2021届新高考新题型多项选择专题06 不等式(解析版)
高考数学试题解析分项 专题6 不等式 理 试题
卜人入州八九几市潮王学校2021年高考试题解析数学〔理科〕分项06不等式一、选择题:1.(2021年高考卷理科4)不等式|5||3|10x x -++≥的解集为〔A 〕[-]〔B 〕[-4,6]〔C 〕(,5][7,)-∞-⋃+∞〔D 〕(,4][6,)-∞-⋃+∞4.(2021年高考卷理科5)设实数,x y 满足不等式组250270,0x y x y x +->⎧⎪+->⎨⎪≥≥⎩,y 0,假设,x y 为整数,那么34x y +的最小值是〔A 〕14〔B 〕16〔C 〕17〔D 〕19 【答案】B【解析】:作出可行域,5032701x y x x y y +-==⎧⎧⎨⎨+-==⎩⎩由得,,x y为整数,所以4,1x y ==,min 344116z =⨯+⨯=应选B .5.(2021年高考卷理科7)假设,a b 为实数,那么“01ab <<〞是11a b b a<>或的〔A 〕充分而不必要条件〔B 〕必要而不充分条件〔C 〕充分必要条件〔D 〕既不充分也不必要条件 【答案】A【解析】1111ab ab a b b b a a---=-=或那么21111(1)()()ab ab ab a b b a b a ab -----=⋅=因为01ab <<所以2(1)0ab ab ->即11()()0a b b a -->于是11()()0a b b a -->所以11a b b a<>或成立,充分条件; 反之11a b b a<>或成立,即111100ab ab a b b b a a---=<-=>或那么11()()a b b a --2(1)0ab ab -=<故0ab <,不必要条件。
应选A 6.(2021年高考卷理科4)设变量,x y 满足1,x y +≤那么2x y +的最大值和最小值分别为〔A〕1,-1〔B〕2,-2〔C〕1,-2〔D〕2,-1 【答案】B 【解析】不等式1x y +≤对应的区域如下列图,当目的函数过点〔0,-1〕,〔0,1〕时,分别取最小或者最大值,所以2x y +的最大值和最小值分别为2,-2.应选B.7.(2021年高考卷理科2)设,,x y R ∈那么“2x ≥且2y ≥〞是“224x y +≥〞的A.充分而不必要条件B .必要而不充分条件 C .充分必要条件D .即不充分也不必要条件9.(2021年高考卷理科8)对实数a与b,定义新运算“⊗〞:,1,, 1.a ab a b b a b -≤⎧⊗=⎨->⎩设函数()()22()2,.f x x x x x R =-⊗-∈假设函数()y f x c =-的图像与x 轴恰有两个公一共点,那么实数c 的取值范围是〔〕A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭B .(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭ C .11,,44⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭D.311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭11.(2021年高考卷理科3)假设()log ()f x x 121=2+1,那么()f x 的定义域为A.(,)1-02 B.(,]1-02 C.(,)1-+∞2D.(,)0+∞ 【答案】A【解析】要使原函数有意义,只须12log (21)0x +>,即0211x <+<,解得x 1-<<02,应选A.12.(2021年高考卷理科4)假设()ln f x x x x 2=-2-4,那么'()f x >0的解集为A.(,)0+∞B.-+10⋃2∞(,)(,)C.(,)2+∞D.(,)-10【答案】C【解析】因为'()x x f x x x x242-2-4=2-2-=,原函数的定义域为(0,)+∞,所以由'()f x >0可得220x x -->,解得2x >,应选C.13.(2021年高考卷理科7)设,1>m 在约束条件⎪⎩⎪⎨⎧≤+≤≥1y x mx y x y 下,目的函数my x z +=的最大值小于2,那么m 的取值范围为A.()21,1+ B.()+∞+,21 C.()3,1 D.()+∞,3答案:A解析:画出可行域,或者分别解方程组⎩⎨⎧==mx y x y ,⎩⎨⎧=+=1y x x y ,⎩⎨⎧=+=1y x mxy 得到三个区域端点()0,0,⎪⎭⎫⎝⎛21,21, ⎪⎭⎫ ⎝⎛++1,11m m m ,当且仅当直线my x z +=过点⎪⎭⎫ ⎝⎛++1,11m m m 时,z 取到最大值2112<++=m m z ,解得()21,1+∈m 。
中考数学专题06 方程与不等式的实际运用【考点精讲】(解析版)
题型1:工程问题【例1】(2021·辽宁丹东市·中考真题)为落实“乡村振兴计划”的工作要求,某区政府计划对乡镇道路进行改造,安排甲、乙两个工程队完成,已知乙队比甲队每天少改造20米,甲队改造400米的道路与乙队改造300米的道路所用时间相同,求甲、乙两个工程队每天改造的道路长度分别是多少米?【答案】甲工程队每天改造的道路长度是80米,乙工程队每天改造的道路长度是60米. 【分析】根据题意列出方程求解即可. 【详解】解:设甲工程队每天改造的道路长度是x 米, 列方程得:, 解得:x =80. 80-20=60.答:甲工程队每天改造的道路长度是80米,乙工程队每天改造的道路长度是60米. 【例2】(2021·山东泰安市·中考真题)接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂. (1)求该厂当前参加生产的工人有多少人?(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务? 【答案】(1)30人;(2)39天 【分析】(1)设当前参加生产的工人有人,根据每人每小时完成的工作量不变列出关于的方程,求解即可;(2)设还需要生产天才能完成任务.根据前面4天完成的工作量+后面天完成的工作量=760列出关于的方程,求解即可. 【详解】40030020x x =-x x y y y 专题06 方程与不等式的实际运用解:(1)设当前参加生产的工人有x 人,依题意得:,解得:,经检验,是原方程的解,且符合题意. 答:当前参加生产的工人有30人.(2)每人每小时的数量为(万剂). 设还需要生产y 天才能完成任务,依题意得:, 解得:,(天) 答:该厂共需要39天才能完成任务..(2021·北京中考真题)某企业有两条加工相同原材料的生产线.在一天内,生产线共加工吨原材料,加工时间为小时;在一天内,生产线共加工吨原材料,加工时间为小时.第一天,该企业将5吨原材料分配到两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到生产线的吨数与分配到生产线的吨数的比为______________.第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给生产线分配了吨原材料,给生产线分配了吨原材料.若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则的值为______________. 【答案】2∶3 【分析】设分配到生产线的吨数为x 吨,则分配到B 生产线的吨数为(5-x )吨,依题意可得,然后求解即可,由题意可得第二天开工时,由上一问可得方程为,进而求解即可得出答案.【详解】解:设分配到生产线的吨数为x 吨,则分配到B 生产线的吨数为(5-x )吨,依题意可得:,解得:,∴分配到B 生产线的吨数为5-2=3(吨),16158(10)10x x=+30x =30x =168400.05÷÷=41540100.05760y ⨯+⨯⨯⨯=35y =35439+=,A B A a ()41a +B b ()23b +,A B A B A m B n mn12A ()41253x x +=-+()()421233m n ++=++A ()41253x x +=-+2x =∴分配到生产线的吨数与分配到生产线的吨数的比为2∶3;∴第二天开工时,给生产线分配了吨原材料,给生产线分配了吨原材料, ∵加工时间相同,∴, 解得:, ∴; 故答案为,.题型2:行程问题【例3】(2021·湖南中考真题)为了改善湘西北地区的交通,我省正在修建长(沙)-益(阳)-常(德)高铁,其中长益段将于2021年底建成.开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米,运行时间为16分钟;现乘坐某次长益城际列车全程需要60分钟,平均速度是开通后的高铁的. (1)求长益段高铁与长益城际铁路全长各为多少千米?(2)甲、乙两个工程队同时对长益段高铁全线某个配套项目进行施工,每天对其施工的长度比为7:9,计划40天完成.施工5天后,工程指挥部要求甲工程队提高工效,以确保整个工程提早3天以上(含3天)完成,那么甲工程队后期每天至少施工多少千米? 【答案】(1)长益段高铁全长为64千米,长益城际铁路全长为104千米;(2)千米. 【分析】(1)设开通后的长益高铁的平均速度为千米/分钟,从而可得某次长益城际列车的平均速度为千米/分钟,再根据“路程速度时间”、“开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米”建立方程,解方程即可得;(2)先求出甲、乙两个工程队每天对其施工的长度,再设甲工程队后期每天施工千米,根据“整个工程提早3天以上(含3天)完成”建立不等式,解不等式即可得. 【详解】解:(1)设开通后的长益高铁的平均速度为千米/分钟,则某次长益城际列车的平均速度为千米/分钟, A B A ()2m +B ()3n +()()421233m n ++=++12m n =12m n =2:31213300.85x 1330x =⨯y x 1330x由题意得:, 解得,则(千米),(千米), 答:长益段高铁全长为64千米,长益城际铁路全长为104千米; (2)由题意得:甲工程队每天对其施工的长度为(千米), 乙工程队每天对其施工的长度(千米), 设甲工程队后期每天施工千米, 则, 解得, 即,答:甲工程队后期每天至少施工千米.【例4】(2021·内蒙古中考真题)小刚家到学校的距离是1800米.某天早上,小刚到学校后发现作业本忘在家中,此时离上课还有20分钟,于是他立即按原路跑步回家,拿到作业本后骑自行车按原路返回学校.已知小刚骑自行车时间比跑步时间少用了4.5分钟,且骑自行车的平均速度是跑步的平均速度的1.6倍. (1)求小刚跑步的平均速度;(2)如果小刚在家取作业本和取自行车共用了3分钟,他能否在上课前赶回学校?请说明理由.【答案】(1)小刚跑步的平均速度为150米/分;(2)小刚不能在上课前赶回学校,见解析 【分析】(1)根据题意,列出分式方程即可求得小刚的跑步平均速度;(2)先求出小刚跑步和骑自行车的时间,加上取作业本和取自行车的时间,与上课时间20分钟作比较即可. 【详解】解:(1)设小刚跑步的平均速度为x 米/分,则小刚骑自行车的平均速度为1.6x 米/分, 根据题意,得, 解这个方程,得,1360164030x x ⨯-=4x =16464⨯=1313606041043030x ⨯=⨯⨯=7647794010⨯=+9649794010⨯=+y 979(4053)(64(5101010y --+≥-+⨯1720y ≥0.85y ≥0.85180018004.51.6x x+=150x =经检验,是所列方程的根, 所以小刚跑步的平均速度为150米/分.(2)由(1)得小刚跑步的平均速度为150米/分, 则小刚跑步所用时间为(分), 骑自行车所用时间为(分), 在家取作业本和取自行车共用了3分,所以小刚从开始跑步回家到赶回学校需要(分). 因为,所以小刚不能在上课前赶回学校.1.(山东省淄博市2021年中考数学试题)甲、乙两人沿着总长度为10km 的“健身步道”健步走,甲的速度是乙的1.2倍,甲比乙提前12分钟走完全程.设乙的速度为km/h x ,则下列方程中正确的是( )A .1010121.2x x -= B .10100.21.2x x -= C .1010121.2x x -= D .10100.21.2x x-= 【答案】D 【分析】根据题意可直接进行求解. 【详解】 解:由题意得:10100.21.2x x-=; 故选D .题型3:历史文献问题【例5】(2021·四川成都市·中考真题)《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50,问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x ,y ,则可列方程组为( )150x =180012150=12 4.57.5-=127.5322.5++=22.520>A.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503x yy x⎧-=⎪⎪⎨⎪+=⎪⎩C.2502503x yx x-=⎧⎪⎨-=⎪⎩D.2502503x yx y-=⎧⎪⎨-=⎪⎩【答案】A【分析】根据“如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的三分之二,那么乙也共有钱50”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:依题意,得:15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩,故选:A.【例6】(2021·浙江宁波市·中考真题)我国古代数学名著《张邱建算经》中记载:“今有清洒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒、醑酒各几斗?如果设清酒x斗,醑酒y斗,那么可列方程组为()A.510330x yx y+=⎧⎨+=⎩B.531030x yx y+=⎧⎨+=⎩C.305103x yx y+=⎧⎪⎨+=⎪⎩D.305310x yx y+=⎧⎪⎨+=⎪⎩【答案】A【分析】根据“现在拿30斗谷子,共换了5斗酒”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:依题意,得:5 10330 x yx y+=⎧⎨+=⎩.故选:A.1.(2021·湖南永州市·中考真题)中国传统数学重要著作《九章算术》中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?据此设计一类似问题:今有人组团购一物,如果每人出9元,则多了4元;如果每人出6元,则少了5元,问组团人数和物价各是多少?若设x人参与组团,物价为y元,则以下列出的方程组正确的是()A .9465x y y x -=⎧⎨-=⎩B .9465x y x y -=⎧⎨-=⎩C .9465y x y x -=⎧⎨-=⎩D .9465y x x y -=⎧⎨-=⎩【答案】A 【分析】设组团人数为x 人,物价为y 元,根据等量关系“每人出9元,则多了4元;每人出6元,则少了5元”列出方程组即可. 【详解】设组团人数为x 人,物价为y 元,由题意可得,9465x y y x -=⎧⎨-=⎩. 故选A .2.(2021·辽宁大连市·中考真题)我国古代著作《增删算法统宗》中记载了一首古算诗:“林下牧童闹如簇,不知人数不知竹每人六竿多十四,每人八竿恰齐足”其大意是:“牧童们在树下拿着竹竿高兴地玩耍,不知与多少人和竹竿每人6竿,多14竿;每人8竿,恰好用完”若设有牧童x 人,根据题意,可列方程为__________. 【答案】6x +14=8x 【分析】设有牧童x 人,根据“每人6竿,多14竿;每人8竿,恰好用完”,竹竿的总数不变,列出方程,即可. 【详解】解:设有牧童x 人, 根据题意得:6x +14=8x , 故答案是:6x +14=8x .3.(2021·湖北中考真题)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为_______尺.(其大意为:现有一根竿和一条绳索,如果用绳索去量竿,绳索比竿长5尺;如果将绳索对折后再去量竿,就比竿短5尺,则绳索长几尺.) 【答案】20 【分析】设绳索长x 尺,根据两种量竿的方法建立方程,解方程即可得. 【详解】解:设绳索长x 尺, 由题意得:552xx -=+,解得20x =, 即绳索长20尺, 故答案为:20. 