湖北省巴东一中高二数学教案 选修1-2:3.1.1复数的概念与扩充
高中数学 3.1.2 复数的几何意义教案 选修1-2
3.1.2 复数的几何意义(教师用书独具)●三维目标1.知识与技能理解复数的几何意义,会用复平面内的点和向量来表示复数;了解复数模的概念及几何意义,会求复数的模.2.过程与方法渗透转化、数形结合等数学思想和方法,提高分析、解决问题的能力.3.情感、态度与价值观引导学生观察现象、发现问题、提出观点、验证结论、培养良好的学习思维品质.●重点难点重点:复数的几何意义及复数的模.难点:复数的几何意义及模的综合应用.树立复数与坐标平面内的点的一一对应、复数与向量的一一对应的意识,是将复数由代数形式引向几何形式的关键环节,通过图形展示,让学生直观、形象的探索其内在联系,可以降低理解难度.(教师用书独具)●教学建议建议本课在教师的指导下作小范围的必要的教学探索活动,使整个教学更有序,更有效,激发学生兴趣,锻炼学生毅力,兴趣是学习良好的开端,毅力是学习的保证.让学生由实数的绝对值的几何意义,类比复数模的几何意义,探索复数模的几何应用.可以利用多媒体教学,展示复数与坐标平面的对应关系及复数模的几何意义,引导学生利用数形结合的思想去分析问题、解决问题.●教学流程创设问题情境,引出问题,引导学生认识复数几何意义.了解复数模的定义、作用、计算方法.让学生自主完成填一填,使学生进一步了解复数与平面内的点的对应关系,复数与向量的对应关系.引导学生分析例题1的已知条件和问题(1)(2)应满足的条件.学生自主完成求解过程,教师指导完善.完成互动探究.学生分组探究例题2解法,总结利用复数相等条件求参数的规律方法.完成变式训练.完成当堂双基达标,巩固所学知识及应用方法.并进行反馈矫正.归纳整理,进行课堂小结,整体认识本节所学知识,强调重点内容和规律方法.学生自主完成例题3互动探究,老师抽查完成情况,对出现问题及时指导.让学生自主分析例题3,老师适当点拨解题思路,学生分组讨论给出解法.老师组织解法展示,引导学生总结解题规律.课标解读1.理解可以用复平面内的点或以原点为起点的向量来表示复数以及它们之间的一一对应关系.(重点)2.理解复数模的概念,会求复数的模.(难点)复平面【问题导思】1.复数z=a+b i(a,b∈R)与有序实数对(a,b)有怎样的对应关系?【提示】一一对应.2.有序实数对与直角坐标平面内的点有怎样的对应关系?【提示】一一对应.3.复数集与平面直角坐标系中的点集之间能一一对应吗?【提示】一一对应.建立直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴,实轴上的点都表示实数,除了原点外,虚轴上的点都表示纯虚数.复数的几何意义【问题导思】1.平面直角坐标系中的点Z与向量OZ→有怎样的对应关系?【提示】一一对应.2.复数集与平面直角坐标系中以原点为起点的向量集合能一一对应吗?【提示】一一对应.(1)复数z=a+b i(a,b∈R)―→一一对应复平面内的点Z(a,b).(2)复数z=a+b i(a,b∈R)―→一一对应平面向量OZ→.为方便起见,我们常把复数z=a+b i说成点Z或说成向量OZ→,并且规定,相等的向量表示同一个复数.复数的模向量OZ→的模r叫做复数z=a+b i的模,记作|z|或|a+b i|,且r=a2+b2(r≥0,且r ∈R).复平面内的点同复数的对应关系(1)位于虚轴上;(2)位于第三象限.【思路探究】找出复数z的实部、虚部,结合(1)(2)的要求写出满足的条件.【自主解答】 复数z =2m +(4-m 2)i 对应复平面内点的坐标P 为(2m,4-m 2).(1)若P 在虚轴上,则⎩⎪⎨⎪⎧2m =0,4-m 2≠0,即m =0.(2)若点P 在第三象限,则⎩⎪⎨⎪⎧2m <0,4-m 2<0,解得m <-2.∴当点P 位于第三象限时,实数m 的范围是(-∞,-2). 1.复数z =a +b i(a ,b ∈R )复平面内的点(a ,b ).2.判断复数对应点的位置,关键是找出相应复数的实部和虚部. 在题设不变的情况下,求满足下列条件的实数m . (1)在实轴上;(2)在直线y =x 上.【解】 (1)若点在实轴上,则4-m 2=0,即m =±2. (2)若点在直线y =x 上,则4-m 2=2m ,解得m =-1± 5.复数的模的求法已知复数z 满足z +|z |=2+8i ,求复数z .【思路探究】 设z =a +b i(a ,b ∈R ),代入等式后,可利用复数相等的充要条件求出a ,b .【自主解答】 法一 设z =a +b i(a ,b ∈R ),则|z |=a 2+b 2, 代入方程得a +b i +a 2+b 2=2+8i ,∴⎩⎨⎧a +a 2+b 2=2,b =8,解得⎩⎪⎨⎪⎧a =-15,b =8.∴z =-15+8i.法二 原式可化为 z =2-|z |+8i , ∵|z |∈R ,∴2-|z |是z 的实部, 于是|z |=2-|z |2+82,即|z |2=68-4|z |+|z |2,∴|z |=17. 代入z =2-|z |+8i 得z =-15+8i.计算复数的模时,应先找出复数的实部和虚部,然后再利用模的公式进行计算,两个虚数不能比较大小,但它们的模可以比较大小.求复数z 1=6+8i 及z 2=-12-2i 的模,并比较它们的模的大小.【解】 |z 1|=36+64=10,|z 2|=-122+-22=14+2=32,|z 1|>|z 2|.复数的模及其几何意义已知复数z 1=-3+i ,z 2=-12-32i ,(1)求|z 1|与|z 2|的值,并比较它们的大小.(2)设复平面内,复数z 满足|z 2|≤|z |≤|z 1|,复数z 对应的点Z 的集合是什么? 【思路探究】 (1)利用复数模的定义来求解.若z =a +b i(a ,b ∈R ),则|z |=a 2+b 2. (2)先确定|z |的范围,再确定点Z 满足的条件,从而确定点Z 的图形. 【自主解答】 (1)|z 1|=-32+12=2.|z 2|=-122+-322=1.∵2>1,∴|z 1|>|z 2|. (2)由(1)知|z 2|≤|z |≤|z 1|, 则1≤|z |≤2.因为不等式|z |≥1的解集是圆|z |=1上和该圆外部所有点的集合,不等式|z |≤2的解集是圆|z |=2上和该圆的内部所有点组成的集合,所以满足条件1≤|z |≤2的点Z 的集合是以原点O 为圆心,以1和2为半径的两圆及所夹的圆环.1.两个复数不全为实数时不能比较大小;而任意两个复数的模均可比较大小. 2.复数模的意义是表示复数对应的点到原点的距离,这可以类比实数的绝对值,也可以类比以原点为起点的向量的模来加深理解.3.|z 1-z 2|表示点z 1,z 2两点间的距离,|z |=r 表示以原点为圆心,以r 为半径的圆. 如果将本题中|z 2|≤|z |≤|z 1|,改为|z 2|<|z |<|z 1|,复数z 对应的点Z 的集合是什么? 【解】 |z 2|<|z |<|z 1|⇒1<|z |<2,则复数z 的轨迹为以原点O 为圆心,1、2为半径的圆环且不包括边界,注意区别.因对复数的模理解不到位而导致错误试研究方程x 2-5|x |+6=0在复数集上解的个数.【错解】 将方程变为|x |2-5|x |+6=0⇒|x |=2或|x |=3⇒x =±2或x =±3,故共有4个.【错因分析】 这里常出现将|x |看成“绝对值”从而出现错误的解法,注意这里|x |是一个复数的模,它不等同于实数的绝对值,x 2也不能写成|x |2.【防范措施】 (1)认真审题,看清限制范围是实数还是复数. (2)弄清复数的模与实数绝对值的区别.(3)理解|z |的意义及|z |的计算方法.(4)善于利用转化思想,把复数方程转化为实数方程组求解. 【正解】 设x =a +b i(a ,b ∈R ),则原方程可化为a 2-b 2-5a 2+b 2+6+2ab i =0⇒⎩⎨⎧a 2-b 2-5a 2+b 2+6=0,2ab =0⇒⎩⎪⎨⎪⎧a =±2,b =0或⎩⎪⎨⎪⎧a =±3,b =0或⎩⎪⎨⎪⎧a =0,b =±1,即x =±2或x =±3或x =±i. 故方程在复数集上的解共有6个.1.复数的几何意义有两种:复数和复平面内的点一一对应,复数和复平面内以原点为起点的向量一一对应.2.研究复数的问题可利用复数问题实数化思想转化为复数的实虚部的问题,也可以结合图形利用几何关系考虑.1.(2013·福建高考)复数z =-1-2i(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限【解析】 z =-1-2i 在复平面内对应的点为(-1,-2),它位于第三象限. 【答案】 C2.若OZ →=(0,-3),则OZ →对应的复数为( ) A .0 B .-3 C .-3iD .3【解析】 由复数的几何意义可知OZ →对应的复数为-3i. 【答案】 C3.已知3-4i =x +y i(x ,y ∈R ),则|1-5i|,|x -y i|,|y +2i|的大小关系为________. 【解析】 由3-4i =x +y i(x ,y ∈R ), 得x =3,y =-4,而|1-5i|=1+52=26, |x -y i|=|3+4i|=32+42=5, |y +2i|=|-4+2i|=-42+22=20.∵20<5<26,∴|y +2i|<|x -y i|<|1-5i|. 【答案】 |y +2i|<|x -y i|<|1-5i|4.在复平面内指出与复数z 1=-1+2i ,z 2=2-i ,z 3=-i ,z 4=3+3i 对应的点Z 1,Z 2,Z 3,Z 4,然后在复平面内画出这4个复数对应的向量.【解】 由题意知Z 1(-1,2),Z 2(2,-1),Z 3(0,-1),Z 4(3,3).如图所示,在复平面内,复数z 1,z 2,z 3,z 4对应的向量分别为OZ 1→,OZ 2→,OZ 3→,OZ 4→.一、选择题1.过原点和3-i 对应点的直线的倾斜角是( ) A.π6B .-π6 C.2π3D .5π6【解析】 ∵3-i 在复平面上的对应点是(3,-1), ∴tan α=-1-03-0=-33(0≤α<π),∴α=56π.【答案】 D2.复数z =(a 2-2a )+(a 2-a -2)i 对应的点在虚轴上,则a 的值为( ) A .a =0或a =2 B .a =0 C .a ≠1且a ≠2D .a ≠1或a ≠2【解析】 ∵复数z =(a 2-2a )+(a 2-a -2)i 对应的点在虚轴上,∴a 2-2a =0,∴a =0或a =2.【答案】 A3.已知复数z 1=a +2i ,z 2=-2+i ,且|z 1|=|z 2|,则实数a =( ) A .1 B .-1 C .1或-1D .±1或0【解析】 由题意得,a 2+4=4+1⇒a 2=1⇒a =±1. 【答案】 C4.复数z 与它的模相等的充要条件是( ) A .z 为纯虚数 B .z 是实数 C .z 是正实数D .z 是非负实数【解析】 设z =a +b i ,则|z |=a 2+b 2,又z =|z |,即a 2+b 2=a . ∴b =0,a ≥0,即z 是非负实数. 【答案】 D5.设复数z =(2t 2+5t -3)+(t 2+2t +2)i ,t ∈R ,则以下结论中正确的是( ) A .复数z 对应的点在第一象限 B .复数z 一定不是纯虚数 C .复数z 对应的点在实轴上方 D .复数z 一定是实数【解析】 ∵2t 2+5t -3=0的Δ=25+24=49>0, ∴方程有两根,2t 2+5t -3的值可正可负,∴A 、B 不正确. 又t 2+2t +2=(t +1)2+1>0,∴D 不正确, ∴C 正确. 【答案】 C 二、填空题6.复数z =log 123+ilog 312对应的点位于复平面内的第________象限.