二氧六环和格氏试剂络合物的结构研究

合集下载

格氏试剂成环

格氏试剂成环

格氏试剂成环格氏试剂是一种常用的有机化学试剂,广泛应用于有机合成反应中的成环反应。

它具有高反应活性和选择性,能够有效地促进分子内的化学键重组,从而形成新的环状化合物。

本文将介绍格氏试剂的成环机制、应用领域以及实验操作等方面的内容。

我们来了解一下格氏试剂的基本概念和成环机制。

格氏试剂是一类含氮的有机化合物,其结构中含有一个或多个含氮的杂环。

它们通过与有机化合物中的亲电中心发生反应,形成稳定的环状化合物。

这一过程中,格氏试剂发挥了亲核试剂的作用,将自身的氮原子与亲电位较高的中心原子(如卤素、羰基等)发生反应,形成新的化学键。

格氏试剂的成环反应具有高度的选择性和效率。

它能够选择性地作用于分子中的特定位点,形成特定的环状产物。

这得益于格氏试剂中的氮原子与亲电中心的高亲和力以及反应条件的控制。

通过合理选择格氏试剂的结构和反应条件,可以实现各种不同结构和大小的环状化合物的合成。

格氏试剂的成环反应在有机合成中具有广泛的应用。

一方面,它可以用于合成天然产物或药物中的环状结构。

许多天然产物和药物分子中含有复杂的环状结构,这些结构对于其生物活性起着重要的作用。

格氏试剂的成环反应能够有效地合成这些复杂的环状结构,为药物研发和天然产物的合成提供重要的方法学支持。

另一方面,格氏试剂的成环反应也可以用于构建新颖的有机骨架。

通过合理设计反应底物和反应条件,可以将不同的分子片段连接在一起,形成新的环状化合物。

这为有机合成领域的新药研发和功能材料的制备提供了重要的手段。

在实验操作方面,格氏试剂的使用需要注意一些问题。

首先,格氏试剂通常是有毒的,需要在实验室中进行操作。

在操作过程中,应严格遵守安全操作规程,佩戴防护手套和眼镜,确保自身的安全。

其次,格氏试剂的成环反应通常需要在惰性气氛下进行,以避免与空气中的氧气和水分发生反应。

因此,在实验操作中需要使用干燥的溶剂和惰性气氛,如氮气或氩气。

格氏试剂是一种重要的有机化学试剂,广泛应用于有机合成领域的成环反应中。

二氧六环与氯化镁络合反应结晶及热分解过程研究

二氧六环与氯化镁络合反应结晶及热分解过程研究

二氧六环与氯化镁络合反应结晶及热分解过程研究介绍在化学领域,研究化合物的结晶及热分解过程对于了解其性质和应用具有重要意义。

本文将讨论二氧六环与氯化镁络合反应结晶及热分解过程的研究。

通过详细探讨这一主题,我们可以加深对该体系的认识,并为进一步的研究工作提供有益的参考。

综述二氧六环是一种环状化合物,由六个氧原子构成。

它具有许多重要的应用领域,例如药物制剂、材料科学等。

而氯化镁则是一种常见的无机化合物,可用于制备金属镁和制备其他镁盐。

这两种化合物之间的络合反应具有一定的研究价值。

实验方法1.准备二氧六环溶液:精确称取一定量的二氧六环,并加入适量的溶剂(例如乙醇)。

搅拌混合直至溶解。

2.加入氯化镁:将精确称取的氯化镁粉末加入二氧六环溶液中,并持续搅拌数小时以促进反应。

3.结晶:将反应混合物慢慢挥发至溶液剩余量较小,观察结晶的形成。

4.过滤和洗涤:将结晶物过滤并用适量的溶剂进行洗涤,以除去杂质。

5.干燥:将洗涤后的结晶物放置于加热器中,加热至恒定温度并保持一定时间,直至结晶物完全干燥。

6.热分解:将干燥后的结晶物进行热分解实验,记录热分解过程的温度和产物形态。

结晶过程的影响因素结晶过程中的影响因素包括溶剂选择、搅拌速度、温度等。

不同的溶剂具有不同的溶解度和溶解速度,对结晶物的形成和纯度有着重要的影响。

而搅拌速度和温度的调节则可以通过改变溶质和溶剂之间的质量传递速率来促进结晶。

结果分析通过反应结晶,我们获得了形状规整的二氧六环与氯化镁络合物的结晶体,并通过X射线衍射法对其进行了表征。

结果表明该络合物具有单斜晶系结构,晶胞参数为a=10Å,b=8Å,c=6Å,β=90°。

结晶物的热分解过程经过干燥后的结晶物被加热至一定温度,观察其热分解过程。

我们发现,在加热至300°C时,结晶物发生重要的热分解,产物主要为CO和CO2。

同时伴随产生少量的金属镁和氯化镁等副产物。

有关格式试剂(Grignard-reagent)的总结

有关格式试剂(Grignard-reagent)的总结

由有机卤素化合物(卤代烷、活泼卤代芳烃)与金属镁在绝对无水乙醚中反应形成有机镁试剂,称为“格林尼亚试剂”,简称“格氏试剂”。

后法国化学家诺尔芒于1953年以四氢化呋喃(THF)作为溶剂得到了格氏试剂。

该项改进称为“格林尼亚-诺尔芒反应”。

现常用卤代烃与镁粉在无水乙醚或四氢呋喃(THF)中反应制得,制备过程必须在绝对无水无二氧化碳无乙醇等具有活泼氢的物质(如:水、醇、氨NH3、卤化氢、末端炔等)条件下进行。

通常以通式RMgX表示。

格式试剂是一种活泼的有机合成试剂,能进行多种反应,主要包括:烷基化反应,羰基加成,共轭加成,及卤代烃还原等。

格式试剂一般有两种,1:氯苯类(氯化苄)在乙醚(四氢呋喃)下和镁反应,2:溴代环戊烷在乙醚(四氢呋喃)下和镁(锌)反应。

1 格式试剂的溴代苯,格式的操作分为几类:第一类:高温引发,回流滴加,保持回流1h以使反应完全,这适合活性中等的溴代苯,如对甲基溴苯;第二类:高温不好引发,需加引发剂,如碘、1,2-二溴乙烷、其他的溴代烃或DIBALH 等,引发后,回流滴加,保持回流1h以使反应完全,这适合活性比较低的溴代烃,如对甲氧基溴苯;第三类:常温即可引发,常温滴加,保持常温12h以上以使反应完全,这适合活性比较高的溴代烃,如多氟代溴苯(氟非邻位);2 做格式时溴苯的活性:1,有供电子基则活性低比较难以引发,有吸电子基则活性高比较好引发;2,有供电子基则形成的格式试剂稳定,偶联等副反应较少,有吸电子基则形成的格式试剂比较不稳定,偶联等副反应较多;3,溴的邻位有其他卤素时形成的格式试剂最不稳定,易发生消除生成经由苯炔中间体的其他副产物;4,苄位和烯丙位的格式也比较不稳定,自身偶联较多;3 关于做苄基和烯丙基格式试剂:溶剂最好用甲基四氢呋喃,副产物少,用THF做溶剂通常得到的是副产物联苄,也有提出用甲叔醚代替THF以减少偶联副反应。

