人教版八年级数学上册第12章 全等三角形.docx

合集下载

人教版八年级数学上册第12章全等三角形121全等三角形

人教版八年级数学上册第12章全等三角形121全等三角形

1、请找出对应边和对应角。 AB 与 EB、BC 与 BD、AD与 EC, ∠A与∠BEC、∠D与∠C、∠ABD与∠EBC
2、如果AB=3cm,BC=5cm,
解:∵△ABD ≌ △EBC ∴EB=AB=3cm,BD=BC=5cm.
求BE、BD的长.
D
E
C
B A
如图, △EFG≌△NMH E
H M
F 1、请找出对应边和对应角。 2、如果EF=2.1cm,EH=1.1cm, HN=3.3cm, 求NM、HG的长.
A
D
B
CE
F
“全等”用你符能号否“直≌接”从表记示作∆ABC≌ ∆DEF中判断出所有的对应顶点、对应边和对应角?
图中的△ABC和△DEF全等, 记作:△ABC≌ △DEF 读作:△ABC全等于△DEF
两个全等三角形的位置变化了,对应边、对应角的大小有没有变化?由此你能得到 什么结论?
A
D
B A
E
找出下列全等三角形的对应边、对应角
A △ABD≌△CBD
B
D
C
找出下列全等三角形的对应边、对应角
A
D △AOB≌△DOC
△ABC≌△DCB
O
B
C
写出下列全等三角形的相等的边,相等的角 A △ABC≌△ADE
B D
E C
写出下列全等三角形的相等的边、相等的角
A
E
B
D △ADE≌△CBF
F
C
如图, △ABD ≌ △EBC
解:∵△EFG ≌ △NMH ∴NM=EF=2.1cm,EG=HN=3.3cm ∴HG=EG-HG=3.3-1.1=2.2cm
G N
△ABD≌△ACE,若∠ADB=100°,∠B=30°,说出△ACE中各角的大小?

数学人教版八年级上第十二章12.2 三角形全等的判定

数学人教版八年级上第十二章12.2 三角形全等的判定

12.2 三角形全等的判定1.三角形全等的判定方法一:边边边(SSS) (1)边边边:三边..对应相等的两个三角形全等(可以简写成“边边边”或“SSS ”). 这个判定方法告诉我们:当三角形的三边确定后,其形状、大小也就随之确定,这就是三角形的稳定性...,它在实际生活中应用非常广泛. (2)书写格式:①先写出所要判定的两个三角形;②列出条件:用大括号将两个三角形中相等的边分别写出; ③得出结论:两个三角形全等.如下图,在△ABC 和△A ′B ′C ′中,∵⎩⎪⎨⎪⎧AB =A ′B ′,BC =B ′C ′,AC =A ′C ′,∴△ABC ≌△A ′B ′C ′(SSS).警误区 书写判定两个三角形全等的条件 在书写全等的过程中,等号左边表示同一个三角形的量,等号右边表示另一个三角形的量.如上图,等号左边表示△ABC 的量,等号右边表示△A ′B ′C ′的量.符号“∵”表示“因为”,“∴”表示“所以”,在以后的推理中,这样书写简捷、方便.要注意它们的区别.(3)作一个角等于已知角. 已知:∠AOB .求作:∠A ′O ′B ′,使∠A ′O ′B ′=∠AOB .作法:如上图所示,①以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ; ②画一条射线O ′A ′,以点O ′为圆心,OC 长为半径画弧,交O ′A ′于点C ′; ③以点C ′为圆心,CD 长为半径画弧,与上一步中所画的弧交于点D ′; ④过点D ′画射线O ′B ′,则∠A ′O ′B ′=∠AOB . 【例1】 如图所示,已知AB =DC ,AC =DB ,求证:△ABC ≌△DCB .分析:已知两边对应相等,由图形可知BC 为两个三角形的公共边,所以△ABC ≌△DCB (SSS).证明:在△ABC 和△DCB 中,∵⎩⎪⎨⎪⎧AB =DC ,BC =CB (公共边),AC =DB ,∴△ABC ≌△DCB (SSS).2.三角形全等的判定方法二:边角边(SAS)(1)边角边:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).(2)书写格式:如下图,在△ABC 和△A ′B ′C ′中,∴⎩⎪⎨⎪⎧AB =A ′B ′,∠A =∠A ′,AC =A ′C ′,∴△ABC ≌△A ′B ′C ′(SAS).警误区 不能用“SSA ”判定三角形全等有两边及其一边的对角对应相等的两个三角形不一定全等,即不能用“SSA ”作为三角形全等的判定.如图,在△ABC 和△ABD 中,AB=AB ,AC=AD 两条边对应相等,并且边AC ,AD 所对的角∠B=∠B ,很显然,△ABC 和△ABD 不全等.(3)注意:①在“边角边”这个判定方法中,包含了边和角两种元素,且角是两边的夹角,而不是其中一边的对角.②为了避免“SAS ”与“SSA ”(两边不夹角)混淆,在应用该方法时,要观察图形确定三个条件,按“边→角→边”的顺序排列,并按此顺序书写.【例2】 如图,两个透明三角形纸片叠放到桌面上,已知∠ACE =∠FCB ,AC =EC ,BC =FC ,则△ABC 与△EFC 全等吗?请说明理由.解:△ABC ≌△EFC .理由:∵∠ACE =∠FCB ,∴∠ACE +∠ECB =∠FCB +∠ECB , 即∠ACB =∠ECF .在△ABC 和△EFC 中, ∵⎩⎪⎨⎪⎧AC =EC ,∠ACB =∠ECF ,BC =FC ,∴△ABC ≌△EFC (SAS).3.三角形全等的判定方法三、四:角边角(ASA)及角角边(AAS) (1)角边角:①内容:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).②书写格式:如图,在△ABC 和△A ′B ′C ′中,∵⎩⎪⎨⎪⎧∠A =∠A ′,AB =A ′B ′,∠B =∠B ′,∴△ABC ≌△A ′B ′C ′(ASA).(2)角角边:①内容:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”).②书写格式:如下图,在△ABC 和△A ′B ′C ′中,∵⎩⎪⎨⎪⎧∠A =∠A ′,∠B =∠B ′,BC =B ′C ′,∴△ABC ≌△A ′B ′C ′(AAS).(3)“角边角”与“角角边”的关系:由三角形的内角和定理知,只要两个三角形的两个角对应相等,则其第三个角也对应相等,所以两角及一边对应相等的两个三角形一定全等.无论这一边是“对边”还是“夹边”,只要对应相等即可判定两个三角形全等.(4)注意:①在运用“ASA ”时,要从图形上确定是按“角→边→角”的顺序排列条件; ②在运用“AAS ”时,要从图形上确定是按“角→角→边”的顺序排列条件. 警误区 不能用“AAA ”判定三角形全等有三个角对应相等的两个三角形不一定全等,即不能用“AAA ”作为三角形全等的判定.如下图,在△ABC 和△A ′B ′C ′中,∠A =∠A ′,∠B =∠B ′,∠C =∠C ′,很显然,△ABC 和△A ′B ′C ′不全等.【例3】 (一题多证)已知,如图,D 是△ABC 的边AB 上一点,AB ∥FC ,DF 交AC 于点E ,DE =EF .求证:AE =CE .证法一:∵AB ∥FC , ∴∠ADE =∠F .在△ADE 和△CFE 中, ∵⎩⎪⎨⎪⎧∠ADE =∠F ,DE =FE ,∠AED =∠CEF ,∴△ADE ≌△CFE (ASA).∴AE =CE . 证法二:∵AB ∥FC ,∴∠A =∠ECF ,∠ADE =∠F .在△ADE 和△CFE 中,∵⎩⎪⎨⎪⎧∠A =∠ECF ,∠ADE =∠F ,DE =FE ,∴△ADE ≌△CFE (AAS).∴AE =CE .4.直角三角形全等的判定方法:斜边、直角边(HL)(1)内容:斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”).(2)书写格式:如下图,在Rt △ABC 和Rt △A ′B ′C ′中, ∵⎩⎪⎨⎪⎧AB =A ′B ′,BC =B ′C ′, ∴Rt △ABC ≌Rt △A ′B ′C ′(HL).警误区 “HL ”适用的前提条件 (1)“HL ”只适合直角三角形全等的判定,不适合...一般三角形全等的判定;(2)直角三角形全等的判定既可以用“SSS ”“SAS ”“ASA ”和“AAS ”,又可以用“HL ”.【例4】 如图,AD ⊥CD ,AB ⊥CB ,垂足分别是D ,B ,且AD =AB ,求证:AC 平分∠DCB .证明:∵AD ⊥CD ,AB ⊥CB , ∴∠D 与∠B 都是直角. 在Rt △ADC 和Rt △ABC 中, ∵⎩⎪⎨⎪⎧AD =AB ,AC =AC , ∴Rt △ADC ≌Rt △ABC (HL).∴∠ACD =∠ACB ,即AC 平分∠DCB .5.判定两个三角形全等的常用思路判定两个三角形全等的方法有:“SSS ”“SAS ”“ASA ”“AAS ”“HL ”这五种,其中“HL ”只适合于直角三角形.在具体运用过程中,要认真分析已知条件,挖掘题中隐含条件,有目的地选择三角形全等的条件,一般可按下面的思路进行:(1)已知两边⎩⎪⎨⎪⎧找第三边→SSS ,找夹角→SAS ,找直角→HL.(2)已知一边一角⎩⎪⎨⎪⎧边为角的对边→找任一角→AAS ,边为角的邻边⎩⎪⎨⎪⎧ 找角的另一邻边→SAS ,找边邻着的另一角→ASA ,找边的对角→AAS.(3)已知两角 ⎩⎪⎨⎪⎧找夹边→ASA ,找任一边→AAS. 6.全等三角形判定和性质的综合运用全等三角形的性质是对应角相等、对应边相等,全等三角形的判定是“SAS ”“ASA ”“AAS ”“SSS ”“HL ”.在说明线段相等或角相等时,常常需要综合运用全等三角形的性质和判定.说明两条线段或两个角相等时,可考虑两条线段或两个角所在的两个三角形是否全等,若由已知条件不能直接说明这两个三角形全等时,可以由已知条件先推出其他的三角形全等,再由全等三角形的性质得到一些线段或角相等,为说明前面的三角形全等提供条件.【例5】 如图,已知∠E =∠F =90°,∠1=∠2,AC =AB ,求证:△AEB ≌△AFC.分析:已知∠E =∠F =90°,AC =AB ,即已知一边及一角,并且这边是角的对边,根据判定两个三角形全等的常用思路再找另一角即可,由∠1=∠2,可得∠EAB =∠FAC ,再根据全等的判定方法AAS 可证△AEB ≌△AFC .证明:∵∠1=∠2,∴∠1+∠BAC =∠2+∠BAC , 即∠EAB =∠FAC .在△AEB 和△AFC 中,∵⎩⎪⎨⎪⎧∠E =∠F ,∠EAB =∠FAC ,AB =AC ,∴△AEB ≌△AFC (AAS).【例6】 如图1,已知AB ∥CD ,OA =OD ,AE =DF ,求证:EB ∥CF.图1证明:如图2,∵AB ∥CD ,∴∠4=∠3. 在△OAB 和△ODC 中,∵⎩⎪⎨⎪⎧∠4=∠3,OA =OD ,∠2=∠1,图2∴△OAB ≌△ODC (ASA).∴OB =OC . 又∵AE =DF ,OA =OD ,∴OA +AE =OD +DF ,即OE =OF . 在△BOE 和△COF 中,∵⎩⎪⎨⎪⎧OB =OC ,∠2=∠1,OE =OF ,∴△BOE ≌△COF (SAS). ∴∠E =∠F .∴EB ∥CF .7.全等三角形判定中的探究性问题动态探究型问题一般是指几何图形的运动,包括点动(点在线上运动)、线动(线的平移、对称、旋转)、面动〔平面几何图形的平移、对称(翻折)、旋转〕.这类问题具有灵活性、多变性,常融入三角形,综合运用三角形全等知识.但万物皆有源,几何以点为源泉,无数个点可以形成各种图形,所以图形的运动其实是无数个点的运动.点动带动图形动,图形动引起点的位置发生变化,相辅相成,变化无穷,但万变不离其宗,解决问题要抓住一些关键点即可.对于运动变化过程中的探索性问题的求解,应动中取静,先取某一特定时刻物体的状况进行探究,获得结论,再由特殊推知其一般结论,并运用几何知识(全等三角形的判定)加以证明.【例7】 (科学探究题)如图,在△ABC 中,AB =AC =10 cm ,BC =8 cm ,点D 为AB 的中点.如果点P 在线段BC 上以3 cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.(1)若点Q 的运动速度与点P 的运动速度相等,经过1 s 后,△BPD 与△CQP 是否全等,请说明理由;(2)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?解:(1)∵t =1 s ,∴BP =CQ =3×1=3(cm). ∵AB =10 cm ,点D 为AB 的中点,∴BD =5 cm. 又∵PC =BC -BP ,BC =8 cm , ∴PC =8-3=5(cm). ∴PC =BD .又∵AB =AC ,∴∠B =∠C . ∴△BPD ≌△CQP .(2)∵v P ≠v Q ,∴BP ≠CQ .又∵△BP D 与△CQP 全等,∠B =∠C , 则BP =PC =4 cm ,CQ =BD =5 cm ,∴点P ,点Q 运动的时间t =BP 3=43(s).∴v Q=CQt=543=154(cm/s).。

最新人教版数学八年级上册第十二章-全等三角形(含答案)

最新人教版数学八年级上册第十二章-全等三角形(含答案)

第十二章 --全等三角形一、基本概念1.全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;(3)能够完全重合的三角形叫做全等三角形2.全等三角形的表示两个三角形全等用“≌”符号表示;例如:△ABC与△DEF全等,那么我们可以表示为:△ABC≌△DEF。

3.全等三角形的基本性质(1)全等三角形对应边相等;(2)全等三角形对应角相等4.全等三角形的判定方法(1)三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”)例:在如图所示的三角形中,AB=AC,AD是△ABC的中线,求证△ABD≌△ACD.AB D C(2)两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”)例:如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一点C不经过池塘可以直接到达点A和B。

