3.1.3概率的基本性质

合集下载

3.1.3概率的基本性质课件

3.1.3概率的基本性质课件

请判断那种正确!
例3:某射手一次射击中,击中 10 环、9 环、8 环 的概率分别是 0.24,0.28,0.19,则这射手在一次射击中 ) 至多 8 环的概 率是(D B.0.52 A.0.48 D.0.29 C.0.71 两两互斥的事件叫彼此互斥事件。一般地,设 A1 , A2 ,, An 彼此互斥,则有:
(2)至少命中 8 环的概率; (3)命中不足 8 环的概率.
思维突破:准确理解所求概率的事件是哪些互斥事件的并
事件,或其对立事件是什么,结合概率加法公式进行求解. 解:记“射击一次,命中k环”为事件Ak(k=7,8,9,10). (1)∵A9与A10互斥, ∴P(A9+A10)=P(A9)+P(A10)=0.28+0.32=0.60. (2)记“至少命中8环”为事件B. B=A8+A9+A10,又A8,A9,A10两两互斥,
A∩C= “有4件次品” B∩C =

一次抽取8件共有9种抽取结果; 第一种: 有 第二种: 有 第三种: 有 第四种: 有 第五种: 有 第六种: 有 第七种: 有 第八种: 有 第九种: 有 0 件次品(全是合格品), 1 件次品(7件合格品), 2 件次品(6件合格品), 3 件次品(5件合格品), 4 件次品(4件合格品), 5 件次品(3件合格品), 6 件次品(2件合格品), 7 件次品(1件合格品), 8 件次品(0件合格品)。
图 3-1-6
Hale Waihona Puke 图 3-1-7且 (2)交事件:若某事件发生当且仅当事件 A 发生______ 事件B 发生,则称此事件为事件 A 与事件 B 的交事件(或 积 事件),记作________( A∩B AB ______ 或________) ,如图 3-1-7 的 阴影部分.

山东省高中数学《3.1.3 概率的基本性质》教案 新人教A版必修3

山东省高中数学《3.1.3 概率的基本性质》教案 新人教A版必修3

3.1.3 概率的基本性质教学目标:(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;通过事件的关系、运算与集合的关系、运算进行类比学习,培养学生的类比与归纳的数学思想.(2)概率的几个基本性质:①必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;②当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);③若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1-P(B).(3)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系,通过数学活动,了解数学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣.教学重点:概率的加法公式及其应用.教学难点:事件的关系与运算.教学方法:讲授法课时安排1课时教学过程一、导入新课:全运会中某省派两名女乒乓球运动员参加单打比赛,她们夺取冠军的概率分别是2/7和1/5,则该省夺取该次冠军的概率是2/7+1/5,对吗?为什么?为解决这个问题,我们学习概率的基本性质.二、新课讲解:Ⅰ、事件的关系与运算1、提出问题在掷骰子试验中,可以定义许多事件如:C1={出现1点},C2={出现2点},C3={出现3点},C4={出现4点},C5={出现5点},C6={出现6点},D1={出现的点数不大于1},D2={出现的点数大于3},D3={出现的点数小于5},E={出现的点数小于7},F={出现的点数大于6},G={出现的点数为偶数},H={出现的点数为奇数},……类比集合与集合的关系、运算说明这些事件的关系和运算,并定义一些新的事件.(1)如果事件C1发生,则一定发生的事件有哪些?反之,成立吗?(2)如果事件C2发生或C4发生或C6发生,就意味着哪个事件发生?(3)如果事件D2与事件H同时发生,就意味着哪个事件发生?(4)事件D3与事件F能同时发生吗?(5)事件G与事件H能同时发生吗?它们两个事件有什么关系?2、活动:学生思考或交流,教师提示点拨,事件与事件的关系要判断准确.3、讨论结果:(1)如果事件C1发生,则一定发生的事件有D1,E,D3,H,反之,如果事件D1,E,D3,H分别成立,能推出事件C1发生的只有D1.(2)如果事件C2发生或C4发生或C6发生,就意味着事件G发生.(3)如果事件D2与事件H同时发生,就意味着C5事件发生.(4)事件D3与事件F不能同时发生.(5)事件G与事件H不能同时发生,但必有一个发生.4、总结:由此我们得到事件A,B的关系和运算如下:①如果事件A发生,则事件B一定发生,这时我们说事件B包含事件A(或事件A包含于事件B),记为B⊇A(或A⊆B),不可能事件记为∅,任何事件都包含不可能事件.②如果事件A发生,则事件B一定发生,反之也成立,(若B⊇A同时A⊆B),我们说这两个事件相等,即A=B.如C1=D1.③如果某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与B的并事件(或和事件),记为A∪B或A+B.④如果某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与B的交事件(或积事件),记为A∩B或AB.⑤如果A∩B为不可能事件(A∩B=∅),那么称事件A与事件B互斥,即事件A与事件B在任何一次试验中不会同时发生.⑥如果A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件,即事件A与事件B在一次试验中有且仅有一个发生.Ⅱ、概率的几个基本性质1、提出以下问题:(1)概率的取值范围是多少?(2)必然事件的概率是多少?(3)不可能事件的概率是多少?(4)互斥事件的概率应怎样计算?(5)对立事件的概率应怎样计算?2、活动:学生根据试验的结果,结合自己对各种事件的理解,教师引导学生,根据概率的意义: (1)由于事件的频数总是小于或等于试验的次数,所以,频率在0—1之间,因而概率的取值范围也在0—1之间.(2)必然事件是在试验中一定要发生的事件,所以频率为1,因而概率是1.(3)不可能事件是在试验中一定不发生的事件,所以频率为0,因而概率是0.(4)当事件A与事件B互斥时,A∪B发生的频数等于事件A发生的频数与事件B发生的频数之和,互斥事件的概率等于互斥事件分别发生的概率之和.(5)事件A与事件B互为对立事件,A∩B为不可能事件,A∪B为必然事件,则A∪B的频率为1,因而概率是1,由(4)可知事件B的概率是1与事件A发生的概率的差.3、讨论结果:(1)概率的取值范围是0—1之间,即0≤P(A)≤1.(2)必然事件的概率是1.如在掷骰子试验中,E={出现的点数小于7},因此P(E)=1.(3)不可能事件的概率是0,如在掷骰子试验中,F={出现的点数大于6},因此P(F)=0. (4)当事件A与事件B互斥时,A∪B发生的频数等于事件A发生的频数与事件B发生的频数之和,互斥事件的概率等于互斥事件分别发生的概率之和,即P(A∪B)=P(A)+P(B),这就是概率的加法公式.也称互斥事件的概率的加法公式.(5)事件A与事件B互为对立事件,A∩B为不可能事件,A∪B为必然事件,P(A∪B)=1.所以1=P(A)+P(B),P(B)=1-P(A),P(A)=1-P(B).如在掷骰子试验中,事件G={出现的点数为偶数}与H={出现的点数为奇数}互为对立事件,因此P(G)=1-P(H).三、例题讲解:例:如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是41,取到方块(事件B )的概率是41,问:(1)取到红色牌(事件C )的概率是多少? (2)取到黑色牌(事件D )的概率是多少? 活动:学生先思考或交流,教师及时指导提示,事件C 是事件A 与事件B 的并,且A 与B 互斥,因此可用互斥事件的概率和公式求解,事件C 与事件D 是对立事件,因此P(D)=1-P(C). 解:(1)因为C=A∪B,且A 与B 不会同时发生,所以事件A 与事件B 互斥,根据概率的加法公式得P(C)=P(A)+P(B)=21.(2)事件C 与事件D 互斥,且C∪D 为必然事件,因此事件C 与事件D 是对立事件,P(D)=1-P(C)=21.四、课堂练习:教材第121页练习:1、2、3、4、5五、课堂小结:1.概率的基本性质是学习概率的基础.不可能事件一定不出现,因此其概率为0,必然事件一定发生,因此其概率为1.当事件A 与事件B 互斥时,A∪B 发生的概率等于A 发生的概率与B 发生的概率的和,从而有公式P (A∪B)=P (A )+P (B );对立事件是指事件A 与事件B 有且仅有一个发生.2.在利用概率的性质时,一定要注意互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形:①事件A 发生B 不发生;②事件B 发生事件A 不发生,对立事件是互斥事件的特殊情形. 六、课后作业:习题3.1A 组5,B 组1、2. 预习教材3.2.1 板书设计。

