最新中考数学一轮复习训练:《基本思想方法问题-分类讨论》

合集下载

中考数学复习《分类讨论问题》专项检测卷(附带答案)

中考数学复习《分类讨论问题》专项检测卷(附带答案)

中考数学复习《分类讨论问题》专项检测卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.已知等腰△ABC 的周长为18㎝,BC=8㎝.若△ABC ≌△A ´B ´C ´,则△A ´B ´C ´中一定有一定有条边等于( )A .7㎝B .2㎝或7㎝C .5㎝D .2㎝或7㎝2.若等腰三角形的两个角度的比是1:2,则这个三角形的顶角为( )度。

A 30 B 60 C 30或90 D 603.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,以过t 小时两车相距50千米,则t 的值是( )A .2或2.5B .2或10C .10或12.5D .2或12.54.已知⊙O 的半径为2,点P 是⊙O 外一点,OP 的长为3,那么以P 这圆心,且与⊙O 相切的圆的半径一定是( )A .1或5B .1C .5D .不能确定5.若m 为实数,则点P (m -2,m+2)不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.相交两圆公共弦长为6,两圆的半径分别为325,则这两圆的圆心距等于( )A .1B .2或6C .7D .1或77.如果关于x 的方程210x mx ++=的两个根的差为1,那么m 等于( )A .2±B .3C .5D .68.平面上A 、B 两点到直线l 的距离分别是2323与则线段AB 的中点C 到直线l 的距离是( )A .2B 3C .23D .不能确定 9.已知22(3)49x m x +-+是完全平方式,则m 的值是( )A .-3B .10C .-4D .10或-410.方程01892=+-x x 的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A 12 B 12或15 C 15 D 不能确定二、填空题1.已知AB 是⊙O 的直径,AC 、AD 是弦,且AB =2,AC 2,AD =1,则∠CAD =_______.A BC 2.已知AB 、CD 是⊙O 的两条平行线,AB =12,CD =16,⊙O 的直径为20,则AB 与CD 之间的距离为________.3.方程560x x x ⋅-+=的最大根与最小根的积为______.4.直角三角形的两条边长分别为6和8,那么这个三角形的外接圆半径等于________.5.已知ΔABC 中,∠C =90°,AC =3,BC =4,分别以A 和C 为圆心作⊙A 和⊙C ,且⊙C 与直线AB 不相交,⊙A 与⊙C 相切,设⊙A 的半径为r ,那么r 的取值范围是______. 6.已知2225,7x y x y +=+=,则x y -的值等于_______.7.在平面直角坐标系内,A 、B 、C 三点的坐标分别是(0,0),(4,0),(3,2),以A 、B 、C 三点为顶点画平行四边形,则第四个顶点不可能在第_____象限.8.两圆的圆心距d=5,他们的半径分别是一元二次方程0452=+-x x 的两根,判断这两圆的位置关系: .9.已知点P是半径为2的⊙O外一点,PA 是⊙O 的切线,切点为A ,且PA=2,在⊙O 内作了长为22的弦AB ,连续PB ,则PB 的长为10.已知点P是半径为2的⊙O外一点,PA 是⊙O 的切线,切点为A ,且PA=2,在⊙O 内作了长为22的弦AB ,连续PB ,则PB 的长为11.=+=-+-a 349332无解,求x x ax x 12. ==--+a 2112无解,求x ax13.若两圆相切,圆心距是7,其中一圆的半径为4,则另一圆的半径为_____________.14.一条绳子对折后成右图A 、B, A.B 上一点C ,且有BC=2AC,将其从C 点剪断,得到的线段中最长的一段为40cm,请问这条绳子的长度为_____三、解答题1.已知实数a ,b 分别满足221122,22,a a b b a b+=+=+求的值. 2.在劳技课上,老师请同学们在一张长为17cm ,宽16cm 的长方形纸板上剪下一个腰长为10cm 的等腰三角形(要求等腰三角形的一个顶点与长方形的一个顶点重合,其余两个顶点在长方形上的边上)请你帮助同学们计算剪下的等腰三角形的面积.3.在钝角△ABC 中,AD ⊥BC ,垂足为D 点,且Ad 与DC 的长度为27120x x -+=方程的两个根,⊙O 是△ABC 的外接圆,如果BD 长为(0)a a >.求△ABC 的外接圆⊙O 的面积.ME AB CDN 4.在直角坐标系中,有以A (-1,-1),B (1,-1),C (1,1),D (-1,1)为顶点的正方形,设正方形在直线y =x 上方及直线y=-x+2a 上方部分的面积为S ,(1)求12a =时,S 的值.(2)a 在实数范围内变化时,求S 关于a 的函数关系式.5.在直角坐标系XOY 中,O 为坐标原点,A 、B 、C 三点的坐标分别为A (5,0),B (0,4),C (-1,0),点M 和点N 在x 轴上,(点M 在点N 的左边)点N 在原点的右边,作MP ⊥BN ,垂足为P (点P 在线段BN 上,且点P 与点B 不重合)直线MP 与y 轴交于点G ,MG =BN. (1)求经过A 、B 、C 三点的抛物线的解析式.(2)求点M 的坐标.(3)设ON =t ,△MOG 的面积为S ,求S 与t 的函数关系式,并写出自变量t 的取值范围.(4)过点B 作直线BK 平行于x 轴,在直线BK 上是否存在点R ,使△ORA 为等腰三角形?若存在,请直接写出R 的坐标;若不存在,请说明理由.6.在直角坐标系xoy 中,一次函数32y =+的图象与x 轴交于点A ,与y 轴交于点B .(1)以原点O 为圆心的圆与直线AB 切于点C ,求切点C 的坐标.(2)在x 轴上是否存在点P ,使△PAB 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.8.在等腰三角形ABC 中,AB=AC,一边上的中线BD 将这个三角形的周长分为15和12两部分,则这个三角形的底边长为:.9:变换例题12,请问是否在x 轴,y 轴上存在点P,使得P,B,C 三点组成的图形为等腰三角形,请说明理由。

中考专题复习数学思想方法

中考专题复习数学思想方法
2.方程、不等式模型(方法型);如果关于x的一元二次方程x² -6x+c=0(c是常数)没有实根,那么c的取值范围是________.
3.映射模型(结构型);如图,直线l是一条河,P,Q两地相距8千米, P,Q两地到l的距离分别为2千米,5千米,欲在l上的某点M处修建一个 水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设 的管道,则铺设的管道最短的是()
(2)数形结合思想
由数想形
1.如图
6,直线 l
:
y
2 3
x
3与直线
y
a
(
a
为常数)的交点在第四象限,则
a 可能在(
)
A.1 a 2
B. 2 a 0
见形C思. 数3 a 2 D. 10 a 4
2.有如图所示的两种广告牌,其中图是由两个等腰直角三角形构成的,
图是一个矩形,从图形上确定这两个广告牌面积的大小关系,并将这种
【特别提醒】 1.分类中的每一部分是相互独立的. 2.一次分类必须按同一个标准. 3.分类讨论应逐级进行,做到不重、不漏. 4.最后必须归纳小结,综合得出结论.
1. 已知点P到圆的最大距离为11,最小距离为7,则此圆的半径为 多少? 2.(2015·攀枝花中考)如图,在平面直角坐标系中,O为坐标原点,矩 形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD 为等腰三角形,则所有满足条件的点P的坐标为________.
(4)数学建模思想
1.函数模型(定义型);
10.一台印刷机每年印刷的书本数量 y(万册)与它
的使用时间 x(年)成反比例关系,当 x=2 时,y=20,
则 y 与 x 的函数图像大致是(

中考数学专题之数学思想方法问题

中考数学专题之数学思想方法问题

2
考点四 转化与化归思想 例4(2014· 重庆)如图,菱形ABCD的对角线AC, BD相交于点O,AC=8,BD=6,以AB为直径作一个 半圆,则图中阴影部分的面积为( A.25π-6 25 C. π-6 6 25 B. π-6 2 25 D. π-6 8 )
【点拨】由菱形的性质可知,在 Rt△ABO 中,AB
解析: 如图, 作 BC⊥AE 于点 C, 则 BC=DE=8 m, 设 AE=x m, 则 AB=x m, AC=(x-2)m, 在 Rt△ABC 中,AC2+BC2=AB2,即(x-2)2+82=x2,解得 x=17. 故选 D.
答案: D
2 . (2014· 龙 东 ) 今 年 学 校 举 行 足 球 联 赛 , 共赛 17 轮(即每队均需参赛 17 场),记分办法是:胜 1 场得 3 分,平 1 场得 1 分,负 1 场得 0 分.在这次足球比赛 中,小虎足球队得 16 分,且踢平场数是踢负场数的整 数倍,则小虎足球队踢负场数的情况有( A.2 种 C.4 种 B.3 种 D.5 种 )
2
2
解析:依题意,画出函数y=(x-a)(x-b)的图 象,如图.函数图象为抛物线,开口向上,与x轴两 个交点的横坐标分别为a,b(a<b).
方程 1-(x-a)(x-b)=0 转化为(x-a)(x-b)=1, 方程的两根是抛物线 y=(x-a)(x-b)与直线 y=1 的两 右侧为 n. 由抛物线开口向上,可知在对称轴左侧,y 随 x 增大而减小,则有 m<a;在对称轴右侧,y 随 x 增大而增大,则有 b<n. 综上所述,可知 m<a<b< n.故选 A. 答案: A
【点拨】当点 C 在点 B 的右侧时,点 C 表示的数 为 3,则 AC=3-(-3)=6;当点 C 在点 B 的左侧时, 点 C 表示的数为-1,则 AC=-1-(-3)=2,即 AC 等于 2 或 6,故选 D. 【答案】 D

中考数学精讲精练总复习专题分类讨论思想(方法)完美

中考数学精讲精练总复习专题分类讨论思想(方法)完美

A
FB
C
D E
OE=3 OF=4
O
EF=1或7
AB与CD在圆心两侧
C
E
D
O
A
F
B
(2)在Rt△ABC中,∠C=900,AC=3,BC=4. 若以C为圆心,R为半 径的圆与斜边只有一个公共点,则R的值为多少?
B
B
D
C
A
C
A
R=
12 5
从圆由小变大的过程中,可以得到: 当3<R 4时,圆与斜边只有一个公共点.
B
(1)
C 又∵AB=12,AC=15,AD=8,
∴AE=10.
②如图(2),作∠ADE=∠C交AC于 E,
A
又∵∠A=∠A, ∴△ADE ∽△ACB.
D B
E
C (2)
Байду номын сангаас
∴ AD AE , AC AB
又∵AB=12,AC=15,AD=8,∴AE=6.4. 由①、②得: AE长为10或6.4.
例4:如图,线段OD的一个端点O在直线OM上,∠DOM=30°,以OD
(统一标准,不重不漏)
3、逐类讨论; 4、归纳作出结论。
如 图, 平 面直 角 坐标 系 中, 四边 形OABC为 矩形 , 点A、B的 坐标
分 别为(4,0)、(4,3).动 点M、N分 别从O、B同 时出 发 , 以 每秒1个
单 位的 速 度运 动.其 中, 点M沿OA向 终点A运 动, 点N沿BC向 终
顶点的三角形与△ABC相似,求AE的长.
A
A
E
D
E
D
B
(1)
CB
(2)
C
△ADE∽△ABC 或 △ADE∽△ACB