连接AC并延长到点D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离。

为什么?(3)两角和它们的夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)例:如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C。

求证AD=AE.AD EB C(4)两角分别相等且其中一组等角的对边相等的两个三角形全等(可以简写成“角角边”或“AAS”).例:在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证△ABC≌△DEF(5)斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)例:如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证BC=AD.5.角平分线的性质及判定性质:角平分线上的点到角两边的距离相等判定:到一个角的两边距离相等的点在这个角的平分线上。

二、灵活运用定理1.判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找相等的可能性。

(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS或ASA)②夹等角的另一组边相等(SAS)三、常见考法(1)利用全等三角形的性质:①证明线段(或角)相等;②证明两条线段的和差等于另一条线段;③证明面积相等(2)利用判定公理来证明两个三角形全等练习题1.(2015•莆田)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC2.(2015•茂名)如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为()A.6 B.5 C.4 D.33.(2015•贵阳)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE 4.(2015•青岛)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A.B.2 C.3 D.+25.(2015•启东市模拟)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组6.(2015•杭州模拟)用直尺和圆规作已知角的平分线的示意图如右,则说明∠CAD=∠DAB 的依据是()A.SSS B.SAS C.ASA D.AAS 7.(2015•滕州市校级模拟)如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC8.(2015•奉贤区二模)如图,已知AD是△ABC的边BC上的高,下列能使△ABD≌△ACD的条件是()A.∠B=45°B.∠BAC=90°C.BD=AC D.AB=AC 9.(2015•西安模拟)如图所示,AB∥EF∥CD,∠ABC=90°,AB=DC,那么图中的全等三角形有()A.4对B.3对C.2对D.1对10.(2015春•泰山区期末)如图,△A BC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个二.填空题(共10小题)11.(2015春•沙坪坝区期末)如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.12.(2015春•张家港市期末)如图,已知Rt△ABC≌Rt△ABCDEC,连结AD,若∠1=20°,则∠B的度数是.13.(2015春•苏州校级期末)如图,△ABO≌△CDO,点B在CD上,AO∥CD,∠BOD=30°,则∠A=°.14.(2015春•万州区期末)如图,已知△ABC≌△ADE,D是∠BAC的平分线上一点,且∠BAC=60°,则∠CAE=.15.(2015•黔东南州)如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件,使△ABD≌△CDB.(只需写一个)16.(2014秋•曹县期末)如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是.17.(2015•盐亭县模拟)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE 的度数是度.18.(2014秋•腾冲县校级期末)如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE=度.19.(2015•聊城)如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线.若AB=6,则点D到AB的距离是.20.如图,在△A BC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是.三.解答题(共7小题)21.如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB 延长线上一点.(1)求∠EBG的度数.(2)求CE的长.22.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系请证明你的结论.23.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.24.如图:在△ABC中,∠C=90° AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.25.如图,为了测量一池塘的宽AB,在岸边找到一点C,连接AC,在AC的延长线上找一点D,使得DC=AC,连接BC,在BC的延长线上找一点E,使得EC=BC,测出DE=60m,试问池塘的宽AB为多少请说明理由.练习题参考答案一.选择题(共10小题)1.A 2.A 3.B 4.C 5.C 6.A 7.D 8.D 9.B 10.C 二.填空题(共10小题)11.4 12.70°13.30 14.30°15.AB=CD 16.AC=DE 17.60 18.90 19. 20.4三.解答题(共7小题)21.解:(1)∵△ABE≌△ACD,∴∠EBA=∠C=42°,∴∠EBG=180°﹣42°=138°;(2)∵△ABE≌△ACD,∴AC=AB=9,AE=AD=6,∴CE=AC﹣AE=9﹣6=3.22.证明:(1)∵AB=AC,∴∠B=∠ACD,∵AE∥BC,∴∠EAC=∠ACD,∴∠B=∠EAC,∵AD是BC边上的中线,∴AD⊥BC,∵CE⊥AE,∴∠ADC=∠CEA=90°在△ABD和△CAE中∴△ABD≌△CAE(AAS);(2)AB=DE,AB∥DE,如右图所示,∵AD⊥BC,AE∥BC,∴AD⊥AE,又∵CE⊥AE,∴四边形ADCE是矩形,∴AC=DE,∵AB=AC,∴AB=DE.∵AB=AC,∴BD=DC,∵四边形ADCE是矩形,∴AE∥CD,AE=DC,∴AE∥BD,AE=BD,∴四边形ABDE是平行四边形,∴AB∥DE且AB=DE.23.证明:(1)∵AD⊥BC,CE⊥AB,∴∠BCE+∠CFD=90°,∠BCE+∠B=90°,∴∠CFD=∠B,∵∠CFD=∠AFE,∴∠AFE=∠B在△AEF与△CEB中,,∴△AEF≌△CEB(AAS);(2)∵AB=AC,AD⊥BC,∴BC=2CD,∵△AEF≌△CEB,∴AF=BC,∴AF=2CD.24.证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=CE.在△ADC与△ADE中,∵∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+E B=AF+2EB.25.解:AB=60米.理由如下:∵在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴AB=DE=60(米),则池塘的宽AB为60米.。

人教版八年级数学上册第12章1全等三角形

人教版八年级数学上册第12章1全等三角形

知2-练
方法总结:确定全等三角形对应边、对应角的方法 (1)字母顺序法:根据书写规范,按照对应顶点确定对 应边、对应角. (2)图形特征法:① 最长边对应最长边,最短边对应最 短边;②最大角对应最大角, 最小角对应最小角.
知2-练
(3)位置关系法:①公共角或对顶角为对应角,公共边 为对应边;②对应角所对的边为对应边,两个对应角所 夹的边是对应边;③对应边所对的角为对应角,两条对 应边所夹的角是对应角.
知2-讲
特别解读 对应边或对应角与对边或对角的区别: 1.对应边、对应角是两个全等三角形中对应的两条边之
间或对应的两个角之间的关系;对边、对角是同一个 三角形中边和角之间的关系,“对边”是指三角形中 某个角所对的边,“对角”是指三角形中某条边所对 的角. 2.在找对应边、对应角时,先确定对应顶点,再确定对 应边、对应角. 3.从动态的角度找对应元素的关键是抓住图形变换前后 的重合元素,重合的边为对应边,重合的角为对应角.
知2-练
例2 [母题 教材P32练习T2]如图12.1-2,△ABC ≌△DCB, 指出所有的对应边和对应角. 解题秘方:根据图形的位置特 征可以确定对应边和对应角.
知2-练
方法点拨:先根据表达式中字母的对应位置确 定对应顶点,再根据对应顶点所连的线段确定 对应边,对应点所连线段的夹角确定对应角.
全等用“≌”表示,读作“全等于”∽: 表示形状相同;=:表示大小相同
记两个三角形全等时,通常把表示对应顶 点的字母写在对应的位置上
2. 常见三角形的全等变换 平移变换
翻折变换
知2-讲旋转变换源自知2-讲特别提醒:1. 全等三角形是全等形中的特例. 2 . 平移、翻折、旋转只改变图形的位置,不改变 图形的形状和大小.

人教版数学八年级上册第12章 全等三角形3(20页)

人教版数学八年级上册第12章 全等三角形3(20页)
第十二章 全等三角形
12.1 全等三角形
情境导入
观察下列几组图形,他们的形状与大小有什么特点?你能再
列举一些类似的例子吗?
学习目标
新课讲授
当堂检测
课堂总结
1.理解并掌握全等三角形的概念及其基本性质. 2.能找准全等三角形的对应边,理解全等三角形的对应 角相等. 3.能进行简单的推理和计算,并解决一些实际问题.
解:△BOD与△COE的对应边为: BO与CO,OD与OE,BD与CE; △ADO与△AEO的对应角为:
∠DAO与∠EAO,∠ADO与∠AEO, ∠AOD与∠AOE.
学习目标
新课讲授
当堂检测
课堂总结
4. 如图,△ABC≌△DEF,∠A=70°,∠B=50°,BF=4, EF=7,求∠E 的度数和CF 的长.
“全等”用符号“ ≌”,读作“全等于”。
A
D
B
CE
F
记作△ABC≌ △DEF,读作△ABC“全等于”△DEF。
注意 记两个三角形全等时,通常把表示对应顶点的 字母写在对应的位置上。
学习目标
新课讲授
当堂检测
课堂总结
全等三角形的性质
全等三角形的对应边相等,对应角相等。
A
D
B
C
E
F
∵△ABC≌△DEF(已知)
学习目标
新课讲授
当堂检测
课堂总结
归纳总结
形状、大小相同的图形放在一起能够完全重合。 能够完全重合的两个图形叫做全等形 能够完全重合的两个三角形叫做全等三角形
学习目标
新课讲授
当堂检测
课堂总结
练一练
(1)和(9);(2)和(3);(4)和 如图所示,是全等形的是_(8_)_;_(5_)_和__(_7_);_(_1_1_)和__(_1_2_)__.

人教版八年级数学上册第12章2三角形全等的判定

人教版八年级数学上册第12章2三角形全等的判定

知6-讲
特别提醒 1. 应 用 “ HL” 判 定 两 个 直 角 三 角 形 全 等 , 在
知6-讲
3. 判定两个三角形全等常用的思路方法
知6-讲
已知对应相 可选择的 等的元素 判定方法
需寻其邻
三角 角(SA) 形
SSS 或 SAS
SAS 或 ASA 或AAS
可证第三边对应相等或 证两边的夹角对应相等
可证已知角的另一边对 应相等或证已知边的另 一邻角对应相等或证已 知边的对角对应相等
知1-练
1-2.[中考·云南] 如图,C 是BD 的中点,AB=ED, AC=EC.求证:△ ABC ≌△ EDC.
证明:∵C 是 BD 的中点,∴BC=DC.
AB=ED, 在△ ABC 和△ EDC 中,AC=EC,
BC=DC,
∴△ABC≌△EDC(SSS).
知1-练
知识点 2 用尺规作一个角等于已知角
可证直角与已知锐角的夹边 对应相等或证已知锐角(或直 角)的对边对应相等
角 三
斜边(H)
HL 或AAS
可证一条直角边对应相等或 证一锐角对应相等
角 形
一直角边(L)
HL 或ASA 或AAS 或
SAS
可证斜边对应相等或证与已 知边相邻的锐角对应相等或 证已知边所对的锐角对应相 等或证另一直角边对应相等
证明:∵ AD=FB,
∴ AD+DB=FB+DB,
即AB=FD.
AC=FE,
在△ ABC 和△ FDE 中, AB=FD,
BC=DE,
∴△ ABC ≌△ FDE(SSS).
知1-练
知1-练
1-1. 如图,已知AB=CD,若根据“SSS”证得△ ABC ≌△ CDA,需要添加一个条件是_B__C_=__D__A_ .