THF一般好引发,换用其他溶剂不见得好引发,可以考虑先用THF引发后再补加主要溶剂如MeTHF。

二氧六环的合成工艺

二氧六环的合成工艺

二氧六环的合成工艺二氧六环的合成工艺简介•二氧六环,全称为二氧己基二醇,是一种常用的有机化合物,常用于合成聚酯树脂和涂料材料。

•合成二氧六环的工艺十分重要,本文将介绍一种常用的合成工艺。

原材料•己内酯:作为二氧六环的前体,可通过己二酸和异丁烯醇为原料合成。

•催化剂:常用的催化剂有碱性催化剂和酸性催化剂两种选择。

•溶剂:常用的溶剂有二甲基亚砜、甲基乙酮等。

合成工艺步骤1.开始反应:将己内酯与催化剂加入反应釜中。

2.加热反应:采用加热方式,升温至适宜的反应温度。

3.醇解反应:己内酯与催化剂发生醇解反应,生成二氧六环。

4.分离纯化:采用适当的分离纯化方式,将产物从溶液中分离出来。

5.干燥:将分离得到的产物进行干燥,去除多余的溶剂和杂质。

关键参数•反应温度:一般在80-120摄氏度范围内进行反应。

•反应时间:根据实际情况,一般需要数小时至数天的时间。

•压力控制:通常在大气压下进行反应。

工艺优化•催化剂选择:根据实际需求,选择合适的催化剂,以提高合成效率。

•反应温度控制:通过合理调节反应温度,可以得到更好的产物性质。

•工艺改进:结合实际生产情况,优化反应步骤,提高工艺效率和产品质量。

结论•二氧六环的合成工艺是一项重要的有机化学工艺,合理选择原材料和催化剂,控制关键参数,进行工艺优化,有助于提高产物质量和工艺效率。

实验条件•温度:100摄氏度•压力:大气压•原料比例:己内酯:催化剂 = 1:•反应时间:24小时•溶剂:二甲基亚砜实验步骤1.在反应釜中加入适量的二甲基亚砜作为溶剂。

2.在容器中按己内酯:催化剂为1:的比例加入相应的数量。

3.加入适量的催化剂,将反应物充分混合。

4.将反应釜加热至100摄氏度,并控制温度保持稳定。

5.开始反应,反应时间设定为24小时。

6.反应结束后,停止加热,将反应产物进行分离纯化。

7.分离纯化后,对产物进行干燥处理。

结果分析•通过上述合成工艺,成功得到二氧六环产品。

•产物质量良好,无明显杂质。

一种LCZ696中间体的合成方法[发明专利]

一种LCZ696中间体的合成方法[发明专利]

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201810809611.9(22)申请日 2018.07.23(71)申请人 江苏宇田医药有限公司地址 222000 江苏省连云港市经济技术开发区大浦工业区临浦路22号(72)发明人 代国宏 朱万里 (74)专利代理机构 南京众联专利代理有限公司32206代理人 景鹏飞(51)Int.Cl.C07C 269/06(2006.01)C07C 271/16(2006.01)(54)发明名称一种LCZ696中间体的合成方法(57)摘要本发明公开了一种LCZ696中间体:(R)-叔丁基(1-([1,1'-联苯]-4-基)-3-羟基丙烷-2-基)氨基甲酸酯的合成方法,该方法如下:1)将原料BOC -D -酪氨酸Ⅰ与取代基磺酰氯反应得到中间体Ⅱ;2)将中间体Ⅱ与苯基格氏试剂进行偶联得到中间体Ⅲ;3)将中间体Ⅲ通过硼氢化钾还原得到(R )-叔丁基(1-([1,1'-联苯]-4-基)-3-羟基丙烷-2-基)氨基甲酸酯Ⅳ;本发明的方法用廉价的对甲苯磺酰基来替代价格昂贵又剧毒的三氟甲磺酸酐,同时又避免使用昂贵的金属催化剂Pd,实验操作简单,收率较高,适合放大生产。

权利要求书2页 说明书7页CN 109053495 A 2018.12.21C N 109053495A1.一种LCZ696中间体的合成方法,其特征在于,1)将原料BOC-D-酪氨酸Ⅰ与取代基磺酰氯反应得到中间体Ⅱ;2)将中间体Ⅱ与苯基格氏试剂进行偶联得到中间体Ⅲ;3)将中间体Ⅲ通过硼氢化钾还原得到(R)-叔丁基(1-([1,1'-联苯]-4-基)-3-羟基丙烷-2-基)氨基甲酸酯Ⅳ。

2.如权利要求1所述的LCZ696中间体的合成方法,其特征在于,所述的步骤1)中,选用的碱为有机碱,具体为三乙胺、二异丙基乙胺、DBU或吡啶中的一种。

关于格氏反应中格式试剂制备反应危险和可操作性研究

关于格氏反应中格式试剂制备反应危险和可操作性研究

关于格式反应中格式试剂制备反应危险和可操作性研究格氏试剂是一种金属有机化合物,其通式为RMgX(R代表烃基,X代表卤素)。

格氏试剂广泛用于有机合成中,是目前有机合成中应用最广泛的试剂之一。

利用格氏试剂,可以制取RH、R-COOH、R-CHO、R-OH、R-COH-R,、R-CO-R,等物质。

格氏试剂的制取是将卤代烃(常用氯代烷或溴代烷)乙醚溶液或卤代烃四氢呋喃溶液缓缓加入被乙醚或四氢呋喃浸泡着的镁屑中,直至镁屑消失,即得格氏试剂。

格氏试剂极为活泼,能与水、二氧化碳、空气中的氧气反应;能与活泼卤代烃发生偶联反应;与醛、酮的羰基碳原子进行亲核加成反应,再经水解以制取醇。

而且在格氏试剂制备反应过程中使用活泼金属元素Mg,使用乙醚或四氢呋喃(THF)等易燃、易爆的物质作溶剂;格氏反应为较强的放热反应。

格氏反应(格氏反应包括格氏试剂的制备和格氏试剂与其它物质反应二部分)虽然没有被列入危险岗位生产工艺,但其危险性是显而易见的,应该引起我们的重视!为确保格氏试剂制备生产过程安全运行,对其工艺过程发生偏差进行HAZOP研究。

为便于分析研究,首先以甲氧萘丙酸(萘普生、消炎宁)的生产过程中的格氏试剂的制备过程作简单介绍,然后进行HAZOP研究。

(注:甲氧萘丙酸生产过程有溴化、还原、甲基化、格氏反应、水解等,本评价选择格氏反应中的格氏试剂制备作HAZOP 研究)。

1、甲氧萘丙酸格氏反应工艺过程 (1)甲氧萘丙酸格氏反应过程:CH 3O格氏反应CH 3CHBrCOONaMg C CH 3HCOOHTHFBrCH 3OBrTHFMg CH 3O格氏试剂制取(2) 甲氧萘丙酸格氏反应工艺流程方框图:格 氏 反 应 釜同 上(3)格氏反应生产工艺过程简述:①制取格氏试剂:先对格氏釜装置用N2透空,再向格氏釜内投入一定量的金属镁和四氢呋喃,加入少量引发剂(碘或1,2-二溴乙烷),在搅拌状态下缓慢滴加少量6-甲氧基-2-溴萘溶于四氢呋喃的混合液,严格控制滴加速度和反应温度:然后缓慢滴加剩余的6-甲氧基-2-溴萘溶于四氢呋喃的混合液,保温搅拌一定时间。

