八年级数学上册第十六周教案
八年级数学第16章 二次根式教案
第十六章 二次根式 16.1二次根式1一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a 二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程(一)自学导航(课前预习)(1)已知a x =2,那么a 是x 的______;x 是a 的______, 记为_____,a 一定是____数。
(2)4的算术平方根为2,用式子表示为=__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
(二)合作交流(小组互助) (1)16的平方根是 ;(2)一个物体从高处自由落下,落到地面的时间是t (单位:秒)与开始下落时的高度h (单位:米)满足关系式25t h =。
如果用含h 的式子表示t ,则t = ; (3)圆的面积为S ,则圆的半径是 ; (4)正方形的面积为3-b ,则边长为 。
思考:16,5h ,πs ,3-b 等式子的实际意义.说一说他们的共同特征.定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做_____________。
1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式a 中,字母a 必须满足 ,4a 才有意义。
3、根据算术平方根意义计算 :(1) 2)4( (2)(3)2)5.0( (4)2)31( 根据计算结果,你能得出结论: ,其中0≥a ,4、由公式)0()(2≥=a a a ,我们可以得到公式a =2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
冀教版八年级数学上册第十六章16.3角的平分线优秀教学案例
3.小组合作:组织学生进行小组讨论,鼓励学生相互交流、分享成果,培养学生的团队协作能力和沟通能力。
4.反思与评价:让学生进行自我评价和同伴评价,教师对学生的学习过程和结果进行评价,给予肯定和鼓励,提出改进建议,促进学生的持续发展。
2.同伴评价:鼓励学生相互评价,发现他人的优点,学习他人的长处。
3.教师评价:教师对学生的学习过程和结果进行评价,给予肯定和鼓励,提出改进建议。
4.设计具有针对性的练习题:让学生在课后进行巩固练习,提高学生的知识运用能力。
四、教学内容与过程
(一)导入新课
1.利用生活实例导入:展示一把剪刀,引导学生观察剪刀的两个剪切面,提问:“你们能发现剪刀剪切面之间的特殊关系吗?”
5.针对性的练习题:设计具有针对性的练习题,让学生在课后进行巩固练习,提高学生的知识运用能力,确保学生能够将所学知识灵活运用到实际问题中。
3.能够理解并应用角的平分线的性质定理,如角的平分线上的点到角的两边的距离相等。
4.能够熟练地使用直尺和圆规作角的平分线,提高空间想象能力和动手能力。
(二)过程与方法
1.通过观察、思考、讨论,引导学生自主发现和总结角的平分线的性质,培养学生的观察能力和思维能力。
2.利用几何画板或实物模型,让学生直观地感受角的平分线性质,提高学生的空间想象能力。
3.设计具有梯度的练习题,让学生在解决实际问题的过程中,学会运用角的平分线的性质,提高学生的应用能力。
4.引导学生进行小组合作学习,培养学生的团队协作能力和沟通能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的积极性。
冀教版数学八年级上册教案 第十六章 轴对称和中心对称
八年级数学•上新课标[冀教]第十六章轴对称和中心对称1.通过具体实例了解轴对称、轴对称图形、中心对称、中心对称图形的概念,探索它们的基本性质.2.能按要求画出简单平面图形经过轴对称、中心对称后的图形.3.理解和掌握线段的垂直平分线和角平分线的性质定理及其逆定理.4.能够运用平移、旋转和轴对称进行简单图案的设计.5.通过欣赏和设计图案,认识到图形的平移、旋转和轴对称在现实生活中的应用.1.通过观察、思考、操作、交流、初步验证、推理验证等活动,体会知识的形成过程.2.在直观感知、操作确认的基础上,进一步学会说理,掌握一定的演绎推理能力,体会数学在现实生活中的广泛应用.1.通过探究活动,培养学生探求知识的欲望,让学生体验成功的乐趣.2.让学生经历观察、思考、操作、欣赏、设计等活动过程,进一步发展空间观念,增强审美意识,积累数学活动经验.本章的主要内容是轴对称和轴对称图形、中心对称和中心对称图形及其性质,探究线段垂直平分线、角平分线的性质定理及其逆定理,利用平移、旋转、轴对称设计图案.(1)轴对称、中心对称在现实生活中有着广泛应用,在教材的处理上,为学生提供大量生动的现实情境,通过赏析,提高学生的审美能力,激发学生的学习兴趣,加强数学与现实联系,更好地培养学生的应用意识.(2)通过“一起探究”,设置观察、猜想、交流、探究、验证等活动,引导学生发现轴对称、中心对称的性质定理及其逆定理,经历发现问题、提出问题、分析问题、解决问题的过程,使学生掌握解决问题的方法,积累一定的数学活动经验.(3)线段、角是简单的轴对称图形,通过观察、思考、操作验证、证明验证等活动,探究线段垂直平分线、角平分线的性质定理及其逆定理,发展学生的合情推理、演绎推理能力.(4)在学习完平移、旋转和轴对称后,引导学生辨析典型图形,使学生认识到一些较为复杂的图形可由简单图形经过变化得到,目的是深化平移、轴对称、旋转的性质,加强前后知识的联系和综合运用.【重点】1.轴对称和轴对称图形、中心对称和中心对称图形及其性质.2.线段垂直平分线、角平分线的性质定理及其逆定理.3.利用平移、旋转、轴对称设计图案.【难点】1.轴对称和轴对称图形、中心对称和中心对称图形的性质.2.线段垂直平分线、角平分线的性质定理及其逆定理的应用.1.轴对称、中心对称与现实有着紧密的联系,在教学中,应以现实生活中的实例为素材,让学生体会和认识生活中的轴对称和中心对称,通过观察、分析、操作、猜想、验证等活动,提炼轴对称及轴对称图形、中心对称及中心对称图形的概念,利用合情推理和演绎推理探究轴对称、中心对称的性质定理及其逆定理.2.教师在组织教学活动的过程中,要充分发扬民主精神,为学生提供自主学习及探索的空间与时间,促使学生在课堂上积极动手实践、勤于思考、一起探究、合作交流,并在活动的过程中不断地获取新知识,提高数学思考的能力.3.倡导教师根据教学实际,适当选取贴近学生生活实际的实例丰富教材,利用各种教学资源、现代化教学手段,创设有利于学生认识、学习及相互交流的氛围.4.注意知识间的相互联系和区别.图形的平移、旋转不是本章所学知识,但它们也都是图形变化的主要方式.在后面的教学中,应把平移、旋转和轴对称融合在一起,让学生在整体上认识图形的变化,这样能较好地体现新旧知识的联系.16.1轴对称1课时回顾与反思1课时16.1轴对称1.理解轴对称、两个图形成轴对称的概念.2.了解轴对称图形的对称轴,两个图形成轴对称的对称轴、对应点.3.了解轴对称图形与两个图形成轴对称的区别与联系.1.通过学习轴对称图形和两个图形成轴对称,进一步认识几何图形的本质特征.2.通过学习轴对称图形和两个图形成轴对称的区别和联系,进一步发展学生的抽象概括能力.通过对轴对称图形和两个图形成轴对称的学习,激发学生的学习欲望,使他们主动参与数学学习活动中.【重点】轴对称图形和两个图形成轴对称的概念.【难点】轴对称图形和两个图形成轴对称的区别与联系.【教师准备】课件.