人教版数学八年级上册第十二章12.2 全等三角形的判定

人教版数学八年级上册第十二章12.2  全等三角形的判定

第十二章 全等三角形12.2 全等三角形的判定第1课时 “边边边” 学习目标:1.三角形全等的“边边边”的条件.2.了解三角形的稳定性.3.经历探索三角形全等条件的过程,体会利用操作、•归纳获得 数学结论的过程. 重点:三角形全等条件的探索过程.难点:寻找判定三角形全等的条件.一、知识链接1.叫做全等三角形.2.全等三角形的性质:(1) ,(2) .3.如右图,△ABD ≌△ACD那么对应点是 ; 相等的边是: ;相等的角是: .二、新知预习已知三角形△ABC 你能画一个三角形与它全等吗?怎样画?一、要点探究探究点1:三角形全等的判定条件 活动1:只给出一个条件画三角形 画一画:1.请你以下面给出的线段AB=3cm 为三角形的一边,画一个三角形.(画完后剪下来,看是否能与同桌画的重合)2.请你画一个三角形,要求这个三角形有一个内角是45度.(画完后剪下来,看是否能与同桌画的重合)归纳总结:只有一条边或一个角对应相等的两个三角形不一定全等.活动2:给出两个条件画三角形做一做:给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做.①三角形两条边分别为4 cm,6 cm;②三角形一内角为30°和一条边为4 cm;③三角形两内角分别为30°和45°.归纳总结:两个角对应相等的两个三角形不一定全等.活动3:给出三边时画三角形1.画一画:画一个三角形,要求这个三角形的三条边的长度分别是4,6,8厘米.(画完后剪下来,看是否能与同桌画的重合)2.做一做:先任意画一个△ABC,再画一个△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA,把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?要点归纳:_______________的两个三角形全等.(简写为“______”或“_______”)ABC FED 符号表示:如图,如果典例精析例1:如图, C是BF的中点,AB =DC,AC=DF.求证:△ABC≌△DCF.【变式题】已知: 如图,点B、E、C、F在同一直线上 , AB = DE , AC = DF ,BE = CF .求证: (1)△ABC ≌ △DEF;(2)∠A=∠D.方法总结:利用“边边边”判定两个三角形全等,先根据已知条件找出对应边,再从隐藏条件中找出剩下的对应边,找到两个三角形的三组对应边即可证明这两个三角形全等.针对训练1.如图,△ABC中,AB=AC,EB=EC,则由“SSS”可以判定()A.△ABD△△ACDB.△ABE△△ACEC.△BDE△△CDED.以上答案都不对2.如图,已知AC=FE,BC=DE,点A,D,B,F在一条直线上,AD=FB,证明△ABC ≌△FDE.探究点2:尺规作图作一个角等于已知角画一画:已知:△BAC.求作:△B'A'C',使△B'A'C'=△BAC.作一个角等于已知角的依据是___________.DEFABC∆∆⇒⎪⎭⎪⎬⎫===________________________________________BC ADF二、课堂小结1.如图,D 、F 是线段BC 上的两点,AB=CE ,AF=DE ,要使△ABF ≌△ECD ,还需要条件..第1题图 第2题图2.如图,AB =CD ,AD =BC , 则下列结论:①△ABC ≌△CDB ;②△ABC ≌△CDA ; ③△ABD ≌△CDB ;④BA ∥DC . 正确的个数是 ( ) A . 1个 B. 2个 C. 3个 D. 4个3.如图,AB=AE ,A C=AD ,BD=CE ,求证:△ABC ≌△AED.4.已知:如图 ,AC=FE ,AD=FB,BC=DE.求证:(1)△ABC ≌△FDE; (2) ∠C= ∠E.5.已知:如图,AD =BC,AC =BD.求证:∠C =∠D .(提示: 连结AB) 拓展提升6.如图,AB =AC ,BD =CD ,BH =CH ,图中有几组全等的三角形?它们全等的条件是什么?全等三角形判定定理1 简称 图示符号语言有三边对应相等的两个三角形全等“边边边”或“SSS ”∵⎩⎪⎨⎪⎧AB =A 1B 1,BC =B 1C 1,AC =A 1C 1,∴△ABC ≌△A 1B 1C 1(SSS).当堂检测DC OABABCFED第十二章 全等三角形12.2 全等三角形的判定第2课时 “边角边”学习目标:1.掌握三角形全等的“边角边”的条件.2.经历探索三角形全等条件的过程,体会利用操作、•归纳获 得数学结论的过程.3.能运用“S AS ”证明简单的三角形全等问题. 重点:掌握一般三角形全等的判定方法S AS.难点:运用全等三角形的判定方法解决证明线段或角相等的问题.三、要点探究探究点1:三角形全等的判定定理2--“边角边”问题:两个三角形的两边和一角分别相等有几种情形?列举说明.活动:先任意画出一个△A′B′C′,使A′B′=AB ,A′C′=AC ,△A′=△A ,把画好的△A′B′C′剪下,放到△ABC 上,它们全等吗?你能得出什么结论?追问1:你是如何使△A’=△A 的? 结合这个问题,给出画△A’B’C’的方法.追问2:回忆作图过程,这两个三角形全等是满足哪三个条件?要点归纳:相等的两个三角形全等(简称“边角边”或“SAS ”).几何语言:如图,如果DEF ABC ∆∆⇒⎪⎭⎪⎬⎫===________________________________________课堂探究ABC例1:【教材变式】已知:如图,AB=CB,∠1= ∠2. 求证:(1) AD=CD;(2) DB 平分∠ADC.变式:已知:AD=CD,DB平分∠ADC ,求证:∠A=∠C.例2:如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?方法总结:证明线段相等或者角相等时,常常通过证明它们是全等三角形的对应边或对应角来解决.针对训练如图,点E、F在AC上,AD//BC,AD=CB,AE=CF.求证:△AFD≌△CEB.探究点2:“边边角”不能作为判定三角形全等的依据做一做:如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC.固定住长木棍,转动短木棍,得到△ABD.这个实验说明了什么?画一画:画△ABC 和△DEF,使∠B =∠E =30°, AB =DE=5 cm ,AC =DF =3 cm .观察所得的两个三角形是否全等?把你画的三角形与其他同学画的三角形进行比较,由此你发现了什么?要点归纳:有两边和其中一边的对角分别相等的两个三角形_________全等.例2:下列条件中,不能证明△ABC ≌△DEF 的是( ) A .AB =DE ,∠B =∠E ,BC =EF B .AB =DE ,∠A =∠D ,AC =DF C .BC =EF ,∠B =∠E ,AC =DF D .BC =EF ,∠C =∠F ,AC =DF 方法总结:判断三角形全等时,注意两边与其中一边的对角相等的两个三角形不一定全等.解题时要根据已知条件的位置来考虑,只具备SSA 时是不能判定三角形全等的.针对训练如图,AD=BC ,要得到△ABD 和△CDB 全等,可以添加的条件是( ) A .AB ∥CD B .AD ∥BC C .∠A=∠C D .∠ABC=∠CDA二、课堂小结1.在下列图中找出全等三角形进行连线.2.如图,AB=DB ,BC=BE ,欲证△ABE ≌△DBC , 则需要增加的条件是 ( )A.∠A =∠DB.∠E =∠CC.∠A=∠CD.∠ABD =∠EBC全等三角形判定定理2简称图示符号语言有两边及夹角对应相等的两个三角形全等“边角边”或“SAS ”∴△ABC △△A 1B 1C 1(SAS).注意:“一角”指的是两边的夹角.当堂检测⎪⎩⎪⎨⎧=∠=∠=,,,11111C A AC A A B A AB3.已知:如图2,AB=DB,CB=EB,∠1=∠2,求证:∠A=∠D.4.已知:如图,AB=AC,AD是△ABC的角平分线,求证:BD=CD.【变式1】已知:如图,AB=AC, BD=CD,求证:∠BAD= ∠CAD.【变式2】已知:如图,AB=AC, BD=CD,E为AD上一点,求证:BE=CE.拓展提升5.如图,已知CA=CB,AD=BD, M,N分别是CA,CB的中点,求证:DM=DN.第十二章全等三角形12.2 全等三角形的判定第3课时“角边角”和“角角边”学习目标:1.了解1.探索三角形全等的“角边角”和“角角边”的条件2.应用“角边角”和“角角边”证明两个三角形全等,进而证线段或角相等.重点:已知两角一边的三角形全等探究.难点:理解,掌握三角形全等的条件:“ASA”“AAS”.自主学习一、知识链接1.能够的两个三角形叫做全等三角形.2.判定两个三角形全等方法有哪些?边边边:对应相等的两个三角形全等.边角边:和它们的对应相等的两个三角形全等.二、新知预习1.在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?三角形中已知两角一边又分成哪两种呢?2.现实情境一张教学用的三角板硬纸不小心被撕坏了,如图:你能制作一张与原来同样大小的新道具吗?能恢复原来三角形的原貌吗?(1)以①为模板,画一画,能还原吗?(2)以②为模板,画一画,能还原吗?(3)以③为模板,画一画,能还原吗?(4)第③块中,三角形的边角六个元素中,固定不变的元素是_____________.猜想:两角及夹边对应相等的两个三角形_______.三、我的疑惑_______________________________________________________________________________ _______________________________________________________________________ABCFED四、要点探究探究点1:三角形全等的判定定理3--“角边角”活动:先任意画出一个△ABC.再画一个△A′B′C′,使A′B′=AB ,△A′=△A ,△B′=△B.把画好的△A′B′C′剪下,放到△ABC 上,它们全等吗?你能得出什么结论?要点归纳:相等的两个三角形全等(简称“角边角”或“ASA ”).几何语言:如图,在△ABC 和△DEF 中,∴△ABC ≌△DEF.典例精析例1:如图,已知:∠ABC =∠DCB ,∠ACB = ∠DBC ,求证:△ABC ≌△DCB .例2:如图,点D 在AB 上,点E 在AC 上,AB=AC, ∠B=∠C,求证:AD=AE.方法总结:证明线段或角度相等,可先证两个三角形全等,利用对应边或对应角相等来解决. 针对训练如图,AD ∥BC ,BE ∥DF ,AE =CF ,求证:△ADF ≌△CBE .课堂探究A B CABCFED探究点2:三角形全等的判定定理3的推论--“角角边”做一做:已知一个三角形的两个内角分别是60°和45°,且45°所对的边的边长为3cm ,你能画出这个三角形吗?追问:这里的条件与“角边角”中的条件有什么相同点与不同点?你能将它转化为“角边角”中的条件吗?要点归纳: 相等的两个三角形全等(简称“角角边”或“AAS ”).几何语言:如图,在△ABC 和△DEF 中,∴△ABC ≌△DEF. 典例精析例3:在△ABC 和△DEF 中,∠A =∠D ,∠B = ∠E ,BC=EF. 求证:△ABC ≌△DEF .例4:如图,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:(1)△BDA ≌△AEC ;(2)DE =BD +CE .方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化. 针对训练如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中,和△ABC 全等的图形是( )二、课堂小结 全等三角形判定定理3简称图示符号语言有两角及夹边(或一角的对边)对应相等的两个三角形全等 “角边角”(ASA )或“角角边”(AAS)∴△ABC △△A 1B 1C 1(ASA).推论:“角角边”是利用三角形内角和定理转化成“角边角”来证明两个三角形全等.1.△ABC 和△DEF 中,AB =DE ,∠B =∠E ,要使△ABC≌△DEF ,则下列补充的条件中错误的是( )A .AC =DFB .BC =EF C .∠A=∠D D .∠C =∠F2. 在△ABC 与△A′B′C′中,已知∠A=44°,∠B=67°,∠C′=69° ,∠A′=44°, 且AC =A′C′,那么这两个三角形( )A .一定不全等B .一定全等C .不一定全等D .以上都不对 3.如图,已知∠ACB=∠DBC,∠ABC=∠CDB,判别下面的 两个三角形是否全等,并说明理由.4.如图∠ACB=∠DFE ,BC=EF ,那么应补充一个条件 , 才能使△ABC ≌△DEF (写出一个即可),并说明理由.5.已知:如图, AB ⊥BC ,AD ⊥DC ,∠1=∠2, 求证:AB=AD. 拓展提升6.已知:如图,△ABC △△A′B′C′ ,AD 、A′ D′ 分别是△ABC 和△A′B′C′的高. 试说明AD = A′D′ ,并用一句话说出你的发现.当堂检测⎪⎩⎪⎨⎧∠=∠=∠=∠,,,1111B B B A AB A A第十二章全等三角形12.2 全等三角形的判定第4课时“斜边、直角边”学习目标:1.经历探索直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.2.掌握直角三角形全等的条件,并能运用其解决一些实际问题.3.在探索直角三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单推理.重点:运用直角三角形全等的条件解决一些实际问题.难点:熟练运用直角三角形全等的条件解决一些实际问题.一、知识链接1.我们学过的判定三角形全等的方法有______________.2.如图,AB⊥BE于C,DE⊥BE于E,(1)若∠A=∠D,AB=DE,则△ABC与△DEF(填“全等”或“不全等”),根据(用简写法);(2)若∠A=∠D,BC=EF,则△ABC与△DEF(填“全等”或“不全等”),根据(用简写法);(3)若AB=DE,BC=EF,则△ABC与△DEF(填“全等”或“不全等”),根据(用简写法).二、新知预习1.如图,已知AC=DF,BC=EF,∠B=∠E.(1)△ABC与△DEF全等吗?(2)若∠B=∠E=90°,猜想Rt△ABC是否全等于Rt△DEF.动手画一画.三、我的疑惑_______________________________________________________________________________ _______________________________________________________________________自主学习五、要点探究探究点1:直角三角形全等的判定--“斜边、直角边”问题1:两个直角三角形中,斜边和一个锐角对应相等,这两个直角三角形全等吗? 为什么?问题2:两个直角三角形中,有一条直角边和一锐角对应相等,这两个直角三角形全等 吗?为什么?问题3:两个直角三角形中,有一条直角边和斜边对应相等,这两个直角三角形全等吗? 为什么?做一做:任意画出一个Rt△ABC,使△C=90°.再画一个Rt△A ′B ′C ′,使△C′=90 °,B′C′=BC,A ′B ′=AB,把画好的Rt△A′B′ C′ 剪下来,放到Rt△ABC 上,它们能重合吗?要点归纳:相等的两个直角三角形全等(简称“斜边、直角边”或“HL ”).几何语言:如图,在 Rt △ABC 和Rt △BAD 中,典例精析例1:如图, ∠ACB =∠ADB=90,要证明△ABC ≌ △BAD ,还需一个什么条件?把这些条件都写出来,并在相应的括号内填写出判定它们全等的理由. (1) ( ) (2) ( ) (3) ( ) (4) ( ) 【变式1】如图,AC 、BD 相交于点P,AC ⊥BC ,BD ⊥AD ,垂足分别为C 、D,AD=BC.求证:AC=BD.课堂探究_____,_____,Rt ____Rt .ABC BAD ⎧⎨⎩∵∴△△PDC A【变式2】如图:AB ⊥AD ,CD ⊥BC ,AB=CD,判断AD 和BC 的位置关系.例2:如图,已知AD ,AF 分别是两个钝角△ABC 和△ABE 的高,如果AD =AF ,AC =AE .求证:BC =BE .方法总结:证明线段相等可通过证明三角形全等解决,作为“HL ”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.例3:如图,有两个长度相同的滑梯,左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,两个滑梯的倾斜角∠B 和∠F 的大小有什么关系?针对训练已知:如图,DE ⊥AC ,BF ⊥AC ,AD =BC ,DE =BF.求证:AB ∥DC.二、课堂小结 直角三角形判定 简称 图示符号语言斜边和一条直角边对应相等的两个直角三角形全等“斜边、直角边”或“HL ”∴Rt △ABC △Rt △A 1B 1C 1(HL).注意:利用“斜边、直角边”来证明两个三角形全等的前提条件是在直角三角形中.CADB⎩⎨⎧==,'',''C A AC B A AB1.判断两个直角三角形全等的方法不正确的有()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一条直角边对应相等D.两个锐角对应相等2.如图,在△ABC中,AD⊥BC于点D,CE⊥AB于点E AD、CE交于点H,已知EH=EB=3, AE =4,则CH的长为()A.1 B.2 C.3 D.4第2题图第3题图3.如图,△ABC中,AB=AC,AD是高,则△ADB与△ADC(填“全等”或“不全等”),根据(用简写法).4.如图,在△ABC中,已知BD⊥AC,CE ⊥AB,BD=CE. 求证:△EBC≌△DCB.5.如图,AB=CD, BF⊥AC,DE⊥AC,AE=CF.求证:BF=DE.【变式1】如图,AB=CD, BF⊥AC,DE⊥AC,AE=CF.求证:BD平分EF.当堂检测【变式2】如图,AB=CD, BF⊥AC,DE⊥AC,AE=CF.想想:BD平分EF吗?6.如图,有一直角三角形ABC,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置时△ABC。

人教版八年级上册 第十二章 全等三角形的性质与判定(word版,有答案)

人教版八年级上册 第十二章  全等三角形的性质与判定(word版,有答案)