【解析】 ∵log 123<0,log 312<0,∴z 对应的点在第三象限. 【答案】 三7.若复数z 1=3-5i ,z 2=1-i ,z 3=-2+a i 在复平面内所对应的点在同一条直线上,则实数a =________.【解析】 设复数z 1,z 2,z 3分别对应点P 1(3,-5),P 2(1,-1),P 3(-2,a ),由已知可得-5+13-1=a +1-2-1,从而可得a =5.【答案】 58.已知复数z =(x -1)+(2x -1)i 的模小于10,则实数x 的取值范围是________. 【解析】 由题意得x -12+2x -12<10,∴5x 2-6x -8<0,∴(5x +4)(x -2)<0, ∴-45<x <2.【答案】 (-45,2)三、解答题9.在复平面内,若复数z =(m 2-m -2)+(m 2-3m +2)i 的对应点, (1)在虚轴上; (2)在第二象限; (3)在直线y =x 上.试分别求实数m 的取值范围.【解】 复数z =(m 2-m -2)+(m 2-3m +2)i 的实部为m 2-m -2,虚部为m 2-3m +2. (1)由题意,得m 2-m -2=0, 解得m =2或m =-1.(2)由题意,得⎩⎪⎨⎪⎧m 2-m -2<0,m 2-3m +2>0.∴⎩⎪⎨⎪⎧-1<m <2,m >2或m <1.∴-1<m <1, 即m ∈(-1,1).(3)由已知,得m 2-m -2=m 2-3m +2, ∴m =2.10.已知z 1=x 2+x 2+1i ,z 2=(x 2+a )i 对任意的x ∈R 均有|z 1|>|z 2|成立,试求实数a 的取值范围.【解】 ∵|z 1|=x 4+x 2+1,|z 2|=|x 2+a |,且|z 1|>|z 2|,∴x 4+x 2+1>|x 2+a |对x ∈R 恒成立,等价于(1-2a )x 2+(1-a 2)>0恒成立.不等式等价于①:⎩⎪⎨⎪⎧1-2a =0,1-a 2>0,解得a =12,∴a =12时,0·x 2+(1-14)>0恒成立.或②:⎩⎪⎨⎪⎧1-2a >0,Δ=-41-2a 1-a 2<0.解得-1<a <12.∴a ∈(-1,12).综上,可得实数a 的取值范围是{a |a ∈R ,且-1<a ≤12}.11.如图3-1-1,平行四边形OABC ,顶点O 、A 、C 分别表示0,3+2i ,-2+4i ,试求:图3-1-1(1)AO →表示的复数,BC →表示的复数; (2)CA →所表示的复数;(3)设P 为复平面上一点且满足|OP →|=|CA →|,求P 点的轨迹方程.【解】 (1)AO →=-OA →,而OA →对应的复数为3+2i , ∴AO →表示的复数为-3-2i ;∵BC →=AO →.∴BC →表示的复数为-3-2i. (2)CA →=OA →-OC →,∴CA →所表示的复数为(3+2i)-(-2+4i)=5-2i. (3)设P (x ,y ),∵|CA →|=|5-2i|=52+-22=29,|OP →|=x 2+y 2,由|OP →|=|CA →|,得x 2+y 2=29,即点P 的轨迹方程为x 2+y 2=29.(教师用书独具)已知向量OZ →与实轴正向的夹角为45°,向量OZ →对应的复数z 的模为1,求z . 【思路探究】 设出z =a +b i(a ,b ∈R ),列出关于a ,b 的方程组. 【自主解答】 设z =a +b i(a ,b ∈R ). ∵OZ →与x 轴正向的夹角为45°,|z |=1,∴⎩⎪⎨⎪⎧ b a =1,a 2+b 2=1,a >0,或⎩⎪⎨⎪⎧ b a =-1,a 2+b 2=1,a >0,∴⎩⎪⎨⎪⎧ a =22,b =22,或⎩⎪⎨⎪⎧a =22,b =-22.∴z =22+22i 或z =22-22i. 解答本题易因不能正确的运用条件“向量OZ →与实轴正向的夹角为45°”,而漏掉一解.已知复平面内的A ,B 对应的复数分别是z 1=sin 2θ+i ,z 2=-cos 2θ+icos 2θ,其中θ∈(0,π).设AB →对应的复数是z .(1)求复数z ;(2)若复数z 对应的点P 在直线y =12x 上,求θ的值.【解】 (1)∵点A ,B 对应的复数分别是z 1=sin 2θ+i ,z 2=-cos 2θ+icos 2θ,∴点A ,B 的坐标分别是A (sin 2θ,1),B (-cos 2θ,cos 2θ),∴AB →=(-cos 2θ,cos 2θ)-(sin 2θ,1)=(-cos 2θ-sin 2θ,cos 2θ-1)=(-1,-2sin 2θ),∴AB →对应的复数z =-1+(-2sin 2θ)i.(2)由(1)知点P 的坐标是(-1,-2sin 2θ),代入y =12x ,得-2sin 2θ=-12,即sin 2θ=14,∴sin θ=±12.又∵θ∈(0,π),∴sin θ=12,∴θ=π6或5π6.。
高中数学选修1,2《数系的扩充和复数的概念》教案
高中数学选修1,2《数系的扩充和复数的概念》教案高中数学选修1-2《数系的扩充和复数的概念》教案【一】教学准备教学目标知识与技能1、了解数系扩充的过程及引入复数的需要2、掌握复数的有关概念和代数符号形式、复数的分类方法及复数相等的充要条件过程与方法1、通过数系扩充的介绍,让学生体会数系扩充的一般规律2、通过具体到抽象的过程,让学生形成复数的一般形式情感态度与价值观1、体会数系的扩充过程中蕴含的创新精神与实践精神,感受人类理性思维的作用2、体会类比、分类讨论、等价转化的数学思想方法教学重难点重点:引入复数的必要性与复数的相关概念、复数的分类,复数相等的充要条件难点:虚数单位i的引进和复数的概念教学过程(一)问题引入事实上在实数范围内x和y确实不存在?为什么会这样呢?假设x和y是存在的,那么就肯定是一些不是实数的数,那么,这些数是什么呢?我们能不能解决这个问题呢?这就是我们今天要学习的内容《数系的扩充和复数的引入》(二)回顾数系的扩充历程师:其实对于这种“数不够用”的情况,我们并不陌生。
大家记得吗?从小学到现在,我们一直在经历着数的不断扩充。
现在就让我们来回顾一下,看看我们以前是怎么解决“数不够用”的问题的。
(三)类比,引入新数,将实数集扩充1、类比数系的扩充规律,引导学生找出解决“实数不够用”这个问题的办法生:引入新数,使得平方为负数师:我们希望引入的数的平方为负数,但是负数有无穷多个,我们不肯能一下子引入那么多,只要引入平方为多少就行呢?2、历史重现:3、探究复数的一般形式:(四)新的数集——复数集1.复数的定义(略)2.复数的应用:复数在数学、力学、电学及其他学科中都有广泛的应用,复数与向量、平面解析几何、三角函数等都有密切的联系,是进一步学习数学的基础。
(五)复数的分类(六)复数相等的充要条件复数相等的充要条件可以把复数相等的问题转化为求方程组的解的问题,是一种转化的思想。
课后小结1、由于实际的需要,我们总结数的三次扩充过程的规律,运用类比的方法,我们引进了新的数i,并将实数集扩充到了复数集,认识到了复数的代数形式,并讨论了复数的分类及复数相等的充要条件,并且利用相等的条件把复数问题转化为方程组的解的问题2、那么,复数究竟是什么东西呢?能不能像实数一样在现实中找到它的影子呢?别急,我们的探索脚步并不会停止下去,这是我们下次将要探索的内容。
湖北省恩施巴东县第一高级中学高中数学 3.2.1复数代数形式的加减运算及其几何意义教案 新人教版选修1-2
§3.2.1 复数代数形式的加减运算及其几何意义【学情分析】:学生在建立了复数的概念以后,很重要的一个问题就是建立复数集里的各种运算.由于实数是复数的一部分,在建立复数运算时应当遵循的一个原则是作为复数的实数,在复数集里运算时和在实数集里的运算应当是一致的.复数兼备代数形式和几何形式(点表示和向量表示),对复数代数形式的加减运算及其几何意义的学习有助于理解复数两种表示形式的统一,同时也提供了一个数形结合思想的载体.【教学目标】:(1)知识与技能:了解复数代数形式的加减运算,了解复数代数形式的加、减运算的几何意义.(2)过程与方法:从实数集中的相关概念以及运算出发,对比引出复数的加减法的定义,对比复数的代数形式,复数的向量形式同样具备其自身的加减法法则。
培养学生类比、化归、数形结合的思想方法。
(3)情感态度与价值观:通过复数的代数形式的加减运算的学习,体会数集运算定义的完备性与一致性,增加对数学逻辑美的认识。
【教学重点】:复数代数形式的加减运算及其几何意义。
【教学难点】:复数代数形式的加减运算几何意义。
【课前准备】:powerpoint课件【教学过程设计】:设计意复数加减法的几何意义边形12oz zz ,根据向量的加法法则,对角线oz ,正是两个复数之和12z z +所则,类似地,向量计算:i。
分析:复数的加减法,相当于多项式中加减中的合并同类项的过程,两个复分析:本题是证明一个虚数数为纯虚数的等价条件。
对应对应的复数。
意义知:向量28z-=-解:①62i-生1.计算(3)(2)i i +-+的结果为( )A.1B. i -C. 52i + D. 1- i 解:A2.已知复数33,z z i i z +-=-满足则=( )A .0B 。
2iC 。
6D 。
62i - 解:D3.|(32)(4)|i i +--等于( )A B C .2 D .13i -+ 解:B4.若||1,z z =则复数对应的点的轨迹是( ).A. 一个点B. 两个点C. 四个点D. 一个圆 解:D5.|(32)(1)|i i +-+表示( ).A. 点(3,2)与点(1,1)之间的距离B. 点(3,2)与点(-1,-1)之间的距离C. 点(3,2)到原点的距离D.以上都不对 解:A6.在复平面上复数1,0,32i i -++所对应的分别是A,B,C,则平行四边形ABCD的对角线BD 的长为 。
2020-2021学年高二数学选修1-2第三章3.1.1数系的扩充和复数的概念教案
数系的扩充和复数的概念一、内容和内容解析1.内容数系的扩充和复数的概念2.内容解析《数系的扩充与复数的概念》是人教版普通高中课程标准数学实验教科书选修1-2第三章第一节的内容,大纲课时安排一课时。
主要包括数系概念的发展简介,数系的扩充,复数相关概念、代数形式、相等条件、分类.复数的引入是中学阶段数系的又一次扩充,引入复数以后,不仅可以使学生对于数的概念有一个更为完整的认识,也为进一步学习数学打下了基础。