广东省汕头市东厦中学人教版高中数学必修三:3.1.3 概率的基本性质 教案

广东省汕头市东厦中学人教版高中数学必修三:3.1.3 概率的基本性质 教案

3.1.3 概率的基本性质汕头市东厦中学任课教师:林煜山教学内容:1、事件间的关系及运算2、概率的基本性质教学目标:一、知识与技能1.掌握事件的关系和运算,区分互斥和对立事件2.掌握概率的基本性质,学会应用概率的加法公式二、过程与方法1.采用实验探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学2.发挥学生的主体作用,做好探究性实验3.理论联系实际,激发学生的学习积极性4.事件和集合对应起来,使学生又一次体会类比方法三、情感态度与价值观1.通过日常生活中的大量实例,鼓励学生动手试验、理论联系实际,激发学生对科学的探究精神和严肃认真的科学态度,培养学生的辩证唯物主义观点2.通过动手试验体会数学的奥秘与数学美,激发学生的学习兴趣教学重点:事件间的关系和运算,概率的加法公式。

教学难点:互斥事件与对立事件的区别与联系,理解概率的基本性质。

教学过程:利用课本探究以及掷骰子实际试验,使学生熟悉本节中所应用的各个事件,并引入集合论类比概率论的探究方法,利用熟悉的知识引入不熟悉的知识。

(事件的关系和运算)B A ⊆集合B 包含集合A 事件B 包含事件AB A =集合A 与集合B 相等事件A 与事件B 相等φ空集不可能事件—Ω全集 必然事件 —B A B A +⋃或集合A 与集合B 的并事件A 与事件B 的并(和)B A ⋂集合A 与集合B 的交事件A 与事件B 的交(积)特别的,“空集是任何集合的子集”这个性质如果翻译成概率论的说法,就应该是“任何事件都包含不可能事件”。

事件A 与事件B 的并和交称为事件的运算。

事件A 与事件B 的并掷骰子试验中: 51C C ⋃,G D ⋃2,31D D ⋃可以看到:上边几个例子中,虽然一样是并,构成的前提却各有不同,不过有一点是相同的,并事件总是由①属于事件A ,但不属于事件B 的一个部分,②属于事件B ,但不属于事件A 的一个部分,③同时属于事件A 和事件B 的部分,合并构成的,虽然有些题目中会缺失其中的若干部分,但是合并的规则却是绝对不变的。

人教版高中数学必修三概率的基本性质(经典)ppt课件

人教版高中数学必修三概率的基本性质(经典)ppt课件

[解析]
因为掷硬币时,出现正面朝上和反面朝上的概率
1 都是 2 ,被调查者中大约有300人回答了问题(1),有300人回答 1 了问题(2);又因为学号为奇数或偶数的概率也是 2 ,故在回答 问题(1)的300人中,大约有150人回答“是”,在回答问题(2) 30 的300人中,大约有180-150=30(人)回答了“是”,即有 300 的被调查者闯红灯,则被调查者中的600人中大约有60人闯过 红灯.故选B.
• (5)遗传机理中的统计规律. • 奥地利遗传学家孟德尔通过收集豌豆试验数据,寻找到了其中的统计规律,并用 概率理论解释这种统计规律.利用遗传定律,帮助理解概率统计中的随机性与 __________的关系,以及频率与________的关系. 规律性
概率
• ●温故知新 • 旧知再现 • 1.为了了解学生遵守《中华人民共和国交通安全法》的情况,调查部门在某学 校进行了如下的随机调查,向被调查者提出两个问题:(1)你的学号是奇数吗? (2)在过路口的时候你是否闯过红灯?要求被调查者背对调查人员抛掷一枚硬币, 如果出现正面朝上,就回答问题(1);否则就回答问题(2).
• 某班有50名同学,其中男女各25名,今有这个班的一个学生在街上碰到一个同 班同学,则下列结论正确的是( ) • A.碰到异性同学比碰到同性同学的概率大 • B.碰到同性同学比碰到异性同学的概率大 • C.碰到同性同学和异性同学的概率相等 • D.碰到同性同学和异性同学的概率随机变化
• [答案] A
(2)国家乒乓球比赛的用球有严格标准,下面是有关部门 对某乒乓球生产企业某批次产品的抽样检测,结果如表所示: 抽取球数目 优等品数目 优等品频率 ①计算表中优等品的各个频率. ②从这批产品中任取一个乒乓球,质量检测为优等品的概 率约是多少? 50 45 100 92 200 194 500 470 1 000 954 2 000 1 902