题型4:数字问题【例7】(2021·重庆中考真题)对于任意一个四位数m ,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m 为“共生数”例如:,因为,所以3507是“共生数”:,因为,所以4135不是“共生数”;(1)判断5313,6437是否为“共生数”?并说明理由;(2)对于“共生数”n ,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记.求满足各数位上的数字之和是偶数的所有n . 【答案】(1)是“共生数”, 不是“共生数”. (2)或 【分析】(1)根据“共生数”的定义逐一判断两个数即可得到答案;(2)设“共生数”的千位上的数字为 则十位上的数字为 设百位上的数字为 个位上的数字为 可得:< 且为整数,再由“共生数”的定义可得:而由题意可得:或 再结合方程的正整数解分类讨论可得答案. 【详解】解:(1)是“共生数”,不是“共生数”.(2)设“共生数”的千位上的数字为 则十位上的数字为 设百位上的数字为 个位上的数字为< 且为整数,所以: 由“共生数”的定义可得:3507m =372(50)+=⨯+4135m =452(13)+≠⨯+()3nF n =()F n 531364372148n =3069.n =n ,a 2,a ,b ,c 1a ≤5,09,09,b c ≤≤≤≤,,a b c 32,c a b =+9b c +=18,b c +=()5+3=21+3=8,⨯ 5313∴()6+7=1324+3=14,≠⨯ 6437∴n ,a 2,a ,b ,c 1a ∴≤5,09,09,b c ≤≤≤≤,,a b c 1000100201020100,n a b a c a b c =+++=++()22,a c a b +=+32,c a b ∴=+1023102,n a b ∴=+百位上的数字与个位上的数字之和能被9整除,或或当 则 则 不合题意,舍去, 当时,则当时, 此时: ,而不为偶数,舍去, 当时, 此时: ,而为偶数, 当时, 此时: ,而为偶数, 当时,则 而则不合题意,舍去,综上:满足各数位上的数字之和是偶数的或题型5:增长率问题【例8】(2021·福建中考真题)某市2018年底森林覆盖率为63%.为贯彻落实“绿水青山就是金山银山”的发展理念,该市大力开展植树造林活动,2020年底森林覆盖率达到68%,如果这两年森林覆盖率的年平均增长率为x ,那么,符合题意的方程是( )A .B .C .D .【答案】B 【分析】设年平均增长率为x ,根据2020年底森林覆盖率=2018年底森林覆盖率乘,据此即可列方程求解. 【详解】()34134,3nF n a b ∴==+ 0b c ∴+=9b c +=18,b c +=0,b c +=0,b c ==0,a =9b c +=339,a b +=3,a b ∴+=1a =2,7,b c ==1227,n =()12274093F n ==4+0+9=132a =1,8,b c ==2148,n =()2148716,3F n ==7+1+6=143a =0,9,b c ==3069,n =()30691023,3F n ==1+0+2+3=618b c +=9,b c ==3318,a b +=3a=-()F n 2148n =3069,n =()0.6310.68x +=()20.6310.68x +=()0.63120.68x +=()20.63120.68x +=()21x +解:设年平均增长率为x ,由题意得:,故选:B .【例9】(2021·湖南张家界市·中考真题)2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育学习活动,我市“红二方面军长征出发地纪念馆”成为重要的活动基地.据了解,今年3月份该基地接待参观人数10万人,5月份接待参观人数增加到12.1万人.(1)求这两个月参观人数的月平均增长率;(2)按照这个增长率,预计6月份的参观人数是多少? 【答案】(1)10%;(2)13.31万 【分析】(1)设这两个月参观人数的月平均增长率为x ,根据题意列出等式解出x 即可; (2)直接利用(1)中求出的月平均增长率计算即可. 【详解】(1)解:设这两个月参观人数的月平均增长率为x , 由题意得:210(1)12.1x +=, 解得:110%x =,22110x =-(不合题意,舍去), 答:这两个月参观人数的月平均增长率为10%. (2)12.1(110%)13.31⨯+=(万人), 答:六月份的参观人数为13.31万人.1.(2021·江苏盐城市·中考真题)劳动教育己纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种作物的产量两年内从300千克增加到363千克.设平均每年增产的百分率为x ,则可列方程为________. 【答案】2300(1)363x += 【分析】此题是平均增长率问题,一般用增长后的量=增长前的量×(1+增长率),结合本题,如果设平均每年增产的百分率为x ,根据“粮食产量在两年内从300千克增加到363千克”,即可得出方程. 【详解】解:设平均每年增产的百分率为x ;()20.6310.68x +=第一年粮食的产量为:300(1+x );第二年粮食的产量为:300(1+x )(1+x )=300(1+x )2; 依题意,可列方程:300(1+x )2=363; 故答案为:300(1+x )2=363.2.(2021·湖北襄阳市·中考真题)随着生产技术的进步,某制药厂生产成本逐年下降.两年前生产一吨药的成本是5000元,现在生产一吨药的成本是4050元.设生产成本的年平均下降率为,下面所列方程正确的是( )A .B .C .D .【答案】C 【分析】根据题意找到对应的等量关系:2年前的生产成本×(1-下降率)²=现在的生产成本,把相关的数据带入计算即可. 【详解】设这种药品的成本的年平均下降率为x ,根据题意得:故选:C.题型6:几何图形问题【例10】如图,一幅长、宽的矩形图案,其中有两条互相垂直的彩条,竖直彩条的宽度是水平彩条宽度的2倍,若图案中两条彩条所占面积是整个矩形图案面积的.求彩条的宽度.【答案】水平彩条宽度为,竖直彩条的宽度为. 【解析】解:设水平彩条宽度为,则竖直彩条的宽度为, 由题意得:, 整理得:,x ()2500014050x +=()2405015000x +=()2500014050x -=()2405015000x -=()25000-x =405018cm 6cm 381cm 2cm xcm 2xcm 38622868x x x x +⨯-⨯=⨯⨯21090x x -+=解得:,或 (不合题意舍去), ∴, ,答:水平彩条宽度为,则竖直彩条的宽度为.1.《生物多样性公约》第十五次缔约方大会(COP 15)将于2021年10月11日至24日在云南省昆明市举办.昆明某景观园林公司为迎接大会召开,计划在一个长35米、宽20米的矩形场地上要开辟一横两纵三条等宽的小道(如图),其余部分种植草坪,草坪面积为627平方米.设小道的宽为x 米,则可列方程为________.【答案】(35−2x )(20−x )=627 【详解】解:把阴影部分分别移到矩形的上边和左边可得矩形的长为(35−2x )米,宽为(20−x )米, ∴可列方程为(35−2x )(20−x )=627, 故答案为(35−2x )(20−x )=627. 题型7:方案问题【例11】某制纸厂生产A 型、B 型两种不同规格的纸,需用甲、乙两种不同的原料.若甲原料成本为0.5元/m 3,乙原料成本为1元/kg ,其它相关数据如下表所示:甲原料/m 3乙原料/kg售价/元 每百张A 型纸 1 2 4 每百张B 型纸1.235(1)若生产这两种纸需用甲原料108m 3、乙原料240kg ,则这两种规格的纸各多少百张? (2)若该厂生产A 型纸a 百张,则生产这种A 型纸的利润是多少元(用含a 的代数式表示)?(利润=售价﹣成本)(3)该厂发现,当制纸总量超过10000百张时,需额外支出8800元的设备维护费,现该厂接到一笔订单,要求生产A 型纸的数量是B 型纸数量的2倍,若该厂希望获得13200元的利润,则有哪几种生产方案? 【分析】(1)列方程组求解即可;(2)用代数式表示售价和成本,利用利润=售价﹣成本得出结果;1x =9x =1x =22x =1cm 2cm(3)设未知数,利用方程,求解即可.【解答】解:(1)设生产A型纸x百张,B型纸y百张,由题意得,x+1.2y=1082x+3y=240,解得,x=60 y=40,答:生产A型纸60百张,B型纸40百张;(2)4a﹣(0.5×a×1+1×a×2)=1.5a,答:生产这种A型纸的利润是1.5a元;(3)设生产B型纸m百张,则生产A型纸2m百张,由题意得,每百张A型纸的利润为4×2m﹣(0.5×2m×1+1×2m×2)=3m,每百张B型纸的利润为5m﹣(1.2×m×0.5+3×m×1)=1.4m,①当m+2m<10000时,有3m+1.4m=13200,解得m=3000,则2m=6000,即生产A型纸6000百张,则生产B型纸3000百张;②当m+2m>10000时,有3m+1.4m=13200+8800,解得m=5000,则2m=10000,即生产A型纸10000百张,则生产B型纸5000百张;因此有两种生产方案,A型纸6000百张,B型纸3000百张或A型纸10000百张,B型纸5000百张.【例12】雅安地震发生后,全国人民抗震救灾,众志成城,值地震发生一周年之际,某地政府又筹集了重建家园的必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆) 5 8 10汽车运费(元/辆)400 500 600 (1)全部物资可用甲型车8辆,乙型车5辆,丙型车 辆来运送.(2)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(3)已知三种车的总辆数为14辆,你有哪几种安排方案刚好运完?哪种运费最省?【分析】(1)根据需要丙型车的辆数=(需要运送物质的总重量﹣甲型汽车运送货物的总重量﹣丙型汽车运送货物的总重量)÷每辆丙型车的运载量,即可求出结论;(2)设需甲型车x辆,乙型车y辆,根据“用甲、乙两种车型运送120吨物质,共需运费8200元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(3)设安排甲型车m辆、乙型车n辆、则安排丙型车(14﹣m﹣n)辆,根据一次正好运送货物120吨,即可得出关于m,n的二元一次方程,结合m,n,(14﹣m﹣n)均为非负整数,即可得出各运送方案,再分别求出各运送方案所需费用,比较后即可得出结论.【解答】解:(1)(120﹣5×8﹣8×4)÷10=4(辆).故答案为:4.(2)设需甲型车x辆,乙型车y辆,依题意,得:5x+8y=120400x+500y=8200,解得:x=8y=10.答:需要甲型车8辆、乙型车10辆.(3)设安排甲型车m辆、乙型车n辆、则安排丙型车(14﹣m﹣n)辆,依题意,得:5m+8n+10(14﹣m﹣n)=120,∴n=10−52 m.又∵m,n,(14﹣m﹣n)均为非负整数,∴m=0n=10或m=2n=5或m=4n=0,∴共有3种安排方案,方案1:安排10辆乙型车,4辆丙型车;方案2:安排2辆甲型车,5辆乙型车,7辆丙型车;方案3:安排4辆甲型车,10辆丙型车.方案1所需运费为500×10+600×4=7400(元);方案2所需运费为400×2+500×5+600×7=7500(元);方案3所需运费为400×4+600×10=7600(元).∵7400<7500<7600,∴选择方案1所需运费最省,即安排10辆乙型车,4辆丙型车所需运费最省.1.(2021·四川泸州市·中考真题)某运输公司有A、B两种货车,3辆A货车与2辆B货车一次可以运货90吨,5辆A货车与4辆B货车一次可以运货160吨.(1)请问1辆A货车和1辆B货车一次可以分别运货多少吨?(2)目前有190吨货物需要运输,该运输公司计划安排A、B两种货车将全部货物一次运完(A、B两种货车均满载),其中每辆A货车一次运货花费500元,每辆B货车一次运货花费400元.请你列出所有的运输方案,并指出哪种运输方案费用最少.【答案】(1)1辆A货车和1辆B货车一次可以分别运货20吨和15吨;(2)共有3种租车方案,方案1:租用A型车8辆,B型车2辆;方案2:租用A型车5辆,B型车6辆;方案3:租用A型车2辆,B型车10辆;租用A型车8辆,B型车2辆最少.【分析】(1)设1辆A 货车和1辆B 货车一次可以分别运货x 吨和y 吨,根据“3辆A 货车与2辆B 货车一次可以运货90吨,5辆A 货车与4辆B 货车一次可以运货160吨”列方程组求解可得; (2)设货运公司安排A 货车m 辆,则安排B 货车n 辆.根据“共有190吨货物”列出二元一次方程组,结合m ,n 均为正整数,即可得出各运输方案.再根据方案计算比较得出费用最小的数据. 【详解】解:(1)1辆A 货车和1辆B 货车一次可以分别运货x 吨和y 吨,根据题意可得:,解得:,答:1辆A 货车和1辆B 货车一次可以分别运货20吨和15吨; (2)设安排A 型车m 辆,B 型车n 辆, 依题意得:20m +15n =190,即, 又∵m ,n 均为正整数,∴或或, ∴共有3种运输方案,方案1:安排A 型车8辆,B 型车2辆; 方案2:安排A 型车5辆,B 型车6辆; 方案3:安排A 型车2辆,B 型车10辆. 方案1所需费用:5008+4002=4800(元); 方案2所需费用:5005+4006=4900(元); 方案3所需费用:5002+40010=5000(元); ∵4800<4900<5000,∴安排A 型车8辆,B 型车2辆最省钱,最省钱的运输费用为4800元. 题型8:利润问题【例13】(2021·黑龙江绥化市·中考真题)某学校计划为“建党百年,铭记党史”演讲比赛购买奖品.已知购买2个种奖品和4个种奖品共需100元;购买5个种奖品和2个种奖品共需130元.学校准备购买两种奖品共20个,且种奖品的数量不小于种奖329054160x y x y +=⎧⎨+=⎩2015x y =⎧⎨=⎩3834nm -=82m n =⎧⎨=⎩56m n =⎧⎨=⎩210m n =⎧⎨=⎩⨯⨯⨯⨯⨯⨯A B A B ,A B A B品数量的,则在购买方案中最少费用是_____元. 【答案】330 【分析】设A 种奖品的单价为x 元,B 种奖品的单价为y 元,根据“购买2个A 种奖品和4个种奖品共需100元;购买5个A 种奖品和2个种奖品共需130元”,即可得出关于A ,B 的二元一次方程组,在设购买A 种奖品m 个,则购买B 种奖品(20-m )个,根据购买A 种奖品的数量不少于B 种奖品数量的,即可得出关于m 的一元一次不等式,再结合费用总量列出一次函数,根据一次函数性质得出结果. 【详解】解:设A 种奖品的单价为x 元,B 种奖品的单价为y 元, 依题意,得:,解得: ∴A 种奖品的单价为20元,B 种奖品的单价为15元.设购买A 种奖品m 个,则购买B 种奖品 个,根据题意得到不等式: m ≥(20-m ),解得:m ≥,∴≤m ≤20, 设总费用为W ,根据题意得: W =20m +15(20-m )=5m +300, ∵k =5>0,∴W 随m 的减小而减小, ∴当m =6时,W 有最小值, ∴W =5×6+300=330元则在购买方案中最少费用是330元. 故答案为:330.【例14】(2021·山东威海市·中考真题)六一儿童节来临之际,某商店用3000元购进一批玩具,很快售完;第二次购进时,每件的进价提高了20%,同样用3000元购进的数量比第一次少了10件.(1)求第一次每件的进价为多少元?25B B 252410052130x y x y +=⎧⎨+=⎩2015x y =⎧⎨=⎩(20)m -25407407(2)若两次购进的玩具售价均为70元,且全部售完,求两次的总利润为多少元? 【答案】(1)第一次每件的进价为50元;(2)两次的总利润为1700元. 【分析】(1)设第一次每件的进价为x 元,则第二次进价为(1+20%)x ,根据等量关系,列出分式方程,即可求解;(2)根据总利润=总售价-总成本,列出算式,即可求解. 【详解】解:(1)设第一次每件的进价为x 元,则第二次进价为(1+20%)x ,根据题意得:,解得:x =50, 经检验:x =50是方程的解,且符合题意, 答:第一次每件的进价为50元;(2)(元), 答:两次的总利润为1700元.1.(2021·山东济宁市·中考真题)某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元. (1)求甲、乙两种商品每箱各盈利多少元?(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可以多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?【答案】(1)甲种商品每箱盈利15元,则乙种商品每箱盈利10元;(2)当降价5元时,该商场利润最大,最大利润是2000元. 【分析】(1)设甲种商品每箱盈利x 元,则乙种商品每箱盈利(x -5)元,根据题意列出方程,解方程即可得出结论;(2)设甲种商品降价a 元,则每天可多卖出20a 箱,利润为w 元,根据题意列出函数解析式,根据二次函数的性质求出函数的最值. 【详解】解:(1)设甲种商品每箱盈利x 元,则乙种商品每箱盈利(x -5)元,根据题意得:()300030001200%1x x +-=()706000120%5030003000170050⎛⎫⨯- ⎪ ⎪+⨯⎝=⎭+, 整理得:x 2-18x +45=0, 解得:x =15或x =3(舍去),经检验,x =15是原分式方程的解,符合实际, ∴x -5=15-5=10(元),答:甲种商品每箱盈利15元,则乙种商品每箱盈利10元;(2)设甲种商品降价a 元,则每天可多卖出20a 箱,利润为w 元,由题意得: w =(15-a )(100+20a )=-20a 2+200a +1500=-20(a -5)2+2000, ∵a =-20,当a =5时,函数有最大值,最大值是2000元,答:当降价5元时,该商场利润最大,最大利润是2000元. 题型9:一般问题【例15】(2021·江苏苏州市·中考真题)某公司上半年生产甲,乙两种型号的无人机若干架.已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x 架,乙种型号无人机y 架.根据题意可列出的方程组是()A .()()111,3122x x y y x y ⎧=+-⎪⎪⎨⎪=++⎪⎩B .()()111.3122x x y y x y ⎧=++⎪⎪⎨⎪=+-⎪⎩C .()()111,2123x x y y x y ⎧=+-⎪⎪⎨⎪=++⎪⎩D .()()111,2123x x y y x y ⎧=++⎪⎪⎨⎪=+-⎪⎩【答案】D 【分析】分析题意,找到两个等量关系,分别列出方程,联立即可. 【详解】设甲种型号无人机x 架,乙种型号无人机y 架 ∵甲种型号无人机架数比总架数的一半多11架, ∴()1112x x y =++ ∵乙种型号无人机架数比总架数的三分之一少2架9004001005x x +=-。