通过本节课学习,要使学生在问题情境中了解数系扩充的过程以及引入复数的必要性,学习复数的一些基本知识,体会人类理性思维在数系扩充中的作用.在学习了这节课以后,学生首先能知道数系是怎么扩充的,并且这种扩充是必要的,虚数单位i在数系扩充过程中的作用,而复数就是一个实数加上一个实数乘以i的形式,学生能清楚的知道一个复数什么时候是实数,什么时候是虚数,什么时候是纯虚数,两个复数相等的充要条件是什么.本节课让学生在经历一系列的思维活动后,完成对知识的探索,变被动地“接受问题”为主动地“发现问题”,加强学生对知识应用的灵活性,深化学生对复数的认识,提高学生分析问题和解决问题的能力.基于以上分析,确定本节课的教学重点是:数系的扩充以及复数的有关概念.二、目标和目标解析1.目标(1)使学生体会数的概念是逐步发展的,初步体会引入虚数单位i的合理性;了解引入复数的必要性;(2)理解复数的基本概念;掌握两复数相等的充要条件;能够对复数进行简单的分类;(3)在培养学生类比与转化的数学思想方法的过程中,激发学生勇于探索创新的精神,提高学生的创新思维和应用意识.2.目标解析(1)学生对数的概念已经扩充到实数,也已清楚各种数集之间的包含关系等内容,但知识是零碎、分散的,对数的生成发展的历史和规律缺乏整体认识与理性思考,知识体系还未形成.(2)作为新学知识,理解复数的基本概念,掌握复数有关知识,为今后学习奠定基础,承上启下.(3)通过问题设置,引领学生追溯历史,提炼数系扩充原则,帮助学生合乎情理的建立新的认知结构,让数学理论自然诞生在学生的思想中.三、教学问题诊断分析学生已经学过自然数、整数、有理数、实数等数系,但是对知识的认识相对比较零碎、分散,对知识没有一个系统性的理解,同时由于虚数单位i的概念非常抽象,又与学生原有的知识冲突,因此在学习过程中可能遇到的问题有:1.学生不太容易体会数系再次扩充的必要性.2.由于学生的认知能力有限,学生很难发现数系扩充前后对于运算法则的一致性要求.3.由于学生对数系扩充的知识不熟悉,对了解实数系扩充到复数系的过程有困难,也就是对虚数单位i的引入难以理解.在学习本节课的过程中,复数的概念如果采用单纯的讲解会显得比较枯燥无味,教学时,采用已学过的数集的认识历程,让学生体会数系的扩充是生产实践的需要,介绍数的发展过程,使学生对数的形成、发展的历史和规律有着比较清晰的认识,让学生能够在问题探索中掌握新知.基于以上分析,确定本节课的教学难点是:对引入复数引入必要性的认识以及从实数到复数的扩充历程.四、教学支持条件分析根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,利用图片展示数系学习历程,另外通过演示,体会复数从无到有的发展过程.五、教学过程分析(一)课题引入多媒体课件展示“数学的魅力在于用数来诠释全世界”,引入课题.设计意图:采用名言欣赏的方式进行情景引入,紧扣主题,展示本节课学习的意义.(二)复习回顾1.已经学习了哪些数集?2.回顾数的学习历程情境一一年级数学第一节《数一数》情境二三年级(上)数学第八节《分数的初步认识》情境三三年级(下)数学第七节《小数的初步认识》情境四六年级数学第一节《负数》情境五七年级数学第六节《实数》师:我们回顾了对数系的认识历程,我们看到数系在不断地进行扩充,从自然数到整数,再到有理数,乃至实数,请你思考:(1)人们为什么不断地扩充数系?师:从上述过程可以看出,满足社会实践的需要,是数系扩充的一个重要原因.正所谓自然数是“数”出来的,分数是“分”出来的,负数是“欠”出来的.另外,数学内部的发展、需求也是一个重要的原因!例如,求下列方程的解:x+3=1;3x−2=0;x2−2=0.如果没有数系的合理扩充,这些方程的解就是一个问题,数学本身也不可能协调的发展.因此,数学源于社会实践又服务于社会实践,问题或数学矛盾是数学发展的动力.(2)数学扩充的一般原则是什么?师:数系的扩充不仅仅是增加一种新的数,它还涉及数的运算.因此,数系的扩充还需保留原来的基本运算,用今天的话来讲,就是要向前“兼容”,不能推倒小楼建大楼.具体来讲,就是加、减、乘、除、乘方和开方的运算律应得到继承.比如要满足加法、乘法的交换率和结合律以及乘法对加法的分配律.设计意图:通过梳理数系的学习历程,体会数系扩充的必要性,了解数系扩充前后的联系,为后面学习做好铺垫.(三)问题导引师:数系的扩充是否就此止步不前了呢?如果不是,新的数系又是什么呢?情境六与数学家的对话 16世纪意大利数学家达尔卡诺在他的著作中写到“将10分成两部分,使他们的乘积等于40”,这是不可能的,不过我却用下列方式解决了:10=(5+√−15)+(5−√−15),40=(5+√−15)(5−√−15).师:这样一个似乎简单的问题为什么会有争议呢?这两个表达式有什么问题?又包含了有哪些“合理”的成分,没有让数学家们一巴掌把它拍死?师:的确,虽然16世纪实数理论还没有完善,但任何一个(实)数的平方都是一个非负数,或者负数的开方没有意义的道理是人所共知的.这里√−15是什么?他有什么意义吗?是√−15个苹果还是√−15斤棉花?你卡尔达诺能说清楚吗?不过,另一方面,根据当时还不太严谨的运算法则,这两个式子好像也没什么大的问题(先不管√−15是什么,和为10,积为40也是明显的),至少就数学论数学来说,还马马虎虎有点意思,不能因为看不顺眼就拍死它吧?设计意图:以问题形式吸引学生注意力,承上启下,调动学生的积极性.(四)问题探究提出1637年,法国数学家笛卡尔在他的《几何学》中把这样的数称为“i maginary” .(“想象中的数”,虚数)迷茫“……,它大概是存在和虚妄两界中的两物”.——德国数学家莱布尼茨“……我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么,它们纯属虚幻.”——瑞士数学大师欧拉发展1777年,欧拉在其论文中首次用符号“i ”表示√−1,称为虚数单位.1832年,德国数学家高斯第一次引入复数概念,一个复数可以用a+b i来表示,其中a,b是实数,i代表虚数单位完善1837年哈密顿用有序实数对(a,b)定义了复数及其运算,并说明复数的加、乘运算满足实数的运算律,把实数看成特殊的复数,建立完整的复数系.复数的概念 1.形如a+b i(a,bϵR)的数叫做复数,其中i叫做虚数单位2.全体复数所成的集合叫做复数集,一般用字母C表示3.复数的代数形式:复数通常用字母z表示,即z= a+b i(a,bϵR)其中a 与b分别叫做z的实部与虚部设计意图:通过问题的提出、迷茫、发展和完善过程,让学生感受有实数系扩充到复数系的历程,体会数学家的创新精神和实践能力,让学生参与其中,培养学生解决问题的能力,增强学生解决问题的自信心.练习完成课后练习1设计意图:巩固所学内容,加强对复数概念的认识.(五)自主学习阅读请阅读教材51页完成下面的问题:1.两个复数相等的充要条件是什么?2.复数集C和实数集R之间有什么关系?3.复数集是怎么分类的?设计意图:让学生通过自己去阅读、思考的方式获得知识,培养学生积极参与的意识和自主探索的能力.练习完成课后练习2、3设计意图:及时反馈,学以致用,加强对知识的认识,提高学生的解题能力.(六)例题讲解例:实数m取什么值时,复数z=(m+1)+(m-1)i是(1)实数;(2)虚数;(3)纯虚数.分析:因为m∈R,所以m+1,m-1都是实数.由复数z=a+b i是实数、虚数和纯虚数的条件可以确定m的取值.解:(1)当m-1=0,即m=1时,复数z是实数;(2)当m-1≠0,即m≠1时,复数z是虚数;(3)当m+1=0,且m-1≠0即m=-1时,复数z是纯虚数.设计意图:通过例题,强化复数相等的充要条件,提高分析、解决问题的能力,规范做题步骤.变式练习实数m取什么值时,复数z=(m-1)(m+2)+(m-1)(m-3)i是(1)实数;(2)虚数;(3)纯虚数;(4)0.设计意图:增加题目难度,检验学生学习情况.(七)课堂小结这节课你学到了哪些内容,你有什么收获?学生活动:学生发言交流自己的收获,其他同学补充.设计意图:通过学生总结,教师提炼,培养学生归纳概括的能力,回顾本节课内容,为以后学习打下基础.(八)课后作业1、书面作业:习题3.1A组 1,2.2、课后探究:请你收集一些从实数系扩充到复数系的数学史料,并对“自然数——整数——有理数——实数——复数”的数系扩充过程进行整理.设计意图:巩固本节课所学知识,同时带着新的问题走出课堂,扩大学生的视野,加深对知识的认识,激发学生课外学习数学的兴趣.(九)知识拓展复数的应用师:在本节课我们看到,虚数从提出到完善大约经历了300年的历程,数学也就是在这种曲折、矛盾中不断的向前发展.复数系建立之后,人们又把复数和向量联系起来,并在复数的基础上建立了复变函数理论,成为数学新的一个分支,其在流体力学、机翼理论等方面有着广泛的应用,从我们熟悉的飞机制造,到引以为傲的高铁,再到跨世纪的伟大工程——三峡大坝,复数都起到了重要的作用.可谓虚数不虚,学海无涯!设计意图:拓展了学生的知识面,使学生思想得到升华.教学评析本节课的学习,一方面帮助学生回忆数系扩充的过程,体会虚数引入的必要性和合理性,让学生参与有实数系到复数系的扩充历程;一方面,让学生理解复数的有关概念,掌握复数相等的充要条件,为今后的学习奠定基础.从各个环节上看,本节课主要亮点有:采用名言欣赏的方式进行情景引入,紧扣主题,调动学生的积极性和求知欲。
湖北省巴东一中数学选修1-2教案 3.1复数的概念与扩充
第三章 数系的扩充与复数的引入【课题】:3.1.1 数系的扩充和复数的概念【学情分析】:从小学接触自然数到扩充至整数范围,进入初中阶段后学生认识到数系从整数到有理数再到实数的第二次扩充.因为现实的需要,高中阶段要进一步实现从实数系到复数系的第三次扩充.学生初次接触复数,会产生一种“虚无缥缈”的感觉.所以要有意识地将实数与复数进行类比学习,学会复数问题向实数问题转化的方法.【教学目标】:(1)知识目标:理解复数产生的必然性、合理性;掌握复数的代数表示形式;掌握复数系下的数的分类. (2)过程与方法目标:从为了解决012=+x 这样的方程在实数系中无解的问题出发,设想引入一个新数i,使i 是方程012=+x 的根.到将i 添加到实数集中去,使新引入的数i 和实数之间能象实数系那样进行加、乘运算;掌握类比的方法,转化的方法。
(3)情感与能力目标:通过介绍数系扩充的简要进程,使同学们感受人类理性思维对数学的发展所起的重要作用,体会数与现实世界的联系。
【教学重点】:复数的概念及其分类。
【教学难点】:虚数单位i 的引入。
【教学突破点】:从解012=+x 方程的需要,引入虚数单位i.及虚数单位i 与实数的融合。
【教法、学法设计】:讲授、练习相结合。
【课前准备】:课件【教学过程设计】:;0)32()43)(2(;217)5()23)(1(=++--=-++i y x i i y x y x .0,,3,2222,55i i i --+-A 组1.写出下列复数的实部与虚部:2.求适合下列各方程的实数:的值和y x,)43(434.322i n n m m n z -++---=已知复数.,,)2(;,,)1(是实数取什么整数值时是纯虚数取什么整数值时z n m z n mB 组1.,,,,().,...()C R M P A PR C B MR CC P MD MR Cφ⊂≠===对于复数集实数集虚数集纯虚数集下列关系正确的是1122222.23(log )log 2,___________.z x x x x i x ⎡⎤=--+--⎣⎦使复数是虚部为正数的非纯虚数则实数的取值范围是参考答案:A 组.1.五个复数的实部与虚部依次为:.0,0;1,0;0,3;22,22;5,5--- 2..23,34)2(;7,1).1(-====y x y x 3.;4,1,,4).1(≠-≠∈=m m Z m n;4,1,,14).1(≠-≠∈=-=m m Z m n n 或 B 组. 1.A; 2.B; 3.),3()3,2()41,0(+∞ .。
高二数学,人教A版选修1-2, 3.1.1, 数系的扩充,和复数的概念课件
[解析]
时
m=5或m=-3 即 m≠-3
,
∴当 m=5 时,z 是实数.
2 m -2m-15≠0 (2)当 m+3≠0
时,
m≠5且m≠-3 即 m≠-3
∴当 m≠5 且 m≠-3 时,z 是虚数.
第三章
数系的扩充与复数的引入
m2-m-6=0 (3)当m+3≠0 m2-2m-15≠0 m=3或m=-2 即m≠-3 m≠5且m≠-3
是很必要的.
②对于复数z=a+bi (a,b∈R),既要从整体的角度 去认识它,把复数z看成一个整体,又要从实部与虚部的角 度分解成两部分去认识它.这是解复数问题的重要思路之 一.
第三章
数系的扩充与复数的引入
[例3] 已知2x-1+(y+1)i=x-y+(-x-y)i, 求实数x,y的值. [解析] 因为 x,y 为实数,
第三章
数系的扩充与复数的引入
1.复数的概念及代数表示
(1)定义:形如a+bi(a,b∈R)的数叫做复数,其中i叫 做虚数单位,满足i2= -1 . (2)表示:复数通常用字母z表示,即z=a+bi(a,b∈R), 这一表示形式叫做复数的代数形式,a与b分别叫做复数z的 虚部 实部 与 .