概率的基本性质

概率的基本性质

A
B
6.对立事件
若A∩B为不可能事件,A∪B必然事件,那么称事件A 与事件B互为对立事件。其含义是:事件A与事件B在任何 一次试验中有且只有一个发生。
A
B(A )
事件的关系和运算
事件 关系 事件 运算
3.事件的并 (或和)
1.包含关系 2.相等关系
4.事件的交 (或积) 5.事件的互斥 (或互不相容) 6.对立事件 (逆事件)
2.相等关系
若事件A发生必有事件B 发生;反之事件B 发生必有 事件A 发生, 即,若A
B,且
B
A,那么称
事件A 与事件B相 等, 记为 A = B
A
B
3 .事件的并(或称事件的和)
若某事件发生当且仅当事件A发生或事件B发生(即 事件 A ,B 中至少有一个发生),则称此事件为A与 B的并事件 (或和事件) 记为 A B (或 A + B )。
(1)取到红色牌(事件C)的概率是多少? 解:P(C)=P(A)+ P(B)= (2)取到黑色牌(事件D)的概率是多少? 解:P(D)=1—P(C)=
【做一做 1】同时抛掷两枚硬币,向上面都是正面为事件 M,向 上面至少有一枚是正面为事件 N,则有( ) A.M⊆N B.M⊇N C.M=N D.M<N 解析:事件 N 包含两种结果:向上面都是正面或向上面是一正一 反.则当 M 发生时,事件 N 一定发生.则有 M⊆N. 答案:A
3.1.3 概率的基本性质
概率的基本性质
提纲
1.事件间的包含关系和相等关系; 2.事件的交、并运算; 3.互斥事件和对立事件的概念及关系; 4.概率的基本性质.
1.包含关系
若事件A 发生则必有事件B 发生,则称事件B包含事件A

高中数学必修3课件:3.1.3 概率的基本性质

高中数学必修3课件:3.1.3 概率的基本性质

事件为事件A与事件B的交事件(或积事件),记作C=__A_∩__B__
(或C=AB).
类比集合,事件A与事件B的交事件用图
表示.
栏目 导引
第三章 概率
(3)互斥事件、对立事件 若事件A与事件B为__A_∩__B_=__∅__,那么称事件A与事件B互斥, 其含义是:事件A与事件B在任何一次试验中_不__会__同__时__发生. 若A∩B为__不__可__能__事件,A∪B为必__然___事件,那么称事件A与 事件B互为对立事件,其含义是:事件A与事件B在任何一次 试验中_有__且__仅__有___一个发生.
栏目 导引
第三章 概率
互动探究 2.在本例中,设事件E={3个红球},事件F={3个球中至少 有一个白球},那么事件C与A、B、E是什么运算关系?C与F 的交事件是什么? 解:由本例的解答可知, C=A∪B∪E,C∩F=A∪B.
栏目 导引
第三章 概率
题型三 用互斥事件、对立事件求概率
例3 (2012·高考湖南卷)某超市为了解顾客的购物量及结算
栏目 导引
第三章 概率
(2)记 A 为事件“一位顾客一次购物的结算时间不超过 2 分 钟”,将频率视为概率,由互斥事件的概率加法公式得 P(A)=11050+13000+12050=170. 故一位顾客一次购物的结算时间不超过 2 分钟的概率为170.
栏目 导引
第三章 概率
【名师点评】 (1)应用概率加法公式时要保证事件互斥,复 杂事件要拆分成若干个互斥事件,以化繁为简:注意不重不 漏. (2)当事件本身包含的情况较多,而其对立事件包含的结果较 少时,就应该利用对立事件间的关系求解,即贯彻“正难则 反”的思想.
栏目 导引
第三章 概率

3.1.3概率的几个基本性质

3.1.3概率的几个基本性质
2.甲,乙两人下棋,若和棋的概率是0.5,乙获胜的概率是0.3 求:(1)甲获胜的概率;(2)甲不输的概率。
解:(1)“甲获胜”是“和棋或乙获胜”的对立事件,因为“和棋 与“乙获胜”是互斥事件,所以 甲获胜的概率为:1-(0.5+0.3)=0.2 (2)设事件A={甲不输},B={和棋},C={甲获胜} 则A=B∪C,因为B,C是互斥事件,所以 P(A)=P(B)+P(C)=0.5+0.2=0.7
A A∩B B A B
A B
(4)若A B为不可能事件(A B=), 那么称事件A与事件B互斥。
(5)若A B为不可能事件,A B为必然事件, 那么称事件A与事件B互为对立事件。
1.给定下列命题,判断对错。 1 )互斥事件一定对立; 2 )对立事件一定互斥; 3 )互斥事件不一定对立;
(2)若事件A发生,则事件B一定发生,反之也成立, 则称这两个事件相等。
记:A=B
若B A,且A B,则称事件A与事件B相等。
(3)若某事件发生当且仅当事件发生A或事件B发生, 则称此事件为事件A与事件B的 并事件(或和事件)。记A B(或A+B)
B
A
A∪B
(4)若某事件 生 且 事件A生且事件 B 生, 此事件 事件A与事件B的交 事件(或 事件)。 记A B(或AB)
4) 若A B, 则 p(A) <P(B)
2) 概率的加法公式
( 互斥事件时同时发生的概率)
在掷骰子实验中,事件,A { 出现1 点 };B { 出现2点 };
C { 出现的点数小于3};
A B C=A∪B
P(C)=p(A∪B)=p(A)+p(B)=1/6+1/6=1/3 当事件A与B互斥时, A∪B发生的概率为 P(A∪B)=P(A)+P(B)

高中数学_概率的基本性质教学设计学情分析教材分析课后反思

高中数学_概率的基本性质教学设计学情分析教材分析课后反思

《3.1.3概率的基本性质》教学设计一、创设情境,导入新课教师多媒体出示研究背景题目:在掷骰子的试验中,可以定义许多事件.例如,事件C1={出现1点},事件C2={出现2点},事件C3={出现3点},事件C4={出现4点},事件C5={出现5点},事件C6={出现6点},事件D1={出现的点数不大于1},事件D2={出现的点数大于3},事件D3={出现的点数小于5},事件D4={出现的点数不小于4},事件E={出现的点数小于7},事件F={出现的点数为偶数},事件G={出现的点数为奇数}并提出问题:(1)事件D1本质是哪个事件?(2)事件D2本质是哪些事件?它与事件C4 、事件C5 、事件C6 之间什么关系呢?(3)事件D3 与事件D4若同时发生呢?它与哪个事件是同一事件?引导学生回忆交流,教师归类,从而自然引入本节内容:事件之间的基本关系。

