同步检测:随机事件的概率和古典概型
随机事件、古典概型
一:知识回顾1. 相关事件必然事件:在条件S 下,一定会发生的事件;不可能事件:在条件S 下,一定不会发生的事件;随机事件:在条件S 下,可能发生也可能不发生的事件。
(注:必然事件和不可能事件统称为确定事件。
)基本事件:试验的每一个可能结果。
2. 频率与概率 频率:nn A f A n =)( 概率:在相同条件下,大量重复进行同一试验时,随机事件A 发生的频率会在某个常数的附近摆动,我们把这个常数叫做事件A 发生的概率。
联系:频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率。
区别:频率是随机的,而概率是一个确定的值3. 古典概型特征:试验的所有可能结果只有有限个,每次试验只出现其中的一个;<有限性>每一个试验结果出现的可能性相同。
<等可能性> 计算公式:nm A )(A =试验的所有可能结果数饱含的可能结果数事件A P <注:本试验是否为等可能;本试验的基本事件有多少个;事件A 中的基本事件有多少个>4. 互斥事件:在一个随机试验中,把一次试验下不能同时发生的两个事件称作互斥事件。
事件和(A+B )是指事件A 和事件B 至少有一个发生。
加法公式:在一个随机试验中,若随机事件A 和事件B 是互斥事件,则P (A+B )=P(A)+P(B) 对立事件:两个互斥事件必有一个发生,则称这两个事件为对立事件。
P (A )=1—P(A) 加法公式推广:若随机事件n A A A ,,,21 中任意两个互斥,则)()()()(2121n n A P A P A P A A A P +++=+++二、例题讲解例1:判断下列事件,必然事件有( )不可能事件有( )随机事件有( )(1) 抛一石块,下落; (2)某人射击一次,中靶; (3)如果a>b ,那么a-b>0;(4) 在标准气压下且温度低于0摄氏度时,冰融化; (5)导体通电后发热;(6) 某电话机在一分钟内收到两次来电呼叫; (7)没有水分,种子发芽:(8) 本赛季,湖人队获得冠军; (9)北京奥运会中国获得50枚金牌。
随机事件的概率(古典概型、简单的几何概型、抽样方法)
所以该学校阅读过《西游记》的学生人数为70人, 则该学校阅读过《西游记》的学生人数与
该学校学生总数比值的估计值为:70 0.7.故选C. 100
7.(2018西安八校联考)某班对八校联考成绩进行分析,利用随机 数表法抽取样本时,先将60个同学按01,02,03,…,60进行编号, 然后从随机数表第9行第5列的数开始向右读,则选出的第6个 个体是 ( )
(红,黄),(红,蓝),(红,绿),(红,紫),共4种,
故所求概率P 4 2. 10 5
3.(2018新课标Ⅲ卷)若某群体中的成员只用现金支付的概率为
0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支
第1节 随机事件的概率(古典概型、简单的几何概型、抽样方法)
付的概率为 ( ) 第三组取的数为(10号)36,第四组取的数为(14号)43,
A .2 3
B .3 5
C .2 5
D .1 5
【答案】 B 【解析】由题意,通过列举可知从这5只兔子中随机取出3只的 所有情况数为10, 恰有2只测量过该指标的所有情况数为6.
所以P 6 3.故选B. 10 5
9.(2019新课标Ⅲ卷,文)两位男同学和两位女同学随机排成一列,
则两位女同学相邻的概率是
表第9行第5列的数开始向右读,则选出的第6个个体是 ( )
4.取一根长度为5m的绳子,拉直后在任意位置剪断,那么所得两
段绳子的长度都不小于2m的概率是
()
A .1 5
B .1 3
C .1 4
D .1 2
【 答 案 】 A 【 解 析 】 记 两 段 绳 子 的 长 度 都 不 小 于 2m为 事 件 A, 则 只 能 在 中 间 1m的 绳 子 上 剪 断 ,所 得 两 段 绳 子 的 长 度 才 都 不 小 于 2m,
高考数学专练题 随机事件、古典概型与几何概型(试题部分)
专题十一概率与统计【真题探秘】11.1随机事件、古典概型与几何概型探考情悟真题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点1.随机事件的概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.(3)理解古典概型及其概率计算公式.2019课标Ⅰ,6,5分古典概型排列与组合★★★2018课标Ⅱ,8,5分古典概型组合2018课标Ⅰ,10,5分与面积有关的几何概型圆的面积和三角形的面积2.古典概型2017课标Ⅰ,2,5分与面积有关的几何概型圆的面积3.几何概型2016课标Ⅰ,4,5分与长度有关的几何概型(4)会计算一些随机事件所含的基本事件数及事件发生的概率.(5)了解随机数的意义,能运用模拟方法估计概率. (6)了解几何概型的意义2016课标Ⅱ,10,5分与面积有关的几何概型随机模拟分析解读本节是高考的热点,常以选择题或填空题的形式出现,主要考查利用频率估计随机事件的概率,常涉及对立事件、互斥事件,古典概型及与长度、面积有关的几何概型,有时也与其他知识进行交汇命题,以解答题的形式出现,如概率与统计和统计案例的综合,主要考查学生的逻辑思维能力和数学运算能力.破考点练考向【考点集训】考点一随机事件的概率1.(2019山东烟台一模,3)已知甲袋中有1个红球1个黄球,乙袋中有2个红球1个黄球,现从两袋中各随机取一个球,则取出的两球中至少有1个红球的概率为()A.13B.12C.23D.56答案D2.(2019山西太原模拟,2)已知随机事件A和B互斥,且P(A∪B)=0.7,P(B)=0.2,则P(A)=()A.0.5B.0.1C.0.7D.0.8答案A考点二古典概型1.(2020届河南百校联盟9月联合检测,4)2019年7月1日,《上海市生活垃圾管理条例》正式实施,生活垃圾要按照“可回收物”“有害垃圾”“湿垃圾”“干垃圾”的分类标准进行分类,没有垃圾分类和未投放到指定垃圾桶内等会被罚款和行政处罚.若某上海居民提着厨房里产生的“湿垃圾”随意地投放到楼下的垃圾桶,若楼下分别放有“可回收物”“有害垃圾”“湿垃圾”“干垃圾”四个垃圾桶,则该居民会被罚款和行政处罚的概率为()A.13B.23C.14D.34答案D2.(2019江西南昌一模,6)2021年广东新高考将实行3+1+2模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.今年上高一的小明与小芳都准备选历史与政治,假若他们都对后面三科没有偏好,则他们选课相同的概率为()A.12B.13C.16D.19答案B考点三几何概型1.(2020届贵州贵阳8月月考,7)某学校星期一至星期五每天上午共安排五节课,每节课的时间为40分钟,第一节课上课的时间为7:50~8:30,课间休息10分钟.某同学请假后返校,若他在8:50~9:30之间随机到达教室,则他听第二节课的时间不少于20分钟的概率为()A.15B.14C.13D.12答案B2.(2018湖南三湘名校教育联盟第三次联考,3)已知以原点O为圆心,1为半径的圆以及函数y=x3的图象如图所示,则向圆内任意投掷一粒小米(视为质点),则该小米落入阴影部分的概率为()A.12B.14C.16D.18答案B炼技法提能力【方法集训】方法1古典概型概率的求法1.(2019安徽蚌埠二模,4)从1,2,3,4中选取两个不同数字组成两位数,则这个两位数能被4整除的概率为()A.13B.14C.16D.112答案B2.(2019江西九江一模,4)洛书,古称龟书,是阴阳五行术数之源.在古代传说中有神龟出于洛水,其甲壳上有此图案,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四隅黑点为阴数,其各行各列及对角线点数之和皆为15.如图,若从四个阴数中随机抽取两个数,则能使这两数与居中阳数之和等于15的概率是()A.12B.23C.14D.13答案D方法2几何概型概率的求法1.(2020届河南安阳第一次调研月考,10)从[-2,3]中任取一个实数a,则a的值能使函数f(x)=x+asin x在R上单调递增的概率为()A.45B.35C.25D.15答案C2.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是()A.1-π4B.π12C.π4D.1-π12答案A【五年高考】A组统一命题·课标卷题组考点一古典概型(2018课标Ⅱ,8,5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.112B.114C.115D.118答案C考点二几何概型1.(2018课标Ⅰ,10,5分)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3答案A2.(2017课标Ⅰ,2,5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.14B.π8C.12D.π4答案B3.(2016课标Ⅰ,4,5分)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.13B.12C.23D.34答案B4.(2016课标Ⅱ,10,5分)从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n,构成n个数对(x1,y1),(x2,y2),…,(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.4nm B.2nmC.4mnD.2mn答案CB组自主命题·省(区、市)卷题组考点一古典概型1.(2017山东,8,5分)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是()A.518B.49C.59D.79答案C2.(2019江苏,6,5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.答案7103.(2018江苏,6,5分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为.答案310考点二几何概型1.(2015陕西,11,5分)设复数z=(x-1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A.34+12πB.14-12πC.12-1πD.12+1π答案 B2.(2017江苏,7,5分)记函数f(x)=√6+x -x 2的定义域为D.在区间[-4,5]上随机取一个数x,则x ∈D 的概率是 . 答案593.(2015福建,13,4分)如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f(x)=x 2.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于 .答案512C 组 教师专用题组考点一 古典概型1.(2014课标Ⅰ,5,5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A.18B.38C.58D.78答案 D2.(2016江苏,7,5分)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 . 答案563.(2015江苏,5,5分)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为 . 答案564.(2013课标Ⅱ,14,5分)从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n= . 答案 85.(2016天津,16,13分)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率;(2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望. 解析 (1)由已知,有P(A)=C 31C 41+C 32C 102=13.所以,事件A 发生的概率为13.(2)随机变量X 的所有可能取值为0,1,2. P(X=0)=C 32+C 32+C 42C 102=415,P(X=1)=C 31C 31+C 31C 41C 102=715,P(X=2)=C 31C 41C 102=415.所以,随机变量X 的分布列为X 01 2 P415 715 415随机变量X 的数学期望E(X)=0×415+1×715+2×415=1.6.(2015陕西,19,12分)设某校新、老校区之间开车单程所需时间为T,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:T(分钟) 25 30 35 40 频数(次)20304010(1)求T 的分布列与数学期望ET;(2)刘教授驾车从老校区出发,前往新校区作一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率. 解析 (1)由统计结果可得T 的频率分布为T(分钟)25 3035 40频率0.2 0.3 0.4 0.1以频率估计概率得T 的分布列为T 25 30 35 40 P0.2 0.3 0.4 0.1从而ET=25×0.2+30×0.3+35×0.4+40×0.1=32(分钟).(2)设T 1,T 2分别表示往、返所需时间,T 1,T 2的取值相互独立,且与T 的分布列相同.设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在路途中的时间不超过70分钟”.解法一:P(A)=P(T 1+T 2≤70)=P(T 1=25,T 2≤45)+P(T 1=30,T 2≤40)+P(T 1=35,T 2≤35)+P(T 1=40,T 2≤30) =0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.解法二:P(A )=P(T 1+T 2>70)=P(T 1=35,T 2=40)+P(T 1=40,T 2=35)+P(T 1=40,T 2=40) =0.4×0.1+0.1×0.4+0.1×0.1=0.09. 故P(A)=1-P(A )=0.91.考点二 几何概型1.(2015湖北,7,5分)在区间[0,1]上随机取两个数x,y,记p 1为事件“x+y ≥12”的概率,p 2为事件“|x-y|≤12”的概率,p 3为事件“xy ≤12”的概率,则( ) A.p 1<p 2<p 3 B.p 2<p 3<p 1 C.p 3<p 1<p 2 D.p 3<p 2<p 1答案 B2.(2016山东,14,5分)在[-1,1]上随机地取一个数k,则事件“直线y=kx 与圆(x-5)2+y 2=9相交”发生的概率为 . 答案34【三年模拟】一、选择题(每小题5分,共35分)1.(2020届陕西百校联盟九月联考,4)“沉鱼、落雁、闭月、羞花”是由精彩故事组成的历史典故.“沉鱼”讲的是西施浣纱的故事;“落雁”指的就是昭君出塞的故事;“闭月”是述说貂蝉拜月的故事;“羞花”谈的是杨贵妃醉酒观花的故事.她们分别是中国古代的四大美女,某艺术团要以四大美女为主题排演一部舞蹈剧,甲、乙、丙、丁抽签决定扮演的对象,则甲不扮演貂蝉且乙不扮演杨贵妃的概率为()A.13B.712C.512D.12答案B2.(2020届四川成都青羊石室中学10月月考,9)2021年广东新高考将实行3+1+2模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.今年高一的小明与小芳都准备选历史,假若他们都对后面四科没有偏好,则他们选课相同的概率为()A.136B.116C.18D.16答案D3.(2018重庆九校联盟第一次联考,4)已知随机事件A,B发生的概率满足条件P(A∪B)=34,某人猜测事件A∩B发生,则此人猜测正确的概率为()A.1B.12C.14D.0答案C4.(2019河北石家庄3月教学质量检测,9)袋子中有大小、形状完全相同的四个小球,分别写有“和”“谐”“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”“谐”两个字都被摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间取整数值的随机数,分别用1,2,3,4代表“和”“谐”“校”“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数:343432341342234142243331112342241244431233214344142134由此可以估计,恰好第三次就停止摸球的概率为()A.16B.29C.518D.19答案B5.(2020届安徽合肥一中、安庆一中第一次素质测试,8)2019年5月22日具有“国家战略”意义的“长三角一体化”会议在芜湖举行.长三角城市群包括上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市”.现有4名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游,假设每名同学均从这四个地方中任意选取一个去旅游,则恰有一个地方未被选中的概率为()A.2764B.916C.81256D.716答案B6.(2020届四川石室中学高三开学考试,7)一个平面封闭图形的周长与面积之比为“周积率”,如图是由三个半圆构成的图形,最大半圆的直径为6,若在最大的半圆内随机取一点,该点取自阴影部分的概率为49,则阴影部分图形的“周积率”为()A.2B.3C.4D.5答案B7.(2019山西阳泉二模,8)赵爽是我国古代数学家、天文学家,大约在公元222年赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的,如图1).类比“赵爽弦图”,可构造如图2所示的图形,它是由3个全等的三角形与中间的一个小等边三角形组成的一个大等边三角形,设DF=2AF,若在大等边三角形中随机取一点,则此点取自小等边三角形内的概率是()图1 图2A.2√1313B.413C.2√77D.47 答案 B二、填空题(每小题5分,共10分)8.(2020届山西静乐第一中学高三月考,15)如图所示,阴影部分是由曲线y=x 2和圆x 2+y 2=2及x 轴围成的封闭图形.在圆内随机取一点,则此点取自阴影部分的概率为 .答案 18-112π9.(2018广东江门一模,16)两位教师对一篇初评为“优秀”的作文复评,若批改成绩都是两位正整数,且十位数字都是5,则两位教师批改成绩之差的绝对值不超过2的概率为 .答案 0.44。
