,可得2π,a k k Z =-∈,所以0a =时,直线l 与曲线()y f x =相切;直线l 与曲线()y f x =相切不能推出0a =.因此“0a =”是“直线l 与曲线()y f x =相切”的必要不充分条件.故选:B .6. 已知a ,b 为正实数,且21a b +=,则22121a b a b+++的最小值为( )A. 1+B. 2+C. 3+D. 4+【答案】D 【解析】【分析】根据给定条件,利用基本不等式“1”的妙用求解即得.【详解】正实数,a b 满足21a b +=,则221211111(2)()1(2)()a b a b a b a b a b a b+++=+++=+++2444b a a b =++≥+=+2b a a b =,即1a ==-时取等号,所以当1,1a b ==时,22121a b a b +++取得最小值4+.故选:D7. 已知三棱锥S ABC -如图所示,AS 、AB 、AC两两垂直,且AS AB AC ===E 、F 分别是棱AS 、BS 的中点,点G 是棱SC 靠近点C 的四等分点,则空间几何体EFG ABC -的体积为( )A.B. C.D.【答案】C 【解析】【分析】过点G 作//GH AC ,交SA 于点H ,证明出GH ⊥平面SAB ,计算出三棱锥C SAB -、G SEF -的体积,可得出EFG ABC C SAB G SEF V V V ---=-,即可得解.【详解】过点G 作//GH AC ,交SA 于点H ,因为AC AB ⊥,AC SA ⊥,AB AS A ⋂=,AB 、AS ⊂平面SAB ,所以,AC ⊥平面SAB ,因为//GH AC ,则GH ⊥平面SAB ,且34GH SG AC SC ==,则34GH AC ==因为E 、F 分别为SA 、BS 的中点,则(21111442SEF ABS S S ==⨯⨯=△△,所以,11133G SEF SEF V S GH -=⋅=⨯=△(3111332C SABSAB V S AC -=⋅=⨯⨯=△,因此,EFG ABC C SAB G SEF V V V ---=-==故选:C.8. 已知数列{}k a 为有穷整数数列,具有性质p :若对任意的{}1,2,3,4n ∈,{}k a 中存在i a ,1i a +,2i a +,…,i j a +(1i ≥,0j ≥,i ,N j *∈),使得12i i i i j a a a a n ++++++⋅⋅⋅+=,则称{}k a 为4-连续可表数列.下面数列为4-连续可表数列的是( )A. 1,1,1 B. 1,1,2C. 1,3,1D. 2,3,6【答案】B 【解析】【分析】根据新定义进行验证即可得.【详解】选项A 中,1233a a a ++=,和不可能为4,A 不是4-连续可表数列;选项B 中,112231231,2,3,4a a a a a a a a =+=+=++=,B 是4-连续可表数列;选项C 中,没有连续项的和为2,C 不是4-连续可表数列;选项D 中,没有连续项的和为1,D 不是4-连续可表数列.故选:B .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 关于平面向量,有下列四个命题,其中说法正确的是( )A. 9,2a k ⎛⎫= ⎪⎝⎭,(),8b k = ,若//a b r r ,则6k =B. 若a c b c =⋅⋅ 且0c ≠,则a b= C. 若点G 是ABC 的重心,则0GA GB GC ++=D. 若向量()1,1a =- ,()2,3b = ,则向量b 在向量a 上的投影向量为2a【答案】CD 【解析】【分析】利用共线向量的坐标表示可判断A 选项;利用向量垂直的表示可判断B 选项;利用三角形重心的向量性质可判断C 选项;利用投影向量的定义可判断D 选项.【详解】对于A 选项,已知9,2a k ⎛⎫= ⎪⎝⎭ ,(),8b k = ,若//a b r r ,则298362k =⨯=,解得6k =±,A 错;对于B 选项,若a c b c =⋅⋅ 且0c ≠,则()0a c b c c a b ⋅-⋅=⋅-= ,所以,a b = 或()c a b ⊥-,B 错;对于C 选项,若点G 是ABC 的重心,则0GA GB GC ++=,C 对;对于D 选项,若向量()1,1a =- ,()2,3b =,则向量b 在向量a上的投影向量为21cos ,2a a b a a b b a b b a a a a b a a⋅⋅⋅=⋅⋅=⋅=⋅,D 对.故选:CD.10. 已知函数22si 1()s cos co n f x x x x =+-的图象为C ,以下说法中正确的是( )A. 函数()f xB. 图象C 相邻两条对称轴的距离为π2C. 图象C 关于π,08⎛⎫-⎪⎝⎭中心对称D.要得到函数in y x =的图象,只需将函数()f x 的图象横坐标伸长为原来的2倍,再向右平移π4个单位【答案】BCD 【解析】【分析】利用二倍角公式及两角和的正弦公式将函数化简,再根据正弦函数的性质一一判断即可.【详解】因为22si 1()s cos co n f x x x x =+-cos 2111sin2π222224x x x x x ⎫+⎛⎫=+-=+=+⎪ ⎪⎪⎝⎭⎭,所以函数()f x,故A 错误;函数()f x 的最小正周期2ππ2T ==,所以图象C 相邻两条对称轴的距离为π2,故B 正确;因为πππ20884f ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以图象C 关于π,08⎛⎫- ⎪⎝⎭中心对称,故C 正确;将()π24f x x ⎛⎫=+ ⎪⎝⎭的横坐标伸长为原来的2倍,纵坐标不变得到π4y x ⎛⎫=+ ⎪⎝⎭,再将π4y x ⎛⎫=+ ⎪⎝⎭向右平移π4个单位得到y x =,故D 正确;故选:BCD11. 若函数()f x 的定义域为D ,若对于任意1x D ∈,都存在唯一的2x D ∈,使得()()121f x f x +=,则称()f x 为“Ⅰ型函数”,则下列说法正确的是( )A. 函数()ln f x x =是“Ⅰ型函数”B. 函数()sin f x x =是“Ⅰ型函数”C. 若函数()f x 是“Ⅰ型函数”,则函数()1f x -也是“Ⅰ型函数”D. 已知R m ∈,若()sin f x m x =+,ππ,22x ⎡⎤∈-⎢⎥⎣⎦是“Ⅰ型函数”,则12m =【答案】ACD 【解析】【分析】根据所给函数的定义求解C ,根据对数运算求解A ,根据三角函数的周期性以及单调性求解BD.【详解】对于A,由()()121f x f x +=可得121212ln ln 1ln 1e x x x x x x +=⇒=⇒=,所以21ex x =,故A 正确,对于B ,取1π2x =,则由()()121f x f x +=以及()sin f x x =可得22sin 0π,Z x x k k =⇒=∈,故这与存在唯一2x D ∈矛盾,故B 错误,对于C ,由于函数()f x 是“Ⅰ型函数”,则对于任意1x D ∈,都存在唯一的2x D ∈,使得()()121f x f x +=,故()()12111f x f x -+-=,因此对于对于任意1x D ∈,都存在唯一的2x D ∈,使得()()12111f x f x -+-=,故()1f x -是“Ⅰ型函数”,C 正确,对于D ,对于任意1x D ∈,都存在唯一的2x D ∈,使得12sin sin 1m x m x +++=,所以21sin 12sin x m x =--,由于[]11ππ,,sin 1,122x x ⎡⎤-∈-⎢⎥⎣∈⎦,所以[]21sin 12sin 2,22,x m x m m =--∈--,由于sin y x =在ππ,22x ⎡⎤∈-⎢⎥⎣⎦单调递增,的所以21m -≥-且221m -≤,故12m =,D 正确,故选:ACD12. 已知棱长为1的正方体1111ABCD A B C D -中,P 为线段1AC 上一动点,则下列判断正确的是( )A. 存在点P ,使得11//C P ABB. 三棱锥1P BC D -C. 当P 为1AC 的中点时,过P 与平面1BC DD. 存在点P ,使得点P 到直线11B C 的距离为45【答案】BCD 【解析】【分析】建立空间坐标系,根据向量共线求解A ,根据正三棱锥的性质,结合外接球半径的求解即可判定B ,根据面面平行的性质,结合六边形的面积求解即可判定C ,建立空间坐标系,利用点线距离的向量求法,由二次函数的性质即可求解D.【详解】由于111BC C D BD BDC ===∴ 为等边三角形,且其外接圆的半径为12r ==,由于1AA ⊥平面ABCD ,BD ⊂平面ABCD ,所以1AA BD ⊥,又11,,,AC BD AC AA A AC AA ⊥⋂=⊂平面11AAC C ,所以BD ⊥平面11AAC C ,1AC ⊂平面11AAC C ,故1BD AC ⊥,同理可证11BC AC ⊥,因此11,,BD BC B BD BC ⋂=⊂平面1BDC ,故1AC ⊥平面1BDC ,因此三棱锥1P BC D -为正三棱锥,设外接球半径为R ,球心到平面1BDC 的距离为h ,则R =0h =时,R r ==B 正确,取11,,ABCD AD 的中点为,M Q ,N ,连接,,NM MQ NQ ,当P 是1AC 的中点,也是QM 的中点,则该截面为与平面1BC D 平行的平面截正方体所得的截面,进而可得该截面为正六边形,边长为NM==,所以截面面积为16sin602⎛⎫⨯=⎪⎪⎝⎭,C正确,对于D,建立如图所示的空间直角坐标系,则()()()10,0,0,0,1,0,1,0,1D C A()111,0,0C B DA==,设()()111,1,1,,A P a A C a a a a==--=--,(01a≤≤),()()()1111,,0,1,0,1,B P A P A B a a a a a a=-=---=---,所以点P到直线11B C的距离为d====,由于01a≤≤,所以d⎤=⎥⎦,由于45⎤∈⎥⎦,故D正确,由于()()1,1,,1,,1B P a a a P a a a=---∴--,()10,1,1C,则()11,1,C P a a a=---,()()()111,0,0,1,1,1,0,1,1A B AB=,若()10,1,1AB=与()11,1,C P a a a=---共线,则10a-=,1a=,此时()10,0,1C P=-,此时()10,1,1AB=与()10,0,1C P=-不共线,故11,C P AB不平行故A错误,故选:BCD三、填空题:本题共4小题,每小题5分,共20分.13. 关于x 不等式()220ax a b x +++>的解集为()3,1-,则a b +=______.【答案】43-##113-【解析】【分析】分析可知,3-、1是关于x 的方程()220ax a b x +++=的两根,利用韦达定理可得出a b +的值.【详解】因为关于x 的不等式()220ax a b x +++>的解集为()3,1-,则a<0,且3-、1是关于x 的方程()220ax a b x +++=的两根,由韦达定理可得31a b a +-+=-,231a -⨯=,解得23a =-,所以,423a b a +==-.故答案为:43-.14. 已知数列{}n a 的前n 项和,21n n S =-,则210log a =_________.【答案】9【解析】【分析】根据10109a S S =-求出10a ,再根据对数的运算性质计算可得.【详解】因为数列{}n a 的前n 项和21n n S =-,所以()10991010921212a S S =-=---=,所以92102log log 29a ==.故答案为:9的15. 已知函数()()221,12,1x x f x x x ⎧-≤⎪=⎨->⎪⎩,关于x 的方程()()20f x a f x -⋅=有六个不等的实根,则实数a 的取值范围是______.【答案】(0,1)【解析】【分析】方程变形为()0f x =或()f x a =,其中()0f x =可解得两个根,因此()f x a =应有4个根,作出函数y =()f x 的图象与直线y a =,由图象得它们有4个交点时的参数范围.【详解】2()()0f x af x -=,则()0f x =或()f x a =,2100x x -=⇒=,2(2)02x x -=⇒=,即()0f x =有两个根,因此()f x a =应有4个根,作出函数y =()f x 的图象与直线y a =,由图象可知,当01a <<时满足题意,故答案为:(0,1).16. 如图,已知函数()()sin f x A x ωϕ=+(其中0A >,0ω>,π2≤ϕ)的图象与x 轴交于点A ,B ,与y 轴交于点C ,2BC BD =,π3OCB ∠=,2OA =,AD =.则函数()f x 在[]1,6上的值域为______.【答案】816,33⎡⎤-⎢⎥⎣⎦【解析】π|sin |2A ϕω=+,sin(2)0ωϕ+=,可得A ,B ,C ,D 的坐标,根据||AD =222π28(1243A sin ϕω-+=,进而解出ω,ϕ,A ,即可求出()f x ,再由三角函数的性质求解.【详解】由题意可得:||||OB OC =,2πϕω=+,sin(2)0ωϕ+=,(2,0)A ,2,0B πω⎛⎫+ ⎪⎝⎭,(0,sin )C A ,πsin 1,22A D ϕω⎛⎫∴+ ⎪⎝⎭,AD = ,222πsin 281243A ϕω⎛⎫∴-+= ⎪⎝⎭,把πsin A ϕω=+代入上式可得:2ππ(2240ωω-⨯-=,0ω>.解得π6ω=,π6ω∴=,πsin()03ϕ∴+=,π||2ϕ≤,解得π3ϕ=-.πsin 263⎛⎫-=+ ⎪⎝⎭,0A >,解得163A =,所以函数16ππ()sin()363f x x =-,[]1,6x ∈时,πππ2π,6363x ⎛⎫⎛⎫-∈- ⎪ ⎪⎝⎭⎝⎭,ππ1sin(,1632x ⎡⎤-∈-⎢⎥⎣⎦,16ππ816()sin(),36333f x x ⎡⎤=-∈-⎢⎥⎣⎦故答案为:816,33⎡⎤-⎢⎥⎣⎦四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知n S 为数列{}n a 的前n 项和,且11a =,()211n n nS n S n n +=+++,n *∈N .(1)证明:数列n S n ⎧⎫⎨⎬⎩⎭为等差数列,并求{}n S 的通项公式;(2)若11n n n b a a +=⋅,设数列{}n b 的前n 项和为n T ,求n T .【答案】(1)证明见解析,2n S n = (2)n T =【解析】【分析】(1)利用等差数列的定义可证得数列n S n ⎧⎫⎨⎬⎩⎭为等差数列,确定该数列的首项和公差,可求得数列n S n ⎧⎫⎨⎬⎩⎭的通项公式,进而可得出数列{}n S 的通项公式;(2)利用n S 与n a 的关系可求出数列{}n a 的通项公式,再利用裂项相消法可求得n T .【小问1详解】解:对任意的n *∈N ,()211n n nS n S n n +=+++,则()()()21111111n n n n nS n S S S n nn n n n n n ++-++-===+++,所以,数列n S n ⎧⎫⎨⎬⎩⎭为等差数列,且其首项为111S =,公差为1,所以,11nS n n n=+-=,故2n S n =.【小问2详解】解:当2n ≥时,()221121n n n a S S n n n -=-=--=-,11a =也满足21n a n =-,故对任意的n *∈N ,21n a n =-.所以,()()111111212122121n n n b a a n n n n +⎛⎫===- ⎪⋅-+-+⎝⎭,故111111111111232352212122121n n T n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭⎝⎭ .18. 在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且cos cos 2cos b A a B c A +=-.(1)求角A 的值;(2)已知点D 为BC 的中点,且2AD =,求a 的最大值.【答案】(1)2π3A = (2)【解析】【分析】(1)利用正弦定理结合两角和的正弦公式可求出cos A 的值,结合角A 的取值范围可求得角A 的值;(2)利用平面向量的线性运算可得出2AD AB AC =+,利用平面向量数量积的运算性质结合余弦定理、基本不等式可得出关于a a 的最大值.【小问1详解】解:因为A 、()0,πC ∈,则sin 0C >,由正弦定理可得()2cos sin sin cos sin cos sin sin A C B A A B A B C -=+=+=,所以,1cos 2A =-,故2π3A =.【小问2详解】解:因为D 为BC 中点,则()()111222AD AB BD AB BC AB AC AB AB AC =+=+=+-=+ ,所以,2AD AB AC =+,所以,22222222π422cos 163AD AC AB AC AB b c bc b c bc =++⋅=++=+-= ,由余弦定理可得222222π2cos 3a b c bc b c bc =+-=++,所以,222162a b c ++=,2216bc a =-,的由基本不等式可得222b c bc +≥,即2216162a a +≥-,解得0a <≤,当且仅当2216b cb c bc =⎧⎨+-=⎩时,即当4b c ==时,等号成立,故a的最大值为19. 若二次函数()f x 满足()()25152f x f x x x ++=---(1)求()f x 的解析式;(2)若函数()()ln g x x x f x =+,解关于x 的不等式:()()22g x x g +≥.【答案】(1)()2122f x x x =-- (2)[)(]2,10,1--⋃【解析】【分析】(1)()()20f x ax bx c a =++≠,根据()()25152f x f x x x ++=---可得出关于a 、b 、c 的方程组,解出这三个未知数的值,即可得出函数()f x 的解析式;(2)求出函数()g x 的定义域,利用导数分析函数()g x 的单调性,由()()22g x x g +≥可得出关于实数x 的不等式组,由此可解得实数x 的取值范围.【小问1详解】解:设()()20f x ax bx c a =++≠,则()()()()22111f x f x a x b x c ax bx c++=+++++++()225222252ax a b x a b c x x =+++++=---,所以,21225522a a b a b c ⎧⎪=-⎪+=-⎨⎪⎪++=-⎩,解得1220a b c ⎧=-⎪⎪=-⎨⎪=⎪⎩,故()2122f x x x =--.【小问2详解】解:函数()()2l ln 1n 22x x x x g x x x f x +-==-的定义域为()0,∞+,且()ln 12ln 1g x x x x x '=+--=--,令()ln 1h x x x =--,其中0x >,则()111x h x x x-'=-=,由()0h x '>可得01x <<,由()0h x '<可得1x >,所以,函数()h x 的单调递增区间为()0,1,单调递减区间为()1,+∞,故对任意的0x >,()()()10g x h x h '=≤=,所以,函数()g x 在()0,∞+上为减函数,由()()22g x x g +≥可得202x x <+≤,解得21x -≤<-或01x <≤,因此,不等式()()22g x x g +≥的解集为[)(]2,10,1--⋃.20. 如图(1)所示,在ABC 中,60ABC ∠= ,过点A 作AD BC ⊥,垂足D 在线段BC 上,且AD =CD =,沿AD 将CDA 折起(如图(2)),点E 、F 分别为棱AC 、AB 的中点.(1)证明:AD EF ⊥;(2)若二面角C DA B --所成角的正切值为2,求二面角C DF E --所成角的余弦值.【答案】(1)证明见解析 (2)1319【解析】【分析】(1)证明出AD ⊥平面BCD ,可得出AD BC ⊥,利用中位线的性质可得出//EF BC ,即证得结论成立;(2)分析可知,二面角C DA B --的平面角为BDC ∠,以点D 为坐标原点,DB 、DA 所在直线分别为x 、y 轴,平面BCD 内过点D 且垂直于BD 的直线为z 轴建立空间直角坐标系,利用空间向量法可求得二面角C DF E --所成角的余弦值.【小问1详解】证明:翻折前,AD BC ⊥,则AD CD ⊥,AD BD ⊥,翻折后,则有AD CD ⊥,AD BD ⊥,因为BD CD D ⋂=,BD 、CD ⊂平面BCD ,所以,AD ⊥平面BCD ,因为BC ⊂平面BCD ,所以,AD BC ⊥,在四棱锥A BCD -中,因为点E 、F 分别为棱AC 、AB 的中点,则//EF BC ,因此,AD EF ⊥.【小问2详解】解:因为AD CD ⊥,AD BD ⊥,则二面角C DA B --的平面角为BDC ∠,即tan 2BDC ∠=,因AD ⊥平面BCD ,以点D 为坐标原点,DB 、DA 所在直线分别为x 、y 轴,平面BCD 内过点D 且垂直于BD 的直线为z 轴建立如下图所示的空间直角坐标系,因为60ABD ∠=o ,AD BD ⊥,AD =2tan 60AD BD ===,又因为CD =()0,A 、()2,0,0B 、()1,0,2C 、()0,0,0D、12E ⎛⎫⎪⎝⎭、()F ,设平面CDF 的法向量为()111,,m x y z =,()1,0,2DC =,()DF = ,则1111200m DC x z m DF x ⎧⋅=+=⎪⎨⋅==⎪⎩,取1x =,可得(2,m =- ,设平面DEF 的法向量为()222,,x n y z = ,1,0,12EF ⎛⎫=- ⎪⎝⎭,则22220102n DF x n EF x z ⎧⋅=+=⎪⎨⋅=-=⎪⎩,取2x =,可得(n =- ,为所以,13cos ,19m n m n m n ⋅===⋅,由图可知,二面角C DF E --的平面角为锐角,故二面角C DF E --的余弦值为1319.21. 已知数列{}n a 是公比大于0的等比数列,14a =,364a =.数列{}n b 满足:21n n nb a a =+(N n *∈).(1)求数列{}n b 的通项公式;(2)证明:{}22n n b b -是等比数列;(3)证明:)N*k n k =∑<∈.【答案】(1)2144nn n b =+(2)见解析 (3)见解析【解析】【分析】(1)由等比数列的通项公式运算可得{}n a 的通项公式,进而求出数列{}n b 的通项公式;(2)运算可得2224nn n b b -=⋅,结合等比数列的定义即可得证;(3)放缩得2222(21)(21)422n n n n n n b b -+<-⋅,进而可得112k k n n k ==-∑<∑,结合错位相减法即可得证.【小问1详解】设等比数列{}n a 的公比为q ,则2231464a a q q =⋅==,则4q =,所以1444n n n a -=⋅=,又221144n n n n n b a a =+=+.【小问2详解】所以22242211442444n n n n n n nb b ⎛⎫⎛⎫-=+-+=⋅ ⎪ ⎪⎝⎭⎝⎭,所以220nn b b -≠,且211222224424n n n nn n b b b b +++-⋅==-⋅,所以数列{}22n n b b -是首项为8,公比为4的等比数列;【小问3详解】由题意知,()()2222222121(21)(21)414242222n n nn n n n n n n n b b -+-+-==<-⋅⋅⋅,12n n-<==,所以112k k n n k==-∑<∑,设10121112322222nn k n k k nT --===+++⋅⋅⋅+∑,则123112322222n n nT =+++⋅⋅⋅+,两式相减得21111111122121222222212nn n n n nn n n T -⎛⎫⋅- ⎪+⎝⎭=+++⋅⋅⋅+-=-=--,所以4n T =所以1112422k k n n n k n ==--+⎫∑<∑=-<⎪⎭【点睛】关键点点睛:最后一问考查数列不等式的证明,因为k n =∑相减法即可得证.22. 已知函数()()ln f x x t x =-,R t ∈(1)讨论函数()f x 的单调区间;(2)当1t =时,设1x ,2x 为两个不相等的正数,且()()12f x f x a ==,证明:121(2e)e ex x a +>-+-.【答案】22. ()10,e t -上单调递增,()1e,t -+∞上单调递减.23. 证明见解析【解析】【分析】(1)利用导数研究函数的单调性;(3)利用切割线放缩证明.【小问1详解】()()ln f x x t x =-,()n 1l 1ln t x f x t x x x ⎛'⎫-⎝=-+=-- ⎪⎭,()100e t f x x ->⇔<<',()10e t x f x -<⇔>',()10,e t -上单调递增,()1e,t -+∞上单调递减.【小问2详解】()()1ln f x x x =-,()ln f x x '=-,()()1ln f x x x =-在()0,1上单调递增,()1,+∞上单调递减.()11f =()e 0f =,()()00000211ln lim lim 1ln lim lim lim 011x x x x x x x f x x x x x x +++++→→→→→⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ -⎪ ⎪⎝⎭=--⎝-==⎭,因()10f x x'⎤⎦=-<⎡⎣',所以函数()f x 在区间()0,e 上为上凸函数,函数()f x 在区间(]0,e 的图象如图所示.不妨设12x x <,则1201e x x <<<<.连接()1,1A 和点()e,0的直线l 2的方程为:()1e 1ey x =--,当y a =时,()41e e x a =-+,由图可知24x x >,所以要证明121(2e)e e x x a +>-+-,只需证明411(2e)e ex x a +>-+-,即只需证明1411(2e)e e ex a x a >-+--=-,连接OA 的直线1l 的方程为y x =,设函数()f x 的图象的与OA 平行的切线是直线3l ,为()1ln 1e x f x x '-===⇒,11121ln e e e e f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝-⎭=,直线3l 的方程为21e e y x -=-,即1ey x =+,令y a =,得直线y a =与直线3l 的交点横坐标为1ea -,由图可知,11ex a >-,故要证不等式成立.。