全等三角形的性质与判定一、选择题1. 如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为( )A. 2B. 3C. 5D. 2.52. 如图所示,ΔABC≌ΔBAD,点A与点B、点C与点D是对应点,如果∠DAB=50∘,∠DBA=40∘,那么∠DAC的度数为( )A. 50°B. 40°C. 10°D. 5°3. 如图,AB与CD相交于点E,EA=EC,DE=BE,若使△AED≌△CEB,则 ( )A. 应补充条件∠A=∠CB. 应补充条件∠B=∠DC. 不用补充条件D. 以上说法都不正确4. 如图,AC⊥BE于C,DF⊥BC于F,且BC=EF,如果添上一个条件后,可以直接用“HL”来证明RtΔABC≌RtΔDEF,这个条件应该是( )A. AC= DEB. AB=DEC. ∠B=∠ED. ∠D=∠A5. 如图,在△ABC中,AB=AC,点D,E在BC上,连接AD,AE.如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为( )A. BD=CEB. AD=AEC. DA=DED. BE=CD6. 如图所示,已知:BD=CE,AB=FD,B,D,C,E共线,选取下列条件中的一个条件,能使△ABC≌△FDE的条件有 ( )①AB∥DF;②AC∥EF;③∠A=∠F;④∠A=∠F=90°.A. 1个B. 2个C. 3个D. 4个7. 如图,下面四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB=A′B′.从中任取三个作为条件,另外一个作为结论,最多可以构成正确命题的个数是( )A. 1B. 2C. 3D. 48. 如图,在ΔABC中,CA⊥DB,A为垂足,BF⊥CD,F为垂足,AB=AC,DB=7,DA=2,CA,BF交于E,则EC的长是( )A. 1B. 2C. 3D. 49. 如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断ΔABC≌ΔDEF的是( )A. AB=DEB. ∠B=∠EC. EF=BCD. EF∥BC10. 如图所示,在ΔABC中,AB=AC,D是BC的中点,DE⊥AB于E点,DF⊥AC于F点,则图中的全等三角形共有( )A. 5对B. 4对C. 3对D. 2对11. 在如图所示的图形中,能全等的三角形是( )A. (1)和(6)B. (2)和(4),(3)和(5)C. (3)和(5)D. (2)和(4)12. 如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE,则∠ACB等于 ( )∠AFB D. 2∠ABFA. ∠EDBB. ∠BEDC. 12二、填空题13. 如图,△ABC与△BAD全等,可表示为____,∠C与∠D是对应角,AC与BD是对应边,其余的对应角是____,其余的对应边是____.14. 如图,已知AB=BE,∠1=∠2,∠ADE=120∘,AE,BD相交于点F,则∠3的度数为 .15. 如图所示,ΔPAC≌ΔPBD,∠A=45∘,∠BPD=20∘,则∠PCD的度数为 .16. 如图,AB=AC,要使ΔABE≌ΔACD,应添加的条件可以是 (添加一个条件即可).17. 如图,已知点B,C,F,E在同一直线上,∠1=∠2,BC=EF,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是____.(只需写出一个)18. 如图,∠1=∠2,要使ΔABE≌ΔACE,还需要添加的一个条件是____.(只需添加一个条件)19. 如图,已知∠ABC=∠DCB,现要说明△ABC≌△DCB,则还要添加的一个条件是____(写出一个即可).20. 等腰△ABC的周长为18cm,BC=8cm,若ΔABC≌ΔA′B′C′,则在ΔA′B′C′中,A′B′的长等于 .21. 如图,在△ABC中,∠B=∠C=50°,BD=CF,BE=CD,则∠EDF的度数是____.三、解答题22. 如图所示,ΔEFG≌ΔNMH,在ΔEFG中,FG是最长的边,在ΔNMH中,MH是最长的边,∠F和∠M是对应角,且EF=2.4cm,FH=1.9cm,HM=3.5cm.(1)写出对应相等的边及对应相等的角;(2)求线段NM及线段HG的长度.23. 如图所示,已知ΔABE≌ΔACD.(1)∠BAD与∠CAE有何关系?请说明理由;(2)BD与CE相等吗?为什么?24.如图所示,AF=DC,BC∥EF,请只补充一个条件,使得△ABC≌△DEF,并说明理由.25. 如图,已知AB=DC,DB=AC.(1)求证:∠ABD=∠DCA(注:证明过程要求给出每一步结论成立的依据);(2)在第1问的证明过程中,需要作辅助线,它的意图是什么?25.如图,已知点E,A,C在同一直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.26.如图,点B,C,D,F在同一直线上,已知AB=EC,AD=FE,BC=DF,探索AB与EC的位置关系,并说明理由.四、证明题27.如图所示,已知AB=AD,BC=DC.求证:∠BAC=∠DAC.28.已知:如图,AB=AE,∠1=∠2,∠B=∠E,求证:BC=ED.29.如图,AB=AC,点E,F分别是AB,AC的中点.求证:△AFB≌△AEC.30.已知:如图,点C为AB中点,CD=BE,CD∥BE.求证:ΔACD≌ΔCBE.31.如图,已知BC,EF交于O点,AB∥CD,OA=OD,AE=DF.求证:BE∥CF.32.已知:如图,∠BAC=∠DAE,∠ABD=∠ACE,BD=CE.求证:AB=AC,AD=AE.33.如图,D是△ABC的边AB上一点,E是AC的中点,过点C作CF∥AB,交DE的延长线于点F.求证:AD=CF.34.如图所示,AB=AC,BD⊥AC于点D,CE⊥AB于点E,BD,CE相交于点F.求证:∠BAF=∠CAF.35.如图,AB=AC,点D,E分别在AC,AB上,AG⊥BD,AF⊥CE,垂足分别为G,F,且AG=AF.试证明:线段AD与AE相等.36.如图,已知∠ACB=90°,AC=BC,AE=CF,AD=DB,求证:DE⊥DF.37.如图,已知C为BE上一点,点A,D分别在BE两侧,AB∥ED,AB=CE,BC=ED.求证:AC=CD.38.如图,在△ABC中,D是AB边的中点,△ACE和△BCF分别是以AC,BC为斜边的等腰直角三角形,连接DE,DF.求证:DE=DF.参考答案1. 【答案】B【解析】因为△ABE≌△ACF,所以AB=AC.因为AB=5,所以AC=5,因为AC=AE+EC,AE=2,所以EC=AC-AE=3,故选B.2. 【答案】C【解析】∠DAC=∠DAB−∠BAC,根据全等三角形的对应角相等,得∠BAC=∠ABD=40∘,所以∠DAC=10∘.3. 【答案】C【解析】在△AED与△CEB中,∠AED与∠CEB是对顶角,即∠AED=∠CEB,∵EA=EC,∠AED=∠CEB,DE=BE,∴△AED≌△CEB(SAS),∴不用补充条件即可证明△AED≌△CEB,故选C.4. 【答案】B【解析】已知一组直角边对应相等,如果添上斜边相等,即可用“HL”证明两直角三角形全等,AB,DE分别为Rt△ABC、Rt△DEF的斜边,故选B.5. 【答案】C【解析】选项A:添加选项A中条件BD=CE,可根据SAS判定△ABD≌△ACE,得到∠DAB=∠EAC;选项B:条件AD=AE,可得∠ADB=∠AEC,可根据AAS判定△ABD≌△ACE,得到∠DAB=∠EAC;选项D:条件BE=CD,可推出BD=CE,同选项A,可得∠DAB=∠EAC,故选C.6. 【答案】B【解析】条件①:AB∥DF,所以∠B=∠FDE,根据SAS可判定两三角形全等;条件②:AC∥EF,所以∠ACB=∠E,条件为SSA不能判定全等;条件③∠A=∠F与条件②相同;条件④,可根据HL判定两三角形全等,故选B.7. 【答案】B【解析】①②③作为条件,可得结论④;①②④作为条件,可得结论③.8. 【答案】C【解析】易知∠ABE=∠ACD,∵AB=AC,∠BAE=∠CAD=90∘,∴ΔBAE≌ΔCAD,∴AE=AD=2.∵DB=7,∴AB=5.又∵AB=AC,∴AC=5,∴CE=AC−AE=5−2=3.9. 【答案】C【解析】∵AB∥DE,AC∥DF,∴∠A=∠D.AB=DE,则△ABC和△DEF中,{AB=DE,∠A=∠D,AC=DF,,∴ΔABC≌ΔDEF,故A选项不符合题意;∠B=∠E,则ΔABC和ΔDEF中,{∠B=∠E,∠A=∠D,AC=DF,,∴ΔABC≌ΔDEF,故B选项不符合题意;EF=BC,无法证明ΔABC≅ΔDEF,故C选项符合题意;∵EF∥BC,AB∥DE,∴∠B=∠E,则ΔABC和ΔDEF中,{∠B=∠E,∠A=∠D,AC=DF,,∴ΔABC≌ΔDEF,故D选项不符合题意.10. 【答案】A【解析】ΔADB≌ΔADC,ΔAGE≌ΔAGF,ΔADE≌ΔADF,ΔBDE≌ΔCDF,ΔDEG≌ΔDFG.11. 【答案】D【解析】由“ASA”可判定图(2)和图(4)全等,故选D.12. 【答案】C【解析】在△ABC和△DEB中,AC=BD,AB=ED,BC=BE,∴△ABC≌△DEB(SSS),∴∠ACB=∠EBD,∵∠AFB是△BFC的外角,∴∠AFB=∠ACB+∠EBD,∴∠AFB=2∠ACB,∴∠ACB=12∠AFB,故选C.13. 【答案】△ABC≌△BAD;∠ABC与∠BAD,∠BAC与∠ABD;BC与AD,AB与BA 【解析】用全等符号表示三角形全等时,对应的顶点要写在对应的位置,能够重合的角是对应角,能够重合的边是对应边.也可以运用图形变换的方式进行对应,此题属于翻折变换.14. 【答案】30°【解析】由题意知ΔABD≌ΔEBD,则AD=ED,∴∠3=∠4=12×(180∘−120∘)=30∘.15. 【答案】65°【解析】ΔPAC≌ΔPBD,根据全等三角形对应角相等得,∠APC=∠BPD=20∘,所以∠PCD=∠A+∠APC=45∘+20∘=65∘.16. 【答案】∠B=∠C(答案不唯一)【解析】∵AB=AC,∠A是公共角,∴要使ΔABE≌ΔACD,添加的条件可以是∠B=∠C 或者∠AEB=∠ADC或者AE=AD,但不能是BE=CD.17. 【答案】CA=FD(答案不唯一)【解析】因为∠1=∠2,BC=EF,故考虑添加一组对应角根据AAS,ASA判定全等,或添加一组对应边根据SAS判定全等,如添加CA=FD,可利用SAS判定△ABC≌△DEF.18.【答案】∠BAE=∠CAE或∠B=∠C或BE=CE【解析】因为∠1=∠2,所以∠AEB=∠AEC.又因为AE=AE,所以要使ΔABE≌ΔACE,需添加∠BAE=∠CAE或∠B=∠C或BE=CE之一即可.19. 【答案】∠A=∠D(答案不唯一)【解析】根据图形可知:已知条件为∠ABC=∠DCB,隐含条件为BC=CB,所以添加一组角对应相等或添加一组邻边(AB=CD)对应相等都可以说明两个三角形全等.20. 【答案】2cm或5cm或8cm【解析】需要分情况讨论,①当BC为底边时,AB=5cm,则A′B′=5cm;②当BC为腰时,另外两边长分别为8cm和2cm,所以AB的长等于8cm或2cm,即A′B′的长等于8cm或2cm.21.【答案】50°【解析】在△EBD和△DCF中,{BE=CD,∠B=∠C,BD=CF,∴△EBD≌△DCF(SAS).∴∠DEB=∠FDC,∠EDB=∠DFC.在△BDE中,因为∠B=50°,所以∠DEB+∠EDB=180°-50°=130°,∴∠EDB+∠FDC=130°,∴∠EDF=180°-(∠EDB+∠FDC)= 180°-130°=50°.22.【答案】(1) 对应相等的边有FG=MH,EF=NM,EG=NH.对应相等的角有∠F=∠M,∠E=∠N,∠EGF=∠NHM.(2) 根据全等三角形的性质,得MN=EF=2.4cm,HG=FG−FH=HM−FH=3.5−1.9=1.6(cm).23.【答案】(1) 相等,理由如下:∵ΔABE≌ΔACD,∴∠BAE=∠CAD.∵∠BAE=∠BAD+∠DAE,∠CAD=∠CAE+∠DAE,∴∠BAD=∠CAE. (2) 相等.∵ΔABE≌ΔACD,∴BE=CD,∴BD+DE=CE+ED,∴BD=CE.24. 【答案】可添加条件BC =EF 或∠A =∠D 或∠B =∠E .若添加条件BC =EF 使得△ABC ≌△DEF ,证明如下:∵AF =DC ,∴AF +FC =DC +FC ,即AC =DF .∵BC ∥EF ,∴∠ACB =∠DFE .在△ABC 和△DEF 中,{AC =DF,∠ACB =∠DFE,BC =EF,∴△ABC ≌△DEF (SAS).25.【答案】(1) 连接AD.∵AB =DC (已知),DB =AC (已知),AD =AD (公共边),∴△ABD ≌△DCA (SSS),∴∠ABD =∠DCA (全等三角形的对应角相等).(2) 作辅助线的目的:构造全等三角形.26. 【答案】∵AB ∥CD ,∴∠BAC =∠ECD.在△ABC 与△CED 中,{AB =CE,∠BAC =∠ECD,AC =CD,∴△ABC ≌△CED (SAS),∴BC =ED (全等三角形的对应边相等).27. 【答案】AB 与EC 的位置关系是AB ∥EC.理由:∵BC =DF ,∴BC +CD =DF +CD ,即BD =CF .在△ABD 和△ECF 中,{AB =EC,AD =EF,BD =CF,∴△ABD ≌△ECF (SSS).∴∠B =∠ECF (全等三角形的对应角相等).∴AB ∥EC (同位角相等,两直线平行).28. 【答案】在△ABC 和△ADC 中,{AB =AD,BC =DC,AC =AC,∴△ABC ≌△ADC (SSS),∴∠BAC =∠DAC (全等三角形的对应角相等).29. 【答案】∵∠1=∠2,∴∠1+∠BAD =∠2+∠BAD ,即∠BAC =∠EAD .在△BAC 与△EAD 中,{∠B =∠E,AB =AE,∠BAC =∠EAD,∴△BAC ≌△EAD (ASA),∴BC =ED (全等三角形的对应边相等).30. 【答案】∵点E ,F 分别是AB ,AC 的中点,∴AE =12AB ,AF =12AC ,又∵AB =AC ,∴AE =AF ,在△AFB 和△AEC 中,{AF =AE,∠A =∠A,AB =AC,∴△AFB ≌△AEC (SAS).31. 【答案】∵C 是AB 的中点(已知),∴AC =CB (线段中点的定义).∵CD ∥BE (已知),∴∠ACD =∠B (两直线平行,同位角相等).在ΔACD 和ΔCBE 中,{AC =CB,∠ACD =∠CBE,CD =BE,∴ΔACD ≌ΔCBE.32. 【答案】∵AB ∥CD,∴∠3=∠4,在ΔCOD 和ΔBOA 中,∵{∠1=∠2,OA =OD,∠3=∠4,∴ΔCOD ≌ΔBOA(ASA),∴OC =OB .∵OA =OD,AE =DF,∴OE =OF .在ΔCOF 和ΔBOE 中,∵{OF =OE,∠1=∠2,OC =OB,∴ΔCOF ≌ΔBOE(SAS),∴∠E =∠F,∴BE ∥CF .33. 【答案】∵∠BAC =∠DAE ,∴∠BAC −∠DAC =∠DAE −∠DAC ,即∠BAD =∠CAE .在ΔBAD 和ΔCAE 中,∵{∠BAD =∠CAE,∠ABD =∠ACE,BD =CE,∴ΔBAD ≌ΔCAE(AAS),∴AB =AC,AD =AE .34. 【答案】∵E 是AC 的中点,∴AE =CE .∵CF ∥AB ,∴∠A =∠ECF ,在△ADE 与△CFE 中,{∠A =∠ACFAE =CE ∠AED =∠CEF,∴△ADE ≌△CFE (ASA),∴AD =CF .35. 【答案】∵BD ⊥AC ,CE ⊥AB ,∴∠ADB =∠AEC =90°.在△ABD 和△ACE 中,∵∠BAD =∠CAE ,∠ADB =∠AEC ,AB =AC ,∴Rt △ABD ≌Rt △ACE (AAS),∴AD =AE .(全等三角形的对应边相等).在Rt △AEF 和Rt △ADF 中,AE =AD ,AF =AF ,∴Rt △AEF ≌Rt △ADF (HL),∴∠BAF =∠CAF (全等三角形的对应角相等).36. 【答案】因为AG ⊥BD ,AF ⊥CE ,所以∠AGB =∠AFC =90°.在Rt △ABG 和Rt △ACF 中,AB =AC ,AG =AF ,所以RtΔABG ≌RtΔACF(HL),所以∠BAG =∠CAF .所以∠BAG −∠FAG =∠CAF −∠FAG ,即∠EAF =∠DAG .又因为AF =AG , ∠AFE =∠AGD =90°,所以RtΔAFE ≌RtΔAGD , 所以AE =AD .37. 【答案】如图,连接CD ,在ΔACD 与ΔBCD 中,∵{AC =BC,AD =DB,CD =CD,∴ΔACD ≌ΔBCD(SSS),∴∠ADC =∠BDC =90°,∠1=∠2.∵∠ACB=90°,∴∠1=∠2=45°,∴∠A=∠1=45°,∴AD=CD.在ΔADE和ΔCDF中,∵{AE=CF,∠A=∠2,AD=CD,∴∠3=∠5.∵∠3+∠4=90°,∴∠5+∠4=90°,∴DE⊥DF.38. 【答案】∵AB∥ED,∴∠B=∠E(两直线平行,内错角相等).在△ABC和△CED中,{AB=CE,∠B=∠E,BC=ED,∴△ABC≌△CED(SAS).∴AC=CD(全等三角形的对应边相等).39. 【答案】证明:分别取AC,BC的中点M,N,连接MD,ND,EM,FN,∵D为AB的中点,∴DM=12BC,DM∥BC,DN=12AC,DN∥AC,∴四边形MDNC为平行四边形,∴∠CMD=∠CND.∵∠EMC=∠FNC=90°,∴∠EMC+∠CMD=∠FNC+∠CND,即∠EMD=∠FND,∵∠AEC=90°,∠BFC=90°,∴EM=DN=12AC,FN=MD=12BC,∴△EMD≌△DNF.∴DE=DF.。