【学生准备】搜集轴对称图形.导入一:我们生活在一个充满对称的世界中,许多建筑物都设计成对称的,艺术作品的创作往往也从对称角度考虑,自然界的许多动植物也按对称形生长,中国的方块字中有些也具有对称性……对称给我们带来多少美的感受!初步掌握对称的奥妙,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.轴对称是对称中重要的一种,从这节课开始,我们来学习第十六章.今天我们来研究第一节,认识什么是轴对称图形,什么是对称轴.导入二:出示图片:青山倒映在水中.这是什么景象呢?同学们可以想象,落日、晚霞、青山倒映在平静的水中,这样如诗如画的景致多么令人难忘!自远古以来,对称形式就被认为是和谐美丽的,不论是在自然界中还是建筑里,甚至最普通的日常生活中,对称的形式都随处可见.本节课我们就一起去探究轴对称的奥秘吧![设计意图]两个导入都是以生活中的轴对称为例,勾勒美好的画面,让学生感受数学中的美,体会数学与生活的密切联系,自然地引入到本节课的学习之中.活动一:观察与思考——认识轴对称思路一【活动1】展示教材第108页图16-1-1及收集到的生活中的图片.【师生活动】教师展示生活中的图片,让学生欣赏图片,感知对称图形,学生列举所见到的图形.活动中,教师明确:(1)对称的多样性,而其中轴对称是重要的一种;(2)本节要探究的内容:轴对称有哪些性质?[设计意图]展示的图片与生活实际相关,包含自然景观、分子结构、建筑物、艺术作品、动物、植物、生活用品等,让学生感知对称图形,激发学生的学习热情.通过展示学生自制的图片,让学生联系生活实际,主动参与数学活动,感知数学与生活的密切联系.【活动2】(1)把一张长方形纸对折,剪出一个图案,再打开,就剪出了美丽的窗花,你能剪出什么样的窗花呢?(2)观察剪出的窗花,你能发现它们有什么共同特征?(3)联系实际,你能举出一个轴对称图形的例子吗?【师生活动】教师先把长方形纸片对折,用剪刀剪出一个图案,再打开这个纸片,让学生观赏,然后学生自己动手按要求剪纸.学生在观察、互相交流的基础上描述图形的特征.教师归纳轴对称图形的概念,并板书概念,然后让学生举例.归纳:一般地,如果一个图形沿某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.[知识拓展]轴对称图形是针对一个图形而言的,是一种具有特殊性质的图形,被一条直线分割成两部分,沿着对称轴折叠时,互相重合;轴对称图形的对称轴可以有一条,也可以有多条甚至无数条.[设计意图]教师演示剪纸过程起一个示范作用,学生动手剪纸是让学生参与到活动中去,培养学生的动手能力,通过观察、思考,让学生互相交流,增强发现能力.【活动3】问题(1)教材图16-1-2的图形有什么特征?(2)联系实际,你能举出一些生活中两个图形成轴对称的例子吗?【师生活动】学生观察、举例、讨论交流,教师引导得出两个图形关于某直线对称及对称轴、对应点、对应线段、对应角的概念,并板书概念.归纳:一般地,如果两个图形沿某条直线对折后,这两个图形能够完全重合,那么我们就说这两个图形成轴对称,这条直线叫做对称轴,关于对称轴对称的点、对称的线段、对称的角分别叫做对应点、对应线段、对应角.[设计意图]学生通过观察、举例、独立思考,认识两个图形关于某直线对称的本质特征,鼓励学生善于观察、勇于发现,培养合作意识.【活动4】问题(1)轴对称图形与两个图形成轴对称有什么区别?(2)如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形成轴对称吗?成轴对称的两个图形全等吗?(3)如果把两个成轴对称的图形看成一个整体,它是一个轴对称图形吗?【师生活动】学生根据两组图形的比较观察,讨论交流(1),教师引导学生得出区别.教师提出问题后,让学生思考(2),进一步明确轴对称图形与两个图形成轴对称之间的联系.[知识拓展]图形成轴对称包括两层含义:(1)有两个图形,且这两个图形能够完全重合,即形状、大小完全相同;(2)对重合的方式有限制,只能是把它们沿某条直线对折后能够完全重合.[设计意图]通过学生举例,进一步认识两个图形成轴对称的本质.通过比较观察、相互讨论进一步认识两种图形的本质特征.让学生运用辩证的观点认识事物,发展学生抽象思维能力.活动二:一起探究——成轴对称图形的性质【活动5】问题:成轴对称的两个图形全等吗?全等的两个图形一定成轴对称吗?为什么?【师生活动】学生独立思考后,再展开讨论,教师参与学生讨论,及时指导.[设计意图]通过练习进一步巩固两个图形成轴对称的概念.【活动6】问题观察教材图16-1-3:1.根据全等形的意义,ΔABC与ΔA'B'C'全等吗?对应线段有怎样的数量关系?对应角呢?2.对应点的连线AA',BB',CC'分别与对称轴l有怎样的位置关系?你能用刻度尺测量出点A与A'到对称轴l的距离吗?B与B'、C与C'到对称轴l的距离呢?【师生活动】教师引导学生从位置上观察三条线段与对称轴l的关系,利用投影动画展示A与A',B与B',C与C'重合的情形.归纳:成轴对称图形的性质:如果两个图形关于某一条直线成轴对称,那么这两个图形是全等形,它们的对应线段相等,对应角相等,对应点所连的线段被对称轴垂直平分.说明:成轴对称的图形的性质对于轴对称图形同样适用.垂直且平分一条线段的直线,叫做这条线段的垂直平分线,简称中垂线.线段是轴对称图形,线段的中垂线是它的对称轴.线段垂直平分线的定义揭示线段与对称轴的关系:一是垂直;二是平分.从而归纳出成轴对称图形的性质.[设计意图]利用动画演示,让学生一目了然,便于接受,采用多种方法丰富学习渠道,加深了对知识的理解和掌握.【活动7】如图所示,已知线段AB和直线l,画出线段AB关于直线l的对称线段.【师生活动】引导学生根据成轴对称图形的性质画出图形,学生在练习本上操作,教师讲评.[设计意图]通过学生的操作,认识对称轴的确定方法,培养学生的探究能力.思路二【活动1】作品展示,交流体会1.作品展示:让部分学生展示课前的剪纸作品(可以将作品粘贴到黑板上).2.小组活动:(1)在窗花的制作过程中,你是如何进行剪纸的?为什么要这样?(2)这些窗花(图案)有什么共同的特点?[设计意图]通过收集材料、剪纸操作,增加学生对轴对称图形的感性认识,为轴对称概念的引出做铺垫.【活动2】概念形成(一)轴对称图形1.学生充分交流的基础上,教师提出“轴对称图形”的概念,并让学生尝试给它下定义,通过逐步地修正形成“轴对称图形”的定义,同时给出“对称轴”的定义.2.结合学生准备的图形进一步分析轴对称图形的特点,以及对称轴的位置.3.学生举例,试举几个在现实生活中见到的轴对称的例子.4.判断下面的图形是不是轴对称图形,如果是轴对称图形,找出它们的对称轴.[设计意图]在学生经历了一系列的过程后让学生尝试归纳,培养学生的概括能力,加深对轴对称图形的理解.(二)两个图形关于某条直线对称1.观察右图,有什么特点?2.两个图形成轴对称的定义.观察右图:把ΔA'B'C'沿直线l对折后能与ΔABC重合,则称ΔA'B'C'与ΔABC关于直线l对称,简称“成轴对称”,点A与点A',点B与点B',点C与点C'称为对称点,直线l叫做对称轴.3.举例:你能举出一些生活中两个图形成轴对称的例子吗?4.讨论:轴对称图形和两个图形成轴对称的区别.[设计意图]先观察图形,再画图.其目的是突出两个图形和这两个图形之间的关系,在此基础上再给出定义.通过讨论、比较,便于进一步理解概念,弄清它们之间的联系和区别,以突破本课的教学难点.同时培养学生的辩证唯物主义观点.