广东省珠海市高三数学下学期学生学业质量检测试题 文(

广东省珠海市高三数学下学期学生学业质量检测试题 文(

珠海市2013—2014学年度第二学期高三学生学业质量监测数学(文)试题【试卷综析】试题的题型比例配置与高考要求一致,全卷重点考查中学数学主干知识和方法,侧重于中学数学学科的基础知识和基本技能的考查,侧重于知识交汇点的考查.直观感知、观察发现、归纳类比、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等核心数学能力,重点考察了数形结合、简单的分类讨论、化归等数学基本思想方法试题中无偏题,怪题,起到了引导高中数学向全面培养学生数学素质的方向发展的作用。

总之本次考前模拟训练数学试题遵照高考考试大纲和考试大纲说明的要求,从题型设置、考察知识的范围等方面保持稳定,试题难度适中,试题在考查高中数学基本概念、基本技能和基本方法等数学基础知识,突出三基,强化三基的同时,突出了对学生能力的考查,注重了对学科的内在联系和知识的综合、重点知识的考查.一、选择题:本大题共10小题,每小题5 分,满分 50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上填涂相应选项.1.已知集合 A={0,1, 2,3} ,集合 {|||2}B x N x =∈≤ ,则A B I = A .{ 3 } B .{0,1,2} C .{ 1,2}D .{0,1,2,3}【知识点】集合的表示方法 ;交集. 【答案解析】B 解析:解:{}0,1,2B =Q {}0,1,2A B ∴⋂=【思路点拨】可以把B 集合中描述法表示了元素用列举法表示出来,然后按交集的定义进行求解即可.2.设复数z1=1+i ,z2=2+xi (x R ∈),若 12.z z R∈,则x =A .-2B .-1C .1D .2【知识点】复数代数形式的运算 【答案解析】A 解析 :解:因为()()1212z z i xi ⋅=++()()22x x i =-++R∈,所以20,x +=即x 2=-.故选A.【思路点拨】把复数乘积展开,化简为a+bi (a 、b ∈R )的形式,可以判断所在象限. 3.不等式2230x x -++<的解集是A .{}|1x x <-B .3|2x x ⎧⎫>⎨⎬⎩⎭C .3|12x x x ⎧⎫-<<⎨⎬⎩⎭ D .3|12x x x ⎧⎫<->⎨⎬⎩⎭或【知识点】一元二次不等式的解法. 【答案解析】D 解析 :解:原不等式为:()()22302310x x x x -->-+>即,解得:312x x <->或,所以选:D.【思路点拨】先利用不等式的性质,把原不等式化为二次项系数大于零的一元二次不等式, 再利用三个二次的关系求解.4.通过随机询问100 名性别不同的小学生是否爱吃零食,得到如下的列联表:由22()()()()()n ad bc K a b c d a c b d -=++++算得22100(10302040) 4.76250503070K ⨯-⨯=≈⨯⨯⨯参照右上附表,得到的正确结论A .在犯错误的概率不超过5%的前提下,认为“是否爱吃零食与性别有关”B .在犯错误的概率不超过5%的前提下,认为“是否爱吃零食与性别无关”C .有97.5%以上的把握认为“是否爱吃零食与性别有关”D .有97.5%以上的把握认为“是否爱吃零食与性别无关” 【知识点】独立性检验的应用, 【答案解析】A 解析 :解:∵K2= 100(10×30−20×40)250×50×30×70≈4.762>3.841,P (K2>3.841)=0.05∴在犯错误的概率不超过5%的前提下,认为“是否爱吃零食与性别有关”.故选:A . 【思路点拨】根据P (K2>3.841)=0.05,即可得出结论.【典型总结】本题考查独立性检验的应用,考查学生分析解决问题的能力. 5.右上图是一个几何体的三视图,由图中数据可知该几何体中最长棱的长度是A .6B .5C .5D 13【知识点】三视图;三视图与原图的关系.【答案解析】 C 解析 :解:由三视图知:几何体为三棱锥,如图:ACBS其中SA ⊥平面ABC ,AC ⊥平面SAB ,SA=2,AB=4,AC=3,∴BC=5,SC ==SB ==∴最长棱为5BC =故选:C .【思路点拨】可根据三视图找到原图的线面关系,根据图中所给数据进行计算. 6.执行如右图所示的程序框图,则输出的 y =A .12 B .1 C .-1 D .2【知识点】循环结构的程序框图【答案解析】D 解析 :解:第1次循环,y=2,i=1 第2次循环,y= y=2,i=1,i=2 第3次循环,y=-1,i=3 第4次循环,y=2,i=4 ...........框图的作用是求周期为3的数列,输出y 的值,满足2014≥2014,退出循环,循环次数是2014次,即输出的结果为2, 故答案为:2.【思路点拨】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算循环变量y ,i 的值,并输出满足i ≥2014的值. 7.“(1)(1)0a b -->”是“a>1 且b>1”的A .充要条件B .充分但不必要条件C .必要但不充分条件D .既不充分也不必要条件 【知识点】充分条件、必要条件、充要条件.【答案解析】 C 解析 :解:因为命题:若a>1 且b>1则(1)(1)0a b -->是真命题, 若(1)(1)0a b -->则>1 且b>1是假命题,所以选C.【思路点拨】如果命题“若A 则B ”成立,那么A 是B 的充分条件,B 是A 的必要条件.8.将函数 cos(2)6y x π=-的图像向右平移12π个单位后所得的图像的一个对称轴是A .x=6πB .4x π= C .3x π= D .2x π=【知识点】平移变换,三角函数的对称性.【答案解析】 A 解析 :解:函数 cos(2)6y x π=-的图像向右平移12π个单位后为函数:cos 23y x π⎛⎫=- ⎪⎝⎭易知它一条对称轴为:x=6π. 【思路点拨】利用平移变换得到函数 cos(2)6y x π=-的图像向右平移12π个单位后的函数解析式cos 23y x π⎛⎫=- ⎪⎝⎭,然后确定正确选项. 9.变量 x y 、 满足线性约束条件32021x y y x y x +-≤⎧⎪-≤⎨⎪≥--⎩,则目标函数 z =kx -y ,仅在点(0 , 2)取得最小值,则k 的取值范围是A .k<-3B .k>1C .-3<k<1D .—1<k<1 【知识点】线性规划;不等式表示平面区域.【答案解析】C 解析:解:作出不等式对应的平面区域,由z=kx-y 得y=kx-z ,要使目标函数y=kx-z 仅在点A (0,2)处取得最小值, 则阴影部分区域在直线y=kx-z 的下方, ∴目标函数的斜率k 满足-3<k <1, 故选:C .【思路点拨】可由数形结合的方法找出目标函数取最小值的位置,进而求出k 的值. 10.设函数()y f x =在R 上有定义,对于任一给定的正数P ,定义函数(),()(),()p f x f x pf x p f x p ≤⎧=⎨>⎩,则称函数()p f x 为 ()f x 的“P 界函数”.若给定函数2()21,2f x x x p =--=,则下列结论不成立的是A .[(0)][(0)]p p f f f f =B .[(1)][(1)]p p f f f f =C .[(2)][(2)]p p f f f f =D .[(3)][(3)]p p f f f f =【知识点】新定义函数;分段函数求值.【答案解析】 B 解析 :解:因为2()21,2f x x x p =--=,所以()()2[(0)]11=2p f f f f =-=-,()[(0)]=[(0)]=1=2p f f f f f -.故A 正确. ()2[(1)](2)22p p f f f f =-=-=,()[(1)]=[(1)]=27p f f f f f -=故B 不正确.()[(2)]12f f f =-=,222[(2)][(2)](1)2p p f f f f f ==-=故C 正确.[(3)](2)1,f f f ==-222[(3)][(3)](2)1p p f f f f f ===-故D 正确.综上:选项B 不正确.【思路点拨】结合“P 界函数”的定义计算即可.二、填空题:本大题共5小题,考生做答 4小题,每小题 5 分,满分 20 分.其中第 14~15 题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.请将答案填在答题卡相应位置. 11.等差数列{}n a 的前n 项和为Sn ,且满足a1=2,a2+a4+a6=15,则S10= .【知识点】等差数列的通项公式、前n 项和公式,等差数列的性质. 【答案解析】 65 解析 :解:由a2+a4+a6=15得45a =,又a1=2,则公差1d =,所以1011021091652s =⨯+⨯⨯⨯=【思路点拨】利用等差数列的通项公式、前n 项和公式,等差数列的性质求解.12.函数3()2f x x x =- 在x=1处的切线方程为 . 【知识点】导数的几何意义.直线的点斜式方程.【答案解析】2y x =-解析 :解:()232f x x '=-Q ,()11f '∴=所以切线方程为: ()()()111y f x '--=-,即:2y x =-【思路点拨】利用导数的几何意义,求函数在某点处的切线方程.13.已知菱形 ABCD 的边长为 a , ∠DAB=60°,2EC DE =u u u r u u u r ,则 .AE DB u u u r u u u r的值为 .【知识点】平面向量数量积的运算.【答案解析】23a -解析 :解:如图所示12,,3EC DE DE DC =∴=u u u r u u u r u u u r u u u r Q 因为菱形 ABCD 的边长为a, ∠DAB=60° 21,cos1202DA DC a DA DC DA DC a ∴==⋅==-o u u u r u u u r u u u r u u u r u u u r u u u r ,,DB DA DC =+u u ur u u u r u u u rAE DB ∴⋅=u u u r u u u r 1()()()()3AD DE DA DC AD DC DA DC ++=++u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r221233DA DC DA DC =-+-⋅u u u r u u u r u u u r u u u r 222211333a a a a =-++=-. 【思路点拨】利用菱形的性质、向量的三角形法则及其平行四边形法则、数量积运算、向量共线定理即可得出.14.(坐标系与参数方程选做题)在极坐标系中,已知圆 C 的圆心为(2,2π),半径为 2,直线(0,)2R πθααρ=≤≤∈被圆C 截得的弦长为3,则α的值等于 .【知识点】极坐标方程的意义.【答案解析】3π 解析 :解:圆C 的普通方程为:()2224x y +-=,直线的方程为:tan y x α=⋅.圆心C (0,2)到直线的距离为121tan 1α=+2tan 3α=,所以tan 3,α=因为02πα≤≤所以tan 3α=所以3πα=.【思路点拨】把极坐标方程化为直角坐标方程求解.15.(几何证明选讲选做题)如图,CD 是圆O 的切线,切点为C ,点 B 在圆O 上,3BCD=60°,则圆O 的面积为________.【知识点】弦切角.【答案解析】4π 解析 :解:因为弦切角等于同弧上的圆周角,∠BCD=60°,所以∠A=60°,则∠BOC=120°, 因为所以圆的半径为2,所以圆的面积为:4π 【思路点拨】通过弦切角转化为,圆周角,然后求出圆心角,结合弦长,得到半径,然后求出圆的面积.三、解答题:本大题共 6 小题,满分 80 分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12 分)已知函数()sin 2cos cos 2sin ,,0,()42f x x x x R f πϕϕϕπ=+∈<<=-(1)求()f x 的表达式;(2)若5(),(,)23132f αππαπ-=∈,求cos α的值.【知识点】两角和的正弦公式;两角差的余弦公式.【答案解析】(1)()5sin 26f x x π⎛⎫=+⎪⎝⎭(2)526-解析 :解:(1)42f π⎛⎫=- ⎪⎝⎭可得sin cos cos sin 22ππφφ+=,所以cos φ=。

2014广东高考文科数学试卷及答案解析(word版)

2014广东高考文科数学试卷及答案解析(word版)