人教版八年级上册数学 第十二章全等三角形

人教版八年级上册数学 第十二章全等三角形

第十二章全等三角形1.理解和掌握全等三角形的概念,明确对应边、对应角、对应顶点等相关概念.2.掌握两个三角形全等,对应边相等、对应角相等的性质.3.探索并掌握两个三角形全等的条件,并能根据“SSS”“SAS”“ASA”“AAS”“HL”判定两个三角形全等.4.能够画已知角的平分线并掌握角平分线的性质定理和判定定理.1.通过观察、试验、归纳、类比、推理获得数学猜想,体验数学活动充满着探索性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性.2.在教学中,注重所学内容与现实生活的联系;注重学生经历观察、操作、推理、想象等探索过程.1.让学生通过动手操作,感受知识的形成过程,树立认真学习的态度,激发学生的学习热情.2.利用小组合作的学习方法,让学生多进行交流,多种感官参与教学,使学生主动探索、发现规律、归纳概括、形成能力,养成学数学、爱数学的情感.中学阶段重点研究的两个平面图形间的关系是全等和相似,本章将以三角形为例研究全等.全等三角形研究的问题和研究方法将为后面学习相似提供思路,而且全等是一种特殊的相似,全等三角形的内容是学生学习相似三角形的重要基础.本章还将借助全等三角形进一步培养学生的推理论证能力,主要包括用分析法分析条件与结论的关系,用综合法书写证明格式,以及掌握证明几何命题的一般过程.由于利用全等三角形可以证明线段、角等基本几何元素相等,所以本章的内容也是学习等腰三角形、四边形、圆等内容的基础.本章分为三节,主要介绍了全等三角形的概念、性质、判定方法,以及如何利用三角形全等进行证明.第12.1节首先介绍了现实世界中的全等现象,然后从“重合”的角度引入了全等形的概念,在此基础上给出了全等三角形的概念,接着由全等三角形的概念导出了全等三角形的性质.第12.2节由图形的性质与判定在命题陈述上的互逆关系出发,引出判定两个三角形全等的方法.第12.3节首先由平分角的仪器的工作原理引出了作一个角的平分线的尺规作图,然后探究并证明了角的平分线的性质,同时总结了证明一个几何命题的一般步骤,最后给出了角的平分线的性质定理的逆定理.本章将重点研究三角形全等的判定方法,并在其中渗透了研究几何图形的基本方法.本章既有直接利用三角形全等的判定方法证明两个三角形全等的问题,又有通过证明两个三角形全等推出线段相等或角相等的问题,在问题的设计中还融入了平行线的性质与判定、三角形中边和角的等量关系、折纸情境等内容,推理论证的难度比《三角形》一章增大了.【重点】1.全等三角形的性质及各种判定三角形全等的方法.2.角平分线的性质及判定.3.证明的基本过程.【难点】1.根据不同条件合理选用三角形全等的判定方法,特别是对“SSA”不能判定三角形全等的认识.2.角平分线的性质和判定的正确运用.3.用综合法证明的格式.1.用研究几何图形的基本思想和方法贯穿本章的教学.学生在前面的几何学习中研究了相交线与平行线、三角形等几何图形,对于研究几何图形的基本问题、思路和方法形成了一定的认识,本章在教学中要充分利用学生已有的研究几何图形的思想方法,用几何思想贯穿全章的教学.2.让学生充分经历探究过程.本章在编排判定三角形全等的内容时构建了一个完整的探究活动,包括探究的目标、探究的思路和分阶段的探究活动.教学中可以让学生充分经历这个探究过程,在明确探究目标、形成探究思路的前提下,按计划逐步探索两个三角形全等的条件.本章在编排中将画图与探究三角形全等的条件结合起来, 既有用尺规画一个三角形与已知三角形全等,又有用技术手段根据已知数据画三角形.教学中要充分利用探索画图方法的过程对形成结论的价值,让学生自主探索画图的步骤、创设多种画法、解释作图依据等,在活动中发现结论.3.重视对学生推理论证能力的培养.本章是初中阶段培养逻辑推理能力的重要章节,主要包括证明两个三角形全等,通过证明三角形全等,进而证得两条线段或两个角相等.教学中要在学生已有推理论证经验的基础上,利用三角形全等的证明,进一步培养学生推理论证的能力.按照整套教科书对推理能力培养的循序渐进的目标,本章的教学重点是引导学生分析条件与结论的关系,书写严谨的证明格式,从具体问题的证明中总结出证明的一般步骤.12.1全等三角形1.掌握好全等形及全等三角形的定义.2.理解对应顶点、对应边、对应角的含义.3.掌握全等三角形的性质.1.教学时结合实际图片或学生自己动手制作的图片,使学生更加容易接受本节的知识,也能从中体会到数学的乐趣及数学与生活实际的联系.2.通过对一个图形的平移、翻折、旋转等动态变换,使学生的思维更具动态,形成空间观念,对以后的图形观察与总结具有更好的指引作用.1.在全等形的引入中,通过一些实际生活的图片,让学生感受到数学来源于生活实际,又反作用于生活实际.2.在学习中,同学之间以及小组之间相互研讨,可促进学生的团队意识,以及认识合作的价值.【重点】掌握好全等三角形的定义及利用全等三角形的性质解决问题.【难点】全等三角形性质的应用.【教师准备】全等的三角形纸板.【学生准备】剪刀、三角形纸板.导入一:(老师手拿两个全等的三角形纸板,可先分开操作,然后把两个三角形进行重合操作,目的是让学生看出这两个三角形是能够完全重合在一起的)【师】同学们,你能发现这两个三角形有什么关系吗?【生】这两个三角形是完全重合的.【师】这就是我们今天要学习的全等形中的一种,全等三角形.(同时教师手写板书)[设计意图]本节的内容,对于学生来说还是比较容易接受的,所以此设计比较简捷,单刀直入,可以节省时间,直入主题.导入二:【师】同学们,这节课我们先做个游戏,把你们准备好的剪刀与三角形纸板拿出来,先取一张纸,将准备好的三角形纸板按在纸上,画下图形,照图形裁下来,观察一下,有什么特点?同桌之间互相配合完成,再一起讨论得到的三角形与原三角形之间的关系.[设计意图]同桌之间通过互相帮助,动手探索,既能增强他们的合作意识、团队精神,又能在动手操作中感受到数学的乐趣,增强对全等三角形的认知与理解.导入三:(老师拿出一块硬纸板)同学们请看,每组的两个图形有什么特点?它们的形状、大小一样吗?它们能互相重合吗?[设计意图]这两个问题和实际生活的联系比较密切,引起了学生认知的需要,激发了学生的求知欲,使之在思维情境中进入最佳的学习状态.这就为学生认识和探索全等三角形的性质做了铺垫.一、全等三角形的相关概念1.全等形的概念思路一【师生活动一】多找一些学生举例子.(此过程中,有些学生举的例子是不正确的,如有的学生可能会说“双胞胎”,可先让学生说说此例子是否正确,让学生们一起讨论,然后老师给出正确的指引及错误的原因,对学生的不同回答,只要合理,就给予认可)[设计意图]帮助学生准确地理解定义,以及感受数学知识的严谨性.【师生活动二】(1)上面同学们举的这些例子,有什么共同的特征?(2)有人用“全等形”一词描述上面的图形,你认为这个词是什么含义?同学们畅所欲言,最后老师给出全等形及全等三角形的定义,为了加深理解,可通过列举反例强调定义的条件.全等形的定义:能够完全重合的两个图形叫做全等形.全等三角形的定义:能够完全重合的两个三角形叫做全等三角形.思路二【学生活动一】把一块三角形样板按在纸板上,画下图形,照图形裁下来.【问题思考】裁下来的纸板和样板的形状、大小完全一样吗?把样板和裁得的纸板放在一起能够完全重合吗?用同一张底片冲洗出来的两张照片上的图形,放在一起也能够完全重合吗?【学生回答后总结】能够完全重合的两个图形叫做全等形.[设计意图]从学生熟悉的图形和例子引出全等形的概念,可以排除学生对几何的畏惧心理,增强他们的自信心,在教学过程中要强调“重合”的重要性,使全等形的概念的引入显得更加自然.【学生活动二】观察黑板上的两个三角形ΔDEF和ΔABC.【思考】如果把ΔDEF放到ΔABC上,两个三角形可以重合吗?可以重合的三角形称为什么?【生答】全等三角形.[设计意图]通过这个活动及时巩固全等形的概念,同时也为后面的内容做铺垫,起承上启下的作用.[拓展延伸]两个三角形全等指的是两个三角形的形状和大小完全相同,和位置无关.2.全等三角形的相关定义【师生活动一】老师演示以下三种情况:(1)将ΔABC沿直线BC平移得到ΔDEF;(2)将ΔABC沿BC翻折180°得到ΔDBC;(3)将ΔABC绕点A旋转180°得到ΔAED.【议一议】各图中的两个三角形全等吗?它们能完全重合,我们就说它们是全等三角形,其中能重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.如上图中的甲,ΔABC与ΔDEF全等,我们就记作ΔABC≌ΔDEF,符号“≌”读作“全等于”,当两个三角形全等时,我们就用它来表示.其中点A与点D,点B与点E,点C与点F是对应顶点;AB与DE,BC与EF,AC与DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.同学们,能不能对上述的图乙,图丙,分别说出它们的记法、读法,以及其中的对应顶点、对应边、对应角.当学生回答两个三角形全等的书写时,教师注意强调书写时对应顶点字母写在对应的位置上.【师生活动二】【师】由上述的演示可以看出,一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略.在上述三种变换中,怎么能快速地找到对应顶点、对应边、对应角呢?请同学们讨论.[设计意图]学生进行讨论,各抒己见,此过程中学生说的不一定对,在互相的讨论、交流中,学生慢慢地纠正自己的错误,接受别人的好的方法,这样能更加深入地了解与掌握找全等三角形的对应点、对应边、对应角的方法.【师最后总结】在全等三角形中,找出对应角和对应边,关键是先找出对应顶点,然后按对应顶点的字母顺序记两个三角形全等,再按顺序写出对应边和对应角.全等三角形的面积一定相等,但是面积相等的两个三角形不一定是全等三角形.[知识拓展]找对应元素的常用方法有两种:(一)从运动角度看1.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.2.旋转法:三角形绕某一点旋转一定角度后能与另一三角形重合,从而发现对应元素.3.平移法:沿某一方向平移使两三角形重合来找对应元素.(二)根据元素位置来推理1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.3.公共边一定是对应边,公共角一定是对应角,对顶角一定是对应角.4.全等三角形中一对最短的边(或最小的角)是对应边(或对应角).二、全等三角形的性质学生们纷纷发言,在此过程中,老师引导学生从全等三角形可以完全重合出发找等量关系,得到全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等.[知识拓展](1)全等三角形的对应边上的高、中线以及对应角的平分线相等;(2)全等三角形的周长相等,面积相等;(3)平移、翻折、旋转前后的图形全等.三、例题讲解如图所示,ΔOCA≌ΔOBD,C和B,A和D是对应顶点.(1)ΔOCA≌ΔOBD说明这两个三角形可以重合,那么通过怎样的变换可以使这两个三角形重合?(2)说出这两个三角形中相等的边和角.解:(1)将ΔOCA翻折可以使ΔOCA与ΔOBD重合.(2)∠C=∠B,∠A=∠D,∠AOC=∠DOB;AC=DB,OA=OD,OC=OB.如图所示,已知ΔABE≌ΔACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角.〔解析〕对应边和对应角只能从两个三角形中找,所以需将ΔABE和ΔACD从复杂的图形中分离出来.根据元素位置来找,有相等元素,它们就是对应元素,再依据已知的对应元素找出其余的对应元素.解:对应角为∠BAE和∠CAD.对应边为AB与AC,AE与AD,BE与CD.1.能够完全重合的图形叫做全等形.能够完全重合的三角形叫做全等三角形.重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.全等三角形的对应边相等,对应角相等.2.找全等三角形对应元素的方法,注意挖掘图形中隐含的条件,如公共元素、对顶角等.3.在运用全等三角形的定义和性质时应注意规范书写格式.1.如图所示,ΔABC≌ΔDEF,则此图中相等的线段有()A.1对B.2对C.3对D.4对解析:因为ΔABC≌ΔDEF,所以AB=DE,AC=DF,BC=EF,因为BC=EF,即BE+EC=CF+EC,所以BE=CF,即有4对相等的线段.