(三)成轴对称图形的性质观察上图,线段AA'与对称轴l有怎样的位置关系?你能说明理由吗?类似地,点B与点B',点C与点C'是否也有同样的位置关系?你能用语言归纳上述发现的规律吗?结合学生发表的观点,教师总结并板书:对称轴经过对称点所连线段的中点,并且垂直于这条线段.在这个基础上,教师给出线段的垂直平分线的概念,然后把上述规律概括成成轴对称图形的性质.上述性质是对两个成轴对称的图形来说的,如果是一个轴对称图形,那么它的对称轴两侧的对应点的连线与对称轴之间是否也有同样的关系呢?从而得出:类似地,轴对称图形的对称轴,是对称轴两侧对应点所连线段的垂直平分线.[设计意图]让学生主动参与进来,转变以往的学习方式,提高学习的认知水平和能力.【活动3】实践与应用1.下面是生活中的一些图形,它们是轴对称图形吗?2.下列图形是部分汽车的标志,哪些是轴对称图形?3.下图中的两个图形是否成轴对称?如果是,请找出它的对称轴.[设计意图]通过练习,进一步培养学生的观察、辨别能力,巩固所学知识.知识点一:轴对称图形1.轴对称图形沿对称轴折叠,两旁的部分能够完全重合.2.轴对称图形的对称轴是轴对称图形对称轴两侧的对应点所连线段的垂直平分线,可能只有一条,也可能不止一条.知识点二:两个图形成轴对称轴对称图形与两个图形成轴对称既有区别又有联系.区别:轴对称图形是指一个图形的特征,成轴对称是两个图形的位置关系.联系:二者都有对称轴,如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形;如果把轴对称图形对称轴两旁的部分看成两个图形,那么这两个图形成轴对称.知识点三:成轴对称图形的性质1.成轴对称图形的性质介绍了对称轴与对应点所连线段之间的关系,即对称轴垂直平分对应点所连的线段.2.根据这一性质,若已知对称轴和一个图形的一点就能准确作出该点的对应点,而不必再去对折了.1.如图所示,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为()A.30°B.45°C.60°D.75°解析:要使白球反弹后能将黑球直接撞入袋中,∠2+∠3=90°,∵∠3=30°,∴∠2=60°,易知∠1=60°.故选C.2.下面四句话中的文字有三句具有对称规律,其中没有这种规律的一句是()A.上海自来水来自海上B.有志者事竟成C.清水池里池水清D.蜜蜂酿蜂蜜解析:A.上海自来水来自海上,可将“水”理解为对称轴,对折后重合的字相同,故本选项错误;B.有志者事竟成,五字均不相同,所以不对称,故本选项正确;C.清水池里池水清,可将“里”理解为对称轴,对折后重合的字相同,故本选项错误;D.蜜蜂酿蜂蜜,可将“酿”理解为对称轴,对折后重合的字相同,故本选项错误.故选B.3.经过轴对称变换后所得的图形,与原图形相比()A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变解析:∵轴对称变换不改变图形的形状与大小,∴与原图形相比,形状没有改变,大小没有改变.故选A.4.如图所示,由4个大小相等的正方形组成的L形图案.(1)请你改变1个正方形的位置,使它变成轴对称图形;(2)请你再添加一个小正方形,使它变成轴对称图形.解析:根据轴对称图形的概念进行设计.解:答案不唯一,如图所示.16.1轴对称活动一:观察与思考——认识轴对称活动二:一起探究——成轴对称图形的性质例题一、教材作业【必做题】1.教材第110页练习第1,2题.2.教材第110页习题A组第1,2,3题【选做题】教材第111页习题B组第1,2题.二、课后作业【基础巩固】1.如图所示,不是轴对称图形的是()2.如图所示,一定是轴对称图形的有()A.1个B.2个C.3个D.4个3.京剧是我国的国粹,剪纸是流传已久的民间艺术,这两者的结合无疑是最能代表中国特色的艺术形式之一.如图所示的京剧脸谱剪纸中是轴对称图形的个数有()A.1个B.2个C.3个D.4个4.如图所示的图形中不是轴对称图形的是()5.如图所示,▱ABCD与▱EBCF关于边BC所在的直线对称,若∠ABE=110°,则∠F等于()A.60°B.55°C.45°D.35°【能力提升】6.如图所示,在下面一组图形符号中找出它们所蕴含的规律,然后在横线上的空白处填上恰当的图形.7.如图所示,在长方形的台球桌面上,选择适当的角度打击白球,可以使白球经过两次反弹后将黑球直接撞入袋中,此时∠1=∠2,∠3=∠4,并且∠2+∠3=90°,∠4+∠5=90°.如果黑球与洞口的连线和台球桌面边缘的夹角∠5=40°,那么∠1应该等于多少度才能保证黑球准确入袋?请说明理由.【拓展探究】8.如图所示,ΔABC与ΔDEF关于直线MN对称,其中∠ACB=90°,AC=8 cm,DE=10 cm,BC=6 cm.(1)线段AD与MN的关系是什么?(2)求∠DFE的度数.(3)求ΔABC的周长和ΔDEF的面积.【答案与解析】1.A(解析:根据轴对称图形的定义判断即可.故选A.)2.C(解析:圆弧、角、等腰梯形都是轴对称图形.故选C.)3.C(解析:第一个、第三个、第四个图形是轴对称图形.故选C.)4.B(解析:根据轴对称图形的定义判断即可.故选B.)5.B(解析:∵▱ABCD与▱EBCF关于边BC所在的直线对称,∴∠ABC=∠EBC,∵∠ABE=110°,∴∠EBC=∠ABE=110°=55°,在▱EBCF中,∠F=∠EBC=55°.故选B.)6.(解析:从图中可以发现所有的图形都是轴对称图形,而且图形从左到右分别是1~7的数字,所以画一个轴对称图形且数字为6即可,答案不唯一.)7.解:由∠5=40°,易知∠7=∠5=40°,由∠3=∠4,易知∠7=∠6=40°,∴∠2=∠6=40°,∴∠1=∠2=40°.答:∠1等于40°时,才能保证黑球能直接入袋.8.解:(1)∵ΔABC与ΔDEF关于直线MN对称,∴MN垂直平分AD.(2)∵ΔABC与ΔDEF关于直线MN对称,∠ACB 对应∠DFE,∴∠DFE=∠ACB=90°.(3)∵AC=8 cm,DE=10 cm,BC=6 cm,且AB对应DE,AC对应DF,BC对应EF,∴DE=AB=10 cm,DF=AC=8 cm,EF=BC=6 cm,∴ΔABC的周长为6+8+10=24(cm),ΔDEF的面积为6×8=24(cm2).轴对称图形是一个较抽象的概念,教师在教学中根据学生的特点,设计了这堂课,在教学中始终以学生为主体,着力引导学生通过操作、观察、比较、思考、交流、讨论等活动,主动获取知识,掌握和理解轴对称图形的概念和基本特点,并在自主探索中体会到探索之趣,成功之乐,培养了学生的学习兴趣,更培养了学生的学习能力.从以下几个途径提升课堂教学的活力和效果:一、从直观引入,将轴对称图形的特点具体化,学生较易理解,得到了初步感知.二、动手操作充分,通过对图形的折、画,学生在操作活动中进一步理解了轴对称图形的特点及对称轴的含义.三、充分调动学生的各种感官来学习知识,整个教学活动中留有足够的空间让学生动口、动手、动脑,充分发挥了学生的主体学习地位,同时很好地培养了学生的发散性思维.整节课的安排,努力贯彻“学生为主体、教师为主导”学生自主发展的教育原则.教师只是对概念的引入加以指导以及对整个教学流程加以控制,其余都让学生自己观察、思考、操作、联想、讨论、口述,这样有利于每位学生积极动脑、动手、动口、耳闻、目睹,使全体学生真正成为学习活动的主人.其中,动手操作不仅适合八年级学生的年龄特征,更能激发学生的求知欲,使学生处于一种跃跃欲试的求知状态,从而创设良好的求知氛围,这样将有利于学生在教师的引导下去发现与掌握新知识.1.