2021年高考数学题型:不等式解题方法总结题型归纳
2021年高考数学题型:不等式解题方法总结题型归纳任两个正数的算术平均数不小于它们的几何平均数。
整理了不等式解题方法总结,帮助广大高中学生学习数学知识!不等式不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。
因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。
在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。
不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。
诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
知识整合1。
解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。
在解不等式中,换元法和图解法是常用的技巧之一。
通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。
2。
整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。
方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。
3。
在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。
4。
证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。
最新高考英语真题分类汇编:专题06-七选五(解析版)
高考试题分项解析之专题6七选五1.【2021·全国新课标I】根据短文内容,从短文后的选项中选出能填入空白处的最佳选项,选项中有两项为多余选项。
Secret codes (密码)keep messages private。
Banks, companies, and government agencies use secret codes in doing business, especially when information is sent by computer.People have used secret codes for thousands of years. 36 Code breaking never lags(落后) far behind code making. The science of creating and reading coded messages is called cryptography.There are three main types of cryptography. 37 For example, the first letters of “My elephant eats too many eels” Spell out the hidden message “Meet me.”38 You might represent each letter with a number, For example, Let’s number the letters of the alphabet, in order, from 1 to 26. If we substitute a number for each letter, the message “Meet me”would read “13 5 20 13 5.”A code uses symbols to replace words, phrases, or sentences. To read the message of a real code, you must have a code book. 39 For example “bridge“ might stand for “meet” and “out” might stand for “me.” The message “bridge out” would actually mean “Meet me.”40 However, it is also hard to keep a code book secret for long. So codes must be changed frequently.A.It is very hard to break a code without the code book.B.In any language, some letters are used more than others.C.Only people who know the keyword can read the message.D.As long as there have been codes, people have tried to break them.E.You can hide a message by having the first letters of each word spell it out.F.With a code book, you might write down words that would stand for other words.G.Another way to hide a message is to use symbols to stand for specific letters of the alphabet.【答案】36.-40 D E G.F A36.D考查对上下文的理解和判断能力。
2021新高考第6章不等式 第6讲
第六章 不等式 推理与证明
高考一轮总复习 • 数学 • 文理合订
返回导航
题组三 考题再现 5.(2015·江苏)设a1,a2,a3,a4是各项为正数且公差为d(d≠0)的等差数列. (1)证明:2a1,2a2,2a3,2a4依次构成等比数列; (2)是否存在a1,d,使得a1,a,a,a依次构成等比数列?并说明理由.
即证 x2>0,因为 x>0,所以 x2>0 成立,故原不等式成立.故选 C.
第六章 不等式 推理与证明
高考一轮总复习 • 数学 • 文理合订
返回导航
4.(文)(选修1-2P34T1改编)(理)(选修2-2P91T1改编)用反证法证明命题“三角 形三个内角至少有一个不大于60°”时,应假设( B )
[解析] (1)因为22aan+n1=2an+1-an=2d(n=1,2,3)是同一个常数, 所以 2a1,2a2,2a3,2a4 依次构成等比数列.
第六章 不等式 推理与证明
高考一轮总复习 • 数学 • 文理合订
返回导航
(2)令 a1+d=a,则 a1,a2,a3,a4 分别为 a-d,a,a+d,a+2d(a>d,a>-2d, d≠0).
第六章 不等式 推理与证明
高考一轮总复习 • 数学 • 文理合订
返回导航
题组二 走进教材
2.(文)(选修1-2P36例1改编)(理)(选修2-2P85例1改编)若a,b,c是不全相等的 实数,求证:a2+b2+c2>ab+bc+ca.
【2021新高考】专题06:正反引例 对比说理—议论文如何运用对比论证-2021届新高三语文《跟着时文学写作》
专题06 正反引例对比说理——议论文如何运用对比论证时评典范莫把励志当励欲桑林峰人生出彩,靠励志,不能靠励欲。
“志,气之帅也。
”一个人要想有所作为、成就事业,当恒立志、常励志。
时下,励志文化已成为一种流行、一种时尚。
但是,在急于求成、急切成名、急功近利的人眼里,往往把励欲和励志混为一谈,他们把“创造财富神话”“享受物质的最大分配”“成为人上人”,当作奋斗的终极目标。
这种财富化、物质化、功利化和世俗化的所谓励志,其实不是励志,而是励欲。
励欲和励志,两者有着本质的区别。
励欲者,最看重名权利,总想一夜暴富、一步登天、一举成名,甚至投机取巧、不劳而获。
相反,励志者往往志存高远,心怀家国,懂得成功靠脚踏实地,出彩靠实干苦干,总是韬光养晦、艰苦奋斗、日日相继、厚积薄发。
有哲人说,把名利奉为神明,它就像魔鬼一样降祸于你。
把励欲当作励志,必然会沉醉于拜金主义、享乐主义的泥淖,忘记了社会担当、家国情怀、人文关怀。
近日,北京师范大学房地产研究中心主任董藩教授在微博上发帖说,他对他带的研究生提出了这样的要求,“当你40岁时,没有4000万身价不要来见我,也别说是我的学生”。
这种“成功等于4000万”的理论,就是一种赤裸裸的励欲,只能让人金枷套颈、玉锁缠身。
而那些把推动社会进步、扶植正义事业、汇聚正向能量作为人生目标的人,才是真正的励志,才能有效防止方寸自乱、美丑颠倒、道德失范。
“息生于多欲。
”励欲太盛,就会不按规则出牌,不按规矩办事,总是信奉金钱至上、关系至上,为了私利处处造假,为了升迁事事找人、求人、拜人,结果不是走上歪路,就是走上邪路。
这样的励欲者,靠的是《厚黑学》《关系学》《人脉学》等,脱离了成功的正确轨道,必然会在考验面前失方寸,坦途面前走错路,事业面前打败仗。
励欲多害,励志多益。
霸王项羽破釜沉舟,百二秦关终属楚;越王勾践卧薪尝胆,三千越甲可吞吴。
路遥“像牛一样劳动,像大地一样奉献”,留下《平凡的世界》感召后人;周恩来“为中华崛起而读书”,留下丰功伟绩泽惠后人。
高考真题分类汇编:不等式详解 试题
智才艺州攀枝花市创界学校2021年普通高等招生全国统一考试数学分类汇编第六章不等式一、选择题〔一共15题〕1.〔卷〕不等式112x<的解集是〔〕A.(,2)-∞B.(2,)+∞C.(0,2)D.(,2)-∞⋃(2,)+∞解:由112x<得:11222xx x--=<,即(2)0x x-<,应选D。
2.〔卷〕设a、b、c是互不相等的正数,那么以下等式中不恒成立的是〔A〕||||||cbcaba-+-≤-〔B〕aaaa1122+≥+〔C〕21||≥-+-baba〔D〕aaaa-+≤+-+213【思路点拨】此题主要考察.不等式恒成立的条件,由于给出的是不完全提干,必须结合选择支,才能得出正确的结论。
【正确解答】运用排除法,C选项21≥-+-baba,当a-b<0时不成立。
【解后反思】运用公式一定要注意公式成立的条件假设)""(2R,,22号时取当且仅当那么==≥+∈baabbaba假设a,b是正数,那么).""(2号时取当且仅当==≥+baabba3.〔卷〕假设a0,b0,那么不等式-b 1x a等价于〔〕A .1b-x 0或者0x1a B.-1ax1b-1a 或者x 1b1b -或者x 1a解:应选D 4.〔卷〕设f(x)=1232,2,log (1),2,x e x x x -⎧<⎪⎨-≥⎪⎩那么不等式f(x)>2的解集为(A)〔1,2〕⋃〔3,+∞〕(B)〔10,+∞〕(C)〔1,2〕⋃〔10,+∞〕(D)〔1,2〕解:令12x e-2〔x 2〕,解得1x2。
令23log (1)x -2〔x 2〕解得x 〔10,+∞〕选C5.(卷)不等式(x+y)(+)≥9对任意正实数x,y 恒成立,那么正实数a 的最小值为() A.2B.4 C.6解析:不等式(x+y)(1a x y +)≥9对任意正实数x ,y 恒成立,那么1y axa x y +++≥21a a ++≥9,a 2a ≤-4(舍去),所以正实数a 的最小值为4,选B .6.(卷)函数f(x)=ax2+2ax+4(0<a<3),假设x1<x2,x1+x2=1-a,那么() A.f(x1)<f(x2)B.f(x1)=f(x2)C.f(x1)>f(x2)D.f(x1)与f(x2)的大小不能确定 解析:函数f(x)=ax2+2ax+4(0<a<3),二次函数的图象开口向上,对称轴为1x=-,0<a<3,∴x1+x2=1-a ∈(-2,1),x1与x2的中点在(-1,21)之间,x1<x2,∴x2到对称轴的间隔大于x1到对称轴的间隔,∴f(x1)<f(x2),选A .7.(卷)函数f(x)=ax2+2ax+4(a>0),假设x1<x2,x1+x2=0,那么()11bxb 001xx ba 11ax xa 0x x 1x 0x x bx 1011bx xx 1ax 01baxx 0a⎧⎧⎪⎪⎪⎪⇔⇔⎨⎨⎪⎪⎪⎪⎩⎩⎧⎪⎧⎪⇔⇔⇒⎨⎨⎩⎪⎪⎩++---或-(+)-或(-)或A.f(x1)<f(x2)B.f(x1)=f(x2)C.f(x1)>f(x2)D.f(x1)与f(x2)的大小不能确定解析:函数f(x)=ax2+2ax+4(a>0),二次函数的图象开口向上,对称轴为1x=-,a>0,∴x1+x2=0,x1与x2的中点为0,x1<x2,∴x2到对称轴的间隔大于x1到对称轴的间隔,∴f(x1)<f(x2),选A.8.(卷)设x,y为正数,那么(x+y)(+)的最小值为()A.6B.9C.12解析:x,y为正数,(x+y)(14x y+)≥414y xx y+++≥9,选B.9.(卷)假设关于x的不等式xk)1(2+≤4k+4的解集是M,那么对任意实常数k,总有〔〕〔A〕2∈M,0∈M;〔B〕2∉M,0∉M;〔C〕2∈M,0∉M;〔D〕2∉M,0∈M.解:选〔A〕方法1:代入判断法,将2,0x x==分别代入不等式中,判断关于k的不等式解集是否为R;方法2:求出不等式的解集:xk)1(2+≤4k+4422min222455(1)2[(1)2]2111kx k x kk k k+⇒≤=++-⇒≤++-=+++;10.(卷)假设0,0a b<>,那么,以下不等式中正确的选项是〔〕〔A〕11a b<〔B<〔C〕22a b<〔D〕||||a b>解:假设0,0a b<>,那么110,0a b<>,∴11a b<,选A.11.〔卷〕“a>b>c〞是“ab<222ba+〞的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不允分也不必要条件【考点分析】此题考察平方不等式和充要条件,根底题。
专题06 不等式-直击2021新高考数学多选题
专题六 不等式
1.“三个二次”之间的关系 所谓三个二次,指的是①二次函数图象及与x 轴的交点,②相应的一元二次方程的实根;③一元二次不等式的解集端点,解决其中任何一个“二次”问题,要善于联想其余两个,并灵活转化.
2.规划问题
(一)简述规划问题的求解步骤.