中考数学一轮总复习解题思想方法专项训练 第4讲分类讨论型问题

中考数学一轮总复习解题思想方法专项训练 第4讲分类讨论型问题

第4讲分类讨论型问题类型一由计算化简时,运用法则、定理和原理的限制引起的讨论例1(2016·南通模拟)矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为()A.3cm2B.4cm2C.12cm2D.4cm2或12cm21.(1)若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为____________________.(2)已知平面上有⊙O及一点P,点P到⊙O上一点的距离最长为6cm,最短为2cm,则⊙O的半径为cm.(3)若|a|=3,|b|=2,且a>b,则a+b=()A.5或-1 B.-5或1 C.5或1 D.-5或-1类型二在一个动态变化过程中,出现不同情况引起的讨论例2为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60时,求m的取值范围.2.(1)在平面直角坐标系中,直线y=-x+2与反比例函数y=1x的图象有唯一公共点,若直线y=-x+b与反比例函数y=1x的图象有2个公共点,则b的取值范围是()A.b>2 B.-2<b<2 C.b>2或b<-2 D.b<-2(2)如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,平行于对角线BD 的直线l从O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动到直线l与正方形没有交点为止.设直线l扫过正方形OBCD的面积为S,直线l运动的时间为t(秒),下列能反映S与t之间函数关系的图象是()3.已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y轴相交于点C,且点A,C在一次函数y2=43x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.类型三 由三角形的形状、关系不确定性引起的讨论例3 (2017·湖州)如图,在平面直角坐标系xOy 中,已知直线y =kx(k >0)分别交反比例函数y =1x 和y =9x 在第一象限的图象于点A ,B ,过点B 作BD ⊥x 轴于点D ,交y =1x 的图象于点C ,连结AC.若△ABC 是等腰三角形,则k 的值是________.4.(1)在平面直角坐标系中,O 为坐标原点,点A 的坐标为(1,3),M 为坐标轴上一点,且使得△MOA 为等腰三角形,则满足条件的点M 的个数为( )A .4B .5C .6D .8(2) (2016·北流模拟)如图,在Rt △ABC 中,∠C =90°,AC =12,BC =6,一条线段PQ =AB ,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,要使△ABC 和△QPA 全等,则AP = .(3) (2016·临淄模拟)如图,在正方形ABCD 中,M 是BC 边上的动点,N 在CD 上,且CN =14CD ,若AB =1,设BM =x ,当x = 时,以A 、B 、M 为顶点的三角形和以N 、C 、M 为顶点的三角形相似.类型四由特殊四边形的形状不确定性引起的讨论例4(2017·鄂州模拟)如图1,在四边形ABCD中,AD∥BC,AB=8cm,AD=16cm,BC=22cm,∠ABC=90°,点P从点A出发,以1cm/s的速度向点D运动,点Q从点C 同时出发,以3cm/s的速度向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t秒.(1)当t为何值时,四边形ABQP成为矩形?(2)当t为何值时,以点P、Q与点A、B、C、D中的任意两个点为顶点的四边形为平行四边形?(3)四边形PBQD是否能成为菱形?若能,求出t的值;若不能,请说明理由,并探究如何改变Q点的速度(匀速运动),使四边形PBQD在某一时刻为菱形,求点Q的速度.5.(1)(2016·盐城模拟)在平面直角坐标系中有三点A(1,1),B(1,3),C(3,2),在直角坐标系中再找一个点D,使这四个点构成平行四边形,则D点坐标为.(2)(2016·江阴模拟)如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,点F从点B出发沿射线BC以2cm/s的速度运动.如果点E、F同时出发,设运动时间为t(s),当t=s时,以A、C、E、F为顶点的四边形是平行四边形.(3)(2016·金华模拟)如图,B(6,4)在函数y=12x+1的图象上,A(5,2),点C在x轴上,点D在函数y=12x+1上,以A、B、C、D四个点为顶点构成平行四边形,写出所有满足条件的D点的坐标.(4)(2016·萧山模拟)已知在平面直角坐标系中,点A、B、C、D的坐标依次为(-1,0),(m,n),(-1,10),(-7,p),且p≤n.若以A、B、C、D四个点为顶点的四边形是菱形,则n的值是.类型五由直线与圆的位置关系不确定性引起的讨论例5如图,已知⊙O的半径为6cm,射线PM经过点O,OP=10cm,射线PN与⊙O 相切于点Q.A、B两点同时从点P出发,点A以5cm/s的速度沿射线PM方向运动,点B 以4cm/s的速度沿射线PN方向运动.设运动时间为t(s).(1)求PQ的长;(2)当t为何值时,直线AB与⊙O相切?6.(2016·泗洪模拟)如图,已知⊙P 的半径为2,圆心P 在抛物线y =12x 2-1上运动,当⊙P 与x 轴相切时,圆心P 的坐标为 .【压轴把关题】如图,在平面直角坐标系中,点A ,B 的坐标分别是(-3,0),(0,6),动点P 从点O 出发,沿x 轴正方向以每秒1个单位的速度运动,同时动点C 从点B 出发,沿射线BO 方向以每秒2个单位的速度运动.以CP ,CO 为邻边构造▱PCOD ,在线段OP 延长线上取点E ,使PE =AO ,设点P 运动的时间为t 秒.(1)当点C 运动到线段OB 的中点时,求t 的值及点E 的坐标; (2)当点C 在线段OB 上时,求证:四边形ADEC 为平行四边形;(3)在线段PE 上取点F ,使PF =1,过点F 作MN ⊥PE ,截取FM =2,FN =1,且点M ,N 分别在第一、四象限,在运动过程中,设▱PCOD 的面积为S.①当点M ,N 中,有一点落在四边形ADEC 的边上时,求出所有满足条件的t 的值; ②若点M ,N 中恰好只有一个点落在四边形ADEC 内部(不包括边界)时,直接写出S 的取值范围.【分类讨论应不重复、不遗漏】在△ABC中,P是AB上的动点(P异于A,B),过点P的一条直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线.如图,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有________条.课后练习36 分类讨论型问题A 组1.若等腰三角形的一个内角为50°,则其他两个内角为( ) A .50°,80° B .65°,65° C .50°,65° D .50°,80°或65°,65° 2.已知线段AB =8cm ,在直线AB 上画线段BC ,使BC =5cm ,则线段AC 的长度为( ) A .3cm 或13cm B .3cm C .13cm D .18cm3.在同一坐标系中,正比例函数y =-3x 与反比例函数y =kx 的图象的交点的个数是( )A .0个或2个B .1个C .2个D .3个4.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x ,那么x 的值( )A .只有1个B .可以有2个C .可以有3个D .有无数个5.若⊙O 的弦AB 所对的圆心角∠AOB =60°,则弦AB 所对的圆周角的度数为( ) A .30° B .60° C .150° D .30°或150°6.一次函数y =kx +b ,当-3≤x ≤1时,对应的y 值为1≤y ≤9,则kb 值为( ) A .14 B .-6 C .-4或21 D .-6或147.(2016·无锡模拟)在△ABC 中,∠B =25°,AD 是BC 边上的高,并且AD 2=BD ·DC ,则∠BCA 的度数为 .8.(2017·无锡模拟)在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等,则这个点叫做和谐点.例如,图中过点P 分别作x 轴、y 轴的垂线,与坐标轴围成矩形OAPB 的周长与面积相等,则点P 是和谐点.(1)判断点M (1,2),N (4,4)是否为和谐点,并说明理由;(2)若和谐点P (a ,3)在直线y =-x +b (b 为常数)上,求点a ,b 的值.第8题图B 组9.如图,已知函数y =2x 和函数y =kx 的图象交于A 、B 两点,过点A 作AE ⊥x 轴于点E ,若△AOE 的面积为4,P 是坐标平面上的点,且以点B 、O 、E 、P 为顶点的四边形是平行四边形,则满足条件的P 点坐标是 .第9题图 第10题图10.(2016·泰州模拟)如图,点A 、B 在直线l 上,AB =10cm ,⊙B 的半径为1cm ,点C 在直线l 上,过点C 作直线CD 且∠DCB =30°,直线CD 从A 点出发以每秒4cm 的速度自左向右平行运动,与此同时,⊙B 的半径也不断增大,其半径r (cm)与时间t (秒)之间的关系式为r =1+t (t ≥0),当直线CD 出发 秒直线CD 恰好与⊙B 相切.第11题图 第12题图11.如图,点P 是反比例函数y =43x (x >0)图象上的动点,在y 轴上取点Q ,使得以P ,O ,Q 为顶点的三角形是一个含有30°角的直角三角形,则符合条件的点Q 的坐标是________________________________________________________________________.12.(2017·绍兴市上虞区模拟)如图,正方形ABCD 的边长为3cm ,E 为CD 边上一点,∠DAE =30°,M 为AE 的中点,过点M 作直线分别与AD 、BC 相交于点P 、Q .若PQ =AE ,则AP 等于____________________cm.C组13.