学生对轴对称图形和成轴对称图形的概念容易混淆,教师分析的不够到位.2.对于轴对称和成轴对称的性质教师还可以适当地加以延伸.3.对于知识的归纳和总结教师说得多,学生说得少.对于轴对称图形和成轴对称图形的概念要指导学生认真地区分,可以从两方面考虑:一是概念;二是它们的区别和联系,要让学生明确成轴对称的两个图形如果看成一个整体,就是一个轴对称图形.对于轴对称图形和成轴对称的图形的性质,一定要让学生自己去发现、归纳,在不足的情况下,让学生互相补充,能让学生说出来的,教师绝不包办代替,给学生自由思考和交流的空间,让他们自主探索,全面发展.练习(教材第110页)1.提示:从左到右依次标出(1)(2)(3)(4),图(1)(3)(4)是轴对称图形.画图略.2.解:画出的对称轴如图所示.图(1)中点B与点C关于对称轴对称.图(2)中点A与点D关于对称轴对称,点B 与点C关于对称轴对称.图(3)中点B与点D关于对称轴对称.习题(教材第110页)A组1.解:(1)第1,4个图形是轴对称图形.(2)对称轴如图所示.2.解:如图所示.B组1.提示:过点A作直线l的垂线,交直线l右侧四边形于点A'.(点B',C'同理,图略)2.解:∠BCD=2×(360°-90°-130°-110°)=2×30°=60°.唐朝某地建造了一座十佛寺,竣工时,太守在庙门右边写了一副上联“万瓦千砖百匠造成十佛寺”希望有人对出下联,且表达恰如其分,几个月过去了,无人能对,有个文人李生路过,感觉庙前没有下联不像话,十分感慨,一连几天在庙前苦思冥想,未能对出下联,有次在庙前散步,望见一条大船由远而来,船夫正使劲地摇橹,这时李生突发灵感,对出了下联“一舟二橹四人摇过八仙桥”.太守再次路过此庙时,看到下联,连连称赞:“妙、妙、妙”.这副对联数字对数字,事物对事物,对仗工整,可见,对称美在文学方面也有生动深刻的体现.生活中的轴对称无处不在,只要你善于观察,将会发现其间所蕴涵的丰富的文化价值和对称美给人带来的无穷享受.(2015·日照中考)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()〔解析〕 A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确.故选D.(2015·大庆中考)以下图形中对称轴的数量小于3的是()〔解析〕 A.有4条对称轴;B.有6条对称轴;C.有4条对称轴;D.有2条对称轴.故选D.(2015·天津中考)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()〔解析〕 A.是轴对称图形,故本选项正确;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项错误.故选A.[解题策略]本类题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可完全重合.16.2线段的垂直平分线。
湘教版数学八年级上册第十六周教案
5.3 二次根式的混合运算班级小组姓名学习目标:熟练应用二次根式的加减乘除法法则及乘法公式进行二次根式的混合运算。
重点:熟练进行二次根式的混合运算。
难点:混合运算的顺序、乘法公式的综合运用。
预习导学:阅读教材P169—171的内容。
自主学习:1、填空:(1)整式混合运算的顺序是:(2)二次根式的乘除法法则是:(3)二次根式的加减法法则是:(4)写出已经学过的乘法公式:预习检测:计算:(1)(2)(21合作探究:例1、计算:(1)1)1)(2)2(3)(4巩固练习:1、计算:(1(2)(3)(2(4)(3+(5)2(6)(7(8)?学后反思:5.4 二次根式的复习(3课时)班级 小组 姓名学习目标:1、了解二次根式的定义,利用二次根式的性质,熟练进行二次根式的乘除法运算。
2、理解同类二次根式及最简二次根式的定义,熟练进行二次根式的运算。
重点:二次根式的计算和化简。
难点:二次根式的混合运算,正确依据相关性质化简二次根式。
自主复习:1、若a >0,a 的平方根可表示为___________,a 的算术平方根可表示________2、当a ______有意义,当a ______没有意义。
3________=______=4、_______20125_______;2712=-=+预习检测:在二次根式的计算、化简及求值等问题中,常运用到哪几个基本运算?合作探究: 1、式子5454--=--x x x x 成立的条件是什么?2、计算: (1) 25341122÷⨯课堂检测: 1、化简()25-的结果是( )A 、 5 B 、-5 C 、 士5 D 、252、代数式24-+x x 中,x 的取值范围是( )A 、4-≥xB 、2>xC 、24≠-≥x x 且D 、24≠->x x 且 3、下列各运算,正确的是( )A 、565352=⋅B 、532592519==⎪⎭⎫⎝⎛-⨯- C 、()12551255-⨯-=-⨯- D 、y x y x y x +=+=+222240)y >是二次根式,化为最简二次根式是( )A 0)y >B 、0)y > C 0)y > D 、以上都不对 5、化简2723-的结果是()3A B C D -6、55,51==b a ,则( ) A a ,b 互为相反数 B a,b 互为倒数 C 5=ab D a =b7、计算:(1)453227+-(3)23) (4)5426362+--(5)8、已知223,223+=-=b a 求b a 11-的值。
人教版八年级16章数学教案
第十六章 分式16.1分式16.1.1从分数到分式一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,as ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时. 轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v -2060小时,所以v+20100=v-2060. 3. 以上的式子v+20100,v-2060,a s,sv ,有什么共同点?它们与分数有什么相同点和不同点? 五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1)(2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解. [答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习1.判断下列各式哪些是整式,哪些是分式?1-m m 32+-m m 112+-m m9x+4, x7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义? (1) (2) (3)3. 当x 为何值时,分式的值为0?(1) (2) (3)七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式? (1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时. (3)x 与y 的差于4的商是 .2.当x 取何值时,分式 无意义?3. 当x 为何值时,分式 的值为0?八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x2.(1)x ≠-2 (2)x ≠ (3)x ≠±2 3.