(1)把问题要求转化为约束条件;
(2)根据约束条件作出可行域;
(3)对目标函数变形并解释其几何意义;
(4)移动目标函数寻找最优解;
(5)解相关方程组求出最优解.
(二)关注非线性:
(1)可类比线性约束条件,以曲线定界,以特殊点定域.
(2)y -b x -a
的几何意义为可行域上任一点(x ,y )与定点(a ,b )连线的斜率,22)()(b y a x -+-的几何意义为可行域上任一点(x ,y )与定点(a ,b )的距离等.
3.基本不等式
利用基本不等式求最值,需要同时关注三个限制条件:一正;二定;三相等.
一.跟踪训练
1.已知a ,b ,c ,d 均为实数,有下列命题:
A.若ab>0,bc -ad>0,则c a -d b
>0; B.若ab>0,c a -d b
>0,则bc -ad>0; C.若bc -ad>0,c a -d b
>0,则ab>0. D.如果a >b >0,c >d >0,则b c >bd .。
高考数学试题解析 分项专题06 不等式 文 试题
2021最新命题题库大全2021-2021年高考试题解析数学〔文科〕分项专题06 不等式2021年高考试题 一、选择题:1. 〔2021年高考卷文科7)设变量x ,y 满足约束条件250200x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,那么目的函数231z x y =++的最大值为 (A)11 (B)10 (C)9 (D)8.5 【答案】B【解析】画出平面区域表示的可行域如下图,当直线231z x y =++平移至点A(3,1)时, 目的函数231z x y =++获得最大值为10,应选B.2.〔2021年高考卷文科3)假设实数x y 、满足不等式组2502700,0x y x y x y +-≥⎧⎪+-≥⎨⎪≥≥⎩,那么3x y +4的最小值是(A)13 (B)15 (C)20 (D)28 【答案】 A【解析】1,1,0x y x y x +=-==三条直线的交点分别为〔0,1〕,〔0,-1〕,〔1,0〕,分别代入x y +2,得最大值为2,最小值为-2.应选B.【解题指导】:线性规划问题不牵涉目的函数的斜率问题时,可以不画图,直接将交点坐标求出代入计算即可。
4.〔2021年高考卷文科6)假设,a b 为实数,那么“01ab <<〞是“1b a<〞的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .即不充分也不必要条件7. (2021年高考卷文科5)2log 3.6,a =4log 3.2,b =4log 3.6,c =那么A.a b c >>B. a c b >>C. b a c >>D. c a b >> 【答案】B【解析】因为1a >,,b c 都小于1且大于0,故排除C,D;又因为,b c 都是以4为底的对数,真数大,函数值也大,所以b c <,应选B. 8 .(2021年高考卷文科4)函数1()lg(1)1f x x x=++-的定义域是 〔 〕 A .(,1)-∞- B .(1,)+∞ C .(1,1)(1,)-+∞ D .(,)-∞+∞OABC,||||cos 3||cos 3||z OM OA OM OA AOM OM AOM ON =⋅=⋅∠=∠=,所以就是求||ON 的最大值,||ON 表示方向上的投影,在OA OM 数形结合观察得当点M 在点B 的地方时,||ON 才最大。
高考数学试题分项解析专题06 不等式学生 理 试题
卜人入州八九几市潮王学校2021年高考试题分项解析数学〔理科〕专题06不等式〔学生〕一、选择题:1.(2021年高考卷理科5)变量x ,y 满足约束条件241y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,那么z=3x+y 的最大值为〔〕A.12B.11 C3.(2021年高考卷理科5)以下不等式一定成立的是〔〕A .)0(lg )41lg(2>>+x x x B .),(2sin 1sin Z k k x xx ∈≠≥+π C .)(||212R x x x ∈≥+D .)(1112R x x ∈>+ 5.(2021年高考卷理科8)设变量x ,y 满足,15020010⎪⎩⎪⎨⎧≤≤≤+≤≤-y y x y x 那么y x 32+的最大值为〔〕(A)20(B)35(C)45(D)556.(2021年高考卷理科12)假设[0,)x ∈+∞,那么以下不等式恒成立的是〔〕(A)21x e x x ++(B)21111241x x x <-++ (C)21cos 12x x -(D)21ln(1)8x x x +- 8.(2021年高考卷理科8)两条直线1l :y =m 和2l :y=821m +(m >0),1l 与函数2log y x =的图像从左至右相交于点A ,B ,2l 与函数2log y x =的图像从左至右相交于C,D.记线段AC 和BD 在X 轴上的投影长度分别为a,b,当m 变化时,b a 的最小值为〔〕 A .162B.82C.84D.4410.(2021年高考全国卷理科9)125ln ,log 2,xy z e π-===,那么〔〕 A .x y z <<B .z x y <<C .z y x <<D .y z x <<11.(2021年高考卷理科2)不等式0121≤+-x x 的解集为〔〕A.⎥⎦⎤ ⎝⎛-1,21B.⎥⎦⎤⎢⎣⎡-1,21C.[)+∞⋃⎪⎭⎫ ⎝⎛-∞-,121.D.[)+∞⋃⎥⎦⎤ ⎝⎛-∞-,121, 二、填空题:1.(2021年高考卷理科9)不等式|x+2|-|x|≤1的解集为_____.2.〔2021年高考卷13〕函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,假设关于x 的不等式()f x c <的解集为(6)m m +,,那么实数c 的值是▲.3.〔2021年高考卷14〕正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,那么b a的取值范围是. 4.(2021年高考卷理科13)假设不等式的解集为,那么实数k=__________。
专题06 方程与不等式的实际运用【考点巩固】(解析版)
专题06 方程与不等式的实际运用题型1:工程问题1.九龙坡区某工程公司积极参与“精美城市,幸福九龙坡建设,该工程公司下属的甲工程队、乙工程队别 承包了杨家坪地区的A 工程、B 工程,甲工程队晴天需要14天完成,雨天工作效率下降30%,乙工程队晴 天需15天完成,雨天工作效率下降20%,实际上两个工程队同时开工,同时完工.两工程队各工作了 天.【分析】根据题意找出两个等量关系:①甲工程队晴天所做的工程量+雨天所做的工程量=总工程量;①乙工程队晴天所做的工程量+雨天所做的工程量=总工程量.设工程总量为1,则甲工程队晴天工作效率为114,雨天工作效率为1−30%14;乙工程队晴天工作效率为115,雨天工作效率为1−20%15,根据等量关系列出方程组求解即可.【详解】解:设两工程队各工作了x 天,在施工期间有y 天有雨,由题意得:{114(x −y)+1−30%14y =1115(x −y)+1−20%15y =1, 解得:{x =17y =10.即两工程队各工作了17天. 故答案为:17.2.(2021·湖南中考真题)为了改善湘西北地区的交通,我省正在修建长(沙)-益(阳)-常(德)高铁,其中长益段将于2021年底建成.开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米,运行时间为16分钟;现乘坐某次长益城际列车全程需要60分钟,平均速度是开通后的高铁的1330. (1)求长益段高铁与长益城际铁路全长各为多少千米?(2)甲、乙两个工程队同时对长益段高铁全线某个配套项目进行施工,每天对其施工的长度比为7:9,计划40天完成.施工5天后,工程指挥部要求甲工程队提高工效,以确保整个工程提早3天以上(含3天)完成,那么甲工程队后期每天至少施工多少千米?【答案】(1)长益段高铁全长为64千米,长益城际铁路全长为104千米;(2)0.85千米. 【分析】(1)设开通后的长益高铁的平均速度为x 千米/分钟,从而可得某次长益城际列车的平均速度为1330x 千米/分钟,再根据“路程=速度⨯时间”、“开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米”建立方程,解方程即可得;(2)先求出甲、乙两个工程队每天对其施工的长度,再设甲工程队后期每天施工y 千米,根据“整个工程提早3天以上(含3天)完成”建立不等式,解不等式即可得. 【详解】解:(1)设开通后的长益高铁的平均速度为x 千米/分钟,则某次长益城际列车的平均速度为1330x 千米/分钟,由题意得:1360164030x x ⨯-=, 解得4x =,则16464⨯=(千米),1313606041043030x ⨯=⨯⨯=(千米), 答:长益段高铁全长为64千米,长益城际铁路全长为104千米; (2)由题意得:甲工程队每天对其施工的长度为7647794010⨯=+(千米), 乙工程队每天对其施工的长度9649794010⨯=+(千米), 设甲工程队后期每天施工y 千米, 则979(4053)()64()5101010y --+≥-+⨯, 解得1720y ≥, 即0.85y ≥,答:甲工程队后期每天至少施工0.85千米. 题型2:行程问题3.某体育场的环形跑道长400m ,甲、乙分别以一定的速度练习长跑和自行车,如果反向而行,他们每隔 30s 相遇一次.如果同向而行,那么每隔80s 乙就追上甲一次.则甲的速度是 m /s .【分析】设甲的速度为xm /s ,乙的速度为ym /s ,根据“某体育场的环形跑道长400m ,如果反向而行,他们每隔30s 相遇一次.如果同向而行,那么每隔80s 乙就追上甲一次”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.【解答】解:设甲的速度为xm /s ,乙的速度为ym /s , 依题意,得:{30x +30y =40080y −80x =400,解得:{x =256y =556.故答案为:256.4.(2021·山西中考真题)太原武宿国际机场简称“太原机场”,是山西省开通的首条定期国际客运航线.游客从太原某景区乘车到太原机场,有两条路线可供选择,路线一:走迎宾路经太输路全程是25千米,但交通比较拥堵;路线二:走太原环城高速全程是30千米,平均速度是路线一的53倍,因此到达太原机场的时间比走路线一少用7分钟,求走路线一到达太原机场需要多长时间.【答案】25分钟 【分析】设走路线一到达太原机场需要x 分钟,用含x 的式子表示路线一、二的速度,再根据路线二平均速度是路线一的53倍列等式计算即可. 【详解】解:设走路线一到达太原机场需要x 分钟. 根据题意,得5253037x x ⨯=-.解得:25x =.经检验,25x =是原方程的解.答:走路线一到达太原机场需要25分钟.5.(2021·湖南岳阳市·中考真题)星期天,小明与妈妈到离家16km 的洞庭湖博物馆参观.小明从家骑自行车先走,1h 后妈妈开车从家出发,沿相同路线前往博物馆,结果他们同时到达.已知妈妈开车的平均速度是小明骑自行车平均速度的4倍,求妈妈开车的平均速度.【答案】妈妈开车的平均速度是48km/h . 【分析】设妈妈开车的平均速度为x km/h ,根据小明行驶的时间比妈妈多用1小时列出方程,求解并检验可得结论. 【详解】解:设妈妈开车的平均速度为x km/h ,则小明的速度为4xkm/h ,根据题意得, 161614x x -= 解得,48x =经检验,48x =是原方程的根, 答:妈妈开车的平均速度是48km/h .题型3:历史文献问题6.(2021·甘肃武威市·中考真题)我国古代数学著作《孙子算经》有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有x 人,y 辆车,则可列方程组为( ) A .3(2)29y xy x-=⎧⎨-=⎩B .3(2)29y xy x+=⎧⎨+=⎩C .3(2)29y xy x-=⎧⎨+=⎩D .3(2)29y xy x -=⎧⎨+=⎩【答案】C 【分析】设共有x 人,y 辆车,由每3人坐一辆车,有2辆空车,可得()32,y x -= 由每2人坐一辆车,有9人需要步行,可得:29,y x += 从而可得答案. 【详解】解:设共有x 人,y 辆车,则3(2)29y xy x -=⎧⎨+=⎩故选:.C7.(2021·浙江绍兴市·中考真题)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两,银子共有_______两.(注:明代时1斤=16两) 【答案】46 【分析】题目中分银子的人数和银子的总数不变,有两种分法,根据银子的总数一样建立等式,进行求解. 【详解】解:设有x 人一起分银子,根据题意建立等式得,7498x x +=-,解得:6x =,∴银子共有:67446⨯+=(两)故答案是:46.8.(2021·湖南邵阳市·中考真题)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价值是多少?该问题中物品的价值是______钱. 【答案】53 【分析】设人数为x ,再根据两种付费的总钱数一样即可求解. 【详解】 解:设一共有x 人 由题意得:8374x x -=+ 解得:7x =所以价值为:78353⨯-=(钱) 故答案是:53. 题型4:数字问题9.(2021·山西中考真题)2021年7日1日建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为65,求这个最小数(请用方程知识解答).【答案】5 【分析】根据日历上数字规律得出,圈出的四个数最大数与最小数的差值为8,设最小数为x ,则最大数为+8x ,结合已知,利用最大数与最小数的乘积为65列出方程求解即可. 【详解】解:设这个最小数为x . 根据题意,得()865x x +=.解得15=x ,213x =-(不符合题意,舍去). 答:这个最小数为5.题型5:增长率问题10.(2021·内蒙古通辽市·中考真题)随着互联网技术的发展,我国快递业务量逐年增加,据统计从2018年到2020年,我国快递业务量由507亿件增加到833.6亿件,设我国从2018年到2020年快递业务量的年平均增长率为x ,则可列方程为( ) A .()50712833.6x += B .()50721833.6x ⨯+=C .()25071833.6x += D .()()250750715071833.6x x ++++=【答案】C 【分析】根据题意,业务量由507亿件增加到833.6亿件,2020年快递业务量为833.6亿件,逐年分析即可列出方程. 【详解】设从2018年到2020年快递业务量的年平均增长率为x ,2018年我国快递业务量为:507亿件,2019年我国快递业务量为:507507x +=507(1)x +亿件, 2020年我国快递业务量为:507(1)x ++2507(1)=507(1)x x x ++, 根据题意,得:()25071833.6x += 故选C .11.(2021·四川宜宾市·中考真题)据统计,2021年第一季度宜宾市实现地区生产总值约652亿元,若使该市第三季度实现地区生产总值960亿元,设该市第二、三季度地区生产总值平均增长率为x ,则可列方程__________.【答案】()26521960x += 【分析】根据题意,第一季度地区生产总值(1⨯+平均增长率2)=第三季度地区生产总值,按照数量关系列方程即可得解. 【详解】解:根据题意,第一季度地区生产总值(1⨯+平均增长率2)=第三季度地区生产总值列方程得:()26521960x +=, 故答案为:()26521960x +=.题型6:几何图形问题12.在一幅长50cm ,宽40cm 的矩形风景画的四周镶一条外框,制成一幅矩形挂图(如图所示),如果要使整个挂图的面积是3000cm 2,设边框的宽为x cm ,那么x 满足的方程是( )A .(50﹣2x )(40﹣2x )=3000B .(50+2x )(40+2x )=3000C .(50﹣x )(40﹣x )=3000D .(50+x )(40+x )=3000【答案】B【详解】解:设边框的宽为x cm,所以整个挂画的长为(50+2x)cm,宽为(40+2x)cm,根据题意,得:(50+2x)(40+2x)=3000,故选:B.13.