(2017·常州模拟)如图,已知抛物线y=ax2+bx+c经过点A(-1,0),B(3,0),C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△P AC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.第13题图参考答案第36讲 分类讨论型问题【例题精析】例1 ∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,AD ∥BC ,∴∠AEB =∠CBE ,∵BE 平分∠ABC ,∴∠ABE =∠CBE ,∴∠AEB =∠ABE ,∴AB =AE ,①当AE =1cm 时,AB =1cm =CD ,AD =1cm +3cm =4cm =BC ,此时矩形的面积是1cm ×4cm =4cm 2;②当AE =3cm 时,AB =3cm =CD ,AD =4cm =BC ,此时矩形的面积是:3cm ×4cm =12cm 2;故选D .例2 (1)由题意,得三口之家应缴购房款为:0.3×90+0.5×30=42(万元); (2)由题意,得①当0≤x ≤30时,y =0.3×3x =0.9x ;②当30<x ≤m 时,y =0.9×30+0.5×3×(x -30)=1.5x -18;③当x >m 时,y =0.9×30+0.5×3(m -30)+0.7×3×(x -m)=2.1x -18-0.6m.∴y =⎩⎪⎨⎪⎧0.9x (0≤x ≤30)1.5x -18(30<x ≤m )2.1x -18-0.6m (x>m )(45≤m ≤60). (3)由题意,得①当50≤m ≤60时,y =1.5×50-18=57(舍).②当45≤m <50时,y =2.1×50-0.6m -18=87-0.6m.∵57<y ≤60,∴57<87-0.6m ≤60,∴45≤m <50.综合①②得45≤m <50.例3 ∵点B 是y =kx 和y =9x 的交点,y =kx =9x ,解得:x =3k ,y =3k ,∴点B 坐标为⎝⎛⎭⎫3k ,3k ,点A 是y =kx 和y =1x 的交点,y =kx =1x ,解得:x =1k ,y =k ,∴点A坐标为⎝⎛⎭⎫1k ,k ,∵BD ⊥x 轴,∴点C 横坐标为3k,纵坐标为13k=k3,∴点C 坐标为⎝ ⎛⎭⎪⎫3k ,k 3,∴BA ≠AC ,若△ABC 是等腰三角形,①AB =BC ,则⎝⎛⎭⎫3k -1k 2+(3k -k )2=3k -k 3,解得:k =377;②AC =BC ,则⎝⎛⎭⎫3k -1k 2+⎝⎛⎭⎫k 3-k 2=3k -k 3,解得:k =155;故答案为k =377或155.例4 (1)∵∠ABC =90°,AP ∥BQ ,∴当AP =BQ 时,四边形ABQP 成为矩形,由运动知,AP =t ,CQ =3t ,∴BQ =22-3t ,∴t =22-3t ,解得t =112.∴当t =112时,四边形ABQP成为矩形; (2)当P 、Q 两点与A 、B 两点构成的四边形是平行四边形时,就是(1)中的情形,此时t =112.当P 、Q 两点与C 、D 两点构成的四边形是平行四边形时,∵PD ∥QC ,∴当PD=QC 时,四边形PQCD 为平行四边形.此时,16-t =3t ,t =4;当P 、Q 两点与B 、D 两点构成的四边形是平行四边形时,同理,16-t =22-3t ,t =3;当P 、Q 两点与A 、C 两点构成的四边形是平行四边形时,同理,t =3t ,t =0,不符合题意;故当t =112或t =4或t =3时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形. (3)四边形PBQD 不能成为菱形.理由如下:∵PD ∥BQ ,∴当PD =BQ =BP 时,四边形PBQD 能成为菱形.由PD =BQ ,得16-t =22-3t ,解得t =3,当t =3时,PD =BQ =13,AP =AD -PD =16-13=3.在Rt △ABP 中,AB =8,根据勾股定理得,BP =AB 2+AP 2=64+9=73≠13,∴四边形PBQD 不能成为菱形;如果Q 点的速度改变为v cm /s 时,能够使四边形PBQD 在时刻t s 为菱形,由题意得,⎩⎨⎧16-t =22-vt ,16-t =64+t 2,解得⎩⎪⎨⎪⎧t =6,v =2.故点Q 的速度为2cm /s 时,能够使四边形PBQD 在某一时刻为菱形.例5 (1)连结OQ ,∵PN 与⊙O 相切于点Q ,∴OQ ⊥PN ,即∠OQP =90°.∵OP =10,OQ =6,∴PQ =102-62=8(cm ). (2)过点O 作OC ⊥AB ,垂足为C.∵点A 的运动速度为5cm /s ,点B 的运动速度为4cm /s ,运动时间为t s ,∴PA =5t ,PB =4t.∵PO =10,PQ =8,∴PA PO =PB PQ =t2.∵∠P =∠P ,∴△PAB ∽△POQ ,∴∠PBA =∠PQO =90°.∵∠BQO =∠CBQ =∠OCB =90°,∴四边形OCBQ 为矩形,∴BQ =OC.∵⊙O 的半径为6,∴BQ =OC =6时,直线AB 与⊙O 相切.①当AB 运动到如图1所示的位置时,BQ =PQ -PB =8-4t ,由BQ =6,得8-4t =6,t =0.5.②当AB 运动到如图2所示的位置时,BQ =PB -PQ =4t -8,由BQ =6,得4t -8=6,t =3.5.综上,当t =0.5s 或3.5s 时,直线AB 与⊙O 相切.【变式拓展】1.(1)0或-1 (2)4或2 (3)C 2.(1)C (2)D3.根据OC 长为8可得一次函数中的n 的值为8或-8.分类讨论:①n =8时,易得A(-6,0),如图1,∵抛物线经过点A 、C ,且与x 轴交点A 、B 在原点的两侧,∴抛物线开口向下,则a <0,∵AB =16,且A(-6,0),∴B(10,0),而A 、B 关于对称轴对称,∴对称轴为直线x =-6+102=2,要使y 1随着x 的增大而减小,∵a <0,∴x ≥2;②n =-8时,易得A(6,0),如图2,∵抛物线过A 、C 两点,且与x 轴交点A ,B 在原点两侧,∴抛物线开口向上,则a >0,∵AB =16,且A(6,0),∴B(-10,0),而A 、B 关于对称轴对称,∴对称轴为直线x =6-102=-2,要使y 1随着x 的增大而减小,且a >0,∴x ≤-2.4.(1)C (2)6或12 (3)12或45 5.(1)(3,0)或(-1,2)或(3,4) (2)2或6 (3)(2,2)或(-6,-2)或(10,6) (4)2,5,18 6.(6,2)或(-6,2)【热点题型】【分析与解】(1)∵OB =6,C 是OB 的中点,∴BC =12OB =3.∴2t =3,即t =32s .∴OE=32+3=92,E(92,0). (2)如图1,连结CD 交OP 于点G ,在▱PCOD 中,CG =DG ,OG =PG ,∵AO =PE ,∴AG =EG .∴四边形ADEC 是平行四边形. (3)①(Ⅰ)当点C 在线段BO 上时,第一种情况:如图2,当点M 在CE 边上时,∵MF ∥OC ,∴△EMF ∽△ECO.∴MF CO =EF EO ,即26-2t =23+t ,解得t =1.第二种情况:如图3,当点N 在DE 边时,∵NF ∥PD ,∴△EFN ∽△EPD.∴FN PD =EF EP 即16-2t =23,解得t =94.(Ⅱ)当点C 在BO 的延长线上时,第一种情况:如图4,当点M 在DE 边上时,∵MF ∥PD ,∴EMF ∽△EDP.∴MF DP =EF EP 即22t -6=23,解得t =92.第二种情况:如图5,当点N 在CE 边上时,∵NF ∥OC ,∴△EFN ∽△EOC.∴FN OC =EF EO 即12t -6=23+t ,解得t =5.综上所述,所有满足条件的t 的值为1,94,92,5.②278<S ≤92或272<S ≤20.【错误警示】当PD ∥BC 时,△APD ∽△ABC ,当PE ∥AC 时,△BPE ∽△BAC ,连结PC ,∵∠A =36°,AB =AC ,点P 在AC 的垂直平分线上,∴AP =PC ,∠ABC =∠ACB =72°,∴∠ACP =∠PAC =36°,∴∠PCB =36°,∴∠B =∠B ,∠PCB =∠A ,∴△CPB ∽△ACB ,故过点P 的△ABC 的相似线最多有3条.故答案为:3.课后练习36 分类讨论型问题A 组1.D 2.A 3.A 4.B 5.D 6.D 7.115°或65°8.(1)∵1×2≠2×(1+2),4×4=2×(4+4),∴点M 不是和谐点,点N 是和谐点. (2)由题意,得当a >0时,(a +3)×2=3a ,∴a =6.∵点P (6,3)在直线y =-x +b 上,代入,得b =9;当a <0时,(-a +3)×2=-3a ,∴a =-6.∵点P (-6,3)在直线y =-x +b 上,代入,得b =-3.∴a =6,b =9或a =-6,b =-3.B 组9.(0,-4),(-4,-4),(4,4) 10.43或611.(0,2)、(0,8)、(0,23)或(0,833) 12.1或2C 组13.(1)y =-x 2+2x +3.(2)如图,连结BC ,直线BC 与直线l 的交点为P ,此时,△P AC 的周长最短(点A 与点B 关于l 对称).设直线BC 的解析式为y =kx +b ,将B (3,0),C (0,3)代入上式,得⎩⎪⎨⎪⎧3k +b =0,b =3,解得:⎩⎪⎨⎪⎧k =-1,b =3.∴直线BC 的函数关系式为y =-x +3.当x =1时,y =2,即点P 的坐标为(1,2).(3)抛物线的对称轴为直线x=-b2a=1,设M(1,m),已知A(-1,0),C(0,3),则MA2=m2+4,MC2=m2-6m+10,AC2=10.①若MA=MC,则MA2=MC2,得m2+4=m2-6m+10,解得m=1;②若MA=AC,则MA2=AC2,得m2+4=10,解得m=±6;③若MC=AC,则MC2=AC2,得m2-6m+10=10,解得m1=0,m2=6.当m=6时,M,A,C三点共线,构不成三角形,不合题意,故舍去.综上可知,符合条件的点M的坐标为(1,6)或(1,-6)或(1,1)或(1,0).第13题图。