第三章
数系的扩充与复数的引入
所以 2x-1,y+1,x-y,-x-y 均为实数.
2x-1=x-y, 由复数相等的充要条件,知 y+1=-x-y, x=3, 所以 y=-2.
第三章
数系的扩充与复数的引入
[点评] 找到两复数的实部与虚部后,根据复数相等
的充要条件,实部与虚部分别相等即可求得x,y的值.
[例1] 下列命题中,正确命题的个数是 ②若a,b∈R且a>b,则a+i>b+i;
高二数学 选修1-2教案:3.1.2复数的几何意义
第三章数系的扩充与复数的引入【课题】:3.1.2 复数的几何意义
六、作业
1、在复平面内,复数
2)31(1i i
i
+++对应的点位于 ( B ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2、复数,111-++-=
i
i
z 在复平面内,z 所对应的点在 ( B ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3、 在复平面内指出与复数i z i z i z i z +-=-=+=
+=2,23,32,214321
对应的点4321,,,Z Z Z Z .试判断这四个点是否在同一个圆上?并证明你的结论. 解:因为
︱1z ︱=52122=
+,︱2z ︱=5,︱3z ︱=5,︱4z ︱=5,
所以,4321,,,Z Z Z Z 这四个点都在以圆点为圆心,半径为5的圆上. 4、如果P 是复平面内表示表示复数a +bi (a ,b ∈R )的点,分别指出在下列条件下点P 的位置:
(!)a >0,b>0; (2) a <0,b>o; (3)a =0,b ≤0; (4)b<0.
解:(1)第一象限 (2)第二象限 (3)位于原点或虚轴的下半轴上 (4)位于实轴下方
5、如果复数z 的实部为正数,虚部为3,那么在复平面内,复数z 对应的点应位于怎样的图形上?
解:平面直角坐标系中以(0,3)为端点的一条射线,但不包括端点(0,3) 6、已知复数z 的虚部为3,在复平面内复数z 对应的向量的模为2,求该复数z . 解:由已知,设)(3R a i a z ∈+=
则.432
2=+
a 解得 ±=a 1.
所以 .31i z +±=。
湖北省巴东一中高中数学第三章数系的扩充与复数的引入教材分析教案新人教版选修1_2
《第三章数系的扩充与复数的引入》教材分析数系的扩充与复数的引入是选修1-2与选修2-2的内容,是高中生的共同数学基础之一.数系的扩充过程体现了数学的发现和创造过程,同时了数学产生、发展的客观需求,复数的引入襀了中学阶段数系的又一次扩充.《课标》将复数作为数系扩充的结果引入,体现了实际需求与数学内部的矛盾在数系扩充过程中的作用,以及数系扩充过程中数系结构与运算性质的变化.这部分内容的学习,有助于学生体会理论产生与发展的过程,认识到数学产生和发展既有来自外部的动力,也有来自数学内部的动力,从而形成正确的数学观;有助于发展学生的全新意识和创新能力.复数的内容是高中数学课程中的传统内容.对于复数,《课标》要求在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用,感受人类理性思维的作用以数与现实世界的联系;理解复数的基本概念以及复数相等的充要条件;了解复数的代数表示法及其几何意义;能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义.本章内容分为2节,教学时间约4课时.第一节数系的扩充和复数的概念本节的主要教学内容是数系的扩充和复数的概念、复数的几何意义(几何表示和向量表示).●教学目标(1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系.(2)理解复数的基本概念以及复数相等的充要条件.(3)了解复数的代数表示法及其几何意义.●教学重点(1)数系的扩充过程.(2)复数的概念、复数的分类和复数相等的充要条件.(3)复数的几何意义.●教学难点(1)虚数单位i的引进.(2)复数的几何意义.●教学时数本节教学,建议用2课时.第1课时处理数系的扩充和复数的概念;第2课时研究复数的几何意义.●课标对本节内容的处理特点数系的扩充和复数的概念,《课标》与《大纲》教学内容相同,但在处理方式和目标定位上存在差异:(1)《课标》将复数作为数系扩充的结果引入.《大纲》教科书先安排复数的概念,再研究复数的运算,最后介绍数系的扩充.《课标》实验教科书在介绍数系扩充的思想方法的基础上引入复数的概念,力求还原复数的发现与建构过程.(2)《课标》强调在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系.从这上点上看,《课标》要求提高了.(3)在复数的代数表示法及其几何意义上,《课标》的教学定位是“了解”,而《大纲》要求“掌握”.从这上点上看,《课标》要求降低了.●教学建议1.关于“数系的扩充的复数的概念”的教学建议(1)课题的引入.教学时,可从方程在给定范围内是否有解提出问题:x+=有解吗?①在自然数集N中,方程10x=有解吗?②在整数集Z中,方程21一一对应 ③ 在有理数集Q 中,方程2x =2有解吗?④ 在实数集R 中,方程.有解吗?(2)回顾从自然数集N 扩充到实数集R 的过程.帮助学生认识数系扩充的主要原因和共同特征.可让学生思考如下问题:① 从自然数集N 扩充到实数集R 经历了几次扩充?② 每一次扩充的主要原因是什么?③ 每一次扩充的共同特征是什么?然后师生共同归纳总结:扩充原因:① 满足实际问题解决的需要;② 满足数学自身完善和发展的需要.扩充特征:① 引入新的数;② 原数集中的运算规则在新数集中得到保留和扩展.(3)提出新的问题:如何对实数集进行扩充,使方程210x +=在新的数集中的解?(4)引入虚数单位i .(5)学习复数的概念.(6)规定复数相等的意义.(7)研究复数的分类.(8)告诉学生“两个复数只能说相等或不相等,不能比较大小”的理由:① ,a bi c di a c b d +=+⇔==;在,a c b d ==两式中,只要有一个不成立,则a bi c di +≠+.② 如果两个复数都是实数,则可以比较大小;否则,不能比较大小.③ “不能比较大小”的确切含义是指:不论怎样定义两个复数之间的一个关系“<”,都不能使这种关系同时满足实数集中大小关系的四条性质:对于任意实数a ,b 来说,a b <,a b =,b a <这种情况有且只有一种成立;如果,a b b c <<,那么a c <;如果a b <,那么a c b c +<+;如果,0a b c <<,那么ac bc <.2.关于“复数的几何意义”的教学建议(1)帮助学生认识复数的几何表示.复数的几何表示就是指用复平面内的点Z (,a b )来表示复数z a bi =+.① 明确“复平面”的概念.② 建立复数集C 和复平面内所有的点所成的集合之间的一一对应关系,即复数z a bi =+ 复平面内的点Z (,a b ).(2)帮助学生认识复数的向量表示.复数的向量表示就是指用复平面内的向量OZ 来表示复数z a bi =+.① 认识复平面内的点Z (,a b )与向量OZ 的一一对应关系.② 在相互联系中把握复数的向量表示:复数z a bi =+一一对应 一一对应 一一对应点Z (,a b ) 向量OZ(3)用数形结合的思想方法,强化对复数几何意义的认识.在复平面内,实数与实轴上的点一一对应,纯虚数与虚轴上的点(原点除外)一一对应,非纯虚数的虚数与象限内的点一一对应.可通过一组练习题来强化这一认识.第二节 复数代数形式的四则运算本节的主要教学内容是复数代数形式的加减运算及其几何意义,复数代数形式的乘除运算.●教学目标(1)掌握复数代数形式的加减运算法则.(2)了解复数代数形式的加减运算的几何意义.(3)理解复数代数形式的乘除运算法则.(4)体验复数问题实数化的思想方法.●教学重点(1)复数代数形式的加减运算及其几何意义.(2)复数代数形式的乘除运算.(3)复数问题实数化的思想方法复数的理解与运用.●教学难点(1)复数代数形式的加减运算的规定.(2)复数代数形式的加减运算的几何意义的理解.(3)复数代数形式的乘除运算法则的运用.●教学时数本节教学,建议用2课时.第1课时处理复数代数形式的加减运算及其几何意义;第2课时研究复数代数形式的乘除运算.●课标对本节内容的处理特点复数代数形式的四则运算,《课标》与《大纲》教学内容与要求基本相同,但在目标定位上存在差异:(1)《课标》要求了解复数代数形式的加减运算的几何意义,对复数的向量表示提出了要求,强化了数形结合思想方法;(2)《课标》明确强调“淡化烦琐的计算和技巧性训练,突出了复数问题实数化的思想方法. ●教学建议1.复数代数形式的加法和乘法的运算法则是一种规定,要让学生理解其合理性.这种合理性应从数系扩充的角度来理解:这种规定与实数加法、乘法的法则是一致的,而且实数加法、乘法的有关运算律在这里仍然成立.2.复数的减法、除法分别规定为复数的加法和乘法的逆运算,要让学生按照这种规定自主得出复数减法和除法的运算法则.3.复数代数形式的四则运算可以类比代数运算中的“合并同类项”“分母有理化”,利用21i =-,将它们归结为实数的四则运算.在具体运算情境中,引入共轭复的概念,明确公式22()()a bi a bi a b +-=+是复数除法中“分母实数化”的基础,不必让学生专门计忆复数除法法则.从而让学生体验复数问题实数化的思想方法.4.要引领学生从平面向量的加法、减法的平行四边形或三角形法则来认识并理解复数代数形式的加减运算的几何意义.。
高二数学 选修1-2教案:3.1.1复数的概念与扩充
探究活动:
练习2:
①试问 取何值时,复数 是实数?是虚数?是纯虚数?
②解方程
参考答案:①
②
通过多角度的练习,并对典型错误进行讨论与矫正,使学生巩固所学内容,同时完成对新知的迁移。
六、概括梳理,形成系统
(小结)
采取师生互动的形式完成。
即:学生谈本节课的收获,教师适当的补充、概括,以本节知识目标的要求进行把关,确保基础知识的当堂落实。
从解方程的实际出发,使学生对数系的扩充有一个更深刻的认识。
二、讲授新课
(1)复数的概念
1.复数的概念:
①形如 的数叫复数。其中i叫虚数单位。全体复数所成集合叫复数集。
②复数通常用字母 表示。即z= 。其中 与 分别叫做复数z的实部与虚部。
③ 与 相等的条件是 且
(2)复数的分类
2.复数的分类:
三、运用新知,
第三章数系的扩充与复数的引入
【课题】:3.1.1数系的扩充和复数的概念
【教学过程设计】:
教学环节
教学活动
设计意图
一、复习引入
1.方程 在有理数系没有解,但当把数的范围扩充到实数系后,这个二次方程恰好有两个解: ;
2.同学们在解一元二次方程 的时候,ቤተ መጻሕፍቲ ባይዱ遇到判别式 的情况。这时在实数范围内方程无解。一个自然的想法是能否把实数系扩大,使这种情况下的方程在更大的数系内有解?
体验成功
练习1:
1.说出下列各数中,哪些是实数,哪些是虚数,哪些是复数:
2.写出下列各复数的实部和虚部:
3.求适合下列方程的 和 的值:
答案:①实数有: 虚数有: ;复数有:全部.
