化工热力学理论

合集下载

化工热力学

化工热力学

化工热力学化工热力学的第一个问题就是热能的转换。

它包括各种形式的热量之间的转换,如物质之间、设备之间、管线之间、以及反应容器内的气体之间的热量转换,因此这一章讨论各种传热问题。

化工热力学的第二个问题是研究反应中能量的传递问题,包括原料与产品的化学反应,产品与副产品的物理加工过程。

化工热力学的第三个问题是研究物质在溶液、悬浮液和气体中的分散与凝聚,其中包括固体物质的溶解、离析、沉降、升华、凝结、胶体化以及气体中的扩散等问题。

化工热力学的第四个问题是研究燃烧问题,包括燃烧方法的选择、燃烧室的设计和热量的测量等问题。

高温时空气中水蒸气液化变成饱和液态水。

温度降低到100 ℃以下时,液态水全部结冰。

水的结晶温度随压力升高而降低,纯净的水在一定的压力下有固定的熔点,温度在一定范围内变动,由于结构不同,在不同的条件下会发生物理性质上的变化,可制成很多晶体。

如常见的冰、干冰、雪、盐等,熔点不同。

水蒸气在一定条件下可以直接变成水。

水蒸气凝结时要吸收热量。

用途很广,人类生活和生产中大量需要各种各样的水。

水有许多不同的状态,有冰、水汽、水滴、雾、露、湿空气、液态水、盐水、海洋水、地下水、泉水、河流、湖泊、溪水、海水等。

水与水之间有密切的联系,如果我们能够科学地使用水资源,就会避免许多水灾害。

水有自己的运动规律,按照这些规律来观察和认识水,将会给人们带来很大的好处。

在过去的十几年里,世界上许多国家面临着水资源不足的危机。

为了减少用水,保护水资源,世界各国都非常重视节约用水。

全世界每年缺水约500亿立方米。

在干旱的北非、中亚和南美一些地区,每天至少损失100万人口的饮用水。

我国也面临着严峻的缺水问题。

我国人均水资源占有量仅为世界人均量的四分之一。

3。

化学分析是对实验中所得到的数据进行分析和处理,从而得出结论或者通过一定的推理,证明某种结果是否符合事实。

4。

溶液在一定条件下能够导电,且当两种液体互相接触时会发生放热现象,把这两种液体分开的方法叫做分液。

化工热力学整理

化工热力学整理

第一章1.化工热力学的作用地位:化工热力学是将热力学原理应用于化学工程技术领域。

它的主要任务是以热力学第一、第二定律为基础,研究化工过程中各种能量的相互转化及其有效利用,研究各种物理和化学变化过程达到平衡的理论极限、条件和状态。

化工热力学是化学工程学的重要组成部分,是化工过程研究、开发与设计的理论基础。

2.热力学第零定律:当两个物体分别与第三个物体处于热平衡时,则这两个物体彼此之间也必定处于热平衡。

这是经验的叙述,称热平衡定律,又称热力学第零定律。

热力学第一定律即能量守恒定律:在任何过程中能量不能创造也不能消灭,只能按照严格的当量从一种形式转变为另一种形式。

热力学第二定律:任何体系都是自动地趋向平衡状态,一切自动过程都是不可逆的3.相律定义:'2R R K F--+-=π式中F 称为自由度,也就是独立的强度性质的数目,π、R 和'R 分别是相数、独立的化学反应数和其它的强度性质的限制数。

4.热力学基本方程 对于均相系统,热力学基本方程一共有四个,它们是:∑∑==++-=Ki ii L l l l dn dY X pdV TdS dU 11μ,∑∑==+++=Ki i i Ll l l dn dY X Vdp TdS dH 11μ∑∑==++--=Ki i i Ll l l dn dY X pdV SdT dA 11μ,∑∑==+++-=Ki i i Ll l l dn dY X Vdp SdT dG 11μ),,,(),,,(),,,(),,,(i l i l i l i l n Y P T G TS H G n Y V T A TS U A n Y P S H PV U H n Y V S U U =-==-==+==这四个基本方程可由热力学第一和第二定律导得。

推导前需要一个有关状态或平衡态的基本假定:对于一个均相系统,如果不考虑除压力以外的其它广义力,为了确定平衡态,除了系统中每一种物质的数量外,还需确定两个独立的状态函数。

化工热力学第一章.

化工热力学第一章.
化工热力学是理论和工程实践性都较强的学科。
化工热力学 第一章 绪 论
化工热力学解决的实际问题可以归纳为三类: (1) 过程进行的可行性分析和能量的有效利用; (2) 相平衡和化学反应平衡问题; (3) 测量、推算与关联热力学性质。
化工热力学 第一章 绪 论
2. 热力学在化工过程开发中的作用
局限:对物质结构必须采用一些假设的模型,这 些假设模型只是物质实际结构的近似描写。
化工热力学 第一章 绪 论
四、化工热力学研究内容及在化工过程开发中的作用 1. 化工热力学的研究内容
化工热力学的主要任务是以热力学第一、第二定律 为基础,研究化工过程中各种能量的相互转化及其有效利 用的规律,研究物质状态变化与物质性质之间的关系以及 物理或化学变化达到平衡的理论极限、条件和状态。
7 了解热力学在化工过程中的主要实际应用。
化工热力学 第一章 绪 论
预备知识(复习名词、概念)
体系与环境
体系:研究的对象 环境:研究对象以外的部分
敞开体系(开系):体系与环境之间有能量与物质的交换。
体系 封闭体系(闭系):体系与环境之间只有能量交换而无物质的交换。
孤立体系:体系与环境之间既无能量交换也无物质的交换。
化工热力学 第一章 绪 论
过程与循环
过程:状态的变化历程 按可逆程度分:可逆过程、不可逆过程。 按状态参数变化分:等温、等压、等容、等焓、绝热过程等。
循环: 正向循环:热能变为机械能的热力循环。PV图上以顺时针 方向循环。所有热机都是。
逆向循环:消耗能量迫使热量从低温流向高温。 V图上以逆 时针方向循环。所有制冷、热泵都是。
3.化工热力学在化工过程开发中的作用
降低原料消耗,减少环境污染; 降低能耗(利用夹点技术); 提高产品的质量(利用新型分离技术); 为化工单元操作提供多元相平衡数据; 为实验成果的放大,实现工业化提供基础