中考数学专题复习教学案--分类讨论题(附答案)

中考数学专题复习教学案--分类讨论题(附答案)

分类讨论题类型之一直线型中的分类讨论直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.例1.(·沈阳市)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50° B.80° C.65°或50°D.50°或80°【解析】由于已知角未指明是顶角还是底角,所以要分类讨论:(1)当50°角是顶角时,则(180°-50°)÷2=65°,所以另两角是65°、65°;(2)当50°角是底角时,则180°-50°×2=80°,所以顶角为80°。

故顶角可能是50°或80°.答案:D .同步测试:1.(•乌鲁木齐)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm2. (·江西省)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A 落在点A′处,(1)求证:B′E=BF;(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明.类型之二圆中的分类讨论圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等.例2.(•湖北罗田)在Rt△ABC中,∠C=900,AC=3,BC=4.若以C点为圆心, r为半径所作的圆与斜边AB只有一个公共点,则r的取值范围是___ __.【解析】圆与斜边AB只有一个公共点有两种情况,1、圆与AB相切,此时r=2.4;2、圆与线段相交,点A在圆的内部,点B在圆的外部或在圆上,此时3<r≤4。

中考数学复习专题一:分类讨论思想

中考数学复习专题一:分类讨论思想

专题一:分类讨论简要分析在数学中,当被研究的问题存在多种情况,不能一概而论时,就需要按照可能出现的各种情况分类讨论,从而得出各种情况下的结论,这种处理问题的思维方法叫分类讨论思想,它不仅是一种重要的数学思想,同时也是一种重要的解题策略.在研究问题时,要认真审题,思考全面,根据其数量差异或位置差异进行分类,注意分类应不重不漏,从而得到完美答案. 典型例题例1 已知⊙O 的半径为13cm ,弦AB ∥CD ,AB =24cm ,CD =10cm ,则AB 、CD 之间的距离为【 】A .17cmB .7cmC .12cmD .17cm 或7cm例2 如图,点P 是菱形ABCD 的对角线AC 上的一个动点,过点P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点.设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的函数图象大致形状是【 】【分析】△AMN 的面积=12AP×MN ,通过题干已知条件,用x 分别表示出AP 、MN ,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x <2;例3 已知直角三角形两边x 、y 的长满足224560x y y -+-+=,则第三边长为 .例4 先阅读理解下面的例题,再按要求解答:例题:解一元二次不等式290x ->. 解:∵29(3)(3)x x x -=+-, ∴(3)(3)0x x +->.由有理数的乘法法则“两数相乘,同号得正”,有 (1)3030x x +>⎧⎨->⎩ (2)3030x x +<⎧⎨-<⎩解不等式组(1),得3x >, 解不等式组(2),得3x <-,故(3)(3)0x x +->的解集为3x >或3x <-, 即一元二次不等式290x ->的解集为3x >或3x <-. 问题:求分式不等式51023x x +<-的解集. OOOO x x x x y y y y 1 2 1 2 1 2 1 2 A .B .C .D . ABCDMN P 九年级____班姓名________第2题图例5 某园艺公司对一块直角三角形的花圃进行改造.测得两直角边长为6m 、8m .现要将其扩建成等腰三角形,且扩充部分是以8m 为直角边的直角三角形...........求扩建后的等腰三角形花圃的周长.【分析】原题并没有给出图形,要根据题意画出符合题意的图形,画出图形后,可知本题实际上应三类情况讨论:一是将△ABC 沿直线AC 翻折180°后,得等腰三角形ABD ,如图1;二是延长BC 至点D ,使CD =4,则BD =AB =10,得等腰三角形ABD ,如图2;三是作斜边AB 的中垂线交BC 的延长线于点D ,则DA =DB ,得等腰三角形ABD ,如图3.先作出符合条件的图形后,再根据勾股定理进行求解即可.图1668DC BA图2486BC AD图3x +6x 68BCDA考点训练一、选择题1.如图,点A 、B 、P 在⊙O 上,且∠APB =50°,若点M 是⊙O 上的动点,要使△ABM为等腰三角形,则所有符合条件的点M 有【 】A .1个B .2个C .3个D .4个2. 如图,已知⊙B 与△ABD 的边AD 相切于点C ,AC=4,⊙B 的半径为3,当⊙A 与⊙B 相切时,⊙A 的半径是【 】A .2B .7C .2或5D .2或83.关于x 的方程068)6(2=+--x x a 有实数根,则整数a 的最大值是【 】A .6B .7C .7D .8第1题图4. ⊙O 的半径为5㎝,弦AB ∥CD ,AB=6㎝,CD=8㎝,则AB 和CD 的距离是【 】A .7㎝B .8㎝C .7㎝或1㎝D .1㎝5. 已知一个等腰三角形两内角的度数之比为1∶4,则此等腰三角形顶角的度数是【 】A .20°B .120°C .20°或120°D .36°二、填空题6. 已知:如图,O 为坐标原点,四边形OABC 为矩形,A (10,0),C (0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,则P 点的坐标为 .7. 如图,在正方形网格中,点A 、B 、C 、D 都是格点,点E 是线段AC 上任意一点.如果AD=1,那么当AE= 时,以点A 、D 、E 为顶点的三角形与△ABC 相似.8. 二次三项式 942+-mx x 是完全平方式,则m = .9. 腰长为5,一条高为4的等腰三角形的底边长为 错误!未找到引用源。

初中数学专题复习分类讨论问题(含答案)

初中数学专题复习分类讨论问题(含答案)

初中数学专题复习(1) 分类讨论问题【简要分析】在中学数学的概念、定理、法则、公式等基础知识中,有不少是分类给出的,遇到涉及这些知识的问题,就可能需要分类讨论。

另外,有些数学问题在解答中,可能条件或结论不唯一确定,有几种可能性,也需要从问题的实际出发进行分类讨论。

把被研究的对象分成若干种情况,然后对各种情况逐一进行讨论,最终得以解决整个问题,这种解决问题的方法称为分类讨论思想方法。

它体现了化整为零与积零为整的思想,是近年来中考重点考查的思想方法。

分类讨论思想方法也是一种重要的解题策略。

分类思想方法实质上是按照数学对象的共同性和差异性,将其区分为不同的种类的思想方法,其作用是克服思维的片面性,防止漏解.要注意,在分类时,必须按同一标准分类,做到不重不漏.【典型考题例析】例1:已知一次函数y x =-+3333与x 轴、y 轴的交点分别为A 、B ,试在x 轴上找一点P ,使△PAB 为等腰三角形。

分析:本题中△PAB 由于P 点位置不确定而没有确定,而且等腰三角形中哪两条是腰也没有确定。

△PAB 是等腰三角形有几种可能?我们可以按腰的可能情况加以分类:(1)PA=PB ;(2)PA=AB ;(3)PB=AB 。

先可以求出B 点坐标()033,,A 点坐标(9,0)。

设P 点坐标为()x ,0,利用两点间距离公式可对三种分类情况分别列出方程,求出P 点坐标有四解,分别为()()()()-+-903096309630,、,、,、,。

(不适合条件的解已舍去)点拨:解答本题极易漏解。

解答此类问题要分析清楚符合条件的图形的各种可能位置,紧扣条件,分类画出各种符合条件的图形。

另外,由点的运动变化也会引起分类讨论。

由于运动引起的符合条件的点有不同位置,从而需对不同位置分别求其结果,否则漏解。

例2:正方形ABCD 的边长为10cm ,一动点P 从点A 出发,以2cm/秒的速度沿正方形的边逆时针匀速运动。

如图,回到A 点停止,求点P 运动t 秒时,P ,D 两点间的距离。

中考数学专题复习一分类讨论思想PPT课件

中考数学专题复习一分类讨论思想PPT课件
过点A作AD⊥BC,垂足为D, ∵∠ACB=75°-∠B=45°, sinACD AD,
AC
∴AD=AC×sin 45°, 在Rt△ABD中,∠B=30°,
∴AB=2AD=2AC×sin 45°=750 2 m.
答案:750 2 m
【知识归纳】解直角三角形实际应用的两点技能 1.转化:利用直角三角形或构造直角三角形解决实际问题,一 般先把实际问题转化为数学问题,若题目中无直角三角形,需 要添加辅助线(如作三角形的高等)构造直角三角形,再利用解 直角三角形的知识求解. 2.前提:解直角三角形时结合图形分清图形中哪个三角形是直 角三角形,哪条边是角的对边、斜边、邻边,此外正确理解俯 角、仰角、坡度、坡角等名词术语是解答此类题目的前提条件.
5.一次函数:已知一次函数与坐标轴围成的三角形的面积,求k 的值,常分直线交于坐标轴正半轴和负半轴讨论;确定反比例函 数与一次函数交点个数,常分一、三象限或二、四象限两种情 况讨论. 6.圆:圆的一条弦(直径除外)对两条弧,常分优弧和劣弧两种情 况讨论;求圆中两条平行弦的距离,常分两弦在圆心的同旁和两 旁两种情况讨论;圆与圆的相切,此时要考虑分外切和内切两种 情况讨论.
4.在几何中的应用:对于几何问题,我们常通过图形,找出边、 角的数量关系,通过边、角的数量关系,得出图形的性质等.
【例2】(2013·兰州中考)已知反比例函数y1= k 的图象与
x
一次函数y2=ax+b的图象交于点A(1,4)和点B(m,-2). (1)求这两个函数的解析式. (2)视察图象,当x>0时,直接 写出y1>y2时自变量x的取值范围. (3)如果点C与点A关于x轴对称, 求△ABC的面积.
5.(2013·十堰中考)如图,在小山的东侧A点有一个热气球,由

中考数学专题复习:分类讨论题

中考数学专题复习:分类讨论题

中考数学专题复习:分类讨论题中考数学专题复:分类讨论题直线型分类讨论直线型分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题。