概率论与数理统计练习题随机事件与古典概型
概率论与数理统计练习题第一次 随机事件与古典概型一.填空1. 设S 为样本空间,A,B,C 是任意的三个随机事件,根据概率的性质,则(1)P(A )=_______;(2)P(B-A)=P(B A )=_______;(3)P(A U B U C)= _____;2. 设A,B,C 是三个随机事件,试以A ,B ,C 的运算来表示下列事件:(1)仅有A 发生_______;(2)A ,B ,C 中至少有一个发生_______;(3)A ,B ,C 中恰有一个发生_______;(4)A ,B ,C 中最多有一个发生_______;(5)A ,B ,C 都不发生_______;(6)A 不发生,B ,C 中至少有一个发生_______;3. A,B,C 是三个随机事件,且p(A)=p(B)=p(C)=1/4, P(AC)=1/8;P(AB)=P(BC)=0,则A ,B ,C 中至少有一个发生的概率为: _______;A ,B ,C 中都发生的概率为: _______;A ,B ,C 都不发生的概率为: _______;4. 袋中有n 只球,记有号码 1,2,3,…………n . (n>5) 则事件(1)任意取出两球,号码为1,2的概率为_______;(2)任意取出三球,没有号码为1的概率为_______;(3) 任意取出五球,号码1,2,3中至少出现一个的概率为_______;5. 从一批由此及彼5件正品,5件次品组成的产品中,任意取出三件产品,则其中恰有一件次品的概率为_______;二.某码头只能容纳一只船,现预知将独立来到两只船,且在24小时内各时刻来到的可能性都相同,如果他们需要的停靠时间分别为3小时与4小时,试求有一只船要在江中等待的概率? 三.已知A ,B 两个事件满足条件P(AB)=P(A B ),且P(A)=p; 求P(B).第二次 条件概率 乘法公式 全概率公式 贝叶斯公式一.填空1. 条件概率的计算公式P(B|A)= _______;乘法公式P(AB)= _____; 2.12,,,n A A A 为样本空间S 的一个事件组,若12,,,n A A A 两两互斥,且12n A A A =S,则对S 中的事件B 有全概率公式_______;3. 设B 为样本空间S 的一个事件, 123,,A A A 为样本空间S 的一个事件组,且满足:(1)123,,A A A 互不相容,且P(i A )>0 (I=1,2,3) ; (2) S=123A A A 则贝叶斯公式为___; 4 两事件A,B 相互独立的充要条件为_______;5 已知在10只晶体管中,有2只次品,在其中取两次,每次随机地取一只,做不放回抽样,则(1)两只都是正品的概率为_______;(1)一只正品,一只为次品的概率为_______;(3)两只都为次品的概率为_______;(4)第二次取出的是次品的概率_______;二.某工厂有甲,乙,丙3个车间,生产同一种产品,每个车间的产量分别占全厂的25%,35%,40%,3个车间中产品的废品率分别为5%,4%,2%,求全厂产品的废品率。
随机事件的概率与古典概型
随机事件的概率与古典概型1.随机事件和确定事件(1)在条件S下,一定会发生的事件,叫作相对于条件S的必然事件.(2)在条件S下,一定不会发生的事件,叫作相对于条件S的不可能事件.(3)必然事件与不可能事件统称为相对于条件S的确定事件.(4)在条件S下可能发生也可能不发生的事件,叫作相对于条件S的随机事件.(5)确定事件和随机事件统称为事件,一般用大写字母A,B,C…表示.2.频率与概率在相同的条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个常数附近摆动,即随机事件A发生的频率具有稳定性.这时,我们把这个常数叫作随机事件A的概率,记作P(A).3.事件的关系与运算互斥事件:在一个随机试验中,我们把一次试验下不能同时发生的两个事件A与B称作互斥事件.事件A+B:事件A+B发生是指事件A和事件B至少有一个发生.对立事件:不会同时发生,并且一定有一个发生的事件是相互对立事件.4.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)互斥事件概率的加法公式①如果事件A与事件B互斥,则P(A+B)=P(A)+P(B).②若事件A与事件A互为对立事件,则P(A)=1-P(A).5.基本事件的特点(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.6.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(1)试验的所有可能结果只有有限个,每次试验只出现其中一个结果; (2)每一个试验结果出现的可能性相同.7.如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n ;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )=mn .8.古典概型的概率公式 P (A )=A 包含的基本事件的个数基本事件的总数.概念方法微思考1.随机事件A 发生的频率与概率有何区别与联系?提示 随机事件A 发生的频率是随机的,而概率是客观存在的确定的常数,但在大量随机试验中事件A 发生的频率稳定在事件A 发生的概率附近. 2.随机事件A ,B 互斥与对立有何区别与联系?提示 当随机事件A ,B 互斥时,不一定对立,当随机事件A ,B 对立时,一定互斥. 3.任何一个随机事件与基本事件有何关系?提示 任何一个随机事件都等于构成它的每一个基本事件的和. 4.如何判断一个试验是否为古典概型?提示 一个试验是否为古典概型,关键在于这个试验是否具有古典概型的两个特征:有限性和等可能性.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)事件发生的频率与概率是相同的.( × ) (2)在大量重复试验中,概率是频率的稳定值.( √ ) (3)两个事件的和事件是指两个事件都得发生.( × )(4)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能的.( × )(5)从市场上出售的标准为500±5 g 的袋装食盐中任取一袋测其重量,属于古典概型.( × ) 题组二 教材改编2.一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是( ) A.至多有一次中靶 B.两次都中靶 C.只有一次中靶 D.两次都不中靶答案 D解析 “至少有一次中靶”的对立事件是“两次都不中靶”.3.袋中装有6个白球,5个黄球,4个红球,从中任取一球,则取到白球的概率为( ) A.25 B.415 C.35 D.23 答案 A解析 从袋中任取一球,有15种取法,其中取到白球的取法有6种,则所求概率为P =615=25. 4.同时掷两个骰子,向上点数不相同的概率为________. 答案 56解析 掷两个骰子一次,向上的点数共6×6=36(种)可能的结果,其中点数相同的结果共有6种,所以点数不相同的概率P =1-636=56.题组三 易错自纠5.将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是( ) A.必然事件 B.随机事件 C.不可能事件 D.无法确定答案 B解析 抛掷10次硬币,正面向上的次数可能为0~10,都有可能发生,正面向上5次是随机事件.6.安排甲、乙、丙、丁四人参加周一至周六的公益活动,每天只需一人参加,其中甲参加三天活动,乙、丙、丁每人参加一天,那么甲连续三天参加活动的概率为( ) A.115 B.15 C.14 D.12 答案 B解析 由题意可得,甲连续三天参加活动的所有情况为:第1~3天,第2~4天,第3~5天,第4~6天,共四种情况,∴所求概率P =4·A 33C 36·A 33=15.故选B.7.(2019·南昌模拟)从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1,则事件“抽到的产品不是一等品”的概率为______. 答案 0.35解析 ∵事件A ={抽到一等品},且P (A )=0.65, ∴事件“抽到的产品不是一等品”的概率为 P =1-P (A )=1-0.65=0.35.题型一 随机事件命题点1 随机事件的关系例1 (1)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是( )A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡答案 A解析 “至多有一张移动卡”包含“一张移动卡,一张联通卡”,“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件.(2)口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出两个球,事件A =“取出的两个球同色”,B =“取出的两个球中至少有一个黄球”,C =“取出的两个球中至少有一个白球”,D =“取出的两个球不同色”,E =“取出的两个球中至多有一个白球”.下列判断中正确的序号为____________.①A 与D 为对立事件;②B 与C 是互斥事件;③C 与E 是对立事件;④P (C +E )=1;⑤P (B )=P (C ). 答案 ①④解析 当取出的两个球为一黄一白时,B 与C 都发生,②不正确;当取出的两个球中恰有一个白球时,事件C 与E 都发生,③不正确;显然A 与D 是对立事件,①正确;C +E 为必然事件,P (C +E )=1,④正确;P (B )=45,P (C )=35,⑤不正确.命题点2 随机事件的频率与概率例2 (2017·全国Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.解 (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为2+16+3690=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y =6×450-4×450=900;若最高气温位于区间[20,25),则Y =6×300+2(450-300)-4×450=300; 若最高气温低于20,则Y =6×200+2(450-200)-4×450=-100, 所以,Y 的所有可能值为900,300,-100.Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+490=0.8.因此Y 大于零的概率的估计值为0.8.命题点3 互斥事件与对立事件例3 一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率; (2)取出1球是红球或黑球或白球的概率. 解 方法一 (利用互斥事件求概率) 记事件A 1={任取1球为红球}, A 2={任取1球为黑球}, A 3={任取1球为白球}, A 4={任取1球为绿球},则P (A 1)=512,P (A 2)=412=13,P (A 3)=212=16,P (A 4)=112.根据题意知,事件A 1,A 2,A 3,A 4彼此互斥, 由互斥事件的概率公式,得 (1)取出1球是红球或黑球的概率为 P (A 1+A 2)=P (A 1)+P (A 2)=512+13=34.(2)取出1球是红球或黑球或白球的概率为 P (A 1+A 2+A 3)=P (A 1)+P (A 2)+P (A 3) =512+13+16=1112. 方法二 (利用对立事件求概率)(1)由方法一知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A 1+A 2的对立事件为A 3+A 4,所以取出1球为红球或黑球的概率为P (A 1+A 2)=1-P (A 3+A 4)=1-P (A 3)-P (A 4)=1-16-112=34.(2)因为A 1+A 2+A 3的对立事件为A 4, 所以P (A 1+A 2+A 3)=1-P (A 4)=1-112=1112.思维升华 (1)准确把握互斥事件与对立事件的概念 ①互斥事件是不可能同时发生的事件,但可以同时不发生.②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生. (2)判断互斥、对立事件的方法判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件. (3)概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值. (4)随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率. (5)求复杂事件的概率的两种方法求概率的关键是分清所求事件是由哪些事件组成的,求解时通常有两种方法 ①将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概率.②若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”.它常用来求“至少”或“至多”型事件的概率.跟踪训练1 (1)某保险公司利用简单随机抽样的方法对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:①若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;②在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解 ①设A 表示事件“赔付金额为3 000元”,B 表示事件“赔付金额为4 000元”,以频率估计概率得P (A )=1501 000=0.15,P (B )=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P (A )+P (B )=0.15+0.12=0.27.②设C 表示事件“投保车辆中新司机获赔4 000元”,由已知,可得样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率得P (C )=0.24.(2)(2016·北京改编)A ,B ,C 三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):①试估计C 班的学生人数;②从A 班和C 班抽出的学生中,各随机选取1人,A 班选出的人记为甲,C 班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率. 解 ①由题意及分层抽样可知,C 班学生人数约为 100×85+7+8=100×820=40.②设事件A i 为“甲是现有样本中A 班的第i 个人”,i =1,2,…,5, 事件C j 为“乙是现有样本中C 班的第j 个人”,j =1,2,…,8. 由题意可知P (A i )=15,i =1,2,…,5;P (C j )=18,j =1,2, (8)P (A i C j )=P (A i )P (C j )=15×18=140,i =1,2,...,5,j =1,2, (8)设事件E 为“该周甲的锻炼时间比乙的锻炼时间长”, 由题意知,E =A 1C 1+A 1C 2+A 2C 1+A 2C 2+A 2C 3+A 3C 1+A 3C 2+A 3C 3+A 4C 1+A 4C 2+A 4C 3+A 5C 1+A 5C 2+A 5C 3+A 5C 4.因此P (E )=P (A 1C 1)+P (A 1C 2)+P (A 2C 1)+P (A 2C 2)+P (A 2C 3)+P (A 3C 1)+P (A 3C 2)+P (A 3C 3)+P (A 4C 1)+P (A 4C 2)+P (A 4C 3)+P (A 5C 1)+P (A 5C 2)+P (A 5C 3)+P (A 5C 4)=15×140=38.题型二 古典概型例4 (1)(2017·全国Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A.110 B.15 C.310 D.25 答案 D解析 从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图:基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为10,∴所求概率P =1025=25. (2)袋中有形状、大小都相同的4个球,其中1个白球,1个红球,2个黄球,从中一次随机摸出2个球,则这2个球颜色不同的概率为________. 答案 56解析 基本事件共有C 24=6(种), 设取出2个球颜色不同为事件A .A 包含的基本事件有C 12C 12+C 11C 11=5(种).故P (A )=56.(3)我国古代“五行”学说认为:“物质分金、木、土、水、火五种属性,金克木、木克土、土克水、水克火、火克金.”将这五种不同属性的物质任意排成一列,设事件A 表示“排列中属性相克的两种物质不相邻”,则事件A 发生的概率为________. 答案112解析 五种不同属性的物质任意排成一列的所有基本事件数为A 55=120,满足事件A =“排列中属性相克的两种物质不相邻”的基本事件可以按如下方法进行考虑:从左至右,当第一个位置的属性确定后,例如:金,第二个位置(除去金本身)只能排土或水属性,当第二个位置的属性确定后,其他三个位置的属性也确定,故共有C 15C 12=10(种)可能,所以事件A 出现的概率为10120=112.引申探究1.本例(2)中,若将4个球改为颜色相同,标号分别为1,2,3,4的4个小球,从中一次取2个球,求标号和为奇数的概率.解 基本事件数仍为6.设标号和为奇数为事件A ,则A 包含的基本事件为(1,2),(1,4),(2,3),(3,4),共4种, 所以P (A )=46=23.2.本例(2)中,若将条件改为有放回地取球,取两次,求两次取球颜色相同的概率.