2014年普通高等学校招生全国统一考试(广东卷)数学 (文科)一、选择题{}{}{}{}{}{}1.2,3,4,0,2,3,5,()..0,2.2,3.3,4.3,5M N M N A B C D ===已知集合则答案:B2.(34)25,()..34.34.34.34z i z z A i B iC iD i-==---+-+已知复数满足则答案:D 2525(34)25(34):=34,.34(34)(34)25i i z i D i i i ++===+--+提示故选 3.(1,2),(3,1),()..(2,1).(2,1).(2,0).(4,3)a b b a A B C D =-=--已知向量则答案:B284.,04,2().03.7.8.10.11x y x y x z x y y A B C D +≤⎧⎪≤≤=+⎨⎪≤≤⎩若变量满足约束条件则的最大值等于 答案:C提示:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10. 选C. 5.下列函数为奇函数的是( ).A.xx212-B.x x sin 3C.1cos 2+xD.xx 22+ 答案:A111:()2,(),()22(),222(),A .x xxx x x f x f x R f x f x f x --=--=-=-=-∴提示设则的定义域为且为奇函数故选6.1000,,40,()..50.40.25.20:1000:25.40A B C D C=为了解名学生的学习情况采用系统抽样的方法从中抽取容量为的样本则分段的间隔为答案提示分段的间隔为7.,,,,,,sin sin ().....::,,,sin ,sin ,sin sin .sin sin ABC A B C a b c a b A B A B C D Aa ba b A B a b A B A B∆≤≤=∴≤⇔≤在中角所对应的边分别为则“”是“”的充分必要条件充分非必要条件必要非充分条件非充分非必要条件答案提示由正弦定理知都为正数22228.05,11().165165....05,50,160,16(5)21(16)5,x y x y k k k k A B C D k k k k k k <<-=-=--<<∴->->+-=-=-+若实数满足则曲线与曲线的实半轴长相等虚半轴长相等离心率相等焦距相等答案:D提示:从而两曲线均为双曲线,又故两双曲线的焦距相等,选D.1234122334141414149.,,,,,//,,()...//..l l l l l l l l l l A l l B l l C l l D l l ⊥⊥⊥若空间中四条两两不同的直线满足则下列结论一定正确的是与既不垂直也不平行与的位置关系不确定答案:D1212122212310.,,=,,,,z z z ωωωωωωωω*对任意复数定义其中是的共轭复数对任意复数有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*; ③123123()();z z z z z z **=**④1221z z z z *=*;则真命题的个数是( )A.1B.2C.3D.412312313231323123123123121312131231231231231231:()()()()()();()()()()()()();(),()()(),,;Bz z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z ++++=+=+=+====≠答案提示:①*===*+*,故①是真命题②**+*,②对③左边=*=右边*左边右边③错 ④左边=2122121,,,z z z z z z z ==≠*右边=*左边右边故④不是真命题.综上,只有①②是真命题,故选B.(一)必做题(11-13)''142511.53(0,2)_______.:520:5,5,25,520.12.,,,d,e ________.2:542:105x x x y e x y y e y y x x y a b c a C P C ==-+-++==-∴=-∴+=-++====曲线在点处的切线方程为答案提示所求切线方程为即从字母中任取两个不同字母,则取到字母的概率为答案提示13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.212223242525242322212152:5:log log log log log ,log log log log log ,25log ()5log 410,5.S a a a a a S a a a a a S a a S =++++=++++∴===∴=答案提示设则2121214.()2cos sin cos =1.,,_____________.C C x C C ρθθρθ=坐标系与参数方程选做题在极坐标系中,曲线与的方程分别为与以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系则曲线与交点的直角坐标为2221212:(1,2):2cos sin 2cos =sin ,2,1,,(1,2).C y x C x C C ρθθρθρθ===∴答案提示由得()故的直角坐标方程为:的直角坐标方程为:交点的直角坐标为15.()1,,2,,___________.:3:, 3.ABCD E AB EB AE AC DE F CDF AEF CDF CD EB AECDFAEF AEF AE AE=∆=∆∆+∆∆∴===∆几何证明选讲选做题如图在平行四边形中点在上且与交于点的周长则的周长答案的周长提示显然的周长16.(本小题满分12分) 已知函数()sin(),3f x A x x R π=+∈,且5()122f π=(1) 求A 的值;(2)若()()(0,)2f f πθθθ--=∈,求()6f πθ-553:(1)()sin()sin 3.121234(2)(1):()3sin(),3()()3sin()3sin()333(sin cos cos sin )3(sin()cos cos()sin )33336sin cos3sin 3sin (0,),2f A A A f xx f f πππππππθθθθππππθθθθπθθπθθ=+==∴===+∴--=+--+=+--+-===∴=∈解由得又cos ()3sin()3sin()3cos 36632f θππππθθθθ∴=∴-=-+=-===17. 某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.:(1)2030,401921.-=解这名工人年龄的众数为极差为(2)茎叶图如下:()2222222(1928329330531432340)3:30,20120:(11)3(2)3(1)504132102011(121123412100)25212.62020+⨯+⨯+⨯+⨯+⨯+=⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+⎣⎦=+++++=⨯=年龄的平均数为故这名工人年龄的方差为18.2,,,1, 2.3://,,,,,.(1):;(2).ABCD PD ABCD AB BC PC EF DC E F PD PC EF P AD M MF CF CF MDF M CDE ⊥===⊥⊥-如图四边形为矩形平面作如图折叠折痕其中点分别在线段上沿折叠后点叠在线段上的点记为并且证明平面求三棱锥的体积00:(1):,,,,,,,,,,,,,.11(2),,60,30,==,22,PD ABCD PD PCD PCD ABCD PCD ABCD CD MD ABCD MD CD MD PCD CF PCD CF MD CF MF MD MF MDF MD MF M CF MDF CF MDF CF DF PCD CDF CF CD DE EF DC D ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥⊂=∴⊥⊥∴⊥∠=∴∠=∴解证明平面平面平面平面平面平面平面平面又平面平面平面又易知从而∥2112,,2211.33CDE M CDE CDE CF DE PE S CD DE P CP MD V S MD ∆-∆=∴=∴==⋅=====∴=⋅=={}{}222119.,(3)3()0,.(1);(2);n n n n n n a n S S S n n S n n n N a a *-+--+=∈设各项均为正数的数列的前项和为且满足求的值求数列的通项公式1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 0(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a221111*********2221:(1)1:(1)320,60,(3)(2)0,0,2, 2.(2)(3)3()0,:(3)()0,0(),0,30,,2,(1)(1)n n n n n n n n n n n n S S S S S S S S a S n n S n n S S n n a n N S S S n n n a S S n n n n *-=---⨯=+-=∴+-=>∴==⎡⎤-+--+=+-+=⎣⎦>∈∴>+>∴=+⎡∴≥=-=+--+-⎣解令得即即由得从而当时12211222,221,2().313(3):,()(),221644111111(1)2(21)44()()()24411111111144(1)()(1)4444111(1)(1)n k k n a a n n N k k k N k k k k a a k k k k k k k k k k a a a a **⎤=⎦==⨯∴=∈∈+>+-=-+∴==⋅<⋅+++-+⎡⎤⎢⎥=⋅=⋅-⎢⎥⎡⎤⎢⎥-+--⋅+-⎢⎥⎣⎦⎣⎦∴+++++又解法一当时(1)1111111()()11111141223(1)444444111111().11434331(1)44111111:(),.(1)2(21)(21)(21)22121(:)n n k k a a n n n n a a k k k k k k +⎡⎤⎢⎥<-+-++-⎢⎥⎢⎥-----+-⎣⎦=-=-<+-+-=<=-++-+-+解法二以下略注解法二的放缩没有解法一的精确,在使用中第一项不放缩时才能得到答案2222002222220.:1(0)(1);(2)(,),,.:(1)3,954,1.94(2),,4x yC a ba bCP x y C P C Pcc e a b a cax yCx y+=>>====∴==-=-=∴+=已知椭圆的一个焦点为求椭圆的标准方程若动点为椭圆外一点且点到椭圆的两条切线相互垂直求点的轨迹方程解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P共个002200222000022222000000(3,2),(3,2).(),(),194(94)18()9()40,,0,(18)()36()4(94)0,4()4y y k x xx yy k x x yk x k y kx x y kxk y kx y kx k y kx-±±-=-=-++=⎡⎤++-+--=∆=⎣⎦⎡⎤----+=--⎣⎦,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:依题意即:即2222200000122220022(94)0,4(9)240,,1,:1,913,(3,2),(3,2),13.kyx k x y k y k kxx yP x y+=-∴--+-=∴=-=--∴+=-±±∴+=两切线相互垂直即显然这四点也满足以上方程点的轨迹方程为3200121.()1().3(1)();111(2)0,(0,)(,1),()=().222f x x x ax a Rf xa x f x f=+++∈<∈已知函数求函数的单调区间当时试讨论是否存在使得3232000033220002000000200000111111(2):()()1()()()12332221111()()()3222111111()()()()()322422211111()()()(4236122122f x f x x ax a x x a x x x x x x a x x x x x a x ⎡⎤-=+++-+++⎢⎥⎣⎦⎡⎤⎡⎤=-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=-+++-++-⎢⎥⎣⎦=-+++++=-解法一2000020020014712)111(0,)(,1),()(),222114147120(0,)(,1).220,1416(712)4(2148)0,0,,01,7x x a x f x f x x a a a a x x +++∴∈=+++=<∴∆=-+=->=>∴<<<若存在使得必须在上有解方程的两根为依题意即0000025711,492148121,,1212155,,,,24425557111(,)(,),(0,)(,1)()().124412222257511(,][,0),(0,)(,1)(1212422a a a x a a x f x f a x f x ∴<-<-<<-=-≠-∴∈----∈=⎧⎫∈-∞---∈⎨⎬⎩⎭即得故欲使满足题意的存在则当时存在唯一的满足当时不存在使1)().2f =00:0,10,()3,11,(1)()(0,1),111(0,)(,1),()=();222()30,()(0,1,(1,5111),()(0,),(,1),422a i a f x x f x f ii a f x a f x <∴-≤--∈-<<-+-+=-解法二若从而由知在区间上是减函数故此时不存在使得若则函数在区间上递减在区间上递增若则在上递减在上递增显然此时不存在满足题意的000000;512)3,11,,(14212525255(1)()0,0,,;222412124513)0,01,,(0,1421775(0)()0,0,,2224124x a x x a f f a a x a x x a f f a -<<-<-∈-+->+>>--<<--<<<-+∈-+->--><--若则若题意中的存在则故只需即则故时存在满足题意的若则若题意中的存在则故只需即则故000007.12:25557111(,)(,),(0,)(,1)()().1244122222575111(,][,0),(0,)(,1)()().12124222a x a x f x f a x f x f <<-∴∈----∈=⎧⎫∈-∞---∈=⎨⎬⎩⎭时存在满足题意的综上所述当时存在唯一的满足当时不存在使。

2014届广东省珠海一中等六校高三第三次联考数学文试题及答案

2014届广东省珠海一中等六校高三第三次联考数学文试题及答案

广东2014届高三六校第三次联考文科数学本试卷分选择题和非选择题两部分,共4页,20小题,满分150分。

考试用时120分钟。

参考公式(1)用最小二乘法求线性回归方程系数公式1221ˆˆˆni ii ni i x y nx ybay bx x nx==-⋅==--∑∑,. (其中12nx x x x n+++=)(2)锥体体积公式13V Sh =(S 为锥体的底面积,h 为锥体的高) 第一部分 选择题(共50分)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,2,3,4,5,6U =,{}1,2,4A =,则U A =A .UB .{}1,3,5C .{}3,5,6D . {}2,4,62.设复数i(12i)z =+(其中i 是虚数单位),则在复平面内,复数z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 3.已知向量(2,1),(1,),a b k ==-若//(2)a a b -,则k =A .12-B .12C .12D .12-4.已知等比数列{}n a 中,公比1q >,且168a a +=,3412a a =,则116a a = A . 2 B . 3或6 C . 6 D . 35.设βα,为两个不重合的平面,n m ,是两条不重合的直线,则下列四个命题中是真命题的是A .若α⊥⊥m n m ,,则α//nB .若,,βα⊂⊂m n βα与相交且不垂直,则m n 与不垂直C .若n m m ⊥=⊥,,βαβα ,则n β⊥D .若βαα//,,//⊥n n m ,则β⊥m6.某种产品的广告费支出x 与销售额y (单位:百万元)之间有如下对应数据:x2 4 5 6 8 y3040506070由散点图判断y 与x 具有线性相关关系,计算可得回归直线的斜率是7,则回归直线的方程是A .^715y x =+B .^75y x =+C .^750y x =+D .^745y x =+7.一个几何体的三视图如图1所示,则该几何体的体积为A . 13B . 1C . 12D .328.同时具有性质:“①最小正周期为π;②图象关于直线3x π=对称;③在(,)63ππ-上是增函数”的一个函数是A.sin()26x y π=+B.cos()26x y π=-C.cos(2)3y x π=+D.sin(2)6y x π=-9.若221x y+=,则x y +的取值范围是A .]2,0[B .]0,2[-C .),2[+∞-D .]2,(--∞10.已知函数(0)()lg()(0)x e x f x x x ⎧≥=⎨-<⎩,则实数2t ≤-是关于x 的方程2()()0f x f x t ++=有三个不同实数根的A .充分非必要条件B .必要非充分条件C .充要条件D .非充分非必要条件第二部分 非选择题(共 100 分)二、填空题: 本大题共4小题,每小题5分,满分20分.11. 已知函数33,0()tan ,02x x f x x x π⎧<⎪=⎨-≤<⎪⎩ ,则(())4f f π= . 12.阅读图2的程序框图,输出结果s 的值为 .13.已知实数,a b 满足:102102210a b a b a b -+≥⎧⎪--≤⎨⎪+-≥⎩,1z a b =--,则z 的取值范围是_ .14.在平面内,若三角形的面积为S ,周长为C ,则此三角形的内切圆的半径2Sr C=;在空间中,图2 开始结束2014n ≤0,1s n == 是否输出ssin3n s s π=+1n n =+11主视图2俯视图 侧视图11图1三棱锥P ABC -的三条侧棱,,PA PB PC 两两垂直,且1PA PB PC ===,利用类比推理的方法,求得此三棱锥P ABC -的内切球(球面与三棱锥的各个面均相切)的半径R =_____________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15.(本小题满分12分)已知向量2(2cos ,3)a x =,(1,sin 2)b x =,函数()f x a b =⋅.(1)求函数()f x 的最小正周期;(2)若()23f πα-=,,2παπ⎡⎤∈⎢⎥⎣⎦,求sin(2)6πα+的值.16.(本小题满分12分)从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)155,160,第二组[)160,165,…,第八组[]190,195,图3是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(1)求第七组的频率; (2)根据得到的样本数据估计该学校男生身高在180cm 以上(含180cm )的人数;(3)从身高属于第六组和第八组的所有男生中随机抽取两名男生,求抽取的两个男生的身高之差不超过5的概率 .17.(本小题满分14分)在图4所示的几何体中,ABC ∆是边长为2的正三角形,1AE =,AE ⊥平面ABC ,平面BCD ⊥平面ABC ,BD CD =,且BD CD ⊥.身高 (cm)频率/组距1951901851801751701651600.060.040.0160.008O155身高(cm)频率/组距图3ABCED(1)证明:AE //平面BCD ;(2)证明:平面BDE ⊥平面CDE ; (3)求该几何体的体积.18.(本小题满分14分)已知数列{}n a 为等差数列,且5714,20a a ==,数列{}n b 的前n 项和为n S ,且满足132n n S S -=+(2,*)n n ≥∈N ,123b =. (1)求数列{}n a ,{}n b 的通项公式;(2)若n n n c a b =⋅,n T 为数列{}n c 的前n 项和,求n T .19.(本小题满分14分)已知函数2()ln ,()(R)f x x x g x ax x a ==-∈. (1)求()f x 的单调区间和极值点;(2)求使()()f x g x ≤恒成立的实数a 的取值范围;(3)当18a =时,是否存在实数m ,使得方程3()()04f x m g x x++=有三个不等实根?若存在,求出m 的取值范围;若不存在,请说明理由.20.(本小题满分14分)已知函数2()4f x x =-,设曲线)(x f y =在点(,())n n x f x 处的切线与x 轴的交点为)0,(1+n x ,其中1x 为正实数,*N ∈n .(1)用n x 表示1+n x ; (2)若41=x ,记22lg -+=n n n x x a (*N ∈n ),试判断数列{}n a 是否是等比数列,若是求出其公比;若不是,请说明理由;(3)在(2)的条件下,设()()(25)lg322123n nn b n n a +=++,数列{}n b 的前n 项和为n S ,证明:71303n S ≤<.2014届高三六校第三次联考文科数学参考答案一、 选择题:C BD D D A A D D C 二、填空题: 11.3-; 12.32; 13.122⎡⎤-⎢⎥⎣⎦,-; 14.336- . 三、解答题:15.(本小题满分12分)已知向量2(2cos ,3)a x =,(1,sin 2)b x =,函数()f x a b =⋅.(1)求函数()f x 的最小正周期;(2)若()23f πα-=,,2παπ⎡⎤∈⎢⎥⎣⎦,求sin(2)6πα+的值. 解:(1)2()2cos 3sin 2cos23sin 21f x x x x x =+=++ 2sin(2)16x π=++ , 4分∴()f x 的最小正周期为T π=. 6分(2)()2sin(2())12sin(2)123362f ππππααα-=-++=-+=, 1cos 22α∴-=,1cos 22α=-, 8分,2παπ⎡⎤∈⎢⎥⎣⎦,[]2,2αππ∴∈,423πα∴=,23πα=, 10分 3sin(2)sin 162ππα∴+==-. 12分16.(本小题满分12分)从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)155,160,第二组[)160,165,……,第八组[]190,195,图3是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.身高 (cm)频率/组距1951901851801751701651600.060.040.0160.008O155身高(cm)频率/组距(1)求第七组的频率;(2)根据得到的样本数据估计该学校男生身高在180cm 以上(含180cm )的人数;(3)从身高属于第六组和第八组的所有男生中随机抽取两名男生,求抽取的两个男生的身高之差不超过5的概率 . 16.解: (1)第六组的频率为40.0850=, 2分 所以第七组的频率为 :10.085(0.00820.0160.042+0.06=0.06--⨯++⨯). 4分 (2)由直方图得后三组频率为0.06+0.08+0.0085=0.18⨯,所以估计该校男生身高在180cm 以上(含180cm )的人数为0.18800144⨯=人. 7分 (3)第六组[)180,185的人数为4人,设为,,,a b c d ,第八组[]190,195的人数为2人, 设为,A B , 则从这6人中抽取2人有,,,,,ab ac ad bd bc cd ,,,,,,,,,aA bA cA dA aB bB cB dB AB 共15种情况,9分抽取的两个男生的身高之差不超过5有,,,,,,ab ac ad bc bd cd AB 共7种情况, 11分 抽取的两个男生的身高之差不超过5的概率为715P =. 12分 17.(本小题满分14分)在图4所示的几何体中,ABC ∆是边长为2的正三角形,1AE =,AE ⊥平面ABC ,平面BCD ⊥平面ABC ,BD CD =,且BD CD ⊥. (1)证明:AE //平面BCD ;(2)证明:平面BDE ⊥平面CDE ;(3)求该几何体的体积.17.证明:(1) 取BC 的中点M ,连接DM 、AM , 由已知BD CD =,可得:DM BC ⊥,又因为平面BCD ⊥平面ABC ,平面BCD 平面ABC BC =,所以DM ⊥平面ABC ,因为AE ⊥平面ABC , 所以//AE DM , 又因为AE ⊄平面BCD ,DM ⊂平面BCD ,所以//AE 平面BCD . 4分 (2)由(1)知//AE DM ,又1AE =,1DM = ,所以四边形DMAE 是平行四边形,则有//DE AM , 由(1)得DM AM ⊥,又AM BC ⊥,∴AM ⊥平面BCD , 所以DE ⊥平面BCD , 又CD ⊂平面BCD ,所以DE CD ⊥,由已知BD CD ⊥, D BD DE = ,∴CD ⊥平面BDE ,因为CD ⊂平面CDE , 所以平面BDE ⊥平面CDE . 10分 (也可利用勾股定理等证明题中的垂直关系)(3)M AM DM AM BC DM BC =⊥⊥ ,,,∴BC ⊥平面AEDM , 11分M图4ABC E D图4ABCED1,3==DM AM ,易得四边形AEDM 为矩形其面积3S =, 12分 故该几何体的体积C AEDM B AEDM V V V --=+=33231=⨯⨯BC S . 14分18.(本小题满分14分)已知数列{}n a 为等差数列,且5714,20a a ==,数列{}n b 的前n 项和为n S ,且满足132n n S S -=+(2,*)n n ≥∈N ,123b =. (1)求数列{}n a ,{}n b 的通项公式;(2)若n n n c a b =⋅,n T 为数列{}n c 的前n 项和,求n T . 18.(1)数列{}n a 是等差数列,设公差为d ,则11414620a d a d +=⎧⎨+=⎩,解得123a d =⎧⎨=⎩,1(1)31n a a n d n ∴=+-=-. 2分 132(2)n n S S n -=+≥ ①, 1232(3)n n S S n --∴=+≥ ②,由① — ②得13(3)n n b b n -=≥,11(3)3n n b n b -∴=≥, 4分 由112,32(2)3n n b S S n -==+≥得1213()2b b b +=+, 229b ∴=, ∴2113b b =, 5分 {}n b ∴是等比数列,公比是13, 23n nb ∴=. 6分 (2)2(31)3n n n nn c a b -=⋅=, 231111112(258(34)(31))33333n n n T n n -=⋅+⋅+++-+-,23411111112(258(34)(31))333333n n n T n n +=⋅++++-+-, 8分 231121111112(2(31))3333333n n n T n -+∴=⋅+++++-- 1111(1())21332((31))13313n n n -+-=+---1171112((31))6233n n n -+=---176733n n ++=-,767223n nn T +∴=-⋅. 14分19.(本小题满分14分)已知函数2()ln ,()(R)f x x x g x ax x a ==-∈. (1)求()f x 的单调区间和极值点;(2)求使()()f x g x ≤恒成立的实数a 的取值范围;(3)当18a =时,是否存在实数m ,使得方程3()()04f x m g x x++=有三个不等实根?若存在,求出m 的取值范围;若不存在,请说明理由. 19.解:(1)()ln 1f x x '=+, 由()0f x '>得1x e>, ()0f x '<得10x e <<,()f x ∴在1(0,)e 单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭单调递增,()f x 的极小值点为1x e=.(注:极值点未正确指出扣1分) 3分 (2)方法1:由()()f x g x ≤得2ln (0)x x ax x x ≤->,ln 1ax x ∴≥+ ,令()ln 1h x ax x =-- ,则11()ax h x a x x-'=-=, ⅰ)当0a ≤时,()0h x '<,()h x 在()0,+∞单调递减,()h x 无最小值,舍去; ⅱ)当0a >时, 由()0h x '>得1x a >,()0h x '<得10x a<<, ()h x ∴在1(0,)a 单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭单调递增,min 1()()ln h x h a a∴==,只须ln 0a ≥,即1a ≥,∴当1a ≥时()()f x g x ≤恒成立. 8分方法2:由()()f x g x ≤得2ln (0)x x ax x x ≤->,ln 1ax x ∴≥+, 即ln 1x a x+≥对任意0x >恒成立,令ln 1()x h x x+=,则2ln ()x h x x -'=,由()0h x '>得01x <<,()0h x '<得1x >,()h x ∴在(0,1)单调递增,在()1,+∞单调递减,max ()(1)1h x h ∴==,∴ 1a ≥,∴当1a ≥时()()f x g x ≤恒成立.(3)假设存在实数m ,使得方程3()()04f x m g x x++=有三个不等实根, 即方程26ln 880x m x x ++-=有三个不等实根, 令2()6ln 88x x m x x ϕ=++-,262(43)2(3)(1)()28x x x x x x x x xϕ-+--'=+-==,由()0x ϕ'>得01x <<或3x >,由()0x ϕ'<得13x <<,()x ϕ∴在(0,1)上单调递增,(1,3)上单调递减,(3,)+∞上单调递增,∴()x ϕ的极大值为(1)78m ϕ=-+,()x ϕ的极小值为(3)156ln 38m ϕ=-++. 11分要使方程26ln 880x m x x ++-=有三个不等实根,则函数()x ϕ的图像与x 轴要有三个交点,根据()x ϕ的图像可知必须满足780156ln 380m m -+>⎧⎨-++<⎩,解得7153ln 3884m <<-, 13分 ∴存在实数m ,使得方程3()()04f x m g x x ++=有三个不等实根, 实数m 的取值范围是7153ln 3884m <<-. 14分20.(本小题满分14分)已知函数2()4f x x =-,设曲线)(x f y =在点(,())n n x f x 处的切线与x 轴的交点为)0,(1+n x ,其中1x 为正实数,*N ∈n .(1)用n x 表示1+n x ; (2)若41=x ,记22lg -+=n n n x x a (*N ∈n ),试判断数列{}n a 是否是等比数列,若是求出其公比;若不是,请说明理由;(3)在(2)的条件下,设()()(25)lg322123n nn b n n a +=++,数列{}n b 的前n 项和为n S ,证明:71303n S ≤<. 20.解:(1)由题可得()2f x x '=,所以曲线()y f x =在点(,())n n x f x 处的切线方程是()()()n n n y f x f x x x '-=-, 即2(4)2()n n n y x x x x --=-, 2分 令0y =,得21(4)2()n n n n x x x x +--=-,即2142n n n x x x ++=,显然0n x ≠,∴2124n n nx x x ++=. 4分(2)数列{}n a 是等比数列,证明如下:由2124n n nx x x ++=,22lg -+=n n n x x a 得222112214222(2)22l g l g l g l g ()2l g 242(2)2222n n n n n n n n n n n n n nx x x x x x a a x x x x x x +++++++++======+-----, ∴12n na a +=, 所以数列{}n a 成等比数列,公比为2. 8分 (3)解:14x = 1114lglg34x a x +∴==-,由(2)得11122lg3n n n a a --=⋅=, ∴()()(25)lg322123n n n b n n a +=++⋅()()25121232n n n n +=⋅++21121232n n n ⎛⎫=-⋅ ⎪++⎝⎭111(21)2(23)2n n n n -=-++,所以12n n S b b b =+++L()()211111113525272212232n n n n -⎡⎤⎛⎫⎛⎫=-+-++-⎢⎥ ⎪ ⎪⋅⋅⋅++⎝⎭⎝⎭⎣⎦L ()113232nn =-+, 12分 故数列{}n b 的前n 项和()113232n nS n =-+,10(23)2n n >+⋅13n S ∴<, 又1(23)2n n +⋅单调递增,113(23)2n nS n ∴=-+⋅单调递减, ∴当1n =时n S 的最小值为730, ∴71303n S ≤<. 14分。