化工热力学

化工热力学
(3)Soave-Redilich-Kwong(SRK)方程 1972年,Soave修正了RK方程中常数a,使a不仅与临界参
数有关,还与物质的蒸气压及外界条件温度相关联,建立 了SRK方程。 ▪ 形式
p RT a V b V (V b)
式中的方程常数b与RK方程的相同,常数a的表达式为
关。虽然有的状态方程可以用于气、液两相,但
较多用于气相,而且准确也高,而活度系数模型 主要用于液体溶液。
(2)意义: 化工热力学解决的三大问题中,以平衡状态下 热力学性质的计算最为重要,它是解决其它问题的基础, 所以在本书中受到特别的重视,所占的篇幅较多,其理由 如下:
▪ 物性及热力学性质是化工工艺设计中不可缺少的基础数据。 化工生产要涉及大量的物质,在过程开发和化工生产中, 若对处理物料的性质不了解,则无法分析流体间物质和能 量的传递,也无法设计分离过程,更无法认识其反应过程。
▪ 超临界流体区:高于临界温度和压力的区域叫超临界流体 区。从液体到流体或从气体到流体都不存在相变化。超临 界流体既不同于液体,也不同于气体,它的密度可以接近 液体,但具有类似气体的体积可变性和传递性质,可以作 为特殊的萃取溶剂和反应介质,与此相应的开发技术有超 临界萃取和超临界反应等。
▪ P-V图上的等温线: 主要有三种, 一是高于临界温度的等 温线T1,曲线平滑,近于双曲线,即PV = 常数,符合理 想气体的状态方程;二是小于临界温度的等温线T3,被 AC和BC线截断为三部分,其中水平段表示气液两相平衡
▪ 模型:经典热力学原理必须与反映系统特征的模 型相结合,才能解决实际问题。因为它只表示了
上述两类热力学性质之间的普遍依赖关系,并不
因具体系统而异。具体系统的这种关系还要由此

化工热力学

化工热力学

化工热力学讲稿0.绪论0.1 热力学发展简史1593年伽利略制造出第一支温度计1784年有了比热容的概念18世纪中期,热质说18世纪末到19世纪中叶,热动说蒸汽机发明,1824年,卡诺提出理想热机,热力学的萌芽1738年,伯努利方程诞生,为其验证能量守恒,即热力学第一定律1824年出项第一个热功当量,焦耳进行试验测定1850年克劳修斯证明了热机效率,1854年正式命名了热力学第二定律1913年能斯特提出热力学第三定律1931年Fowler提出热力学第零定律0.2化工热力学的主要内容热力学第一定律和热力学第二定律。

与物化不同之处在于要讨论系统与环境既有物质交换又有能量的情况,偏重的是在实际工程上的应用。

0.3 化工热力学的研究方法及其发展微观与宏观相结合微观:分子热力学宏观:经典热力学量子力学的发展液位化工热力学的研究提供了新的途径,0.4 化工热力学在化工中的重要性定性定量0.5 热能转换的基本概念一、热力系、状态及状态参数(一)热力系与工质1、工质:在物化学习当中我门知道热机就是将热能转变为机械能的设备,如气轮机、内燃机等都是热机。

在热机中要使热能不断的转变为机械能,需要借助于媒介物质。

实现能量转换的媒介物质就是工质。

例如在卡诺热机当中的工质就是理想气体。

不同性质的工质对能量转换的效果有直接影响,工质性质的研究是本学科的重要内容之一。

原则上,气、液、固三态物质都可以作为工质,但热力学中,热能与机械能的转换是通过物质体积变化来实现的,为使能量转换快速而有效,常选气态物质为工质。

在火电厂中,由于工质连续不断的通过热力设备膨胀做功,因此,要求工质应有良好的膨胀性和流动性,此外,还要求工质热力性质稳定,无毒,无腐蚀,价廉、易得等。

因此,目前火电厂中采用水蒸气作为工质。

水在锅炉中吸热生成蒸气,然后在气轮机中膨胀推动叶轮向外做功,做功后的乏汽在宁汽器中向冷却水放热又凝结为水。

在这一系列中,炉膛中的高温烟气是向工质提供热量的高温热源,气轮机是实现能量转换的热机,凝汽器中的冷却水是吸收工质所释放的废热的低温热源,通过工质的状态变化及它和高温热源、低温热源之间的相互作用实现了热能向机械能的连续转换。

高等化工热力学

高等化工热力学

热力学的历史与发展
总结词
热力学的历史可以追溯到18世纪,它的发展经历了多 个阶段,包括经典热力学、统计热力学和高等化工热 力学等。
详细描述
经典热力学是热力学的早期阶段,主要研究热能和机械 能之间的转换。统计热力学则从微观角度研究热现象的 本质和规律。高等化工热力学是在经典热力学和统计热 力学的基础上发展起来的,它结合了化学反应的特点和 热力学的原理,为化工生产提供了理论基础和优化方案 。随着科技的发展,热力学的研究领域不断扩大,涉及 到新能源、节能减排、环保等领域,为人类社会的可持 续发展做出了重要贡献。
03
热力学第二定律
热力学第二定律的表述
热力学第二定律指出,在封闭系统中, 自发过程总是向着熵增加的方向进行, 即系统总是向着无序程度增加的方向 演变。
热力学第二定律也可以表述为,不可 能从单一热源吸收热量并使之完全转 化为功而不产生其他影响。
热力学第二定律的应用
01
热力学第二定律在化工过程中有着广泛的应用,如热量传递、物质分 离和化学反应等。
THANKS
感谢观看
热力学第一定律的应用
热力学第一定律在化工生产中有着广泛的应用,如热力发电、蒸汽动力、制冷技术等。通过热力学第 一定律,我们可以分析各种热能转换装置的工作原理和效率,优化装置的设计和运行参数,提高能源 利用效率。
在化工生产中,热力学第一定律可以帮助我们分析反应过程的能量平衡,预测反应过程中的能量变化 和热量需求,为反应过程的优化提供理论支持。
高等化工热力学
• 热力学基础 • 热力学第一定律 • 热力学第二定律 • 化学平衡 • 相平衡 • 热力学在化工中的应用
01
热力学基础
热力学的定义与目的
总结词