解 基本事件数为C 14C 14=16, 颜色相同的事件数为C 12C 11+C 12C 12=6,故所求概率P =616=38.思维升华 求古典概型的概率的关键是求试验的基本事件的总数和事件A 包含的基本事件的个数,这就需要正确列出基本事件,基本事件的表示方法有列举法、列表法和树状图法,具体应用时可根据需要灵活选择.跟踪训练2 (1)甲在微信群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完.若三人均领到整数元,且每人至少领到1元,则乙获得“手气最佳”(即乙领取的钱数不少于其他任何人)的概率是( ) A.34 B.13 C.310 D.25答案 D解析 用(x ,y ,z )表示乙、丙、丁抢到的红包分别为x 元、y 元、z 元.乙、丙、丁三人抢完6元钱的所有不同的可能结果有10种,分别为(1,1,4),(1,4,1),(4,1,1),(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),(2,2,2).乙获得“手气最佳”的所有不同的可能结果有4种,分别为(4,1,1),(3,1,2),(3,2,1),(2,2,2). 根据古典概型的概率计算公式,得乙获得“手气最佳”的概率P =410=25.(2)在1,2,3,4,5,6,7,8这组数据中,随机取出五个不同的数,则数字4是取出的五个不同数的中位数的概率为( ) A.956 B.928 C.914 D.59 答案 B解析 设事件A 为“数字4是取出的五个不同数的中位数”.“从八个数字中取出五个数字”包含的基本事件的总数为n =C 58=56.对事件A ,先考虑数字4在五个数的中间位置,再考虑分别从数字1,2,3和5,6,7,8中各取两个数字,则事件A 包含的基本事件总数为m =C 23C 24=3×6=18.由古典概型的概率计算公式,得P (A )=m n =1856=928.题型三 古典概型与统计的综合应用例5 空气质量指数(Air Quality Index ,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;>300为严重污染.一环保人士记录了某地2018年某月10天的AQI 的茎叶图如图所示.(1)利用该样本估计该地本月空气质量优良(AQI ≤100)的天数;(按这个月总共有30天计算) (2)若从样本中的空气质量不佳(AQI>100)的这些天中,随机地抽取两天深入分析各种污染指标,求该两天的空气质量等级恰好不同的概率.解 (1)从茎叶图中发现该样本中空气质量优的天数为1,空气质量良的天数为3,故该样本中空气质量优良的频率为410=25,估计该月空气质量优良的概率为25,从而估计该月空气质量优良的天数为30×25=12.(2)该样本中为轻度污染的共4天,分别记为a 1,a 2,a 3,a 4; 为中度污染的共1天,记为b ;为重度污染的共1天,记为c .从中随机抽取两天的所有可能结果有:(a 1,a 2),(a 1,a 3),(a 1,a 4),(a 1,b ),(a 1,c ),(a 2,a 3),(a 2,a 4),(a 2,b ),(a 2,c ),(a 3,a 4),(a 3,b ),(a 3,c ),(a 4,b ),(a 4,c ),(b ,c ),共15个.其中空气质量等级恰好不同的结果有(a 1,b ),(a 1,c ),(a 2,b ),(a 2,c ),(a 3,b ),(a 3,c ),(a 4,b ),(a 4,c ),(b ,c ),共9个.所以该两天的空气质量等级恰好不同的概率为915=35.思维升华 有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点,概率与统计的结合题,无论是直接描述还是利用概率分布表、频率分布直方图、茎叶图等给出信息,准确从题中提炼信息是解题的关键.跟踪训练3 从某学校高三年级共800名男生中随机抽取50名测量身高,被测学生身高全部介于155 cm 和195 cm 之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195),如图是按上述分组方法得到的频率分布直方图的一部分,已知第六组比第七组多1人,第一组和第八组人数相同.(1)求第六组、第七组的频率并补充完整频率分布直方图;(2)若从身高属于第六组和第八组的所有男生中随机抽取两名,记他们的身高分别为x,y,求|x-y|≤5的概率.解(1)由频率分布直方图知,前五组的频率为(0.008+0.016+0.04+0.04+0.06)×5=0.82,所以后三组的频率为1-0.82=0.18,人数为0.18×50=9,由频率分布直方图得第八组的频率为0.008×5=0.04,人数为0.04×50=2,设第六组人数为m,则第七组人数为m-1,又m+m-1+2=9,所以m=4,即第六组人数为4,第七组人数为3,频率分别为0.08,0.06,频率除以组距分别等于0.016,0.012,则完整的频率分布直方图如图所示:(2)由(1)知身高在[180,185)内的男生有四名,设为a,b,c,d,身高在[190,195)的男生有两名,设为A,B.若x,y∈[180,185),有ab,ac,ad,bc,bd,cd共6种情况;若x,y∈[190,195),只有AB 1种情况;若x,y分别在[180,185),[190,195)内,有aA,bA,cA,dA,aB,bB,cB,dB共8种情况,所以基本事件的总数为6+8+1=15,事件|x-y|≤5包含的基本事件的个数为6+1=7,故所求概率为715.1.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( ) A.至少有一个黑球与都是黑球 B.至少有一个黑球与都是红球 C.至少有一个黑球与至少有一个红球 D.恰有一个黑球与恰有两个黑球 答案 D解析 对于A ,事件“至少有一个黑球”与事件“都是黑球”可以同时发生,∴A 不正确;对于B ,事件“至少有一个黑球”与事件“都是红球”不能同时发生,但一定会有一个发生,∴这两个事件是对立事件,∴B 不正确;对于C ,事件“至少有一个黑球”与事件“至少有一个红球”可以同时发生,如:一个红球,一个黑球,∴C 不正确;对于D ,事件“恰有一个黑球”与事件“恰有两个黑球”不能同时发生,但从口袋中任取两个球时还有可能是两个都是红球,∴两个事件是互斥事件但不是对立事件,∴D 正确.2.(2016·天津)甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为( )A.56B.25C.16D.13 答案 A解析 事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为12+13=56. 3.对一批产品的长度(单位:mm)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为( )A.0.09B.0.20C.0.25D.0.45 答案 D解析 设[25,30)上的频率为x ,由所有矩形面积之和为1,即x +(0.02+0.04+0.03+0.06)×5=1,得[25,30)上的频率为0.25.所以产品为二等品的概率为0.04×5+0.25=0.45.4.根据某医疗研究所的调查,某地区居民血型的分布为:O 型50%,A 型15%,B 型30%,AB 型5%.现有一血液为A 型病人需要输血,若在该地区任选一人,那么能为病人输血的概率为( )A.15%B.20%C.45%D.65% 答案 D解析 因为某地区居民血型的分布为:O 型50%,A 型15%,B 型30%,AB 型5%,现在能为A 型病人输血的有O 型和A 型,故为病人输血的概率为50%+15%=65%,故选D. 5.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.从以上五张卡片中任取两张,则这两张卡片颜色不同且标号之和小于4的概率为( ) A.13 B.110 C.310 D.23 答案 C解析 从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2,其中两张卡片的颜色不同且标号之和小于4的有3种情况:红1蓝1,红1蓝2,红2蓝1,故所求的概率为P =310,故选C.6.已知a ∈{-2,0,1,2,3},b ∈{3,5},则函数f (x )=(a 2-2)e x +b 为减函数的概率是( ) A.310 B.35 C.25 D.15 答案 C解析 函数f (x )=(a 2-2)e x +b 为减函数,则a 2-2<0,又a ∈{-2,0,1,2,3},故只有a =0,a =1满足题意,又b ∈{3,5},所以函数f (x )=(a 2-2)e x +b 为减函数的概率P =2×25×2=25,故选C.7.从集合{1,2,3,4,5,6,7,8,9}中任取两个不同的数,则其中一个数恰是另一个数的3倍的概率为________. 答案112解析 从集合{1,2,3,4,5,6,7,8,9}中任取两个不同的数,有n =9×82=36(种)情形,其中一个数是另一个数的3倍的事件有{1,3},{2,6},{3,9},共3种情形,所以由古典概型的概率计算公式可得其概率是P =336=112.8.无重复数字的五位数a 1a 2a 3a 4a 5,当a 1<a 2,a 2>a 3,a 3<a 4,a 4>a 5时称为波形数,则由1,2,3,4,5任意组成的一个没有重复数字的五位数是波形数的概率是________. 答案215解析 ∵a 2>a 1,a 2>a 3,a 4>a 3,a 4>a 5, ∴a 2只能是3,4,5中的一个.①若a 2=3,则a 4=5,a 5=4,a 1与a 3是1或2,这时共有A 22=2(个)符合条件的五位数; ②若a 2=4,则a 4=5,a 1,a 3,a 5可以是1,2,3,共有A 33=6(个)符合条件的五位数; ③若a 2=5,则a 4=3或4,此时分别与①②中的个数相同.∴满足条件的五位数有2(A 22+A 33)=16(个).又由1,2,3,4,5任意组成的一个没有重复数字的五位数有A 55=120(个),故所求概率为16120=215. 9.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,则所取的2个球中恰有1个白球、1个红球的概率为________. 答案1021解析 从袋中任取2个球共有C 215=105(种)取法,其中恰有1个白球、1个红球共有C 110C 15=50(种)取法,所以所取的球恰有1个白球、1个红球的概率为50105=1021.10.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________. 答案 12解析 从10件产品中取4件,共有C 410种取法,恰好取到1件次品的取法有C 13C 37种,由古典概型概率计算公式得P =C 13C 37C 410=3×35210=12.11.海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A ,B ,C 各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解 (1)A ,B ,C 三个地区商品的总数量为50+150+100=300,抽样比为6300=150,所以样本中包含三个地区的个体数量分别是 50×150=1,150×150=3,100×150=2.所以A ,B ,C 三个地区的商品被选取的件数分别是1,3,2. (2)方法一 设6件来自A ,B ,C 三个地区的样品分别为: A ;B 1,B 2,B 3;C 1,C 2.则从6件样品中抽取的这2件商品构成的所有基本事件为:{A ,B 1},{A ,B 2},{A ,B 3},{A ,C 1},{A ,C 2},{B 1,B 2},{B 1,B 3},{B 1,C 1},{B 1,C 2},{B 2,B 3},{B 2,C 1},{B 2,C 2},{B 3,C 1},{B 3,C 2},{C 1,C 2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D :“抽取的这2件商品来自相同地区”,则事件D 包含的基本事件有:{B 1,B 2},{B 1,B 3},{B 2,B 3},{C 1,C 2},共4个. 所以P (D )=415,即这2件商品来自相同地区的概率为415.方法二 这2件商品来自相同地区的概率为C 23+C 22C 26=3+115=415. 12.一个盒子里装有三张卡片,分别标记为数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c . (1)求“抽取的卡片上的数字满足a +b =c ”的概率; (2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.解 由题意知,(a ,b ,c )所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种. (1)设“抽取的卡片上的数字满足a +b =c ”为事件A , 则事件A 包括(1,1,2),(1,2,3),(2,1,3),共3种. 所以P (A )=327=19.因此,“抽取的卡片上的数字满足a +b =c ”的概率为19.(2)设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,则事件B 包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P (B )=1-P (B )=1-327=89.因此,“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89.13.某商场对某一商品搞活动,已知该商品每一个的进价为3元,售价为8元,每天销售的第20个及之后的商品按半价出售,该商场统计了近10天这种商品的销售量,如图所示.设x 为这种商品每天的销售量,y 为该商场每天销售这种商品的利润,从日利润不少于96元的几天里任选2天,则选出的这2天日利润都是97元的概率为( )A.19B.110C.15D.18答案 B解析 日销售量不少于20个时,日利润不少于96元,其中日销售量为20个时,日利润为96元;日销售量为21个时,日利润为97元.从条形统计图可以看出,日销售量为20个的有3天,日销售量为21个的有2天,日销售量为20个的3天记为a ,b ,c ,日销售量为21个的2天记为A ,B ,从这5天中任选2天,可能的情况有10种:(a ,b ),(a ,c ),(a ,A ),(a ,B ),(b ,c ),(b ,A ),(b ,B ),(c ,A ),(c ,B ),(A ,B ),其中选出的2天日销售量都为21个的情况只有1种,故所求概率P =110,故选B.14.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图所示.现随机选取一个成员,他属于至少2个小组的概率是________,他属于不超过2个小组的概率是________. 答案 35 1315。
数学二轮复习专题限时集训2统计与统计案例随机事件的概率古典概型几何概型含解析文
专题限时集训(二) 统计与统计案例随机事件的概率、古典概型、几何概型1.(2017·全国卷Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数B[评估这种农作物亩产量稳定程度的指标是标准差或方差,故选B.]2.(2019·全国卷Ⅲ)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0。
5 B.0。
6 C.0.7 D.0。
8C[由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C.]3.(2018·全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3 B.0。
4 C.0.6 D.0.7B[设“只用现金支付”为事件A,“既用现金支付也用非现金支付”为事件B,“不用现金支付”为事件C,则P(C)=1-P(A)-P(B)=1-0.45-0。
15=0。
4。
故选B.]4.(2016·全国卷Ⅱ)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为() A.错误!B.错误!C.错误!D.错误!B[如图,若该行人在时间段AB的某一时刻来到该路口,则该行人至少等待15秒才出现绿灯.AB长度为40-15=25,由几何概型的概率公式知,至少需要等待15秒才出现绿灯的概率为错误!=错误!,故选B.]5.(2020·全国卷Ⅲ)设一组样本数据x1,x2,…,x n的方差为0。
2024届新高考一轮总复习人教版 第十章 第4节 随机事件的概率与古典概型 课件(37张)
图形表示
如果事件 B 包含事件 A,事件 A 也包含事件 B,即 B⊇A 且 A⊇B,则称事件 特殊情形
A 与事件 B 相等,记作 A=B
(2)并事件与交事件
并事件(和事件)
交事件(积事件)
一般地,事件 A 与事件 B_至__少__有__一___ 一般地,事件 A 与事件 B_同__时__发__生___,
1.事件的相关概念
备考第 1 步——梳理教材基础,落实必备知识
发生
不发生
ቤተ መጻሕፍቲ ባይዱ
2.事件的关系和运算
(1)包含关系与相等关系
定义
一般地,若事件 A 发生,则事件 B_一__定__发__生___,我们就称事件 B 包含事件 A(或事件 A 包含于事件 B)
含义
A 发生导致 B 发生
符号表示
B__⊇__A(或 A__⊆__B)
【小题热身】 1.思考辨析(在括号内打“√”或“×”) (1)事件发生的频率与概率是相同的.( ) (2)在大量重复试验中,概率是频率的稳定值.( ) (3)两个事件的和事件是指两个事件都得发生.( ) (4)若 A∪B 是必然事件,则 A 与 B 是对立事件.( ) 答案:(1)× (2)√ (3)× (4)×
(2)古典概型的概率公式 一般地,设试验 E 是古典概型,样本空间 Ω 包含 n 个样本点,事件 A 包含其中的 k 个样本点,则定义事件 A 的概率 P(A)=____n_k____=nn((ΩA)). 其中,n(A)和 n(Ω)分别表示事件 A 和样本空间 Ω 包含的样本点个数.