数学理卷·2014届广东省珠海市第一中学等六校联盟高三第三次联合考试(2013.12)

数学理卷·2014届广东省珠海市第一中学等六校联盟高三第三次联合考试(2013.12)

的体积等于
.
13. 若正数 a,b 满足 a + b = 1,则 a + b 的最大值是
.
a +1 b+1
14. 已知正三棱柱 ABC − A1B1C 的底面边长为 4 cm,高为 7 cm,则当一质点
自点 A 出发,沿着三棱柱的侧面绕行两周到达点 A1 的路程最短时,质点沿着侧
面的前进方向所在直线与底面 ABC 所成角的余弦值为
18. (本题共 3 小题,第(Ⅰ)小题 4 分,第(Ⅱ)小题 4 分,第(Ⅲ)小题 6 分,满分 14 分)
设函数 f ( x) = x2 + ax − ln x .
(Ⅰ)若 a = 1,试求函数 f ( x) 的极小值;
(Ⅱ)求经过坐标原点 O 的曲线 y = f (x) 的切线方程;
(Ⅲ)令 g ( x) =
设 ∆ABC 的三内角 A、B、C 的对边长分别为 a、b、c ,已知 a、b、c 成等比数列,且 sin Asin C = 3 . 4
(Ⅰ)求角 B 的大小;
uur (Ⅱ)设向量 m = (cos A,
cos
2
A)
,
r n
=
(−
12
,
uur r 1) ,当 m ⋅ n 取最小值时,判断 ∆ABC 的形
D.1 )
A.

1
r a
+
3
r b
22
B.
1
r a

3
r b
22
C.
3
r a

1
r b
22
3.如果 0 < a < 1,那么下列不等式中正确的是( D )

2014年高考广东文科数学试题及答案(word解析版)

2014年高考广东文科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(广东卷)数学(文科)一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2014年广东,文1,5分】已知集合{}2,3,4M =,{}0,2,3,5N =,则M N =( )(A ){}0,2 (B ){}2,3 (C ){}3,4 (D ){}3,5 【答案】B 【解析】{}2,3MN =,故选B .【点评】本题主要考查集合的基本运算,比较基础. (2)【2014年广东,文2,5分】已知复数z 满足(34i)25z -=,则z =( )(A )34i -- (B )34i -+ (C )34i - (D )34i + 【答案】D【解析】2525(34i)25(34i)=34i 34i (34i)(34i)25z ++===+--+,故选D .【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i 的幂运算性质,属于基础题. (3)【2014年广东,文3,5分】已知向量(1,2)a =,(3,1)b =,则b a -=( )(A )(2,1)- (B )(2,1)- (C )(2,0) (D )(4,3) 【答案】B【解析】()2,1b a -=-,故选B .【点评】本题考查向量的坐标运算,基本知识的考查.(4)【2014年广东,文4,5分】若变量,x y 满足约束条件280403x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩,则2z x y =+的最大值等于( )(A )7 (B )8 (C )10 (D )11 【答案】C 【解析】作出不等式组对应的平面区域如图:由2z x y =+,得2y x z =-+,平移直线2y x z =-+, 由图象可知当直线2y x z =-+经过点()4,2B 时,直线2y x z =-+的截距最大,此时z 最大,此时24210z ==⨯+=,故选C . 【点评】本题主要考查线性规划的应用,利用z 的几何意义,利用数形结合是解决本题的关键. (5)【2014年广东,文5,5分】下列函数为奇函数的是( )(A )122x x - (B )3sin x x (C )2cos 1x + (D )22x x +【答案】A【解析】对于函数()122x x f x =-,()()112222x x x x f x f x ---=-=-=-,故此函数为奇函数;对于函数()3sin f x x x =,()()()()33sin sin f x x x x x f x -=--==,故此函数为偶函数;对于函数()2cos 1f x x =+,()()()2cos 12cos 1f x x x f x -=-+=+=,故此函数为偶函数;对于函数()22x f x x =+,()()()2222x x f x x x f x ---=-+=+≠-,同时()()f x f x -=≠故此函数为非奇非偶函数,故选A .【点评】本题主要考查函数的奇偶性的判断方法,属于基础题.(6)【2014年广东,文6,5分】为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )(A )50 (B )40 (C )25 (D )20 【答案】C【解析】∵从1000名学生中抽取40个样本,∴样本数据间隔为1000÷40=25,故选C . 【点评】本题主要考查系统抽样的定义和应用,比较基础. (7)【2014年广东,文7,5分】在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,则“a b ≤”是“sin sin A B ≤”的( )(A )充分必要条件 (B )充分非必要条件 (C )必要非充分条件 (D )非充分非必要条件 【答案】A【解析】由正弦定理可知sin sin a bA B=,∵ABC ∆中,角A 、B 、C 所对应的边分别为a ,b ,c ,∴a ,b ,sin A ,sin B 都是正数,sin sin a b A B ≤⇔≤.∴“a b ≤”是“sin sin A B ≤”的充分必要条件,故选A .【点评】本题考查三角形中,角与边的关系正弦定理以及充要条件的应用,基本知识的考查.(8)【2014年广东,文8,5分】若实数k 满足05k <<,则曲线221165x y k-=-与曲线221165x y k -=-的( ) (A )实半轴长相等 (B )虚半轴长相等 (C )离心率相等 (D )焦距相等 【答案】D【解析】当05k <<,则055k <-<,111616k <-<,即曲线221165x y k-=-表示焦点在x 轴上的双曲线,其中216a =,25b k =-,221c k =-,曲线221165x y k -=-表示焦点在x 轴上的双曲线,其中216a k =-,25b =,221c k =-,即两个双曲线的焦距相等,故选D .【点评】本题主要考查双曲线的方程和性质,根据不等式的范围判断a ,b ,c 是解决本题的关键. (9)【2014年广东,文9,5分】若空间中四条两两不同的直线1234,,,l l l l ,满足122334,//,l l l l l l ⊥⊥,则下列结论一定正确的是( )(A )14l l ⊥ (B )14//l l (C )1l 与4l 既不垂直也不平行 (D )1l 与4l 的位置关系不确定 【答案】D【解析】在正方体中,若AB 所在的直线为2l ,CD 所在的直线为3l ,AE 所在的直线为1l , 若GD 所在的直线为4l ,此时14//l l ,若BD 所在的直线为4l ,此时14l l ⊥,故1l 与4l 的位 置关系不确定,故选D .【点评】本题主要考查空间直线平行或垂直的位置关系的判断,比较基础.(10)【2014年广东,文10,5分】对任意复数12,ωω,定义1212*ωωωω=,其中2ω是2ω的共轭复数,对任意复数123,,z z z ,有如下四个命题: ①1231323()()()z z z z z z z +=**+*②1231213()()()z z z z z z z +=**+*; ③123123()()z z z z z z *=***④1221z z z z *=*;则真命题的个数是( )(A )1 (B )2 (C )3 (D )4 【答案】B【解析】①12312313231323()()()()()()z z z z z z z z z z z z z z +++*===*+*,正确;②12312312312131213()()()()()()()z z z z z z z z z z z z z z z z z +=+=+=+=**+*,正确;③123123123123123(),()()(),z z z z z z z z z z z z z z z ===≠左边=*=右边*左边右边,等式不成立,故错误;④12122121,,z z z z z z z z ==≠左边=*右边=*左边右边,等式不成立,故错误; 综上所述,真命题的个数是2个,故选B .【点评】本题以命题的真假判断为载体,考查了复数的运算性质,细心运算即可,属于基础题. 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13) (11)【2014年广东,文11,5分】曲线53x y e =-+在点()0,2-处的切线方程为 . 【答案】520x y ++= 【解析】'5x y e =-,'5x y =∴=-,因此所求的切线方程为:25y x +=-,即520x y ++=.【点评】本题考查了导数的几何意义、曲线的切线方程,属于基础题. (12)【2014年广东,文12,5分】从字母,,,,a b c d e 中任取两个不同字母,则取到字母a 的概率为 .【答案】25【解析】142542105C P C ===.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A 包含的基本事件的个数和试验中基本事件的总数.(13)【2014年广东,文13,5分】等比数列{}n a 的各项均为正数,且154a a =, 则2122232425log log log log log a a a a a ++++= . 【答案】5【解析】设2122232425log log log log log S a a a a a =++++,则2524232221log log log log log S a a a a a =++++,215225log ()5log 410S a a ∴===,5S ∴=.【点评】本题考查等比数列的性质,灵活运用性质变形求值是关键,本题是数列的基本题,较易. (二)选做题(14-15题,考生只能从中选做一题) (14)【2014年广东,文14,5分】(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为22cos sin ρθθ=与cos =1ρθ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 交点的直角坐标为 . 【答案】(1,2)【解析】由22cos sin ρθθ=得22cos =sin ρθρθ(),故1C 的直角坐标系方程为:22y x =,2C 的直角坐标系方程为:1x =,12,C C ∴交点的直角坐标为(1,2).【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题. (15)【2014年广东,文15,5分】(几何证明选讲选做题)如图,在平行四边形ABCD 中,点E 在AB 上,且2EB AE =,AC 与DE 交于点F ,则CDF AEF ∆=∆的周长的周长. 【答案】3【解析】由于CDF AEF ∆∆∽,3CDF CD EB AEAEF AE AE∆+∴===∆的周长的周长.【点评】本题考查三角形相似的判断,考查学生的计算能力,属于基础题.三、解答题:本大题共6题,共80分.解答应写出文字说明,证明过程或演算步骤.(16)【2014年广东,文16,12分】已知函数()sin ,3f x A x x R π⎛⎫=+∈ ⎪⎝⎭,且512f π⎛⎫= ⎪⎝⎭.(1)求A 的值;(2)若()()0,2f f πθθθ⎛⎫--=∈ ⎪⎝⎭,求6f πθ⎛⎫- ⎪⎝⎭.解:(1)553()sin()sin 121234f A A ππππ=+==3A ∴.(2)由(1)得:()3sin()3f x x π=+,()()3sin()3sin()33f f ππθθθθ∴--=+--+3(sin coscos sin )3(sin()cos cos()sin )6sin cos 3sin 3333πππππθθθθθθ=+--+-===sin 0,2πθθ⎛⎫∴=∈ ⎪⎝⎭,cos θ∴==()3sin()3sin()3cos 36632f ππππθθθθ∴-=-+=-==【点评】本题考查两角和与差的三角函数,三角函数的解析式的求法,基本知识的考查. (17)【2014年广东,文17,12分】某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差. 解:(1)这这20名工人年龄的众数为30,极差为40﹣19=21.(2)茎叶图如下: (3)年龄的平均数为:(1928329330531432340)3020+⨯+⨯+⨯+⨯+⨯+=,这20名工人年龄的方差为:2222222111(11)3(2)3(1)50413210(121123412100)25212.6202020⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+=+++++=⨯=⎣⎦【点评】本题考查了众数,极差,茎叶图,方差的基本定义,属于基础题. (18)【2014年广东,文18,14分】如图1,四边形ABCD 为矩形,PD ABCD ⊥平面,1,2AB BC PC ===,做如图2折叠:折痕//EF DC ,其中点,E F 分别在线段,PD PC 上,沿EF 折叠后,点P 叠在线段AD 上的点记为M ,并且MF CF ⊥. (1)证明:CF MDF ⊥平面; (2)求三棱锥M CDE -的体积. 解:(1)PD ⊥平面ABCD ,PD PCD ⊂,∴平面PCD ⊥平面ABCD ,平面PCD 平面ABCD CD =,MD ⊂平面ABCD ,MD CD ⊥,MD ∴⊥平面PCD ,CF ⊂平面PCD ,CF MD ∴⊥,又 CF MF ⊥,MD ,MF ⊂平面MDF ,MD MF M =,CF ∴⊥平面MDF .(2)CF ⊥平面MDF ,CF DF ∴⊥,又易知060PCD ∠=,030CDF ∴∠=,从而11==22CF CD ,EF DC ∥,DE CFDP CP ∴=122,DE ∴=,PE ∴=12CDE S CD DE ∆=⋅=,2MD ===,1133M CDE CDE V S MD -∆∴=⋅== 【点评】本题考查了空间中的垂直关系的应用问题,解题时应结合图形,明确线线垂直、线面垂直以及面面垂直的相互转化关系是什么,几何体的体积计算公式是什么,是中档题.(19)【2014年广东,文19,14分】设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足222(3)3()0,n n S n n S n n n N *-+--+=∈.(1)求1a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有()()()112211111113n n a a a a a a +++<+++.解:(1)令1n =得:211(1)320S S ---⨯=,即21160S S +-=,11(3)(2)0S S ∴+-=,10S >,12S ∴=,即12a =.(2)由222(3)3()0nn S n n S n n -+--+=,得:2(3)()0n n S S n n ⎡⎤+-+=⎣⎦,0()n a n N *>∈,0n S ∴>,从而30n S +>,2n S n n ∴=+,∴当2n ≥时,221(1)(1)2n n n a S S n n n n n -⎡⎤=-=+--+-=⎣⎦,又1221a ==⨯,2()n a n n N *∴=∈. (3)当k N *∈时,22313()()221644k k k k k k +>+-=-+, 111111111111131111(1)2(21)4444()()()(1)()(1)2444444k k a a k k k k k k k k k k ⎡⎤⎢⎥∴==⋅<⋅=⋅=⋅-⎢⎥++⎡⎤⎢⎥+-+-+--⋅+-⎢⎥⎣⎦⎣⎦11221111111111()()111111(1)(1)(1)41223(1)444444n n a a a a a a n n ⎡⎤⎢⎥∴+++<-+-++-⎢⎥+++⎢⎥-----+-⎣⎦1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 0111111()11434331(1)44n n =-=-<+-+-. 【点评】本题考查了数列的通项与前n 项和的关系、裂项求和法,还用到了放缩法,计算量较大,有一定的思维难度,属于难题.(20)【2014年广东,文20,14分】已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为.(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.解:(1)cc e a ===3a ∴=,222954b a c =-=-=,∴椭圆C 的标准方程为:22194x y +=. (2)若一切线垂直x 轴,则另一切线垂直于y 轴,则这样的点P 共4个,它们坐标分别为(3,2)-±,(3,2)±.若两切线不垂直与坐标轴,设切线方程为00()y y k x x -=-,即00()y k x x y =-+,将之代入椭圆方程22194x y +=中并整理得:2220000(94)18()9()40k x k y kx x y kx ⎡⎤++-+--=⎣⎦,依题意,0∆=, 即22220000(18)()36()4(94)0k y kx y kx k ⎡⎤----+=⎣⎦,即22004()4(94)0y kx k --+=, 2220000(9)240x k x y k y ∴--+-=,两切线相互垂直,121k k ∴=-,即2020419y x -=--,220013x y ∴+=, 显然(3,2)-±,(3,2)±这四点也满足以上方程,∴点P 的轨迹方程为2213x y +=.【点评】本题主要考查了椭圆的标准方程,轨迹方程的相关问题.对于求轨迹方程,最重要的是建立模型求得x和y 关系.(21)【2014年广东,文21,14分】已知函数321()1()3f x x x ax a R =+++∈.(1)求函数()f x 的单调区间;(2)当0a <时,试讨论是否存在011(0,)(,1)22x ∈,使得01()=()2f x f .解:(1)'2()2f x x x a =++,方程220x x a ++=的判别式:44a ∆=-,∴当1a ≥时,0∆≤,'()0f x ∴≥,此时()f x 在(,)-∞+∞上为增函数.当1a <时,方程220x xa ++=的两根为1-(,1x ∈-∞-时,'()0f x >,∴此时()f x为增函数,当(11x ∈--,'()0f x <,此时()f x 为减函数,当(1)x ∈-+∞时,'()0f x >,此时()f x 为增函数,综上,1a ≥时,()f x 在(,)-∞+∞上为增函数,当1a <时,()f x 的单调增函数区间为(,1-∞-,(1)-++∞,()f x的单调递减区间为(11---.(2)3232332200000001111111111()()1()()()1()()()2332223222f x f x x ax a x x a x ⎡⎤⎡⎤⎡⎤-=+++-+++=-+-+-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦200011()(414712)122x x x a =-+++∴若存在011(0,)(,1)22x ∈,使得01()()2f x f =, 必须2004147120x x a +++=在11(0,)(,1)2上有解.0a <,21416(712)4(2148)0a a ∴∆=-+=->,00x >,0x ∴ 01<,即711<,492148121a ∴<-<,即2571212a -<<-,12,得54a =-,故欲使满足题意的0x 存在,则54a ≠-,∴当25557(,)(,)124412a ∈----时,存在唯一的011(0,)(,1)22x ∈满足01()()2f x f =.当2575(,][,0)12124a ⎧⎫∈-∞---⎨⎬⎩⎭时,不存在011(0,)(,1)22x ∈使01()()2f x f =.【点评】(1)求含参数的函数的单调区间时,导函数的符号往往难以确定,如果受到参数的影响,应对参数进行讨论,讨论的标准要根据导函数解析式的特征而定.如本题中导函数为一元二次函数,就有必要考虑对应方程中的判别式△.(2)对于存在性问题,一般先假设所判断的问题成立,再由假设去推导,若求得符合题意的结果,则存在;若得出矛盾,则不存在.。

2014年广东省高考数学试卷(文科)(含解析版)

2014年广东省高考数学试卷(文科)(含解析版)