如图,某农户准备建一个长方形养鸡场,养鸡场的一边靠墙,若墙长为18m,另三边用竹篱笆围成,篱笆总长35m,围成长方形的养鸡场四周不能有空隙.(1)要围成养鸡场的面积为150m2,则养鸡场的长和宽各为多少?(2)围成养鸡场的面积能否达到200m2?请说明理由.【答案】(1)养鸡场的宽是10m,长为15m;(2)围成养鸡场的面积不能达到200m2,见解析【详解】解:(1)设养鸡场的宽为x m,根据题意得:x(35﹣2x)=150,解得:x1=10,x2=7.5,当x1=10时,35﹣2x=15<18,当x2=7.5时35﹣2x=20>18,(舍去),则养鸡场的宽是10m,长为15m.(2)设养鸡场的宽为x m,根据题意得:x(35﹣2x)=200,整理得:2x2﹣35x+200=0,①=(﹣35)2﹣4×2×200=1225﹣1600=﹣375<0,因为方程没有实数根,所以围成养鸡场的面积不能达到200m2.题型7:方案问题14.(2021·江苏无锡市·中考真题)为了提高广大职工对消防知识的学习热情,增强职工的消防意识,某单位工会决定组织消防知识竞赛活动,本次活动拟设一、二等奖若干名,并购买相应奖品.现有经费1275元用于购买奖品,且经费全部用完,已知一等奖奖品单价与二等奖奖品单价之比为4①3.当用600元购买一等奖奖品时,共可购买一、二等奖奖品25件.(1)求一、二等奖奖品的单价;(2)若购买一等奖奖品的数量不少于4件且不超过10件,则共有哪几种购买方式?【答案】(1)一、二等奖奖品的单价分别是60元,45元;(2)共有3种购买方案,分别是:一等奖品数4件,二等奖品数23件;一等奖品数7件,二等奖品数19件;一等奖品数10件,二等奖品数15件.【分析】(1)设一、二等奖奖品的单价分别是4x,3x,根据等量关系,列出分式方程,即可求解;(2)设购买一等奖品的数量为m件,则购买二等奖品的数量为8543m-件,根据4≤m≤10,且8543m-为整数,m为整数,即可得到答案.【详解】解:(1)设一、二等奖奖品的单价分别是4x,3x,由题意得:60012756002543x x-+=,解得:x=15,经检验:x=15是方程的解,且符合题意,①15×4=60(元),15×3=45(元),答:一、二等奖奖品的单价分别是60元,45元;(2)设购买一等奖品的数量为m件,则购买二等奖品的数量为127560854453m m--=件,①4≤m≤10,且8543m-为整数,m为整数,①m=4,7,10,答:共有3种购买方案,分别是:一等奖品数4件,二等奖品数23件;一等奖品数7件,二等奖品数19件;一等奖品数10件,二等奖品数15件.15.(2021·黑龙江鹤岗市·中考真题)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种),请直接写出再次购买农机具的方案有哪几种?【答案】(1)购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元;(2)有三种方案:方案一:购买甲种农机具5件,乙种农机具5件;方案二:购买甲种农机具6件,乙种农机具4件;方案三:购买甲种农机具7件,乙种农机具3件;方案一需要资金最少,最少资金是10万元;(3)节省的资金再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件;方案二:购买甲种农机具3件,乙种农机具7件 【分析】(1)设购进1件甲种农机具需x 万元,购进1件乙种农机具需y 万元,根据题意可直接列出二元一次方程组求解即可;(2)在(1)的基础之上,结合题意,建立关于m 的一元一次不等式组,求解即可得到m 的范围,从而根据实际意义确定出m 的取值,即可确定不同的方案,最后再结合一次函数的性质确定最小值即可; (3)结合(2)的结论,直接求出可节省的资金,然后确定降价后的单价,再建立二元一次方程,并结合实际意义进行求解即可. 【详解】解:(1)设购进1件甲种农机具需x 万元,购进1件乙种农机具需y 万元.根据题意,得2 3.533x y x y +=⎧⎨+=⎩,解得: 1.50.5x y =⎧⎨=⎩,答:购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元. (2)根据题意,得 1.50.5(10)9.81.50.5(10)12m m m m +-≥⎧⎨+-≤⎩,解得:4.87m ≤≤, ①m 为整数, ①m 可取5、6、7, ①有三种方案:方案一:购买甲种农机具5件,乙种农机具5件; 方案二:购买甲种农机具6件,乙种农机具4件; 方案三:购买甲种农机具7件,乙种农机具3件. 设总资金为W 万元,则()1.50.5105W m m m =+-=+,①10k =>,①W 随m 的增大而增大,①当5m =时,5510W =+=最小(万元),①方案一需要资金最少,最少资金是10万元.(3)由(2)可知,购买甲种农机具5件,乙种农机具5件时,费用最小,根据题意,此时,节省的费用为50.750.2 4.5⨯+⨯=(万元),降价后的单价分别为:甲种0.8万元,乙种0.3万元,设节省的资金可购买a 台甲种,b 台乙种,则:0.80.3 4.5a b +=,由题意,a ,b 均为非负整数,①满足条件的解为:015a b =⎧⎨=⎩或37a b =⎧⎨=⎩, ①节省的资金再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件;方案二:购买甲种农机具3件,乙种农机具7件.16.(2021·黑龙江中考真题)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m 件,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的资金最少,最少资金是多少?【答案】(1)购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元;(2)购进甲种农机具5件,乙种农机具5件;购进甲种农机具6件,乙种农机具4件;购进甲种农机具7件,乙种农机具3件;(3)购进甲种农机具5件,乙种农机具5件所需资金最少,最少资金为10万元.【分析】(1)设购进1件甲种农机具需x 万元,购进1件乙种农机具需y 万元,然后根据题意可得2 3.533x y x y +=⎧⎨+=⎩,进而求解即可;(2)由(1)及题意可得购进乙种农机具为(10-m )件,则可列不等式组为()9.8 1.50.51012m m ≤+-≤,然后求解即可;(3)设购买农机具所需资金为w 万元,则由(2)可得5w m =+,然后结合一次函数的性质及(2)可直接进行求解.【详解】解:(1)设购进1件甲种农机具需x 万元,购进1件乙种农机具需y 万元,由题意得:2 3.533x y x y +=⎧⎨+=⎩, 解得: 1.50.5x y =⎧⎨=⎩, 答:购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元.(2)由题意得:购进乙种农机具为(10-m )件,①()9.8 1.50.51012m m ≤+-≤,解得:4.87m ≤≤,①m 为正整数,①m 的值为5、6、7,①共有三种购买方案:购进甲种农机具5件,乙种农机具5件;购进甲种农机具6件,乙种农机具4件;购进甲种农机具7件,乙种农机具3件;.(3)设购买农机具所需资金为w 万元,则由(2)可得5w m =+,①1>0,①w 随m 的增大而增大,①当m =5时,w 的值最小,最小值为w=5+5=10,答:购进甲种农机具5件,乙种农机具5件所需资金最少,最少资金为10万元.题型8:利润问题17.(2021·四川遂宁市·中考真题)某服装店以每件30元的价格购进一批T 恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T 恤的销售单价提高x 元.(1)服装店希望一个月内销售该种T 恤能获得利润3360元,并且尽可能减少库存,问T 恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T 恤获得的利润最大?最大利润是多少元?【答案】(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元【分析】(1)根据题意,通过列一元二次方程并求解,即可得到答案;(2)设利润为M 元,结合题意,根据二次函数的性质,计算得利润最大值对应的x 的值,从而得到答案.【详解】(1)由题意列方程得:(x +40-30) (300-10x )=3360解得:x 1=2,x 2=18①要尽可能减少库存,①x 2=18不合题意,故舍去①T 恤的销售单价应提高2元;(2)设利润为M 元,由题意可得:M =(x +40-30)(300-10x )=-10x 2+200x +3000=()210104000x --+①当x =10时,M 最大值=4000元①销售单价:40+10=50元①当服装店将销售单价50元时,得到最大利润是4000元.18.(2021·浙江中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有,A B 两个景点,售票处出示的三种购票方式如表所示:据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入;①问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?【答案】(1)20%;(2)①798万元,①当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元【分析】(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x ,则四月份的游客为()41x +人,五月份的游客为()241x +人,再列方程,解方程可得答案;(2)①分别计算购买甲,乙,丙种门票的人数,再计算门票收入即可得到答案;①设丙种门票价格降低m 元,景区六月份的门票总收人为W 万元,再列出W 与m 的二次函数关系式,利用二次函数的性质求解最大利润即可得到答案.【详解】解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x ,由题意,得24(1) 5.76x += ()21 1.44,x ∴+=解这个方程,得120.2, 2.2x x ==-(舍去)答:四月和五月这两个月中,该景区游客人数平均每月增长20%.(2)①由题意,丙种门票价格下降10元,得:购买丙种门票的人数增加:0.6+0.4=1(万人),购买甲种门票的人数为:20.6 1.4-=(万人),购买乙种门票的人数为:30.4 2.6-=(万人),所以:门票收入问; ()()100 1.480 2.61601021⨯+⨯+-⨯+798=(万元)答:景区六月份的门票总收入为798万元.①设丙种门票价格降低m 元,景区六月份的门票总收人为W 万元,由题意,得()()()()10020.068030.0416020.060.04W m m m m m =-+-+-++化简,得20.1(24)817.6W m =--+,0.10-<,①当24m =时,W 取最大值,为817.6万元.答:当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元.题型9:一般问题19.(2021·辽宁本溪市·中考真题)某班计划购买两种毕业纪念册,已知购买1本手绘纪念册和4本图片纪念册共需135元,购买5本手绘纪念册和2本图片纪念册共需225元.(1)求每本手绘纪念册和每本图片纪念册的价格分别为多少元?(2)该班计划购买手绘纪念册和图片纪念册共40本,总费用不超过1100元,那么最多能购买手绘纪念册多少本?【答案】(1)每本手绘纪念册35元,每本图片纪念册25元;(2)最多能购买手绘纪念册10本.【分析】(1)设每本手绘纪念册x 元,每本图片纪念册y 元,根据题意列出二元一次方程组,求解即可;(2)设购买手绘纪念册a 本,则购买图片纪念册()40a -本,根据题意列出不等式,求解不等式即可.【详解】解:(1)设每本手绘纪念册x 元,每本图片纪念册y 元,根据题意可得:413552225x y x y +=⎧⎨+=⎩, 解得3525x y =⎧⎨=⎩,答:每本手绘纪念册35元,每本图片纪念册25元;(2)设购买手绘纪念册a 本,则购买图片纪念册()40a -本,根据题意可得:()3525401100a a +-≤,解得10a ≤,①最多能购买手绘纪念册10本.20.(2021·江苏常州市·中考真题)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天,该景点在设施改造后平均每天用水多少吨?【答案】该景点在设施改造后平均每天用水2吨.【分析】设该景点在设施改造后平均每天用水x 吨,则原来平均每天用水2x 吨,列出分式方程,即可求解.【详解】解:设该景点在设施改造后平均每天用水x 吨,则原来平均每天用水2x 吨, 由题意得:202052x x-=,解得:x =2, 经检验:x =2是方程的解,且符合题意,答:该景点在设施改造后平均每天用水2吨.21.某商店销售一款工艺品,每件的成本是30元,为了合理定价,投放市场进行试销:据市场调查,销售单价是40元时,每天的销售量是80件,而销售单价每提高1元,每天就少售出2件,但要求销售单价不得超过55元.(1)若销售单价为每件45元,求每天的销售利润.(2)要使每天销售这种工艺品盈利1200元,那么每件工艺品售价应为多少元?【答案】(1)1050元;(2)50元【详解】解:(1)(4530)[80(4540)2]1050-⨯--⨯=(元).答:每天的销售利润为1050元.(2)设每件工艺品售价为x 元,则每天的销售量是[802(40)]x --件,依题意,得(30)[802(40)]1200x x ---=,整理,得2x 110x 30000-+=,解得1250,60x x ==(不合题意,舍去).答:每件工艺品售价应为50元.题型10:分段收费22.为建设资源节约型社会,醴陵市自2012年以来就对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180度及(含180度)以内的部分,执行基本价格;第二档为用电量在180度以上到450度时(含450度时)的部分,实行提高电价;第三档为用电量超出450度时的部分,执行市场调节价格.经统计,我市小军同学家今年2月份用电200度,电费为119元,3月份用电210度时,电费为125.4元.(1)请根据小军家的用电量和电费情况,求出第一档的电价和第二档的电价分别是多少元/度.(2)已知小军同学家今年4、5月份的家庭用电量分别为160度和230度,请问小军家4、5月份的电费分别为多少元?【分析】(1)设第一档的电价为x 元/度,第二档的电价为y 元/度,根据“小军同学家今年2月份用电200度,电费为119元,3月份用电210度时,电费为125.4元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)利用小军家4月份的电费=第一档电价×4月份的用电量和小军家5月份的电费=第一档电价×180+第二档电价×(5月份的用电量﹣180),即可求出结论.【解答】解:(1)设第一档的电价为x 元/度,第二档的电价为y 元/度,依题意,得:{180x +(200−180)y =119180x +(210−180)y =125.4, 解得:{x =0.59y =0.64. 答:第一档电价为0.59元/度,第二档的电价为0.64元/度.(2)0.59×160=94.4(元),0.59×180+0.64×(230﹣180)=138.2(元).答:小军家4月份的电费为94.4元,5月份的电费为138.2元.23.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:自来水销售价格每户每月用水量单位:元/吨 15吨及以下a 超过15吨但不超过25吨的部分b 超过25吨的部分 5(1)小王家今年3月份用水20吨,要交水费 元;(用a ,b 的代数式表示)(2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a ,b 的值.(3)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a ,b 的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.【分析】(1)根据题意列出代数式即可;(2)根据题意列方程组,即可得到结论;。