这些问题中,等腰三角形顶角度数和三角形高的长度是重要的考点。

例如,对于一个等腰三角形,如果其中一个角度数为50°,则需要分类讨论这个角是顶角还是底角。

如果这个角是顶角,则可以通过求解另外两个角的度数得到顶角的度数;如果这个角是底角,则可以通过计算底角的度数来得到顶角的度数。

因此,顶角可能是50°或80°。

同样地,在解决三角形高的问题时,也需要分类讨论。

例如,如果一个三角形的底边和斜边长度已知,需要求解这个三角形的高的长度,则需要分类讨论这个高是否在三角形内部。

如果高在三角形内部,则可以利用勾股定理和相似三角形的性质求解高的长度;如果高在三角形外部,则可以利用平移和相似三角形的性质求解高的长度。

圆形分类讨论圆形分类讨论主要是解决圆的有关问题。

由于圆是轴对称图形和中心对称图形,因此在解决圆的问题时,需要注意分类讨论,以避免漏解。

例如,对于一个直角三角形,如果以直角为圆心画圆,则这个圆与斜边只有一个公共点。

这个问题可以分类讨论,分别考虑圆与斜边相切和圆与斜边相交的情况,从而得到圆的半径的取值范围。

函数方程分类讨论函数方程分类讨论主要是解决复杂的函数方程和方程组的问题。

在解决这些问题时,需要注意分类讨论,以避免遗漏解或得到错误的解。

例如,对于一个函数方程,如果该方程在某个区间内有多个解,则需要分类讨论这些解的性质,例如它们是否为连续函数、是否为单调函数等等。

从而可以得到方程的解的取值范围。

总之,分类讨论是解决数学问题的重要方法之一,尤其适用于复杂的问题。

在进行分类讨论时,需要认真分析问题,将问题分成若干个互不重叠的情况,并对每种情况进行单独的讨论和求解。

本题涉及到函数的分类讨论和解析式的求解,同时也需要注意特殊点的情况。

中考数学专题复习:数学思想方法1

中考数学专题复习:数学思想方法1

中考数学专题复习——数学思想方法(一)(整体思想、转化思想、分类讨论思想)一、选择题1.若a+b=3,a-b=7,则ab=()A.-10 B.-40 C.10 D.401.A2.(2013•黄冈)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为()A.πB.4πC.π或4πD.2π或4π2.C3.(2013•达州)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC 为对角线的所有▱ADCE中,DE最小的值是()A.2 B.3 C.4 D.53.B4.(2013•齐齐哈尔)CD是⊙O的一条弦,作直径AB,使AB⊥CD,垂足为E,若AB=10,CD=8,则BE的长是()A.8 B.2 C.2或8 D.3或74.C5.(2013•泸州)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.C.2cm或4D.2cm或45.C6.(2013•钦州)等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°6.B7.(2013•新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.187.B8.(2013•荆州)如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B 经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是( )A .2πB .3πC .4πD .π8.A二、填空题9.(2013•枣庄)若a 2−b 2=16,a −b = 13,则a+b 的值为 . 9.1210.(2013•雅安)若(a-1)2+|b-2|=0,则以a 、b 为边长的等腰三角形的周长为 . 10.511.(2013•宿迁)已知⊙O 1与⊙O 2相切,两圆半径分别为3和5,则圆心距O 1O 2的值是 . 11.8或212.(2013•咸宁)如图,在Rt △AOB 中,,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为 .12.14.0或-115.(2013•雅安)在平面直角坐标系中,已知点A (,0),B ,0),点C 在坐标轴上,且AC+BC=6,写出满足条件的所有点C 的坐标 .15.(0,2),(0,-2),(-3,0),(3,0)16.(2013•绥化)直角三角形两直角边长是3cm 和4cm ,以该三角形的边所在直线为轴旋转一周所得到的几何体的表面积是 cm 2.(结果保留π)16.24π,36π,84 5π17.(2013•绍兴)在平面直角坐标系中,O是原点,A是x轴上的点,将射线OA绕点O旋转,使点A与双曲线y=x上的点B重合,若点B的纵坐标是1,则点A的横坐标是.17.2或-218.(2013•广东)如图,三个小正方形的边长都为1,则图中阴影部分面积的和是(结果保留π).18.3 819.(2013•盘锦)如图,在平面直角坐标系中,直线l经过原点O,且与x轴正半轴的夹角为30°,点M在x轴上,⊙M半径为2,⊙M与直线l相交于A,B两点,若△ABM为等腰直角三角形,则点M的坐标为.19.(0)或(,0)20.(2013•凉山州)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为.20.(2,4)或(3,4)或(8,4)21.(2013•呼和浩特)在平面直角坐标系中,已知点A(4,0)、B(-6,0),点C是y轴上的一个动点,当∠BCA=45°时,点C的坐标为.21.(0,12)或(0,-12)22.(2013•泰州)如图,⊙O的半径为4cm,直线l与⊙O相交于A、B两点,,P为直线l上一动点,以1cm为半径的⊙P与⊙O没有公共点.设PO=dcm,则d的范围是.22.d>5cm或2cm≤d<3cm23.(2013•温州)一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线上.木工师傅想了一个巧妙的办法,他测量了PQ与圆洞的切点K到点B的距离及相关数据(单位:cm),从点N沿折线NF-FM(NF∥BC,FM∥AB)切割,如图1所示.图2中的矩形EFGH是切割后的两块木板拼接成符合要求的矩形桌面示意图(不重叠,无缝隙,不记损耗),则CN,AM的长分别是.23.18cm、31cm24.(2013•乐亭县一模)如图,已知直线y=x+4与两坐���轴分别交于A、B两点,⊙C 的圆心坐标为(2,O),半径为2,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值和最大值分别是.24.25.(2013•内江)已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD 的中点,P是对角线BD上一点,则PM+PN的最小值= .25.526.(2013•天门)如图,正方形ABCD的对角线相交于点O,正三角形OEF绕点O旋转.在旋转过程中,当AE=BF时,∠AOE的大小是.26.15°或165°三、解答题27.(2013•湖州)某农庄计划在30亩空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务.小张种植每亩蔬菜的工资y(元)与种植面积m(亩)之间的函数如图①所示,小李种植水果所得报酬z(元)与种植面积n(亩)之间函数关系如图②所示.(1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是元,小张应得的工资总额是元,此时,小李种植水果亩,小李应得的报酬是元;(2)当10<n≤30时,求z与n之间的函数关系式;(3)设农庄支付给小张和小李的总费用为w(元),当10<m≤30时,求w与m之间的函数关系式.27.:(1)由图可知,如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是12(160+120)=140元,小张应得的工资总额是:140×20=2800元,此时,小李种植水果:30-20=10亩,小李应得的报酬是1500元;故答案为:140;2800;10;1500;(2)当10<n≤30时,设z=kn+b(k≠0),∵函数图象经过点(10,1500),(30,3900),∴101500 303900k bk b+=⎧⎨+=⎩,解得120300 kb=⎧⎨=⎩,所以,z=120n+300(10<n≤30);(3)当10<m≤30时,设y=km+b,∵函数图象经过点(10,160),(30,120),∴10160 30120k bk b+=⎧⎨+=⎩,解得-2180 kb=⎧⎨=⎩,∴y=-2m+180,∵m+n=30,∴n=30-m,∴①当10<m≤20时,10<n≤20,w=m(-2m+180)+120n+300,=m(-2m+180)+120(30-m)+300,=-2m2+60m+3900,②当20<m≤30时,0<n≤10,w=m(-2m+180)+150n,=m(-2m+180)+150(30-m),=-2m2+30m+4500,所以,w与m之间的函数关系式为w=-22603900(1020) -22304500(2030)m m mm m m++<≤⎧⎨++<≤⎩.28.(2013•杭州)已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y轴相交于点C,且点A,C在一次函数y2=34x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.28.解:根据OC长为8可得一次函数中的n的值为8或-8.分类讨论:①n=8时,易得A(-6,0)如图1,∵抛物线经过点A、C,且与x轴交点A、B在原点的两侧,∴抛物线开口向下,则a<0,∵AB=16,且A(-6,0),∴B(10,0),而A、B关于对称轴对称,∴对称轴直线x=6102-+=2,要使y1随着x的增大而减小,则a<0,∴x>2;(2)n=-8时,易得A(6,0),如图2,∵抛物线过A、C两点,且与x轴交点A,B在原点两侧,∴抛物线开口向上,则a>0,∵AB=16,且A(6,0),∴B(-10,0),而A、B关于对称轴对称,∴对称轴直线x=6102-+=-2,要使y1随着x的增大而减小,且a>0,∴x<-2.29.(2013•随州)为了维护海洋权益,新组建的国家海洋局加强了海洋巡逻力度.如图,一艘海监船位于灯塔P的南偏东45°方向,距离灯塔100海里的A处,沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处.(1)在这段时间内,海监船与灯塔P的最近距离是多少?(结果用根号表示)(2)在这段时间内,海监船航行了多少海里?(参数数据:≈1.414, 1.732,2.449.结果精确到0.1海里)29.解:(1)如图,过点P作PC⊥AB于C点,则线段PC的长度即为海监船与灯塔P的最近距离.由题意,得∠APC=90°-45°=45°,∠B=30°,AP=100海里.在Rt△APC中,∵∠ACP=90°,∠APC=45°,海里;∴PC=AC=2(2)在Rt△PCB中,∵∠BCP=90°,∠B=30°,海里,海里,∴=50)≈50(1.414+2.449)≈193.2(海里),答:轮船航行的距离AB约为193.2海里.30.(2013•湘潭)如图,C岛位于我南海A港口北偏东60方向,距A港口海里处,我海监船从A港口出发,自西向东航行至B处时,接上级命令赶赴C岛执行任务,此时C岛在B 处北偏西45°方向上,海监船立刻改变航向以每小时60海里的速度沿BC 行进,则从B 处到达C 岛需要多少小时?30.解:∵在Rt △ACD 中,∠CAD=30°,∴CD=12×海里, ∵在Rt △BCD 中,∠CBD=45°,∴=60海里,60÷60=1(小时).答:从B 处到达C 岛需要1小时.31.(2013•三明)如图①,AB 是半圆O 的直径,以OA 为直径作半圆C ,P 是半圆C 上的一个动点(P 与点A ,O 不重合),AP 的延长线交半圆O 于点D ,其中OA=4.(1)判断线段AP 与PD 的大小关系,并说明理由;(2)连接OD ,当OD 与半圆C 相切时,求»AP 的长; (3)过点D 作DE ⊥AB ,垂足为E (如图②),设AP=x ,OE=y ,求y 与x 之间的函数关系式,并写出x 的取值范围.31.解:(1)AP=PD .理由如下:如图①,连接OP .∵OA 是半圆C 的直径,∴∠APO=90°,即OP ⊥AD .又∵OA=OD ,∴AP=PD ;(2)如图①,连接PC 、OD .∵OD是半圆C的切线,∴∠AOD=90°.由(1)知,AP=PD.又∵AC=OC,∴PC∥OD,∴∠ACP=∠AOD=90°,∴»AP的长=902180π⨯=π;(3)分两种情况:①当点E落在OA上(即0<时),如图②,连接OP,则∠APO=∠AED.又∵∠A=∠A,∴△APO∽△AED,∴AP AO AE AD=.∵AP=x,AO=4,AD=2x,AE=4-y,∴4 42xy x=-,∴y=-12x2+4(0<);②当点E落在线段OB上(即<x<4)时,如图③,连接OP.同①可得,△APO∽△AED,∴AP AO AE AD=.∵AP=x,AO=4,AD=2x,AE=4+y,∴4 42xy x=+,∴y=12x2+4(<x<4).。