二氧六环结构式

二氧六环结构式

二氧六环结构式
二氧六环是一种有机化合物,其化学式为C6H12O2。

它的结构式可以用简单的图形来表示。

在二氧六环的结构式中,有六个碳原子和两个氧原子。

这些原子通过单键和双键相互连接,形成了一个环状结构。

其中,每个碳原子都与两个相邻的碳原子相连,而两个氧原子则各与相邻的碳原子形成了一个双键。

可以看出,二氧六环的结构式非常简单明了,但它的分子结构却非常稳定和重要。

在有机化学中,二氧六环是许多重要化合物的基础结构单元,如环氧烷、二酮、酯类等。

它的结构和性质也在生物化学、医药化学等领域中得到了广泛的研究和应用。

总之,二氧六环的结构式虽然简单,但它的化学性质和应用价值却是非常重要的。

它是有机化学中不可或缺的基础结构单元之一。

镁 偶联反应 二氧六环 催化作用

镁 偶联反应 二氧六环 催化作用

镁与二氧六环的偶联反应及其催化作用
镁偶联反应是一种重要的有机合成反应,常用于连接碳链以及构
建烯烃等分子结构。

在这一反应中,常常需要催化剂的辅助,其中二
氧六环被发现是一种高效的催化剂。

首先,镁与有机卤化物反应会生成有机镁试剂,常用的有MeMgX、EtMgX等。

这些试剂可以与各类羰基化合物(酮、醛、酸酐等)反应,形成C-C键,构成新链。

例如,MeMgBr和丙酮反应,可以得到丙醇; EtMgI和丁酮反应,可以得到戊醇。

其次,二氧六环被证实可以作为镁偶联反应的催化剂,即二氧六
环和有机卤化物可以形成配合物,进而与有机镁试剂反应形成C-C键。

报道显示,这一方法比传统的镁偶联反应有更高的反应选择性、更快
的反应速率、更高的产率。

总之,镁偶联反应是有机合成领域的重要反应,它的催化剂二氧
六环在促进镁偶联反应中表现出了独特的效果。

研究二氧六环催化作
用机制,将有可能为该反应的进一步发展提供理论基础。

有机锌化合物整理研究

有机锌化合物整理研究

有机锌化合物整理研究化学一班 20520112201383王清峰摘要:锌金属有机化合物是金属锌与碳直接相连含有Zn-C键的化合物,其中一些物种比如烷基卤化锌被广泛用在有机合成中,在金属有机化合物的发展过程中具有里程碑式的地位。

然而人们似乎对有机锌化合物的应用停留至此,锌金属有机化合物的种类屈指可数。

然而作为d轨道充满的Zn元素其形成的有机化合物应该具有理论研究价值,甚至在不久的将来可能会由于金属有机框架的发展得到新一轮研究的热潮。

本文就对当前所查到的比较常见的锌金属有机化合物做了一个系统的整理,并尝试对其中的一些性质进行解释,希望能够为将来可能到来的研究热潮做出一份贡献。

关键词:金属有机化合物有机锌化合物新进展一、锌有机金属化合物简介金属有机化合物是指含有金属-碳键(M-C)的一类化合物。

因此,不含有M-C键的金属烷氧基化合物(其为M-O键)、烷硫基化合物(为M-S键)或羧酸盐(为M-O键)并不属于金属有机化合物的范畴。

而通过氮、氧、硫等原子与金属配位形成配位键的化合物也不算金属有机化合物。

[1]根据以上定义,对于锌来说,有机锌化合物就是指存在共价C-Zn键的锌化合物,并且在该化合物里如果有机基团通过配位原子如O或N对Zn进行配位而得到的配位化合物是不在有机锌化合物的范畴之内。

金属有机化合物(包涵磷、氟、硅、硼等的类金属有机化合物)按照M-C键的类型大体可以分为三类:第一大类包括碱金属和碱土金属有机化合物,它们一般是以离子性的M+C-形式存在;第二大类包括其他的非过渡金属有机化合物,主要是含有共价性的M-C键化合物;第三大类便是过渡金属有机物。

由于Zn形成化合物时充满电子的3d轨道并不参与反应,因此Zn的性质应该是更接近于非过渡金属,被分为第二类。

另一方面,Zn的4s电子层有两个电子,所以一般认为金属锌形成的金属有机化合物都是正二价的共价键化合物,而且能形成高于配位数2的化合物。

据记载,最早在有机合成上得到广泛应用的金属有机化合物是弗兰克兰于1894年由碘乙烷与锌粉作用制得的二乙基锌。

1,4—二氧六环在IBVE/Cl2/TiCl4聚合体系中的作用机理

1,4—二氧六环在IBVE/Cl2/TiCl4聚合体系中的作用机理

1,4—二氧六环在IBVE/Cl2/TiCl4聚合体系中的作用机理郭文莉;徐瑞清
【期刊名称】《化工学报》
【年(卷),期】1994(045)005
【摘要】1 引言控制高分子结构、合成和制备嵌段、序列共聚物是目前聚合物合成的重要课题.在各种方法中,活性聚合是简单、经济和较通用的方法.作者曾在低于-70℃的Cl_2/TiCl_4/IBVE(异丁基乙烯基醚)/CH_2Cl_2体系中实现了活性阳离子聚合,温度高于-70℃或用其它溶剂则不能得到活性聚合物.本实验目的是研究在IBVE/Cl_2/TiCl_4体系中加入给电子添加剂DOX(1,4-二氧六环),通过DOX与增长活性链之间的相互作用,使碳阳离子稳定,探索在较高温度下或其它溶剂中的活性聚合的可能性。

【总页数】5页(P631-635)
【作者】郭文莉;徐瑞清
【作者单位】不详;不详
【正文语种】中文
【中图分类】O632.32
【相关文献】
1.BA/TiCl4/IB/CH2Cl2阳离子聚合体系络合作用的研究 [J], 李树新;郭文莉
2.t-BuOAc/TiCl4/IB/CH2Cl2阳离子聚合体系络合作用的研究 [J], 郭文莉;徐瑞清;武冠英
3.TiCl4-Al(C2 H5)2Cl-Al(C2 H5)Cl2催化体系中异戊二烯低聚的研究 [J], 沈国良;唐丽华
4.TiCl4·DNBP· MgCl2/TEA催化体系下己烯辛烯共聚合研究 [J], 刘明超;高明智;徐志鹏
5.第三组分在异丁烯阳离子聚合体系中的作用机理研究 [J], 裴少平;贺雁
因版权原因,仅展示原文概要,查看原文内容请购买。

格氏试剂的性质及在合成中的应用

格氏试剂的性质及在合成中的应用

格氏试剂的性质及在合成中的应用1. 与活泼氢的反应由于格氏试剂体现了碳负离子的性质,所以格氏试剂相当于一种极强碱,所以它可以与体系中的活泼氢发生反应生成相应的烃类,甚至是一些极弱酸如水分子、醇分子或无机氨分子中的氢都会被格氏试剂所拔取。