化工热力学知识点

化工热力学知识点

一, 课程简介化工热力学是化学工程学科的一个重要分支,是化工类专业学生必修的基础技术课程。

化工热力学课程结合化工过程阐述热力学基本原理, 定理及其应用,是解决工业过程(特殊是化工过程)中热力学性质的计算和预料, 相平衡计算, 能量的有效利用等实际问题的。

二, 教学目的培育学生运用热力学定律和有关理论知识,初步驾驭化学工程设计及探讨中获得物性数据;对化工过程中能量和汽液平衡等有关问题进行计算的方法,以及对化工过程进行热力学分析的基本实力,为后续专业课的学习及参与实际工作奠定基础。

三, 教学要求化工热力学是在基本热力学关系基础上,重点探讨能量关系和组成关系。

本课程学习须要具备肯定背景知识,如高等数学和物理化学等方面的基础知识。

采纳敏捷的课程教学方法,使学生能正确理解基本概念,娴熟驾驭各种基本公式的应用领域及应用技巧,驾驭化学工程设计及探讨中求取物性数据及平衡数据的各种方法。

以课堂讲解, 自学和作业等多种方式进行。

四, 教学内容第一章绪论本章学习目的及要求:了解化工热力学的发展简史, 主要内容及探讨方法。

第二章流体的P-V-T关系本章学习目的及要求:了解纯物质PVT的有关相图中点, 线, 面的物理意义,驾驭临界点的物理意义及其数学特征;理解志向气体的基本概念和数学表达方法,驾驭采纳状态方程式计算纯物质PVT性质的方法;了解对比态原理,驾驭用三参数对比态原理计算纯物质PVT性质的方法;了解真实气体混合物PVT性质的计算方法。

第一节纯物质的PVT关系1. 主要内容: P-V相图,流体。

2. 基本概念和知识点:临界点。

3. 实力要求:驾驭临界点的物理意义及其数学特征。

第二节气体的状态方程式1. 主要内容:志向气体状态方程,维里方程,R-K方程。

2. 基本概念和知识点:志向气体的数学表达方法,维里方程,van der Waals方程,R-K方程。

3. 实力要求:驾驭采纳状态方程式计算纯物质PVT性质的方法。

第三节对比态原理及其应用1. 主要内容:三参数对比态原理,普遍化状态方程。

化工热力学知识点框架总结

化工热力学知识点框架总结

化工热力学知识点框架总结热力学是一门研究能量转化和能量传递规律的自然科学。

在化工领域,热力学是一门重要的基础学科,它不仅是理论研究的基础,也是工程设计和实践的重要依据。

本文将对化工热力学的相关知识点进行总结,包括热力学基本概念、热力学系统与过程、物态方程、热力学第一定律、热力学第二定律、熵和热力学函数等内容。

1. 热力学基本概念热力学是研究能量转化和能量传递的规律的一门科学,它是人们认识能源转化过程的基础。

热力学基本概念包括系统、边界、环境、状态、过程等。

系统是研究对象的一部分,可以是封闭系统、开放系统或闭合系统;边界是系统与环境之间的分界面;环境是系统外部的一切事物;状态是系统在一定条件下所处的特定状态,可以通过状态方程描述;过程是系统从一个状态变为另一个状态的行为。

2. 热力学系统与过程根据热力学研究对象的不同,系统可以分为孤立系统、封闭系统和开放系统。

孤立系统与外界无能量和物质的交换;封闭系统能与外界进行能量交换但不能与物质交换;开放系统能与外界进行能量和物质的交换。

根据系统的体积和质量的变化,热力学过程可以分为等体过程、等压过程、等温过程和绝热过程。

等体过程中系统的体积不变,等压过程中系统的压强不变,等温过程中系统的温度不变,绝热过程中系统与外界无热交换。

3. 物态方程物态方程描述了气体的状态参数之间的关系,最常用的气体状态方程是理想气体状态方程。

理想气体状态方程描述了理想气体的压强、体积、温度之间的关系,可以表示为P*V=n*R*T,其中P为气体的压强,V为气体的体积,n为气体的物质量,R为气体的特定常数,T为气体的温度。