中考数学专题复习数学思想方法问题

中考数学专题复习数学思想方法问题

数学思想方法问题【专题点拨】整体思想:整体思想,就是研究和解决问题时,从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的、有意识的整体处理,从而达到迅速解题的目的.分类讨论思想:当一个问题因为某种量或图形的情况不同而有可能引起问题的结果不同时,需要对这个量或图形的各种情况进行分类讨论.转化思想:转化思想亦可在狭义上称为划归思想.就是将待解决的或者难以解决的问题A 经过某种转化手段,转化为有固定解决模式的或者容易解决的问题B,通过解决问题B来解决问题A的方法.数学建模思想:为了描述一个实际现象更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学.使用数学语言描述的事物就称为数学模型.数学建模,其实就是把数学问题转化为用方程、不等式、函数等来解决的数学方法.数形结合思想:所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,利用“数形结合”可使所要研究的问题化难为易,化繁为简.类比思想:类比思想是数学创造型思维中很重要的一种思想方法,它可以帮助学习者建立新旧知识联系的桥梁,实现知识的正迁移,将已学过的知识或已掌握的解题方法迁移到陌生的问题中,进而使问题得到解决.【解题策略】整体思想:分析问题整体结果→发现问题特征→找到相互关联→运用整体思想→化难为易解决问题分类讨论思想:分析问题有变化→探索不同分析思路→找到需分解的部分→运用分类讨论的思想→多种情况分析解决问题转化思想:分析问题有难度→转化手段和方法→从难到易转化→运用转化化归的思想→通过另一途径解决问题建模思想:分析抽象问题→借助模型思想→找到相同本质→运用数学建模的思想→采用方程或函数等解决问题数形结合思想:分析问题较抽象→转化为直观易分析→找到相对应图形→运用数形结合的思想→化难为易解决问题类比思想:分析问题有深度→借助新旧知识的关联→合理进行知识迁移→运用类比的思想→轻松解决疑难问题【典例解析】类型一:整体思想应用问题例题1:(2016·青海西宁·2分)已知x2+x﹣5=0,则代数式(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2)的值为 2 .【考点】整式的混合运算—化简求值.【分析】先利用乘法公式展开,再合并得到原式=x2+x﹣3,然后利用整体代入的方法计算.【解答】解:原式=x2﹣2x+1﹣x2+3x+x2﹣4=x2+x﹣3,因为x2+x﹣5=0,所以x2+x=5,所以原式=5﹣3=2.故答案为2.变式训练1:(2015·菏泽)已知m是方程x2-x-1=0的一个根,求2+()—2m m1()的值.m m34++类型二:分类讨论思想问题例题2:(2016·贵州安顺·3分)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16B.20C.16D.以上答案均不对【分析】根据非负数的意义列出关于x、y的方程并求出x、y的值,再根据x是腰长和底边长两种情况讨论求解.【解答】解:根据题意得,解得,(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B.【点评】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形做出判断.根据题意列出方程是正确解答本题的关键.变式训练2:(2016·江西·3分)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.类型三:转化思想问题例题3:(2016·浙江省绍兴市·4分))解分式方程: +=4.【考点】解分式方程.【分析】观察可得方程最简公分母为(x﹣1),将方程去分母转化为整式方程即可求解.【解答】解:方程两边同乘(x﹣1),得:x﹣2=4(x﹣1),整理得:﹣3x=﹣2,解得:x=,经检验x=是原方程的解,故原方程的解为x=.变式训练3:(2016·吉林·5分)解方程: =.类型四:数学建模问题例题4:(2016·四川宜宾)今年“五一”节,A、B两人到商场购物,A购3件甲商品和2件乙商品共支付16元,B购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组.【考点】由实际问题抽象出二元一次方程组.【分析】分别利用“A购3件甲商品和2件乙商品共支付16元,B购5件甲商品和3件乙商品共支付25元”得出等式求出答案.【解答】解:设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组:.故答案为:.变式训练4:(2016·四川眉山·3分)受“减少税收,适当补贴”政策的影响,某市居民购房热情大幅提高.据调查,2016年1月该市宏鑫房地产公司的住房销售量为100套,3月份的住房销售量为169套.假设该公司这两个月住房销售量的增长率为x,根据题意所列方程为.类型五:数形结合问题例题5:(2016·黑龙江齐齐哈尔·12分)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是70 米,甲机器人前2分钟的速度为95 米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为60 米/分;(4)求A、C两点之间的距离;(5)直接写出两机器人出发多长时间相距28米.【考点】一次函数的应用.【分析】(1)结合图象得到A、B两点之间的距离,甲机器人前2分钟的速度;(2)根据题意求出点F的坐标,利用待定系数法求出EF所在直线的函数解析式;(3)根据一次函数的图象和性质解答;(4)根据速度和时间的关系计算即可;(5)分前2分钟、2分钟﹣3分钟、4分钟﹣7分钟三个时间段解答.【解答】解:(1)由图象可知,A、B两点之间的距离是70米,甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分;(2)设线段EF所在直线的函数解析式为:y=kx+b,∵1×(95﹣60)=35,∴点F的坐标为(3,35),则,解得,,∴线段EF所在直线的函数解析式为y=35x﹣70;(3)∵线段FG∥x轴,∴甲、乙两机器人的速度都是60米/分;(4)A、C两点之间的距离为70+60×7=490米;(5)设前2分钟,两机器人出发xs相距28米,由题意得,60x+70﹣95x=28,解得,x=,前2分钟﹣3分钟,两机器人相距28米时,35x﹣70=28,解得,x=,4分钟﹣7分钟,两机器人相距28米时,(95﹣60)x=28,解得,x=,+4=,答:两机器人出发或或相距28米.变式训练5:(2016·湖北荆州·8分)为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.类型六:数学类比问题例题6:(2016·浙江省湖州市)数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).(1)初步尝试如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;(2)类比发现如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;(3)深入探究如图3,若AD=3AB,探究得:的值为常数t,则t= .【考点】几何变换综合题.【分析】(1)①先证明△ABC,△ACD都是等边三角形,再证明∠BCE=∠ACF即可解决问题.②根据①的结论得到BE=AF,由此即可证明.(2)设DH=x,由由题意,CD=2x,CH=x,由△ACE∽△HCF,得=由此即可证明.(3)如图3中,作CN⊥AD于N,CM⊥BA于M,CM与AD交于点H.先证明△CFN∽△CEM,得=,由AB•CM=AD•CN,AD=3AB,推出CM=3CN,所以==,设CN=a,FN=b,则CM=3a,EM=3b,想办法求出AC,AE+3AF即可解决问题.【解答】解;(1)①∵四边形ABCD是平行四边形,∠BAD=120°,∴∠D=∠B=60°,∵AD=AB,∴△ABC,△ACD都是等边三角形,∴∠B=∠CAD=60°,∠ACB=60°,BC=AC,∵∠ECF=60°,∴∠BCE+∠ACE=∠ACF+∠ACE=60°,∴∠BCE=∠ACF,在△BCE和△ACF中,∴△BCE≌△ACF.②∵△BCE≌△ACF,∴BE=AF,∴AE+AF=AE+BE=AB=AC.(2)设DH=x,由由题意,CD=2x,CH=x,∴AD=2AB=4x,∴AH=AD﹣DH=3x,∵CH⊥AD,∴AC==2x,∴AC2+CD2=AD2,∴∠ACD=90°,∴∠BAC=∠ACD=90°,∴∠CAD=30°,∴∠ACH=60°,∵∠ECF=60°,∴∠HCF=∠ACE,∴△ACE∽△HCF,∴==2,∴AE=2FH.(3)如图3中,作CN⊥AD于N,CM⊥BA于M,CM与AD交于点H.∵∠ECF+∠EAF=180°,∴∠AEC+∠AFC=180°,∵∠AFC+∠CFN=180°,∴∠CFN=∠AEC,∵∠M=∠CNF=90°,∴△CFN∽△CEM,∴=,∵AB•CM=AD•CN,AD=3AB,∴CM=3CN,∴==,设CN=a,FN=b,则CM=3a,EM=3b,∵∠MAH=60°,∠M=90°,∴∠AHM=∠CHN=30°,∴HC=2a,HM=a,HN=a,∴AM=a,AH=a,∴AC==a,AE+3AF=(EM﹣AM)+3(AH+HN﹣FN)=EM﹣AM+3AH+3HN﹣3FN=3AH+3HN﹣AM=a,∴==.故答案为.变式训练6:(2016·陕西)问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.【能力检测】1.(2016·四川泸州)分式方程﹣=0的根是.2.(2016·黑龙江齐齐哈尔·3分)有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为.3.(2016·湖北荆门·3分)如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是什么?.4.(2016·内蒙古包头)一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2.(1)求y与x之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.5.(2016·陕西)昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?6.(2016河南)(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.【参考答案】变式训练1:(2015·菏泽)已知m是方程x2-x-1=0的一个根,求2()—2+m m1()的值.++m m34【解析】把m代入方程求得m2-m=1,再把有关m的代数式化简,最后整体代入求出代数式的值.【解答】∵m是方程x2-x-1=0 的一个根,∴m2-m-1=0.即m2-m=1.m(m+1)2-m2(m+3)+4=m3+2m2+m-m3-3m2+4=-m2+m+4=-(m2-m)+4=-1+4=3.【点评】本题考查代数式的求值,解答这类问题要善于观察代数式的整体特征,先将条件进行转化,再把代数式化简,然后将化简结果转成与条件有关的式子进行计算.变式训练2:(2016·江西·3分)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.【考点】矩形的性质;等腰三角形的性质;勾股定理.【分析】分情况讨论:①当AP=AE=5时,则△AEP是等腰直角三角形,得出底边PE=AE=5即可;②当PE=AE=5时,求出BE,由勾股定理求出PB,再由勾股定理求出等边AP即可;③当PA=PE时,底边AE=5;即可得出结论.【解答】解:如图所示:①当AP=AE=5时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=5;②当PE=AE=5时,∵BE=AB﹣AE=8﹣5=3,∠B=90°,∴PB==4,∴底边AP===4;③当PA=PE时,底边AE=5;综上所述:等腰三角形AEP的对边长为5或4或5;故答案为:5或4或5.变式训练3:(2016·吉林·5分)解方程: =.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣2=x+3,解得:x=5,经检验x=5是分式方程的解.变式训练4:(2016·四川眉山·3分)受“减少税收,适当补贴”政策的影响,某市居民购房热情大幅提高.据调查,2016年1月该市宏鑫房地产公司的住房销售量为100套,3月份的住房销售量为169套.假设该公司这两个月住房销售量的增长率为x,根据题意所列方程为100(1+x)2=169 .【分析】根据年1月该市宏鑫房地产公司的住房销售量为100套,3月份的住房销售量为169套.设该公司这两个月住房销售量的增长率为x,可以列出相应的方程.【解答】解:由题意可得,100(1+x)2=169,故答案为:100(1+x)2=169.【点评】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出形应的方程.变式训练5:(2016·湖北荆州·8分)为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.【分析】(1)利用得到系数法求解析式,列出方程组解答即可;(2)根据所需费用为W=A种树苗的费用+B种树苗的费用,即可解答.【解答】解:(1)设y与x的函数关系式为:y=kx+b,把(20,160),(40,288)代入y=kx+b得:解得:∴y=+32.(2)∵B种苗的数量不超过35棵,但不少于A种苗的数量,∴∴≤x≤35,设总费用为W元,则W=+32+7(45﹣x)=﹣+347,∵k=﹣,∴y随x的增大而减小,∴当x=35时,W总费用最低,W最低=﹣×35+347=137(元).【点评】此题主要考查了一次函数的应用,根据一次函数的增减性得出费用最省方案是解决问题的关键.变式训练6:(2016·陕西)问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.【考点】四边形综合题.【分析】(1)作B关于AC 的对称点D,连接AD,CD,△ACD即为所求;(2)作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,得到此时四边形EFGH的周长最小,根据轴对称的性质得到BF′=BF=AF=2,DE′=DE=2,∠A=90°,于是得到AF′=6,AE′=8,求出E′F′=10,EF=2即可得到结论;(3)根据余角的性质得到1=∠2,推出△AEF≌△BGF,根据全等三角形的性质得到AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x根据勾股定理列方程得到AF=BG=1,BF=AE=2,作△EFG关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以EG为半径作⊙O,则∠EHG=45°的点在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′GH′,则∠EH′G=45°,于是得到四边形EFGH′是符合条件的最大部件,根据矩形的面积公式即可得到结论.【解答】解:(1)如图1,△ADC即为所求;(2)存在,理由:作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,交BC于G,交CD于H,连接FG,EH,则F′G=FG,E′H=EH,则此时四边形EFGH的周长最小,由题意得:BF′=BF=AF=2,DE′=DE=2,∠A=90°,∴AF′=6,AE′=8,∴E′F′=10,EF=2,∴四边形EFGH的周长的最小值=EF+FG+GH+HE=EF+E′F′=2+10,∴在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小,最小值为2+10;(3)能裁得,理由:∵EF=FG=,∠A=∠B=90°,∠1+∠AFE=∠2+AFE=90°,∴∠1=∠2,在△AEF与△BGF中,,∴△AEF≌△BGF,∴AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x,∴x2+(3﹣x)2=()2,解得:x=1,x=2(不合题意,舍去),∴AF=BG=1,BF=AE=2,∴DE=4,CG=5,连接EG,作△EFG关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以EG为半径作⊙O,则∠EHG=45°的点在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′GH′,则∠EH′G=45°,此时,四边形EFGH′是要想裁得符合要求的面积最大的,∴C在线段EG的垂直平分线设,∴点F,O,H′,C在一条直线上,∵EG=,∴OF=EG=,∵CF=2,∴OC=,∵OH′=OE=FG=,∴OH′<OC,∴点H′在矩形ABCD的内部,∴可以在矩形ABCD中,裁得符合条件的面积最大的四边形EFGH′部件,这个部件的面积=EG•FH′=××(+)=5+,∴当所裁得的四边形部件为四边形EFGH′时,裁得了符合条件的最大部件,这个部件的面积为(5+)m2.【能力检测】1.(2016·四川泸州)分式方程﹣=0的根是x=﹣1 .【考点】分式方程的解.【分析】把分式方程转化成整式方程,求出整式方程的解,再代入x(x ﹣3)进行检验即可.【解答】解:方程两边都乘以最简公分母x(x﹣3)得:4x﹣(x﹣3)=0,解得:x=﹣1,经检验:x=﹣1是原分式方程的解,故答案为:x=﹣1.2.(2016·黑龙江齐齐哈尔·3分)有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为20和20 .【考点】正方形的性质;等腰三角形的性质.【分析】分两种情形讨论①当30度角是等腰三角形的顶角,②当30度角是底角,分别作腰上的高即可.【解答】解:如图1中,当∠A=30°,AB=AC时,设AB=AC=a,作BD⊥AC于D,∵∠A=30°,∴BD=AB=a,∴•a•a=5,∴a2=20,∴△ABC的腰长为边的正方形的面积为20.如图2中,当∠ABC=30°,AB=AC时,作BD⊥CA交CA的延长线于D,设AB=AC=a,∵AB=AC,∴∠ABC=∠C=30°,∴∠BAC=120°,∠BAD=60°,在RT△ABD中,∵∠D=90°,∠BAD=60°,∴BD=a,∴•a•a=5,∴a2=20,∴△ABC的腰长为边的正方形的面积为20.故答案为20或20.3.(2016·湖北荆门·3分)如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是什么?.【考点】反比例函数图象上点的坐标特征;等腰三角形的性质.【分析】由对称性可知O为AB的中点,则当△PAB为等腰三角形时只能有PA=AB或PB=AB,设P点坐标为(x,0),可分别表示出PA和PB,从而可得到关与x的方程,可求得x,可求得P点坐标.【解答】解:∵反比例函数y=图象关于原点对称,∴A、B两点关于O对称,∴O为AB的中点,且B(﹣1,﹣2),∴当△PAB为等腰三角形时有PA=AB或PB=AB,设P点坐标为(x,0),∵A(1,2),B(﹣1,﹣2),∴AB==2,PA=,PB=,当PA=AB时,则有=2,解得x=﹣3或5,此时P点坐标为(﹣3,0)或(5,0);当PB=AB时,则有=2,解得x=3或﹣5,此时P点坐标为(3,0)或(﹣5,0);综上可知P点的坐标为(﹣3,0)或(5,0)或(3,0)或(﹣5,0),故答案为:(﹣3,0)或(5,0)或(3,0)或(﹣5,0).4.(2016·内蒙古包头)一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2.(1)求y与x之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.【考点】一元二次方程的应用;根据实际问题列二次函数关系式.【分析】(1)由横、竖彩条的宽度比为3:2知横彩条的宽度为xcm,根据:三条彩条面积=横彩条面积+2条竖彩条面积﹣横竖彩条重叠矩形的面积,可列函数关系式;(2)根据:三条彩条所占面积是图案面积的,可列出关于x的一元二次方程,整理后求解可得.【解答】解:(1)根据题意可知,横彩条的宽度为xcm,∴y=20×x+2×12•x﹣2×x•x=﹣3x2+54x,即y与x之间的函数关系式为y=﹣3x2+54x;(2)根据题意,得:﹣3x2+54x=×20×12,整理,得:x2﹣18x+32=0,解得:x1=2,x2=16(舍),∴x=3,答:横彩条的宽度为3cm,竖彩条的宽度为2cm.5.(2016·陕西)昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?【考点】一次函数的应用.【分析】(1)可设线段AB所表示的函数关系式为:y=kx+b,根据待定系数法列方程组求解即可;(2)先根据速度=路程÷时间求出小明回家的速度,再根据时间=路程÷速度,列出算式计算即可求解.【解答】解:(1)设线段AB所表示的函数关系式为:y=kx+b,依题意有,解得.故线段AB所表示的函数关系式为:y=﹣96x+192(0≤x≤2);(2)12+3﹣(7+)=15﹣=(小时),112÷=80(千米/时),÷80=80÷80=1(小时),3+1=4(时).答:他下午4时到家.6.(2016河南)(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为a+b (用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.【考点】三角形综合题.【分析】(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD≌△EAB,根据全等三角形的性质得到CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+3;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可得到结论.【解答】解:(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为:CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,,∴△CAD≌△EAB,∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=4;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴P N=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2,∴最大值为2+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=BO﹣﹣3=2﹣,∴P(2﹣,).【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.。