备战2021年高考理数 6年高考真题分项版精解精析专题06 不等式(解析版)
【2022高考真题】1. 【2022高考安徽卷理第5题】y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若ax y z -=取得最大值的最优解不唯..一.,则实数a 的值为( ) A,121-或 B.212或 C.2或1 D.12-或2.【2022高考北京版理第6题】若x 、y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩,且z y x =-的最小值为4-,则k 的值为( )A .2B .2-C .12 D .12-3. 【2022高考福建卷第11题】若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤-+≤+-008201x y x y x 则y x z +=3的最小值为________.4. 【2022高考福建卷第13题】要制作一个容器为43m ,高为m 1的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_______(单位:元).5. 【2022高考广东卷理第3题】若变量x 、y 满足约束条件11y x x y y ≤⎧⎪+≤⎨⎪≤-⎩,且2z x y =+的最大值和最小值分别为M 和m ,则M m -=( )A.8B.7C.6D.56.【2022高考湖南卷第14题】若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤+≤k y y x x y 4,且y x z +=2的最小值为6-,则____=k .7.【2022辽宁高考理第16题】对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为 .8. 【2022全国1高考理第9题】不等式组1,24,x y x y +≥⎧⎨-≤⎩的解集为D,有下面四个命题:1:(x,y)D,x 2y 2p ∀∈+≥-, 2:(x,y)D,x 2y 2p ∃∈+≥, 3:(x,y)D,x 2y 3p ∀∈+≤ 4:(x,y)D,x 2y 1p ∃∈+≤-,其中的真命题是( )A .23,p pB .12,p pC .13,p pD .14,p p10. 【2022山东高考理第5题】已知实数y x ,满足)10(<<<a a a yx,则下面关系是恒成立的是( )A.111122+>+y x B.)1ln()1(ln 22+>+y x C.y x sin sin > D.33y x >11. 【2022山东高考理第9题】 已知,x y 满足约束条件10230x y x y --≤⎧⎨--≥⎩,当目标函数(0,0)z ax by a b =+>>在该约束条件下取到最小值25时,22a b +的最小值为( )A.5B.4C.5D.212. 【2022四川高考理第4题】若0a b >>,0x d <<,则肯定有( ) A .a b c d > B .a b c d < C .a b d c > D .a b d c< 4.若0a b >>,0c d <<,则肯定有( ) A .a b c d > B .a b c d < C .a b d c > D .a b d c<13. 【2022四川高考理第5题】执行如图1所示的程序框图,假如输入的,x y R ∈,则输出的S 的最大值为( )A .0B .1C .2D .314. 【2022浙江高考理第13题】当实数x,y满足240,10,1,x yx yx+-≤⎧⎪--≤⎨⎪≥⎩时,14ax y≤+≤恒成立,则实数a的取值范围是________. 【考点定位】线性规划.15. 【2022天津高考理第2题】设变量x,y满足约束条件0,20,12,yx yyx+-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y=+的最小值为()(A)2(B)3(C)4(D)51 6. 【2022大纲高考理第14题】设,x y满足约束条件2321x yx yx y-≥⎧⎪+≤⎨⎪-≤⎩,则4z x y=+的最大值为.17. 【2022高考上海理科】若实数x,y 满足xy=1,则2x +22y 的最小值为______________.18.【2022高考安徽卷第21题】设实数0>c ,整数1>p , *N n ∈. (1)证明:当1->x 且0≠x 时,px x p+>+1)1(;(2)数列{}n a 满足pc a 11>,pn n n a pc a p p a -++-=111,证明:p n n c a a 11>>+. ①【2021高考真题】(2021·天津理)8. 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +<的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是( ) (A) 15,02⎛⎫- ⎪ ⎪⎝⎭(B) 13,02⎛⎫- ⎪ ⎪⎝⎭(C) 15,02130,2⎛⎫+⋃⎛ ⎪ ⎪⎝⎫- ⎪ ⎝⎭⎪⎭(D) 52,1⎛⎫-- ⎪ ⎝⎭∞⎪ (2021·上海理)15.设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为( )(A) (,2)-∞(B) (,2]-∞(C) (2,)+∞(D) [2,)+∞(2021·陕西理)9. 在如图所示的锐角三角形空地中, 欲建一个面积不小于300m 2的内接矩形花园(阴影部分), 则其边长x(单位m)的取值范围是 ( )(A) [15,20] (B) [12,25] (C) [10,30](D) [20,30](2021·山东理)12.设正实数,,x y z 满足22340x xy y z -+-=,则当zxy取得最大值时,z y x 212-+的最大值为A.0B. 1C.49D. 3 (2021·湖南理)10.已知222,,,236,49a b c a b c a b c ∈++=++则的最小值为 .(2021·广东理)9.不等式220x x +-<的解集为___________.(2021·湖南理)20.(本小题满分13分)在平面直角坐标系xOy 中,将从点M 动身沿纵、横方向到达点N 的任一路径成为M 到N 的一条“L 路径”。
2021年山东省新高考数学总复习:不等式,计数原理(含答案解析)
2021年山东省新高考数学总复习:不等式,计数原理1.高考试题不等式的考查有两类,一是涉及不等式的性质、不等式的解法、绝对值不等式;二是基本不等式及其应用等,一般不独立命题,而是以工具的形式,与充要条件、函数与导数、解析几何、三角函数、数列等综合考查.2.排列组合问题往往以实际问题为背景,考查排列数、组合数、分类分步计数原理,往往是排列组合小综合题.3.前几年,二项展开式定理的问题是高考命题热点之一.关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1r n r r r n T C a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项式定理的应用.预测2021年独立考查的内容将是不等式的性质或基本不等式的应用问题,不等式的解法将与集合、函数等其它知识点综合考查.可能通过简单古典概率问题考查,如果单独通过客观题考查计数原理、二项式定理的应用等,难度也会降低些.有可能在主观题中考查这部分能内容的“工具性”.第一部分 相等关系与不等关系一、单选题1.(2020届山东济宁市兖州区高三网络模拟考)已知正数m ,n 满足()18m n n -=,则2m n +的最小值是( ).A .18B .16C .8D .102.(2020届山东省淄博市高三二模)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙3.(2020届山东省淄博市高三二模)已知曲线11(0x y a a -=+>且1)a ≠过定点(),k b ,若m n b +=且0,0m n >>,则41m n +的最小值为( ). A .92 B .9 C .5 D .524.(2020届山东省潍坊市高三下学期开学考试)《几何原本》卷 2 的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF AB ⊥,设AC a =,BC b =,则该图形可以完成的无字证明为( )A .(0,0)2a b ab a b +≥>>B .222(0,0)a b ab a b +≥>>C .2(0,0)ab ab a b a b≤>>+ D .22(0,0)22a b a b a b ++≤>> 5.(2020届山东省高考模拟)甲,乙,丙,丁四名学生,仅有一人阅读了语文老师推荐的一篇文章.当它们被问到谁阅读了该篇文章时,甲说:“丙或丁阅读了”;乙说:“丙阅读了”;丙说:“甲和丁都没有阅读”;丁说:“乙阅读了”.假设这四名学生中只有两人说的是对的,那么读了该篇文章的学生是( )A .甲B .乙C .丙D .丁 6.(2020届山东省烟台市高三模拟)函数()22x f x a x =--的一个零点在区间()1,2内,则实数a 的取值范围是( )A .()1,3B .()1,2C .()0,3D .()0,27.(2020届山东省六地市部分学校高三3月线考)甲、乙、丙三位同学获得某项竞赛活动的前三名,但具体名次未知.3人作出如下预测:甲说:我不是第三名;乙说:我是第三名;丙说:我不是第一名.若甲、乙、丙3人的预测结果有且只有一个正确,由此判断获得第三名的是A .甲B .乙C .丙D .无法预测8.(山东高三模拟)对于函数()f x ,若12,x x 满足()()()1212f x f x f x x +=+,则称12,x x 为函数()f x 的一对“线性对称点”.若实数a 与b 和+a b 与c 为函数()3x f x =的两对“线性对称点”,则c 的最大值为( )。
专题6不等式(解析版)1
专题06 不等式 【2021高考真题】 〔2021·新课标Ⅱ卷〕12. 假设存在正数x 使2x 〔x-a 〕<1成立,那么a 的取值范围是〔 〕〔A 〕〔-∞,+∞〕 〔B 〕(-2, +∞) (C)(0, +∞) (D)〔-1,+∞〕〔2021·新课标Ⅱ卷〕3. 设x ,y 满足约束条件{x −y +1≥0,x +y −1≥0x ≤3,,那么z=2x-3y 的最小值是〔 〕〔A 〕 7- 〔B 〕-6 〔C 〕5- 〔D 〕9-〔2021·天津卷〕2. 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩那么目标函数z = y -2x 的最小值为〔 〕(A) -7 (B) -4 (C) 1 (D) 2【答案】A【解析】画出原不等式组表示的平面区域如下图阴影局部,〔2021·新课标Ⅰ文〕〔14〕设,x y 满足约束条件 13,10x x y ≤≤⎧⎨-≤-≤⎩,那么2z x y =-的最大值为______。
〔2021·上海文〕13.设常数0a >,假设291a x a x +≥+对一切正实数x 成立,那么a 的取值范围为 . 〔2021·上海文〕1.不等式021x x <-的解为 . 〔2021·陕西文〕14. 在如下图的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(阴影局部), 那么其边长x 为 (m).〔2021·山东文〕12. 设正实数z y x ,,满足04322=-+-z y xy x ,那么当z xy 取得最大值时,2x y z +-的最大值为A.0B.98C.2D.94〔2021·广东文〕13.变量,x y 满足约束条件⎪⎩⎪⎨⎧≥≤≤-≥+-11103y x y x ,那么z x y =+的最大值是 . 【答案】5【解析】画出可行域如图,最优解为()1,4,z x y =+的最大值5 。
高考数学 试题解析分项之专题06 不等式教师 文 试题
智才艺州攀枝花市创界学校2021年高考试题解析数学〔文科〕分项之专题06不等式--老师一、选择题:1.〔2021年高考卷文科9〕设变量x ,y 满足10,020,015,x y x y y -⎧⎪≤+≤⎨⎪≤≤⎩那么2x +3y 的最大值为(A)20(B)35(C)45(D)552.(2021年高考卷文科5)变量x,y 满足约束条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,那么z=x+2y 的最小值为【答案】C【解析】不等式组表示的平面区域为如下列图的阴影局部,2z x y =+可化为直线1122y x z =-+,那么当该直线过点(1,2)A --时,z 获得最小值,min 12(2)5z =-+⨯-=-.【考点定位】此题考察线性规划的知识,属根底题.3.〔2021年高考全国卷文科5〕正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,假设点〔x ,y 〕在△ABC 内部,那么z=-x+y 的取值范围是〔A 〕(1-,2)〔B 〕(0,2)〔C 〕(-1,2)〔D 〕(0,1+) 【答案】A4.(2021年高考卷文科9)假设正数x ,y 满足x+3y=5xy ,那么3x+4y 的最小值是 A.245 B.2855.(2021年高考卷文科1)集合A={x ∈R|3x+2>0}B={x ∈R|〔x+1〕(x-3)>0}那么A ∩B= A .〔-∞,-1〕B .〔-1,-23〕C .〔-23,3〕D .(3,+∞) 【答案】D【解析】和往年一样,仍然的集合(交集)运算,本次考察的是一次和二次不等式的解法。