②实部及虚部依次为:
③
及时运用新知识,巩固练习,让学生体验成功,为了使学生实现从掌握知识到运用知识的转化,使知识教育与能力培养结合起来,设计分层练习
3.1.1 数系的扩充和复数的概念教案2020-2021学年高二数学人教A版选修1-2第三章
数系的扩充和复数的概念教学设计教学过程创设情景、提出问题(导学)1.提出问题几岁开始学习数学?最早学习的数学知识是什么?认数字(自然数)2.回顾数系的扩充自然数→整数→有理数→实数2.方程21x=-在实数集中无解,那怎么解决呢?引入新数由于生产生活的需要和数学本身的矛盾,只有自然数显然不够,因此数系在不断扩充播放视频,(负数的产生,分数的产生,无理数的产生)通过数系的扩充,让学生感受数系的发展与生活是密切相关的。
通过引入虚数i,让学生感受到数学精神的博大和学习虚数的必要性。
自主探究,形成概念(读学,群学)引入虚数单位i,满足:(1)1i2=-;(2)实数可以与i进行四则运算。
1、基本概念(1)复数定义:形如a bi+的数叫做复数,通常用小写字母z,记为z a bi=+(复数的代数形式),其中i叫虚数单位,a叫做复数的实部,b叫做复数的虚部,其中Rba∈,。
数集{}RbabiazzC∈+==,,|叫做复数集。
探究:由上题可以看出,复数可以表示实数,也可以表示虚数。
当实数,a b取何值时,它为实数?虚数?当b=0时,z为实数;当b≠0时,z为虚数;学习了复数的定义后,体会复数可以表示为实数、虚数,为下一步复数的分类奠定基础。
学生总结:CR≠⊂由学生回答,体现思维总结过程。
当b ≠0,a =0时,称z 为纯虚数;完成下列表格(分类一栏填实数、虚数或纯虚数) 2-3i 6i2i实部虚部 分类2、复数的相等如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.记作:a bi c di a c +=+⇔=且b=d 。
R d c b a ∈,,, 特别的:0,00==⇔=+b a bi a注意:两个复数不全是实数时,不能比较大小,但两个复数都是实数时,可以比较大小.典例剖析,注重思维 (群学,练学)例1 实数m 分别取什么值时,复数z =m+1+(m -1)i是(1)实数?(2)虚数?(3)纯虚数?例2 已知(x+y )+(x-2y )i=(2x-5)+(3x+y )i ,求实数x,y 的值.引导学生根据实数、虚数、纯虚数的定义去分析讨论说明:这类问题仍要分清复数的实部和虚部,从而利用复数相等的定义解得参数的值。
高中数学教案 选修1-2教案 第三章 数系的扩充与复数的引入 3.1.1数系的扩充与复数的概念
3.1.1 数系的扩充与复数的概念教学要求: 理解数系的扩充是与生活密切相关的,明白复数及其相关概念。
教学重点:复数及其相关概念,能区分虚数与纯虚数,明白各数系的关系。
教学难点:复数及其相关概念的理解教学过程:一、复习准备:1. 提问:N 、Z 、Q 、R 分别代表什么?它们的如何发展得来的?(让学生感受数系的发展与生活是密切相关的)2.判断下列方程在实数集中的解的个数(引导学生回顾根的个数与∆的关系):(1)2340x x --= (2)2450x x ++= (3)2210x x ++= (4)210x +=3. 人类总是想使自己遇到的一切都能有合理的解释,不想得到“无解”的答案。
讨论:若给方程210x +=一个解i ,则这个解i 要满足什么条件?i 是否在实数集中?实数a 与i 相乘、相加的结果应如何?二、讲授新课:1. 教学复数的概念:①定义复数:形如a bi +的数叫做复数,通常记为z a bi =+(复数的代数形式),其中i 叫虚数单位,a 叫实部,b 叫虚部,数集{}|,C a bi a b R =+∈叫做复数集。
出示例1:下列数是否是复数,试找出它们各自的实部和虚部。
23,84,83,6,,29,7,0i i i i i i +-+--规定:a bi c di a c +=+⇔=且b=d ,强调:两复数不能比较大小,只有等与不等。
②讨论:复数的代数形式中规定,a b R ∈,,a b 取何值时,它为实数?数集与实数集有何关系?③定义虚数:,(0)a bi b +≠叫做虚数,,(0)bi b ≠叫做纯虚数。
④ 数集的关系:0,0)0)0,0)Z a a ⎧⎪≠≠⎧⎨≠⎨⎪≠=⎩⎩实数 (b=0)复数一般虚数(b 虚数 (b 纯虚数(b 上述例1中,根据定义判断哪些是实数、虚数、纯虚数?2.出示例题2:(引导学生根据实数、虚数、纯虚数的定义去分析讨论)练习:已知复数a bi +与3(4)k i +-相等,且a bi +的实部、虚部分别是方程2430x x --=的两根,试求:,,a b k 的值。
湖北省巴东一中高二数学教案选修1-23.2.2复数的乘法和除法
§3.2.2 复数的乘法和除法【学情分析】:学生在建立了复数的概念以后,很重要的一个问题就是建立复数集里的各种运算.由于实数是复数的一部分,在建立复数运算是,应当遵循的一个原则是作为复数的实数,在复数集里运算时和在实数集里的运算应当是一致的.在学习了复数的加减法之后,学生对复数的乘除法以及其与实数乘除法的区别的好奇心自然也呼之欲出。
.【教学目标】:(1)知识目标:能进行复数代数形式的乘除运算. (2)过程与方法目标:从实数的乘除运算及其运算律出发,对比引出复数的的乘除法定义及其运算律,通过2||z z z ⋅=实现实数与虚数的转化,培养学生转化的思想。
(3)情感与能力目标:通过复数的乘除法的学习,体会实虚数的矛盾和统一,加深对数学的情感认识。
【教学重点】:i 的运算和分母实数化。
【教学难点】:复数除法中的分母实数化。
【课前准备】:powerpoint 课件==2(ac1.若复数z 满足方程02=+z ,则=z ( )A.22±B. 22-C. i 22-D. i 22± 解:D2.复数10(1)16(1)i i +-等于( )A .1i +B 。
1i --C 。
1i -D 。
1i -+解:D3.i 是虚数单位,=+ii1( ) A .i 2121+ B .i 2121+- C .i 2121- D .i 2121--解:A 4.已知220031z z z z =++++求的值。
解:220031z z z++++=20041(1)1z z--,又3200436681,()1z z z z =∴=∴==,所以原式=0。
5222004()1i +解:1i -。
6.已知,(0),()1a i z a w z z i i -=>=+-复数的虚部减去它的实部所得的差等于32,求复数w 的模解:21(1)1,()222a a i a a az w z z i i ++-++=∴=+=+,2213,4,2222a a a a a ++-=∴==±,0,2,||a a w >∴=∴==。
高二数学 《3.1数系的扩充和复数的概念(一)》教案 文 新人教A版选修1-2
高中数学《3.1数系的扩充和复数的概念(一)》教案教学过程1.复数的概念我们把集合C ={a +b i|a ,b ∈R}中的数,形如a +b i(a ,b ∈R)的数叫做复数,其中i 叫做虚数单位.全体复数所成的集合C 叫做复数集.复数通常用字母z 表示,即z =a +b i(a ,b ∈R),这一表示形式叫做复数的代数形式.对于复数z =a +b i ,以后不作特殊说明,都有a ,b ∈R ,其中的a 与b 分别叫做复数的实部与虚部.2.复数相等在复数集C ={a +b i|a ,b ∈R}中任取两个数a +b i ,c +d i (a ,b ,c ,d ∈R),我们规定: a +b i 与c +d i 相等的充要条件是a =c 且b =d .3.复数的分类对于复数a +b i (a ,b ∈R)● 当且仅当b =0时,它是实数a ;● 当且仅当a =b =0时,它是实数0;● 当b ≠0时,叫做虚数;● 当a =0且b ≠0时,叫做纯虚数.复数z =a +b i 可以分类如下:复数集、实数集、虚数集、纯虚数集之间的关系,可以用下图表示:课堂练习 1. 说出下列复数的实部和虚部:0 , ,3 ,22 ,2 , 312i i i i -++-2. 指出下列各数中,哪些是实数,哪些是虚数,哪些是纯虚数,为什么?i 22 ),3i(1i,293 8,i 5 ,i ,i ,0 ,i 72 ,.6180 , 722---++ 例1. 实数m 取什么值时,复数z =m +1+(m -1)i 是(1)实数?(2)虚数?(3)纯虚数?练习1. 如果(x +y )+(y -1)i =(2x +3y )+(2y +1)i ,求实数x ,y 的值.复数z 实数(b =0),虚数(b ≠0),(当a =0时为纯虚数).复数集虚数集实数集纯虚数集2. 下列说法正确的是( C )A. 形如b i(b ∈R)的数叫做纯虚数B. 若复数x +y i 是实数,则x =0,y =0C. 若两个复数的实部的差和虚部的差等于0,那么这两个复数相等D. 复数3+i 大于复数2+i)()31( 1 58 72 .32C i i i 中,虚数的个数是,,,,在-+++A.1B.2C.3D.44. 若(x 2-1)+(x 2+3x +2)i 是实数,则实数x 的值是( D )A. 1B. -1C. ±1D.-1或-25. 若复数(a 2-a -2)+(|a -1|-1)i(a ∈R)不是纯虚数,则有( )A. a =-1B. a ≠1且a ≠2C. a ≠2D. a ≠-16. 若复数z =sin2α-i (1-cos2α)是纯虚数,则α =)(,2Z k k ∈+ππ.7. 适合方程(3x +2y )+(5x -y )i =17-2i 的实数x 与y 的值分别为7,1==y x .8. 若方程x 2+(m +2i)x +2+m i =0至少有一个实根,求实数m 的值.。
高中数学人教版选修1-2教学课件3.1.1 数系的扩充和复数的概念 探究导学课型精选ppt课件
2.(变换条件)若将题(2)中的方程改为3x2- m x-1=(10-x-2x2)i,
如何求解?
2
【解析】设方程实根为x0,则原方程可变为 =(10-x0- )i,由复数相等定义,得:
3x
2 0
-1
m 2 x0
2
x
2 0
因当130x此m02=,x0m -2当x2m时0x02=,110原1, 0, 时方解,程得原的m x方实0程根121, 的为或实x=m x根0-为.x75251=, , 2;
1.虚数单位i的意义:i2=___. -1
2.复数的代数形式:________________. z=a+bi(a,b∈R)
3.复数的实部与虚部:__与__分别叫做复数z的实部与虚部. 4.复数z=a+bi(a,b∈R)a为实b数的条件是____; 复数z=a+bi(a,b∈R)为虚数的条件是___b_=_0;
【解析】由已知得 m2 7m解10得m0,=-2.
答案:-2
m2 5m14 0,
2.已知x+y-xyi=24i-5,其中x,y∈R,求x,y的值.
【解析】因为x,y∈R,所以x+y∈R,xy∈R,
依题意得 x y 5,
xy
2 4,
解得xy3, 8或xy3.8,
主题二:复数的相等和分类 【自主认知】 1.a+bi=0的充要条件是什么? 提示:a=b=0. 2.虚数集与纯虚数集之间的关系如何? 提示:纯虚数集是虚数集的真子集.
3.复数集、实数集、虚数集、纯虚数集之间的关系用韦恩图怎样表示? 提示:
➡根据以上探究过程,总结出复数相等的充要条件以及复数的分类. 1.复数相等的充要条件 设a,b,c,d都是实数,那么a+bi=c+di⇔_________.