除了理想气体状态方程,还有范德瓦尔斯方程等描述气体状态的方程。

在实际工程中,通过物态方程可以描述气体在不同条件下的状态参数,为工程设计和生产提供基础数据。

4. 热力学第一定律热力学第一定律是能量守恒定律的表达,在闭合系统中能量不会自发减少或增加。

热力学第一定律可以表达为系统内能的变化等于系统所做的功与系统所吸收的热的代数和。

化工热力学课件

化工热力学课件

化工热力学课件化工热力学课件热力学是化工工程中的重要学科之一,它研究了能量转化和传递的规律。

化工热力学课件是学习和理解热力学概念和原理的重要工具。

本文将从热力学的基本概念入手,逐步展开对化工热力学课件的探讨。

一、热力学的基本概念热力学是研究能量转化和传递的科学,它关注的是系统的宏观性质和状态变化。

在化工领域,热力学用于分析和设计化工过程中的能量转化和传递过程,为工程师提供了重要的理论基础。

热力学的基本概念包括系统、边界、环境和状态等。

系统是研究对象,可以是一个物质或一组物质。

边界是系统与环境之间的分界面,通过边界可以控制物质和能量的交换。

环境包括系统外的一切物质和能量。

状态是系统在给定条件下的宏观性质,如温度、压力、体积等。

二、化工热力学课件的内容化工热力学课件通常包括热力学基本概念、热力学第一定律、热力学第二定律、熵和自由能等内容。

这些内容是理解和应用热力学原理的基础。

热力学第一定律是能量守恒定律,它表明能量在系统和环境之间可以相互转化和传递,但总能量保持不变。

这一定律对于分析和设计化工过程中的能量平衡非常重要。

热力学第二定律是能量转化的方向性规律,它表明能量在转化过程中总是趋向于高温向低温传递。

这一定律对于分析和设计化工过程中的能量转化效率有着重要的指导意义。

熵是热力学中的一个重要概念,它表示系统的无序程度。

根据热力学第二定律,系统的熵总是趋向于增加。

熵的概念在化工过程中有着广泛的应用,例如在分离过程中,可以利用熵的增加来实现物质的分离和纯化。

自由能是热力学中的另一个重要概念,它表示系统的稳定程度。

自由能包括内能和熵的贡献,它的变化可以用来判断系统是否能够发生自发变化。

在化工过程中,自由能的概念可以用来评估和优化工艺的稳定性和能量效率。

三、化工热力学课件的应用化工热力学课件的学习和理解对于化工工程师的工作具有重要的指导意义。

通过学习热力学的基本概念和原理,工程师可以更好地理解和分析化工过程中的能量转化和传递过程,为工艺设计和优化提供依据。

高等化工热力学

高等化工热力学

高等化工热力学
高等化工热力学是化学工程学科中的一个重要分支,它研究化学物质的热力学性质以及在化工过程中的应用。

它主要涉及物质在不同温度、压力和组成条件下的热力学性质,例如物质的物态转变、相平衡、热力学循环等。

高等化工热力学的研究对象包括气体、液体和固体物质,以及气液、液液和固液等多相体系的热力学性质。

通过研究这些性质,可以预测和优化化工过程的工艺条件,提高化工生产的效率和经济性。

高等化工热力学主要包括以下几个方面的内容:
1. 热力学基础:即热力学定律和基本概念,包括热平衡、温度、热力学势、状态方程等。

2. 物相平衡:研究多相体系中不同相的平衡条件和相变规律,包括液气平衡、气固平衡、液固平衡等。

3. 热化学性质:研究化学反应的热力学性质,如反应焓、反应熵、反应平衡常数等,用于优化反应条件和预测反应产物。

4. 热力学循环:研究热力学循环过程的性质和效率,如蒸汽动力循环、制冷循环等,用于热能转换和能量利用。

5. 化工过程热力学:研究化工过程中的热力学性质,如传热、传质、反应器设计等,用于优化化工过程和设备设计。

高等化工热力学在化工工程的各个领域有重要的应用,例如在石油化工过程的热力学分析和优化、化学反应器的热力学设计和控制、制药过程的热力学模拟和优化等。

通过深入研究和应
用高等化工热力学的原理和方法,可以提高化工过程的效率、安全性和可持续发展性。

化工热力学基础理论

化工热力学基础理论

化工热力学基础理论1. 引言在化工过程中,热力学是一个重要的基础理论。

它研究了能量转换和传递的规律,为化工过程的设计和优化提供了基本原理。

本文将介绍化工热力学的基础理论,包括热力学系统、状态函数、热力学平衡和熵等内容。

2. 热力学系统热力学系统是指用于研究的一部分物质或物质的组合。

根据系统的边界和与外界的交换方式,可以将热力学系统分为三类:封闭系统、开放系统和孤立系统。

封闭系统是指与外界无质量交换,但能量可以在系统和外界之间进行交换的系统。

开放系统是指物质和能量都可以在系统和外界之间进行交换的系统。

孤立系统是指与外界既没有物质也没有能量交换的系统。

3. 状态函数状态函数是描述热力学系统状态的函数,它们只依赖于系统的当前状态,而与系统是如何达到当前状态无关。

常见的状态函数有:体积(V)、压力(P)、温度(T)、摩尔数(n)和内能(U)等。

体积是指系统所占据的物理空间的大小;压力是系统对单位面积的物理表面施加的力的大小;温度是系统中各个粒子热运动的平均能量;摩尔数是系统中的分子或原子的数量;内能是所有分子或原子的总能量。

4. 热力学平衡热力学平衡是指热力学系统在不受外界作用下达到稳定状态的过程。

在热力学平衡状态下,各个宏观性质保持不变,系统内部的微观状态也保持不变。

热力学平衡有两个基本原则:能量最小原则和熵增原则。

能量最小原则指系统总能量在平衡状态下取得最小值;熵增原则指在孤立系统中,熵在平衡状态下取得最大值。

通过理解热力学平衡,我们可以预测和优化化工过程的性能,提高能源利用效率和产品质量。

5. 熵熵是一个衡量系统无序程度的物理量,它越高,系统的无序程度越大。

熵的计算需要一定的统计物理学知识,可以用于描述系统的混乱程度和随机性。

根据热力学第二定律,孤立系统中熵不会减少,只会增加或保持不变。

这意味着自发过程是朝着熵增加的方向进行的。

在化工过程中,认识和利用熵的概念对于优化能量利用和减少能量损失非常重要。

热力化学第六章 化工过程热力学分析

热力化学第六章 化工过程热力学分析

Wid 耗功:a WS
T0 T0 Q低 Q 1 1 T L T I a T0 Q高 1 T H
T0 1 T L T0 1 T H
100%转化为理想功。 100%转化为理想功。
E XP
E XPh 部分转化为理想功。 E XC 部分转化为理想功。
稳流过程,流体具有的总有效能为:
EX EXK EXP EXPh EXC
6.3 过程热力学分析法
1)动能 和位能 100%转化为理想功。
E XK
2) 物理
6.2 化工单元过程的热力学分析
1. 流体流动过程的热力学分析 问题的提出: 由于流体流动有摩擦,包括流体的内摩擦及 流体与管道、设备的摩擦,使流体的一部分机械 能耗散为热能,导致功损耗,并有熵产生。 流体流动的推动力是压力差,为不可逆过程, 也有熵产生。 讨论流体流动过程的功损耗应首先找出熵产生 与压力降之间的关系:Δ Sg Δ p
6.2 化工单元过程的热力学分析
(4)换热过程的热力学效率: 例题6-9
H L Wid WL Wid a H H Wid Wid 无温差的传热过程,若无散热损失: a 1,但实际 生产中均为不可逆的有温差传热:
H L Wid Wid
a 1
思考: (1)热量全部回收,仍有功耗,为什么?
T Q ) Q(1 0 ) T T
|QH|=|QL|=Q
T0 ) TH T L Wid Q (1 0 ) TL
H Wid Q (1
损耗功: WL W
H id
T0 (TH TL )Q W TH TL
L id