因为32}023|{->⇒>+∈=x x R x A ,利用二次不等式可得1|{-<=x x B 或者}3>x 画出数轴易得:}3|{>=x x B A .应选D .6.(2021年高考卷文科2)不等式102x x -<+的解集是为 〔A 〕(1,)+∞〔B 〕(,2)-∞-〔C 〕〔-2,1〕〔D 〕(,2)-∞-∪(1,)+∞ 【答案】C 【解析】10(1)(2)0212x x x x x -<⇒-+<⇒-<<+【考点定位】此题考察解分式不等式时,利用等价变形转化为整式不等式解.7.(2021年高考卷文科10)假设直线y=2x上存在点〔x,y 〕满足约束条件那么实数m的最大值为A.-1B.1C.3 28.(2021年高考卷文科9)设a,b,c,∈R,,那么“abc=1”是“1a+1b+1ca b c≤++〞的()9.〔2021年高考卷文科8〕假设x,y满足约束条件2323xx yx y≥⎧⎪+≥⎨⎪+≤⎩那么z x y=-的最小值是〔〕〔A〕-3〔B〕0〔C〕32〔D〕310.(2021年高考卷文科6)设变量,x y满足约束条件22,24,41,x yx yx y+≥⎧⎪+≤⎨⎪-≥-⎩那么目的函数3z x y=-的取值范围是(A)3[,6]2-(B)3[,1]2--(C)[1,6]-(D)3[6,]2-【答案】A【解析】做出不等式所表示的区域如图,由y x z -=3得z x y -=3,平移直线x y 3=,由图象可知当直线经过点)0,2(E 时,直线z x y -=3的截距最小,此时z 最大为63=-=y x z,当直线经过C 点时,直线截距最大,此时z 最小,由⎩⎨⎧=+-=-4214y x y x ,解得⎪⎩⎪⎨⎧==321y x ,此时233233-=-=-=y x z ,所以y x z -=3的取值范围是]6,23[-,选A.11.(2021年高考卷文科7)设a >b >1,0c <,给出以下三个结论:①c a >c b;②c a <cb ;③log ()log ()b a ac b c ->-, 其中所有的正确结论的序号是__. A .①B.①②C.②③D.①②③12.(2021年高考卷文科7)2log 3log 3a =+2log 9log 3b =-3log 2c =那么a,b,c的大小关系是〔A 〕a b c =<〔B 〕a b c =>〔C 〕a b c <<〔D 〕a b c >>13.(2021年高考卷文科10)设函数2()43,()32,x f x x x g x =-+=-集合{|(())0},M x R f g x =∈>{|()2},N x R g x =∈<那么MN 为〔A 〕(1,)+∞〔B 〕〔0,1〕〔C 〕〔-1,1〕〔D 〕(,1)-∞ 【答案】D【解析】由(())0f g x >得2()4()30g x g x -+>那么()1g x <或者()3g x >即321x -<或者323x ->所以1x <或者3log 5x>;由()2g x <得322x -<即34x <所以3log 4x <故(,1)M N =-∞14.(2021年高考卷文科2)设变量x,y 满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x ,那么目的函数z=3x-2y 的最小值为〔A 〕-5〔B 〕-4〔C 〕-2〔D 〕3 【答案】B15.(2021年高考卷文科4)a=2,b=()12,c=2log 52,那么a ,b ,c 的大小关系为〔A 〕c<b<a 〔B 〕c<a<bC 〕b<a<c 〔D 〕b<c<a16.(2021年高考卷文科5)设x ∈R ,那么“x>12〞是“2x 2+x-1>0”的(A ) 充分而不必要条件 (B ) 必要而不充分条件 (C ) 充分必要条件 (D ) 既不充分也不必要条件【答案】A 【解析】不等式0122>-+x x的解集为21>x 或者1-<x ,所以“21>x 〞是“0122>-+x x 〞成立的充分不必要条件,选A.17.(2021年高考全国卷文科11)ln x π=,5log 2y =,12z e-=,那么〔A 〕x y z <<〔B 〕z x y <<〔C 〕z y x <<〔D 〕y z x <<【答案】D【解析】1ln >=πx ,215log 12log 25<==y ,ee z 121==-,1121<<e,所以x z y <<,选D.18.(2021年高考卷文科8)假设变量,x y 满足约束条件3,212,21200x y x y x y x y -≥-⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩,那么34z x y =+的最大值是〔〕A 、12B 、26C 、28D 、3319.(2021年高考卷文科10)小王从甲地到乙地的时速分别为a 和b 〔a<b 〕,其全程的平均时速为v ,那么〔A 〕 A.a<v<ab B.v=ab C.ab <v<2a b + D.v=2a b+ 二、填空题:20.(2021年高考卷文科9)集合{}|25A x R x =∈-≤中最小整数位.【答案】3- 【解析】3-不等式52≤-x ,即525≤-≤-x ,73≤≤-x ,所以集合}73{≤≤-=x x A ,所以最小的整数为3-。
专题06 利用函数性质解决抽象函数不等式
专题06利用函数性质解决抽象函数不等式【高考地位】函数的单调性是函数的一个非常重要的性质,也是高中数学考查的重点内容。
而抽象函数的单调性解函数不等式问题,其构思新颖,条件隐蔽,技巧性强,解法灵活,往往让学生感觉头痛。
因此,我们应该掌握一些简单常见的几类抽象函数单调性及其应用问题的基本方法。
确定抽象函数单调性解函数不等式万能模板内容使用场景几类特殊函数类型解题模板第一步(定性)确定函数)(x f 在给定区间上的单调性和奇偶性;第二步(转化)将函数不等式转化为)()(N f M f <的形式;第三步(去f )运用函数的单调性“去掉”函数的抽象符号“f ”,转化成一般的不等式或不等式组;第四步(求解)解不等式或不等式组确定解集;第五步(反思)反思回顾,查看关键点,易错点及解题规范.例1已知函数()f x 是定义在R 上的奇函数,若对于任意给定的实数12,x x ,且12x x ≠,不等式()()()()11221221x f x x f x x f x x f x +<+恒成立,则不等式()()1120x f x +-<的解集为__________.【答案】11,2⎛⎫- ⎪⎝⎭.【解析】第一步,(去f )运用函数的单调性“去掉”函数的抽象符号“f ”,转化成一般的不等式或不等式组:若对于任意给定的实数12,x x ,且12x x ≠,,不等式()()()()11221221x f x x f x x f x x f x +<+恒成立,等价为()()()12120x x f x f x ⎡⎤--<⎣⎦恒成立,即()f x 是定义在R 上的减函数,第二步,(定性)确定函数)(x f 在给定区间上的单调性和奇偶性:又()f x 是定义在R 上的奇函数,所以()00f =,第三步,(求解)解不等式或不等式组确定解集:当10x +>时,()120f x -<,所以120x ->,联立解得112x >>-,当10x +<时,()120f x ->,所以120x -<,无解,综上应填11,2⎛⎫- ⎪⎝⎭.【变式演练1】若定义在R 上的奇函数()f x 在()0,∞+上单调递增,且()20f =,则不等式()10xf x -≤的解集为()A .(][),13,-∞-+∞B .(][],11,3-∞- C .[][]1,01,3- D .[][)1,03,-+∞ 【答案】C【分析】首先将()10xf x -≤转化为()010x f x ≤⎧⎨-≥⎩或()010x f x ≥⎧⎨-≤⎩,根据函数单调性解()10f x -≥和()10f x -≤,进而可以求出结果.【详解】因为()10xf x -≤,所以()010x f x ≤⎧⎨-≥⎩或()010x f x ≥⎧⎨-≤⎩,因为()f x 在()0,∞+上单调递增,且()20f =,所以()001310012x x x f x x ≥≥⎧⎧⇒⇒≤≤⎨⎨-≤≤-≤⎩⎩,因为()f x 在R 上为奇函数,所以()f x 在(),0-∞上单调递增,且()20f -=,因此()001010211x x x f x x ≤≤⎧⎧⇒⇒-≤≤⎨⎨-≥-≤-≤-⎩⎩,综上:不等式()10xf x -≤的解集为[][]1,01,3- .故选:C.【变式演练2】已知定义在[1,)+∞上的函数()f x 满足()ln ()0f x x xf x '+<且(2021)0f =,其中()'f x 是函数()f x 的导函数,e 是自然对数的底数,则不等式()0f x >的解集为()A .(1,2021)B .(2021,)+∞C .(1,)+∞D .[1,2021)【答案】A【分析】令()ln ()g x xf x =,1≥x ,利用导数可知()g x 在[1,)+∞上为单调递减函数,将不等式()0f x >化为1x >且()(2021)g x g >,再利用()g x 的单调性可解得结果.【详解】令()ln ()g x xf x =,1≥x ,则1()ln ()()()()ln f x x xf x g x f x f x x x x'+''=+=,因为1≥x ,()ln ()0f x x xf x '+<,所以()0g x '<,所以()g x 在[1,)+∞上为单调递减函数,当1x =时,由()ln ()0f x x xf x '+<可知(1)0f <,不满足()0f x >;当1x >时,ln 0x >,所以()0f x >可化为()ln 0f x x >(2021)ln 2021f =,即()(2021)g x g >,因为()g x 在(1,)+∞上为单调递减函数,所以12021x <<,所以不等式()0f x >的解集为(1,2021).故选:A【变式演练3】定义在非零实数集上的函数()f x 满足()()()f xy f x f y =+,且()f x 是区间(0,)+∞上的递增函数.(1)求(1),(1)f f -的值;(2)求证:()()f x f x -=;(3)解不等式1(2)(02f f x +-≤.【答案】(1)(1)0f =,(1)0f -=;(2)证明见解析;(3)⎥⎦⎤ ⎝⎛⎪⎭⎫⎢⎣⎡1,2121,0 .【解析】试题分析:(1)利用赋值法可求)1(f ,)1(-f ;(2)根据函数的奇偶性定义即可证明函数是偶函数;(3)根据函数奇偶性,利用数形结合可解得不等式的解集.试题解析:解:(1)令1x y ==,则(1)(1)(1)f f f =+,∴(1)0f =,令1x y ==-,则(1)(1)(1)f f f =-+-,∴(1)0f -=(2)令1y =-,则()()(1)()f x f x f f x -=+-=,∴()()f x f x -=(3)据题意可知,函数图象大致如下:1(2)()(21)02f f x f x +-=-≤,∴1210x -≤-<或0211x <-≤,∴102x ≤<或112x <≤.考点:抽象函数及应用.【变式演练4】定义在(1,1)-上的函数()f x 满足下列条件:①对任意,(1,1)x y ∈-,都有()()()1x y f x f y f x y++=++;②当(1,0)x ∈-时,有()0f x >,求证:(1)()f x 是奇函数;(2)()f x 是单调递减函数;(3)21111((()()1119553f f f f n n +++>++ ,其中*n N ∈.【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】试题分析:(1)由奇函数的定义及特殊值0)0(=f 即可证明;(2)由单调性的定义,做差证明;(3)先由题中已知的恒等式赋值,得出要求数列的通项,再利用裂项求和的方法求得不等式左边的最简形式,最后比较左右两边的大小关系,即可得证.试题解析:证明:(1)令0x y ==代入()()()1x y f x f y f xy++=+,得到(0)0f =.令y x =-,得()()(0)0f x f x f +-==,即()()f x f x -=-.∴()f x 在(1,1)-上是奇函数.(2)设1211x x -<<<,则12121212()()()()()1x x f x f x f x f x f x x --=+-=-∵1211x x -<<<,∴1212||||||1x x x x =<,1211x x -<<.又120x x -<,∴121201x x x x -<-且12121212(1)(1)1011x x x x x x x x -+++=>--,∴1212101x x x x --<<-,∴1212(01x x f x x ->-,∴12()()0f x f x -<,∴12()()f x f x <所以()f x 在(1,1)-上是单调递减函数.(3)211(1(3)(2)23([][]1155(2)(3)11()23n n n n f f f n n n n n n +-+-+++==++++-+-++1111(()((2323f f f f n n n n =+-=-++++∴2111(()(111955f f f n n +++++ 111111[(([()()][()()]344523f f f f f f n n =-+-++-++ 1111()()()(3333f f f f n n =-=+-++∵1013n <<+,∴1()03f n ->+,∴111(()()333f f f n +->+.故21111(()((1119553f f f f n n +++>++ .考点:1.抽象函数;2.函数的单调性,奇偶性;3.数列求和.。
2021年高考数学试题分项版—不等式(解析版)
2021年高考数学试题分项版——不等式(解析版)一、选择题1.(2021·全国乙文,5)若,x y 满足约束条件4,2,3,x y x y y +≥⎧⎪-≤⎨⎪≤⎩则3z x y =+的最小值为()A.18B.10C.6D.4【答案】C 2.(2021·浙江,5)若实数x ,y 满足约束条件1002310x x y x y +≥⎧⎪-≤⎨⎪+-≤⎩,则12z x y =-的最小值是()A.2- B.32- C.12- D.110【答案】B二、填空题1.(2021·天津,13)若0 , 0a b >>,则21a b a b ++的最小值为____________.【答案】三、解答题1.(2021·全国甲理,23)已知函数()2,()2321f x x g x x x =-=+--.(1)画出()y f x =和()y g x =的图像;(2)若()()f x a g x +≥,求a 的取值范围.解:(1)可得2,2()22,2x x f x x x x -<⎧=-=⎨-≥⎩,画出图像如下:34,231()232142,2214,2x g x x x x x x ⎧-<-⎪⎪⎪=+--=+-≤<⎨⎪⎪≥⎪⎩,画出函数图像如下:(2)()|2|f x a x a +=+-,如图,在同一个坐标系里画出()(),f x g x 图像,()y f x a =+是()y f x =平移了a 个单位得到,则要使()()f x a g x +≥,需将()y f x =向左平移,即0a >,当()y f x a =+过1,42A ⎛⎫ ⎪⎝⎭时,1|2|42a +-=,解得112a =或52-(舍去),则数形结合可得需至少将()y f x =向左平移112个单位,112a ∴≥.2.(2021·全国甲文,23)已知函数()2,()2321f x x g x x x =-=+--.(1)画出()y f x =和()y g x =的图像;(2)若()()f x a g x +≥,求a 的取值范围.解:(1)可得2,2()22,2x x f x x x x -<⎧=-=⎨-≥⎩,画出图像如下:34,231()232142,2214,2x g x x x x x x ⎧-<-⎪⎪⎪=+--=+-≤<⎨⎪⎪≥⎪⎩,画出函数图像如下:(2)()|2|f x a x a +=+-,如图,在同一个坐标系里画出()(),f x g x 图像,()y f x a =+是()y f x =平移了a 个单位得到,则要使()()f x a g x +≥,需将()y f x =向左平移,即0a >,当()y f x a =+过1,42A ⎛⎫ ⎪⎝⎭时,1|2|42a +-=,解得112a =或52-(舍去),则数形结合可得需至少将()y f x =向左平移112个单位,112a ∴≥.3.(2021·全国乙理,23)已知函数()3f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.解:(1)当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和,则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6,故4x ≤-或2x ≥,所以()6f x ≥的解集为(][),42,-∞-+∞ .(2)依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,故3a a +>-,所以3a a +>-或3a a +<,解得32a >-.所以a 的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭.4.(2021·全国乙文,23)已知函数()3f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.解:(1)当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和,则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6,故4x ≤-或2x ≥,所以()6f x ≥的解集为(][),42,-∞-+∞ .(2)依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,故3a a +>-,所以3a a +>-或3a a +<,解得32a >-.所以a 的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题06 不等式多项选择题1.(2019秋•崂山区校级期末)《几何原本》中的几何代数法是以几何方法研究代数问题,这种方法是后西方数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称之为无字证明.