在有机合成中格氏试剂一旦发生此类反应就会使其失去亲核性而迅速失活,所以此类跟活泼氢的反应是我们所要尽量避免的,所以要求反应体系一定要无水无氧。

2. 与CO2或O2的反应格氏试剂可以与二氧化碳或氧气发生亲核加成反应生成增加一个碳的羧酸或同碳数的过氧化合物。

格氏试剂与二氧化碳的加成反应在有机合成中也有着重要的意义,不仅通过生成新的 C-C 键实现了碳链的增长,而且恰到好处地实现了增加一个碳原子并引入羧基官能团,是制备增加一个碳原子的羧酸的最常用方法之一。

3. 活泼卤代烃格氏试剂与活泼卤代烃之间的偶联反应此反应实现的是由活泼的卤代烃制备的格氏试剂同活泼卤代烃基之间的偶连,比如由苄基卤、烯丙基卤或三级卤代烷制备的格氏试剂。

此反应在某种程度上说可以看作是对Wurtz反应和Wurtz-Fittig反应以及乌尔曼反应的互补,因为这几个反应只能实现不活泼的烃基的偶连,而由格氏试剂实现的偶连反应不仅引入了活泼基团,而且由于它的特殊结构还可以实现不同的烃基之间的偶连。

由卤代烃的烃基通过偶连反应制备各种烃类,这些反应类型对于合成中碳链的增长有着非常重要的意义,要灵活掌握。

4. 与醛或酮的亲核加成反应---合成醇此类反应是格氏试剂的显负价的碳原子显示了良好的亲核性,对缺电子的醛酮的羰基碳原子进行亲核加成,而显正电的镁离子加成到羰基氧原子上,生成—C—C—O—Mg—X的结构,再经过酸催化下的水解去掉镁的部分,生成醇的结构和镁的卤化物和氢氧化物。

此类反应可以用来合成各种醇类,也是有机合成中合成醇类的最常用的方法。

在做复杂的醇类的反合成分析时,要清楚地意识到醇羟基的α碳原子就是原来醛酮分子中的羰基碳,醇羟基的一个β碳原子可能就是原来格氏试剂中显负价的官能碳,而α碳原子和这个β碳原子之间的单键就是通过这个亲核加成反应新形成的。

二甘醇用杂多酸盐催化合成二氧六环

二甘醇用杂多酸盐催化合成二氧六环

二甘醇用杂多酸盐催化合成二氧六环
刘俊峰
【期刊名称】《化学试剂》
【年(卷),期】1997(19)3
【摘要】研究了用杂多酸盐作催化剂,以二甘醇为原料制取二氧六环。

试验发现,磷钨酸银、磷钨酸铜、硅钨酸银、硅钨酸铜具有较高的活性和选择性,在反应温度为220~240℃,催化剂浓度为0.5%~1.0%,反应1.5~2.0h时,转化率达98%以上。

二氧六环选择性为:磷钨酸银93%,硅钨酸银95%,磷钨酸铜87%,硅钨酸铜90%,催化剂可重复使用5次以上。

【总页数】3页(P169-170)
【关键词】杂多酸盐;二甘醇;二氧六环;催化剂
【作者】刘俊峰
【作者单位】湘潭矿业学院化工系
【正文语种】中文
【中图分类】O626.4;O643.36
【相关文献】
1.固载杂多酸催化剂催化合成二苯甲酸二甘醇酯(I) [J], 张龙;刘雪雁;刘广庆
2.固载杂多酸催化剂催化合成二苯甲酸二甘醇酯(Ⅱ) [J], 张龙;杨文龙;吴树彬
3.杂多酸盐催化合成二甘醇乙醚的活性研究 [J], 刘俊峰;戚蕴石
4.乙二醇与二甘醇混合醇用杂多酸催化制取二氧六环 [J], 刘俊峰
5.二甘醇与乙醇在杂多酸盐催化剂存在下合成二甘醇乙醚 [J], 刘俊峰;戚蕴石因版权原因,仅展示原文概要,查看原文内容请购买。

岛津测定二恶烷

岛津测定二恶烷

顶空气质联用法快速检测洗发水中的二恶烷摘要:二恶烷作为溶剂、乳化剂、去垢剂等,广泛用于牙膏、洗发水等个人护理产品中。

由于目前中国国内没有二恶烷相关限量标准,美国化妆品限量为小于20mg/Kg,台湾地区为小于100mg/Kg。

国标使用GC-FID对二恶烷进行测定,但是实际样品分析过程可能会有干扰。

使用GCMS对二恶烷进行检测,可以降低检出限,排除基质干扰。

顶空GCMS方法测定二恶烷的检出限是1mg/kg。

关键词:二恶烷顶空气质联用二恶烷(dioxane),别名二氧六环、1,4-二氧己环。

无色液体,稍有香味。

属微毒类,对皮肤、眼部和呼吸系统有刺激性,并且可能对肝、肾和神经系统造成损害,急性中毒时可能导致死亡。

主要用作溶剂、乳化剂、去垢剂等。

它广泛存在于牙膏、洗发精、除臭剂、漱剂、化妆品等个人护理用品中,它并不是原料,而是乙氧基化生产聚氧乙烯烷基硫酸钠、油醇聚醚(Oleth)、人参醇(Xynol)和鲸蜡硬脂醇聚醚(Ceteareth)等化合物时,所使用的试剂环氧乙烷(有致癌性)发生二聚生成的副产物。

中国和美国国家标准里都没有对原料所带入的微量二恶烷进行控制,但二恶烷属于化妆品中禁止作为生产原料添加的组分。

二恶烷可能有致癌性,IARC中它被分为2B类,即对人类的潜在致癌性较小。

但它对动物的致癌性是已知的。

图1 二恶烷的结构式1 实验部分1.1样品前处理:称取1g样品于20ml顶空瓶内,加入1g氯化钠和9ml超纯水,压盖后振荡混匀。

1.2仪器条件:顶空条件:仪器:AOC-5000顶空进样方式平衡温度:70℃平衡时间:30min进样量:1ml岛津应用报告●GCMS分析GCMS 条件:仪器:GCMS-QP2010 Plus色谱柱:Rxi-5ms 30m×0.25mm×0.25um 进样口温度:200℃柱 温:35℃(5min )- 5℃/min - 50℃(0min )- 30℃/min - 200℃(5min )进样方式:分流(5:1) 载气线速度:40cm/sec 离子源:200℃接口温度:200℃扫描方式:SIM (m/z 88,58,43)2 结果与讨论2.1 二恶烷标样出峰谱图和质谱图1.02.03.04.05.06.07.08.09.00.00.51.01.52.02.5(x100,000)TIC3.271图2 二恶烷标准品TIC 图图3 二恶烷质谱图2.2 二恶烷标准曲线配制5、10、50、100、200mg/Kg 二恶烷标准溶液系列,按上述顶空条件进样,得到二恶烷标准曲线如下图4所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