化工热力学

化工热力学

化工热力学化工热力学是研究化学过程中能量转化、能量平衡和热力学性质的学科领域。

它涉及到物质的热力学性质、热力学过程和热力学定律的应用。

本文将简要介绍化工热力学的基本概念和原理,并探讨其在化学工程中的应用。

化工热力学是热力学在化学工程中的应用。

热力学是研究物质能量转化和物质变化规律的学科,它以能量和热力学性质为基本研究对象。

化工热力学主要研究化学反应、相平衡、相变、能量平衡等热力学过程。

热力学第一定律是热力学的基本定律之一。

它表明能量是守恒的,能量不会自发地产生或消失。

根据热力学第一定律,化学反应过程中的能量转化可以分为放热反应和吸热反应。

放热反应是指在反应过程中释放出能量,使系统的内能减小。

吸热反应则相反,其反应过程吸收了外界的能量,使系统的内能增大。

热力学第一定律为我们理解化学反应过程中能量转化提供了基本原理。

热力学第二定律是热力学的另一个重要定律。

它阐述了一个系统的熵在不可逆过程中增加的原则。

熵是衡量系统无序程度的物理量,根据热力学第二定律,自然界中任何一个孤立系统的熵都不会减小,而是增加或保持不变。

这意味着化学反应过程必须满足熵的增加原理,即反应进行时系统的总熵必须增加,否则反应不会自发发生。

热力学第二定律为我们理解自然界中的现象和反应提供了基本原则。

在化学工程中,热力学的应用非常广泛。

它可以用来设计和优化化学工艺流程,在工程实践中起着重要的作用。

例如,在化学工艺的热能平衡计算中,需要考虑各种热力学参数,如反应热、燃烧热、蒸发热等。

这些参数是确定反应过程中能量转化情况的重要依据,能够帮助工程师准确地估算能量的供应和消耗,从而合理设计设备和控制过程。

此外,热力学还可以用于预测和评估化学反应的可行性和方向性。

利用热力学的知识,我们可以计算反应的平衡常数和Gibbs自由能变化,从而判断反应是否会发生以及从哪个方向进行。

这对于开发新的化学反应和优化现有反应具有重要意义。

另外,化工热力学还可以应用于化学工程设备的热力学性能分析和优化。

化工热力学公式总结

化工热力学公式总结

化工热力学公式总结化工热力学是研究化学反应中热效应与热力学性质的科学,其研究内容涉及了固液相变、气液相变、燃烧行为等多个方面。

在热力学的研究中,有一些常用的公式和方程式被广泛应用于工程技术和科学研究中。

本文将从热力学的基本概念和公式、热力学循环、热传导和传质过程等方面,总结常用的化工热力学公式。

一、热力学基本概念和公式1.热力学第一定律:ΔU=Q-W其中ΔU表示系统内能的变化,Q表示系统从外界得到的热量,W表示系统对外界做的功。

2.热力学第二定律:dS≥dQ/T其中dS表示系统熵的增加,dQ表示系统获得的热量,T表示系统的温度。

3. 热力学的物质平衡公式:ΣniΔHi = 0其中ni表示反应物或生成物的物质摩尔数,ΔHi表示反应物或生成物的标准焓变。

4. 化学势:μi = μ0i + RT ln(pi / p0)其中μi表示一些组分的化学势,μ0i表示该组分在标准状态下的化学势,pi表示该组分在实际条件下的分压,p0表示该组分在标准状态下的分压。

二、热力学循环1.热力学效率:η=(W/Q)×100%其中η表示热力学效率,W表示系统对外界做的功,Q表示系统从外界获取的热量。

2.卡诺循环效率:ηC=1-(Tc/Th)其中ηC表示卡诺循环效率,Tc表示循环中冷源的温度,Th表示循环中热源的温度。

3.制冷剂(热泵)性能系数:COP=Q1/W其中COP表示制冷剂(热泵)的性能系数,Q1表示制冷剂(热泵)从低温源吸收的热量,W表示系统对外界做的功。

三、热传导和传质过程1. 热传导方程:q = - kA (dT / dx)其中q表示单位时间内通过物体的热量,k表示物体的热导率,A表示物体的横截面积,dT / dx表示物体温度的变化率。

2. 导湿传质方程:n = - D (dC / dz)其中n表示单位时间内通过物体的水分流量,D表示物体的水分扩散系数,C表示物体的水分浓度,dz表示物体的厚度。