现有图形如图所示,C为线段AB上的点,且AC=a,BC=b,O为AB的中点,以AB 为直径作半圆.过点C作AB的垂线交半圆于D,连结OD,AD,BD,过点C作OD的垂线,垂足为E.则该图形可以完成的所有的无字证明为()A.a+b2≥√ab(a>0,b>0)B.a2+b2≥2ab(a>0,b>0)C.√ab≥21a +1b(a>0,b>0)D.a2+b22≥a+b2(a≥0,b>0)【分析】直接利用射影定理和基本不等式的应用求出结果.【解答】解:根据图形,利用射影定理得:CD2=DE•OD,由于:OD≥CD,所以:a+b2≥√ab(a>0,b>0).由于CD2=AC•CB=ab,所以DE=CD 2OD =aba+b2所以由于CD≥DE,整理得:√ab≥2aba+b =21a+1b(a>0,b>0).故选:AC.2.(2019秋•胶州市期末)已知0<α<β<π2,且tanα,tanβ是方程x2﹣kx+2=0的两不等实根,则下列结论正确的是()A.tanα+tanβ=﹣k B.tan(α+β)=﹣kC.k>2√2D.k+tanα≥4【分析】由题意利用韦达定理,基本不等式,得出结论.【解答】解:∵已知0<α<β<π2,且tanα,tanβ是方程x2﹣kx+2=0的两不等实根,∴tanα+tanβ=k>0,tanα•tanβ=2,∴k>2√tanα⋅tanβ=2√2,故选:BC.3.(2019秋•海南期末)下列说法中正确的有()A..不等式a+b≥2√ab恒成立B.存在a,使得不等式a+1a≤2成立C..若a,b∈(0,+∞),则ba +ab≥2D.若正实数x,y满足x+2y=1,则2x +1y≥8【分析】结合基本不等式的一正,二定三相等的条件检验各选项即可判断.【解答】解:不等式a+b≥2√ab恒成立的条件是a≥0,b≥0,故A不正确;当a为负数时,不等式a+1a≤2成立.故B正确;由基本不等式可知C正确;对于2x +1y=(2x+1y)(x+2y)=4+4yx+xy≥4+2√4yx⋅xy=8,当且仅当4yx =xy,即x=12,y=14时取等号,故D正确.故选:BCD.4.(2019秋•济南期末)下列函数中,最小值为2的是()A.y=x2+2x+3B.y=e x+e﹣xC.y=sinx+1sinx ,x∈(0,π2)D.y=3x+2【分析】结合二次函数的性质可判断选项A;结合指数函数与正弦函数的性质及基本不等式的条件可判断B,C,直接利用指数函数的性质可判断D/【解答】解:y=x2+2x+3=(x+1)2+2≥2即最小值为2,符合题意;由基本不等式可得,y=e x+e﹣x≥2,即最小值为2,符合题意;由x∈(0,12π)可得sin x∈(0,1),从而可得y=sin x+1sinx>2,没有最小值,不符合题意;由指数函数的性质可知,y=3x+2>2,没有最小值,不符合题意.故选:AB.5.(2019秋•菏泽期末)在下列函数中,最小值是2的是()A.y=x+1xB.y=2x+2﹣xC.y=sinx+1sinx ,x∈(0,π2)D.y=x2﹣2x+3【分析】结合基本不等式的一正,二定三相等的条件分别检验选项ABC,结合二次函数的性质可求D.【解答】解:A:当x<0时显然不符合题意;B:由于2x>0,y=2x+2﹣x≥2,故最小值2,符合题意;C:由x∈(0,12π)可得sin x∈(0,1),y=sin x+1sinx>2,没有最小值,不符合题意;D:y=x2﹣2x+3=(x﹣1)2+2≥2即最小值2,符合题意.故选:BD.6.(2019秋•兰陵县期末)下列不等式的证明过程正确的是()A.若a<0,b<0,则ba +ab≥2√ba⋅ab=2B.若x,y∈R*,则lgx+lgy≥2√lgxlgyC.若x为负实数,则x+4x ≥−2√x⋅4x=−4D.若x为负实数,则2x+2−x≥2√2x⋅2−x≥2【分析】结合基本不等式的应用条件:一正,二定,三相等,对各选项进行检验判断即可.【解答】截:由a<0,b<0可得ba >0,ab>0,则由基本不等式可得,ba+ab≥2√ba⋅ab=2,故A正确;x,y∈R时,lg x,lg y有可能为0或负数,不符合基本不等式的条件,B错误;若x<0,则x+4x<0,C错误;x<0时,2x>0,由基本不等式可得,2x+2﹣x≥2,故D正确.故选:AD .7.(2019秋•淄博期末)关于x 的一元二次不等式x 2﹣6x +a ≤0(a ∈Z )的解集中有且仅有3个整数,则a 的取值可以是( ) A .6B .7C .8D .9【分析】设f (x )=x 2﹣6x +a ,画出函数图象,利用数形结合的方法得出关于a 的不等式组,从而求出a 的值.【解答】解:设f (x )=x 2﹣6x +a ,其图象是开口向上,对称轴是x =3的抛物线,如图所示;若关于x 的一元二次不等式x 2﹣6x +a ≤0的解集中有且仅有3个整数,则 {f(2)≤0f(1)>0,即{4−12+a ≤01−6+a >0,解得5<a ≤8,又a ∈Z , 所以a =6,7,8. 故选:ABC .8.(2019秋•聊城期末)已知a 、b 、c 、d 是实数,则下列一定正确的有( ) A .a 2+b 2≥(a+b)22B .a +1a ≥2 C .若1a >1b ,则a <bD.若a<b<0,c<d<0,则ac>bd【分析】结合基本不等式及不等式的性质检验各选项即可判断.【解答】解:由于2(a2+b2)﹣(a+b)2=a2+b2﹣2ab=(a﹣b)2≥0,故a2+b2≥12(a+b)2,故A正确;B中,当a=﹣1时显然不成立,B错误;C中:a=1,b=﹣1显然有1a >1b,但a>b,C错误;D中:若a<b<0,c<d<0,则﹣a>﹣b>0,﹣c>﹣d>0,则根据不等式的性质可知ac>bd>0,故D正确.故选:AD.9.(2019秋•日照期末)若a,b为正数,则()A.2aba+b≥√abB.当1a +1b=2时,a+b≥2C.当a+b=1a +1b时,a+b≥2D.当a+b=1时,a21+a +b21+b≥13【分析】结合基本不等式及公式的变形形式对各选项进行检验即可判断.【解答】解:对A,因为a+b≥2√ab,所以2aba+b≤√ab,当a=b时取等号,A错误;对B,12(a+b)(1a+1b)=12(2+ba+ab)≥12(2+2√ba⋅ab)=2,当a=b时取等号,正确;对C,a+b=1a +1b=a+bab,则ab=1,a+b≥2√ab=2,当a=b=1时取等号,正确;对D,(a 21+a +b21+b)(1+a+1+b)=a2+b2+b2(1+a)1+b+a2(1+b)1+a≥a2+b2+2ab=(a+b)2=1,当a=b=12时取等号,正确.故选:BCD.10.(2019秋•南通期末)对于给定的实数a,关于实数x的一元二次不等式a(x﹣a)(x+1)>0的解集可能为()A.∅B.(﹣1,a)C.(a,﹣1)D.(﹣∞,﹣1)(a,+∞)【分析】根据函数y =a (x ﹣a )(x +1)的图象和性质,对a 进行讨论,解不等式即可. 【解答】解:对于a (x ﹣a )(x +1)>0,当a >0时,y =a (x ﹣a )(x +1)开口向上,与x 轴的交点为a ,﹣1, 故不等式的解集为x ∈(﹣∞,﹣1,)∪(a ,+∞); 当a <0时,y =a (x ﹣a )(x +1)开口向下, 若a =﹣1,不等式解集为∅;若﹣1<a <0,不等式的解集为(﹣1,a ), 若a <﹣1,不等式的解集为(a ,﹣1), 综上,ABCD 都成立, 故选:ABCD .11.(2019秋•启东市校级期末)在下列函数中,最小值是2的函数有( ) A .f(x)=x 2+1x 2 B .f(x)=cosx +1cosx (0<x <π2)C .f(x)=2√x 2+3D .f(x)=3x +43x−2【分析】利用基本不等式即可判断出结果,但一定要注意验证等号是否能够成立.【解答】解:对于选项A :∵x 2>0,∴由基本不等式可得x 2+1x 2≥2,当且仅当x 2=1x 2,即x =1或﹣1时,等号成立,故选项A 正确;对于选项B :∵0<x <π2,∴0<cos x <1,由基本不等式可得cos x +1cosx ≥2,当且仅当cos x =1cosx ,即cos x =1时,等号成立,但是cos x 取不到1,所以等号不能成立,故选项B 不正确; 对于选项C :由基本不等式可得f (x )=2√x 2+3=(√x 2+3)2√x 2+3=√x 2+3√x 2+3≥2,当且仅当√x 2+3=√x 2+3,即x 2=﹣2时,等号成立,显然不可能取到,故选项C 不正确; 对于选项D :∵3x >0,∴由基本不等式可得f (x )=3x +43x−2≥2√4−2=2,当且仅当3x =43x,即x =log 32时,等号成立,故选项D 正确. 故选:AD .12.(2019秋•海淀区校级期末)不等式组{x +y ≥1x −2y ≤4的解集记为D ,下列四个命题中真命题是( )A .∀(x ,y )∈D ,x +2y ≥﹣2B .∃(x ,y )∈D ,x +2y ≥2C .∀(x ,y )∈D ,x +2y ≤3D .∃(x ,y )∈D ,x +2y ≤﹣1【分析】作出不等式组{x +y ≥1x −2y ≤4的表示的区域D ,对四个选项逐一分析即可.【解答】解:作出图形如下:由图知,区域D 为直线x +y =1与x ﹣2y =4相交的上部角型区域,A :区域D 在x +2y ≥﹣2 区域的上方,故:∀(x ,y )∈D ,x +2y ≥﹣2成立;B :在直线x +2y =2的右上方和区域D 重叠的区域内,∃(x ,y )∈D ,x +2y ≥2,故p 2:∃(x ,y )∈D ,x +2y ≥2正确;C :由图知,区域D 有部分在直线x +2y =3的上方,因此p 3:∀(x ,y )∈D ,x +2y ≤3错误;D :x +2y ≤﹣1的区域(左下方的虚线区域)恒在区域D 下方,故p 4:∃(x ,y )∈D ,x +2y ≤﹣1错误; 故选:AB .13.(2019秋•葫芦岛月考)已知正数a ,b 满足a +b =4,ab 的最大值为t ,不等式x 2+3x ﹣t <0的解集为M ,则( ) A .t =2B .t =4C .M ={x |﹣4<x <l }D .M ={x |﹣l <x <4}【分析】由基本不等式ab ≤(a+b 2)2,可求ab 的最大值,然后解二次不等式求解M ,结合选项即可判断.【解答】解:∵正数a ,b 满足a +b =4, 则ab ≤(a+b 2)2=4,即ab 的最大值为t =4,而x 2+3x ﹣4<0的解集为M =(﹣4,1). 故选:BC .14.(2019秋•昆山市期中)下列函数中,最小值是2√2的有()A.y=x+2x B.y=√x√xC.y=x2+2x2+4+4D.y=e x+2e﹣x【分析】利用基本不等式的使用法则:“一正二定三相等”即可判断出正误.【解答】解:A.x<0时,y<0,无最小值.B.y=√x√x≥2√2,当且仅当x=√2时取等号,正确.C.y=x2+2x2+4+4≥2√(x2+4)(2x2+4)=2√2,当且仅当x2+4=2x2+4时,等号成立,显然不可能取到,故选项C不正确;D.y=e x+2e﹣x≥2√e x⋅2e−x=2√2,当且仅当x=0时取等号,正确.故选:BD.15.(2019秋•薛城区校级期中)设a>1,b>1,且ab﹣(a+b)=1,那么()A.a+b有最小值2(√2+1)B.a+b有最大值(√2+1)2C.ab有最大值3+2√2.D.ab有最小值3+2√2.【分析】根据a>1,b>1,即可得出a+b≥2√ab,从而得出ab−2√ab≥1,进而得出√ab≥√2+1,从而得出ab有最小值3+2√2;同样的方法可得出ab≤(a+b2)2,从而得出(a+b)2﹣4(a+b)≥4,进而解出a+b≥2(√2+1),即得出a+b的最小值为2(√2+1).【解答】解:∵a>1,b>1,∴a+b≥2√ab,当a=b时取等号,∴1=ab−(a+b)≤ab−2√ab,解得√ab≥√2+1,∴ab≥(√2+1)2=3+2√2,∴ab有最小值3+2√2;∵ab≤(a+b2)2,当a=b时取等号,∴1=ab−(a+b)≤(a+b2)2−(a+b),∴(a+b)2﹣4(a+b)≥4,∴[(a+b)﹣2]2≥8,解得a+b−2≥2√2,即a+b≥2(√2+1),∴a+b有最小值2(√2+1).故选:AD.16.(2019秋•北镇市校级月考)下列各小题中,最大值是12的是( )A .y =x 2+116x 2 B .y =x√1−x 2,x ∈[0,1]C .y =x 2x 4+1D .y =x +4x+2,(x >−2)【分析】利用基本不等式的性质即可判断出结论. 【解答】解:A .y 没有最大值; B .y 2=x 2(1﹣x 2)≤(x 2+1−x 22)2=14,y ≥0,∴y ≤12,当且仅当x =√22时取等号. C .x =0时,y =0.x ≠0时,y =1x 2+1x2≤12,当且仅当x =±1时取等号.D .y =x +2+4x+2−2≥2√(x +2)⋅4x+2−2=2,x >﹣2,当且仅当x =0时取等号.故选:BC .17.(2019秋•莱州市校级月考)若正实数a ,b 满足a +b =1,则下列选项中正确的是( ) A .ab 有最大值14 B .√a +√b 有最小值√2 C .1a+1b 有最小值4D .a 2+b 2有最小值√22【分析】由a +b =1,根据2aba+b≤√ab ≤a+b 2≤√a 2+b 22逐一判断即可.【解答】解:∵a >0,b >0,且a +b =1;∴1+a +b ≥1√ab ;∴ab ≤14; ∴ab 有最大值14,∴选项A 正确;√a +√b ≥2√ab ,2√ab ≤1,∴√a +√b 的最小值不是√2,∴B 错误;1a+1b=a+b ab=1ab≥4,∴1a+1b有最小值4,∴C 正确;a 2+b 2≥2ab ,2ab ≤12,∴a 2+b 2的最小值不是√22,∴D 错误. 故选:AC .18.(2019秋•临沭县期末)给出下面四个推断,其中正确的为( ) A .若a ,b ∈(0,+∞),则ba+ab ≥2B .若x ,y ∈(0,+∞),则lg lg x y ≥2√lgx ⋅lgyC .若a ∈R ,a ≠0,则4a +a ≥4D .若x ,y ∈R ,xy <0,则x y+yx≤−2【分析】根据基本不等式的应用条件一正,二定,三相等逐个判断即可.【解答】解:A 正确,∵a >0、b >0,故ba+ab≥2√ba⋅ab=2,当且仅当a =b 时上式取等号;B 不正确,∵lg x 和lg y 不一定是正实数,故不可用基本不等式;C 不正确,∵a <0时,则4a +a ≥4不成立;D 正确,若x ,y ∈R ,xy <0,则−xy>0,−yx>0,∴(−xy)+(−yx)≥2√(−xy)⋅(−yx)=2,则xy+yx≤−2,当且仅当x 与y 互为相反数时取等号. 故选:AD .19.(2019秋•肥城市校级月考)给出四个选项能推出1a <1b 的有( ) A .b >0>aB .0>a >bC .a >0>bD .a >b >0【分析】利用不等式的性质,代入验证即可. 【解答】解:1a<1b ⇔b−a ab<0⇔ab (a ﹣b )>0,A ,ab <0,a ﹣b <0,ab (a ﹣b )>0成立B ,ab >0,a ﹣b >0,ab (a ﹣b )>0成立C .ab <0,a ﹣b >0,ab (a ﹣b )<0,不成立,D .ab >0,a ﹣b >0,ab (a ﹣b )>0成立 故选:ABD .20.(2019秋•泰山区校级期中)设a >0,b >0,给出下列不等式恒成立的是( ) A .a 2+1>aB .a 2+9>6aC .(a +b )(1a+1b)≥4D .(a +1a)(b +1b)≥4【分析】设a >0,b >0,a 2+1﹣a =(a +12)2+34>0,A 成立,a 2+9﹣6a =(a ﹣3)2≥0,B 不成立,(a +b )(1a +1b )≥(1+1)2=4,故C 成立,a +1a ≥2,b +1b ≥2,故D 成立. 【解答】解:设a >0,b >0, a 2+1﹣a =(a +12)2+34>0,A 成立, a 2+9﹣6a =(a ﹣3)2≥0,B 不成立(a+b)(1a +1b)≥(1+1)2=4,故C成立,a+1a ≥2,b+1b≥2,故D成立,故选:ACD.。