故选D.2.如图所示,ΔACB≌ΔA'CB',∠A'CB=30°,∠ACB'=110°,则∠ACA'的度数是()A.20°B.30°C.35°D.40°解析:∵ΔACB≌ΔA'CB',∴∠ACB=∠A'CB',∴∠ACB-∠A'CB=∠A'CB'-∠A'CB,即∠ACA'=∠BCB',∵∠A'CB=30°,∠ACB'=110°,∴∠ACA'=(110°-30°)=40°.故选D.3.如图所示,找出由七巧板拼成的图案中的全等三角形.解:三角形1和三角形2,三角形6和三角形7.4.如图所示,已知ΔABC≌ΔADE,试找出对应边、对应角.解析:方法1:可以发现∠A是公共角,在两个三角形中∠A的对边分别是BC和DE,所以BC和DE是一组对应边.而AB与AE显然不重合,所以AB与AD是一组对应边,剩下的AC与AE自然是一组对应边了.再根据对应边所对的角是对应角可得∠B与∠D是对应角,∠ACB与∠AED是对应角.所以对应边为AB与AD,AC 与AE,BC与DE.对应角为∠A与∠A,∠B与∠D,∠ACB与∠AED.方法2:沿A与BC和DE的交点O的连线将ΔABC翻折180°后,它正好和ΔADE重合,这时就可以找到对应边为AB与AD,AC与AE,BC与DE.对应角为∠A与∠A,∠B与∠D,∠ACB与∠AED.解:对应边为AB与AD,AC与AE,BC与DE.对应角为∠A与∠A,∠B与∠D,∠ACB与∠AED.12.1全等三角形一、全等三角形的相关概念二、全等三角形的性质例1例2一、教材作业【必做题】教材第32页练习第1,2题.【选做题】教材第33页习题12.1第3,4,5题.二、课后作业【基础巩固】1.下列各组图形中是全等图形的是()2.下列各组图形中,是全等形的是()A.对应钝角相等的两个等腰三角形B.两个含60°角的直角三角形C.边长为3和5的两个等腰三角形D.腰对应相等的两个直角三角形3.如图所示,ΔABC≌ΔBAD,点A和点B,点C和点D是对应顶点,如果AB=6 cm,BD=5 cm,AD=4 cm,那么AC的长是()A.6 cmB.5 cmC.4 cmD.无法确定4.如图所示,RtΔABC≌RtΔDEF,则∠D的度数为()A.30°B.45°C.60°D.90°【能力提升】5.如图所示,四边形ABCD的对角线AC,BD相交于点O,ΔABC≌ΔBAD.求证:(1)OA=OB;(2)∠OCD=∠ODC.6.如图所示,ΔABC≌ΔAEC,B和E是对应顶点,∠B=30°,∠ACB=85°,求ΔAEC各内角的度数.【拓展探究】7.如图所示,已知ΔABD≌ΔACE,且点E在BD上,CE交AB于点F,若∠CAB=20°,求∠DEF的度数.【答案与解析】1.B(解析:根据全等图形的定义可得.)2.D3.B(解析:∵ΔABC≌ΔBAD,点A与点B,点C与点D是对应顶点,∴AC=BD,又∵BD=5 cm(已知),∴AC=5 cm.故选B.)4.A(解析:∵RtΔABC≌RtΔDEF,∴∠D=∠A.∵在RtΔABC中,∠A+∠B=90°,且∠B=60°,∴∠A=30°,∴∠D=30°.故选A.)5.证明:(1)∵ΔABC≌ΔBAD,∴∠CAB=∠DBA,∴OA=OB. (2)∵ΔABC≌ΔBAD,∴AC=BD,又∵OA=OB,∴AC-OA=BD-OB,即OC=OD,∴∠OCD=∠ODC.6.解:∵ΔABC≌ΔAEC,∴∠ACE=∠ACB,∠EAC=∠BAC,∠E=∠B,又∵∠B=30°,∠ACB=85°,∴∠E=30°,∠ACE=85°,∴∠EAC=65°.7.解析:根据全等三角形的性质求出∠C=∠B,再根据三角形内角和定理和对顶角相等求出∠BEF=∠CAB=20°,代入∠DEF=180°-∠BEF即可求出∠DEF.解:∵ΔABD≌ΔACE,∴∠C=∠B,∵∠BFE=∠CFA,∠CAF=180°-∠C-∠CFA,∠BEF=180°-∠B-∠BFE,∠CAB=20°,∴∠BEF=∠CAB=20°,∴∠DEF=180°-∠BEF=180°-20°=160°.本节内容与图形是紧密相连的,图形也是学生非常喜欢的,所以本节课的引入,重点以图形为主,既让学生感受到学数学的乐趣,又引发了学生学习本节课的信心,并且对学生更加热爱生活、找到数学与生活实际的联系起到了非常重要的作用.本节课的另外一个特点是图形的平移、翻折与旋转,要求学生具有空间想象能力,这既是数学的美,也是一些学生感到吃力的地方,为了突破难点,在教学设计上,引入了几何画板,进行动态演示,让学生能在非常生动、精彩的课件中找到自信,另外,也为他们日后的学习起到了重要的铺垫作用.本节课中,全等形、全等三角形的定义都是比较浅显的,学生们非常容易接受,本节的难点是全等三角形的书写及找出对应边、对应角,在突破难点上,讲解没有达到非常生动.让学生在非常欢乐的气氛中达到难点突破是我们的教学目标.为了能突破难点,在设计上可先让学生拿着自己制作好的两个全等三角形进行平移、翻折与旋转,观察前后的变化,同时写出每次变换后的对应边、对应角,可同桌之间互相考察,也可一名学生指派另一名学生答题,然后老师再用几何画板进行动态演示,把实际操作逐步变为头脑中的印象,最后达到不用任何辅助手段就能在头脑中达到上述目的.练习(教材第32页)1.解:图(2)中,AB和DB,BC和BC,AC和DC是对应边;∠A和∠D,∠ABC和∠DBC,∠ACB和∠DCB是对应角.图(3)中,AB和AD,BC和DE,AC和AE是对应边;∠BAC和∠DAE,∠B和∠D,∠C和∠E是对应角.2.解:相等的边:AC=DB,OA=OD,OC=OB;相等的角:∠A=∠D,∠C=∠B,∠AOC=∠DOB.习题12.1(教材第33页)1.解:AC和CA是对应边;∠B和∠D,∠BAC和∠DCA,∠BCA和∠DAC是对应角.2.解:其他对应边:AN和AM,BN和CM,其他对应角:∠ANB和∠AMC,∠BAN和∠CAM.3.解:∵三角形内角和为180°,∴a所对的角为180°-60°-54°=66°,又∵两个三角形全等,∴∠1=66°.4.解:(1)其他对应边:EF和NM,FG和MH,EG和NH;其他对应角:∠E和∠N,∠FGE和∠MHN. (2)因为ΔEFG ≌ΔNMH,所以NM=EF=2.1 cm,EG=NH=3.3 cm,所以HG=EG-EH=3.3-1.1=2.2(cm),所以线段NM的长度是2.1 cm,线段HG的长度是2.2 cm.5.解:∠ACD和∠BCE相等.因为ΔABC≌ΔDEC,所以∠ACB=∠DCE.又因为∠ACB=∠ACE+∠BCE,∠DCE=∠ACD+∠ACE,所以∠ACD=∠BCE.6.解:(1)对应边:AE和AD,AC和AB,EC和DB;对应角:∠A和∠A,∠AEC和∠ADB,∠ACE和∠ABD. (2)因为ΔAEC≌ΔADB,所以∠ACE=∠ABD.又因为∠1=∠2,所以∠ACE+∠2=∠ABD+∠1,即∠ACB=∠ABC,所以∠ABC=×(180°-∠A)=65°,所以∠1=∠ABC-∠ABD=65°-39°=26°.如图所示,ΔEFG≌ΔNHM,在ΔEFG中,FG是最长的边,在ΔNHM中,MH是最长的边,∠F和∠NHM是对应角,且EF=2.4 cm,FH=1.9 cm,HM=3.5 cm.(1)写出对应相等的边及对应相等的角;(2)求线段GN及线段HG的长度.〔解析〕(1)由于ΔEFG≌ΔNHM,根据两个三角形的最长边是对应边可知FG与MH对应相等,又∠F和∠NHM是对应角,所以∠FGE和∠HMN对应相等,剩下的一对角∠E和∠N也就对应相等了;进而根据对应顶点的关系可得到EF与HN对应相等,EG与MN对应相等;(2)由HM=3.5 cm可得它的对应边FG=3.5 cm,根据FH=1.9 cm可求得HG=FG-FH=1.6 cm;又由EF=2.4 cm可得它的对应边HN的长也是2.4 cm,则GN=2.4-1.6=0.8(cm).解:(1)对应相等的边有:FG=MH,EF=HN,EG=NM;对应相等的角有:∠F=∠NHM,∠E=∠N,∠EGF=∠M.(2)根据全等三角形的性质,得HN=EF=2.4cm,HG=FG-FH=HM-FH=3.5-1.9=1.6(cm),GN=HN-HG=2.4-1.6=0.8(cm).如图所示,A,D,E三点在同一直线上,且ΔBAD≌ΔACE.(1)试说明BD=DE+CE;(2)ΔABD满足什么条件时,BD∥CE?〔解析〕(1)要说明BD=DE+CE,由于ΔBAD≌ΔACE,所以BD和AE相等,因此我们只需说明AE=DE+CE即可,又AE=AD+DE,所以本题只需说明AD=CE即可,而这对线段恰好是全等三角形的对应边.(2)要使BD∥CE,则必须有∠BDE=∠E,根据全等三角形的对应角相等可知∠ADB=∠E,所以需要条件∠ADB=90°.解:(1)∵ΔBAD≌ΔACE,∴BD=AE,AD=CE,∵AE=AD+DE,∴BD=DE+CE.(2)当ΔABD满足∠ADB=90°时,BD∥CE.〔解题策略〕证明形如“BD=DE+CE”的问题有两种思路:思路一是将BD拆成两段,证明这两段分别等于DE和CE;思路二是找一条等于DE+CE的线段,然后证明该线段等于BD.12.2三角形全等的判定1.熟练掌握“边边边”定理、“边角边”定理、“角边角”定理、“角角边”定理、“斜边直角边”定理.2.会用这些判定方法判定两个三角形全等.1.让学生通过分类讨论和作图的方法探索三角形全等的判定定理,并让学生用运动变换的方法证实.2.在探索全等三角形的判定方法的过程中,渗透分类讨论的思想.3.培养学生观察、概括、归纳的能力.1.让学生体验分类的思想,培养学生的合作精神.2.培养学生学习数学的兴趣,体会研究问题的思想和方法.【重点】全等三角形的判定方法.【难点】能用全等三角形的判定方法判定两个三角形全等.第课时1.掌握“边边边”定理的内容.2.能初步应用“边边边”定理判定两个三角形全等.3.会作一个角等于已知角.让学生探索三角形全等的条件,体验用操作、归纳得出数学结论的过程.通过探究三角形全等的条件的活动,培养学生合作交流的意识和大胆猜想、乐于探索的良好品质,以及发现问题的能力.【重点】“边边边”定理.【难点】探索三角形全等的条件.【教师准备】多媒体课件.【学生准备】复习全等三角形的性质,准备直尺和圆规.导入一:【提出问题】(1)全等三角形相等,相等.(2)已知ΔAOC≌ΔBOD,则∠A=∠B,∠C=,AC=,=OB,=OD.[设计意图]通过复习让学生进一步掌握全等三角形的性质,为下一步学习全等三角形的判定打下基础.导入二:通过前面的学习我们知道,如果两个三角形具备三条边和三个角分别对应相等,那么这两个三角形一定全等.但是要想画一个三角形与已知的三角形全等一定需要六个条件吗?条件能否尽可能地少呢?一个条件行吗?两个条件呢?一、探究三角形全等的条件【学生活动一】(1)只给一个条件(一条边或一个角)画三角形时,画出的三角形一定全等吗?(2)如果给出两个条件呢?给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?学生讨论有几种可能的情况,然后按照下面条件画一画:①三角形一个内角是30°,一条边是3 cm;②三角形两个内角分别是30°和50°;③三角形的两条边分别是4 cm和6 cm.学生分组讨论、画图、探索、归纳,最后以组为单位出示结果.【结果展示】(1)只给定一条边时.只给定一个角时.(2)给出的两个条件可能是:一边一内角、两内角、两边.可以发现按这些条件画出的三角形都不能保证一定全等.【议一议】如果给出三个条件画三角形时,你能说出有几种情况吗?(三条边,两条边一个角,一条边两个角,三个角)在刚才的探索过程中,我们已经发现已知三内角不能保证两个三角形全等.下面我们就来逐一探索其余的三种情况.(这节课只讨论第一种情况)【学生活动二】拼一拼.用你们准备的4 cm,5 cm,7 cm长的三根细木棒拼一个三角形,与其他同学拼成的三角形比较,它们一定全等吗?你又发现了什么?以小组为单位,把拼好的三角形画在纸上并剪下来,再把剪下的三角形重叠在一起,发现都能够重合,这说明这些三角形都是全等的.二、探究运用“SSS”判定两个三角形全等思路一【出示问题】先任意画一个ΔABC,再画一个ΔA'B'C',使得A'B'=AB,B'C'=BC,A'C'=AC,把画出的ΔA'B'C'剪下来,放在ΔABC上,看它们能完全重合吗?(即全等吗?)【学生活动】拿出直尺和圆规,按上面的要求作图并验证.画法:(1)画B'C'=BC;(2)分别以点B',C'为圆心,线段AB,AC的长为半径画弧,两弧相交于点A';。