二、自主探究,合作学习(学生自主学习,教师予以辅助解释说明,并根据学生的理解情况适时予以发问,帮助学生深入了解概念关系。

)知识点一事件的关系与运算1.事件的包含关系发生,则事件B 一定发生,这时称事件B包含事件A(或称事件A包含于事件B) 符号B⊇A(或A⊆B)图示注意事项①不可能事件记作∅,显然C⊇∅(C为任一事件);②事件A也包含于事件A,即A⊆A;③事件B包含事件A,其含义就是事件A 发生,事件B一定发生,而事件B发生,事件A不一定发生关系我们定义为事件的相等关系。

学生予以加深理解。

2.事件的相等关系定义一般地,若B⊇A,且A⊇B,那么称事件A与事件B相等符号A=B 图示注意事项①两个相等事件总是同时发生或同时不发生;②所谓A=B,就是A,B是同一事件;③在验证两个事件是否相等时,常用到事件相等的定义3.定义若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件)符号A∪B(或A+B)图示注意事项①A∪B=B∪A;②例如,在掷骰子试验中,事件C2,C4分别表示出现2点,4点这两个事件,则C2∪C4={出现2点或4点}这一块类比集合的关系,我们又该如何定义呢?学生踊跃发言,生生之间互相补充完善,最后多媒体展示准确定义事件的交。

【专题】必修3 专题3.1.3 概率的基本性质-高一数学人教版(必修3)(解析版)

【专题】必修3  专题3.1.3 概率的基本性质-高一数学人教版(必修3)(解析版)

第三章概率3.1.3 概率的基本性质一、选择题1.下列说法合理的是A.抛掷一枚质地均匀的骰子,点数为6的概率是16,意即每掷6次就有一次掷得点数6.B.抛掷一枚硬币,试验200次出现正面的频率不一定比100次得到的频率更接近概率.C.某地气象局预报说,明天本地下雨的概率为80%,是指明天本地有80%的区域下雨.D.随机事件A,B中至少有一个发生的概率一定比A,B中恰有一个发生的概率大.【答案】B2.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3 B.0.4 C.0.6 D.0.7【答案】B【解析】某群体中的成员只用现金支付,既用现金支付也用非现金支付,不用现金支付,是互斥事件,所以不用现金支付的概率为:1–0.45–0.15=0.4.故选B.3.口袋中装有一些大小相同的红球、白球和黑球,从中摸出一个球,摸出红球的概率是0.43,摸出白球的概率是0.27,那么摸出黑球的概率是A.0.43 B.0.27 C.0.3 D.0.7【答案】C【解析】由题意,摸出黑球的概率是P=1–0.43–0.27=0.3.故选C.4.有一个人在打靶中,连续射击2次,事件“至少有1次中靶”的对立事件是A.至多有1次中靶B.2次都中靶C.2次都不中靶D.只有1次中靶【答案】C【解析】由于两个事件互为对立事件时,这两件事不能同时发生,且这两件事的和事件是一个必然事件,再由于一个人在打靶中,连续射击2次,事件“至少有1次中靶”的反面为“2次都不中靶”,故事件“至少有1次中靶”的对立事件是“2次都不中靶”,故选C.5.“弘雅苑”某班科技小组有3名男生和2名女生,从中任选2名学生参加学校科技艺术节“水火箭”比赛,那么互斥而不对立的两个事件是A.恰有1名男生和恰有2名男生B.至多有1名男生和都是女生C.至少有1名男生和都是女生D.至少有1名男生和至少有1名女生【答案】A【解析】“弘雅苑”某班科技小组有3名男生和2名女生,从中任选2名学生参加学校科技艺术节“水火箭”比赛,在A中,恰有1名男生和恰有2名男生是互斥而不对立的两个事件,故A正确;在B中,至多有1名男生和都是女生能同时发生,不是互斥事件,故B错误;在C中,至少有1名男生和都是女生是对立事件,故C错误;在D中,至少有1名男生和至少有1名女生能同时发生,不是互斥事件,故D错误.故选A.6.某小组有2名男生和2名女生,从中任选2名同学去参加演讲比赛.在下列选项中,互斥而不对立的两个事件是A.“至少有1名女生”与“都是女生”B.“至少有1名女生”与“至多1名女生”C.“恰有1名女生”与“恰有2名女生”D.“至少有1名男生”与“都是女生”【答案】C【解析】A中的两个事件是包含关系,故不符合要求;B中的两个事件之间有都包含一名女的可能性,故不互斥;C中的两个事件符合要求,它们是互斥且不对立的两个事件;D中的两个事件是对立事件,故不符合要求.故选C.7.袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是A.至少有一个白球;都是白球B.至少有一个白球;至少有一个红球C.恰有一个白球;一个白球一个黑球D.至少有一个白球;红、黑球各一个【答案】D【解析】选项A,“至少有一个白球“说明有白球,白球的个数可能是1或2,而“都是白球“说明两个全为白球,这两个事件可以同时发生,故A不互斥;选项B,当两球一个白球一个红球时,“至少有一个白球“与“至少有一个红球“均发生,故不互斥;选项C,“恰有一个白球“,表明黑球个数为0或1,这与“一个白球一个黑球“不互斥;选项D,“至少一个白球“发生时,“红,黑球各一个“不会发生,故D互斥,不对立.故选D.8.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是3 10,那么概率是710的事件是A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡【答案】A9.根据某医疗研究所的调查,某地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%.现有一血液为A型病人需要输血,若在该地区任选一人,那么能为病人输血的概率为A.15% B.20% C.45% D.65%【答案】D【解析】∵某地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%.现在能为A型病人输血的有O型和A型,故为病人输血的概率50%+15%=65%,故选D.10.某班学生考试成绩中,数学不及格的占15%,语文不及格的占5%,两门都不及格的占3%.已知一学生数学不及格,则他语文也不及格的概率是A.15B.310C.12D.35【答案】A【解析】由题意设这个班有100a 人,则数学不及格有15a 人,语文不及格有5a 人,都不及格的有3a 人,则数学不及格的人里含有3a 人语文不及格,所以已知一学生数学不及格,则他语文也不及格的概率为:P =31155=.故选A . 二、填空题11.假设向三个相邻的军火库投掷一个炸弹,炸中第一个军火库的概率为0.025,其余两个各为0.1,只要炸中一个,另两个也发生爆炸,则军火库发生爆炸的概率____________. 【答案】0.225【解析】∵向三个相邻的军火库投掷一个炸弹,炸中第一个军火库的概率为0.025,其余两个各为0.1,只要炸中一个,另两个也发生爆炸,∴军火库发生爆炸的概率p =0.025+0.1+0.1=0.225.故答案为:0.225. 12.口袋内装有一些大小相同的红球、黄球、白球,从中摸出一个球,摸出红球或白球的概率为0.65,摸出黄球或白球的概率是0.6,那么摸出白球的概率是____________. 【答案】0.25【解析】口袋内装有一些大小相同的红球、黄球、白球,设红、黄、白球各有a ,b ,c 个,∵从中摸出一个球,摸出红球或白球的概率为0.65,摸出黄球或白球的概率是0.6,∴0.650.6a ca b cb c a b c +⎧=⎪⎪++⎨+⎪=⎪++⎩,∴10.60.4a a b c =-=++,10.650.35ba b c=-=++,∴摸出白球的概率是P =1–0.4–0.35=0.25.故答案为:0.25.13.甲乙两人下棋,若甲获胜的概率为16,甲乙下成和棋的概率为13.则乙不输棋的概率为____________. 【答案】56【解析】∵甲乙两人下棋,甲获胜的概率为16,甲乙下成和棋的概率为13.∴乙不输棋的概率p =1–1566=.故答案为:56. 14.甲、乙同时炮击一架敌机,已知甲击中敌机的概率为0.3,乙击中敌机的概率为0.5,敌机被击中的概率为____________. 【答案】0.65【解析】敌机被击中的对立事件是甲、乙同时没有击中,设A 表示“甲击中”,B 表示“乙击中”,由已知得P (A )=0.3,P (B )=0.5,∴敌机被击中的概率为:p =1–P (A )P (B )=1–(1–0.3)(1–0.5)=0.65.故答案为:0.65.15.经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下:排队人数0 1 2 3 4 ≥5概率0.1 0.16 0.3 0.3 0.1 0.04 则该营业窗口上午9点钟时,至少有2人排队的概率是____________.【答案】0.74【解析】由表格可得至少有2人排队的概率P=0.3+0.3+0.1+0.04=0.74,故答案为:0.74.16.口袋内有一些大小相同的红球,白球和黑球,从中任摸一球摸出红球的概率是0.3,摸出黑球的概率是0.5,那么摸出白球的概率是____________.【答案】0.2【解析】从中任摸一球摸出红球、从中任摸一球摸出黑球、从中任摸一球摸出白球,这三个事件是彼此互斥事件,它们的概率之和等于1,故从中任摸一球摸出白球的概率为1–0.3–0.5=0.2,故答案为:0.2.三、解答题17.甲、乙、丙三位同学完成六道数学自测题,他们及格的概率依次为45、35、710,求:(1)三人中有且只有两人及格的概率;(2)三人中至少有一人不及格的概率.【解析】(1)设事件A表示“甲及格”,事件B表示“乙及格”,事件C表示“丙及格”,则P(A)=45,P(B)=35,P(C)=710,三人中有且只有2人及格的概率为:P1=P(AB C)+P(A B C)+P(ABC)=P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)=43715510⎛⎫⨯⨯-⎪⎝⎭+43715510⎛⎫⨯-⨯⎪⎝⎭+(1–45)×37510⨯=113 250.(2)“三人中至少有一人不及格”的对立的事件为“三人都及格”,三人中至少有一人不及格的概率为:P2=1–P(ABC)=1–P(A)P(B)P(C)=1–43783 5510125⨯⨯=.18.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一个球,得到红球的概率为13,得到黑球或黄球的概率为512,得到黄球或绿球的概率也为512,试求得黑球、黄球、绿球的概率分别为多少?【解析】袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一个球,设事件A表示“取到红球”,事件B表示“取到黑球”,事件C表示“取到黄球”,事件D表示“取到绿球”,∵得到红球的概率为13,得到黑球或黄球的概率为512,得到黄球或绿球的概率也为512,∴()()()()()()()()()()()135125121P AP B C P B P CP C D P D P CP A P B P C P D⎧=⎪⎪⎪+=+=⎪⎨⎪+=+=⎪⎪⎪+++=⎩,解得()()()()13116144P AP BP CP D⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩∴取得黑球、黄球、绿球的概率分别为111 464,,.19.某射击运动员在一次射击比赛中,每次射击成绩均计整数环且不超过10环,其中射击一次命中7~10环的概率如下表所示命中环数7 8 9 10概率0.12 0.18 0.28 0.32求该射击运动员射击一次,(1)命中9环或10环的概率;(2)命中不足7环的概率.。