[必记结论] 1.从集合的角度理解互斥事件和对立事件. (1)几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交集为空集. (2)事件 A 的对立事件-A 所含的结果组成的集合,是全集中由事件 A 所含的结果组成 的集合的补集. 2.概率加法公式的推广 当一个事件包含多个结果且各个结果彼此互斥时,要用到概率加法公式的推广,即 P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).
2014版高考数学一轮总复习 第66讲 随机事件的概率、古典概型与几何概型同步测控 理
第66讲随机事件的概率、古典概型与几何概型1.A.0. 92 B.0.94C.0.95 D.0.962.两位大学毕业生一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是170”,根据这位负责人的话可以推断出参加面试的人数为( )A.21 B.35C.42 D.7063.甲、乙两人随机入住两间空房,每间房至多可入住2人,则甲、乙两人各住一间房的概率是( )A.13B.14C.12D.14.5张卡片上分别标有数字1,2,3,4,5,从这5张卡片中随机抽取2张,则取出的2张卡片上数字之和为奇数的概率为________.5.在半径为3的球内随机取一个点,则这个点到球面的距离大于1的概率为________.6.(2012·上海卷)三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两个选择的项目完全相同的概率为____________(结果用最简分数表示).7.设函数f(x)=log2[x2-2(a-1)x+b2]的定义域为D.(1)若a是从1、2、3、4四个数中任取的一个数,b是从1、2、3三个数中任取一个数,求使D=R的概率;(2)若a是从区间[0,4]任取的一个数,b是从区间[0,3]任取的一个数,求使D=R的概率.8.(2012·辽宁卷)在长为12 cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积小于32 cm2的概率为( )A.16B.13C.23D.459.如图,在一个边长为1的正方形AOBC内,曲线y=x2和曲线y2=x围成一个叶形图(阴影部分),向正方形AOBC内随机投一点(该点落在正方形AOBC内任何一点是等可能的),则所投的点落在叶形图内部的概率是________.10.先后2次抛掷一枚骰子,将得到的点数分别记为a,b.(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成不同的等腰三角形的概率.第66讲1.C 2.A 3.C 4.35 5.827 6.237.解析:(1)定义域D ={x |x 2-2(a -1)x +b 2>0}. 将取的数组记作(a ,b ),共有4×3=12种可能.要使D =R ,则Δ=4(a -1)2-4b 2<0, 即|a -1|<|b |.满足条件的有(1,1),(1,2),(1,3),(2,2),(2,3),(3,3),共6个基本事件,所以P (D =R )=612=12.(2)全部试验结果Ω={(a ,b )|a ∈[0,4],b ∈[0,3]}, 事件A ={D =R }对应区域为A ={(a ,b )||a -1|<|b |}, 则P (A )=S 阴影S Ω=3×4-12×1×1-12×3×33×4=712,故使D =R 的概率为712.8.C 解析:设线段AC 的长为 x cm ,则线段CB 的长为(12-x )cm ,那么矩形的面积为x (12-x )cm 2,由x (12-x )<32,解得x <4或x >8.又0<x <12,所以该矩形面积小于32 cm 2的概率为23,故选C.9.13 解析:阴影部分的面积S 1=⎠⎛01(x -x 2)d x =(23x 32-13x 3)|01=13,而正方形AOBC 的面积为1,故所求的概率为13.10.解析:(1)先后2次抛掷一枚骰子,将得到的点数分别记为a ,b ,事件总数为6×6=36.因为直线ax +by +5=0与圆x 2+y 2=1相切的充要条件是5a 2+b2=1,即a 2+b 2=25,由于a ,b ∈{1,2,3,4,5,6},所以满足条件的情况只有a =3,b =4或a =4,b =3两种情况.所以直线ax +by +5=0与圆x 2+y 2=1相切的概率是236=118.(2)先后2次抛掷一枚骰子,将得到的点数分别记为a ,b ,事件总数为6×6=36. 因为三角形的一边长为5,所以当a =1时,b =5,有(1,5,5)1种; 当a =2时,b =5,有(2,5,5)1种;当a =3时,b =3,5,有(3,3,5),(3,5,5)2种; 当a =4时,b =4,5,有(4,4,5),(4,5,5)2种;当a =5时,b =1,2,3,4,5,6,有(5,1,5),(5,2,5),(5,3,5),(5,4,5),(5,5,5),(5,6,5)6种;当a =6时,b =5,6,有(6,5,5),(6,6,5)2种. 故满足条件的不同情况共有14种.从而三条线段能围成不同的等腰三角形的概率为1436=718.。
新高考一轮复习人教版 随机事件、古典概型 作业
专题十一 概率与统计11.1 随机事件、古典概型基础篇 固本夯基考点一 随机事件的概率1.(2022届江苏百校联考,6)一次劳动实践活动中,某同学不慎将两件次品混入三件正品中,它们形状、大小完全相同,该同学采用技术手段进行检测,恰好三次检测出两件次品的概率为( ) A.15B.14C.25D.310答案 D2.(2019课标Ⅰ理,6,5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A.516 B.1132 C.2132 D.1116答案 A3.(2018课标Ⅱ理,8,5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 ( ) A.112 B.114 C.115 D.118答案 C4.(2021广东韶关一模,5)假设某射手每次射击命中率相同,且每次射击之间相互没有影响.若在两次射击中至多命中一次的概率是1625,则该射手每次射击的命中率为( ) A.925 B.25 C.35 D.34答案 C5.(2020广州番禺检测,10)中国古代“五行”学说认为:物质分“金、木、水、火、土”五种属性,并认为:“金生水、水生木、木生火、火生土、土生金”.从五种不同属性的物质中随机抽取2种,则抽到的两种物质不相生的概率为( ) A.15 B.14 C.13 D.12答案 D6.(多选)(2022届河北张家口宣化一中考试,11)甲、乙两人进行围棋比赛,共比赛2n(n ∈N *)局,且每局甲获胜的概率和乙获胜的概率均为12,如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为P(n),则( ) A.P(2)=18B.P(3)=1132C.P(n)=12(1−C 2nn 22n )D.P(n)的最大值为14答案 BC7.(2022届广东茂名五校联考,16)田忌赛马的故事出自司马迁的《史记》.齐王,田忌分别有上、中、下等马各一匹.赛马规则:一场比赛需要比赛三局,每匹马都要参赛,且只能参赛一局.最后以获胜局数多者为胜.记齐王、田忌的马匹分别为A 1,A 2,A 3和B 1,B 2,B 3.每局比赛之间都是相互独立的,而且不会出现平局.用P A i B j (i,j ∈{1,2,3})表示马匹A i 与B j 比赛时齐王获胜的概率,若P A 1B 1=0.8,P A 1B 2=0.9,P A 1B 3=0.95,P A 2B 1=0.1,P A 2B 2=0.6,P A 2B 3=0.9,P A 3B 1=0.09,P A 3B 2=0.1,P A 3B 3=0.6,则一场比赛共有 种不同的比赛方案;在所有的方案中,有一种方案田忌获胜的概率最大,此概率为 . 答案 6;0.8198.(2022届河北唐山十一中9月月考,17)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12. (1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率. 解析 (1)甲连胜四场的概率为116.(2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛. 比赛四场结束,共有三种情况: 甲连胜四场的概率为116;乙连胜四场的概率为116;丙上场后连胜三场的概率为18.所以需要进行第五场比赛的概率为1-116-116-18=34. (3)丙最终获胜,有两种情况:比赛四场结束且丙最终获胜的概率为18;比赛五场结束且丙最终获胜,则从第二场开始的四场比赛按照丙的胜、负、轮空结果有三种情况:胜胜负胜,胜负轮空胜,负轮空胜胜,概率分别为116,18,18. 因此丙最终获胜的概率为18+116+18+18=716. 考点二 古典概型1.(2022届广东省级联测,6)十进制的算筹计数法是中国数学史上一个伟大的创造,算筹实际上是一根根同长短的小木棍.下图是利用算筹表示数字1~9的一种方法.例如:3可表示为“”,26可表示为“”,现用6根算筹表示不含0的无重复数字的三位数,算筹不能剩余,则这个三位数能被3整除的概率为( )A.14B.16C.512D.724答案 A2.(2021全国甲理,10,5分)将4个1和2个0随机排成一行,则2个0不相邻的概率为( ) A.13B.25C.23D.45答案 C3.(2020课标Ⅰ文,4,5分)设O 为正方形ABCD 的中心,在O,A,B,C,D 中任取3点,则取到的3点共线的概率为( )A.15B.25C.12D.45答案 A4.(2021广东汕头一模,8)在新的高考改革方案中规定:每位考生的高考成绩是按照3(语文、数学、英语)+2(物理、历史)选1+4(化学、生物、地理、政治)选2的模式设置的,则在选考的科目中甲、乙两位同学恰有两科相同的概率为( ) A.14B.13C.512D.12答案 C5.(2017天津文,3,5分)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( ) A.45B.35C.25D.15答案 C6.(2022届河北邢台入学考试,14)小华、小明、小李、小章去A,B,C 三个工厂参加社会实践,要求每个工厂都有人去,且这四人都在这三个工厂实践,则小华和小李都没去B 工厂的概率是 . 答案718 7.(2020江苏,4,5分)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是 . 答案198.(2018上海,9,5分)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是 (结果用最简分数表示). 答案15综合篇 知能转换考法一 古典概型概率的求法1.(2021湖南岳阳一模,5)“华东五市游”作为中国一条精品旅游路线,一直受到广大旅游爱好者的欢迎.现有4名高三学生准备2021年高考后到“华东五市”中的上海市、南京市、苏州市、杭州市四个地方旅游,假设每名同学均从这四个地方中任意选取一个去旅游,则恰有一个地方未被选中的概率为( ) A.716 B.916 C.2764 D.81256答案 B2. (2021湖南长郡十五校第二次联考,4)十二生肖作为中国民俗文化的代表,是中国传统文化的精髓,很多人把生肖作为春节的吉祥物,以此来表达对新年的祝福.