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, ba s +,4y x -; 整式:8x, a+b, 4y x -;分式:x80, ba s +2. X = 3. x=-1课后反思:16.1.2分式的基本性质4522--x x x x 235-+23+x xx 57+xx3217-xx x --221x802332xx x --212312-+x x一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形. 二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形. 三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:4320152498343201524983[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.ab 56--, yx 3-, nm --2, nm 67--, yx 43---。
八年级数学上册第十六周教案
第十六周 第1课时 §7.1谁的包裹多教学目标:1、了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。
2.通过讨论和练习,进一步培养学生的观察、比较、分析的能力。
3.通过对实际问题的分析,使学生体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。
重点:二元一次方程组的含义难点:判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。
教学过程:一、引入、实物投影(P 181图)1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?2、请每个学习小组讨论(讨论2分钟,然后发言) 这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x 个包裹,小马驮y 个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍, 得方程:x+1=2(y-1)师:同学们能用方程的方法来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的项的次数是多少? (含有两个未知数,并且所含未知数项的次数是1)师:含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程注意:这个定义有两个地方要注意①、含有两个未知数,②、含未知数的次数是一次练习:(投影)下列方程有哪些是二元一次方程x 1+2y=1 xy+x=1 3x-2y =5 x 2-2=3x xy=1 2x(y+1)=c 2x-y=1 x+y=0 一、议一议、 师:上面的方程中x-y=2,x+1=2(y-1)的x 含义相同吗?y 呢? (两个方程中x 的表示老牛驮的包裹数,y 表示小马的包裹数,x 、y 的含义分别相同。
人教版八年级上册数学第十六章《相似》全章教学设计
人教版八年级上册数学第十六章《相似》全章教学设计1. 章节内容介绍1.1 章节目标- 理解相似图形的概念及其性质。
- 掌握相似三角形的判定与性质。
- 学会使用相似解决实际问题。
1.2 章节内容- 相似图形的定义与性质- 相似三角形的判定- 相似三角形的性质- 成比例线段- 相似多边形的性质- 实际问题中的相似应用2. 教学方法- 情境创设:通过实际问题引入相似概念。
- 合作学习:引导学生通过小组合作探究相似性质。
- 数形结合:利用图形辅助学生理解抽象的数学概念。
- 逐步引导:由浅入深,引导学生逐步掌握相似的判定与性质。
3. 教学步骤3.1 引入新课- 利用实际问题,如放大或缩小物体,引入相似图形概念。
3.2 讲解新课- 相似图形的定义:讲解两个图形形状相同但大小不一定相同的性质。
- 相似三角形的判定:通过判定条件讲解如何确定两个三角形相似。
- 相似三角形的性质:讲解相似三角形的对应边成比例、对应角相等的性质。
- 成比例线段:介绍成比例线段的概念及其在相似形中的应用。
- 相似多边形的性质:引导学生从三角形推广到多边形。
3.3 例题讲解- 选择典型例题,演示相似图形的判定与性质应用。
3.4 巩固练习- 提供练习题,让学生独立完成,检测理解程度。
3.5 实际应用- 通过解决实际问题,如测量物体大小,让学生应用相似性质。
4. 教学评价- 课堂参与度:观察学生在小组合作中的参与情况。
- 练习正确率:检查学生练习题的正确率。
- 问题解决能力:评估学生在解决实际问题时的应用能力。
5. 教学资源- 教材:人教版八年级上册数学教材。
- 教具:绘图板、尺子、橡皮泥等。
- 多媒体:教学PPT、动画演示等。
6. 教学反思- 课后对教学效果进行反思,根据学生反馈调整教学方法及节奏。
7. 教学拓展- 引导学生探究相似图形在工程、艺术等领域的应用。
以上即为人教版八年级上册数学第十六章《相似》全章教学设计,旨在为学生提供一个系统、全面的学习框架,帮助他们在掌握知识的同时,培养解决问题的能力。
冀教版八年级上学期数学16
-学生通过多次实践,熟练掌握角的平分线的作图技巧,提高几何作图能力。
3.通过解答几何证明题,培养学生的逻辑推理能力和解题策略。
-教师引导学生分析题目条件,运用角的平分线性质进行推理和证明。
-学生在解答过程中,学会运用逻辑推理和几何证明方法,形成解决问题的有效策略。
2.应用提升题:
-从生活中的实际情境出发,设计一道与角的平分线相关的实际问题,要求学生运用角的平分线性质进行解决,并在下节课分享解题思路和结果。
-结合本章所学内容,选取一道几何证明题,要求学生运用角的平分线性质进行证明,培养学生的逻辑推理能力。
3.创新拓展题:
-鼓励学生探索角的平分线在非等腰三角形中的应用,例如,在一般三角形中,如何利用角的平分线求解未知角度。
(二)过程与方法
1.通过直观演示和实际操作,引导学生探究角的平分线的性质和判定方法。
-教师通过多媒体演示或实物操作,让学生观察和思考,从而引导学生发现角的平分线的性质。
-学生在小组合作中,通过实际操作验证角的平分线的性质,培养合作意识和探究能力。
2.培养学生运用尺规作图解决问题的能力,提高几何作图技巧。
-学生可以尝试研究角的平分线与三角形的其他重要线段(如中线、高线等)之间的关系,并在课堂上进行交流。
4.自主学习任务:
-安排学生阅读教材中关于角的平分线的拓展阅读材料,增加对角的平分线知识点的理解深度。
-学生可以自行搜索相关的数学历史故事,了解角的平分线在数学发展史上的地位和作用。
作业要求:
-学生需认真完成作业,确保书写工整、步骤清晰。
-学生能够通过角的平分线证明等腰三角形的两边相等,并能够推导出等腰三角形的底角相等。
八年级数学教案第十六周
20.2数据的波动备注第一课时教学内容:极差教学目标:(一)、知识与技能:1.理解极差的概念,知道极差等于一组数据中最大数与最小数的差.2.引导学生发现极差能反映一组数据中两个极端值之间的差异情况,是刻画一组数据离散程度的一个统计量.3.能够列举几个利用极差进行比较的实例.4.生体会数学与生活密切相关(二)、过程与方法通过一系列富有启发性、层层深入的问题,引导学生广泛思考和探索.通过对解决问题的反思获得解决问题的经验,结实显示生活中的现象.(三)、情感态度与价值观通过与生活实际紧密联系的大量问题的解决,引发学生学习数学的兴趣,体会数学源于生活;通过与数据集中趋势比较学习,培养学生独立思考、勇于创新的科学精神,并形成实事求是的科学态度.教学重点:极差概念的理解教学难点:极差概念的引入。