3.理想气体状态方程:PV=nRT其中P表示气体的压力,V表示气体的体积,n表示气体的物质摩尔数,R表示理想气体常数,T表示气体的温度。

化工热力学

化工热力学

化工热力学化工热力学是研究化学反应与热力学性质之间关系的一门学科。

反应热力学是研究化学反应中能量变化与反应速率之间的关系的学科,它是理解和优化化学反应过程的重要工具。

本文将从化工热力学的基础概念、热力学常数、热力学平衡以及应用等方面进行探讨。

一、化工热力学的基础概念1. 热力学热力学是研究物质内部热平衡和物质间热平衡以及它们与热的能量转换的学科。

化工热力学则是将热力学理论与化学反应过程相结合,用于分析和预测化学反应的热力学性质。

2. 热力学系统热力学系统指被研究的物体或物质,可以是一个化学反应体系,也可以是一台热力学设备。

在研究中,通常将系统划分为开放系统、封闭系统和孤立系统。

3. 热力学过程热力学过程是指物体或物质由一个热力学状态变为另一个热力学状态的过程。

常见的热力学过程有等温过程、等压过程、等容过程和绝热过程等。

二、热力学常数热力学常数是描述物质热力学性质的数值常数,常见的热力学常数有气体常数R、普朗克常数h、玻尔兹曼常数k等。

这些常数在化工热力学的计算和分析中起到关键作用。

1. 气体常数R气体常数R是描述理想气体性质的常数,其值为8.314 J/(mol·K)。

在化工热力学中,通过R的应用可以计算出化学反应的焓变、熵变等重要热力学参数。

2. 普朗克常数h普朗克常数h是描述微观粒子行为的量子力学常数,其值为6.62607015 × 10^-34 J·s。

在热力学计算中,普朗克常数用于计算能量的量子化,特别是对于高能量的粒子和较小的粒子。

3. 玻尔兹曼常数k玻尔兹曼常数k是描述分子热运动与热力学性质之间关系的常数,其值为1.380649 × 10^-23 J/K。

在化工热力学中,玻尔兹曼常数用于计算熵变、内能等重要热力学参数。

三、热力学平衡热力学平衡是指热力学系统中各种热力学性质处于稳定状态的状态。

在化工反应中,热力学平衡是指反应物与产物的浓度、压力和温度等热力学性质不再发生可观察的变化。

高等化工热力学

高等化工热力学

高等化工热力学1. 热力学的基本概念和原理热力学是研究物质能量转化与传递规律的科学,它对于化工领域的工艺设计和能源利用具有重要意义。

高等化工热力学是在基础热力学的基础上,进一步深入研究了化工过程中更复杂的热力学现象。

1.1 系统和界面在高等化工热力学中,首先需要明确研究对象是一个系统。

系统是指一定数量的物质和能量所组成的部分,在进行热力学分析时,我们通常将其划分为开放系统、封闭系统和孤立系统。

•开放系统:与外界可以交换物质和能量;•封闭系统:与外界只能交换能量;•孤立系统:与外界既不能交换物质也不能交换能量。

不同类型的系统在分析过程中需要采用不同的方法,并考虑到相应的边界条件。

1.2 状态函数和过程函数在高等化工热力学中,我们经常使用状态函数来描述系统的状态。

状态函数只与系统所处的状态有关,而与达到该状态所经历的过程无关。

常见的状态函数有温度、压力、体积和摩尔数等。

与状态函数相对应的是过程函数,它们与系统所经历的过程有关,包括热量、功和物质的传递等。

在化工领域中,我们经常关注各种热力学过程,如等温过程、绝热过程和等焓过程等。

1.3 热力学第一定律热力学第一定律是能量守恒定律在热力学中的表述。

根据热力学第一定律,系统的内能变化等于系统所吸收或放出的热量与对外界做功之和。

数学表达式为:ΔU=Q−W其中,ΔU表示系统内能变化,Q表示系统吸收或放出的热量,W表示对外界做的功。

1.4 熵和熵增原理熵是描述系统无序程度的物理量,在高等化工热力学中起着重要作用。

根据熵增原理,孤立系统总是趋向于增加其总熵。

这意味着在自发过程中,系统总是朝着更高的无序状态发展。

通过计算系统和周围环境的熵变,可以判断一个过程是否自发进行。

当系统的总熵增大时,过程是自发进行的;当系统的总熵减小时,过程是不可逆进行的。

2. 热力学分析方法在高等化工热力学中,有多种方法可以用来分析和计算化工过程中涉及的能量转化和传递。

以下介绍几种常用的分析方法。

化工热力学.

化工热力学.
在化工反应中,气体压缩是一个重要环节,可提高反应速率和实现气体输送。压缩机是常用的气体压缩设备,根据体积变化分为容积型和速度型。气体压缩过程包括等温、绝热和多变三种,每种过程的功耗不同。等温过程压缩功最小,绝热过程最大,多变过程居中。理论功耗的计算依赖于初始温度、绝热指数和压缩比。对于单级往复式压缩机,功耗计算涉及等温、绝热和多变过程的公式推导。而多级压缩通过分级压缩和中间冷凝,能更趋近于等温压缩,从而减少总功素。