八年级数学上册第十二章全等三角形知识点总结归纳(带答案)

八年级数学上册第十二章全等三角形知识点总结归纳(带答案)

八年级数学上册第十二章全等三角形知识点总结归纳单选题1、如图,OD平分∠AOB,DE⊥AO于点E,DE=5,点F是射线OB上的任意一点,则DF的长度不可能是()A.4B.5C.6D.7答案:A分析:根据角平分线的性质,可知点D到OB和OA的距离相等,并且点到直线的线段中,垂线段最短,最短距离为5,即可判断.∵OD平分∠AOB,DE⊥AO于点E,DE=5,∴D到OB的距离等于5,∴DF≥5故DF的长度不可能为4,故选A.小提示:本题考查了角平分线的性质,点到直线的线段中,垂线段最短,熟练掌握性质是本题的关键.2、下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个全等图形形状一定相同C.两个周长相等的图形一定是全等图形D.两个正三角形一定是全等图形答案:B分析:根据全等图形的定义进行判断即可.解:A:两个面积相等的图形不一定是全等图形,故A错误,不符合题意;B:两个全等图形形状一定相同,故B正确,符合题意;C:两个周长相等的图形不一定是全等图形,故C错误,不符合题意;D:两个正三角形不一定是全等图形,故D错误,不符合题意;故选:B.小提示:本题考查了全等图形,熟练运用“能够完全重合的两个图形叫做全等形”是本题的关键.3、如图,在△ABC中,AD是BC边上的高,∠BAF=∠CAG=90°,AB=AF,AC=AG,连接FG,交DA的延长线于点E,连接BG,CF,则下列结论:①BG=CF;②BG⊥CF;③∠EAF=∠ABC;④EF=EG,其中正确的有()A.①②③B.①②④C.①③④D.①②③④答案:D分析:证得△CAF≌△GAB(SAS),从而推得①正确;利用△CAF≌△GAB及三角形内角和与对顶角,可判断②正确;证明△AFM≌△BAD(AAS),得出FM=AD,∠FAM=∠ABD,则③正确,同理△ANG≌△CDA,得出NG=AD,则FM=NG,证明△FME≌△GNE(AAS).可得出结论④正确.解:∵∠BAF=∠CAG=90°,∴∠BAF+∠BAC=∠CAG+∠BAC,即∠CAF=∠GAB,又∵AB=AF=AC=AG,∴△CAF≌△GAB(SAS),∴BG=CF,故①正确;∵△FAC≌△BAG,∴∠FCA=∠BGA,又∵BC与AG所交的对顶角相等,∴BG与FC所交角等于∠GAC,即等于90°,∴BG⊥CF,故②正确;过点F作FM⊥AE于点M,过点G作GN⊥AE交AE的延长线于点N,∵∠FMA=∠FAB=∠ADB=90°,∴∠FAM+∠BAD=90°,∠FAM+∠AFM=90°,∴∠BAD=∠AFM,又∵AF=AB,∴△AFM≌△BAD(AAS),∴FM=AD,∠FAM=∠ABD,故③正确,同理△ANG≌△CDA,∴NG=AD,∴FM=NG,∵FM⊥AE,NG⊥AE,∴∠FME=∠ENG=90°,∵∠AEF=∠NEG,∴△FME≌△GNE(AAS).∴EF=EG.故④正确.故选:D.小提示:本题综合考查了全等三角形的判定与性质及等腰三角形的三线合一性质与互余、对顶角,三角形内角和等几何基础知识.熟练掌握全等三角形的判定与性质是解题的关键.4、如图,BD是△ABC的角平分线,AE⊥BD,垂足为F,若∠ABC=35°,∠C=50°,则∠CDE的度数为()A .35°B .40°C .45°D .50°答案:C分析:根据角平分线的定义和垂直的定义得到∠ABD =∠EBD =12∠ABC =35°2,∠AFB =∠EFB =90°,推出AB =BE ,根据等腰三角形的性质得到AF =EF ,求得AD =ED ,得到∠DAF =∠DEF ,根据三角形的外角的性质即可得到结论. 解:∵BD 是△ABC 的角平分线,AE ⊥BD ,∴∠ABD =∠EBD =12∠ABC =35°2,∠AFB =∠EFB =90°,∴∠BAF =∠BEF ,∴AB =BE ,AE ⊥BD ,∴BD 是AE 的垂直平分线,∴AD =ED ,∴∠DAF =∠DEF ,∵∠BAC =180°-∠ABC -∠C =95°,∴∠BED =∠BAD =95°,∴∠CDE =95°-50°=45°,故选C .小提示:本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.5、如图,△ABC ≌△DEF ,若∠A =80°,∠F =30°,则∠B 的度数是( )A.80°B.70°C.65°D.60°答案:B分析:由△ABC≌△DEF根据全等三角形的性质可得∠C=∠F=30°,再利用三角形内角和进行求解即可.∵△ABC≌△DEF,∴∠C=∠F,∵∠F=30°,∴∠C=30°,∵∠A=80°,∠A+∠B+∠C=180°,∴∠B=180°−∠A−∠C=70°,故选:B.小提示:本题考查了全等三角形的性质及三角形的内角和定理,熟练掌握知识点是解题的关键.6、小明同学只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.在角的内部,到角的两边距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形的三条高交于一点D.三角形三边的垂直平分线交于一点答案:A分析:过两把直尺的交点P作PF⊥BO与点F,由题意得PE⊥AO,因为是两把完全相同的长方形直尺,可得PE=PF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB如图所示:过两把直尺的交点P作PF⊥BO与点F,由题意得PE⊥AO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.小提示:本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.7、如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE//AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1B.DC=3C.AE=5D.AC=9答案:A分析:根据角平分线的性质得到CD=DF=3,故B正确;根据平行线的性质及角平分线得到AE=DE=5,故C正确;由此判断D正确;再证明△BDF≌△DEC,求出BF=CD=3,故A错误.解:在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DF⊥AB,∴CD=DF=3,故B正确;∵DE=5,∴CE=4,∵DE//AB,∴∠ADE=∠DAF,∵∠CAD=∠BAD,∴∠CAD=∠ADE,∴AE=DE=5,故C正确;∴AC=AE+CE=9,故D正确;∵∠B=∠CDE,∠BFD=∠C=90°,CD=DF,∴△BDF≌△DEC,∴BF=CD=3,故A错误;故选:A.小提示:此题考查了角平分线的性质定理,平行线的性质,等边对等角证明角相等,全等三角形的判定及性质,熟记各知识点并综合应用是解题的关键.8、已知图中的两个三角形全等,则∠α等于()A.72∘B.60∘C.58∘D.50∘答案:D分析:根据全等三角形的性质:全等三角形对应角相等,即可得到结论.∵图中的两个三角形全等,∠α为a和c的夹角又∵第一个三角形中a和c的夹角为50°∴∠α=50°故选:D.小提示:本题考查了全等三角形的性质,准确找到对应角是解题的关键.9、下列四个图形中,有两个全等的图形,它们是()A.①和②B.①和③C.②和④D.③和④答案:B分析:根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.解:①和③可以完全重合,因此全等的图形是①和③.故选:B.小提示:此题主要考查了全等图形,关键是掌握全等图形的概念.AD,BD平分∠ABC,则点D到AB的距离等于( ) 10、如图,在ΔABC中,∠C=90°,AC=8,DC=13A.4B.3C.2D.1答案:C分析:如图,过点D作DE⊥AB于E,根据已知求出CD的长,再根据角平分线的性质进行求解即可.如图,过点D作DE⊥AB于E,∵AC=8,DC=1AD,3∴CD=8×1=2,1+3∵∠C=90°,BD平分∠ABC,∴DE=CD=2,即点D到AB的距离为2,故选C.小提示:本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解题的关键.填空题11、如图,四边形ABCD中,∠B+∠D=180°,AC平分∠DAB,CM⊥AB于点M,若AM=4cm,BC=2.5cm,则四边形ABCD的周长为_____cm.答案:13分析:过C作CE⊥AD的延长线于点E,由条件可证△AEC≌△AMC,得到AE=AM.证明△ECD≌△MBC,由全等的性质可得DE=MB,BC=CD,则问题可得解.解:如图,过C作CE⊥AD的延长线于点E,∵AC平分∠BAD,∴∠EAC=∠MAC,∵CE⊥AD,CM⊥AB,∴∠AEC=∠AMC=90°,CE=CM,在Rt△AEC和Rt△AMC中,AC=AC,CE=CM,∴Rt△AEC≌Rt△AMC(HL),∴AE=AM=4cm,∵∠ADC+∠B=180°,∠ADC+∠EDC=180°,∴∠EDC=∠MBC,在△EDC和△MBC中,{∠DEC=∠CMB∠EDC=∠MBCCE=CM,∴△EDC≌△MBC(AAS),∴ED=BM,BC=CD=2.5cm,∴四边形ABCD的周长为AB+AD+BC+CD=AM+BM+AE﹣DE+2BC=2AM+2BC=8+5=13(cm),所以答案是:13.小提示:本题考查全等三角形的判定与性质,掌握常用的判定方法是解题的关键.12、把两个全等的三角形重合到一起,重合的顶点叫做_________,重合的边叫做_________,重合的角叫做_________.记两个三角形全等时,通常把表示_________的字母写在对应位置上.答案:对应顶点对应边对应角对应顶点分析:根据能够完全重合的两个图形叫做全等形,以及对应顶点、对应边、对应角的概念填空.解:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.记两个三角形全等时,通常把表示对应顶点的字母写在对应位置上.所以答案是:对应顶点;对应边;对应角;对应顶点.小提示:此题主要考查了全等形及相关概念,属于基本概念题,是需要识记的内容.13、如图,在Rt△ABC中,∠C=90°,AC=12cm,BC=6cm,一条线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP=_____.答案:12cm或6cm##6cm或12cm分析:当AP=12cm或6cm时,△ABC和△PQA全等,根据HL定理推出即可.解:∵∠C=90°,AO⊥AC,∴∠C=∠QAP=90°,①当AP=6cm=BC时,在Rt△ACB和Rt△QAP中∵{AB=PQ,BC=AP∴Rt△ACB≌Rt△QAP(HL),②当AP=12cm=AC时,在Rt△ACB和Rt△PAQ中{AB=PQ,AC=AP∴Rt△ACB≌Rt△PAQ(HL),所以答案是:12cm或6cm.小提示:本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA,AAS,SAS,SSS,HL.14、如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点B的坐标为(1,5),则A点的坐标是_____.答案:(-7,3)分析:先作辅助线AD ⊥OC 、BE ⊥OC ,通过导角证明∠CAD =∠BCE ,再证明△ADC ≌△CEB , 得到AD 的长度(A 的纵坐标长度)、DC 长度(加上OC 得到A 横坐标长度),根据A 点所在象限的符号,确定A 点坐标. 如图,过点A 作AD ⊥OC 于点D ,过点B 作BE ⊥OC 于点E∵ 点C 的坐标为(-2,0),点B 的坐标为(1,5)∴ OC =2,OE =1,BE =5∵∠ACB =90°∴∠ACD +∠CAD =90°,∠ACD +∠BCE =90°∴∠CAD =∠BCE在△ADC 和△CEB 中,{∠ADC =∠BEC =90°∠CAD =∠BCE AC =BC∴△ADC ≌△CEB(AAS)∴DC =BE =5,AD =CE =1+2=3∴OD =2+5=7∴ A 点的坐标是(-7,3) .小提示:本题考查了全等三角形的证明(在两个三角形中,如果有两组对应角,和其中一组对应角的对边分别相等,那么这两个三角形全等) .15、如图是由九个边长为1的小正方形拼成的大正方形,图中∠1+∠2+∠3+∠4+∠5的度数为______.答案:225°分析:首先判定△ABC≌△AEF,△ABD≌△AEH,可得∠5=∠BCA,∠4=∠BDA,然后可得∠1+∠5=∠1+∠BCA=90°,∠2+∠4=∠2+∠BDA=90°,即可求得∠1+∠2+∠3+∠4+∠5的值.解:如图所示:在△ABC和△AEF中,{AB=AE∠B=∠E=90°BC=EF∴△ABC≌△AEF(SAS),∴∠5=∠BCA,∴∠1+∠5=∠1+∠BCA=90°,在Rt△ABD和Rt△AEH中,{AB=AEAD=AH∴Rt△ABD≌Rt△AEH(HL),∴∠4=∠BDA,∴∠2+∠4=∠2+∠BDA=90°,∵∠3=45°,∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°.所以答案是:225°.小提示:此题主要考查了全等三角形的判定和性质,关键是掌握全等三角形的性质:全等三角形对应角相等即可求解.解答题16、(1)如图,在正方形ABCD中,E、F分别是BC,CD上的点,且∠EAF=45°.直接写出BE、DF、EF之间的数量关系;(2)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC,CD上的点,且∠EAF=1∠BAD,求证:EF=BE+DF;2(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,延长BC到点E,延长CD到点F,使得∠BAD,则结论EF=BE+DF是否仍然成立?若成立,请证明;不成立,请写出它们的数量关系并∠EAF=12证明.答案:(1)EF=BE+DF,理由见详解;(2)见详解;(3)结论EF=BE+FD不成立,应当是EF=BE−FD.理由见详解.分析:(1)在CD的延长线上截取DM=BE,连接AM,证出△ABE≌△ADM,根据全等三角形的性质得出BE=DM,再证明△AEF≌△AMF,得EF=FM,进而即可得出答案;(2)在CD的延长线上截取DG=BE,连接AG,证出△ABE≌△ADG,根据全等三角形的性质得出BE=DG,再证明△AEF≌△AGF,得EF=FG,即可得出答案;(3)按照(2)的思路,我们应该通过全等三角形来实现相等线段的转换.就应该在BE上截取BG,使BG=DF,连接AG.根据(2)的证法,我们可得出DF=BG,GE=EF,那么EF=GE=BE−BG=BE−DF.所以(1)的结论在(3)的条件下是不成立的.(1)解:EF=BE+DF,理由如下:延长CD,使DM=BE,连接AM,∵在正方形ABCD中,AB=AD,∠B=∠ADM=90°,∴△ABE≌△ADM,∴∠BAE=∠DAM,AE=AM,∵∠EAF=45°,∴∠BAE+∠DAF=∠DAM+∠DAF =90°-45°=45°,∴∠EAF=∠MAF=45°,又∵AF=AF,AE=AM,∴△AEF≌△AMF,∴EF=MF=MD+DF=BE+DF;(2)在CD的延长线上截取DG=BE,连接AG,如图,∵∠ADF=90°,∠ADF+∠ADG=180°,∴∠ADG=90°,∵∠B=90°,∴∠B=∠ADG=90°,∵BE=DG,AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AG=AE,∴∠EAG=∠EAD+∠DAG=∠EAD+∠ABE=∠BAD,∵∠EAF=1∠BAD,2∴∠EAF=1∠EAG,2∴∠EAF=∠FAG,又∵AF=AF,AE=AG,∴△AEF≌△AGF(SAS),∴EF=FG=DF+DG=EB+DF;(3)结论EF=BE+FD不成立,应当是EF=BE−FD.