一、课堂情境引入:(10分)引入问题可以仍然采用教材上的“乌鲁木齐和广州的气温情”为了更加形象直观一些的反映极差的意义,可以画出温度折线图,这样极差之所以用来反映数据波动范围就不言而喻了。
二、归纳总结:(10分)极差定义:一组数据的最大数据与最小数据的差叫这组数据的极差.表达式:极差=最大值-最小值总结:1. 极差是刻画数据离散程度的最简单的统计量2. 特点是计算简单3. 极差是利用了一组数据两端的信息,但不能反映出中间数据的分散状况注意:极差反映一组数据两个极端值之间的差异情况,仅由两个数据评判一组数据是不科学的,要了解其他的统计量,在此为下一节的内容埋下伏笔.三、课堂练习(10分)本节课在教材中没有相应的例题,教材P138习题分析问题 1 可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大。
问题 2 涉及前一个学期统计知识首先应回忆复习已学知识。
问题3答案并不唯一,合理即可。
四、随堂练习:(10分)1、一组数据:473、865、368、774、539、474的极差是,一组数据1736、1350、-2114、-1736的极差是 .2、一组数据3、-1、0、2、X的极差是5,且X为自然数,则X= .3、下列几个常见统计量中能够反映一组数据波动范围的是()A.平均数 B.中位数 C.众数 D.极差4、一组数据X1、X2…Xn的极差是8,则另一组数据2X1+1、2X2+1…,2Xn+1的极差是() A. 8 B.16 C.9 D.17五、课堂小结:(3分)本节课我们主要学习了:1、极差——反映一组数据变化范围的大小2、极差=最大值-最小值3、极差在分析一组数据的离散程度时,仍有不足的一面.六、作业:(2分) 1、已知样本9.9、10.3、10.3、9.9、10.1,则样本极差是()A. 0.4 B.16 C.0.2 D.无法确定2、在一次数学考试中,第一小组14名学生的成绩与全组平均分的差是2、3、-5、10、12、8、2、-1、4、-10、-2、5、5、-5,那么这个小组的平均成绩是()A. 87 B. 83 C. 85 D 无法确定3、已知一组数据2.1、1.9、1.8、X、2.2的平均数为2,则极差是。
八年级第16章教案.docx
16.1轴对称(1)学习目标1. 通过展示轴对称图形的图片,初步认识轴对称图形;2. 通过试验,归纳出轴对称图形概念,能用概念判断一个图形是否是轴对称图形;3. 培养良好的动手试验能力、归纳能力和语言表述能力。
一、预习检测1、 观察课本中的4副图片,你能找出它们的共同特征吗?2、 你能列举出一些现实生活中具有这种特征的物体和建筑物吗?3、 动手做一做:把一张纸对折,然后从折叠处剪出一个图形,展开后会是一个什么样 的图形?它有什么特征?4、 如果一个图形沿一条 ___________ 折叠, __________ 两旁的部分能够完全 ___________ .这个图形就叫做轴对称图形,这条 ____________ 就是它的对称轴,这时,我们也说这个图形关于这条 _________ (成轴)对称.5、 轴对称图形的对称轴是一条 _______________ A 直线 B 射线 C 线段6、 课本P30练习题。
7、 下面的图形是轴对称图形吗?如果是,指出对称轴。
二、目标探究例1.我国的文字非常讲究对称美,分析图中的四个图案,图案()有别于其余三个 图案.M ¥ □ □(A)(B)(C) (Q )第4题例2.如图是我国几家银行的标志,在这几个图案中是轴对称图形的有哪些?它们各有几 条对称轴,你思路分析:所用知识点:能画出来吗?(小组讨论完成)思路分析:所用知识点:三、当堂检测A组:1、要求同学们找出所剪的图案的对称轴,并且用直尺把它画出来。
2、课本P36习题1,3、课本P63复习题1B组:1、找出英文26个大写字母中哪些是轴对称图形?2、你能举出三个是轴对称图形的汉字吗3、练习册习题四、勇攀高峰C组:1、用两个圆、两个三角形、两条平行线构造轴对称图形,别忘了要加上一两句贴切、诙谐的解说词。
2、练习册习题五、小结与反思16. 1轴对称(2)学习目标1、通过动手实验,掌握关于某条直线成轴对称的两个图形的对应线段相等、对应角相等;2、理解轴对称图形和两个图形成轴对称这两个概念的区别与联系。
数学初二上册第十六章教学方案
数学初二上册第十六章教学方案一、教学目标本章主要围绕数学初二上册第十六章内容展开教学,旨在帮助学生全面了解和掌握以下知识与技能:1. 理解并能够应用平方根的概念;2. 掌握平方根的计算方法;3. 理解和运用勾股定理求解实际问题;4. 发展解决实际问题的数学建模能力。
二、教学重难点1. 重点:平方根的概念与计算方法;2. 难点:勾股定理的理解与应用。
三、教学准备1. 教材:数学初二上册;2. 教具:教学课件、白板、笔等。
四、教学过程本章教学主要分为三个部分进行,分别是平方根的概念与计算、勾股定理、实际问题求解。
一、平方根的概念与计算1. 导入通过引入一个实际生活中的问题,如一个正方形的边长为a,求其对角线的长度d,引发学生思考。
2. 概念讲解根据导入中的问题,引出平方根的概念,同时进行形象化的示意图解释。
要求学生借助示意图,形成初步的概念。
3. 计算方法讲解结合多个具体的实例,讲解平方根的计算方法,包括开平方根及计算平方根的一般步骤,引导学生进行思考和实践操作。
4. 练习与展示设计一些简单的例题,由学生进行解答和展示,强调解题思路与方法,注意解答过程的合理性。
二、勾股定理1. 导入通过一个实际问题引入勾股定理的概念,如:一个直角三角形的直角边分别为a、b,求斜边的长度c。
2. 概念讲解根据导入中的问题,引出勾股定理的概念,同时进行推导和证明,加深学生对该定理的理解。
3. 应用演示通过几个实际问题的演示,讲解如何应用勾股定理解决实际问题,要求学生积极参与思考和回答。
4. 练习与巩固设计一些练习题,组织学生进行分组讨论与答题,培养他们解决问题的能力与方法。
三、实际问题求解1. 导入通过一个实际问题,如求解直角三角形的边长、面积等,引发学生对实际问题的思考与求解方法。
2. 数学建模引导学生将实际问题转化为数学问题,并进行相应的建模处理,同时结合平方根和勾股定理的知识进行求解。
3. 问题解答根据学生的数学建模,引导学生一步步解答实际问题,要求学生解答完整、清晰,同时注重解题过程和方法的讲解。
2024年冀教版八年级上册教学设计第十六章16.4 中心对称图形