某课外兴趣小组制作了一个正十二面体模型(如图),并在十二个面上分别雕刻了十二生肖的图案,作为春节的吉祥物.2021年春节前,兴趣小组的2个成员将模型随机抛出,希望能抛出牛的图案朝上(即牛的图案在最上面),2人各抛一次,则恰好出现一次牛的图案朝上的概率为( )A.112 B.143144 C.1172 D.23144答案 C3.(2019课标Ⅱ文,4,5分)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23B.35C.25D.15答案 B4.(2019课标Ⅲ文,3,5分)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A.16B.14C.13D.12答案 D5.(2022届河北邢台9月联考,16)从3名男生、2名女生中选出2人参加数学竞赛,则选出的这2人性别不一样的概率为 . 答案35 6.(2022届江苏第一次月考,14)一只口袋内装有4个白球,5个黑球,若将球不放回地随机一个一个摸出来,则第4次摸出的是白球的概率为 . 答案497.(2018江苏,6,5分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 . 答案3108.(2021辽宁百校联盟调研,14)某中学为了解学生学习物理的情况,抽取了100名物理成绩在60~90分(满分为100分)之间的学生进行调查,将这100名学生的物理成绩分成了六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90],绘成频率分布直方图,如图所示.从成绩在[70,80)的学生中任意抽取2人,则成绩在[75,80)的学生中恰好有一人的概率为 .答案2449考法二 求复杂的互斥事件的概率1.(2018课标Ⅲ文,5,5分)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( ) A.0.3 B.0.4 C.0.6 D.0.7 答案 B2.(2021沈阳期末,5)已知某药店只有A,B,C 三种不同品牌的N95口罩,甲、乙两人到这个药店各购买一种品牌的N95口罩,若甲,乙买A 品牌口罩的概率分别为0.2,0.3,买B 品牌口罩的概率分别为0.5,0.4,则甲,乙两人买相同品牌的N95口罩的概率为( ) A.0.7 B.0.65 C.0.35 D.0.26 答案 C3.(2020湖南衡阳一模)我国古代有着辉煌的数学研究成果,《周髀算经》《九章算术》《海岛算经》《孙子算经》《缉古算经》等10部专著是了解我国古代数学的重要文献,这10部专著中5部产生于魏晋南北朝时期,某中学拟从这10部专著中选择2部作为“数学文化”课外阅读教材,则所选2部专著中至少有一部是魏晋南北朝时期专著的概率为( ) A.79B.29C.49D.59答案 A4.(多选)(2022届江苏新高考第一次月考,10)从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,下列结论正确的是( ) A.2个球都是红球的概率为16B.2个球中恰有1个红球的概率为12C.至少有1个红球的概率为56D.2个球不都是红球的概率为13 答案 AB创新篇 守正出奇创新 生活中的概率问题1.(2021湖南衡阳联考,3)衡阳市在创建“全国卫生文明城市”活动中,大力加强垃圾分类投放宣传.某居民小区设有“厨余垃圾”“可回收垃圾”“其他垃圾”三种不同的垃圾桶,一天,居民小贤提着上述分好类的垃圾各一袋,随机每桶投一袋,则恰好有一袋垃圾投对的概率为( ) A.19B.16C.13D.12答案 D2.(2022届山东济宁第一中学开学考试,13)为庆祝建党100周年,讴歌中华民族伟大复兴的奋斗历程,增进全体党员干部职工对党史知识的了解,某单位组织开展党史知识竞赛活动,共有50道党史题,其中35道单选题、10道多选题和5道判断题,其中小王每道单选题答对的概率为0.8,多选题答对的概率为0.7,判断题答对的概率为0.9,则他随机抽取一道题,答对的概率为 . 答案 0.793.(2021重庆二模,14)已知某信号传送网络由信号源甲和三个基站乙、丙、丁共同构成,每次信号源甲等可能地向三个基站中的一个发送信号,乙基站接收到的每条信号等可能地传送给丙基站和丁基站中的一个,丙基站接收到的每条信号只会传送给丁基站,丁基站只接收信号.对于信号源甲发出的一条信号,丙基站能接收到的概率为 . 答案12 4.(2022届江苏百校联考,19)冬奥会的全称是冬季奥林匹克运动会,是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在中国北京和张家口举行,为了弘扬奥林匹克精神,增强学生的冬奥会知识,某市多所中小学学校开展了模拟冬奥会各项比赛的活动.为了了解学生在越野滑轮和旱地冰壶两项中的参与情况,在全市中小学学校中随机抽取了10所学校,10所学校的参与人数如下:(1)现从这10所学校中随机选取2所学校进行调查,求选出的2所学校参与旱地冰壶人数在30人以下的概率;(2)某校聘请了一名越野滑轮教练,对高山滑降、转弯、八字登坡滑行这3个动作进行技术指导.规定:这3个动作中至少有2个动作达到“优”,总考核记为“优”.在指导前,该校甲同学3个动作中每个动作达到“优”的概率为0.1.在指导后的考核中,甲同学总考核成绩为“优”.能否认为甲同学在指导后总考核达到“优”的概率发生了变化?请说明理由.解析 (1)记“选出的2所学校参与旱地冰壶人数在30人以下”为事件A,参与旱地冰壶人数在30人以下的学校共6所,所以P(A)=C 62C 102=13.因此选出的2所学校参与旱地冰壶人数在30人以下的概率为13.(2)答案不唯一.答案示例1:可以认为甲同学在指导后总考核为“优”的概率发生了变化.理由如下:指导前,甲同学总考核为“优”的概率为C 32·0.12·0.9+C 33·0.13=0.028.指导前,甲同学总考核为“优”的概率非常小,所以有理由认为指导后总考核达到“优”的概率发生了变化.答案示例2:无法确定.理由如下:指导前,甲同学总考核为“优”的概率为C 32·0.12·0.9+C 33·0.13=0.028.虽然概率非常小,但是也可能发生,所以无法确定指导后总考核达到“优”的概率发生了变化.。
2、概率的几种定义(古典概型).
性大小, 因此在大量重复试验中 常用频率作为概率的近似值.
37
2、频率的稳定性,例如抛硬币(验 证出现正面的概率占0.5,打字机
键盘设计,信息编码(使用频率较
高的字母用较短的码), 密码的破 译。
38
3、概率的统计定义 如果随着试验次数 事件A发生的频率在区间 的增大, 上某
个数字p附近摆动,则称事件A发
率问题,可以将365天看作盒子 , 个人看作
18
个球。
设A=“n个人生日各不相同”
故所求概率为: (生日各不相同的概率) 所以 个人中至少有两人生日 相同的概率为:
19
经计算可得下述结果:
从表中可看出,在仅有64人的班 级里“至少有两人生日相同”这 事件的概率与1相差无几。
20
例4 公平抽签问题:
概率,并称为几何概率。
28
例:约会问题 甲乙二人约定在[0,T] 时段内去某地会面,规定先到者等 候一段时间 再离去,试求 事件A=“甲乙将会面”的概率。
29
解:分别以x,y表示甲乙到达会面地
点的时间,则样本点是坐标平面上 一个点 ,而样本空间 是边长为 T的正方形,由于二人到达时刻的任 意性,样本点在S中均匀分布,属几 何概型。
12
解:(1) 这是一个古典概型问题, 由于每个球可落 入 个盒子中的 任一个盒子,故有
种不同放法(重复排列)
13
事件A中样本点数取决于n个球 放入n个盒子中的顺序,故A包 含的样本点数为:
所以
14
(2) 事件B与事件A的差异仅在于各 含一球的n个盒子没有指定,所以 B的样本点数为:
所以
15
(3) 下面我们来求 事件 C所含样
1.2
随机事件的概率
古典概型和特征和概率计算公式
古典概型和特征和概率计算公式古典概型是概率论中最简单的概率模型之一,也称为等可能概型。
在古典概型中,试验的所有可能的结果具有相同的概率,因此可以使用特征和概率计算公式来计算特定事件的概率。
一、古典概型的特征:在古典概型中,试验的样本空间S是有限的,即S={a1, a2, ..., an},其中n为有限个数。
每个样本点ai(a1 ≤ i ≤ n)的发生概率都是相等的,即P(ai) = 1/n。
二、概率计算公式:1.对于一个事件A,A是样本空间S的子集,事件A的概率可以用以下公式计算:P(A)=n(A)/n(S),其中n(A)表示事件A中发生的样本点数,n(S)表示样本空间中的总样本点数。
2.对于互斥事件A和B(即A和B不可能同时发生),它们的并事件(A∪B)的概率可以用以下公式计算:P(A∪B)=P(A)+P(B)。
3.对于独立事件A和B(即A的发生不受B的发生影响,反之亦然),它们的交事件(A∩B)的概率可以用以下公式计算:P(A∩B)=P(A)×P(B)。
4.对于事件A的对立事件(即A不发生),对立事件的概率可以用以下公式计算:P(A')=1-P(A),其中A'表示事件A的对立事件。
5.对于事件A的补事件(即A不发生的事件),补事件的概率可以用以下公式计算:P(A')=1-P(A)。
6.对于事件A的条件概率,即在事件B发生的条件下事件A发生的概率,可以用以下公式计算:P(A,B)=P(A∩B)/P(B),其中P(A,B)表示在已知事件B发生的条件下事件A发生的概率。
三、应用举例:假设有一个装有5个红球和3个蓝球的箱子。
现从箱子中任意取出一个球,求以下事件的概率:1.事件A:取出的球是红球。
P(A)=n(A)/n(S)=5/(5+3)=5/82.事件B:取出的球是蓝球。
P(B)=n(B)/n(S)=3/(5+3)=3/83.事件C:先后取出两个红球。
P(C)=P(A∩A)=P(A)×P(A)=(5/8)×(4/7)=20/56=5/144.事件D:取出的球不是红球。
《随机事件与概率》概率(古典概型)
概率在金融中的应用
投资组合优化
根据不同资产的历史回报率和 风险,计算投资组合的预期收 益和风险,以选择最优的投资
组合。
保险产品设计
根据历史数据和风险概率,设计不 同费率和保障范围的保险产品。
信用评估
通过分析借款人的历史信用记录和 还款情况,评估借款人违约的概率 。
概率在医学中的应用
临床试验
通过随机对照试验,评估新药的 有效性和副作用发生的概率。
疾病诊断
根据患者的临床表现和医学检查 数据,医生可以初步判断患者患
某种疾病的概率。
遗传疾病风险评估
根据家族病史和基因检测结果, 评估个体患遗传疾病的风险概率
。
04
概率与统计
概率与统计的联系
概率是统计的基础
概率论是研究随机现象的数学理论,为统计推断提供了基础。统计是通过收集、整理和分析数据来推断未知的信 息,而概率提供了对数据进行推断的数学方法。
概率论的公理化
目前,概率论的公理化仍然是一个活跃的研究领域。未来,概率论的公 理化将进一步完善,以更好地描述和解释随机现象。
ቤተ መጻሕፍቲ ባይዱ
思考题与练习题
思考题
请举例说明古典概型在实际生活中的应用。
练习题
请计算以下事件的概率:在一个包含 5 个 白球和 3 个黑球的盒子里,随机抽取一个
白球的概率是多少?