2014年广东省高考数学试卷(文科)一、选择题:(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合M={2,3,4},N={0,2,3,5},则M∩N=()A.{0,2}B.{2,3}C.{3,4}D.{3,5} 2.(5分)已知复数z满足(3﹣4i)z=25,则z=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i3.(5分)已知向量=(1,2),=(3,1),则﹣=()A.(﹣2,1)B.(2,﹣1)C.(2,0)D.(4,3)4.(5分)若变量x,y满足约束条件A.7B.8,则z=2x+y的最大值等于()C.10D.115.(5分)下列函数为奇函数的是()A.2x﹣B.x3sinx C.2cosx+1D.x2+2x6.(5分)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为()A.50B.40C.25D.207.(5分)在△ABC中,角A、B、C所对应的边分别为a,b,c,则“a≤b”是“sinA ≤sinB”的()A.充分必要条件C.必要非充分条件8.(5分)若实数k满足0<k<5,则曲线A.实半轴长相等B.虚半轴长相等B.充分非必要条件D.非充分非必要条件﹣=1与﹣=1的()C.离心率相等D.焦距相等9.(5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4C.l1与l4既不垂直也不平行B.l1∥l4D.l1与l4的位置关系不确定10.(5分)对任意复数ω1,ω2,定义ω1*ω2=ω1对任意复数z1,z2,z3有如下命题:①(z1+z2)*z3=(z1*z3)+(z2*z3)②z1*(z2+z3)=(z1*z2)+(z1*z3)③(z1*z2)*z3=z1*(z2*z3);④z1*z2=z2*z1则真命题的个数是()A.1B.2C.3其中2,2是ω2的共轭复数,D.4二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(1113题)11.(5分)曲线y=﹣5e x+3在点(0,﹣2)处的切线方程为.12.(5分)从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为.13.(5分)等比数列{an }的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=.(二)(1415题,考生只能从中选做一题)【坐标系与参数方程选做题】14.(5分)在极坐标系中,曲线C1与C2的方程分别为2ρcos2θ=sinθ与ρcosθ=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1与C2交点的直角坐标为.【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则=.四、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤)16.(12分)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)﹣f(﹣θ)=,θ∈(0,),求f(﹣θ).17.(13分)某车间20名工人年龄数据如下表:年龄(岁)工人数(人)191283293305314323401合计20(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.18.(13分)如图1,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2作如图2折叠;折痕EF ∥DC ,其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF ⊥CF .(1)证明:CF ⊥平面MDF ;(2)求三棱锥M ﹣CDE 的体积.19.(14分)设各项均为正数的数列{a n }的前n 项和为S n 满足S n 2﹣(n 2+n ﹣3)S n ﹣3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有++…+<.20.(14分)已知椭圆C:为.+=1(a>b>0)的右焦点为(,0),离心率(1)求椭圆C的标准方程;(2)若动点P(x0,y)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.21.(14分)已知函数f(x)=x3+x2+ax+1(a∈R).(1)求函数f(x)的单调区间;(2)当a<0时,试讨论是否存在x0∈(0,)∪(,1),使得f(x)=f().2014年广东省高考数学试卷(文科)参考答案与试题解析一、选择题:(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合M={2,3,4},N={0,2,3,5},则M∩N=()A.{0,2}B.{2,3}C.{3,4}D.{3,5}【考点】1E:交集及其运算.【专题】5J:集合.【分析】根据集合的基本运算即可得到结论.【解答】解:∵M={2,3,4},N={0,2,3,5},∴M∩N={2,3},故选:B.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)已知复数z满足(3﹣4i)z=25,则z=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】由题意利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.【解答】解:∵满足(3﹣4i)z=25,则z===3+4i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.(5分)已知向量=(1,2),=(3,1),则﹣=()A.(﹣2,1)B.(2,﹣1)C.(2,0)D.(4,3)【考点】99:向量的减法;9J:平面向量的坐标运算.【专题】5A:平面向量及应用.【分析】直接利用向量的减法的坐标运算求解即可.【解答】解:∵向量=(1,2),=(3,1),∴﹣=(2,﹣1)故选:B.【点评】本题考查向量的坐标运算,基本知识的考查.4.(5分)若变量x,y满足约束条件A.7,则z=2x+y的最大值等于()C.10D.11B.8【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用z的几何意义,进行平移即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点B(4,2)时,直线y=﹣2x+z的截距最大,此时z最大,此时z=2×4+2=10,故选:C.【点评】本题主要考查线性规划的应用,利用z 的几何意义,利用数形结合是解决本题的关键.5.(5分)下列函数为奇函数的是()A .2x ﹣B .x 3sinxC .2cosx +1D .x 2+2x【考点】3K :函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数的奇偶性的定,对各个选项中的函数进行判断,从而得出结论.【解答】解:对于函数f (x )=2x ﹣故此函数为奇函数.对于函数f (x )=x 3sinx ,由于f (﹣x )=﹣x 3(﹣sinx )=x 3sinx=f (x ),故此函数为偶函数.对于函数f (x )=2cosx +1,由于f (﹣x )=2cos (﹣x )+1=2cosx +1=f (x ),故此函数为偶函数.对于函数f (x )=x 2+2x ,由于f (﹣x )=(﹣x )2+2﹣x =x 2+2﹣x ≠﹣f (x ),且f (﹣x )≠f (x ),故此函数为非奇非偶函数.故选:A .【点评】本题主要考查函数的奇偶性的判断方法,属于基础题.6.(5分)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为(),由于f (﹣x )=2x ﹣﹣=﹣2x =﹣f (x ),A .50B .40C .25D .20【考点】B4:系统抽样方法.【专题】5I :概率与统计.【分析】根据系统抽样的定义,即可得到结论.【解答】解:∵从1000名学生中抽取40个样本,∴样本数据间隔为1000÷40=25.故选:C .【点评】本题主要考查系统抽样的定义和应用,比较基础.7.(5分)在△ABC 中,角A 、B 、C 所对应的边分别为a ,b ,c ,则“a ≤b”是“sinA ≤sinB”的()A .充分必要条件C .必要非充分条件B .充分非必要条件D .非充分非必要条件【考点】HP :正弦定理.【专题】5L :简易逻辑.【分析】直接利用正弦定理以及已知条件判断即可.【解答】解:由正弦定理可知⇒=,∵△ABC 中,∠A ,∠B ,∠C 均小于180°,角A 、B 、C 所对应的边分别为a ,b ,c ,∴a ,b ,sinA ,sinB 都是正数,∴“a ≤b”⇔“sinA ≤sinB”.∴“a ≤b”是“sinA ≤sinB”的充分必要条件.故选:A .【点评】本题考查三角形中,角与边的关系正弦定理以及充要条件的应用,基本知识的考查.8.(5分)若实数k 满足0<k <5,则曲线A .实半轴长相等B .虚半轴长相等﹣=1与﹣=1的()C .离心率相等D .焦距相等【考点】KC :双曲线的性质.【专题】5D :圆锥曲线的定义、性质与方程.【分析】根据k 的取值范围,判断曲线为对应的双曲线,以及a ,b ,c 的大小关系即可得到结论.【解答】解:当0<k <5,则0<5﹣k <5,11<16﹣k <16,即曲线﹣=1表示焦点在x 轴上的双曲线,其中a 2=16,b 2=5﹣k ,c 2=21﹣k ,曲线﹣=1表示焦点在x 轴上的双曲线,其中a 2=16﹣k ,b 2=5,c 2=21﹣k ,即两个双曲线的焦距相等,故选:D .【点评】本题主要考查双曲线的方程和性质,根据不等式的范围判断a ,b ,c 是解决本题的关键.9.(5分)若空间中四条两两不同的直线l 1,l 2,l 3,l 4,满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是()A .l 1⊥l 4C .l 1与l 4既不垂直也不平行B .l 1∥l 4D .l 1与l 4的位置关系不确定【考点】LO :空间中直线与直线之间的位置关系.【专题】5F :空间位置关系与距离.【分析】根据空间直线平行或垂直的性质即可得到结论.【解答】解:在正方体中,若AB 所在的直线为l 2,CD 所在的直线为l 3,AE 所在的直线为l 1,若GD 所在的直线为l 4,此时l 1∥l 4,若BD 所在的直线为l 4,此时l 1⊥l 4,故l 1与l 4的位置关系不确定,故选:D.【点评】本题主要考查空间直线平行或垂直的位置关系的判断,比较基础.10.(5分)对任意复数ω1,ω2,定义ω1*ω2=ω1对任意复数z 1,z 2,z 3有如下命题:①(z 1+z 2)*z 3=(z 1*z 3)+(z 2*z 3)②z 1*(z 2+z 3)=(z 1*z 2)+(z 1*z 3)③(z 1*z 2)*z 3=z 1*(z 2*z 3);④z 1*z 2=z 2*z 1则真命题的个数是()A.1其中2,2是ω2的共轭复数,B.2C.3D .4【考点】2K:命题的真假判断与应用;A5:复数的运算.【专题】5L:简易逻辑;5N :数系的扩充和复数.【分析】根据已知中ω1*ω2=ω12,其中2是ω2的共轭复数,结合复数的运算性质逐一判断四个结论的真假,可得答案.【解答】解:①(z 1+z 2)*z 3=(z 1+z 2)确;=(z 1+z 2=(z 1*z 3)+(z 2*z 3),正②z 1*(z 2+z 3)=z 1(③(z 1*z 2)*z 3=z 1成立,故错误;④z 1*z 2=z 1,z 2*z 1=z 2)=z 1(+)=z 1+z 1=(z 1*z 2)+(z 1*z 3),正确;)=z 1z 3,等式不,z 1*(z 2*z 3)=z 1*(z 2)=z 1(,等式不成立,故错误;综上所述,真命题的个数是2个,故选:B .【点评】本题以命题的真假判断为载体,考查了复数的运算性质,细心运算即可,属于基础题.二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(1113题)11.(5分)曲线y=﹣5e x +3在点(0,﹣2)处的切线方程为5x +y +2=0..【考点】6H :利用导数研究曲线上某点切线方程.【专题】53:导数的综合应用.【分析】利用导数的几何意义可得切线的斜率即可.【解答】解:y′=﹣5e x ,∴y′|x=0=﹣5.因此所求的切线方程为:y +2=﹣5x ,即5x +y +2=0.故答案为:5x +y +2=0.【点评】本题考查了导数的几何意义、曲线的切线方程,属于基础题.12.(5分)从字母a ,b ,c ,d ,e 中任取两个不同字母,则取到字母a 的概率为.【考点】C6:等可能事件和等可能事件的概率.【专题】5I :概率与统计.【分析】求得从字母a ,b ,c ,d ,e 中任取两个不同字母、取到字母a 的情况,利用古典概型概率公式求解即可.【解答】解:从字母a ,b ,c ,d ,e 中任取两个不同字母,共有取到字母a ,共有∴所求概率为故答案为:.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A 包含的基本事件的个数和试验中基本事件的总数.13.(5分)等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=5.=10种情况,=4种情况,=.【考点】4H :对数的运算性质;87:等比数列的性质;89:等比数列的前n 项和.【专题】54:等差数列与等比数列.【分析】可先由等比数列的性质求出a 3=2,再根据性质化简log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=5log 2a 3,代入即可求出答案.【解答】解:log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2a 1a 2a 3a 4a 5=log 2a 35=5log 2a 3.又等比数列{a n }中,a 1a 5=4,即a 3=2.故5log 2a 3=5log 22=5.故选为:5.【点评】本题考查等比数列的性质,灵活运用性质变形求值是关键,本题是数列的基本题,较易.(二)(14-15题,考生只能从中选做一题)【坐标系与参数方程选做题】14.(5分)在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sinθ与ρcosθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为(1,2).【考点】Q8:点的极坐标和直角坐标的互化.【专题】5S:坐标系和参数方程.【分析】直接由x=ρcosθ,y=ρsinθ化极坐标方程为直角坐标方程,然后联立方程组求得答案.【解答】解:由2ρcos2θ=sinθ,得:2ρ2cos2θ=ρsinθ,即y=2x2.由ρcosθ=1,得x=1.联立,解得:.∴曲线C1与C2交点的直角坐标为(1,2).故答案为:(1,2).【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题.【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则=3.【考点】%H:三角形的面积公式.【专题】58:解三角形.【分析】证明△CDF∽△AEF,可求.【解答】解:∵四边形ABCD是平行四边形,EB=2AE,∴AB∥CD,CD=3AE,∴△CDF∽△AEF,∴==3.故答案为:3.【点评】本题考查三角形相似的判断,考查学生的计算能力,属于基础题.四、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤)16.(12分)已知函数f (x )=Asin (x +(1)求A 的值;(2)若f (θ)﹣f (﹣θ)=),x ∈R ,且f ()=.,θ∈(0,),求f (﹣θ).【考点】GP :两角和与差的三角函数.【专题】56:三角函数的求值;57:三角函数的图像与性质.【分析】(1)通过函数f (x )=Asin (x +A 的值;(2)利用函数的解析式,通过f (θ)﹣f (﹣θ)=利用两角差的正弦函数求f (﹣θ).),x ∈R ,且f (,)=,,θ∈(0,),求出cosθ,),x ∈R ,且f ()=,直接求【解答】解:(1)∵函数f (x )=Asin (x +∴f (∴)=Asin (.+)=Asin=(2)由(1)可知:函数f (x )=3sin (x +∴f (θ)﹣f (﹣θ)=3sin (θ+=3[(=3•2sinθcos ∴sinθ=∴cosθ=,,=3sinθ=,),))])﹣3sin (﹣θ+)﹣(∴f(﹣θ)=3sin()=3sin()=3cosθ=.【点评】本题考查两角和与差的三角函数,三角函数的解析式的求法,基本知识的考查.17.(13分)某车间20名工人年龄数据如下表:年龄(岁)19282930313240合计工人数(人)133543120(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.【考点】BA:茎叶图;BB:众数、中位数、平均数;BC:极差、方差与标准差.【专题】5I:概率与统计.【分析】(1)根据众数和极差的定义,即可得出;(2)根据画茎叶图的步骤,画图即可;(3)利用方差的计算公式,代入数据,计算即可.【解答】解:(1)这20名工人年龄的众数为30,极差为40﹣19=21;(2)茎叶图如下:(3)年龄的平均数为:这20名工人年龄的方差为S 2=2=30.[(19﹣30)2+3×(28﹣30)2+3×(29﹣30)+5×(30﹣30)2+4×(31﹣30)2+3×(32﹣30)2+(40﹣30)2]=12.6.【点评】本题考查了众数,极差,茎叶图,方差的基本定义,属于基础题.18.(13分)如图1,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2作如图2折叠;折痕EF ∥DC ,其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF ⊥CF .(1)证明:CF ⊥平面MDF ;(2)求三棱锥M ﹣CDE 的体积.【考点】LF :棱柱、棱锥、棱台的体积;LW :直线与平面垂直.【专题】5F :空间位置关系与距离;5G :空间角;5Q :立体几何.【分析】(1)要证CF ⊥平面MDF ,只需证CF ⊥MD ,且CF ⊥MF 即可;由PD ⊥平面ABCD ,得出平面PCD ⊥平面ABCD ,即证MD ⊥平面PCD ,得CF ⊥MD ;(2)求出△CDE 的面积S△CDE,对应三棱锥的高MD ,计算它的体积V M﹣CDE.【解答】解:(1)证明:∵PD ⊥平面ABCD ,PD ⊂平面PCD ,∴平面PCD ⊥平面ABCD ;又平面PCD ∩平面ABCD=CD ,MD ⊂平面ABCD ,MD ⊥CD ,∴MD ⊥平面PCD ,CF ⊂平面PCD ,∴CF ⊥MD ;又CF ⊥MF ,MD 、MF ⊂平面MDF ,MD ∩MF=M ,∴CF ⊥平面MDF ;(2)∵CF ⊥平面MDF ,∴CF ⊥DF ,又∵Rt △PCD 中,DC=1,PC=2,∴∠P=30°,∠PCD=60°,∴∠CDF=30°,CF=CD=;∵EF ∥DC ,∴∴DE==,即,;=,,∴PE=∴S△CDE=CD•DE=MD===×=,.∴V M﹣CDE =S△CDE•MD=×【点评】本题考查了空间中的垂直关系的应用问题,解题时应结合图形,明确线线垂直、线面垂直以及面面垂直的相互转化关系是什么,几何体的体积计算公式是什么,是中档题.19.(14分)设各项均为正数的数列{a n }的前n 项和为S n 满足S n 2﹣(n 2+n ﹣3)S n ﹣3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有++…+<.【考点】8H :数列递推式;8K :数列与不等式的综合.【专题】54:等差数列与等比数列;55:点列、递归数列与数学归纳法.【分析】(1)本题可以用n=1代入题中条件,利用S 1=a 1求出a 1的值;(2)利用a n 与S n 的关系,将条件转化为a n 的方程,从而求出a n ;(3)利用放缩法,将所求的每一个因式进行裂项求和,即可得到本题结论.【解答】解:(1)令n=1得:∴(S 1+3)(S 1﹣2)=0.∵S 1>0,∴S 1=2,即a 1=2.(2)由.∵a n >0(n ∈N *),∴S n >0.∴.,得:,即.∴当n ≥2时,又∵a 1=2=2×1,∴.==<=<;(3)由(2)可知n ∈N *,当n=1时,显然有当n ≥2时,<+,=(),=﹣<.所以,对一切正整数n ,有【点评】本题考查了数列的通项与前n 项和的关系、裂项求和法,还用到了放缩法,计算量较大,有一定的思维难度,属于难题.20.(14分)已知椭圆C :+=1(a >b >0)的右焦点为(,0),离心率为.(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.【考点】J3:轨迹方程;K3:椭圆的标准方程.【专题】5D :圆锥曲线的定义、性质与方程.【分析】(1)根据焦点坐标和离心率求得a 和b ,则椭圆的方可得.(2)设出切线的方程,带入椭圆方程,整理后利用△=0,整理出关于k 的一元二次方程,利用韦达定理表示出k 1•k 2,进而取得x 0和y 0的关系式,即P 点的轨迹方程.【解答】解:(1)依题意知,求得a=3,b=2,∴椭圆的方程为+=1.(2)①当两条切线中有一条斜率不存在时,即A 、B 两点分别位于椭圆长轴与短轴的端点,P 的坐标为(±3,±2),符合题意,②当两条切线斜率均存在时,设过点P (x 0,y 0)的切线为y=k (x ﹣x 0)+y 0,+=+=1,4x 2+9[k 2x 2+﹣2kx 0x ++2ky 0x ﹣2ky 0x 0]=36整理得(9k 2+4)x 2+18k (y 0﹣kx 0)x +9[(y 0﹣kx 0)2﹣4]=0,∴△=[18k (y 0﹣kx 0)]2﹣4(9k 2+4)×9[(y 0﹣kx 0)2﹣4]=0,整理得(x 02﹣9)k 2﹣2x 0×y 0×k +(y 02﹣4)=0,∴﹣1=k 1•k 2=∴x 02+y 02=13.=﹣1,把点(±3,±2)代入亦成立,∴点P 的轨迹方程为:x 2+y 2=13.【点评】本题主要考查了椭圆的标准方程,轨迹方程的相关问题.对于求轨迹方程,最重要的是建立模型求得x 和y 关系.21.(14分)已知函数f (x )=x 3+x 2+ax +1(a ∈R ).(1)求函数f (x )的单调区间;(2)当a <0时,试讨论是否存在x 0∈(0,)∪(,1),使得f (x 0)=f ().【考点】6B :利用导数研究函数的单调性;6E :利用导数研究函数的最值.【专题】51:函数的性质及应用;53:导数的综合应用.【分析】对第(1)问,先求导,再通过一元二次方程的实根讨论单调性;对第(2)问,可将f (x 0)=f ()转化为f (x 0)﹣f ()=0,即将“函数问题”化为“方程是否有实根问题”处理.【解答】解:(1)由f (x )得f′(x )=x 2+2x +a ,令f′(x )=0,即x 2+2x +a=0,判别式△=4﹣4a ,①当△≤0即a ≥1时,f′(x )≥0,则f (x )在(﹣∞,+∞)上为增函数.②当△>0即a <1时,方程f′(x )=0的两根为当x ∈(﹣∞,﹣1﹣当当,即,)时,f′(x )>0,则f (x )为增函数;时,f′(x )<0,则f (x )为减函数;,+∞)时,f′(x )>0,则f (x )为增函数.综合①、②知,a ≥1时,f (x )的单调递增区间为(﹣∞,+∞),a <1时,f (x )的单调递增区间为(﹣∞,f (x )的单调递减区间为和.,+∞),(2)∵==21===∴若存在∪.,使得∪,即内必有实数解.,则关于x 的方程4x 2+14x +7+12a=0在∵a <0,∴△=142﹣16(7+12a )=4(21﹣48a )>0,方程4x 2+14x +7+12a=0的两根为∵x 0>0,∴依题意有即得∴当得当得,且,且∪成立;∪成立.∪{}时,不存在∪,使.时,存在唯一的∪,使,,且,,∴49<21﹣48a <121,且21﹣48a ≠81,,即,【点评】1.求含参数的函数的单调区间时,导函数的符号往往难以确定,如果受到参数的影响,应对参数进行讨论,讨论的标准要根据导函数解析式的特征而定.如本题中导函数为一元二次函数,就有必要考虑对应方程中的判别式△.2.对于存在性问题,一般先假设所判断的问题成立,再由假设去推导,若求得符合题意的结果,则存在;若得出矛盾,则不存在.22。

广东省珠海一中等六校2018届高三第三次联考数学文试题(解析版)

广东省珠海一中等六校2018届高三第三次联考数学文试题(解析版)


(2) 求 类工人生产能力的中位数,并估计
类工人生产能力的平均数(同一组中的数据用该组区间的中点值作代
表);
(3) 若规定生产能力在
内为能力优秀,由以上统计数据在答题卡上完成下面的
列联表,并判断是否可
以在犯错误概率不超过 0.1%的前提下,认为生产能力与培训时间长短有关 . 能力与培训时间列联表
∴ 为△

.
的中位线 ,

平面
,
平面
,

平面
.
(2)∵
平面 ,
平面
,
∴ 平面
平面
,且平面
平面
.