课时目标1.认识并能够辨析中心对称图形和两个图形成中心对称.2.理解中心对称的基本性质,并会利用性质作图.学习重点理解中心对称的基本性质,并会利用性质作图.学习难点辨析中心对称图形和两个图形成中心对称.课时活动设计情境引入观察这些图片,回忆轴对称图形的特点,它们是轴对称图形吗?如果不是,它们的共同特征是什么?设计意图:回顾旧知识,联系生活中的情景,合理设置悬念,激发学生的学习兴趣.探究新知探究1中心对称图形学生观察下列图片,小组合作,交流探讨,教师巡视,适当给予指导.1.观察这些图片,将它们分别绕各自标示的“中心点”旋转180°后,能不能与它们自身重合?2.如图,已知线段AB和它的中点O,当线段AB绕点O旋转180°后,这条线段能不能与它自身重合?3.你还能找到具有问题1,2中图形的特征的图形吗?观察发现,问题1,2中的图形分别绕各自的“中心点”(或中点)旋转180°后,都能与它们自身重合.定义:像这样,如果一个图形绕某一个点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,这个点叫做它的对称中心,其中对称的点叫做对应点.线段是中心对称图形,线段的中点是它的对称中心,两个端点为一对对应点.探究2成中心对称中心对称图形是指一个图形的中心对称性,那么两个图形之间是否也具备这样的关系呢?观察△ABC和△DEF,你发现了什么?学生观察思考,小组合作,交流探讨,教师巡视,适当给予指导.△ABC和△DEF的顶点A,C,F,D在同一条直线上,O为线段CF的中点,AC=DF,BC=EF,△ACB=△DFE.将△ABC绕点O旋转180°后,它能与△DEF重合.定义:如果一个图形绕某一点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称,这个点叫做对称中心,其中成中心对称的点、线段和角,分别叫做对应点、对应线段和对应角.探究3中心对称图形和成中心对称的性质我们已经学过图形的旋转,我们知道“一个图形和它旋转后所得到的图形,对应点到旋转中心的距离相等,两组对应点分别与旋转中心连线所成的角相等”,那么中心对称图形(如图)又有怎样的性质呢?师生讨论交流并进行总结归纳.总结:在成中心对称的两个图形中,对应点的连线经过对称中心,并且被对称中心平分.反过来,如果两个图形的对应点连成的线段都经过某一点,并且被该点平分,那么这两个图形一定关于该点成中心对称.设计意图:通过问题情境,以现实生活中的实例为素材,让学生体会和认识生活中的中心对称图形.学生概括定义,培养归纳概括能力,学生通过观察、分析、操作、猜想、验证等活动,小组交流合作,教师适时指导,得到两个图形成中心对称的概念.通过猜想、测量、验证等探究活动,形成对中心对称图形和成中心对称的深刻认识,在活动中学生充分研讨,得到中心对称图形和成中心对称的性质.典例精讲例1如图,已知线段AB和点O,画出线段AB关于点O的中心对称图形.解:如图.(1)连接AO,BO,并延长AO到点C,延长BO到点D,使得OC=OA,OD=OB.(2)连接CD.线段CD即为所求.例2如图,四边形ABCD与四边形A'B'C'D'是成中心对称的两个图形,请你试着确定其对称中心的位置.解:如图,连接AA',DD',交点O即为所求.设计意图:通过例题,巩固本节课所学内容,帮助学生熟练掌握和运用新知识.巩固训练1.下列英文大写正体字母中,有中心对称图形吗?若有,哪些字母是中心对称图形?A B C D E F G H I J K L MN O P Q R S T U V W X Y Z解:有.H,I,N,O,S,X,Z是中心对称图形.2.如图1,把4张扑克牌放在桌子上,不让别人看见,将其中某些牌旋转(不能看到旋转过程)180°,旋转后看到的扑克牌如图2.你能很快确定哪张牌一定被旋转过吗?哪张牌可能被旋转过?解:黑桃9、黑桃8和梅花3这3张牌一定被旋转过,方块J可能被旋转过.3.如图,△ABO与△CDO关于点O成中心对称,点E,F在线段AC上,且AF=CE.求证:FD=BE.证明:△△ABO 与△CDO 关于点O 成中心对称,△AB =CD ,△A =△C.△AF =CE ,△AF +FE =CE +FE ,即AE =CF .在△ABE 和△CDF 中,{AB =CE,∠A =∠C,AE =CF,△△ABE △△CDF (SAS).△FD =BE.设计意图:进一步巩固所学知识,加深对所学知识的理解,提高综合运用能力.课堂小结1.什么样的图形是中心对称图形?什么样的图形是成中心对称图形?2.成中心对称的性质有哪些?设计意图:以提问的形式总结回顾本节课学习的重点内容,帮助学生巩固课堂知识.课堂8分钟.1.教材第127页习题A 组第2,3,4题,习题B 组第1,2题.2.七彩作业.16.4中心对称图形在成中心对称的两个图形中,对应点的连线经过对称中心,并且被对称中心平分.反过来,如果两个图形的对应点连成的线段都经过某一点,并且被该点平分,那么这两个图形一定关于该点成中心对称.教学反思。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六周 第1课时 §7.1谁的包裹多教学目标:1、了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。
2.通过讨论和练习,进一步培养学生的观察、比较、分析的能力。
3.通过对实际问题的分析,使学生体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。
重点:二元一次方程组的含义难点:判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。
教学过程:一、引入、实物投影(P 181图)1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?2、请每个学习小组讨论(讨论2分钟,然后发言) 这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x 个包裹,小马驮y 个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍, 得方程:x+1=2(y-1)师:同学们能用方程的方法来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的项的次数是多少? (含有两个未知数,并且所含未知数项的次数是1)师:含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程注意:这个定义有两个地方要注意①、含有两个未知数,②、含未知数的次数是一次练习:(投影)下列方程有哪些是二元一次方程x 1+2y=1 xy+x=1 3x-2y =5 x 2-2=3x xy=1 2x(y+1)=c 2x-y=1 x+y=0 一、议一议、 师:上面的方程中x-y=2,x+1=2(y-1)的x 含义相同吗?y 呢? (两个方程中x 的表示老牛驮的包裹数,y 表示小马的包裹数,x 、y 的含义分别相同。
)师:由于x 、y 的含义分别相同,因而必同时满足x-y=2和x+1=2(y-1),我们把这两个方程用大括号联立起来,写成 x-y=2 x+1=2(y-1) 像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
如: 2x+3y=3 5x+3y=8x-3y=0 x+y=8二、做一做、1、x=6,y=2适合方程x+y=8吗?x=5,y=3呢?x=4,y=4呢?你还能找到其他x,y 值适合x+y=8方程吗? 2、X=5,y=3适合方程5x+3y=34吗?x=2,y=8呢?3、你能找到一组值x,y 同时适合方程x+y=8和5x+3y=34吗?各小组合作完成,各同学分别代入验算,教师巡回参与小组活动,并帮助找到3题的结论.由学生回答上面3个问题,老师作出结论适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的解x=6,y=2是方程x+y=8的一个解,记作 x=6 同样, x=5y=2 y=3也是方程x+y=8的一个解,同时 x=5 又是方程5x+3y=34的一个解,y=3二元一次方程各个方程的公共解,叫做二元一次方程组的解。