THANKS
设定参数
为模拟程序设定所需的参数,如模拟次数、事件 发生条件等。
模拟结果的统计分析
数据收集
运行模拟程序,收集模拟产生的数据。
统计分析
对收集到的数据进行统计分析,如计算平均值、中位数、标准差等 。
结果展示
以图表或报告的形式展示分析结果,如频率分布图、直方图、饼图 等。
古典概型的特征和概率计算公式完美正规版
古典概型的特征和概率计算公式完美正规版古典概型是概率论中最简单的一种概率模型,它采用了等可能性的假设,即每一个样本点出现的概率都是相等的。
这个模型的特征及其概率计算公式如下:1.样本空间:古典概型中的样本空间是一个有限个数的集合,用Ω表示。
例如,掷骰子的样本空间为Ω={1,2,3,4,5,6},抛硬币的样本空间为Ω={正面,反面}。
2.事件:在古典概型中,事件是样本空间的子集,用A表示。
例如,在掷骰子的样本空间中,事件A可以表示为"出现奇数点数",事件B可以表示为"出现偶数点数"。
3.等可能性假设:古典概型中的一个重要假设是每一个样本点出现的概率都是相等的。
例如,在掷骰子的样本空间中,每一个点数出现的概率都是1/64.概率计算公式:根据等可能性假设,我们可以使用计数的方法来计算事件的概率。
事件A的概率表示为P(A),计算公式为:P(A)=N(A)/N(Ω)其中,N(A)表示事件A中样本点的个数,N(Ω)表示样本空间中样本点的个数。
例如,对于掷骰子的样本空间Ω={1,2,3,4,5,6},事件A表示出现奇数点数,其样本点为{1,3,5},样本点个数为N(A)=3;样本空间Ω中的样本点个数为N(Ω)=6、因此,事件A的概率为:P(A)=N(A)/N(Ω)=3/6=1/2这个公式可以扩展到多个事件的情况下。
例如,对于掷骰子的样本空间Ω={1,2,3,4,5,6},事件A表示出现奇数点数,事件B表示出现偶数点数,这两个事件是互斥事件,即事件A和事件B不能同时发生。
因此,事件A和事件B的概率可以通过以下计算公式得到:P(A)=N(A)/N(Ω)=3/6=1/2P(B)=N(B)/N(Ω)=3/6=1/2请注意,在古典概型中,当事件A和事件B互斥时,它们的概率相加等于1,即P(A)+P(B)=1总结起来,古典概型的特征是样本空间有限、等可能性假设成立;概率计算公式是P(A)=N(A)/N(Ω)。
古典概型的特征和概率计算公式
古典概型的特征和概率计算公式古典概型是概率论中最简单的概型之一,它是基于等可能性假设的。
古典概型的特征和概率计算公式如下所示。
1.特征:-等可能性假设:古典概型假设所有可能的结果具有相同的发生概率。
-有限个数的可能结果:古典概型假设实验的所有可能结果可数且是有限的。
-互斥性:古典概型假设每个实验结果都是唯一的,任意两个不同结果之间是互斥的,即同一次试验只能出现一种结果。
2.概率计算公式:在古典概型下,我们可以使用以下公式来计算事件的概率。
-样本空间:古典概型中,样本空间的大小等于实验的所有可能结果数的总和。
假设样本空间为S,大小为n,即S={A1,A2,A3,...,An}。
- 事件的概率: 假设事件A是样本空间S的子集,包含m个可能结果,即A = {Ai1, Ai2, Ai3, ..., Aim}。
则事件A的概率P(A)等于事件A中所有可能结果的概率之和。
P(A) = P(Ai1) + P(Ai2) + P(Ai3) + ... + P(Aim) = m/n。
3.举例说明:为了更好地理解古典概型的特征和概率计算公式,我们来举一个简单的例子。
假设有一个标准的六面骰子,每个面上的数字是等可能的。
(1)样本空间:这个例子中,样本空间S包含了所有可能的结果,即S={1,2,3,4,5,6}。
(2)事件A:假设我们关注的事件是掷出的数字是奇数。
事件A是样本空间S的子集,A={1,3,5}。
(3)概率计算:根据公式,我们可以计算事件A的概率:P(A)=P(1)+P(3)+P(5)=1/6+1/6+1/6=3/6=1/2从这个例子中,我们可以看到事件A的概率是1/2,即掷出的数字是奇数的可能性为1/2总结起来,古典概型是概率论中最基本的概型之一、它的特征包括等可能性假设、有限个数的可能结果和互斥性。
在古典概型下,我们可以使用简单的公式来计算事件的概率,即事件中所有可能结果的概率之和。
这个概率计算公式是P(A)=m/n,其中m是事件A包含的可能结果数,n是样本空间S的大小。
古典概型的特征和概率计算公式完美正规版
古典概型的特征和概率计算公式完美正规版古典概型是概率论中最简单的模型之一,适用于试验结果相互独立且每个结果发生的概率相等的情况。
在古典概型中,试验的结果可以通过一个有限的样本空间来描述,样本空间中的每个样本点都是一个可能的结果。
下面将介绍古典概型的特征以及概率计算公式的完美正规版。
一、古典概型的特征1.试验结果相互独立:古典概型中的试验结果之间是相互独立的,即一个结果的发生不会影响其他结果的发生。
2.每个结果发生的概率相等:古典概型中每个结果发生的概率是相等的,即每个结果发生的可能性相同。
在古典概型中,我们通常希望计算一些事件的概率,即该事件发生的可能性。
为了计算概率,我们需要以下两个关键步骤:确定样本空间和确定事件。
1.确定样本空间:样本空间是指试验的所有可能结果的集合。
对于古典概型来说,样本空间可以通过列举出所有可能结果来确定。
样本空间的个数通常表示为n。
2.确定事件:事件是样本空间中的一个子集,表示我们感兴趣的试验结果。
可以通过列举出所有可能的事件来确定。
根据古典概型的特征,事件A发生的概率可以通过以下公式计算:P(A)=事件A包含的样本点数/样本空间的样本点数这个计算公式适用于古典概型中任何一个事件的概率计算。
下面通过一个例子来解释该公式的使用。
例子:假设有一个卡片盒,里面有5张红色卡片和3张蓝色卡片。
现在从卡片盒中随机抽取一张卡片,求该卡片是红色的概率。
解答:样本空间为{红,红,红,红,红,蓝,蓝,蓝},样本空间的样本点数为8事件A表示抽取一张红色卡片,包含的样本点数为5根据概率计算公式,可得:P(A)=5/8因此,该卡片是红色的概率为5/8总结:古典概型是概率论中最简单的模型之一,适用于试验结果相互独立且每个结果发生的概率相等的情况。
古典概型的特征是试验结果相互独立,并且每个结果发生的概率相等。
在古典概型中,可以使用概率计算公式P(A)=事件A包含的样本点数/样本空间的样本点数来计算事件发生的概率。
随机事件的概率与古典概型、几何概型
随机事件的概率与古典概型、几何概型一.知识整合:1.随机事件的概念在一定的条件下所出现的某种结果叫做事件。
(1)随机事件:在一定条件下可能发生也可能不发生的事件;(2)必然事件:在一定条件下必然要发生的事件;(3)不可能事件:在一定条件下不可能发生的事件。
2.随机事件的概率事件A 的概率:在大量重复进行同一试验时,事件A 发生的频率n m总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作P (A )。
由定义可知0≤P (A )≤1,显然必然事件的概率是1,不可能事件的概率是0。
3.事件间的关系(1)互斥事件:不能同时发生的两个事件叫做互斥事件;(2)对立事件:不能同时发生,但必有一个发生的两个事件叫做互斥事件;(3)包含:事件A 发生时事件B 一定发生,称事件A 包含于事件B (或事件B 包含事件A );4.事件间的运算(1)并事件(和事件)若某事件的发生是事件A 发生或事件B 发生,则此事件称为事件A 与事件B 的并事件。
注:当A 和B 互斥时,事件A +B 的概率满足加法公式:P (A +B )=P (A )+P (B )(A 、B 互斥);且有P (A +A )=P (A )+P (A )=1。
(2)交事件(积事件)若某事件的发生是事件A 发生和事件B 同时发生,则此事件称为事件A 与事件B 的交事件。
5.古典概型(1)古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)古典概型的概率计算公式:P (A )=总的基本事件个数包含的基本事件个数A ; 一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A 由几个基本事件组成.如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是n 1。
如果某个事件A 包含的结果有m 个,那么事件A 的概率P (A )=n m 。
人教A版高中同步学案数学必修第二册精品课件 第10章 概率 10.1.3 古典概型
(2)若按照分层随机抽样的方法从甲地分数在[40,80)的顾客中抽取7人,再
从这7人中随机抽取2人,求恰有1人的分数在[40,60)的概率.
解 (1)甲地顾客评分的平均数为30×0.1+50×0.3+70×0.4+90×0.2=64;
乙地顾客评分的平均数为30×0.3+50×0.2+70×0.4+90×0.1=56.
3
同理可知,摸中黑球、红球的可能性均为11.
显然这三个样本点出现的可能性不相等,
所以以颜色为样本点的概率模型不是古典概型.
规律方法 1.一个试验是否为古典概型,在于是否具有两个特征:有限性和
等可能性.
2.并不是所有的试验都是古典概型,下列三类试验都不是古典概型:(1)样本
点个数有限,但非等可能.(2)样本点个数无限,但等可能.(3)样本点个数无限,
求解古典概型问题的一般思路
(1)明确试验的条件及要观察的结果,用适当的符号(字母、数字、数组等)
表示试验的可能结果(借助图表可以帮助我们不重不漏地列出所有的可能
结果);
(2)根据实际问题情境判断样本点的等可能性;
(3)计算样本点总个数及事件A包含的样本点个数,求出事件A的概率.
过关自诊
1.在长分别为1 cm、2 cm、3 cm、4 cm的四条线段中,任取三条,这三条线
于其他球的编号,从中摸出一个球.
(1)有多少种不同的摸法?如果把每个球的编号看作是一个样本点,以这些
样本点建立概率模型,该模型是不是古典概型?
(2)若按球的颜色为样本点,有多少个样本点?以这些样本点建立概率模型,
该模型是不是古典概型?
解 (1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法,又
高考数学专题《随机事件的概率与古典概型》习题含答案解析
专题11.4 随机事件的概率与古典概型1.(2021·全国·高一课时练习)某人进行打靶练习,共射击10次,其中有2次中10环,3次中9环,4次中8环,1次未中靶,则此人中靶的频率是( ) A .0.2 B .0.4 C .0.5 D .0.9【答案】D 【分析】直接利用频率的公式求解. 【详解】由题得这个人中靶的次数为2+3+4=9, 所以此人中靶的频率是90.910=. 故选:D2.(2021·全国·高一课时练习)已知A 与B 是互斥事件,且()0.3P A =,()0.1P B =,则()P A B +等于( ) A .0.1 B .0.3C .0.4D .0.8【答案】D 【分析】根据互斥事件概率的加法关系即可求解. 【详解】由题:A ,B 是互斥事件, 所以()()()P A B P A P B +=+, 且()()110.30.7P A P A =-=-=,, 则()()()0.8P A B P A P B ++==. 故选:D3.(2019·全国高考真题(文))两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A .16B .14C .13D .12【答案】D 【解析】两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排练基础法种数相同,所以两位女生相邻与不相邻的概率均是12.故选D .4.(2021·广东顺德·高二期中)某同学做立定投篮训练,共两场,第一场投篮20次的命中率为80%,第二场投篮30次的命中率为70%,则该同学这两场投篮的命中率为( ) A .72% B .74%C .75%D .76%【答案】B 【分析】根据题意可直接计算. 【详解】该同学这两场投篮的命中率为2080%3070%74%2030⨯+⨯=+.故选:B.5.(2021·广东·佛山市南海区九江中学高二月考)甲,乙两人下棋,甲不输的概率是0.8,两人下成平局的概率是0.5,则甲胜的概率是( ) A .0.2 B .0.3C .0.5D .0.8【答案】B 【分析】甲不输分为甲胜乙和甲乙下成平局两种情况,其中甲胜乙和甲乙下成平局是互斥事件,根据互斥事件的概率加法公式进行求解即可. 【详解】甲不输棋的设为事件A ,甲胜乙设为事件B ,甲乙下成平局设为事件C ,则事件A 是事件B 与事件C 的和,显然B 、C 互斥,所以()()()P A P B P C =+,而()0.8P A =,()0.5P C =,所以()()()0.3P B P A P C =-=,所以甲胜的概率是0.3故选:B6.【多选题】(2021·广东·仲元中学高二开学考试)下列说法错误的是( ) A .随着试验次数的增大,随机事件发生的频率会逐渐稳定于该随机事件发生的概率 B .某种福利彩票的中奖概率为11000,买1000张这种彩票一定能中奖 C .连续100次掷一枚硬币,结果出现了49次反面,则掷一枚硬币出现反面的概率为49100D .某市气象台预报“明天本市降水概率为70%”,指的是:该市气象台专家中,有70%认为明天会降水,30%认为明天不会降水 【答案】BCD 【分析】根据概率的定义和生活中的概率判断各选项的对错.由频率和概率的关系可知随着试验次数的增大,随机事件发生的频率会逐渐稳定于该随机事件发生的概率,A正确,某种福利彩票的中奖概率为11000,买1000张这种彩票不一定能中奖,B错误,掷一枚硬币出现反面的概率为12,C错误,某市气象台预报“明天本市降水概率为70%”,指的是明天有70%的可能会降水,D错误,故选:BCD.7.(2021·全国·高一课时练习)从某自动包装机包装的食品中,随机抽取20袋,测得各袋的质量(单位:g)分别为:492,496,494,495,498,497,503,506,508,507,497,501,502,504,496,492,496,500,501,499.根据抽测结果估计该自动包装机包装的袋装食品质量在497.5~501.5 g之间的概率为_______.【答案】0.25【分析】找到质量在497.5~501.5 g之间的袋数由频率可得答案.【详解】质量在497.5~501.5 g之间的有498,501,500,501,499共5袋,所以其频率为520=0.25,由此我们可以估计质量在497.5~501.5 g之间的概率为0.25.故答案为:0.25.8.(2021·全国·高一课时练习)从一批乒乓球产品中任取一个,若其质量小于2.45g的概率为0.22,质量不小于2.50g的概率为0.20,则质量在2.45~2.50g范围内的概率为___________.【答案】0.5829 50【分析】利用概率的性质计算出所求概率.【详解】依题意质量在2.45~2.50g范围内的概率为10.220.20.58--=.故答案为:0.589.(2021·全国·高一课时练习)操作1:将1000粒黑芝麻与1000粒白芝麻放入一个容器中,并搅拌均匀,再用小杯从容器中取出一杯芝麻,计算黑芝麻的频率.操作2:将1500粒黑芝麻与500粒白芝麻放入一个容器中,并搅拌均匀,再用小杯从容器中取出一杯芝麻,计算黑芝麻的频率.通过两次操作,你是否有所发现?若有一袋芝麻,由黑、白两种芝麻混合而成,你用什么方法估计其中黑芝麻所占的百分比?【答案】答案见解析利用频率估计概率的思想可得出结论. 