化工热力学热力学基本定律与热力学循环

化工热力学热力学基本定律与热力学循环

化工热力学热力学基本定律与热力学循环热力学是化工领域中非常重要的一门学科,它研究的是能量转移和能量转换的规律。

化工热力学基本定律是热力学研究的基础,同时热力学循环是在化工过程中经常应用的一种方法。

本文将分别介绍化工热力学的基本定律以及热力学循环的相关知识。

一、化工热力学基本定律1. 热力学第一定律热力学第一定律,也称为能量守恒定律,它表明能量不会从真空中消失或产生,而是在不同形式之间进行转换。

能量守恒定律的数学表达式为:∆U = Q - W其中,∆U表示系统内能的变化,Q表示系统所吸收的热量,W表示系统所作的功。

根据能量守恒定律,系统内能的增加等于吸收的热量减去系统所作的功。

2. 热力学第二定律热力学第二定律是关于能量传递和转换方向的定律,它有两个表述方式:克劳修斯表述和开尔文表述。

克劳修斯表述指出,能量不会自发地从低温物体传递给高温物体,而是相反的。

开尔文表述则指出,不存在将热量完全转化为功的过程,即不可能创造出一个永动机。

3. 热力学第三定律热力学第三定律是热力学中的一个重要原理,它表明在绝对零度(-273.15℃)时,纯结晶物质的熵为零。

这个定律是对熵的概念进行了限定,熵是描述系统的无序程度的物理量,符号为S。

熵增定律指出,在自然界中,任何孤立系统的熵都不会减少,只会增加或保持不变。

二、热力学循环热力学循环是指在一定条件下,能够实现物质的能量转换的一种循环过程。

在化工领域,工程师们通过设计和运行热力学循环来实现能源的高效利用和资源的最大化利用。

1. 卡诺循环卡诺循环是一种理论上最理想的热力学循环,它由两个等温过程和两个绝热过程组成。

在卡诺循环中,工作物质在高温热源和低温热源之间进行循环往复的过程中,能量被高效地转化为功。

卡诺循环具有最大的热力学效率,它可以作为其他热力学循环的基准。

2. 斯特林循环斯特林循环是一种热力学循环,它在循环过程中通过变化体积来实现能量转换。

斯特林循环的工作过程包括等温膨胀、绝热膨胀、等温压缩和绝热压缩四个过程。

化工热力学

化工热力学

化工热力学
化工热力学简介
化工热力学,又称热学,是研究化学反应、物质传输过
程及相变过程的热力学规律的一门学科。

热力学是化学工程中最为基础的科学,被广泛应用于化学反应工程、传热传质以及材料科学等领域。

热力学的研究内容包括能量、熵、焓、自由能、热容等基本热力学量的计算和结论,根据这些计算和分析结果,我们可以对物质的热学性质和相变规律进行研究预测。

化学反应热力学和热化学
化学反应热力学是研究化学反应的热力学规律的一门学科,其中最为重要的是热化学。

热化学是热力学的一部分,其研究主要涉及物质在反应中吸放热以及热力学平衡常数等方面。

这些反应热力学性质对于化学反应的热力学分析有重要的意义。

例如,许多工业上进行的化学反应都是在恒压条件下进行的,而反应热对于工艺的设计和安全性的评估有着重要的影响。

同时,在热化学中我们也可以利用热力学平衡常数来预测化学反应的反应物浓度和产物浓度。

化学过程中的能量转换
在化工工业中,很多过程都是通过能量的转换来实现的。

在化学反应中,吸放热可以用于影响反应速率,因此通常使用加热或者冷却的方式控制反应速率。

在传热传质中,通常也需要消耗能量来完成传热传质过程,这导致了过程的热效率降低。

化工工程中的热力平衡
在化工工程中,热力平衡是非常重要的一个概念,它是
指任何一个工程系统中所有的热量输入和输出必须均衡。

这个概念非常重要,因为热量的不均衡可能会导致设备的过热或过冷,并导致设备的损坏或甚至事故。

总之,化工热力学是研究化学反应和过程中能量转化以及热力学平衡等问题的一门科学。

对于化工工程设计和安全评估,热力学的研究是非常重要的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工热力学理论————————————————————————————————作者: ————————————————————————————————日期:ﻩ第2章 流体的p-V-T (x )关系1.1 本章学习要求本章的核心内容是流体的PVT 关系。

要求学生掌握纯物质的P -V-T立体相图中,点、线、面所代表的物理意义及在PT面和PV 面上投影所形成的P-T相图和P-V 相图。

认识物质的气、液、固三类常见状态和气-液、气-固、液-固相平衡等在相图中的表征方法;掌握临界点的物理意义及其数学特征。

要求掌握理想气体的基本概念及其基本的数学表达方法;明确在真实条件下,物质都是以非理想状态存在的,掌握采用立方型状态方程和Vir ial 方程进行非理想气体PVT 计算的方法。

1.2 重点1.2.1 纯物质的PVT 关系图1-1 纯物质的p -V -T相图图1-2 纯物质的p-T图ﻩﻩﻩ图1-3 纯物质的p-V 图临界点C在图上表现为拐点,数学上的可表述为:CT T P 0V =⎛⎫∂= ⎪∂⎝⎭ﻩ(1-1) C22T T P 0V =⎛⎫∂= ⎪∂⎝⎭ (1-2)1.2.2 状态方程(Equa ti ons of St ate ,EO S)状态方程是物质P-V-T 关系的解析式,可表达为函数关系:f (P,V,T)0=ﻩ(1-3)状态方程的重要价值在于:(1) 用状态方程可精确地代表相当广泛范围内的P-V-T 数据,大大减小实验测定的工作量;(2) 用状态方程可计算不能直接从实验测定的其它热力学性质;(3) 用状态方程可进行相平衡计算,如计算饱和蒸气压、混合物气液相平衡、液-液平衡等,尤其是在计算高压气液平衡时的简捷、准确、方便,为其它方法不能与之相比的。

1.2.3 理想气体状态方程理想气体状态方程是流体状态方程中最简单的一种,理想气体的概念是一种假想的状态,实际上并不存在,它是极低压力或极高温度下各种真实气体的极限情况。

数学表达式为:P 0(V )lim (PV)RT →→∞=或PV RT =ﻩ(1-4)1.2.4 真实气体状态方程大体上分为三类:第一类是立方型状态方程,如Van der Wa als 、RK 、SRK 、P R、PT 等; 第二类是多项级数展开式的状态方程,如Vi rial 、BWR 、MH 等; 第三类是理论型状态方程。

1.2.4.1 立方型状态方程(1) V an d er Waa ls (VdW,1873年)方程 (2) R edli ch-Kwon g(RK ,1949年)方程(3) Soave -Re dlich-Kwo ng(SRK ,1972年)方程 (4) Pe ng-Robins on (PR ,1976年)方程 (5) Patel-Teja(PT,1982年)方程立方型状态方程的应用:(1) 用一个EOS 即可精确地代表相当广泛范围内的实验数据,藉此可精确计算所需的数据;(2) EOS 具有多功能性,除了PVT 性质之外,还可用最少量的数据计算流体的其它热力学函数、纯物质的饱和蒸气压、混合物的气-液相平衡、液-液相平衡,尤其是高压下的相平衡计算;(3) 在相平衡计算中用一个EOS 可进行二相、三相的平衡数据计算,状态方程中的混合规则与相互作用参数对各相使用同一形式或同一数值,计算过程简捷、方便。

1.2.4.2 多项级数展开式方程 (1) Virial 方程PV BZ 1RT V==+ﻩ(1-38) 通常适用于C T T <,P 1.5MPa <压力下的真实气体PVT 关系和其它热力学性质计算。

截至第III 项的Virial 方程为:2PV B CZ 1RT V V==++ (1-39)通常适用于C T T <,P 5.0MPa <压力下的真实气体PVT 关系和其它热力学性质计算。

(0)(1)CCBP B B RT =+ω (1-41)式中(0)B 、(1)B 为对比温度的函数,由P itzer 关系式计算:r (0) 1.60.422B 0.083T =-(1-42)(1) 4.2r 0.172B 0.139T =-ﻩ(1-43) 1.2.4.3 对应状态原理(Corre spondi ng St at e P rinci ple)对应态原理:在相同的对比温度、对比压力下,任何气体或液体的对比体积(或压缩因子)是相同的。

二参数函数关系可表达为r r r V f (T ,P )=。

Pitzer 定义的ϖ为:r r S S S r r T 0.7r T 0.7[lg P ()lg P ()] 1.00lg P |==ϖ=-=--参考流体研究流体 (1-50)因此三参数对应状态原理可表达为:(0)(1)r r r r Z Z (T ,P )Z (T ,P )=+ϖﻩ(1-51)式中,(0)r r Z (T ,P )是对比状态下参考流体的压缩因子;(1)r r Z (T ,P )为研究流体对参考流体的偏离项,它们都可从教材附录或相关物性数据手册上查取。