3.1.3 概率的几个基本性质

3.1.3 概率的几个基本性质
思考4: 上述事件中,哪两个事件同时发生会使得 C4也发生?
若某事件发生当且仅当事
件A发生且事件B发生,则称 此事件为事件A和事件B的交 事件(或积事件)。
B
记作:A
A
B(或AB)
二、基础知识讲解
在掷骰子的试验中,我们可以定义许多事件,如:
C1 ={出现1点}; C2 ={出现2点}; C3 ={出现3点}; C4 ={出现4点}; C5 ={出现5点}; C6 ={出现6点}; D1 ={出现的点数不大于1};D2={出现的点数大于3}; D3 ={出现的点数小于5}; E ={出现的点数小于7};F ={出现的点数大于6};
二、基础知识讲解
思考:在掷骰子的试验中,定义事件
A={出现的点数为1};B={出现的点数为2} C={出现的点数小于或等于2};D={出现点大于2}
1、 发生C的概率是多少? P(C)=1/3
2、事件C可以看成哪两个事件的并事件?这两个事件 是什么关系?它们发生的概率与事件C发生的概率有 什么联系? C=A∪B,A、B是互斥事件,
G ={出现的点数为偶数};H ={出现的点数为奇数}。
思考3: 上述事件中,哪些事件发生会使得 I={出现 1 点或 5
点} 也发生?反过来可以么?
A
若某事件发生当且仅当
B
事件A发生或事件B发生,则
称此事件为事件A和事件B的 并事件(或和事件)。
记作 : A
B(或A B)
二、基础知识讲解
在掷骰子的试验中,我们可以定义许多事件,如:
P(C)=P(A)+P(B)=1/3
3、事件C与D有什么关系?发生的概率各是多少?
思考:什么情况下两个事件 A 与 B 的并事件发生的概 率,会等于事件 A 与事件 B 各自发生的概率之和?