【详解】通过两次操作,我们会有所发现,比如: 操作1中,黑芝麻的频率为10001100010002=+,操作2中,黑芝麻的频率为1500315005004=+,在搅拌均匀的前提下,由此可想到可将这袋芝麻搅拌均匀后从中取出一杯, 将此杯中黑芝麻的频率作为黑芝麻所占的百分比的估计.10.(2021·北京丰台·高二期中)从两个黑球(记为1B 和2B )、两个红球(记为1R 和2R )从中有放回地任意抽取两球.(1)用集合的形式写出试验的样本空间; (2)求抽到的两个球都是黑球的概率. 【答案】 (1)答案见解析 (2)14【分析】(1)根据题意,列出样本空间所有可能的情况即可;(2)列出抽到两个球都是黑球的所有可能情况,利用古典概型的概率公式计算即可 (1)试验的样本空间1112111221222122={(,),(,),(,),(,),(,),(,),(,),(,),B B B B B R B R B B B B B R B R Ω 1112111221222122(,),(,),(,),(,),(,),(,),(,),(,)}R B R B R R R R R B R B R R R R ;(2)设事件=A “抽到两个黑球”,则对于有放回简单随机抽样, 11122122{(,),(,),(,),(,)}A B B B B B B B B =.因为样本空间Ω中每一个样本点的可能性都相等,所以这是一个古典概型. 因此(A)41P(A)()164n n ===Ω. 所以抽到的两个球都是黑球的概率为14练提升1.(2021·北京丰台·高二期中)袋子中有4个大小质地完全相同的球,其中3个红球,1个黄球,从中随机抽取2个球,则抽取出的2个球恰好是1个红球1个黄球的概率是( ) A .13B .12C .23D .1【答案】B 【分析】分别求出从有4个大小质地完全相同的球的袋子中随机抽取2个球和抽取出的2个球恰好是1个红球1个黄球的基本事件的个数,再根据古典概型公式即可得解. 【详解】解:从有4个大小质地完全相同的球的袋子中随机抽取2个球有246C =种情况,抽取出的2个球恰好是1个红球1个黄球有11313C C ⋅=,所以抽取出的2个球恰好是1个红球1个黄球的概率是3162=.故选:B.2.(2021·北京市第八中学怡海分校高二期中)某人打靶时连续射击两次,下列事件中与事件“只有一次中靶”互斥而不对立的是( ) A .至少一次中靶 B .至多一次中靶 C .至多两次中靶 D .两次都中靶【答案】D 【分析】事件A 和B 互斥而不对立所需要的条件是()p A B =∅且()1p A B ≠,一一验证A 、B 、C 、D 四个选项,选出答案. 【详解】设“只有一次中靶”为事件A设“至少一次中靶”为事件B ,则事件B 包含:“有一次中靶”和“有两次中靶”两种情况,,显然()p A B ≠∅,不互斥,A 选项错误;设“至多一次中靶”为事件C ,则事件C 包含事件:“有一次中靶”和“有零次中靶”,显然()p A C ≠∅,不互斥,B 选项错误;设“至多两次中靶”为事件D ,则事件D 包含事件:“有两次中靶”,“有一次中靶”和“有零次中靶”,显然()p A D ≠∅,不互斥,C 选项错误;设“两次都中靶”为事件E ,则()p A E =∅,()1p A E ⋃≠,满足互斥而不对立所需要的条件,故选项D 正确. 故选:D3.(2021·全国·高三月考(文))2019年版高中数学人教A 版教材一共有5本.分别是《必修第一册》《必修第二册》《选择性必修第一册》《选择性必修第二册》《选择性必修第三册》,在一次数学新教材培训会议上,主持人刚好带了全套5本新教材,现从中随机抽出了3本送给在场的培训学员,则恰有1本选择性必修的新教材被抽到的概率为( ) A .35B .310 C .13D .15【答案】B 【分析】应用组合数计算随机抽出了3本恰有1本选择性必修的新教材的抽取方法,再应用古典概型的概率求法求出概率即可. 【详解】由题设,随机抽出了3本恰有1本选择性必修的新教材的概率为212335310C C C =.故选:B4.(2021·广西南宁·高三月考(文))哥尼斯堡“七桥问题”是著名的古典数学问题,它描述的是:在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图1).问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?瑞士数学家欧拉于1736年研究并解决了此问题,他把该问题归结为如图2所示的“一笔画”问题,并证明了上述走法是不可能的.假设在图2所示七条线中随机选取两条不同的线,则这两条线都与A 直接相连的概率为( )A .27B .37C .12D .1021【答案】D 【分析】结合古典概型公式和组合公式直接求解. 【详解】由题可知,若从7条线路中选2条,则有2721C =种方法,若选出的两条线都与A 相连,则共有2510C =种方法,则这两条线都与A 直接相连的概率为252101021C P C ==.故选:D5.(2021·广东·广州市协和中学高二期中)在某次围棋比赛中,甲、乙两人进入最后决赛.比赛取三局二胜制,即先胜两局的一方获得比赛冠军,比赛结束.假设每局比赛甲胜乙的概率都为13,且各局比赛的胜负互不影响,在甲已经先胜一局的情况下,甲获得冠军的概率为()A.49B.59C.527D.23【答案】B【分析】甲获得冠军有两种情况, 第一种情况:第二局甲获胜获得得比赛冠军, 第二种情况:第二局甲输,第三局甲获胜获胜得比赛冠军,求出两种情况下的概率,相加即可.【详解】在甲已经先胜一局的情况下,甲获得冠军有两种情况,第一种情况:第二局甲获胜获得得比赛冠军,11 3P=第二种情况:第二局甲输,第三局甲获胜获胜得比赛冠军1212 339P=⨯=,故甲获得冠军的概率为125 399 +=.故选:B.6.(2021·广东·仲元中学高一期末)数学多选题A,B,C,D四个选项,在给出的选项中,有多项符合题目要求.全都选对的得5分,部分选对的得2分.有选错的得0分.已知某道数学多选题正确答案为BCD,小明同学不会做这道题目,他随机地填涂了1个,或2个,或3个选项,则他能得分的概率为()A.12B.716C.25D.25【答案】A【分析】利用组合数求得随机地填涂了1个或2个或3个选项,每种可能性都是相同的,然后列举计数能得分的涂法种数,求得所求概率.【详解】解:随机地填涂了1个或2个或3个选项,共有12344414C C C++=种涂法,能得分的涂法为(BCD),(BC),(BD),(CD),B,C,D,共7种,故他能得分的概率为71 142=.故选:A.7.(2021·上海市松江二中高二月考)将4个1和2个0随机排成一行,则2个0不相邻的概率为___________. 【答案】23【分析】首先排好4个1,,即可产生5个空,再利用插空法求出2个0相邻与2个0不相邻的排法,再利用古典概型的概率公式计算可得; 【详解】解:将4个1和2个0随机排成一行,4个1产生5个空,若2个0相邻,则有155C =种排法,若2个0不相邻,则有2510C =种排法,所以2个0不相邻的概率为1021053=+ 故答案为:238.(2021·北京市第八中学怡海分校高二期中)1.一个袋子中有大小和质地相同的4个球,其中有2个红色球(标号为1和2),2个绿色球(标号为3和4),从袋子中依次不放回地摸出2个球.(1)写出试验的样本空间;(2)求摸出的2个球颜色相同的概率. 【答案】(1){(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)} (2)13【分析】(1)列举法把所有情况写出来,用集合表示,就是试验的样本空间;(2)有古典概率的公式进行计算 (1)试验的样本空间为:{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),Ω=(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}(2)设事件A =“摸出的两个球的颜色相同” 所以{}(1,2),(2,1),(3,4),(4,3)A =, ()4n A =,()12n Ω=所以()41()()123n A P A n ===Ω 9.(2021·浙江·台州市路桥区东方理想学校高二月考)从编号为A 、B 、C 、D 的4名男生和编号为m、n的2名女生中任选3人参加演讲比赛.(1)把选中3人的所有可能情况一一列举出来;(2)求所选3人中恰有一名女生的概率;(3)求所选3人中至少有一名女生的概率【答案】(1)答案见解析(2)3 5(3)4 5【分析】(1)列举法写出基本事件;(2)结合古典概型概率公式即可求出结果;(3)结合古典概型概率公式即可求出结果.(1)设4名男生分别为A,B,C,D,两名女生分别为m,n,则从6名学生中任3人的所有情况有:ABC,ABD,ABm,ABn,ACD,ACm,ACn,ADm,ADn,Amn,BCD,BCm,BCn,BDm,BDn,Bmn,CDm,CDn,Cmn,Dmn,共20种,(2)由(1)可知共有20种情况,其中所选3人中恰有一名女生的有12种,所以所求概率为123 205,(3)由(1)可知共有20种情况,所选3人中至少有一名女生的有16种,所以所求概率为164 20510.(2021·陕西·西安中学高二月考(理))福州某中学高一(10)班男同学有45名,女同学有15名,老师按照性别分层抽样的方法组建了一个由4人组成的课外学习兴趣小组.(1)求课外兴趣小组中男、女同学的人数;(2)经过一个月的学习、讨论,这个兴趣小组决定从该组内选出2名同学分别做某项试验,求选出的2名同学中恰有1名女同学的概率;(3)试验结束后,同学A得到的试验数据为68,70,71,72,74;同学B得到的试验数据为69,70,70,72,74;请问哪位同学的试验更稳定?并说明理由.【答案】(1)男、女同学的人数分别为3,1(2)12(3)B同学的实验更稳定,理由见解析【分析】(1)按照分层抽样的按比例抽取的方法,男女生抽取的比例是45:15,4人中的男女抽取比例也是45:15,从而解决;(2)先算出选出的两名同学的基本事件数,再算出恰有一名女同学事件数,两者比值即为所求概率;(3)欲问哪位同学的试验更稳定,只要算出他们各自的方差比较大小即可.(1)解:因为每个同学被抽到的概率为416015P==,课外兴趣小组中男、女同学的人数分别为3,1;(2)解:把3名男同学和1名女同学记为a1,a2,a3,b,则选取两名同学的基本事件有(a1,a2),(a1,a3),(a2,a3),(a1,b),(a2,b),(a3,b),共6种,其中有一名女同学的有3种,所以,选出的两名同学中恰有一名女同学的概率为131 62P==;(3)解:16870717274715x++++==,26970707274715x++++==,∴2222221(6871)(7071)(7171)(7271)(7471)45s-+-+-+-+-==,222222(6971)2(7071)(7271)(7471)3.25s-+⨯-+-+-==,∴B同学的实验更稳定.1.(2021·山东·高考真题)甲、乙、丙三位同窗打算利用假期外出游览,约定每人从泰山、孔府这两处景点中任选一处,那么甲、乙两位同窗恰好选取同一处景点的概率是()A.29B.23C.14D.12【答案】D【分析】应用古典概型的概率求法,求甲、乙两位同窗恰好选取同一处景点的概率即可.练真题【详解】甲、乙两位同窗选取景点的种数为224⨯=,其中甲、乙两位同窗恰好选取同一处景点的种数为2,∴甲、乙两位同窗恰好选取同一处景点的概率为2142=. 故选:D2.(2020·海南省高考真题)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( ) A .62% B .56% C .46% D .42% 【答案】C 【解析】记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A B +,“该中学学生既喜欢足球又喜欢游泳”为事件A B ⋅, 则()0.6P A =,()0.82P B =,()0.96P A B +=,所以()P A B ⋅=()()()P A P B P A B +-+0.60.820.960.46=+-= 所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%. 故选:C.3.(2020·全国高考真题(文))设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A .15B .25 C .12D .45【答案】A 【解析】如图,从O A B C D ,,,,5个点中任取3个有{,,},{,,},{,,},{,,}O A B O A C O A D O B C {,,},{,,},{,,},{,,}O B D O C D A B C A B D {,,},{,,}A C D B C D 共10种不同取法,3点共线只有{,,}A O C 与{,,}B O D 共2种情况, 由古典概型的概率计算公式知,取到3点共线的概率为21105=. 故选:A4.(2019·江苏高考真题)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____. 【答案】710. 【解析】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有2510C =种情况.若选出的2名学生恰有1名女生,有11326C C =种情况, 若选出的2名学生都是女生,有221C =种情况,所以所求的概率为6171010+=. 5.(2020·江苏省高考真题)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____. 【答案】19【解析】根据题意可得基本事件数总为6636⨯=个.点数和为5的基本事件有()1,4,()4,1,()2,3,()3,2共4个. ∴出现向上的点数和为5的概率为41369P ==. 故答案为:19. 6.(2017·山东高考真题(文))某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A 1,但不包括B 1的概率. 【答案】(1)15P = ;(2)29P =【解析】(Ⅰ)由题意知,从6个国家中任选两个国家,其一切可能的结果组成的基本事件有:{}{}{}{}{}{}{}{}{}{}{}{}121323111213212223313233,,,,,,,,,,,,,,,,,,,,,,,,A A A A A A AB A B A B A B A B A B A B A B A B {}{}{}121323,,,,,B B B B B B ,共15个.所选两个国家都是亚洲国家的事件所包含的基本事件有:{}{}{}121323,,,,,A A A A A A ,共3个,则所求事件的概率为:31155P ==. (Ⅱ)从亚洲国家和欧洲国家中各任选一个,其一切可能的结果组成的基本事件有:{}{}{}{}{}{}{}{}111213212223313233,,{,},,,,,,,,,,,,,,A B A B A B A B A B A B A B A B A B ,共9个,包含1A 但不包括1B 的事件所包含的基本事件有:{}{}1213,,,A B A B ,共2个, 所以所求事件的概率为:29P =.。
人教B版高中同步学案数学必修第二册精品课件 第5章 统计与概率 5.3.3 古典概型
解 不是古典概型,因为虽然试验的所有可能结果只有7个,但命中10环、命
中9环……命中5环和不中靶的出现没有规定是等可能的,即不满足古典概
型的第二个条件.