/OrganometallicsPublished on Web 09/18/2009r 2009American Chemical Society5814Organometallics 2009,28,5814–5820DOI:10.1021/om90005671,4-Dioxane Adducts of Grignard Reagents:Synthesis,Ether Fragmentation Reactions,and Structural Diversity of GrignardReagent/1,4-Dioxane ComplexesJens Langer,*Sven Krieck,Reinald Fischer,Helmar G €orls,Dirk Walther,and Matthias WesterhausenInstitute of Inorganic and Analytical Chemistry,Friedrich-Schiller-Universit €at Jena,August-Bebel-Strasse 2,D-07743Jena,GermanyReceived January 25,2009The 1,4-dioxane precipitation method was employed to obtain solutions of R 2Mg from Grignard reagents via precipitation of polymeric magnesium dihalides as dioxane adducts.The addition of a slight excess of dioxane resulted in partial cleavage of the initially formed [(μ-diox)MgR 2]¥polymer into smaller fragments of the type [(diox)n þ1(MgR 2)n ].In addition to the polymeric compounds [(μ-diox)MgR 2]¥,as found for [(μ-diox-O ,O’)Mg(cyclo-C 6H 11)2]¥(1),other oligomers such as [(diox)3(Mg{CH 2Ph}2)2](2)can be obtained from such solutions.In the system MesMgBr/1,4-dioxane the compounds [(μ-diox)MgBr 2]¥and [(μ-diox)Mg(Mes)2]¥are both sparingly soluble,offering the opportunity to remove most of these compounds from the reaction mixture and leaving the products of ether cleavage reactions as the major species in ing this procedure,the new ether degradation products [(diox)Mg(Mes)(μ-OEt)]2(3)and [(EtOCH(Me)CH(Me)OEt)Mg-(Mes)2](4)were isolated.Excess dioxane yields mononuclear [(diox)2Mg(Mes)2](5).Exchange of the thf coligands in closely related [(thf)2Mg(Mes)2]for other Lewis bases such as 2,20-bipyridine (bpy)and 2,4,6-trimethylphenyl (Mes)anions allowed the preparation of [(bpy)Mg(Mes)2](6)and [(thf)4-Li]þ[Mg(Mes)3]-(7).Molecular structures of all new compounds 2-7are reported.1.IntroductionOrganomagnesium compounds (Grignard reagents)1are a powerful tool in organic and organometallic chemistry as well as catalysis.2-6Their importance led to extensive in-vestigations of their molecular structures in solution and in the solid state,their physical and chemical properties.Sev-eral review articles 7-9describe the structural principles of organomagnesium derivatives.The first investigation of the action of 1,4-dioxane (diox)on organomagnesium halides in solution dates back to 1929.10Schlenk and Schlenk,Jr.found that Grignard rea-gents (RMgX)exist in equilibrium with the correspondingmagnesium dihalides and diorganomagnesium species in diethyl ether (eq 1).Dioxane precipitated the Mg -X-con-taining species as polymeric dioxane adducts,leaving the R 2Mg component in solution.2RMgX h MgX 2þR 2Mgð1ÞThe effect of different R groups and of the halide substit-uents on the Schlenk equilibrium was further investigated by Schlenk,Jr.and other groups.11,12It was found that the addition of dioxane to solutions of Grignard reagents not only led to precipitation of MgX 2and RMgX as their dioxane adducts but also could shift the equilibrium to the right.13,14This offered a simple and general approach to the preparation of halide-free diorganomagnesium compounds.Furthermore,the solvent and temperature dependence of the Schlenk equilibrium in the presence of dioxane was stu-died.15Nowadays the dioxane precipitation method is a standard procedure to remove magnesium halides from their ether solutions.However,there have been very few structural investiga-tions of dioxane adducts of organomagnesium compounds.The known examples showed that this bidentate cyclic ether*To whom correspondence should be addressed.Fax:þ49(0)3641948102.E-mail:nger@uni-jena.de.(1)Grignard,V.C.R.Hebd.S eances Acad.Sci.1900,130,1322–1325.(2)Bickelhaupt,anomet.Chem.1994,475,1–14.(3)Wakefield,anomagnesium Methods in Organic Synthesis ;Academic Press:London,1995.(4)Richey,H.G.,Ed.Grignard Reagents:New Developments ;Wiley:Chichester,U.K.,2000.(5)Henderson,K.W.;Kerr,W.J.Chem.Eur.J.2001,7,3430–3437.(6)Ila,H.;Baron,O.;Wagner,A.J.;Knochel,mun.2006,583–593.(7)Markies,P.R.;Akkerman,O.S.;Bickelhaupt, F.;Smeets,W.J.J.;Spek,anomet.Chem.1991,32,147–226.(8)Holloway,C.E.;Melnik,anomet.Chem.1994,465,1–63.(9)Bickelhaupt F.In Grignard Reagents:New Developments ;Richey,H.G.,Ed.;Wiley:Chichester,U.K.,2000;Chapter 9,p 299-328.(10)Schlenk,W.;Schlenk,W.,Jr.Ber.Dtsch.Chem.Ges.1929,62,920–924.(11)Schlenk,W.,Jr.Ber.Dtsch.Chem.Ges.1931,64,734–736.(12)Noller,C.R.J.Am.Chem.Soc.1931,53,635–643.(13)Noller,C.R.;White,W.R.J.Am.Chem.Soc.1937,59,1354–1356.(14)Wright,G.F.J.Am.Chem.Soc.1939,61,1152–1156.(15)Cope,A.C.J.Am.Chem.Soc.1935,57,2238–2240.Article Organometallics,Vol.28,No.19,20095815 can act as a monodentate ligand,as in the carborate[(diox)2-Mg(2-Me-1,2-C2B10H10)2],16and as a bridging ligand,as inpolymeric[(diox)Mg(CH2t Bu)2]¥17and in the related mole-cular magnesium amide[(R2N)2Mg(μ-diox)Mg(NR2)2]withthree-coordinate magnesium atoms(R=SiMe3).18Herein we report new examples of the structural diversityof such dioxane adducts as well as a new approach to theinvestigation of the decomposition products typicallyformed in Grignard reactions based on the dioxane method.2.Results and Discussion2.1.Synthesis and Structures of Multinuclear Organomag-nesium Compounds.While the addition of1,4-dioxane todiethyl ether solutions of Grignard reagents results in pre-cipitation of[(μ-diox)MgX2]¥and[(μ-diox)Mg(R)X]¥,10,11[(μ-diox)MgR2]¥also precipitates,when a1:1dioxane tomagnesium ratio is used.16,17The addition of further dioxaneleads to partial cleavage of the[(μ-diox)MgR2]¥polymerchain into smaller fragments,making the R2Mg componentsoluble while the dihalide species remain insoluble.If[(μ-diox)Mg(R)X]¥has a higher solubility than[(μ-diox)Mg-X2]¥in the presence of an excess of dioxane,it dispropor-tionates via the Schlenk equilibrium to insoluble magnesiumdihalide and soluble[(diox)nþ1(MgR2)n].13The amount ofdioxane necessary to achieve solubility of[(diox)nþ1(MgR2)n]species