,垂足为 ,则
平面




在 Rt△ 中,


∴ 四棱锥
的体积
.
∴ 四棱锥
的体积为 .
考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积.
19. 随着社会的发展,终身学习成为必要,工人知识要更新,学习培训必不可少,现某工厂有工人
,进而求出
;(Ⅱ)
先依据(Ⅰ)的结论分别建立
的方程,再分别与抛物线联立方程组,求出弦中点为
的坐
标,最后借助斜率的变化确定直线
经过定点;(Ⅲ)在(Ⅱ)前提条件下,先求出
,然后建立
面积关
于变量 的函数
,再运用基本不等式求其最小值:
解:(Ⅰ)由题意可知:动点 迹 是抛物线 . ∵ ,∴抛物线方程为:
到定点
的距离等于 到定直线
的距离 . 根据抛物线的定义可知,点 的轨
(Ⅱ)设 两点坐标分别为
,则点 的坐标为
.
由题意可设直线 的方程为

广东省六校联盟”2014届高三第三次联合考试数学(理)试题(纯word)

广东省六校联盟”2014届高三第三次联合考试数学(理)试题(纯word)

2014届“六校联盟”第三次联合考试理科数学试题考试时间:120分钟 试卷总分150分 命题人:珠海市第一中学 潘静一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上填涂相应选项.1.满足条件M ∪{1,2}={1,2,3}的集合M 的个数是( ) A.4 B.3 C.2 D.12.若向量a =(1,1),b =(1,-1),c =(-1,2),则c等于( )A.1322a b -+B. 1322a b -C. 3122a b -D. 3122a b -+3.如果01a <<,那么下列不等式中正确的是( )A.32(1)(1)a a ->-B.32(1)(1)a a ->-C. 32(1)(1)a a ->+D.32(1)(1)a a +>+4.已知函数log (2)a y x =-是x 的减函数,则a 的取值范围是( ) A.(0,2)B.(0,1)C.(1,2)D.(2,+∞)5.若一个等差数列前3项和为3,最后3项和为30,且所有项的和为99,则这个数列有( ) A.9项 B.12项 C.15项 D.18项6. 如果函数sin 2cos 2y x a x =+的图象关于直线8x π=-对称,那么a 等于( )A.2B.-2C.1D.-17.已知正方形ABCD 的对角线AC 与BD 相交于E 点,将ACD ∆沿对角线AC 折起,使得平面ABC ⊥平面ADC (如图),则下列命题中正确的为( )A. 直线AB ⊥直线CD, 且直线AC ⊥直线BDB. 直线AB ⊥平面BCD ,且直线AC ⊥平面BDEC. 平面ABC ⊥平面BDE ,且平面ACD ⊥平面BDED. 平面ABD ⊥平面BCD ,且平面ACD ⊥平面BDE 8.如图所示,函数()(1,2,3,4)i y f x i ==是定义在[]0,1上的四个函数,其中满足性质:“[]12,0,1x x ∀∈,[]0,1,λ∀∈[]1212(1)()(1)()f x x f x f x λλλλ+-≤+-恒成立”的有( )A.f 1(x ),f 3(x )B.f 2(x )C.f 2(x ),f 3(x )D.f 4(x )二、填空题:本大题共6小题,每小题5分,满分30分.请把答案填在答题卡的相应位置。

广东省珠海一中等六校高三数学第三次联考试题 文(含解析)新人教A版

广东省珠海一中等六校高三数学第三次联考试题 文(含解析)新人教A版

广东省珠海一中等六校2013届高三第三次联考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设全集U=A∪B,定义:A﹣B={x|x∈A,且x∉B},集合A,B分别用圆表示,则下2可得,3.(5分)已知||=2,是单位向量,且夹角为60°,则等于()直接应用数量积计算求值.由题中条件:“向量一个单位且是单位向量,且=﹣=44.(5分)在同一个坐标系中画出函数y=a x,y=sinax的部分图象,其中a>0且a≠1,则..C..T=,∴,故.∵ab≤4=a+b,∴=87.(5分)下面给出四个命题:①若平面α∥平面β,AB,CD是夹在α,β间的线段,若AB∥CD,则AB=CD;②a,b是异面直线,b,c是异面直线,则a,c一定是异面直线;③过空间任一点,可以做两条直线和已知平面α垂直;④平面α∥平面β,P∈α,PQ∥β,则PQ⊂α;nn n时,的等比数列,所以对于9.(5分)对任意非零实数a,b,若a⊗b的运算规则如图的程序框图所示,则(3⊗2)⊗4的值是(),否则输出,由此运算成立,则输出,否则输出,2==10.(5分)设定义在R上的函数,若关于x的方程f2(x)+af二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题)11.(5分)已知直线x=2及x=4与函数y=log2x图象的交点分别为A,B,则AB直线方程为x﹣2y=0 .(12.(5分)(2012•香洲区模拟)点A(3,1)和B(﹣4,6)在直线3x﹣2y+a=0的两侧,则a的取值范围是(﹣7,24).13.(5分)有一个各棱长均为1的正四棱锥,先用一张正方形包装纸将其完全包住,不能剪裁,可以折叠,那么包装纸的最小面积为2+.PP′=1+2×=1+)x=(=2+.14.(5分)如图所示,DB,DC是⊙O的两条切线,A是圆上一点,已知∠D=46°,则∠A= 67°.15.)已知曲线C1的极坐标方程为ρ=6cosθ,曲线C2的极坐标方程为,曲线C1、C2相交于点A、B.则弦AB的长等于3.(AB==..三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(12分)已知向量,定义f(x)=(1)求函数f(x)的表达式,并求其单调增区间;(2)在锐角△ABC中,角A、B、C对边分别为a、b、c,且f(A)=1,bc=8,求△ABC的面积.)因为已知向量=cos2x=)…(﹣≤2x﹣≤2+≤x≤k﹣]﹣=2K,又S=bcsinA=×8×.…(17.(12分)为调查某次考试数学的成绩,随机抽取某中学甲、乙两班各十名同学,获得成绩数据的茎叶图如图(单位:分).(1)求甲班十名学生成绩的中位数和乙班十名学生成绩的平均数;(2)若定义成绩大于等于120分为“优秀成绩”,现从甲班,乙两班样本数据的“优秀成绩”中分别抽取一人,求被抽取的甲班学生成绩高于乙班的概率.=18.(14分)一个多面体的三视图和直观图如下:(1)求证:MN∥平面CDEF;(2)求证:MN⊥AH;(3)求多面体A﹣CDEF的体积.AH= =19.(14分)已知椭圆C的焦点在x轴上,中心在原点,离心率,直线l:y=x+2与以原点为圆心,椭圆C的短半轴为半径的圆O相切.(I)求椭圆C的方程;(Ⅱ)设椭圆C的左、右顶点分别为A1,A2,点M是椭圆上异于A l,A2的任意一点,设直线MA 1,MA2的斜率分别为,证明为定值.)解:设椭圆的方程为∵离心率;(﹣,(,则×===是定值﹣是定值.20.(14分)已知成等差数列.又数列a n(a n>0)中a1=3此数列的前n项的和S n(n∈N+)对所有大于1的正整数n都有S n=f(S n﹣1).(1)求数列a n的第n+1项;(2)若是的等比中项,且T n为{b n}的前n项和,求T n.)有成等差数列,利用等差数列定义得到)由于的等比中项,所以可以利用等比中项的定义得到数列成等差数列,∵S}为公差的等差数列.,∴的等比中项,21.(14分)定义函数(1)求f3(x)的极值点;(1)求证:f n(x)≥nx;(2)是否存在区间[a,0](a<0),使函数h(x)=f3(x)﹣f2(x)在区间[a,0]上的值域为[k﹣a,0]?若存在,求出最小的k值及相应的区间[a,0],若不存在,说明理由.)由函数,知.由此利用分类讨论思想能求出知)∵函数,,.,﹣∈(﹣,+∞)时,h′(≤a<2时,)﹣,a≤﹣时,,﹣的最小值为,。

广东省珠海中学、惠州一中等六校2014届高三第一次联考数学试题文科

广东省珠海中学、惠州一中等六校2014届高三第一次联考数学试题文科

第5题图广东省六校2014届高三第一次联考试题文 科 数 学命题:邓军民 审校:田立新、黄晓英本试卷共4页,21小题, 满分150分.考试用时120分钟.参考公式:球的体积公式是343V R π=,其中R 是球的半径. 棱锥的体积公式:13V Sh =.其中S 表示棱锥的底面积,h 表示棱锥的高. 一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集U =R ,集合{}|23A x x =-≤≤,{}2|340B x x x =-->,那么()U A C B =A .{}|24x x -<≤ B .{}|34x x x 或≤≥ C .{}|21x x -<-≤ D .{}|13x x -≤≤ 2.函数)22sin(2x y -=π是A .最小正周期为π的偶函数B .最小正周期为π的奇函数C .最小正周期为2π的偶函数 D .最小正周期为2π的奇函数 3.已知命题p :1x ∃>,210x ->,那么p ⌝是A .1x ∀>,210x -≤B .1x ∀>,210x ->C .1x ∃>,210x -≤D .1x ∃≤,210x -≤ 4.已知i 是虚数单位,则复数3(12)z i i =⋅-+的虚部为A .2-B .2C .1-D .1 5.右图是一个几何体的三视图,根据图中数据,可得该几何体的体积是A .4πB .133πC .143πD .5π 6.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩≥≤≥,则32z x y =-+的最小值为A .2-B .4-C .6-D .8-第9题图D第15题图7.已知数列{}n a 的前n 项和22n S n n =-,则218a a +=A .36B .35C .34D .338.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若222a b bc -=,sin 3sin C B =,则A =A .6πB .3π C .23π D .56π 9.若右边的程序框图输出的S 是126,则条件①可为A .5n ≤B .6n ≤C .7n ≤D .8n ≤10.椭圆2243x y +=1的左右焦点分别为1F 、2F ,点P 是椭圆上任意一点,则12PF PF ⋅的取值范围是A .(0,4]B .(0,3]C .[3,4)D .[3,4]二、填空题(本大题共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只需选做其中一题,两题全答的,只以第一小题计分.)11.设平面向量()()3,5,2,1a b ==-,则2a b += .12.若直线l 与幂函数n y x =的图象相切于点A (2,8),则直线l 的方程为 . 13.已知函数cos (0)()(1)1(0)x x f x f x x π⎧=⎨-+>⎩≤,则44()()33f f +-= .★(请考生在以下二个小题中任选一题作答,全答的以第一小题计分)14.(坐标系与参数方程选做题)在极坐标系中,设曲线1:2sin C ρθ=与2:2cos C ρθ=的交点分别为A B 、,则线段AB 的垂直平分线的极坐标方程为 .15.(几何证明选讲选做题)如右图,从圆O 外一点A 引圆的切线AD 和割线ABC ,已知AD =6AC =,圆O 的半径为3,则圆心O 到直线AC 的距离为 .DC AA 1B 1C 1D 1第18题图三、解答题(本部分共计6小题,满分80分,解答应写出文字说明,证明过程或演算步骤,请在指定区域内作答,否则该题计为零分.) 16.(本小题满分12分)已知平面直角坐标系上的三点(0 1)A ,,(2 0)B -,,(cos sin )C θθ,((0,)θπ∈),O 为坐标原点,向量BA 与向量OC共线.(1)求tan θ的值; (2)求sin 24πθ⎛⎫- ⎪⎝⎭的值.17.(本小题满分12分)某小组共有A B C D E 、、、、五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如下表所示:(1)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率; (2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.18.(本小题满分14分)如右图,在底面为平行四边形的四棱柱1111ABCD A B C D -中,1D D ⊥底面ABCD ,1AD =,2CD =,60DCB ∠=︒.(1)求证:平面11A BCD ⊥平面11BDD B ;(2)若1D D BD =,求四棱锥11D A BCD -的体积.19.(本小题满分14分)设}{n a 是各项都为正数的等比数列, {}n b 是等差数列,且111a b ==,3513a b +=,5321a b +=. (1)求数列}{n a ,{}n b 的通项公式;(2)设数列}{n a 的前n 项和为n S ,求数列{}n n S b ⋅的前n 项和n T .20. (本小题满分14分)已知抛物线21:8C y x =与双曲线22222:1(0,0)x y C a b a b-=>>有公共焦点2F ,点A 是曲线12,C C 在第一象限的交点,且25AF =.(1)求双曲线2C 的方程;(2)以双曲线2C 的另一焦点1F 为圆心的圆M 与直线y =相切,圆N :22(2)1x y -+=.过点P 作互相垂直且分别与圆M 、圆N 相交的直线1l 和2l ,设1l 被圆M 截得的弦长为s ,2l 被圆N 截得的弦长为t ,问:st是否为定值?如果是,请求出这个定值;如果不是,请说明理由.21.(本小题满分14分)已知(),P x y 为函数1ln y x =+图象上一点,O 为坐标原点,记直线OP 的斜率()k f x =. (1)若函数()f x 在区间1,3m m ⎛⎫+ ⎪⎝⎭()0m >上存在极值,求实数m 的取值范围; (2)当 1x ≥时,不等式()1tf x x ≥+恒成立,求实数t 的取值范围; (3)求证:()*1ln[(1)]2ni i i n n N =⋅+>-∈∑.广东省六校2014届高三第一次联考文科数学参考答案一.选择题(10小题,每小题5分,共50分)二.填空题(本大题共5小题,每小题5分,满分20分)11..12160x y --= 13.1 14.sin()4πρθ+=15三.解答题(本部分共计6小题,满分80分,解答应写出文字说明,证明过程或演算步骤) 16.(本题满分12分)解:(1)法1:由题意得:(2,1)BA = ,(cos ,sin )OC θθ=, …………………2分 ∵//BA OC,∴2sin cos 0θθ-=,∴1tan 2θ=. …………………5分 法2:由题意得:(2,1)BA = ,(cos ,sin )OC θθ=, …………………2分∵//BA OC ,∴BA OC λ=,∴2cos 1sin λθλθ=⎧⎨=⎩,∴1tan 2θ=.…………………5分(2)∵1tan 02θ=>,[0,)θπ∈,∴(0,)2πθ∈,…………………6分 由22sin 1cos 2sin cos 1θθθθ⎧=⎪⎨⎪+=⎩,解得sin θ=cos 5θ=, …………………8分∴4sin 22sin cos 2555θθθ==⨯⨯=;…………………9分 22413cos 2cos sin 555θθθ=-=-=;…………………10分∴43sin(2)sin 2coscos 2sin444525210πππθθθ-=-=⨯-⨯=. …………………12分 17.(本小题满分12分)解:(1)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有: (A ,B),(A ,C),(A ,D),(B ,C),(B ,D),(C ,D),共6个.由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的.…………………………4分 选到的2人身高都在1.78以下的事件有:(A ,B),(A ,C),(B ,C),共3个. 因此选到的2人身高都在1.78以下的概率为13162P ==.…………………………6分 (2)从该小组同学中任选2人,其一切可能的结果组成的基本事件有:(A ,B),(A ,C),(A ,D), (A ,E),(B ,C),(B ,D),(B ,E),(C ,D),(C ,E),(D ,E),共10个.由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的.…………………………10分 选到的2人身高都在1.70以上且体重指标都在[18.5,23.9)中的事件有: (C ,D),(C ,E),(D ,E),共3个.因此选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率为2310P =.………12分 18.(本题满分14分)解:(1)证明: 在ABD ∆中,由余弦定理得:BD ==,所以222AD BD AB +=,所以90ADB ∠=︒,即AD BD ⊥,……………………………………3分 又四边形ABCD 为平行四边形,所以BC BD ⊥,又1D D ⊥底面ABCD ,BC ⊂底面ABCD ,所以1D D BC ⊥,……………………………………4分 又1D D BD D = ,所以BC ⊥平面11BDD B , ……………………………………5分又BC ⊂平面11A BCD ,所以平面11A BCD ⊥平面11BDD B .……………………………………6分(2)法一:连结1BD,∵1DD BD ==,∴1BD =∵BC ⊥平面11BDD B ,所以1BC BD ⊥,……………………………8分所以四边形11A BCD的面积111122A BCD S BC BD =⨯⋅⋅=10分 取1BD 的中点M ,连结DM ,则1DM BD ⊥,且DM =,又平面11A BCD ⊥平面1BDD ,平面11A BCD 平面1BDD 1BD =, 所以DM ⊥平面11A BCD ,……………………………………13分 所以四棱锥11D A BCD -的体积:11113A BCD V S DM =⋅⋅=. ……………………………………14分法二: 四棱锥11D A BCD -的体积111D A BD D BCD V V V --=+,……………8分 而三棱锥11D A BD -与三棱锥1D BCD -底面积和高均相等,……………10分所以11112D A BD D BCD D BCD V V V V ---=+=1112213D BCD BCD V S DD -==⨯⋅⋅=. ……………………14分解法一图BDCAA 1B 1C 1D 1M 解法二图BDCA A 1B 1C 1D 119.(本小题满分14分)解:(1)设数列}{n a 的公比为(0),q q >数列{}n b 的公差为d ,依题意得:4212211413d q d q ⎧++=⎪⎨++=⎪⎩, ………………………………………………2分 消去d 得422280q q --=22(4)(27)0q q ⇒-+=,………………………………………………3分 ∵0q > ∴2q =,由2q =可解得2d =………………………………………………4分 ∴12,2 1.n n n a b n -==-………………………………………………5分(2)由(1)得21nn S =-,所以有:1122n n n T S b S b S b =+++L 1212(21)(21)(21)n n b b b =-+-++-L121212222()n n n b b b b b b =⋅+⋅++⋅-+++L L ………………………………………………7分令1212222nn S b b b =⋅+⋅++⋅L ① 则231122222n n S b b b +=⋅+⋅++⋅L ②①-②得:12312222222(21)2,n n S n +-=+⋅+⋅+⋅--⋅L …………………………………………10分2312(1222)(21)2n n S n +-=++++--L 2112[12(21)](21)2n n n -+=+---⋅∴1(23)26,n S n +=-⋅+………………………………………………12分 又212(121)2n n n b b b n +-+++==L ,………………………………………………13分∴12(23)26n n T n n +=-⋅+-. ………………………………………………14分20.(本小题满分14分)解: (1)∵抛物线21:8C y x =的焦点为2(2,0)F ,∴双曲线2C 的焦点为1(2,0)F -、2(2,0)F ,………………………………………………1分设00(,)A x y 在抛物线21:8C y x =上,且25AF =,由抛物线的定义得,025x +=,∴03x =,∴2083y =⨯,∴0y =±3分∴1||7AF ==,………………………………………………4分又∵点A 在双曲线2C 上,由双曲线定义得:2|75|2a =-=,∴1a =, ∴双曲线2C 的方程为:2213y x -=.………………………………6分(2)st为定值.下面给出说明. 设圆M 的方程为:222(2)x y r ++=, ∵圆M与直线y =相切,∴圆M的半径为r ==,故圆M :22(2)3x y ++=. ………………………………7分显然当直线1l 的斜率不存在时不符合题意,………………………………………………8分 设1l的方程为(1)y k x =-,即0kx y k -=, 设2l的方程为1(1)y x k=--,即10x ky +-=, ∴点1F 到直线1l的距离为1d =点2F 到直线2l的距离为2d =10分∴直线1l 被圆M截得的弦长s ==11分 直线2l 被圆N截得的弦长t ==12分∴s t=== 故s t………………………………14分 21.(本题满分14分) 解:(1)由题意()1ln xk f x x+==,0x > ……………………………………1分 所以()21ln ln x x f x x x '+⎛⎫'==- ⎪⎝⎭…………………………………………2分当01x <<时,()0f x '>;当1x >时,()0f x '<. 所以()f x 在()0,1上单调递增,在()1,+∞上单调递减,故()f x 在1x =处取得极大值. …………………………………………3分 因为函数()f x 在区间1,3m m ⎛⎫+⎪⎝⎭(其中0m >)上存在极值,所以01113m m <<⎧⎪⎨+>⎪⎩,得213m <<.即实数m 的取值范围是213⎛⎫⎪⎝⎭,. ……………4分 (2)由()1t f x x ≥+得()()11ln x x t x ++≤,令()()()11ln x x g x x++=,则()2ln x xg x x-'=. ……………………………………………………6分 令()ln h x x x =-,则()111=x h x x x-'=-, 因为1,x ≥所以()0h x '≥,故()h x 在[)1+∞,上单调递增.……………………7分 所以()()110h x h ≥=>,从而()0g x '>()g x 在[)1+∞,上单调递增, ()()12g x g ≥=所以实数t 的取值范围是(],2-∞. …………………………………………9分 (3)由(2) 知()21f x x ≥+恒成立, 即1ln 2122ln 11111x x x x x x x x+-≥⇔≥=->-+++ ……………………11分 令()1,x n n =+则()()2ln[1]11n n n n +>-+,……………………12分所以()2ln 12112⨯>-⨯, ()2ln 23123⨯>-⨯,……,()()2ln 111n n n n +>-+. 将以上n 个式子相加得:()1111ln[(i 1)]212231ni i n n n =⎡⎤+>-++⋅⋅⋅+⎢⎥⨯⨯+⎣⎦∑ 12121n n n ⎛⎫=-->- ⎪+⎝⎭,故()*1ln[(i 1)]2ni i n n N =+>-∈∑. …………………………………14分(解答题的其他解法可酌情给分)。