理由如下:如图,在BE上截取BG,使BG=DF,连接AG.∵∠B +∠ADC =180°,∠ADF +∠ADC =180°,∴∠B =∠ADF .∵在△ABG 与△ADF 中,{AB =AD∠ABG =∠ADF BG =DF,∴△ABG ≌△ADF (SAS ).∴∠BAG =∠DAF ,AG =AF .∴∠BAG +∠EAD =∠DAF +∠EAD =∠EAF =12∠BAD =12∠GAF . ∴∠GAE =12∠BAD =∠EAF .∵AE =AE ,AG =AF .∴△AEG ≌△AEF .∴EG =EF ,∵EG =BE −BG∴EF =BE −FD .小提示:本题考查了三角形综合题,三角形全等的判定和性质等知识,解题的关键是学会利用旋转变换的思想添加辅助线,构造全等三角形解决问题,解题时注意一些题目虽然图形发生变化,但是证明思路和方法是类似的,属于中考压轴题.17、(1)如图1,已知△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D,E .求证:DE =BD +CE .(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC,D,A,E 三点都在直线m 上,并且有∠BDA =∠AEC=∠BAC.请写出DE,BD,CE三条线段的数量关系,并说明理由.答案:(1)证明见解析;(2)DE=BD+CE,证明见解析分析:(1)利用已知得出∠CAE=∠ABD,进而利用AAS得出则△ABD≌△CAE,即可得出DE=BD+CE;(2)根据∠BDA=∠AEC=∠BAC,得出∠CAE=∠ABD,在△ADB和△CEA中,根据AAS证出△ADB≌△CEA,从而得出AE=BD,AD=CE,即可证出DE=BD+CE;(1)DE=BD+CE.理由如下:∵BD⊥m,CE⊥m,∴∠BDA=∠AEC=90°又∵∠BAC=90°,∴∠BAD+∠CAE=90°,∠BAD+∠ABD=90°,∴∠CAE=∠ABD在△ABD和△CAE中,{∠ABD=∠CAE∠ADB=∠CEA=90°AB=AC,∴△ABD≌△CAE(AAS)∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD;(2)DE=BD+CE,理由如下:∵∠BDA=∠AEC=∠BAC,∴∠DBA +∠BAD =∠BAD +∠CAE ,∴∠CAE =∠ABD ,在△ADB 和△CEA 中,{∠ABD =∠CAE∠ADB =∠CEA AB =AC,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴BD +CE =AE +AD =DE ;小提示:本题考查了全等三角形的判定与性质综合中的“一线三等角”模型:判定三角形全等的方法有“SSS ”、“SAS ”、“ASA ”、“AAS ”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.18、如图,在五边形ABCDE 中,AB =CD ,∠ABC =∠BCD ,BE ,CE 分别是∠ABC ,∠BCD 的角平分线.(1)求证:△ABE ≌△DCE ;(2)当∠A =80°,∠ABC =140°,时,∠AED =_________度(直接填空).答案:(1)见解析;(2)100分析:(1)根据∠ABC =∠BCD ,BE ,CE 分别是∠ABC ,∠BCD 的角平分线,可得∠ABE =∠DCE ,∠CBE =∠BCE ,推出BE =CE ,由此利用SAS 证明△ABE ≌△DCE ;(2)根据三角形全等的性质求出∠D 的度数,利用公式求出五边形的内角和,即可得到答案.(1)证明:∵∠ABC =∠BCD ,BE ,CE 分别是∠ABC ,∠BCD 的角平分线,∴∠ABE =∠CBE =12∠ABC ,∠BCE =∠DCE =12∠BCD ,∴∠ABE =∠DCE ,∠CBE =∠BCE ,∴BE=CE,又∵AB=CD,∴△ABE≌△DCE(SAS);(2)∵△ABE≌△DCE,∴∠D=∠A=80°,∵五边形ABCDE的内角和为(5−2)×180°=540°,∴∠AED=540°−80°×2−140°×2=100°,所以答案是:100.小提示:此题考查了全等三角形的判定及性质,多边形内角和计算,正确掌握全等三角形的判定及性质定理是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷马鸣风萧萧第12章全等三角形一、选择题1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)3.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A 点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.55.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB 等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣29.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE 和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB有怎样的数量关系,并直接写出结论(不需要证明)12.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若______,则△ABC≌△DEF.25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF ≌△AGF,可得出结论,他的结论应是______;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.第12章全等三角形参考答案一、选择题(共9小题)1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm【解答】解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.3.(2014•湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.【解答】解:A、延长AC、BE交于S,∵∠CAB=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B、延长AF、BH交于S1,作FK∥GH与BH的延长线交于点K,∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=180°﹣70°﹣43°=67°=∠GHB,∴FG∥KH,∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,C、D、同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB.综上所述,D选项的所走的线路最长.故选:D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A 点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.5【解答】解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.∴∠DPF=∠AKC=∠CHA=90°.∵AB=BC,∴∠BAC=∠BCA.在△AKC和△CHA中,∴△AKC≌△CHA(ASA),∴KC=HA.∵B、C两点在方程式y=﹣3的图形上,且A点的坐标为(﹣3,1),∴AH=4.∴KC=4.∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF.在△AKC和△DPF中,,∴△AKC≌△DPF(AAS),∴KC=PF=4.故选:C.5.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB 等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【解答】解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中∴△DBE≌△EGF,∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选:A.8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣2【解答】解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL)∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2.∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,过M点作ME⊥CN于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,∴ME==,∴tan∠MCN==故选:A.9.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ,∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,∴EP=EQ,四边形PCQE是正方形,在△EPM和△EQN中,,∴△EPM≌△EQN(ASA)∴S△EQN =S△EPM,∴四边形EMCN的面积等于正方形PCQE的面积,∵正方形ABCD的边长为a,∴AC=a,∵EC=2AE,∴EC=a,∴EP=PC=a,∴正方形PCQE的面积=a×a=a2,∴四边形EMCN的面积=a2,故选:D.二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.【解答】(1)解:∵∠CEF=90°.∴cos∠ECF=.∵∠ECF=30°,CF=8.∴CF=CF•cos30°=8×=4;(2)证明:∵AB∥DE,∴∠A=∠D,∵在△ABF和△DEC中∴△ABF≌△DEC (SAS);(3)证明:由(2)可知:△ABF≌△DEC,∴BF=CE,∠AFB=∠DCE,∵∠AFB+∠BFC=180°,∠DCE+∠ECF=180°,∴∠BFC=∠ECF,∴BF∥EC,∴四边形BCEF是平行四边形,∵∠CEF=90°,∴四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE 和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB有怎样的数量关系,并直接写出结论(不需要证明)【解答】解:(1)AE+BF=AB,如图1,∵△ABC和△DCF是等边三角形,∴CA=CB,CD=CF,∠ACB=∠DCF=60°.∴∠ACD=∠BCF,在△ACD和△BCF中∴△ACD≌△BCF(SAS)∴AD=BF同理:△CBD≌△CAE(SAS)∴BD=AE∴AE+BF=BD+AD=AB;(2)BF﹣AE=AB,如图2,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB;(3)AE﹣BF=AB,如图3,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB.12.(2013•舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.【解答】证明:∵AB∥CD,∴∠B=∠C,∠A=∠D,∵在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.【解答】(1)证明:∵△ABC为等腰直角三角形,∴CA=CB,∠A=∠ABC=45°,由旋转可知:CP=CE,BP=BD,∴CA﹣CE=CB﹣CP,即AE=BP,∴AE=BD.又∵∠CBD=90°,∴∠OBD=45°,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB;(2)成立,理由如下:连接AE,则△AEC≌△BCP,∴AE=BP,∠CAE=∠BPC,∵BP=BD,∴BD=AE,∵∠OAE=45°+∠CAE,∠OBD=90°﹣∠OBP=90°﹣(45°﹣∠BPC)=45°+∠PBC,∴∠OAE=∠OBD,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB,②当∠BPC=135°时,AB=DE.理由如下:解法一:当AB=DE时,由①知OA=OB,∴OA=OB=OE=OD.设∠PCB=α,由旋转可知,∠ACE=α.连接OC,则OC=OA=OB,∴OC=OE,∴∠DEC=∠OCE=45°+α.设∠PBC=β,则∠ABP=45°﹣β,∠OBD=90°﹣∠ABP=45°+β.∵OB=OD,∴∠D=∠OBD=45°+β.在四边形BCED中,∠DEC+∠D+∠DBC+∠BCE=360°,即:(45°+α)+(45°+β)+(90°+β)+(90°+α)=360°,解得:α+β=45°,∴∠BPC=180°﹣(α+β)=135°.解法二(本溪赵老师提供,更为简洁):当AB=DE时,四边形AEBD为矩形则∠DBE=90°=∠DBP,∴点P落在线段BE上.∵△ECP为等腰直角三角形,∴∠EPC=45°,∴∠BPC=180°﹣∠EPC=135°.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.【解答】(1)证明:∵AB∥DC,∴∠B=∠DCE,在△ABC和△DCE中,∴△ABC≌△DCE(SAS),∴∠A=∠D;(2)解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=4,∴AC=2AO=8.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?【解答】(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名学生.23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.【解答】证明:∵DE∥AB,∴∠CAB=∠ADE,∵在△ABC和△DAE中,,∴△ABC≌△DAE(ASA),∴BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A ,则△ABC≌△DEF.【解答】(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.25.(2014•德州)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF ≌△AGF,可得出结论,他的结论应是EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.【解答】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.【解答】(1)证明:如图①,∵∠BAC+∠EAD=180°,∠BAE=90°,∴∠DAC=90°,在△ABE与△ACD中∴△ABE≌△ACD(SAS),∴CD=BE,∵在Rt△ABE中,F为BE的中点,∴BE=2AF,∴CD=2AF.(2)成立,证明:如图②,延长EA交BC于G,在AG上截取AH=AD,∵∠BAC+∠EAD=180°,∴∠EAB+∠DAC=180°,∵∠EAB+∠BAH=180°,∴∠DAC=∠BAH,在△ABH与△ACD中,∴△ABH≌△ACD(SAS)∴BH=DC,∵AD=AE,AH=AD,∴AE=AH,∵EF=FB,∴BH=2AF,∴CD=2AF.。

相关文档
最新文档