规律方法
只有同时满足有限性和等可能性这两个条件的试验才是古典
概型,这两个条件只要有一个不满足就不是古典概型.
列表法和树形图法,具体应用时可根据需要灵活选择,在列出样本点后最好
检验一下各样本点出现的概率是否相同.根据事件C包含的样本点个数m
及试验的样本点总个数n,利用公式P(C)
= 求出事件C发生的概率.
【例3】 袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两
张,标号分别为1,2;现从袋中任取两张卡片.
按性别等比例分层抽样,先从男生中抽一人, 再从女生中抽一人,其样本空
间Ω3={(B1,G1),(B1,G2),(B2,G1),(B2,G2)}.
(2)设事件A =“抽到两名男生”,则对于有放回简单随机抽
样,A={(B1,B1),(B1,B2),(B2,B1),(B2,B2)}.
因为抽中样本空间Ω1中每一个样本点的可能性都相等,所以这是一个古典
用A表示“选出的2名教师来自同一学校”,则A={(a,b),(a,c),(b,c),(1,2)},共包
4
含4个样本点,故选出的2名教师来自同一学校的概率为 P(A)=10
1 2 3 4
=
2
.
5
4.鞋柜内散放着两双不同的鞋,按先后顺序任意取出两只,每次取出后不放
回,恰是同一双的概率是
1
3
.
解析 设其中一双鞋分别为a,a',另一双鞋分别为b,b'.
2023年 高一年级数学上学期 寒假专题练习-随机现象与随机事件、古典概型
第1页,共3页随机现象与随机事件、古典概型一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1.在抛掷一枚骰子的试验中,以下个事件中是随机事件的为()A.出现的点数小于 B.出现的点数小于C.出现的点数大于D.出现的点数是偶数2.在一次随机试验中,,,,是彼此互斥的事件,且是必然事件,则下列说法正确的是()A.与是互斥事件,也是对立事件B.与是互斥事件,也是对立事件C.与是互斥事件,但不是对立事件D.与是互斥事件,也是对立事件3.如图,的半径为,点,,,,,将六等分,任意连接,,,,,中的两点,所得线段的长为的概率是()A. B. C. D.4.围棋盒子中有多粒黑子和白子,已知从中取出粒都是黑子的概率为,都是白子的概率是,则从中任意取出粒恰好是不同色的概率是()A.B.C.D.5.已知函数,且,,则函数有零点的概率为()A.B.C.D.6.如图是某公司某年月至月收入和支出数据的折线图,若从月至月这个月中任选个月的数据进行分析,则这个月利润都不低于万元的概率为()A. B.7.若随机事件,互斥,且,,则实数的取值范围为()A.B.C.D.8.某商场举行购物抽奖活动,抽奖箱中放有编号分别为,,,,的五个小球.小球除编号不同外,其余均相同.活动规则如下:从抽奖箱中随机抽取一球,若抽到的小球编号为,则获得奖金元;若抽到的小球编号为偶数,则获得奖金元;若抽到其余编号的小球,则不中奖.现某顾客依次有放回地抽奖两次,则该顾客两次抽奖后获得奖金之和为元的概率为()A.B.C.D.二、多选题(本大题共4小题,共20.0分。
在每小题有多项符合题目要求)9.在个学生中,男生有个,现从个学生中任选人去参加某项活动:至少有个女生;个男生,个女生;个男生,个女生.若要使为必然事件、为不可能事件、为随机事件,则可以是()A.B.C.D.10.甲约乙下中国象棋,若两人下成和棋的概率是,甲获胜的概率是,则下列结论正确的是()A.甲不输的概率为 B.乙不输的概率为 C.乙获胜的概率为 D.乙输的概率为11.某高校从参加今年自主招生考试的学生中随机抽取名学生的成绩单位:分作为样本,得到如下表格,则()组号分组频数频率第一组第二组第三组第四组第五组合计A.表中位置的数据是B.表中位置的数据是C.在第三、四、五组中用分层随机抽样的方法抽取名学生进行第二轮考核,则第三组抽取人D.在第三、四、五组中用分层随机抽样的方法抽取名学生,随机录取其中的名学生,则人中至少有人在第四组的概率为12.某次数学考试的多项选择题,要求是:“在每小题给出的四个选项中,全部选对的得分,部分选对的得分,有选错的得分.”已知某选择题的正确答案是CD ,且甲、乙、丙、丁四位同学都不会做,则下列表述正确的是()A.甲同学仅随机选一个选项,能得分的概率是B.乙同学仅随机选两个选项,能得分的概率是C.丙同学随机选择选项,能得分的概率是D.丁同学随机至少选择两个选项,能得分的概率是第II 卷(非选择题)三、填空题(本大题共4小题,共20.0分)13.如图,靶子由一个中心圆面Ⅰ和两个同心圆环Ⅱ,Ⅲ构成,射手命中Ⅰ,Ⅱ,Ⅲ的概率分别为,,,则不中靶的概率是.第2页,共3页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………14.若,互为对立事件,且,,,,则的最小值为.15.年冬奥会将在中国举行,现有一个工程需要两家企业联合建设,若有六家企业参与竞标,其中企业来自陕西省,,两家企业来自天津市,,,三家企业来自北京市,假设每家企业中标的概率相同,则在中标企业中,至少有一家来自北京市的概率是.16.某购物中心举行抽奖活动,顾客从装有编号分别为,,,四个小球的抽奖箱中每次取出个小球,记下编号后放回,连续取两次假设取到每个小球的可能性相同若取出的两个小球号码相加之和等于,则中一等奖;若取出的两个小球号码相加之和等于,则中二等奖;若取出的两个小球号码相加之和等于,则中三等奖;其他情况不中奖.则顾客中三等奖的概率为,顾客未中奖的概率为.四、解答题(本大题共6小题,共70.0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机事件的概率和古典概型
一、选择题
1.下列试验能够构成事件的是( )
A.掷一次硬币
B.射击一次
C.标准大气压下,水烧至100℃
D.摸彩票中头奖
2. 在1,2,3,…,10这10个数字中,任取3个数字,那么“这三个数字的和大于6”这一事件是( )
A.必然事件
B.不可能事件
C.随机事件
D.以上选项均不正确 3. 随机事件A 的频率
n
m
满足( ) A. n m =0 B. n m =1 C.0<n m <1 D.0≤n
m
≤1
4. 下面事件是必然事件的有( )
①如果a 、b ∈R ,那么a ·b =b ·a ②某人买彩票中奖 ③3+5>10 A.① B.② C.③ D.①② 5. 下面事件是随机事件的有( )
①连续两次掷一枚硬币,两次都出现正面朝上 ②异性电荷,相互吸引 ③在标准大气压下,水在1℃时结冰
A.②
B.③
C.①
D.②③ 6.甲、乙2人下棋,下成和棋的概率是
21,乙获胜的概率是3
1
,则甲不胜的概率是( ) A. 21 B.65 C.61 D.3
2
7. 从装有两个红球和两个黑球的口袋内任取两个球,那么互斥而不对立的两个事件是( )
A.“至少有一个黑球”与“都是黑球”
B.“至少有一个黑球”与“至少有一个红球”
C.“恰有一个黑球”与“恰有两个黑球”
D.“至少有一个黑球”与“都是红球”
8. 抽查10件产品,设事件A :至少有两件次品,则A 的对立事件为( )
A.至多两件次品
B.至多一件次品
C.至多两件正品
D.至少两件正品
9. 从一批羽毛球产品中任取一个,其质量小于4.8 g的概率为0.3,质量小于()
4.85 g的概率为0.32,那么质量在[4.8,4.85)(g)范围内的概率是
A.0.62
B.0.38
C.0.02
D.0.68
10. 某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03、
丙级品的概率为0.01,则对成品抽查一件抽得正品的概率为()
A.0.09
B.0.98
C.0.97
D.0.96
二、填空题
1. 某个地区从某年起几年内的新生婴儿数及其中男婴数如下表(结果保留两位有效数字):
(1)填写表中的男婴出生频率;
(2)这一地区男婴出生的概率约是_______.
2. 某射手射击一次击中10环、9环、8环的概率分别是0.3,0.3,0.2,那么他射击一次不
够8环的概率是 .
3.某人在打靶中,连续射击2次,事件“至少有一次中靶”的互斥事件是______.
4.我国西部一个地区的年降水量在下列区间内的概率如下表所示:
三、解答题
1.判断下列每对事件是否为互斥事件?是否为对立事件?
从一副桥牌(52张)中,任取1张,
(1)“抽出红桃”与“抽出黑桃”;
(2)“抽出红色牌”与“抽出黑色牌”;
(3)“抽出的牌点数为3的倍数”与“抽出的牌点数大于10”
2. 从一批准备出厂的电视机中,随机抽取10台进行质量检查,其中有一台是次品,能否说这
批电视机的次品的概率为0.10?
3. 某篮球运动员在同一条件下进行投篮练习,结果如下表所示:
(1)计算表中进球的频率;
(2)这位运动员投篮一次,进球的概率约是多少?
4. 用一台自动机床加工一批螺母,从中抽出100个逐个进行直径检验,结果如下:
从这100个螺母中,任意抽取1个,求事件A(6.92<d≤6.94)
事件B(6.90<d≤6.96)、事件C(d>6.96)、事件D(d≤6.89)的频率.
5. 某水产试验厂实行某种鱼的人工孵化,10000个鱼卵能孵出8513尾鱼苗,根据概率的统计
定义解答下列问题:
(1)求这种鱼卵的孵化概率(孵化率);
(2)30000个鱼卵大约能孵化多少尾鱼苗?
(3)要孵化5000尾鱼苗,大概得备多少鱼卵?(精确到百位)
6. 为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如
2000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.
7. 某射手在一次射击中射中10环、9环、8环、7环、7环以下的概率分别为0.24、0.28、
0.19、0.16、0.13.计算这个射手在一次射击中:
(1)射中10环或9环的概率,
(2)至少射中7环的概率;
(3)射中环数不足8环的概率.
参考答案
一、选择题
1. D
2. C
3. D
4.A
5. C
6.B
7. C
8. B
9. C 10. D 二、填空题
1.(1)0.49 0.54 0.50 0.50 (2)0.50
2. 0.2
3.两次都不中靶
4.0.25 三、解答题
1.(1)是互斥事件但不是对立事件.因为“抽出红桃”与“抽出黑桃”在仅取一张时不可能同
时发生,因而是互斥的.同时,不能保证其中必有一个发生,因为还可能抽出“方块”或“梅花”,因此两者不对立.
(2)是互斥事件又是对立事件.因为两者不可同时发生,但其中必有一个发生.
(3)不是互斥事件,更不是对立事件.因为“抽出的牌点数为3的倍数”与“抽出的牌点数
大于10”这两个事件有可能同时发生,如抽得12.
2. 这种说法是错误的.概率是在大量试验的基础上得到的,更是多次试验的结果,它是各次试
验频率的抽象,题中所说的0.10,只是一次试验的频率,它不能称为概率. 3. 解:(1)进球的频率从左向右依次为0.75,0.8,0.8,0.85,0.83,0.8,0.76.
(2)这位运动员投篮一次,进球的概率约是0.8.
4. 解:事件A 的频率P (A )=
100
26
17+=0.43,事件B 的频率 P (B )=10081526171710+++++=0.93,事件C 的频率P (C )=100
2
2+=0.04,
事件D 的频率P (D )=100
1
=0.01.
5. 解:(1)这种鱼卵的孵化频率为
10000
8513
=0.8513,它近似的为孵化的概率. (2)设能孵化x 个,则
10000
8513
30000=x ,∴x=25539, 即30000个鱼卵大约能孵化25539尾鱼苗. (3)设需备y 个鱼卵,则
10000
8513
5000=y ,∴y ≈5873,
即大概得准备5873个鱼卵.
6. 解:设水库中鱼的尾数为n ,从水库中任捕一尾,每尾鱼被捕的频率(代替概率)为
n
2000
,第二次从水库中捕出500尾,带有记号的鱼有40尾,则带记号的鱼被捕的频率(代替概率)为
500
40
, 由
n 2000≈500
40
,得n ≈25000. 所以水库中约有鱼25000尾.
7. 解:设“射中10环”“射中9环”“射中8环”“射中7环”“射中7环以下”的事件分别为
A 、
B 、
C 、
D 、
E ,则
(1)P (A+B )=P (A )+P (B )=0.24+0.28=0.52, 即射中10环或9环的概率为0.52.
(2)P (A+B+C+D )=P (A )+P (B )+P (C )+P (D )=0.24+0.28+0.19+0.16=0.87, 即至少射中7环的概率为0.87.
(3)P (D+E )=P (D )+P (E )=0.16+0.13=0.29, 即射中环数不足8环的概率为0.29.。