广东省珠海一中等六校2018届高三第三次联考数学文试题(解析版)

广东省珠海一中等六校2018届高三第三次联考数学文试题(解析版)

2018届广东省六校第三次联考文科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.的定义域为()A. B. C. D.【答案】C【解析】函数的定义域应满足故选C.2.如果复数(其中为虚数单位,为实数)的实部和虚部互为相反数,那么等于( )A. -6B.C.D. 2【答案】C【解析】,由题如果复数(其中为虚数单位,为实数)的实部和虚部互为相反数,即故选C.3.高考结束后,同学聚会上,某同学从《爱你一万年》,《非你莫属》,《两只老虎》,《单身情歌》四首歌中选出两首歌进行表演,则《爱你一万年》未选取的概率为( )A. B. C. D.【答案】B【解析】由题意,《爱你一万年》未选取的概率为【点睛】本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.4.圆关于直线对称的圆的方程是A. B.C. D.【答案】D【解析】圆的圆心关于直线对称的坐标为,从而所求圆的方程为.故选D.5.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的的值是( )A. 2B.C.D. 3【答案】D【解析】根据三视图判断几何体为四棱锥,其直观图如图所示,则故选D.6.已知,则( )A. B. C. D.【答案】C【解析】由已知则故选C.7.实数满足,且的最大值不小于1,则实数的取值范围是( )A. B. C. D.【答案】A【解析】设,∵的最大值不小于1,由得,作出不等式组对应的平面区域如图(阴影部分):平移直线,由图象可知当直线经过点时,直线的截距最小,此时最大,当时,由,解得,即.此时点也在直线x上,此时,∴要使的最大值不小于1,则.故选A.【点睛】本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.8.函数的导函数在区间上的图象大致是( )A. B.C. D.【答案】A【解析】,可排除又在处取最大值;故排除B.故选A【点睛】本题考查的知识点是函数的图象与图象的变化,其中分析函数的性质,及不同性质在图象上的表现是解答本题的关键.9.三棱锥中,平面且是边长为的等边三角形,则该三棱锥外接球的表面积为( )A. B. C. D.【答案】C【解析】根据已知中底面是边长为的正三角形,,平面,可得此三棱锥外接球,即为以为底面以为高的正三棱柱的外接球∵是边长为的正三角形,∴的外接圆半径球心到的外接圆圆心的距离故球的半径故三棱锥外接球的表面积故选:C.10.自主招生联盟成行于2009年清华大学等五校联考,主要包括“北约”联盟,“华约”联盟,“卓越”联盟和“京派”联盟.在调查某高中学校高三学生自主招生报考的情况,得到如下结果:①报考“北约”联盟的学生,都没报考“华约”联盟②报考“华约”联盟的学生,也报考了“京派”联盟③报考“卓越”联盟的学生,都没报考“京派”联盟④不报考“卓越”联盟的学生,就报考“华约”联盟根据上述调查结果,下列结论错误的是()A. 没有同时报考“华约” 和“卓越”联盟的学生B. 报考“华约”和“京派”联盟的考生一样多C. 报考“北约” 联盟的考生也报考了“卓越”联盟D. 报考“京派” 联盟的考生也报考了“北约”联盟【答案】D【解析】设报考“北约”联盟,“华约”联盟,“京派”联盟和“卓越”联盟的学生分别为集合A,B,C,D,则由题意,A∩B=∅,B⊆C,D∩C=∅,C∪D=B,∴A⊆D,B=C,C∪D=B,选项A,B∩D=∅,正确;选项B,B=C,正确;选项C,A⊆D,正确,故选:D.点睛:本题考查进行简单的合情推理,考查学生分析解决问题的能力,正确运用集合思想是关键11.设,则的大小关系为()A. B. C. D.【答案】A【解析】由题意,所以,,所以,故选A.12.已知双曲线:,点为的左焦点,点为上位于第一象限内的点,关于原点的对称点为,且满足,若,则的离心率为()A. B. C. 2 D.【答案】B【解析】由题意可知,双曲线的右焦点,关于原点的对称点为,则,四边形为平行四边形则,由,根据椭圆的定义,,在中,,,则,整理得则双曲线的离心率故选点睛:本题主要考查的是双曲线的简单性质。

广东省珠海一中等六校高三第三次联考数学文试题Word版含答案

广东省珠海一中等六校高三第三次联考数学文试题Word版含答案

2018届广东省六校第三次联考文科数学 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数())1ln(21++=-=x xx f 的定义域为( ) A .()∞+,2 B .()()+∞-,22,1 C .()2,1- D .(]2,1- 2.如果复数ibi212+-(其中i 为虚数单位,b 为实数)的实部和虚部互为相反数,那么b 等于( )A .-6B .32 C .32- D .2 3.高考结束后,同学聚会上,某同学从《爱你一万年》,《非你莫属》,《两只老虎》,《单身情歌》四首歌中选出两首歌进行表演,则《爱你一万年》未选取的概率为( ) A .31 B .21 C .32 D .654.圆()4222=+-y x 关于直线x y 33=对称的圆的方程是( ) A .()()41322=-+-y x B .()()42222=-+-y xC. ()4222=-+y x D .()()43122=-+-y x5.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是( )A .2B .29 C. 23D .36.已知()()θ-=θ-π+⎪⎭⎫⎝⎛θ+πsin cos 32sin ,则=θ+θθ2cos cos sin ( ) A .51 B .52 C. 53 D .55 7.实数y x 、满足⎪⎩⎪⎨⎧≥-+≤000c y x y x ,且y x -的最大值不小于1,则实数c 的取值范围是( ) A .1-≤c B .1-≥c C.2-≤c D .2-≥c 8.函数()x x x f cos =的导函数)('x f 在区间[]ππ-,上的图象大致是( )A .B .C. D .9.三棱锥ABC P -中,⊥PA 平面ABC 且ABC PA ∆=,2是边长为3的等边三角形,则该三棱锥外接球的表面,积为( ) A .34πB .π4 C.π8 D .π20 10.自主招生联盟成行于2009年清华大学等五校联考,主要包括“北约”联盟,“华约”联盟,“卓越”联盟和“京派”联盟,在调查某高中学校高三学生自主招生报考的情况,得到如下结果:①报考“北约”联盟的学生,都没报考“华约”联盟②报考“华约”联盟的学生,也报考了“京派”联盟③报考“卓越”联盟的学生,都没报考“京派”联盟斯不报考“卓越”联盟的学生,就报考“华约”联盟根据上述调查结果,下列结论错误的是( )A .没有同时报考“华约”和“卓越”联盟的学生B .报考“华约”和“京派”联盟的考生一样多 C.报考“北约”联盟的考生也报考了“卓越”联盟 D .报考“京派”联盟的考生也报考了“北约”联盟 11.设201620172017201620171log ,log ,2016===c b a ,则c b a ,,的大小关系为( )A .c b a >>B .b c a >> C. c a b >> D .a b c >>12.已知双曲线()0,01:2222>>=-b a by a x E ,点F 为E 的左焦点,点P 为E 上位于第一象限内的点,P 关于原点的对称点为Q ,且满足FQ PF 3=,若b OP =,则E 的离心率为( )A .2B .3 C. 2 D .5第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若向量,()⊥-==,2,2,则向量与的夹角等于 . 14.执行如图所示的程序框图,则输出S 的结果为 .15.已知函数()x f y =在点()()22f ,处的切线方程为12-=x y ,则函数())(2x f x x g +=在点()()22g ,处的切线方程为 .16.已知平面四边形ABCD 为凸四边形(凸四边形即任取平面四边形一边所在直线,其余各边均在此直线的同侧),且3,5,4,2====DA CD BC AB ,则平面四边形ABCD 面积的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知数列{}n a 的前n 项和为n S ,且满足()*∈-=N n n n S n ,22 (1)求数列{}n a 的通项公式;(2)设()(),11222⎪⎩⎪⎨⎧--+n n b n a a b n()()()*∈=-=N k k n k n 212,求数列{}n b 的前n 2项和n T 2. 18. 如图,在三棱柱111C B A ABC -中,侧棱⊥1AA 底面ABC ,D BC AB ,⊥为AC 的中点,3,21===BC AB A A .(1)求证://1AB 平面D BC 1; (2)求四棱锥D C AA B 11-的体积.19.随着社会的发展,终身学习成为必要,工人知识要更新,学习培训必不可少,现某工厂有工人1000名,其中250名工人参加短期培训(称为A 类工人),另外750名工人参加过长期培训(称为B 类工人),从该工厂的工人中共抽查了100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数)得到A 类工人生产能力的茎叶图(左图),B 类工人生产能力的频率分布直方图(右图).(1)问A 类、B 类工人各抽查了多少工人,并求出直方图中的x ;(2)求A 类工人生产能力的中位数,并估计B 类工人生产能力的平均数(同一组中的数据用该组区间的中点值作代表);(3)若规定生产能力在[]150130,内为能力优秀,由以上统计数据在答题卡上完成下面的22⨯列联表,并判断是否可以在犯错误概率不超过0.1%的前提下,认为生产能力与培训时间长短有关.能力与培训时间列联表参考数据:参考公式:))()()(()(22d b c a d c b a bc ad n K ++++-=,其中d c b a n +++=.20. 已知动点M 到定点()0,1F 的距离比M 到定直线2-=x 的距离小1. (1)求点M 的轨迹C 的方程;(2)过点F 任意作互相垂直的两条直线1l 和2l ,分别交曲线C 于点B A ,和N K ,.设线段KN AB ,的中点分别为Q P ,,求证:直线PQ 恒过一个定点.21. 已知函数())1(ln 122+-++-=x x a x x x f (其中R a ∈,且a 为常数). (1)若对于任意的()+∞∈,1x ,都有()0>x f 成立,求a 的取值范围;(2)在(Ⅰ)的条件下,若方程()01=++a x f 在(]2,0∈x 上有且只有一个实根,求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为t ty t x (542532⎪⎩⎪⎨⎧+-=-为参数).以坐标原点为极点,以x 轴正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为θ=θρtan cos . (1) 求曲线1C 的普通方程和曲线2C 的直角坐标方程;(2) 若1C 与2C 交于B A ,两点,点P 的极坐标为⎪⎭⎫⎝⎛π-422,,求PB PA 11+的值. 23.选修4-5:不等式选讲设函数()()0122>++-=a x a x x f ,()2+=x x g . (Ⅰ)当1=a 时,求不等式()()x g x f ≤的解集; (Ⅱ)若()()x g x f ≥恒成立,求实数a 的取值范围.2018 届广东省六校第三次联考 文科数学参考答案与评分标准一、选择题1-5: CCBDD 6-10:CAACD 11、12:AB 二、填空题 13.4π14. 30 15. 056=--y x 16.302 三、解答题17.解:(1)当2≥n 时,()()[]n n n n n S S a n n n 2211222221-=-----=-=-()21≥-=n n a n ,当1=n 时,由21112-=S 得01=a , 显然当1=n 时上式也适合, ∴n a n -=1 (2)∵()()()211221122+-=+=--+n n n n a a n n , ∴()()n n n b b b b b b T 24212312+++++++=-()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-++++=--22121614141212222220n n n22121411411+-+-⎪⎭⎫⎝⎛-n n2214134611+-⎪⎭⎫ ⎝⎛⋅-=n n.18.解:(1)证明:连接C B 1,设C B 1与1BC 相较于点O ,连接OD , ∵四边形11B BCC 是平行四边形,∴点O 为C B 1的中点. ∵D 为AC 的中点,∴OD 为C AB 1∆的中位线, ∴1//AB OD .∵⊂OD 平面D BC 1,⊄1AB 平面D BC 1, ∴//1AB 平面D BC 1.(2)解法1:∵⊥1AA 平面⊂1,AA ABC 平面C C AA 11,∴平面⊥ABC 平面C C AA 11,且平面 ABC 平面AC C C AA =11. 作AC BE ⊥,垂足为E ,则⊥BE 平面C C AA 11, ∵3,21===BC BB AB , 在ABC Rt ∆中,139422=+=+=BC AB AC ,136=∙=AC BC AB BE ,∴四棱锥D C AA B 11-的体积()BE AA AD C A V ∙∙+⨯=1112131 31362132361=⨯⨯⨯=. ∴四棱锥D C AA B 11-的体积为3.解法2:⊥1AA 平面⊂AB ABC ,平面ABC ,∴AB AA ⊥1. ∵11//AA BB ,∴AB BB ⊥1. ∵D B BB BC BC AB =⊥1, , ∴⊥AB 平面C C BB 11.取BC 的中点E ,连接DE ,则AB DE AB DE 21,//=,∴⊥DE 平面C C BB 11. 三棱柱111C B A ABC -的体积为6211=∙∙∙=AA BC AB V , 则2312131,16121311111111111==∙∙∙⨯===∙∙∙⨯=--V B A BB C B V V DE CC BC V C BB A BCC D .而D C AA B C BB A BCC D V V V V 111111---++=, ∴D C AA B V 11216-++=. ∴311=-D C AA B V . ∴四棱锥D C AA B 11-的体积为3.19.解:(1)由茎叶图知A 类工人中抽查人数为25名, ∴B 类工人中应抽查7525100=-名.由频率分布直方图得()1=10x)+0.048+0.02+0.008⨯,得024.0=x . (2)由茎叶图知A 类工人生产能力的中位数为 122由(1)及频率分布直方图,估计B 类工人生产能力的平均数为133.8100.024********.013510020.012510008.0115=⨯⨯=⨯⨯+⨯⨯+⨯⨯=θ(3)由(1)及所给数据得能力与培训的22⨯列联表,由上表得()828.10733.126238752575010062387525541721810022>≈⨯⨯⨯⨯=⨯⨯⨯⨯-⨯⨯=k 因此,可以在犯错误概率不超过 0.1%的前提下,认为生产能力与培训时间长短有关. 20.解:(1)由题意可知:动点M 到定点()0,1F 的距离等于M 到定直线1-=x 的距离,根据抛物线的定义可知,点M 的轨迹C 是抛物线. ∵2=p ,∴ 抛物线方程为:x y 42=(2)设B A ,两点坐标分别为()()2211,,,y x y x ,则点P 的坐标为⎪⎭⎫⎝⎛++2,22121y y x x .由题意可设直线1l 的方程为)0)(1(≠-=k x k y ,由()⎩⎨⎧-==142x k y xy 得0)42(2222=++-k x k x k . ()016164422422>+=-+=∆k k k .因为直线1l 与曲线C 于B A ,两点,所以()kx x k y y k x x 42,422121221=-+=++=+, 所以点P 的坐标为⎪⎭⎫ ⎝⎛+k k 2,212. 由题知,直线2l 的斜率为k1-,同理可得点Q 的坐标为()k k 2,212-+. 当1±≠k 时,有222121k k +≠+,此时直线PQ 的斜率2221212122k k k kkk k PQ -=--++=. 所以,直线PQ 的方程为()222112k x kk k y ---=+, 整理得()032=--+y k x yk .于是,直线PQ 恒过定点()0,3E ;当1±=k 时,直线PQ 的方程为3=x ,也过点()0,3E .综上所述,直线PQ 恒过定点()0,3E .21.解(1)()()xa x x x a x x f --=-+-=21)11()1(2)(' 当2≤a 时,∵0)('>x f 对于()+∞∈,1x 恒成立,∴)(x f 在()∞+,1上单调递增 ∴()0)1(=>f x f ,此时命题成立;当2>a 时,∵)(x f 在⎪⎭⎫⎝⎛21a ,上单调递减,在⎪⎭⎫ ⎝⎛+∞,2a 上单调递增, ∴当⎪⎭⎫ ⎝⎛∈2,1a x 时,有0)1()(=<f x f .这与题设矛盾. 故a 的取值范围是(]2,∞-(2)依题意(]2,∞-∈a ,设1)()(++=a x f x g .原题即为若)(x g 在(]20,上有且只有一个零点,求a 的取值范围. 显然函数()x g 与()x f 的单调性是一致的.①当0≤a 时,因为函数)(x g 在区间()10,上递减,(]21,上递增, 所以()x g 在(]20,上的最小值为1)1(+=a g , 由于011112222>+-⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛ea e e g ,要使()x g 在(]20,上有且只有一个零点, 需满足()01=g 或()02<g ,解得1-=a 或2ln 2-<a ; ②当2=a 时,因为函数()x g 在(]20,上单调递增,0且()02ln 22)2(,0241484>+=<--=-g ee e g , 所以此时()x g 在(]20,上有且只有一个零点; ③当20<<a 时,因为函数()x g 在⎪⎭⎫ ⎝⎛20a ,上单调递增,在⎪⎭⎫⎝⎛1,2a 上单调递减,在 (]21,上单调递增,又因为()011>+=a g ,所以当⎪⎭⎫⎝⎛∈2,2a x 时,总有()0>x g , ∵2122+<<+a e a a ∴022ln )2(22222222<⎪⎪⎭⎫ ⎝⎛+++⎥⎦⎤⎢⎣⎡+-=⎪⎪⎭⎫ ⎝⎛++++a e a a e e e g a a a a a a a a, 所以()x g 在⎪⎭⎫ ⎝⎛20a ,上必有零点,又因为()x g 在⎪⎭⎫ ⎝⎛20a ,上单调递增, 从而当20<<a 时,()x g 在(]20,上有且只有一个零点 综上所述,当20≤<a 或2ln 2-<a 或1-=a 时, 方程01)(=++a x f 在(]2,0∈x 上有且只有一个实根.22.解:(1)曲线1C 的普通方程为0234=-+y x ;曲线2C 的直角坐标方程为:2x y =.(2)1C 的参数方程的标准形式为⎪⎩⎪⎨⎧+-=-=t y t x 542532(t 为参数)代入2x y =得 01508092=+-t t ,设21,t t 是B A 、对应的参数,则0350,9802121>==+t t t t . ∴1581PA 12121=+=⋅+=+t t t t PB PA PB PA PB . 23.解:(1)当1=a 时,21212+≤++-x x x 所以⎪⎩⎪⎨⎧+≤--≤2421x x x 或⎪⎩⎪⎨⎧+≤<<-222121x x 或⎪⎩⎪⎨⎧+≤≤2421x x x 解得∅∈x 或210<≤x 或3221≤≤x 综上,不等式的解集为⎥⎦⎤⎢⎣⎡320,. (2)2122+≥++-x x a x ,转化为02122≥--++-x x a x 令()2122--++-=x x a x x h ,⎪⎪⎪⎩⎪⎪⎪⎨⎧≥--<<--+--≤-+-=2,13221,121,35)(ax a x a x a x x a x x h , 0>a 时,12)(min -=a x h , 令012≥-a ,得2≥a .。