人教版高一数学必修三第三章 概率的基本性质

人教版高一数学必修三第三章 概率的基本性质
第三章 概率
3.1.3 概率的基本性质
第三章 概率
考点
学习目标
事件间的相互关系 了解事件间的相互关系
理解互斥事件、对立事 互斥事件、对立事件
件的概念
会用概率的加法公式求 概率的加法公式
某些事件的概率
核心素养 数学抽象 数学抽象、 逻辑推理
数学运算
第三章 概率
问题导学 (1)两个集合之间存在着包含与相等的关系,集合可以进行交、 并、补运算,你还记得子集、交集、并集和补集等的含义及其 符号表示吗? (2)如何理解事件 A 包含事件 B?事件 A 与事件 B 相等? (3)什么叫做并事件?什么叫做交事件? (4)什么叫做互斥事件?什么叫做对立事件?互斥事件与对立 事件的联系与区别是什么? (5)概率的基本性质有哪些?
件 B 的并事件(或和事件)

图示
栏目 导引
第三章 概率
定义
表示法

若某事件发生当且仅当

_事__件__A__发__生__且__事__件__B__发__生__, _A
则称此事件为事件 A 与事件 ___A_B___)
B 的交事件(或积事件)

图示
栏目 导引
2.概率的几个性质 (1)范围
栏目 导引
第三章 概率
判断正误(正确的打“√”,错误的打“×”) (1)互斥事件一定对立.( ) (2)对立事件一定互斥.( ) (3)事件 A 与 B 的和事件的概率一定大于事件 A 的概率.( ) (4)事件 A 与 B 互斥,则有 P(A)=1-P(B).( )
栏目 导引
第三章 概率
解析:对立必互斥,互斥不一定对立. 所以(2)正确,(1)错; 又当 A∪B=A 时,P(A∪B)=P(A),所以(3)错; 只有 A 与 B 为对立事件,才有 P(A)=1-P(B), 所以(4)错. 答案:(1)× (2)√ (3)× (4)×

高中数学第三章概率3.1.3概率的基本性质课件新人教A版必修3

高中数学第三章概率3.1.3概率的基本性质课件新人教A版必修3
球,故D=A∪B.
(2)对于事件C,可能的结果为1个红球2个白球,2个红球1个白球,3
个均为红球,故C∩A=A.
探究一
探究二
探究三
思维辨析
当堂检测
互动探究 在本例中A与D是什么关系?事件A与B的交事件是什么?
解:由本例的解答,可知A⊆D.
因为A,B是互斥事件,所以A∩B=⌀.
故事件A与B的交事件是不可能事件.
集合的观点看,事件C1是事件D3,E,H的子集,集合C1与集合D1相等.
3.请指出如果事件C2发生或C4发生或C6发生,就意味着哪个事件
发生?
提示如果事件C2发生或C4发生或C6发生,就意味着事件G发生.
4.如果事件D2与事件H同时发生,就意味着哪个事件发生?
提示如果事件D2与事件H同时发生,就意味着事件C5发生.
然是A1,A2,…,An彼此互斥.在将事件拆分成若干个互斥事件时,注意
不能重复和遗漏.
2.当所要拆分的事件非常烦琐,而其对立事件较为简单时,可先求
其对立事件的概率,再运用公式求解.但是一定要找准其对立事件,
避免错误.
探究一
探究二
探究三
思维辨析
当堂检测
变式训练2据统计,某储蓄所一个窗口排队等候的人数及相应概
点},C5={出现5点},C6={出现6点},D1={出现的点数不大于
1},D2={出现的点数大于4},D3={出现的点数小于6},E={出现的点
数小于7},F={出现的点数大于6},G={出现的点数为偶数},H={出
现的点数为奇数},等等.
1.上述事件中哪些是必然事件?哪些是不可能事件?哪些是随机
5.事件D3与事件F能同时发生吗?
提示事件D3与事件F不能同时发生.

(人教a版)必修三同步课件:3.1.3概率的基本性质

(人教a版)必修三同步课件:3.1.3概率的基本性质

不可能 若A∩B为_______ 事件 事件 ,则称事件A _____ 互斥 与事件B互斥 事件的 关系
若_________ A∩B=∅ , 则A与B互斥
不可能 若A∩B为_______ 事件 ,A∪B为___ _____ 必 若A∩B=∅, 事件 然事件 ,那么称事 且A∪B=U, _______ 对立 件A与事件B互为对 则A与B对立 立事件
(3)不是互斥事件,当然不可能是对立事件.
理由是:从40张扑克牌中任意抽取1张,“抽出的牌点数为5 的倍数”与“抽出的牌点数大于9”这两个事件可能同时发 生,如抽得牌点数为10,因此,二者不是互斥事件,当然不 可能是对立事件.
规律方法
1.要判断两个事件是不是互斥事件,只需要分别
找出各个事件包含的所有结果,看它们之间能不能同时发 生.在互斥的前提下,看两个事件的并事件是否为必然事
要点二 事件的运算
例2 在投掷骰子试验中,根据向上的点数可以定义许多事件,如:A={出现1点},B={出 现3点或4点},C={出现的点数是奇数},D={出现的点数是偶数}. (1)说明以上4个事件的关系; (2)求两两运算的结果.

在投掷骰子的试验中,根据向上出现的点数有6种基
本事件,记作Ai={出现的点数为i}(其中i=1,2,…,
{x|x∈A,且 ___________ x∈B} ______
{x|x∈U,且x∉A} __系与运算
定义
表示法
图示
一般地,对于事件 A与事件B,如果 事件A发生,则事 事件的 包含 一定发生 , B⊇A(或A⊆B) 件B_________ 关系 关系 这时称事件B包含 事件A(或称事件A 包含于事件B)
6).则A=A1,B=A3∪A4,C=A1∪A3∪A5,D=

3.1.1-3.1.3随机事件的概率

3.1.1-3.1.3随机事件的概率

对于给定的随机事件A,在大量重复试验中发生 的频率fn(A)趋于稳定,在某个常数附近摆动,因此 可以用这个常数来度量事件A发生的可能性的大小, 并把这个常数叫做事件A发生的概率,记作P(A). 那么在上述抛掷硬币的试验中,正面向上发生的 概率是多少? P(正面朝上)=0.5
对于给定的随机事件A,发生的频率fn(A)是不是 不变的?事件A发生的概率P(A)是不是不变的?它 们之间有什么区别与联系?.
探究:某中学高一年级有12个班,要从中选2个 班代表学校参加某项活动.由于某种原因,一班必须 参加,另外再从二至十二班中选1个班.有人提议用如 下的方法:掷两个骰子得到的点数和是几,就选几班, 你认为这种方法公平吗?哪个班被选中的概率最大?
1点 2点 3点 4点 5点 6点
1点 2 3 4 5 6 7
第五步,请同学们找出掷硬币时“正面朝上” 这个事件发生的规律性.
探究:如果同学们再重复一次上面的试验, 全班的汇总结果还会和这次的汇总结果一致吗? 如果不一致,你能说出原因吗?
姓名 试验次数 正面朝上的次数 正面朝上的比例
组次 试验次数
正面朝上的次数
正面朝上的比例
班级 试验次数
正面朝上的次数 正面朝上的比例
思考:如果某种彩票的中奖概率为0.1%,那么买 1000张这种彩票一定能中奖吗?为什0次彩票相当于做1000次重复试验, 因为每次试验的结果都是随机的,所以摸1000次彩票 的结果也是随机的.可能有一次或两次以上摸到,也 可能没有一次摸到. 买1000张这种彩票的中奖概率约 为1-0.9991000≈0.632,即有63.2%的可能性中奖,但 不能肯定中奖.
练习:一个地区从某年起几年之内的新生儿数及 其中男婴数如下:
1年内 时间范围 新生婴儿数 男婴数 男婴出生的 频率 5544 2883 2年内 9607 4970 3年内 13520 6994 4年内 17190 8892