人教版高中选修1—2数学3.1数系的扩充和复数的概念教案(4)
3.1.1数系的扩充和复数的概念教学目标:1、了解数的发展史,理解实数系扩充复数系的必要性;2.在问题的情境中让学生了解把实数系扩充到复数系的过程,体会实际需求与数学内部的矛盾在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联;3、初步理解复数、虚数、纯虚数等概念,掌握复数的代数形式与复数相等的充要条件.教学重点:对引入复数的必要性的认识,理解复数的基本概念.教学难点:由于学生对数系扩充的知识不熟悉,对了解实数系扩充到复数系的过程有困难,由于理解复数是一对有序实数不习惯,对于复数概念理解也有一定困难.教学过程:(一)、情境引入:(二)、知识引入:我们已知知道:对于一元二次方程x2+1=0没有实数根.如何解决“在实数范围中开方运算不能实施的矛盾”?引入一个新数:i使得i2=-1引出课题:3.1.1数系的扩充和复数的概念数系的扩充:自然数、整数、有理数、实数、复数复习回顾用图形表示包含关系1、现在我们就引入这样一个数i ,把i叫做虚数单位,并且规定:(1)i2=-1;(2)实数可以与i 进行四则运算,在进行四则运算时,原有的加法与乘法的运算律(包括交换律、结合律和分配律)仍然成立。
2、形如a +bi (a,b ∈R)的数叫做复数.全体复数所形成的集合叫做复数集,一般用字母C 表示 .3、复数的代数形式:通常用字母 z 表示,即z=a+bi a,b 都属于R 其中a 为实部,b 为虚部;i 为虚数单位。
5、讨论:复数集C 和实数集R 之间有什么关系?复数a+bi思考:复数集,虚数集,实数集,纯虚数集之间的关系?(三)、练习巩固1.说明下列数中,那些是实数,哪些是虚数,哪些是纯虚数,并指出复数的实部与虚部。
()i i i i i 293,85,31,,72,0,618.0,722-+-+ 2、判断下列命题是否正确:(1)若a 、b 为实数,则Z=a+bi 为虚数(2)若b 为实数,则Z=bi 必为纯虚数(3)若a 为实数,则Z= a 一定不是虚数3.条例下列条件的复数一定存在吗?若存在,请举例,若不存在,请说明理由.(1)实部为-2的虚数;(2)虚部为-2的虚数;(3)虚部为-2的纯虚数.例1 实数m 取什么值时,复数Z=m+1+(m-1)i 是(1)实数? (2)虚数? (3)纯虚数?练习:实数m 取什么值时,复数是 (1)实数 (2)虚数 (3)纯虚数我们知道若a+bi=0,则a=0.b=05、思考:如何定义两个复数的相等?如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.注意:一般对两个复数只能说相等或不相等;不能比较大小。
人教版高中选修1—2数学3.1数系的扩充和复数的概念教案(2)
板书设计:
[教学反馈]
学生对于如何进行数系的扩充有了一定的认识,大体理解复数的分类,复数相等的充要
条件,课本作业的完成情况较好,但部分同学对于逻辑连结词“或”、“且”的理解不到位,
一是不知该使用或还是且,二是或与且的连结不知如何得到结果。
【教学反思】
这节课我们学习了虚数单位i及它的两条性质,复数的定义、实部、虚部及有关分类问题,复数相等的充要条件,复平面等等.基本思想是:利用复数的概念,联系以前学过的实数的性质,对复数的知识有较完整的认识,以及利用转化的思想将复数问题转化为实数问题复数的概念如果单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,我们采用讲解或体验已学过的数集的扩充的历史,让学生体会到数集的扩充是生产实践的需要,也是数学学科自身发展的需要;介绍数的概念的发展过程,使学生对数的形成、发展的历史和规律,各种数集中之间的关系有着比较清晰、完整的认识.从而让学生积极主动地建构虚数的概念、复数的概念、复数的分类。
高中数学选修1-2学案:3.1.1 数系的扩充和复数的概念
3.1.1 数系的扩充和复数的概念[学习目标] 1.了解引进复数的必要性,理解并掌握虚数单位i.2.理解复数的基本概念及复数相等的充要条件.知识点一复数的引入在实数范围内,方程x2+1=0无解.为了解决x2+1=0这样的方程在实数系中无解的问题,我们设想引入一个新数i,使i是方程x2+1=0的根,即使i·i=-1.把这个新数i添加到实数集中去,得到一个新数集.把实数a与实数b和i相乘的结果相加,结果记作a+b i(a,b∈R),这些数都应在新数集中.再注意到实数a和数i,也可以看作是a+b i(a,b∈R)这样的数的特殊形式,所以实数系经过扩充后得到的新数集应该是C={a+b i|a,b∈R},称i为____________.思考(1)分别在有理数集、实数集、复数集中分解因式x4-25.(2)虚数单位i有哪些性质?知识点二复数的概念、分类1.复数的有关概念(1)复数的概念:形如a+b i的数叫做复数,其中a,b∈R,i叫做__________.a叫做复数的________,b叫做复数的______.(2)复数的表示方法:复数通常用字母________表示,即________.(3)复数集定义:__________所构成的集合叫做复数集.通常用大写字母C表示.2.复数的分类及包含关系(1)复数(a +b i ,a ,b ∈R )⎩⎨⎧实数(b =0)虚数(b ≠0)⎩⎪⎨⎪⎧ 纯虚数(a =0)非纯虚数(a ≠0)(2)集合表示:思考 (1)两个复数一定能比较大小吗?(2)复数a +b i 的实部是a ,虚部是b 吗?知识点三 复数相等复数相等的充要条件设a ,b ,c ,d 都是实数,那么a +b i =c +d i ⇔________.即它们的实部与虚部分别对应相等. 思考 (1)若复数z =a +b i(a ,b ∈R ).z =0,则a +b 的值为多少?(2)若复数z 1,z 2为z 1=3+a i(a ∈R ),z 2=b +i(b ∈R ),且z 1=z 2,则a +b 的值为多少?题型一 复数的概念例1 写出下列复数的实部和虚部,并判断它们是实数,虚数,还是纯虚数.①2+3i ;②-3+12i ;③2+i ;④π;⑤-3i ;⑥0.反思与感悟 复数a +b i(a ,b ∈R )中,实数a 和b 分别叫做复数的实部和虚部.特别注意,b 为复数的虚部而不是虚部的系数,b 连同它的符号叫做复数的虚部.跟踪训练1 下列命题中,正确命题的个数是( )①若x ,y ∈C ,则x +y i =1+i 的充要条件是x =y =1;②若a ,b ∈R 且a >b ,则a +i >b +i ;③若x 2+y 2=0,则x =y =0.A.0B.1C.2D.3题型二 复数的分类例2 设z =log 12(m -1)+ilog 2(5-m )(m ∈R ).(1)若z 是虚数,求m 的取值范围;(2)若z 是纯虚数,求m 的值.反思与感悟 将复数化成代数形式z =a +b i(a ,b ∈R ),根据复数的分类:当b =0时,z 为实数;当b ≠0时,z 为虚数;特别地,当b ≠0,a =0时,z 为纯虚数,由此解决有关复数分类的参数求解问题.跟踪训练2 实数k 为何值时,复数z =(1+i)k 2-(3+5i)k -2(2+3i)分别是(1)实数;(2)虚数;(3)纯虚数;(4)零.题型三 两个复数相等例3 (1)已知x 2-y 2+2xy i =2i ,求实数x ,y 的值.(2)关于x 的方程3x 2-a 2x -1=(10-x -2x 2)i 有实根,求实数a 的值.反思与感悟两个复数相等,首先要分清两复数的实部与虚部,然后利用两个复数相等的充要条件可得到两个方程,从而可以确定两个独立参数.跟踪训练3已知复数z=3x-1-x+(x2-4x+3)i>0,求实数x的值.1.若集合A={i,i2,i3,i4}(i是虚数单位),B={1,-1},则A∩B等于()A.{-1}B.{1}C.{1,-1}D.∅2.已知复数z=a2-(2-b)i的实部和虚部分别是2和3,则实数a,b的值分别是()A.2,1B.2,5C.±2,5D.±2,13.下列复数中,满足方程x2+2=0的是()A.±1B.±iC.±2iD.±2i4.已知M={2,m2-2m+(m2+m-2)i},N={-1,2,4i},若M∪N=N,则实数m的值为________.5.设i为虚数单位,若关于x的方程x2-(2+i)x+1+m i=0(m∈R)有一实根为n,则m=________.1.复数的代数形式z=a+b i(a,b∈R)是解决问题的基础,明确其实部、虚部.2.根据复数为实数、虚数、纯虚数,复数相等的充要条件,可将问题实数化.[答案]精析知识梳理知识点一虚数单位思考 (1)在有理数集中:x 4-25=(x 2+5)(x 2-5).在实数集中:x 4-25=(x 2+5)(x 2-5)=(x 2+5)(x +5)(x -5).在复数集中:x 4-25=(x 2+5)(x 2-5)=(x 2+5)(x +5)(x -5)=(x +5i)(x -5i)(x +5)(x -5).(2)虚数单位i 有如下几个性质:①i 的平方等于-1,即i 2=-1;②实数与i 可进行四则运算,并且原有的加法、乘法运算律仍然成立;③i 的乘方:i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i(n ∈N *).知识点二1.(1)虚数单位 实部 虚部(2)z z =a +b i (3)全体复数思考 (1)不一定,只有当这两个复数是实数时,才能比较大小.(2)不一定,对于复数z =a +b i(a ,b ∈R ),实部才是a ,虚部才是b .知识点三a =c 且b =d思考 (1)0;(2)4.题型探究例1 解 ①的实部为2,虚部为3,是虚数;②的实部为-3,虚部为12,是虚数;③的实部为2,虚部为1,是虚数;④的实部为π,虚部为0,是实数;⑤的实部为0,虚部为-3,是纯虚数;⑥的实部为0,虚部为0,是实数.跟踪训练1 A [①由于x ,y ∈C ,所以x +y i 不一定是复数的代数形式,不符合复数相等的充要条件,所以①是假命题.②由于两个虚数不能比较大小,所以②是假命题.③当x =1,y =i 时,x 2+y 2=0成立,所以③是假命题.故选A.]例2 解 (1)因为z 是虚数,故其虚部log 2(5-m )≠0,m 应满足的条件是⎩⎪⎨⎪⎧ m -1>0,5-m >0,5-m ≠1,解得1<m <5,且m ≠4.(2)因为z 是纯虚数,故其实部log 12(m -1)=0,虚部log 2(5-m )≠0, m 应满足的条件是⎩⎪⎨⎪⎧ m -1=1,5-m >0,5-m ≠1,解得m =2.跟踪训练2 解 由z =(1+i)k 2-(3+5i)k -2(2+3i)=(k 2-3k -4)+(k 2-5k -6)i.(1)当k 2-5k -6=0时,z ∈R ,即k =6或k =-1.(2)当k 2-5k -6≠0时,z 是虚数,即k ≠6且k ≠-1.(3)当⎩⎪⎨⎪⎧ k 2-3k -4=0,k 2-5k -6≠0时,z 是纯虚数,解得k =4. (4)当⎩⎪⎨⎪⎧k 2-3k -4=0,k 2-5k -6=0时,z =0,解得k =-1. 例3 解 (1)∵x 2-y 2+2xy i =2i ,∴⎩⎪⎨⎪⎧ x 2-y 2=0,2xy =2,解得⎩⎪⎨⎪⎧ x =1,y =1,或⎩⎪⎨⎪⎧x =-1,y =-1. (2)设方程的实数根为x =m ,则原方程可变为3m 2-a 2m -1=(10-m -2m 2)i , ∴⎩⎪⎨⎪⎧ 3m 2-a 2m -1=0,10-m -2m 2=0,解得a =11或a =-715. 跟踪训练3 解 ∵z >0,∴z ∈R ,∴x 2-4x +3=0,解得x =1或x =3. ∵z >0,∴3x -1-x >0,且x 2-4x +3=0.对于不等式3x -1-x >0,x =1满足,x =3不满足,故x =1. 当堂检测1.C [因为i 2=-1,i 3=-i ,i 4=1,所以A ={i ,-1,-i,1},又B ={1,-1},故A ∩B ={1,-1}.]2.C [令⎩⎪⎨⎪⎧a 2=2,-2+b =3,得a =±2,b =5.] 3.C4.1或2[解析] ∵M ∪N =N ,∴M ⊆N , ∴m 2-2m +(m 2+m -2)i =-1或m 2-2m +(m 2+m -2)i =4i. 由复数相等的充要条件,得⎩⎪⎨⎪⎧ m 2-2m =-1,m 2+m -2=0或⎩⎪⎨⎪⎧m 2-2m =0,m 2+m -2=4, 解得m =1或m =2.故实数m 的值是1或2.5.1[解析] 关于x 的方程x 2-(2+i)x +1+m i =0(m ∈R )有一实根为n ,可得n 2-(2+i)n +1+m i =0.所以⎩⎪⎨⎪⎧n 2-2n +1=0,m -n =0. 所以m =n =1.。