广东省珠海一中等六校2018届高三第三次联考数学文试题(解析版)

广东省珠海一中等六校2018届高三第三次联考数学文试题(解析版)

2018届广东省六校第三次联考文科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 函数的定义域为( )A. B. C. D.【答案】C【解析】函数的定义域应满足故选C.2. 如果复数(其中为虚数单位,为实数)的实部和虚部互为相反数,那么等于( )A. -6B.C.D. 2【答案】C【解析】,由题如果复数(其中为虚数单位,为实数)的实部和虚部互为相反数,即故选C.3. 高考结束后,同学聚会上,某同学从《爱你一万年》,《非你莫属》,《两只老虎》,《单身情歌》四首歌中选出两首歌进行表演,则《爱你一万年》未选取的概率为( )A. B. C. D.【答案】B【解析】由题意,《爱你一万年》未选取的概率为【点睛】本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.4. 圆关于直线对称的圆的方程是( )A. B.C. D.【答案】D【解析】圆的圆心关于直线对称的坐标为,从而所求圆的方程为.故选D.5. 某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的的值是( )A. 2B.C.D. 3【答案】D【解析】根据三视图判断几何体为四棱锥,其直观图如图所示,则故选D.6. 已知,则( )A. B. C. D.【答案】C【解析】由已知则7. 实数满足,且的最大值不小于1,则实数的取值范围是( )A. B. C. D.【答案】A【解析】设,∵的最大值不小于1,由得,作出不等式组对应的平面区域如图(阴影部分):平移直线,由图象可知当直线经过点时,直线的截距最小,此时最大,当时,由,解得,即.此时点也在直线 x 上,此时,∴要使的最大值不小于1,则.故选A.【点睛】本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.8. 函数的导函数在区间上的图象大致是( )A. B.C. D.【答案】A【解析】,可排除又在处取最大值;故排除B.故选A【点睛】本题考查的知识点是函数的图象与图象的变化,其中分析函数的性质,及不同性质在图象上的表现是解答本题的关键.9. 三棱锥中,平面且是边长为的等边三角形,则该三棱锥外接球的表面积为A. B. C. D.【答案】C【解析】根据已知中底面是边长为的正三角形,,平面,可得此三棱锥外接球,即为以为底面以为高的正三棱柱的外接球∵是边长为的正三角形,∴的外接圆半径球心到的外接圆圆心的距离故球的半径故三棱锥外接球的表面积故选:C.10. 自主招生联盟成行于2009年清华大学等五校联考,主要包括“北约”联盟,“华约”联盟,“卓越”联盟和“京派”联盟,在调查某高中学校高三学生自主招生报考的情况,得到如下结果:①报考“北约”联盟的学生,都没报考“华约”联盟②报考“华约”联盟的学生,也报考了“京派”联盟③报考“卓越”联盟的学生,都没报考“京派”联盟斯不报考“卓越”联盟的学生,就报考“华约”联盟根据上述调查结果,下列结论错误的是( )A. 没有同时报考“华约”和“卓越”联盟的学生B. 报考“华约”和“京派”联盟的考生一样多C.报考“北约”联盟的考生也报考了“卓越”联盟 D. 报考“京派”联盟的考生也报考了“北约”联盟【答案】D【解析】设报考“北约”联盟,“华约”联盟,“京派”联盟和“卓越”联盟的学生分别为集合A,B,C,D,则由题意,A∩B=∅,B⊆C,D∩C=∅,C∪D=B,∴A⊆D,B=C,C∪D=B,选项A,B∩D=∅,正确;选项B,B=C,正确;选项C,A⊆D,正确,故选:D.点睛:本题考查进行简单的合情推理,考查学生分析解决问题的能力,正确运用集合思想是关键11. 设,则的大小关系为( )A. B. C. D.【答案】A【解析】由题意,所以,,所以,故选A.12. 已知双曲线,点为的左焦点,点为上位于第一象限内的点,关于原点的对称点为,且满足,若,则的离心率为( )A. B. C. 2 D.【答案】B【解析】由题意可知,双曲线的右焦点,关于原点的对称点为,则,四边形为平行四边形则,由,根据椭圆的定义,,在中,,,则,整理得则双曲线的离心率故选点睛:本题主要考查的是双曲线的简单性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东2014届高三六校第三次联考文科数学本试卷分选择题和非选择题两部分,共4页,20小题,满分150分。

考试用时120分钟。

参考公式(1)用最小二乘法求线性回归方程系数公式1221ˆˆˆni ii nii x y nx ybay bx xnx==-⋅==--∑∑,. (其中12nx x x x n+++=)(2)锥体体积公式13V Sh =(S 为锥体的底面积,h 为锥体的高)第一部分 选择题(共50分)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,2,3,4,5,6U =,{}1,2,4A =,则U A =A .UB .{}1,3,5C .{}3,5,6D . {}2,4,62.设复数i(12i)z =+(其中i 是虚数单位),则在复平面内,复数z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 3.已知向量(2,1),(1,),a b k ==- 若//(2)a a b -,则k =A .12-B .12C .12D .12-4.已知等比数列{}n a 中,公比1q >,且168a a +=,3412a a =,则116a a = A . 2 B . 3或6 C . 6 D . 35.设βα,为两个不重合的平面,n m ,是两条不重合的直线,则下列四个命题中是真命题的是A .若α⊥⊥m n m ,,则α//nB .若,,βα⊂⊂m n βα与相交且不垂直,则m n 与不垂直C .若n m m ⊥=⊥,,βαβα ,则n β⊥D .若βαα//,,//⊥n n m ,则β⊥m6.由散点图判断y 与x 具有线性相关关系,计算可得回归直线的斜率是7,则回归直线的方程是A .^715y x =+B .^75y x =+C .^750y x =+D .^745y x =+7.一个几何体的三视图如图1所示,则该几何体的体积为A . 13B . 1C . 12D .328.同时具有性质:“①最小正周期为π;②图象关于直线3x π=对称;③在(,)63ππ-上是增函数”的一个函数是A.sin()26x y π=+B.cos()26x y π=-C.cos(2)3y x π=+D.sin(2)6y x π=-9.若221xy+=,则x y +的取值范围是A .]2,0[B .]0,2[-C .),2[+∞-D .]2,(--∞10.已知函数(0)()lg()(0)x e x f x x x ⎧≥=⎨-<⎩,则实数2t ≤-是关于x 的方程2()()0f x f x t ++=有三个不同实数根的A .充分非必要条件B .必要非充分条件C .充要条件D .非充分非必要条件第二部分 非选择题(共 100 分)二、填空题: 本大题共4小题,每小题511. 已知函数33,0()tan ,02x x f x x x π⎧<⎪=⎨-≤<⎪⎩ ,则(())4f f π12.阅读图2的程序框图,输出结果s 的值为 .13.已知实数,a b 满足:102102210a b a b a b -+≥⎧⎪--≤⎨⎪+-≥⎩,1z a b =--,则z 的取值范围是_ .14.在平面内,若三角形的面积为S ,周长为C ,则此三角形的内切圆的半径2Sr C=;在空间中,三棱锥P ABC -的三条侧棱,,PA PB PC 两两垂直,且1PA PB PC ===,利用类比推理的方法,求得此三棱锥P ABC -的内切球(球面与三棱锥的各个面均相切)的半径R =_____________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15.(本小题满分12分)已知向量2(2cos a x = ,(1,sin 2)b x = ,函数()f x a b =⋅ .(1)求函数()f x 的最小正周期;(2)若()23f πα-=,,2παπ⎡⎤∈⎢⎥⎣⎦,求sin(2)6πα+的值.16.(本小题满分12分)从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)155,160,第二组[)160,165,…,第八组[]190,195,图3是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(1)求第七组的频率; (2)根据得到的样本数据估计该学校男生身高在180cm 以上(含180cm )的人数;(3)从身高属于第六组和第八组的所有男生中随机抽取两名男生,求抽取的两个男生的身高之差不超过5的概率 .17.(本小题满分14分)在图4所示的几何体中,ABC ∆是边长为2的正三角形,1AE =,AE ⊥平面ABC ,平面BCD ⊥平面ABC ,BD CD =,且BD CD ⊥.(1)证明:AE //平面BCD ;(2)证明:平面BDE ⊥平面CDE ;(3)求该几何体的体积.18.(本小题满分14分)已知数列{}n a 为等差数列,且5714,20a a ==,数列{}n b 的前项和为n ,且满足132n n S S -=+(2,*)n n ≥∈N ,123b =. (1)求数列{}n a ,{}n b 的通项公式;(2)若n n n c a b =⋅,n T 为数列{}n c 的前n 项和,求n T .19.(本小题满分14分)已知函数2()ln ,()(R)f x x x g x ax x a ==-∈. (1)求()f x 的单调区间和极值点;(2)求使()()f x g x ≤恒成立的实数a 的取值范围;(3)当18a =时,是否存在实数m ,使得方程3()()04f x m g x x++=有三个不等实根?若存在,求出m 的取值范围;若不存在,请说明理由.20.(本小题满分14分)已知函数2()4f x x =-,设曲线)(x f y =在点(,())n n x f x 处的切线与x 轴的交点为)0,(1+n x ,其中1x 为正实数,*N ∈n .(1)用n x 表示1+n x ; (2)若41=x ,记22lg-+=n n n x x a (*N ∈n ),试判断数列{}n a 是否是等比数列,若是求出其A BCED公比;若不是,请说明理由;(3)在(2)的条件下,设()()(25)lg 322123n nn b n n a +=++,数列{}n b 的前n 项和为n S ,证明:71303n S ≤<.2014届高三六校第三次联考文科数学参考答案一、 选择题:C BD D D A A D D C 二、填空题: 11.3-;; 13.122⎡⎤-⎢⎥⎣⎦,-;. 三、解答题:15.(本小题满分12分)已知向量2(2cos a x = ,(1,sin 2)b x = ,函数()f x a b =⋅ .(1)求函数()f x 的最小正周期;(2)若()23f πα-=,,2παπ⎡⎤∈⎢⎥⎣⎦,求sin(2)6πα+的值. 解:(1)2()2cos 2cos 221f x x x x x =+=++ 2sin(2)16x π=++ , 4分∴()f x 的最小正周期为T π=. 6分 (2)()2sin(2())12sin(2)123362f ππππααα-=-++=-+= , 1cos 22α∴-=,1cos 22α=-, 8分,2παπ⎡⎤∈⎢⎥⎣⎦,[]2,2αππ∴∈,423πα∴=,23πα=, 10分 3sin(2)sin 162ππα∴+==-. 12分16.(本小题满分12分)从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)155,160,第二组[)160,165,……,第八组[]190,195,图3是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(1)求第七组的频率;(2)根据得到的样本数据估计该学校男生身高在180cm 以上(含180cm )的人数;(3)从身高属于第六组和第八组的所有男生中随机抽取两名男生,求抽取的两个男生的身高之差不超过5的概率 . 16.解: (1)第六组的频率为40.0850=, 2分 所以第七组的频率为 :10.085(0.00820.0160.042+0.06=0.06--⨯++⨯). 4分 (2)由直方图得后三组频率为0.06+0.08+0.0085=0.18⨯,所以估计该校男生身高在180cm 以上(含180cm )的人数为0.18800144⨯=人. 7分 (3)第六组[)180,185的人数为4人,设为,,,a b c d ,第八组[]190,195的人数为2人, 设为,A B , 则从这6人中抽取2人有,,,,,ab ac ad bd bc cd ,,,,,,,,,aA bA cA dA aB bB cB dB AB 共15种情况,9分抽取的两个男生的身高之差不超过5有,,,,,,ab ac ad bc bd cd AB 共7种情况, 11分 抽取的两个男生的身高之差不超过5的概率为715P =. 12分 17.(本小题满分14分)在图4所示的几何体中,ABC ∆是边长为2的正三角形,1AE =,AE ⊥平面ABC ,平面BCD ⊥平面ABC ,BD CD =,且BD CD ⊥. (1)证明:AE //平面BCD ;(2)证明:平面BDE ⊥平面CDE ;ABCED(3)求该几何体的体积.17.证明:(1) 取BC 的中点M ,连接DM 、AM , 由已知BD CD =,可得:DM BC ⊥,又因为平面BCD ⊥平面ABC ,平面BCD 平面ABC BC =,所以DM ⊥平面ABC ,因为AE ⊥平面ABC , 所以//AE DM , 又因为AE ⊄平面BCD ,DM ⊂平面BCD ,所以//AE 平面BCD . 4分 (2)由(1)知//AE DM ,又1AE =,1DM = ,所以四边形DMAE 是平行四边形,则有//DE AM , 由(1)得DM AM ⊥,又AM BC ⊥,∴AM ⊥平面BCD , 所以DE ⊥平面BCD , 又CD ⊂平面BCD ,所以DE CD ⊥,由已知BD CD ⊥, D BD DE = ,∴CD ⊥平面BDE ,因为CD ⊂平面CDE , 所以平面BDE ⊥平面CDE . 10分 (也可利用勾股定理等证明题中的垂直关系)(3)M AM DM AM BC DM BC =⊥⊥ ,,,∴BC ⊥平面AEDM , 11分 1,3==DM AM ,易得四边形AEDM为矩形其面积S = 12分故该几何体的体积C AEDM B AEDM V V V --=+=33231=⨯⨯BC S . 14分18.(本小题满分14分)已知数列{}n a 为等差数列,且5714,20a a ==,数列{}n b 的前n 项和为n S ,且满足132n n S S -=+(2,*)n n ≥∈N ,123b =. (1)求数列{}n a ,{}n b 的通项公式;(2)若n n n c a b =⋅,n T 为数列{}n c 的前n 项和,求n T . 18.(1) 数列{}n a 是等差数列,设公差为d ,则11414620a d a d +=⎧⎨+=⎩,解得123a d =⎧⎨=⎩,1(1)31n a a n d n ∴=+-=-. 2分 132(2)n n S S n -=+≥①, 1232(3)n n S S n --∴=+≥②,由① — ②得13(3)n n b b n -=≥,11(3)3n n b n b -∴=≥, 4分 由112,32(2)3n n b S S n -==+≥得1213()2b b b +=+, 229b ∴=, ∴2113b b =, 5分{}n b ∴是等比数列,公比是13, 23n n b ∴=. 6分(2)2(31)3n n n nn c a b -=⋅=,231111112(258(34)(31))33333n n n T n n -=⋅+⋅+++-+- ,23411111112(258(34)(31))333333n n n T n n +=⋅++++-+- , 8分 231121111112(2(31))3333333n n n T n -+∴=⋅+++++-- 1111(1())21332((31))13313n n n -+-=+---1171112((31))6233n n n -+=---176733n n ++=-,767223n nn T +∴=-⋅. 14分 19.(本小题满分14分)已知函数2()ln ,()(R)f x x x g x ax x a ==-∈. (1)求()f x 的单调区间和极值点;(2)求使()()f x g x ≤恒成立的实数a 的取值范围;(3)当18a =时,是否存在实数m ,使得方程3()()04f x m g x x++=有三个不等实根?若存在,求出m 的取值范围;若不存在,请说明理由. 19.解:(1)()ln 1f x x '=+, 由()0f x '>得1x e>, ()0f x '<得10x e <<,()f x ∴在1(0,)e 单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭单调递增,()f x 的极小值点为1x e=.(注:极值点未正确指出扣1分) 3分 (2)方法1:由()()f x g x ≤得2ln (0)x x ax x x ≤->,ln 1ax x ∴≥+ ,令()ln 1h x ax x =-- ,则11()ax h x a x x-'=-=, ⅰ)当0a ≤时,()0h x '<,()h x 在()0,+∞单调递减,()h x 无最小值,舍去; ⅱ)当0a >时, 由()0h x '>得1x a >,()0h x '<得10x a<<, ()h x ∴在1(0,)a 单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭单调递增,min 1()()ln h x h a a∴==,只须ln 0a ≥,即1a ≥,∴当1a ≥时()()f x g x ≤恒成立. 8分方法2:由()()f x g x ≤得2ln (0)x x ax x x ≤->,ln 1ax x ∴≥+,即ln 1x a x+≥对任意0x >恒成立, 令ln 1()x h x x+=,则2ln ()xh x x -'=,由()0h x '>得01x <<,()0h x '<得1x >,()h x ∴在(0,1)单调递增,在()1,+∞单调递减,max ()(1)1h x h ∴==,∴ 1a ≥,∴当1a ≥时()()f x g x ≤恒成立.(3)假设存在实数m ,使得方程3()()04f x m g x x++=有三个不等实根, 即方程26ln 880x m x x ++-=有三个不等实根, 令2()6ln 88x x m x x ϕ=++-,262(43)2(3)(1)()28x x x x x x x x xϕ-+--'=+-==, 由()0x ϕ'>得01x <<或3x >,由()0x ϕ'<得13x <<,()x ϕ∴在(0,1)上单调递增,(1,3)上单调递减,(3,)+∞上单调递增,∴()x ϕ的极大值为(1)78m ϕ=-+,()x ϕ的极小值为(3)156ln 38m ϕ=-++. 11分要使方程26ln 880x m x x ++-=有三个不等实根,则函数()x ϕ的图像与x 轴要有三个交点, 根据()x ϕ的图像可知必须满足780156ln 380m m -+>⎧⎨-++<⎩,解得7153ln 3884m <<-, 13分∴存在实数m ,使得方程3()()04f x m g x x ++=有三个不等实根, 实数m 的取值范围是7153ln 3884m <<-. 14分20.(本小题满分14分)已知函数2()4f x x =-,设曲线)(x f y =在点(,())n n x f x 处的切线与x 轴的交点为)0,(1+n x ,其中1x 为正实数,*N ∈n .(1)用n x 表示1+n x ; (2)若41=x ,记22lg -+=n n n x x a (*N ∈n ),试判断数列{}n a 是否是等比数列,若是求出其公比;若不是,请说明理由;(3)在(2)的条件下,设()()(25)lg 322123n nn b n n a +=++,数列{}n b 的前n 项和为n S ,证明:71303n S ≤<. 20.解:(1)由题可得()2f x x '=,所以曲线()y f x =在点(,())n n x f x 处的切线方程是()()()n n n y f x f x x x '-=-, 即2(4)2()n n n y x x x x --=-, 2分 令0y =,得21(4)2()n n n n x x x x +--=-,即2142n n n x x x ++=,显然0n x ≠,∴2124n n nx x x ++=. 4分(2)数列{}n a 是等比数列,证明如下:由2124n n n x x x ++=,22lg -+=n n n x x a 得 222112214222(2)22l g l g l g l g ()2l g 242(2)2222n n n n n n n n n n n n n n x x x x x x a a x x x x x x +++++++++======+-----, ∴12n na a +=, 所以数列{}n a 成等比数列,公比为2. 8分 (3)解:14x = 1114lglg 34x a x +∴==-,由(2)得11122lg3n n n a a --=⋅=, ∴()()(25)lg 322123n n n b n n a +=++⋅()()25121232n n n n +=⋅++ 21121232n n n ⎛⎫=-⋅ ⎪++⎝⎭111(21)2(23)2n n n n -=-++, 所以12n n S b b b =+++L()()211111113525272212232n n n n -⎡⎤⎛⎫⎛⎫=-+-++-⎢⎥ ⎪ ⎪⋅⋅⋅++⎝⎭⎝⎭⎣⎦L ()113232nn =-+, 12分 故数列{}n b 的前n 项和()113232n n S n =-+, 10(23)2n n >+⋅13n S ∴<, 又1(23)2n n +⋅ 单调递增,113(23)2n nS n ∴=-+⋅单调递减, ∴当1n =时n S 的最小值为730, ∴71303n S ≤<. 14分。

相关文档
最新文档