中考中的数学思想方法---分类讨论思想(方法指导及例题解析).doc

中考中的数学思想方法---分类讨论思想(方法指导及例题解析).doc

中考中的数学思想方法----分类讨论思想一、概述:当我们面对一大堆杂乱的人民币时,我们一般会先分10元,5元,2元,1元,5角,…… 等不同面值把人民币整理成一叠叠的,再分别数出各叠钱数,最后把各叠的钱数加起来得出这一堆人民币的总值。

这样做,比随意一张张地数的方法要快且准确的多,因为这种方法里渗透了分类讨论的思想。

在数学中,分类思想是根据数学本质属性的相同点和不同点,把数学的研究对象区分为不同种类的一种数学思想,正确应用分类思想,是完整解题的基础。

而在中考中,分类讨论思想也贯穿其中,几乎在全国各地的重考试卷中都会有这类试题,命题者经常利用分类讨论题来加大试卷的区分度,很多压轴题也都涉及分类讨论,由此可见分类思想的重要性,下面精选了几道有代表性的试题予以说明。

二、例题导解:1、(上海市中考题)直角三角形的两条边长分别为6和8,那么这个三角形的外接圆半径等于 .③解:①当6、8是直角三角形的两条直角边时,斜边长为10,此时这个三角形的外接圆半径等于21╳ 10 =5②当6是这个三角形的直角边,8是斜边时,此时这个三角形 的外接圆半径等于21╳ 8=4 2、(北京市中考题)在△ABC 中,∠B =25°,AD 是BC 边上的高,并且,则∠BCA 的度数为____________。

解:①如图1,当△ABC 是锐角三角形时, ∠BCA=90°-25°=65°①如图2,当△ABC 是钝角三角形时, ∠BCA=90°+25°=115°图1 图23、(济南市中考题)如图1,已知Rt ABC △中,30CAB ∠=,5BC =.过点A 作AE AB ⊥,且15AE =,连接BE 交AC 于点P . (1)求PA 的长;(2)以点A 为圆心,AP 为半径作⊙A ,试判断BE 与⊙A 是否相切,并说明理由;(3)如图2,过点C 作CD AE ⊥,垂足为D .以点A 为圆心,r 为半径作⊙A ;以点C 为圆心,R 为半径作⊙C .若r 和R 的大小是可变化的,并且在变化过程中保持⊙A 和⊙C 相.切.,且使D 点在⊙A 的内部,B 点在⊙A 的外部,求r 和R 的变化范围. (1)在Rt ABC △中,305CAB BC ∠==,, 210AC BC ∴==. AE BC ∥,APE CPB ∴△∽△. ::3:1PA PC AE BC ∴==. :3:4PA AC ∴=,3101542PA ⨯==. (2)BE 与⊙A 相切.在Rt ABE △中,AB =15AE =,tan AE ABE AB ∴∠===60ABE ∴∠=. 又30PAB ∠=,9090ABE PAB APB ∴∠+∠=∴∠=,, BE ∴与⊙A 相切.(3)因为5AD AB ==,,所以r的变化范围为5r <<.当⊙A 与⊙C 外切时,10R r +=,所以R的变化范围为105R -<<; 当⊙A 与⊙C 内切时,10R r -=,所以R的变化范围为1510R <<+C D 图1 图24、(上海市普陀区中考模拟题)直角坐标系中,已知点P (-2,-1), 点T (t,0)是x 轴上的一个动点.(1) 求点P 关于原点的对称点P '的坐标; (2) 当t 取何值时,△P 'TO 是等腰三角形? 解:(1)点P 关于原点的对称点P '的坐标为(2,1)(2)5='P O .(a )动点T 在原点左侧.当51='=O P O T 时,△TO P '∴点)0,5(1-T .(b )动点T 在原点右侧.①当P T O T '=22时,△TO P '是等腰三角形.得:)0,45(2T .② 当O P O T '=3时,△TO P '是等腰三角形. 得:点)0,5(3T .③ 当O P P T '='4时,△TO P '是等腰三角形. 得:点)0,4(4T .综上所述,符合条件的t 的值为4,5,45,5-. 5、如图,平面直角坐标系中,直线AB 与x 轴,y 轴分别交于A (3,0),B (0,3)两点, ,点C 为线段AB 上的一动点,过点C 作CD ⊥x 轴于点D . (1)求直线AB 的解析式;(2)若S 梯形OBCD 求点C 的坐标; (3)在第一象限内是否存在点P ,使得以P ,O,B 为顶点的 三角形与△OBA 相似.若存在,请求出所有符合条件 的点P 的坐标;若不存在,请说明理由.解:(1)直线AB 解析式为:y=33-x+3. (2)方法一:设点C坐标为(x ,33-x+3),那么OD =x ,CD =33-x+3. ∴OBCD S 梯形=()2CD CD OB ⨯+=3632+-x . 由题意:3632+-x =334,解得4,221==x x (舍去) ∴ C(2,33) 方法二:∵ 23321=⨯=∆OB OA S AOB ,OBCD S 梯形=334,∴63=∆ACD S . 由OA=3OB ,得∠BAO =30°,AD=3CD .∴ ACD S ∆=21CD×AD =223CD =63.可得CD =33. ∴ AD=1,OD =2.∴C (2,33). (3)当∠OBP =Rt ∠时,如图①若△BOP ∽△OBA ,则∠BOP =∠BAO=30°,BP=3OB=3,∴1P (3,33). ②若△BPO ∽△OBA ,则∠BPO =∠BAO=30°,OP=33OB=1.∴2P (1,3).当∠OPB =Rt ∠时③ 过点P 作OP ⊥BC 于点P(如图),此时△PBO ∽△OBA ,∠BOP =∠BAO =30° 过点P 作PM ⊥OA 于点M .方法一: 在Rt △PBO 中,BP =21OB =23,OP =3BP =23.∵ 在Rt △P MO 中,∠OPM =30°, ∴ OM =21OP =43;PM =3OM =433.∴3P (43,433).方法二:设P(x ,33-x+3),得OM =x ,PM =33-x+3 由∠BOP =∠BAO,得∠POM =∠ABO .∵tan ∠POM==OMPM =x x 333+-,tan ∠ABO=OBOA =3.∴33-x+3=3x ,解得x =43.此时,3P (43,433). ④若△POB ∽△OBA(如图),则∠OBP=∠BAO =30°,∠POM =30°. ∴ PM =33OM =43. ∴ 4P (43,43)(由对称性也可得到点4P 的坐标).当∠OPB =Rt ∠时,点P 在x轴上,不符合要求.综合得,符合条件的点有四个,分别是:1P (3,33),2P (1,3),3P (43,433),4P (43,43).。