1.2.6 混合物pVT x关系引起气体混合物非理想性的原因在于:(1) 气体纯组分的非理想性;(2) 混合过程引起的非理想性。

建立混合物性质与纯组分性质的关系,用纯物质性质来预测或推算混合物的性质,一是将混合物整体作为一个虚拟的纯物质对待;二是将混合物看成是各种纯物质某种方式加和,即混合规则(Mi xing Rule),使用混合规则后,混合物的状态方程在形式上与纯物质相同。

混合规则:就是指混合物的虚拟参数m M 与混合物的组成i z 和所含的纯物质参数i M 之间的关系,即m i i M f (z ,M )=。

最简单的混合规则为Kay 规则,即满足关系式:m i i iM z M =⋅∑。

对虚拟混合临界参数Cm T 、Cm P 有:Cm i Ci iT z T =⋅∑Cm i Ci iP z P =⋅∑(1-57)第3章 流体热力学性质计算本章学习要求热力学性质是系统在平衡状态下所表现出来的,平衡状态可以是均相的纯物质或混合物,也可以是非均相的纯物质或混合物。

本章要求学生理解和学会使用一些有用的热力学性质表达成P-V-T(x )的普遍化函数,并结合状态方程来推算其它热力学性质的具体方法,内容包括:(1) 从均相封闭系统的热力学基本方程出发,建立热力学函数(如U、H 、S 、A 、G 、p C 和V C 等)与P-V-T(x)之间的普遍化依赖关系;(2) 应用P-V-T对应状态原理,计算其它热力学性质的方法; (3) 定义逸度和逸度系数,解决其计算问题; (4) 会使用热力学性质图或表进行计算。

重点与难点3.1 热力学基本方程与Maxw ell 关系封闭系统的热力学基本方程为:dU TdS PdV =-ﻩ(2-1) dH TdS VdP =+ﻩ(2-2)dA SdT PdV =--ﻩ(2-3) dG SdT VdP =-+ﻩ(2-4)其中H 、A、G的定义为:H U PV =+;A U TS =-;G H TS A PV =-=+。

这些热力学基本关系式,适用于只有体积功存在的封闭系统M axwe ll 关系是联系U、H 、S、A 、G 等函数与P-V-T 性质的数学手段。

3.2 热力学性质的计算方法热力学性质的计算方法有:(1) 对热力学函数的偏微分关系进行积分计算; 2)以理想气体为参考态的剩余性质法; (3) 状态方程法;(4) 普遍化对应状态原理法(或查图、查表法)等。

3.3 剩余性质法(Depar ture Funct ion )及其应用剩余性质(Resi dua l Pr oper ty)是指气体真实状态下的热力学性质M 与同一T ,P 下当气体处于理想状态下热力学性质M* 之间差额。

剩余性质M R 可用下式表示:*M M M R -=(2-22)若要计算热力学性质随着状态1122(T ,P )(T ,P )→的变化,可方便地使用剩余性质和理想气体性质计算来完成。

即:R Rig 221121M M(T ,P )M(T ,P )M M M ∆=-=-+∆(2-23)其中ig ig ig 2010M M (T ,P )M (T ,P )∆=-就是《物理化学》中理想气体热力学性质计算。

3.4 状态方程法计算热力学性质表2-1为各类状态方程计算偏离焓、偏离熵、逸度系数的计算式(1) Van der Waal s方程(式1-6)ig R 0H H H RT RT⎛⎫- ⎪⎝⎭或 V 2a1V b RTV--- ig R 00S S S P ln R R P ⎛⎫-+ ⎪⎝⎭或 ()P V b lnRT --f ln P()P V b aZ 1ln RT RTV----(2) RK 方程(式1-10)ig R 0H H H RT RT⎛⎫- ⎪⎝⎭或 1.51.5a b Z 1ln 1bRT V ⎛⎫--+ ⎪⎝⎭ig R 00S S S P ln R R P ⎛⎫-+ ⎪⎝⎭或 () 1.5P V b a b lnln 1RT V 2bRT -⎛⎫--+ ⎪⎝⎭f ln P1.5P(V b)a b Z 1lnln 1RT V bRT -⎛⎫---+ ⎪⎝⎭3.5 对应状态原理法计算偏离性质根据Pitz er三参数对应状态原理,流体的热力学性质可统一地表达为:(0)(1) Ω=Ω+ϖΩ(2-37)其中Ω可分别表达为:igH H RT -,0igP P S S R=-,f ln P 等关系。

现已有(0)(1)r r r r (T ,P )(T ,P )ΩΩ、数据表或图可供查阅,可参见有关教材的附录。

以普遍化Virial 方程(1-42)、(1-43)表达的偏离性质关系为:R ig(0)(0)(1)(1)r r r r r H H H B dB B dB P RT RT T dT T dT ⎡⎤⎛⎫⎛⎫-==-+ϖ-⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2-38)ig R (0)(1)0r 0rr S S S P dB dB ln P R R P dT dT ⎡⎤-=+=-+ϖ⎢⎥⎣⎦ﻩ(2-39) 式中:(0)1.6r 0.422B0.083T =-;(1)1.6r0.172B 0.139T =-;(0) 2.6r r dB 0.675dT T =;(1) 5.2r r dB 0.722dT T = 3.6 纯物质的逸度及逸度系数Lewis 定义的纯物质逸度:P 0dG RTd ln flim f P →=⎧⎪⎨=⎪⎩ﻩ(2-40) 逸度系数的定义式为:P 0f P lim 1→⎧ϕ=⎪⎨⎪ϕ=⎩ (2-41)逸度、逸度系数与偏离Gib bs 函数间的关系和性质为:ig 0G(T,P)G (T,P 1)ln f RT-== (取参考压力为单位压力)(2-42)ig 0G(T,P)G (T,P P)f ln ln P RT-=ϕ== (取参考压力等于研究态压力)43-2(ﻩ)逸度和逸度系数的应用:定量衡量流体的非理想性及处理相平衡关系等时十分有用。

相关文档
最新文档