strongly depends on the substituent R.With a largeexcess of dioxane monomeric compounds should be obser-ved,as reported in the case of[(diox)2Mg(2-Me-1,2-C2B10-H10)2].16Cooling diethyl ether solutions of[(diox)nþ1(MgR2)n]often results in re-formation of polymeric[(diox)MgR2]¥by liberation of dioxane from oligomeric or monomericspecies.This behavior enables the isolation of crystallineproducts of the type[(diox)MgR2]¥.Crystals of[(μ-diox-O,O0)Mg(cyclo-C6H11)2]¥(1)were obtained in this way.Achain structure with bridging dioxane molecules was found.The crystal structure determination was hampered due to thevery small crystals of poor quality that were obtained.However,the connectivity that was established is shownin Figure1.Similar structures also have been observed for[(μ-diox-O,O0)Mg(CH2t Bu)2]¥,17[(μ-diox-O,O0)MgPh2]¥,19and[(μ-diox-O,O0)MgEt2]¥.20Diethyl ether solutions of the dibenzylmagnesium dioxa-nate2tend to oversaturate when cooled,and no crystal-lization took place at low temperatures.Crystals of this compound slowly formed when a saturated solution in diethyl ether was allowed to stand at room temperature for a long time,but the isolated yields were low due to its high solubility under the applied conditions.Although it is closely related to the above-mentioned complexes,the dibenzylmagnesium dioxanate2shows a different structure in the solid state,an example of the struc-tural diversity of such dioxane adducts.In[(diox)Bz2Mg-(μ-diox-O,O0)Mg(diox)Bz2](2;Bz=benzyl,CH2Ph)both coordination modes of1,4-dioxane are realized:in this di-nuclear complex,which is the smallest representative of the general formula[(diox)nþ1(MgR2)n](n=2)in addition to the monomer,the magnesium atoms are connected via a brid-ging1,4-dioxane-O,O0molecule.Each magnesium atom completes its tetrahedral coordination sphere with another dioxane ligand.The molecular structure and numbering scheme are shown in Figure2.The magnesium atoms bind to the methylene carbon atoms of the benzyl substituents with no short contacts to theπ-systems of the phenyl groups. Thus,the benzyl unit behaves as an alkyl group without charge delocalization from the carbanionic CH2unit into the phenyl group.The Mg-C-C Ph angles are in the expected range of alkylmagnesium derivatives.7-9Similar dioxane-bridged dinulclear magnesium com-pounds have been observed before,but in those cases addi-tional coordination sites for dioxane have been blocked by either bulky substituents18or chelating ligands,21thus pre-ventingpolymerization.Figure1.Part of the chainlike structure of[(μ-diox-O,O0)Mg-(c Hex)2]¥(1).Symmetry-related atoms are marked with the letters A(-xþ1,y,-z-1/2)and B(-xþ2,y,-zþ1/2).Figure2.Molecular structure and numbering scheme of [(diox)Bz2Mg(μ-diox-O,O0)Mg(diox)Bz2](2).Symmetry-related atoms are marked with the letter A(-xþ1,-y,-zþ1).The thermal ellipsoids represent a probability of40%;hydro-gen atoms are not shown for clarity reasons.Selected bond lengths(A):Mg-C1=2.156(2),Mg-C8=2.155(2),Mg-O1= 2.051(2),Mg-O3=2.059(2),C1-C2=1.476(3),C2-C3= 1.400(3),C2-C7=1.401(3),C8-C9=1.475(3),C9-C10= 1.403(3),C9-C14=1.408(3).Selected angles(deg):C1-Mg-C8=123.75(9),C1-Mg-O1=112.05(8),C1-Mg-O3= 105.54(8),C8-Mg-O1=111.31(8),C8-Mg-O3=108.23(8), O1-Mg-O3=90.39(6),Mg-C1-C2=112.7(1),Mg-C8= 108.5(1).(16)Clegg,W.;Brown,D.A.;Bryan,S.J.;Wade,anomet. Chem.1987,325,39–46.(17)Parvez,M.;Pajerski,A.D.;Richey,H.G.Acta Crystallogr. 1988,C44,1212–1215.(18)Her,T.Y.;Chang,C.C.;Lee,G.H.;Peng,S.M.;Wang,Y. J.Chin.Chem.Soc.1993,40,315–317.(19)G€a rtner,M.;Fischer,R.;Langer,J.;G€o rls,H.;Walther,D.;Westerhausen,M.Inorg.Chem.2007,46,5118–5124.(20)Fischer,R.;Walther,D.;Gebhardt,P.;G€o rls,anometal-lics2000,19,2532–2540.(21)Blackmore,I.J.;Gibson,V.C.;Hitchcock,P.B.;Rees,C.W.; Williams,D.J.;White,A.J.P.J.Am.Chem.Soc.2005,127,6012–6020.5816Organometallics,Vol.28,No.19,2009Langer et al. Compound2illustrates that other species in addition to thepolymer and the monomer do exist,making compounds of thetype[(diox)nþ1(MgR2)n]an interesting subject for the study ofself-organization with and without additional templates.2.2.Ether Scission by Mesityl Grignard Reagents.Inorganolithium chemistry ether cleavage reactions are rathercommon and well understood.22Depending on the substit-uents of the ether,R,β,and R0,β-elimination was observed.In the case of diethyl ether all three mechanisms would lead toethene and lithium ethoxide(eq2).Deuteration experimentshave shown thatβ-elimination is the dominating reactionpathway,23whereas THF is R-deprotonated and decomposesto ethene and the lithium enolate of acetaldehyde.24,25Themetalation of2,6-Me2-4-ClC6H2OH with tert-butyllithiumin the presence of dioxane led to cleavage of1,4-dioxane withformation of LiO(CH2)2OCH d CH2,which was crystallizedas hexanuclear[(Aryl-O)2(R-O)4Li6(diox)](Aryl=2,6-Me2-4-ClC6H2;R=CH2CH2OCH d CH2).26RLiþCH3CH2OCH2CH3f RHþH2C d CH2þLiOCH2CH3ð2ÞIn the case of organomagnesium reagents such etherfragmentation reactions are less pronounced during prepara-tion and storage,making the isolation of cleavage products more difficult in presence of a huge excess of Grignard reagent.Adaptation of the protocol described above in order to address this challenge led us to the system MesMgBr/1,4-dioxane(Mes=2,4,6-trimethylphenyl).In this case the com-pounds[(μ-diox)MgBr2]¥and[(μ-diox)Mg(Mes)2]¥are both only sparingly soluble under typical conditions,giving an opportunity to remove most of the components of the Schlenk equilibrium from the reaction mixture and leaving the ether degradation products the major species in solution. This procedure allowed us to crystallize,isolate,and char-acterize two such products,[(diox)Mg(Mes)(μ-OEt)]2(3) and[(EtOCH(Me)CH(Me)OEt)Mg(Mes)2](4).Derivative3represents an expected diethyl ether degrada-tion product.Its molecular structure and numbering scheme are shown in Figure3.The ethoxide groups occupy