中考数学一轮复习训练:《基本思想方法问题分类讨论》

中考数学一轮复习训练:《基本思想方法问题分类讨论》

MN=-43x2+133x-13x=-43x2+4x,
专题突破六┃ 基本思想方法问题—— 分类讨论
此时只要 MN=AC,以 A,C,M,N 为顶点的四边形是平行四 边形.
∴-43x2+4x=3,
3 ∴x1=x2=2. 当点 M 在 OD 之外运动时: MN=13x-(-43x2+133x)=43x2-4x, 此时只要 NM=AC,以 A,C,M,N 为顶点的四边形是平行四 边形.
专题突破六┃ 基本思想方法问题—— 分类讨论
∴PD2=AD·BD, ∴( 3t)2=(2+t)·(1-t), 解得 t=-1+8 33(t>0). ∴当△ABP 是直角三角形时,t 的值为 1 或-1+8 33.
专题突破六┃ 基本思想方法问题—— 分类讨论
探究三 根据图形的不同位置进行分类讨论
例 3 [2014·莱芜] 如图 Z6-2,过 A(1,0),B(3,0)
∵cos60°=O1P,
OP ∴OP=2,∴t= 2 =1;
专题突破六┃ 基本思想方法问题—— 分类讨论
③若∠APB=90°,作 PD⊥OB 于点 D. 由题意知 OP=2t.
在 Rt△POD 中,∠POD=60°, ∵cos60°=OODP,∴OD=t,则 BD=1-t,PD= 3t.
∵PD⊥AB,∴△APD∽△PBD, ∴APDD=PBDD,

解得
∴y=-43x2+133x.
专题突破六┃ 基本思想方法问题—— 分类讨论
(2)存在这样的点 M,使得以 A,C,M,N 为顶点的四边形是 平行四边形.
1 由题意易求直线 OD 的表达式为 y=3x,
∴可设点
1 M(x,3x),则点
N(x,-43x2+133x).

中考数学专题复习分类讨论思想试题

中考数学专题复习分类讨论思想试题

分类讨论思想分类讨论思想在人们的思维、推理过程中起着重要的作用,它实际上是一种化整为零、分别对待、各个击破的思维策略。

也就是说,假如我们研究的问题包含多种情况,又不能一概而论时,就需要进展分类讨论。

按同一HY问题划分成假设干种不同的情形,并把每一种情形毫无遗漏地划分到某一类中去,再进一步讨论每一类情形的特性,得出每类情下相应的结论,即所谓分类讨论的思想。

分类时要注意分类HY要统一,且不重不漏;要掌握分类原那么、方法与技巧,做到“确定对象的全体、明确分类的HY〞。

典例:如图,在Rt△ABC中,∠B=900,BC=53,∠C=300.点D从点C出发沿CA方向以每秒2个单位长度的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长度的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停顿运动。

设点D、E运动的时间是是t〔t>0〕秒。

过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF(2)四边形AEFD可以成为菱形吗?假如能,求出相应的t值;假如不能,说明理由。

(3)当t为何值时,△DEF为直角三角形?请说明理由。

BCF练习:如图〔1〕,矩形ABED ,点C 是边DE 的中点,且AB =2AD 。

(1) 判断△ABC 的形状,并说明理由(2) 保持图〔1〕中△ABC 的固定不变,绕点C 旋转DE 所在的直线MN 到图〔2〕中的位置〔垂线段AD 、BE 在直线MN 的同侧〕。

试探究线段AD 、BE 、DE 的长度之间有什么关系?并给予证明。

(3) 保持图〔2〕中△ABC 固定不变,继续绕点C 旋转DE 所在的直线MN 到图〔3〕中的位置〔垂线段AD 、BE 、DE 的长度之间有什么关系,并给予证明励志赠言经典语录精选句;挥动**,放飞梦想。

厚积薄发,一鸣惊人。

关于努力学习的语录。

自古以来就有许多文人留下如头悬梁锥刺股的经典的,而近代又有哪些经典的高中励志赠言出现呢?小编筛选了高中励志赠言句经典语录,看看是否有些帮助吧。

中考数学 分类讨论思想中考训练题 华东师大版精选.doc

中考数学 分类讨论思想中考训练题 华东师大版精选.doc

a4.在半径为1的圆0中,弦AB 、AC 的长分别是侖、迈,则ZBAC 的度数分类讨论思想■分类思想是根据数学本质属性的相同点和不同点,将数学研究对象分为不同种类的一种数学思想。

分类以比较为基础, 比较是分类的前提,分类是比较的结果。

■分类必须有一定的标准,标准不同分类的结果也就不同。

分类要做到不遗漏,不重复。

分类后,对每个类进行研究,使 问题在各种不同的情况下,分别得到各种结论,这就是讨论。

分类讨论思想・分类讨论是对问题深入研究的思想方法,用分类讨论的思想,有助于发现解题思路和掌握技能技巧,做到举一反三,触 类旁通。

・分类的思想随处可见,既有概念的分类:如实数、有理数、绝对值、点(直线、圆)与圆的位置关系和两圆相切等概念 的分类;又有解题方法上的分类,如代数式中含有字母系数的方程、不等式;还有几何中图形位置关系不确定的分类, 等腰三角形的顶角顶点不确定、相似三角形的对应关系不确定等。

%1. 与概念有关的分类1. 一次函数y=kx+b 的自变量的取值范围是-3WxW 6,,相应的函数值的取值范围是-5WyW-2 ,则这个函数的解析 式 _____o2. 函数y=ax 2-ax+3x+l 与x 轴只有一个交点,求a 的值与交点坐标。

%1. 图形位置的分类1如图,线段0D 的一个端点0在直线a 上,以0D 为一边画等腰三角形,并且使另一个顶点在直线a 上,这样的等腰三角形能画 多少个?2在下图三角形的边上找出一点,使得该点与三角形的两顶点构成腰三角形!3. 如图,直线AB 经过圆0的國卜,与圆0交于A 、B 两点,点C 在圆0上,且ZA0C=30°,点P 是直线AB 上的一个动点(与点0不 重合),直线PC 与圆0相交于点Q,问点P 在直线AB 的什么位置时,QP=QO?这样的点P 有几个?并相应地求出ZOCP 的度数。

5. AABC 是半径为2cm 的圆的内接三角形,若BC=2^3 cm,则角A 的度数是 ________________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题突破六┃ 基本思想方法问题—— 分类讨论
此时只要 MN=AC,以 A,C,M,N 为顶点的四边形是平行四 边形. 4 2 ∴- x +4x=3, 3 3 ∴x1 =x 2 = . 2 当点 M 在 OD 之外运动时: 1 4 2 13 4 2 MN= x-(- x + x)= x -4x, 3 3 3 3 此时只要 NM=AC,以 A,C,M,N 为顶点的四边形是平行四 边形.
专题突破六┃ 基本思想方法问题—— 分类讨论
图 Z 6 -2
专题突破六┃ 基本思想方法问题—— 分类讨论 【例题分析】
专题突破六┃ 基本思想方法问题—— 分类讨论 【方法提炼】
专题突破六┃ 基本思想方法问题—— 分类讨论
解:(1)当 x=1 时,y=4-1=3,∴点 C(1,3). 当 x=3 时,y=4-3=1,∴点 D(3,1). ∴ 4 2 13 ∴y=- x + x. 3 3 解得
专题突破六┃ 基本思想方法问题—— 分类讨论
∴PD2=AD·BD, ∴( 3t)2=(2+t)·(1-t), -1+ 33 解得 t= (t>0). 8 -1+ 33 ∴当△ABP 是直角三角形时,t 的值为 1 或 . 8
专题突破六┃ 基本思想方法问题—— 分类讨论 探究三 根据图形的不同位置进行分类讨论
专题突破六 基本思想方法 问题——分类讨论
专题突破六┃ 基本思想方法问题—— 分类讨论
专题突破六┃ 基本思想方法问题—— 分类讨论
考向互动探究
探究一 根据概念进行分类讨论
专题突破六┃ 基本思想方法问题—— 分类讨论 【例题分析】
专题突破六┃ 基本思想方法问题—— 分类讨论 【方法提炼】破六┃ 基本思想方法问题—— 分类讨论
4 2 3+ 3 2 3- 3 2 ∴ x -4x=3,∴x1= ,x 2= . 3 2 2 3 3+ 3 2 3- 3 2 ∴点 M 的横坐标是 或 或 . 2 2 2
例 3 [2014·莱芜] 如图 Z6-2,过 A(1,0) ,B ( 3, 0 ) 作 x 轴的垂线,分别交直线 y=4-x 于 C,D 两点.抛物线 y=ax2 +bx+c 经过 O,C,D 三点. (1)求抛物线的表达式. (2)点 M 为直线 OD 上的一动点,过 M 作 x 轴的垂线交抛物 线于点 N,问是否存在这样的点 M,使得以 A,C,M,N 为顶点的 四边形为平行四边形?若存在,求出此时点 M 的横坐标;若不存 在,请说明理由.
专题突破六┃ 基本思想方法问题—— 分类讨论
(2)存在这样的点 M,使得以 A,C,M,N 为顶点的四边形是 平行四边形. 1 由题意易求直线 OD 的表达式为 y= x, 3 1 4 2 13 ∴可设点 M(x, x),则点 N(x,- x + x). 3 3 3 当点 M 在 O,D 之间运动时: 4 2 13 1 4 2 MN=- x + x- x=- x +4x, 3 3 3 3
(2)当△ABP 是直角三角形时,求 t 的值.
图 Z 6 -1
专题突破六┃ 基本思想方法问题—— 分类讨论 【例题分析】
专题突破六┃ 基本思想方法问题—— 分类讨论 【方法提炼】
专题突破六┃ 基本思想方法问题—— 分类讨论
1 3 3 解:(1)当 t= 秒时,则 OP=1,S△ABP= . 2 4 (2)当△ABP 是直角三角形时, ①∵∠A<∠BOC=60°,∴∠A 不可能是直角; ②若∠ABP=90°,则在 Rt△OPB 中,∠BOC=60°,OB=1. 1 ∵cos60°= , OP OP ∴OP=2,∴t= =1; 2
解:解第一个不等式得 x≤3; 解第二个不等式得 x<a. ∵a 是不等于 3 的常数, ∴当 a>3 时,不等式组的解集为 x≤3; 当 a<3 时,不等式组的解集为 x<a.
专题突破六┃ 基本思想方法问题—— 分类讨论
探究二 根据图形形状进行分类讨论
例 2 [2014·福州] 如图 Z6-1,点 O 在线段 AB 上,AO=2, OB=1,OC 为射线,且∠BOC=60°,动点 P 以每秒 2 个单位长 度的速度从点 O 出发,沿射线 OC 做匀速运动,设运动时间为 t 秒. 1 (1)当 t= 秒时,则 OP= 2 ,S△ABP= ;
专题突破六┃ 基本思想方法问题—— 分类讨论
③若∠APB=90°,作 PD⊥OB 于点 D. 由题意知 OP=2t. 在 Rt△POD 中,∠POD=60°, OD ∵cos60°= ,∴OD=t,则 BD=1-t,PD= 3t. OP ∵PD⊥AB,∴△APD∽△PBD, AD PD ∴ = , PD BD
相关文档
最新文档