3.1.3概率的性质

3.1.3概率的性质

知 能 巩 固 提 升
目 录 课 程 目 标 设 置 主 题 探 究 导 学
二、填空题(每题5分,共10分) 填空题(每题5 10分 4.在10件产品中有8件一级品, 件二级品,从中任取3 4.在10件产品中有8件一级品,2件二级品,从中任取3件,记 件产品中有 “3件都是一级品”为事件A,则A的对立事件是 ______. 件都是一级品”为事件A 【解析】10件产品中任取3件可能出现的情况是:2件二级品1 解析】10件产品中任取3件可能出现的情况是: 件二级品1 件产品中任取 件一级品,1件二级品2件一级品,3件一级品,故A的对立事件 件一级品, 件二级品2件一级品, 件一级品, 是至少有一件是二级品. 是至少有一件是二级品. 答案: 答案:至少有一件是二级品
知 能 巩 固 提 升
目 录 典 课 程 目 标 设 置 主 题 探 究 导 学 型 例 题 精 析
知 能 巩 固 提 升
目 录 典 课 程 目 标 设 置 主 题 探 究 导 学 型 例 题 精 析
知 能 巩 固 提 升
目 录 课 程 目 标 设 置 主 题 探 究 导 学
2.掷一枚骰子,设事件A={出现的点数为偶数} 事件B={出现 2.掷一枚骰子,设事件A={出现的点数为偶数},事件B={出现 掷一枚骰子 A={出现的点数为偶数 B={
典 型 例 题 精 析
知 能 巩 固 提 升
2.设 2.设A、B是两个随机事件,“若A∩B=,则称A与B是两个对立 是两个随机事件,“若A∩B= 则称A ,“
目 录 课 程 目 标 设 置 主 题 探 究 导 学
事件” 对吗? 事件”,对吗? 提示:这种说法不正确.对立事件是互斥事件的特殊情况, 提示:这种说法不正确.对立事件是互斥事件的特殊情况,除 了满足A∩B= 了满足A∩B=外,A∪B还必须为必然事件,从数值上看,若A、 A∩B= A∪B还必须为必然事件,从数值上看, 还必须为必然事件 B为对立事件,则P(A∪B)=P(A)+P(B)=1. 为对立事件, A∪B)=P( +P( 3.互斥事件与对立事件的区别和联系是什么? 3.互斥事件与对立事件的区别和联系是什么? 互斥事件与对立事件的区别和联系是什么 提示:在一次试验中,两个互斥事件有可能都不发生, 提示:在一次试验中,两个互斥事件有可能都不发生,也可能 有一个发生,但不可能两个都发生; 有一个发生,但不可能两个都发生;而两个对立事件必有一个 发生,但是不可能两个事件同时发生, 发生,但是不可能两个事件同时发生,也不可能两个事件同时 不发生,所以对立事件一定是互斥事件, 不发生,所以对立事件一定是互斥事件,但互斥事件未必是对 立事件. 立事件.

高中数学3.1.3 概率的基本性质

高中数学3.1.3 概率的基本性质

【知识拓展】概率加法公式的推广 当一个事件包含多个结果时且各个结果彼此互斥时,要用到概率加法 公式的推广,即P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An).
【题型探究】 类型一 事件间关系的判断 【典例】1.从装有2个红球和2个黑球的口袋中任取2个球,那么互斥 而不对立的两事件是 ( ) A.“至少有1个黑球”和“都是黑球” B.“至少有1个黑球”和“至少有1个红球” C.“恰有1个黑球”和“恰有2个红球” D.“至少有1个黑球”和“都是红球”
【解题探究】典例中任取的3个球中按颜色组成有哪些情况? 提示:有3红、2红1白、1红2白、3白共4种组成情况.
【解析】(1)对于事件D,可能的结果为1个红球2个白球或2个红球1 个白球,故D=A∪B. (2)对于事件C,可能的结果为1个红球2个白球或2个红球1个白球或3 个均为红球,故C∩A=A.
【即时小测】 1.思考下列问题: (1)在掷骰子的试验中,事件A={出现的点数为1},事件B={出现点数 为奇数},A与B应有怎样的关系? 提示:因为1为奇数,所以A⊆B. (2)判断两个事件是对立事件的条件是什么? 提示:①看是否是互斥事件,②看两个事件是否必有一个发生.若满 足这两个条件,则是对立事件;否则不是.
8环、7环、7环以下的概率分别为0.1,0.2,0.3,0.3,0.1.计算这
个运动员在一次射击中:
(1)射中10环或9环的概率.
(2)至少射中7环的概率.
【解题探究】1.典例1中基本事件与和事件分别是什么? 提示:基本事件有6个,和事件有2个基本事件. 2.典例2中的互斥事件是什么?对立事件是什么? 提示:(1)射中10环或9环是互斥事件.(2)“至少射中7环”与“射中7 环以下”是对立事件,可以利用对立事件概率公式计算.

教学设计4:3.1.3概率的基本性质

教学设计4:3.1.3概率的基本性质

3.1.3 概率的基本性质 周次上课时间 月 日周 课型 新授课 主备人 使用人课题 3.1.3概率的基本性质教学目标1.正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;2.概率的几个基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P (A )≤1;2)当事件A 与B 互斥时,满足加法公式:P (A ∪B )= P (A )+ P (B );3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P (A ∪B )= P (A )+ P (B )=1,于是有P (A )=1—P (B )3.正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系.教学重点概率的加法公式及其应用,事件的关系与运算。