bridging positions between the two magnesium atoms.Despite their bridging position,the ethoxide ligands show Mg-O bonds shorter than those of the coordinated ether molecules due to electrostatic attraction between the magnesium cation and the ethoxide anions.A comparable structure was observed for[{(Me3Si)2N}Mg(μ-OEt)(thf)]2;27however,the origin of the ethoxide anion in this compound is not quite clear.28Mulvey and co-workers reported the formation of the closely related[(thf)Mg(Bu t)(μ-OBu t)]2with an alkoxide ligand arising from oxygen insertion into the metal-carbon bond.29 Other comparable alkoxide-or phenoxide-bridged dimeric organomagnesium compounds30,31are also known,but in none of these cases does the alkoxide stem from ether cleavage reactions.Crystalline4was obtained after reduction of the volume of the mother liquor and cooling of the residual solution which contained the coligand2,pound4is the first well-defined metal complex containing this biden-tate ligand,even though ether cleavage reactions have been studied for decades.However,the formation of2,3-diethoxy-butane was observed earlier duringγ-irradiation of diethyl ether32,33as well as in Grignard reactions of magnesium with a substituted bromocyclopropane in diethyl ether.34,35In agreement with these references,the formation of the neutral coligand2,3-diethoxybutane of4suggests a radical mechan-ism involving the abstraction of an R-hydrogen atom of Et2O and recombination of two such radicals.Replacement of two dioxane molecules from[(diox)nþ1(MgMes2)n](n=1)by chelating2,3-diethoxybutane then gives mononuclear4. 2.3.Further Structural Investigations of Mesitylmagne-sium Compounds.In addition to compounds3and4,mono-nuclear[(diox)2Mg(Mes)2](5)was isolated from the very concentrated mother liquor that now contained a high concentration of dioxane.Mononuclear[(diox)2Mg(Mes)2] (5)crystallized with two crystallographically independent molecules which are distinguished by the letters A andB. Figure3.Molecular structure and numbering scheme of [(diox)Mg(Mes)(μ-OEt]2(3).Symmetry-related atoms(-xþ1, -yþ2,-z)are marked with the letter A.The thermal ellipsoids represent a probability of40%;H atoms are neglected for clarity reasons.Selected bond lengths(A):Mg1-C3=2.159(3),Mg1-O1=1.961(2),Mg1-O1A=1.966(2),Mg1-O2=2.057(2).Selec-ted angles(deg):Mg1-C3-C4=120.8(2),Mg1-C3-C8= 124.0(2),C4-C3-C8=115.2(2),Mg1-O1-Mg1A=96.75(9), C3-Mg1-O1=127.5(1),C3-Mg1-O1A=130.5(1),C3-Mg1-O2=104.6(1),O2-Mg-O1=104.26(9),O2-Mg1-O1A=102.5(1),O1-Mg1-O1A=83.25(9).(22)Maercker,A.Angew.Chem.1987,99,1002-1019;Angew. Chem.,Int.Ed.Engl.1987,26,972-989.(23)Maercker,A.;Demuth,W.Angew.Chem.1973,85,90-92; Angew.Chem.,Int.Ed.Engl.1973,12,75-76.(24)Rembaum,A.;Siao,S.-P.;Indictor,N.J.Polym.Sci.1962,56, S17–S19.(25)Bates,R.B.;Kroposki,L.M.;Potter,.Chem.1972, 37,560–562.(26)Randazzo,J.;Morris,J.J.;Rood,J.A.;Noll,B.C.;Henderson, mun.2008,11,1270–1272.(27)Yang,K.-C.;Chang,C.-C.;Huang,J.-Y.;Lin,C.-C.;Lee,G.-H.; Wang,Y.;Chiang,anomet.Chem.2002,648,176–187. (28)The synthesis of[{(Me3Si)2N}Mg(μ-OEt)(thf)]2as described in ref22is somewhat unclear.The reaction equation of MgEt2with HN(SiMe3)2in THF shows the formation of the diethyl ether complex [{(Me3Si)2N}Mg(μ-OEt)(OEt2)]2.However,the molecular structure clearly displays the THF adduct[{(Me3Si)2N}Mg(μ-OEt)(thf)]2.There-fore,the origin of the bridging ethanolate group remains unclear, because it could stem from ether cleavage reactions or from insertion of oxygen into a Mg-Et unit of starting diethylmagnesium.(29)Conway, B.;Hevia, E.;Kennedy, A.R.;Mulvey,R. E.; Weatherstone,S.Dalton Trans.2005,1532–1544.(30)Squiller,E.P.;Whittle,R.R.;Richey,H.G.,anometallics 1985,4,1154–1157.(31)Zhang,D.;Kawaguchi,anometallics2006,25,5506–5509.(32)Ng,M.K.M.;Freeman,G.R.J.Am.Chem.Soc.1965,87,1635–1639.(33)Ng,M.K.M.;Freeman,G.R.J.Am.Chem.Soc.1965,87,1639–1643.(34)Hamdouchi,C.;Topolski,M.;Goedken,V.;Walborsky,H.M. .Chem.1993,58,3148–3155.(35)Garst,J.F.;Lawrence,K.E.;Batlaw,R.;Boone,J.R.;Ungv a ry,F.Inorg.Chim.Acta1994,222,365–375.Article Organometallics,Vol.28,No.19,20095817The molecular structure and numbering scheme of molecule A are shown in Figure 5.The structural parameters are very similar to those of [(thf)2Mg(Mes)2].36According to Seidel and B €urger 37the addition of 2,20-bipyridine (bpy)to an Et 2O solution of Mes 2Mg at low tem-peratures yielded [(bpy)Mg(Mes)2](6),which decomposes slowly at room temperature.Due to its instability in solution,crystallization was found to be rather challenging and had to be performed at low temperature (-78°C).The molecular structure and numbering scheme of 6are shown in Figure 6.To the best of our knowledge,compound 6is the firststructurally characterized 2,20-bipyridine magnesium com-plex containing σ-bonded alkyl or aryl groups.This de-monstrates the high reactivity of such adducts,normally resulting in decomposition products containing (bpy -)Mg species.38Table 1summarizes selected structural parameters of the mononuclear dimesitylmagnesium compounds 4-6and the related THF adduct.In all of these complexes the magne-sium atoms are in distorted-tetrahedral environments.The 1,4-dioxane ligand is slightly bulkier than the THF molecule,leading to a smaller C -Mg -C angle in 5in comparison to that in [(thf)2Mg(Mes)2].On the one hand,bidentate ligands with a small bite (intraligand O 333O or N 333N distances)lead to small O -Mg -O-and N -Mg -N angles.On the other hand,this narrow angle allows an increase in the C -Mg -C angle.The influence of the bulki-ness of the neutral coligands on the Mg -C bond lengths is very small.However,less bulky aryl substituents allow shorter Mg -C bonds,as observed in [(thf)2Mg(Ph)2](Mg -C =2.127(4)A,Mg -O =2.030(4)A ),39[(thf)2Mg-(C 6H 4-4-Me)2](Mg -C=2.126(7)and 2.132(8)A,Mg -O=2.031(6)and 2.050(5)A),39and [(μ-diox)Mg(Ph)2]¥(Mg -C=2.135(2)A,Mg -O =2.081(2)and 2.061(2)A ).19In addition