三、随堂练习、(P184)四、小结:1、含有两未知数,并且含有未知数的项的次数是一次的整式方程叫做二元一次方程。
2、二元一次方程的解是一个互相关联的两个数值,它有无数个解。
3、含有两个未知数的两个二元一次方程组成的一组方程,叫做二元一次方程组,它的解是两个方程的公共解,是一组确定的值。
教后反思:第2课时§7.2 解二元一次方程组(一)【教学目标】1.会用代入消元法解二元一次方程组2.了解解二元一次方程组的消元思想,初步体现数学研究中“化未知为已知”的化归思想,从而“变陌生为熟悉”3.利用小组合作探讨学习,使学生领会朴素的辩证唯物主义思想【重点】用代入法解二元一次方程组,基本方法是消元化二元为一元.【难点】用代入法解二元一次方程组的基本思想是化归——化陌生为熟悉.【教学过程】一、引入上节课我们的老牛和小马的包裹谁的多的问题,经过大家的共同努力,得出了二元一次方程组x-y=2 ①到底谁的包裹多呢?x+1=2(y-1) ②这就需要解这个二元一次方程组.二、一元一次方程我们会解,二元一次方程组如何解呢?我们大家知道二元一次方程只需要消去一个未知数就可变为一元一次方程,那么我们发现:由①得y=x-2由于方程组相同的字母表示同一个未知数,所以方程②中的y也等于x-2,可以用x-2代替方程②中的y.这样就得到大家会解的一元一次方程了.三、做一做我们知道了解二元一次方程组的一种思路,下面我们来做一做例1、解方程组 3x+ 2y=8 ①x=23y②解:将②代入①,得3(y+3)+2y = 14 3y+9+2y=14 5y =5 y=1 将y=1代入②,得x=4 所以原方程组的解是 x=4y=1例2、解方程组 2x+3y=16 ①x+4y=13 ②教师先分析:此题不同于例1, (即用含有一个未知数的代数式表示另一个未知数),②式不能直接代入①,那么我们应当怎样处理才能转化为例1②式这样的形式呢? 请同学回答(应先对②式进行恒等变化,把它化为例1中②式那样的形式.)分小组合作完成上述例题,请两个小组的代表上黑板上来板演解:由②,得 x=13-4y 将③代入①,得2(13-4)S+3y=16 26-8y+3y=16 -5y=-10 y=2 将代入③,得 x=5 所以原方程组的解是 x=5 y=2四、议一议、上面解方程组的基本思路是什么?主要步骤有哪些?上面解方程组的基本思路是“消元”——把“二元”变为“一元”。
主要步骤是:①将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,②将这个代数式代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程式。
③解这个一元一次方程。
④把求得的一次方程的解代入方程中,求得另一个未知数值,组成方程组的解。
这种解方程组的方法称为代入消元法。
简称代入法。
五、练一练、1、已知x+3y-6=0,用含x 的代数式表示y 为 ,用含y 的代数式表示x为 . 2、书本P 188随堂练习六、小结、1、今天我们学习了二元一次方程组的解法,你有什么体会? 2、解二元一次方程组的思路是消元,把二元变为一元 3、解题步骤概括为三步即:①变、②代、③解、 4、方程组的解的表示方法,应用大括号把一对未知数的值连在一起,表示同时成立,不要写成x=?y=?5、由一个方程变形得到的一个含有一个未知数的代数式必须代入另一个方程中去,否则会出现一个恒等式。
七、作业、1、已知 x=1 是方程组 ax+by=2 的解,则a 、b 的值是多少?y=1 x-by=32、若方程组 4x+3y=1 的解x 与y 相等,则a 的值是多少?ax+(a-1)y=3教后反思:第 3课时 §7.2 二元一次方程组的解法(二)一、教学目标设计: 1、了解并会用加减消元法解二元一次方程组。
2、了解解二元一次方程组的消元思想,体会数学中“化未知为已知”的化归思想。
3、初步体验二元一次方程组解法的多样性和选择性。
二、教学重点:会用加减消元法解二元一次方程组。
会用加减消元法解二元一次方程组。
三、教学难点:掌握解二元一次方程组的“消元”思想。
四、教学过程设计: 1、创设情境:怎样解下面的二元一次方程组呢?⎩⎨⎧=-=+11-52125y 3x y x 分析:观察方程组中的两个方程,未知数y 的系数互为相反数,把这两个方程两边分别相加,就可以消去未知数y ,得到一个一元一次方程;(3x + 5y )+(2x - 5y )=21 + (-11)①左边 + ②左边 = ①左边 + ②左边3X+5y +2x - 5y =10 5x+0y =10 5x=10解:由①+②得: 5x=10 x =2把x =2代入①,得 y =3所以原方程组的解是⎩⎨⎧==23x y 2、探索尝试: 参考小丽的思路,怎样解下面的二元一次方程组呢?例1 解下列方程组. ⎩⎨⎧-=+=-13275y 2x y x 分析:观察方程组中的两个方程,未知数x 的系数相等,都是2.把这两个方程两边分别相减,就可以消去未知数x ,同样得到一个一元一次方程. 解:把 ②-①得:8y =-8 y =-1把y =-1代入①,得 2x -5╳(-1)=7 解得:x =1所以原方程组的解是⎩⎨⎧-==11x y 1. 随堂练习:指出下列方程组求解过程中有错误步骤,并给予订正:⎩⎨⎧=+=24544y -7x y x ⎩⎨⎧-=-=445144y -3x y x 解:①-②,得 解 ①-②,得 -2x =12 2x =4-4,x =-6 x =0正确的解是:解: ①-②,得 解: ①+②,得8x =16 2x =4+4,x =4 x =24.议一议: 上面这些方程组的特点是什么?解这类方程组基本思路是什么?主要步骤有哪些?这些方程组的特点是同一个未知数的系数相同或互为相反数这类方程组基本思路:加减消元----二元---- 一元主要步骤: 加减----消去一个元 求解----分别求出两个未知数的值 写解----写出方程组的解5.做一做 例2.用加减法解下列各方程组⎩⎨⎧=+=+1743123y 2x y x 分析:(1)用加减消元法解方程组时,若哪个未知数系数的绝对值正好相等,就可先消哪个未知数;若两个未知数的系数绝对值均不等,则可选定一个未知数,通过变形使其绝对值相等,再进行消元.(2)运用加减消元法解方程组的条件是方程组中两个方程的某个未知数的系数的绝对值相等,当方程组中两方程不具备这种特点时,必须用等式性质2来改变方程组中方程的形式,即得到与原方程组同解的且某未知数系数的绝对值已经相等的新的方程组,从而为加减消元法解方程组创造条件.①×3得6x+9y=36 ③ ②×2得6x+8y=34 ④ ③-④得y=2 把y=2代入①,得 解得:x =3所以原方程组的解是⎩⎨⎧-==11x y 说明:1.加减消元法的依据是等式性质1,即在一个方程左右两边分别加上或减去另一个方程的左右两边,所得的结果仍是等式.经过这样的运算,其中一个未知数被消去了,原来的“二元”化为“一元”,转化为一元一次方程,从而可求出原方程组的解来.2.对于不是标准的二元一次方程组,可先通过去分母或去括号,将其变为标准的二元一次方程组后再消元5.试一试: 运用加减消元法解下列方程组: (3)⎪⎪⎩⎪⎪⎨⎧=-=++2412x 12y 31x y6.探索与思考:在解方程组⎩⎨⎧=-=+53c 2b y x y ax 时,小张正确的解⎩⎨⎧==21x y ,小李由于看错了方程组中的C 得到方程组的解为⎩⎨⎧=-=13y x ,试求方程组中的a 、b 、c 的值。