人教版高中选修1—2数学3.1数系的扩充和复数的概念教案(7)
§3.1.2 复数的几何意义一、教学目标:1、知识与技能:(1) 理解复数能用点表示的道理,并能准确用点来表示任何一个复数。
(2) 理解复平面及其相关的概念,以及复平面内的点对应复数的特点。
(3)理解复数能用向量表示的道理,并能准确用向量来表示任何一个复数。
(4)掌握复数三种表示方法:代数形式、点和向量表示,并能理解它们之间的相互转化。
能将复数问题转化为平面几何和解析几何问题来灵活求解。
2、过程与方法:(1)让学生类比实数能用数轴上的点来表示的道理,理解复数也能用点来表示。
(2)启发学生理解复平面及其相关的概念,以及复平面内的点对应复数的特点。
(3)启发学生类比实数能用数轴上的点来表示的道理,理解复数也能用向量来表示。
3、情感与价值:通过创设问题情景,让学生体验数学活动中充满了探索性和创造性,感悟数学的奇妙及魅力,并通过交流,培养学生敢于发表自己的观点,勇于探索的精神。
二、教学重点、难点:重点:复数的三种表示方法。
难点:对复数的三种表示方法及其相互转化的理解。
三、学法与教学用具:1、学法:学生通过阅读教材,自主学习、质疑、交流等探究活动,逐步理解复数能用点和向量来表示的道理,并能准确表示。
2、教学用具:多媒体或投影仪、三角板。
四、教学思路:(一)、以境激情,引入新课:1、师:在初中我们学习过实数,知道所有实数与数轴上的所有点之间是一一对应的,因此实数能用数轴上的点来表示,那么复数是不是也能用点来表示呢?用什么样的点来表示才准确呢?2、让学生通过阅读教材,自主学习、质疑、交流等探究活动,逐步理解复数能用点和向量来表示的道理,并能准确表示。
【设计意图:激活学生记忆中的原有相关知识,为认知结构的正向迁移作好准备。
】(二)、强化新知,形成知识网络:1、复平面及其相关概念:(1)、复平面:建立了直角坐标系来表示复数的平面叫做复平面。
(2)、x轴叫做实轴,y轴叫做虚轴。
2、复数能用点来表示:复数Z = a + bi(a、b∈R)复平面内的点Z(a ,b)3、复平面内的点对应复数的特点:(启发学生自己总结)(1)实轴上的点都表示实数;(2)虚轴的点(除原点外)都表示纯虚数;(3)各象限内的点都表示非纯虚数。
高二数学 《3.1数系的扩充和复数的概念(二)》教案 文 新人教A版选修1-2
高中数学《3.1数系的扩充和复数的概念(二)》教案教学过程我们知道,实数与数轴上的点一一对应,因此,实数可用数轴上的点来表示.类比实数 的几何意义,复数的几何意义是什么呢?复平面,复数与点的一一对应:复数 z =a +b i 可用点Z (a , b )来表示这个建立了直角坐标系来表示复数的平面叫复平面, x 轴叫做实轴,y 轴叫做虚轴. 实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.例如 复平面内点的原点 (0,0)表示实数0,实轴上的点 (2,0)表示实数2, 虚轴上的点 (0,-1)表示纯虚数-i ,点 (-2 ,3)表示复数-2+3i .每一个复数,有复平面内唯一的一个点和它对应;反过来,复平面内的每一个点,有 唯一的复数和它对应.复数集C 和复平面内所有的点所组成的集合是一一对应的,即● 共轭复数当两个复数实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数. 若z 1,z 2是共轭复数,那么在复平面内,它们所对应的点有怎样的位置关系?设复平面内的点Z 表示复数z =a +b i ,连结OZ ,显然向量OZ 由点Z 唯一确定; 反过来,点Z (相对于原点来说)也可以由向量OZ 唯一确定.因此,复数集C 与复平 面内的向量所成的集合也是一一对应的(实数0与零向量对应),即● 复数的模向量OZ 的模r 叫做复数z =a +b i 的模,记作|z |或|a +b i|.如果b =0,那么z =a +b i 是一个实数a ,它的模等于|a |(就是a 的绝对值).由模的定义可知:|z |=a +b i =r =22b a (r ≥0,r ∈R).我们常把复数z =a +b i 说成点Z 或说成向量OZ ,并且规定,相等的向量表示同一个 复数.课堂练习1.说出图中复平面内各点所表示的复数yO x Z :a +b ia b 复数z =a +b i 复平面内的点Z (a , b )一一对应复数z =a +b i 平面向量一一对应OZ y O xZ :a +b ia bxy O G C F DB AE(每个小正方格子边长为1):2.在复平面内,描出下列各复数的点:⑴ 2+5i;⑵ -3+2i;⑶ 2-4i;⑷-3-i ⑸ 5;⑹ -3i .例1. 实数m 分别取什么数值时,复数z =(m 2+5m +6)+(m 2-2m -15)i 是: ①对应点在x 轴上方;②对应点在直线x +y +5=0上..4 , , , , i 2, i 23, i 32, i 21.243214321?并证明你的结论个点是否在同一个圆上试判断这别为在复平面内对应的点分例z z z z z z z z +-=-=+=+=课堂练习1. 下列命题,其中正确的个数是( B ) (1)互为共轭复数的两个复数的模相等 (2)模相等的两个复数互为共轭复数(3)若与复数z =a +b i 对应的向量在虚轴上,则a =0,b ≠0 A. 0 B. 1 C. 2 D. 32. 设z =(2t 2 +5t -3)-(t 2+2t +2)i(t ∈R)则( C ) A. z 对应的点在第一象限 B. z 一定不为纯虚数 C. z 对应的点在实轴下方 D. z 一定为实数xy O ⑵⑷⑶⑸⑴⑹)( i )1()23( 132.3Dm m z m 于在复平面上对应的点位复数时,当-+-=<<A.第一象限 B.第二象限 C.第三象限 D.第四象限4. 设z =log 2(m 2-3m -3)+ilog 2(m -3)(m ∈R),若z 对应的点在x -2y +1=0上,则m .62i 3 .5的面积为为坐标原点,则,和别为在复平面内对应的点分,设AOB O B A z z z ∆++=6. 若复数z 满足|z -3i|=5,求|z +2|的最大值和最小值.。
高中数学 3.1.1 数系的扩充和复数的概念教案 选修1-2
3.1.1 数系的扩充和复数的概念s(教师用书独具)●三维目标1.知识与技能(1)了解数系的扩充过程.(2)理解复数的基本概念.2.过程与方法(1)通过回顾数系扩充的历史,让学生体会数系扩充的一般性方法.(2)类比前几次数系的扩充,让学生了解数系扩充后,实数运算律均可应用于新数系中,在此基础上,理解复数的基本概念.3.情感、态度与价值观(1)虚数单位的引入,产生复数集,让学生体会在这个过程中蕴含的创新精神和实践能力,感受人类理性思维的作用以及数与现实世界的联系;(2)初步学会运用矛盾转化,分与合,实与虚等辩证唯物主义观点看待和处理问题.●重点难点重点:理解虚数单位i的引进的必要性及复数的有关概念.难点:复数的有关概念及应用.(教师用书独具)●教学建议建议本节课采用自主学习,运用自学指导法,通过创设问题情境,引导学生自学探究数系的扩充历程,体会数系扩充的必要性及现实意义,思考数系扩充后需考虑的因素,譬如运算法则、运算律、符号表示等问题,为本节学习奠定知识基础.本节内容比较简单,通过学生自学加讨论的方式,基本上可以解决基础内容的理解,教师可以启发引导学生辨析实数、虚数、纯虚数及复数相等的概念,达到透彻理解、触类旁通、学以致用的熟练程度.高考对该部分知识要求不高,练习要控制难度,以低中档题目为主.●教学流程创设问题情境,引出问题,引导学生认识虚数单位i,了解复数的概念、分类及复数相等的条件.让学生自主完成填一填,使学生进一步熟悉复数的有关概念,提炼出其中的关键因素、重点、难点.由学生自主分析例题1的各个选项,对应有关概念,确定出正确答案.教师只需指导完善解、答疑惑,并要求学生独立完成变式训练.学生分组探究例题2解法,找出实数、虚数、纯虚数的特征,总结求相关参数的方程、不等式的确定方法.完成互动探究.完成当堂双基达标,巩固所学知识及应用方法.并进行反馈矫正.归纳整理,进行课堂小结,整体认识本节所学知识,强调重点内容和规律方法.学生自主完成例题3变式训练,老师抽查完成情况,对出现问题及时指导.让学生自主分析例题3,老师适当点拨解题思路,学生分组讨论给出解法.老师组织解法展示,引导学生总结解题规律.课标解读1.了解数系的扩充过程.2.理解复数的基本概念以及复数相等的充要条件.(重点) 3.掌握复数的代数形式、分类等有关概念.(难点、易混点)复数的有关概念【问题导思】1.为解决方程x 2=2,数系从有理数扩充到实数;那么怎样解决方程x 2+1=0在实数系中无根的问题?【提示】 引入新数i ,规定i 2=-1,这样i 就是方程x 2+1=0的根.2.设想新数i 和实数b 相乘后再与a 相加,且满足加法和乘法的运算律,则运算的结果可以写成什么形式?【提示】 a +b i(a ,b ∈R )的形式.(1)复数的定义:把集合C ={a +b i|a ,b ∈R }中的数,即形如a +b i(a ,b ∈R )的数叫做复数.(2)虚数单位:i ,其满足i 2=-1. (3)复数集:全体复数构成的集合C . (4)复数的代数形式:z =a +b i(a ,b ∈R ).(5)实部、虚部:对于复数z =a +b i(a ,b ∈R ),a 叫做复数的实部,b 叫做复数的虚部.复数相等若a ,b ,c ,d ∈R ,则复数a +b i 与c +d i 相等的充要条件是a =c 且b =d .复数分类(1)对于复数a +b i ,当且仅当b =0时,它是实数;当且仅当a =b =0时,它是实数0;当b ≠0时,叫做虚数;当a =0且b ≠0时,叫做纯虚数.这样,复数z =a +b i(a ,b ∈R )可以分类如下:复数a +b i(a ,b ∈R )⎩⎨⎧实数b =0,虚数b ≠0⎩⎪⎨⎪⎧纯虚数a =0,非纯虚数a ≠0.(2)集合表示.复数的基本概念下列命题中,正确命题的个数是( )①若x ,y ∈C ,则x +y i =1+i 的充要条件是x =y =1; ②若a ,b ∈R 且a >b ,则a +i>b +i ; ③若x 2+y 2=0,则x =y =0;④一个复数为纯虚数的充要条件是这个复数的实部等于零; ⑤-1没有平方根;⑥若a ∈R ,则(a +1)i 是纯虚数.A .0B .1C .2D .3 【思路探究】 根据复数的有关概念判断.【自主解答】 ①由于x ,y ∈C ,所以x +y i 不一定是复数的代数形式,不符合复数相等的充要条件,①是假命题.②由于两个虚数不能比较大小,∴②是假命题. ③当x =1,y =i 时,x 2+y 2=0也成立,∴③是假命题. ④当一个复数实部等于零,虚部也等于零时,复数为0,∴④错. ⑤-1的平方根为±i,∴⑤错.⑥当a =-1时,(a +1)i =0是实数,∴⑥错.故选A. 【答案】 A正确理解复数的有关概念是解答复数概念题的关键,另外在判断命题的正确性时,需通过逻辑推理加以证明,但否定一个命题的正确性时,只需举一个反例即可,所以在解答这类题型时,可按照“先特殊,后一般”、“先否定,后肯定”的方法进行解答.已知下列命题: ①复数a +b i 不是实数; ②当z ∈C 时,z 2≥0;③若(x 2-4)+(x 2+3x +2)i 是纯虚数,则实数x =±2; ④若复数z =a +b i ,则当且仅当b ≠0时,z 为虚数;⑤若a ,b ,c ,d ∈C 时,有a +b i =c +d i ,则a =c ,且b =d .其中真命题的个数是________. 【解析】 根据复数的有关概念判断命题的真假.①是假命题,因为当a ∈R 且b =0时,a +b i 是实数.②假命题,如当z =i 时,则z 2=-1<0.③是假命题,因为由纯虚数的条件得⎩⎪⎨⎪⎧x 2-4=0,x 2+3x +2≠0,解得x =2,当x =-2时,对应复数为实数.④是假命题,因为没有强调a ,b ∈R .⑤是假命题,只有当a 、b 、c 、d ∈R 时,结论才成立.【答案】 0复数的分类当实数m 为何值时,复数z =m 2+m -6m+(m 2-2m )i 是(1)实数;(2)虚数;(3)纯虚数. 【思路探究】 根据复数的分类标准→ 列出方程(不等式)组→解出m →结论【自主解答】 (1)当⎩⎪⎨⎪⎧m 2-2m =0,m ≠0,即m =2时,复数z 是实数. (2)当m 2-2m ≠0,且m ≠0, 即m ≠0且m ≠2时, 复数z 是虚数.