教学难点概率的加法公式及其应用,事件的关系与运算,概率的几个基本性质课前准备多媒体课件教学过程:一、创设情境1. 两个集合之间存在着包含与相等的关系,集合可以进行交、并、补运算,你还记得子集、等集、交集、并集和补集的含义及其符号表示吗?2 我们可以把一次试验可能出现的结果看成一个集合(如连续抛掷两枚硬币),那么必然事件对应全集,随机事件对应子集,不可能事件对应空集,从而可以类比集合的关系与运算,分析事件之间的关系与运算,使我们对概率有进一步的理解和认识.二、新知探究1. 事件的关系与运算思考:在掷骰子试验中,我们用集合形式定义如下事件: 1C ={出现1点},2C ={出现2点},3C ={出现3点},4C ={出现4点},5C ={出现5点},6C ={出现6点},1D ={出现的点数不大于1},2D ={出现的点数大于4},3D ={出现的点数小于6},E ={出现的点数小于7},F ={出现的点数大于6},G ={出现的点数为偶数},H ={出现的点数为奇数},等等.你能写出这个试验中出现其它一些事件吗?类比集合与集合的关系,运算,你能发现它们之间的关系和运算吗?上述事件中哪些是必然事件?哪些是随机事件?哪些是不可能事件?(1) 显然,如果事件1C 发生, 则事件H 一定发生,这时我们说事件H 包含事件1C ,记作H ⊇ 1C一般地,对于事件A 与事件B ,如何理解事件B 包含事件A (或事件A 包含于事件B )?特别地,不可能事件用Ф表示,它与任何事件的关系怎样约定?如果当事件A 发生时,事件B 一定发生,则B ⊇A ( 或A ⊆B );任何事件都包含不可能事件.(2)分析事件1C 与事件1D 之间的包含关系,按集合观点这两个事件之间的关系应怎样描述?一般地,当两个事件A 、B 满足什么条件时,称事件A 与事件B 相等?若B ⊇A ,且A ⊇B ,则称事件A 与事件B 相等,记作A =B .(3)如果事件5C 发生或6C 发生,就意味着哪个事件发生?反之成立吗?事件2D 称为事件5C 与事件6C 的并事件(或和事件),一般地,事件A 与事件B 的并事件(或和事件)是什么含义?当且仅当事件A 发生或事件B 发生时,事件C 发生,则称事件C 为事件A 与事件B 的并事件(或和事件),记作 C =A ∪B (或A +B ).(4)类似地,当且仅当事件A 发生且事件B 发生时,事件C 发生,则称事件C 为事件A 与事件B 的交事件(或积事件),记作C =A ∩B (或AB ),在上述事件中能找出这样的例子吗?例如,在掷骰子的试验中2D ∩3D =4C(5)两个集合的交可能为空集,两个事件的交事件也可能为不可能事件,即A ∩B =Ф,此时,称事件A 与事件B 互斥,其含义是:事件A 与事件B 在任何一次试验中不会同时发生例如,上述试验中的事件1C 与事件2C 互斥,事件G 与事件H 互斥。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1.3概率的基本性质
课时目标
1.理解、掌握事件间的包含关系和相等关系
2.掌握事件的交、并运算,理解互斥事件和对立事件的概念及关系.
3.掌握概率的性质,并能用之解决有关问题.
知识目标
一、事件的关系与运算
二、概率的几个基本性质
1.概率的取值范围为 .
2. 的概率为1, 的概率为0.
3.概率加法公式为:如果事件A 与B 为互斥事件,则P (A ∪B )=__________________. 特例:若A 与B 为对立事件,则P (A )=_________. P (A ∪B )= ,P (A ∩B )= . 例题及作业
1.事件A 与B 是对立事件,且P (A )=0.6,则P (B )等于( ) A .0.4 B .0.5 C .0.6 D .1
2. 抽查10件产品,记事件A 为“至少有2件次品”,则A 的对立事件为( )
A .至多有2件次品
B .至多有1件次品
C .至多有2件正品
D .至少有2件正品 3. 从某班学生中任找一人,如果该同学身高小于160 cm 的概率为0.2,该同学的身高在[160
cm,175 cm]的概率为0.5,那么该同学的身高超过175 cm 的概率为( ) A .0.2 B .0.3 C .0.7 D .0.8
4.甲、乙两人下棋,甲获胜的概率为30%,两人下成和棋的概率为50%,那么乙不输的概
率是( ) A .20% B .70% C .80% D .30%
5.已知盒中有5个红球,3个白球,从盒中任取2个球,下列说法中正确的是( ) A .全是白球与全是红球是对立事件 B .没有白球与至少有一个白球是对立事件 C .只有一个白球与只有一个红球是互斥关系 D .全是红球与有一个红球是包含关系 6.从装有10个红球和10个白球的罐子里任取2球,下列情况中是互斥而不对立的两个事件
是( ) A .至少有一个红球;至少有一个白球 B .恰有一个红球;都是白球 C .至少有一个红球;都是白球 D .至多有一个红球;都是红球
7.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为3
7,乙夺得冠军的概率为1
4,那么中国队夺得女子乒乓球单打冠军的概率为________.
8. 从4名男生和2名女生中任选3人参加演讲比赛,所选3人中至少有一名女生的概率为4
5,
那么所选3人中都是男生的概率为________.
9.同时抛掷两枚骰子,没有5点或6点的概率为4
9,则至少有一个5点或6点的概率是
________.
10.在30件产品中有28件一级品,2件二级品,从中任取3件,记“3件都是一级品”为事件A,则A的对立事件是
________________________________________________________.
11. 某地区的年降水量在下列范围内的概率如下表所示:
求:(1)年降水量在(200,300](mm)范围内的概率.(2)年降水量在(250,400](mm)范围内的概率.(3)年降水量不大于350 mm的概率.
12.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止1个小组,具体情况如图所示.随机选出一个成员,求:
(1)他至少参加2个小组的概率;(2)他参加不超过2个小组的概率.
13. 玻璃盒子中装有各色球12个,其中5红、4黑、2白、1绿,从中任取1球.设事件A为“取出1个红球”,事件B为“取出1个黑球”,事件C为“取出1个白球”,事件D为
“取出1个绿球”.已知P(A)=5
12,P(B)=
1
3,P(C)=
1
6,P(D)=
1
12.求:
(1)“取出1球为红或黑”的概率;(2)“取出1球为红或黑或白”的概率.
14.黄种人群中各种血型的人所占比例如下:
已知同种血型的人之间可以输血,O型血可以输给任一种血型的人,其他不同血型的人不能互相输血,小明是B型血,若小明因病需要输血,则:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?
15.据统计,某储蓄所一个窗口等候的人数及相应概率如下表:
(1)求至多
题组三(探究拓展)
16.袋中有12个小球,分别为红球、黑球、黄球、绿球.从中任取一球,取到红球的概率是
1
3;取到黑球或黄球的概率是5
12;取到黄球或绿球的概率是
5
12.试求取到黑球、黄球、绿球的
概率各是多少?。

相关文档
最新文档