(3)当⎩⎪⎨⎪⎧m 2+m -6m =0,m 2-2m ≠0,即m =-3时,复数z 是纯虚数.1.本例中,极易忽略对m ≠0的限制,从而产生增解,应注意严谨性.2.利用复数的代数形式对复数分类时,关键是根据分类标准列出实部、虚部应满足的关系式(等式或不等式),求解参数时,注意考虑问题要全面.把题中的“z ”换成“z =lg m +(m -1)i”,分别求相应问题.【解】 (1)当⎩⎪⎨⎪⎧m >0,m -1=0,即m =1时,复数z 是实数.(2)当m -1≠0且m >0,即m >0且m ≠1时,复数z 是虚数.(3)当lg m =0且m -1≠0时,此时无解,即无论实数m 取何值均不能表示纯虚数.复数相等已知x 2-x -6x +1=(x 2-2x -3)i(x ∈R ),求x 的值.【思路探究】 根据复数相等的充要条件转化成关于x 的方程组求解.【自主解答】 ∵x ∈R ,∴x 2-x -6x +1∈R ,由复数相等的条件得:⎩⎪⎨⎪⎧x 2-x -6x +1=0,x 2-2x -3=0,解得x =3.1.复数相等的充要条件是化复为实的主要依据,利用实部与实部、虚部与虚部分别相等列方程组求实数x ,y 的值.2.求解复数的有关问题时,务必注意参数x ,y 的范围. 求使等式(2x -1)+i =y -(3-y )i 成立的实数x ,y 的值.【解】 由⎩⎪⎨⎪⎧2x -1=y ,1=-3-y ,解得⎩⎪⎨⎪⎧x =52,y =4.因忽视虚数不能比较大小而出错求满足条件-2+a -(b -a )i>-5+(a +2b -6)i 的实数a ,b 的取值范围.【错解】 由已知,得⎩⎪⎨⎪⎧-2+a >-5,-b -a >a +2b -6,解得a >-3,b <2.【错因分析】 想当然的认为大的复数所对应的实部和虚部都大,忽视了只有实数才能比较大小的前提.两个复数,如果不全是实数,则不能比较大小.所以当两个复数能比较大小时,可以确定这两个复数必定都是实数.【防范措施】 当两个复数不全是实数时,不能比较大小,只可判定相等或不相等,但两个复数都是实数时,可以比较大小.细心审题,解题前明确每个参数的取值范围,牢记复数相等的充要条件,才能避免此类错误的出现.【正解】 由-2+a -(b -a )i>-5+(a +2b -6)i 知,不等号左右两边均为实数,所以⎩⎪⎨⎪⎧b -a =0,a +2b -6=0,-2+a >-5,解得a =b =2.1.对于复数z =a +b i(a ,b ∈R ),可以限制a ,b 的值得到复数z 的不同情况. 2.两个复数相等,要先确定两个复数实虚部,再利用两个复数相等的条件. 3.一般来说,两个复数不能比较大小.1.(2012·北京高考)设a ,b ∈R ,“a =0”是“复数a +b i 是纯虚数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【解析】 “a =”D ⇒\“a +b i 为纯虚数”, “a +b i 为纯虚数”“⇒”“a =0”, ∴选B. 【答案】 B2.(1+3)i 的实部与虚部分别是( ) A .1, 3 B .1+3,0 C .0,1+ 3D .0,(1+3)i【解析】 根据复数的代数形式的定义可知(1+3)i =0+(1+3)i , 所以其实部为0,虚部为1+3,故选C. 【答案】 C3.下列命题中的假命题是( ) A .自然数集是非负整数集 B .实数集与复数集的交集为实数集 C .实数集与虚数集的交集是{0} D .纯虚数与实数集的交集为空集【解析】 本题主要考查复数集合的构成,即复数的分类.复数可分为实数和虚数两大部分,虚数中含有纯虚数,因此,实数集与虚数集没有公共元素,故选项C 中的命题是假命题.【答案】 C4.已知复数z =m +(m 2-1)i(m ∈R )满足z <0,则m =________.【解析】 ∵z <0,∴⎩⎪⎨⎪⎧m 2-1=0,m <0,∴m =-1.【答案】 -1一、选择题1.若复数2-b i(b ∈R )的实部与虚部互为相反数,则b 的值为( ) A .-2 B.23 C .-23D .2【解析】 2-b i 的实部为2,虚部为-b ,由题意知2=-(-b ),∴b =2. 【答案】 D2.i 是虚数单位,1+i 3等于( ) A .i B .-i C .1+i D .1-i【解析】 由i 是虚数单位可知:i 2=-1,所以1+i 3=1+i 2×i=1-i ,故选D. 【答案】 D3.(2012·陕西高考)设a ,b ∈R ,i 是虚数单位,则“ab =0”是“复数a +bi 为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 ab =0⇒a =0或b =0,当a ≠0,b =0时,a +b i 为实数,当a +bi 为纯虚数时⇒a =0,b ≠0⇒ab =0,故“ab =0”是“复数a +bi为纯虚数”的必要不充分条件.【答案】 B4.若复数z =(x 2-1)+(x -1)i 为纯虚数,则实数x 的值为( ) A .-1 B .0 C .1 D .-1或1【解析】 由题意可知,当⎩⎪⎨⎪⎧x 2-1=0,x -1≠0,即x =-1时,复数z 是纯虚数.【答案】 A5.以3i -2的虚部为实部,以3i 2+2i 的实部为虚部的复数是( ) A .3-3i B .3+i C .-2+2iD .2+2i【解析】 3i -2的虚部为3,3i 2+2i =-3+2i 的实部为-3,则所求复数为3-3i.【答案】 A 二、填空题6.给出下列复数:2+3,0.618,i 2,5i +4,2i ,其中为实数的是________. 【解析】 2+3,0.618,i 2为实数,5i +4,2i 为虚数. 【答案】 2+3,0.618,i 27.已知x -y +2x i =2i ,则x =________;y =________. 【解析】 根据复数相等的充要条件得⎩⎪⎨⎪⎧x -y =0,2x =2.解得⎩⎪⎨⎪⎧x =1,y =1.【答案】 1 1 8.给出下列几个命题:①若x 是实数,则x 可能不是复数; ②若z 是虚数,则z 不是实数;③一个复数为纯虚数的充要条件是这个复数的实部等于零; ④-1没有平方根; ⑤两个虚数不能比较大小. 则其中正确命题的个数为________.【解析】 因实数是复数,故①错;②正确;因复数为纯虚数要求实部为零,虚部不为零,故③错;因-1的平方根为±i,故④错;⑤正确.故答案为2.【答案】 2 三、解答题9.实数m 分别为何值时,复数z =2m 2+m -3m +3+(m 2-3m -18)i 是:(1)实数;(2)虚数;(3)纯虚数.【解】 (1)要使所给复数为实数,必使复数的虚部为0.故若使z 为实数,则⎩⎪⎨⎪⎧m 2-3m -18=0m +3≠0,解得m =6.所以当m =6时,z 为实数.(2)要使所给复数为虚数,必使复数的虚部不为0. 故若使z 为虚数,则m 2-3m -18≠0,且m +3≠0, 所以当m ≠6且m ≠-3时,z 为虚数.(3)要使所给复数为纯虚数,必使复数的实部为0,虚部不为0. 故若使z 为纯虚数,则⎩⎪⎨⎪⎧2m 2+m -3=0m +3≠0m 2-3m -18≠0,解得m =-32或m =1.所以当m =-32或m =1时,z 为纯虚数.10.若m 为实数,z 1=m 2+1+(m 3+3m 2+2m )i ,z 2=4m +2+(m 3-5m 2+4m )i ,那么使z 1>z 2的m 值的集合是什么?使z 1<z 2的m 值的集合又是什么?【解】 当z 1∈R 时,m 3+3m 2+2m =0,m =0,-1,-2,z 1=1或2或5.当z 2∈R 时,m 3-5m 2+4m =0,m =0,1,4,z 2=2或6或18.上面m 的公共值为m =0, 此时z 1与z 2同时为实数, 此时z 1=1,z 2=2.所以z 1>z 2时m 值的集合为空集,z 1<z 2时m 值的集合为{0}.11.已知关于x 的方程x 2+(k +2i)x +2+k i =0有实根x 0,求x 0以及实数k 的值. 【解】 x =x 0是方程的实根,代入方程并整理,得 (x 20+kx 0+2)+(2x 0+k )i =0.由复数相等的充要条件,得⎩⎪⎨⎪⎧x 20+kx 0+2=0,2x 0+k =0,解得⎩⎨⎧x 0=2,k =-22,或⎩⎨⎧x 0=-2,k =2 2.∴方程的实根为x 0=2或x 0=-2,相应的k 值为k =-22或k =2 2.(教师用书独具)若z 1=m 2-(m 2-3m )i ,z 2=(m 2-4m +3)i +10(m ∈R ),z 1<z 2,求实数m 的取值. 【思路探究】 由z 1<z 2推出z 1,z 2均为实数,利用复数为实数的条件列出参数m 的方程组,从而求出实数m 的值.【自主解答】 ∵z 1<z 2,∴z 1,z 2均为实数.∴⎩⎪⎨⎪⎧m 2-3m =0, ①m 2-4m +3=0, ②∴⎩⎪⎨⎪⎧m =0或m =3m =1或m =3∴m =3.又z 1=m 2=9<z 2,故m =3符合题意. ∴m =3.复数z =a +b i 当且仅当其为实数时,才能比较大小,否则不能比较大小.若用“大于”或“小于”符号联系复数时,则只能是实数,故而本题需将复数问题转化到实数范围内研究讨论.已知集合M ={1,2,m 2-3m -1+(m 2-5m -6)i},N ={-1,3},且M ∩N ={3},求实数m 的值.【解】 ∵M ∩N ={3},N ={-1,3}, ∴3∈M ,且-1∉M .必有m 2-3m -1+(m 2-5m -6)i =3.由复数相等的定义,得⎩⎪⎨⎪⎧m 2-3m -1=3,m 2-5m -6=0.解得m =-1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 数系的扩充与复数的引入
【课题】:3.1.1 数系的扩充和复数的概念
【学情分析】:
从小学接触自然数到扩充至整数范围,进入初中阶段后学生认识到数系从整数到有理数再到实数的第二次扩充.因为现实的需要,高中阶段要进一步实现从实数系到复数系的第三次扩充.
学生初次接触复数,会产生一种“虚无缥缈”的感觉.所以要有意识地将实数与复数进行类比学习,学会复数问题向实数问题转化的方法.
【教学目标】:
(1)知识目标:
理解复数产生的必然性、合理性;掌握复数的代数表示形式;掌握复数系下的数的分类. (2)过程与方法目标:
从为了解决012
=+x 这样的方程在实数系中无解的问题出发,设想引入一个新数i,使i 是方程012
=+x 的根.到将i 添加到实数集中去,使新引入的数i 和实数之间能象实数系那样进行加、乘运算;掌握类比的方法,转化的方法。
(3)情感与能力目标:
通过介绍数系扩充的简要进程,使同学们感受人类理性思维对数学的发展所起的重要作用,体会数与现实世界的联系。
【教学重点】:
复数的概念及其分类。
【教学难点】:
虚数单位i 的引入。
【教学突破点】:
从解012
=+x 方程的需要,引入虚数单位i.及虚数单位i 与实数的融合。
【教法、学法设计】:
讲授、练习相结合。
【课前准备】:
课件
;
0)32()43)(2(;217)5()23)(1(=++--=-++i y x i i y x y x .0,,3,2
2
22,
55i i i --+-,)43(4
34.32
2
i n n m m n z -++---=
已知复数.
,,)2(;,,)1(是实数取什么整数值时是纯虚数取什么整数值时z n m z n m
A 组
1.写出下列复数的实部与虚部:
2.求适合下列各方程的实数:的值和y x
B 组
1.,,,,()
.,
...()C R M P A P R C B M
R C
C P M
D M
R C
φ
⊂≠
===对于复数集实数集虚数集纯虚数集下列关系正确的是
1122222.23(log )log 2,
___________.
z x x x x i x ⎡⎤=--+--⎣⎦使复数是虚部为正数的非纯虚数则实数的取值范围是
参考答案:
A 组.1.五个复数的实部与虚部依次为:.0,0;1,0;0,3;2
2,22;
5,5--- 2..2
3
,34)2(;
7,1).1(-==
==y x y x 3.;4,1,,4).1(≠-≠∈=m m Z m n
;4,1,,14).1(≠-≠∈=-=m m Z m n n 或 B 组. 1.A; 2.B; 3.),3()3,2()4
1,0(+∞ .。