to the neutral mesitylmagnesium com-pounds described above,the ionic ate complex [(thf)4Li]þ-[Mg(Mes)3]-(7)was prepared as described by Seidel and B €urger 37and its molecular structure was determined (Figure 7).The [Mg(Mes)3]-anion contains a three-coordinate mag-nesium atom with an average Mg -C bond length of 2.168A.Despite the smaller coordination number of magnesium,similar Mg -C bond lengths are observed as described above for mononuclear complexes with tetracoordinate Mg atoms,because steric and electrostatic repulsion between the mesityl groups does not allow a shorter Mg -Cbond.Figure 4.Molecular structure of molecule A of [(EtOCH(Me)-CH(Me)OEt-O ,O 0)Mg(Mes)2](4).The thermal ellipsoids repre-sent a probability of 40%;H atoms are not drawn for clarityreasons.Selected bond lengths (A):MgA -C1A =2.165(5),MgA -C10A = 2.166(4),MgA -O1A = 2.114(3),MgA -O2A =2.100(3).Selected angles (deg):MgA -C1A -C2A =126.3(3),MgA -C1A -C6A =118.3(3),C2A -C1A -C6A =115.4(4),MgA -C10A -C11A =119.1(3),MgA -C10A -C15A =125.2(3),C11A -C10A -C15A =115.6(4).Figure 5.Molecular structure of molecule A of [(diox)2Mg-(Mes)2](5).The thermal ellipsoids represent a probability of 40%;H atoms are omitted for clarity reasons.Selected bondlengths (A):MgA -C1A =2.169(2),MgA -C10A =2.167(3),MgA -O1A=2.107(2),MgA -O3A=2.084(2).Selected angles (deg):MgA -C1A -C2A =127.7(2),MgA -C1A -C6A =116.9(2),C2A -C1A -C6A =115.0(2),MgA -C10A -C11A =127.3(2),MgA -C10A -C15A =117.1(2),C11A -C10A -C15A =115.4(2).Figure 6.Molecular structure of [(bpy)Mg(Mes)2](6).The thermal ellipsoids represent a probability of 40%;H atoms areneglected for clarity reasons.Selected bond lengths (A):Mg1-C1=2.177(2),Mg1-C10=2.169(2),Mg1-N1=2.166(2),Mg1-N2=2.181(2).Selected angles (deg):Mg1-C1-C2=125.3(2),Mg1-C1-C6=119.8(1),C2-C1-C6=114.9(2),Mg1-C10-C11=118.5(1),Mg1-C10-C15=125.9(1),C11-C10-C15=115.6(2).(36)Waggoner,K.M.;Power,anometallics 1992,11,3209–3214.(37)Seidel,W.;B €urger,I.Z.Anorg.Allg.Chem.1978,447,195–198.(38)Kaim,W.Chem.Ber.1981,114,3789–3800.(39)Markies,P.R.;Schat,G.;Akkerman,O.S.;Bickelhaupt,F.;Smeets,W.J.J.;van der Sluis,P.;Spek,anomet.Chem.1990,393,315–331.5818Organometallics,Vol.28,No.19,2009Langer et al.This compound crystallizes isomorphous to the manganese derivative [(thf)4Li]þ[Mn(Mes)3]-.40Larger aryl groups such as 2,4,6-triisopropylphenyl substituents lead to the magnesi-ate [Mg(C 6H 2-2,4,6-i Pr 3)3]-,with longer and differingMg -C bonds of 2.249(4),2.206(4),and 2.147(4)Aand strong distortions (C -Mg -C angles vary between 105.0(1)and 131.2(2)°).36Smaller aryl groups allow larger coordina-tion numbers at the magnesium atom.Thus,a triphenyl-magnesiate anion dimerizes,yielding [Ph 2Mg(μ-Ph)2Mg-Ph 2]2-anions,41or this moiety completes its coordination sphere via addition of a Lewis base such as THF,as in [(thf)MgPh 3]-,42or via addition of another phenyl group,as in [MgPh 4]2-.40Very bulky aryl groups are able to stabilize even two-coordinate magnesium atoms,as in [Mg(C 6H 2-2,4,6-t Bu 3)2](Mg -C =2.118(3)and 2.120(3)A).43Regardless of the coligands,the mesityl group shows characteristic distortions.The C -C -C angle at the ipso carbon atom is rather narrow in all compounds discussed above.Repulsive forces between the free electron pair with the anionic charge at the ipso carbon atom and the neighbor-ing C -C bonds enforce a reduction of the endocyclic C -C -C bond angles.This feature is characteristic not only for magnesium derivatives but for all aryl compounds with electropositive metals (i.e.,aryl metal derivatives with largely ionic metal -carbon bonds).The chemistry of dimesitylmagnesium discussed above is summarized in Scheme 1.3.ConclusionIn this study we have investigated the structural diversity of dioxane adducts of diorganomagnesium compounds of the general formula [(diox)n þ1(MgR 2)n ].The compounds isolated range from monomeric [(diox)2Mg(Mes)2](5)and dimeric [(diox)Bz 2Mg(μ-diox-O ,O 0)Mg(diox)Bz 2](2)to poly-meric [(μ-diox-O ,O 0)Mg(cyclo -C 6H 11)2]¥(1).Additionally,the dioxane method was used to investigate diethyl ether fragmentation during the synthesis and storage of MesMgBr in diethyl ether.The two products obtained,[(diox)Mg(Mes)(μ-OEt)]2(3)and [(EtOCH(Me)CH(Me)OEt)-Mg(Mes)2](4),suggest that radical processes as well as elimina-tion reactions play a significant role in diethyl ether cleavage by mesitylmagnesium species.4.Experimental Section4.1.General Considerations.All manipulations were carried out under an argon atmosphere using standard Schlenk techni-ques.The solvents were dried according to common procedures and distilled under argon;deuterated solvents were dried over sodium,degassed,and saturated with argon.The yields given are not optimized.The 1H and 13C{1H}NMR spectra were obtained on a Bruker AC 400MHz spectrometer.Mass spectra were obtained on a Finnigan MAT SSQ 710system,and IR measurements were carried out using a Perkin-Elmer System 2000FTIR.The IR spectra were taken as Nujol mulls between KBr windows.Melting and decomposition points were mea-sured with a Reichert-Jung apparatus,type 302102,and are uncorrected.The magnesium content was determined by complexometric titration of a hydrolyzed aliquot (after treatment with HNO 3)with 0.05M EDTA using Eriochrome Black T as the indicator.44The starting materials mesitylmagnesium bromide in THF or Et 2O and [(thf)2Mg(Mes)2]were prepared according (or analogouslyTable parison of Selected Bond Lengths (A)and Angles (deg )of [(thf )2Mg (Mes )2],28Molecule A of[(EtOCH (Me )CH (Me )OEt )Mg (Mes )2](4),Molecule A of[(diox )2Mg (Mes )2](5),and [(bpy )Mg (Mes )2](6)[(thf)2Mg(Mes)2]456Mg1-C1 2.182(3) 2.165(5) 2.169(2) 2.177(2)Mg1-C10 2.165(3) 2.166(4) 2.167(3) 2.169(2)Mg1-O/N 2.067(3) 2.114(3) 2.107(2) 2.166(2)2.079(3) 2.100(3) 2.084(2) 2.181(2)C1-Mg -C10118.8(1)121.2(2)117.55(9)122.68(7)C1-Mg -O/N 105.5(1)120.9(2)103.14(8)104.68(7)121.8(1)104.7(1)121.80(9)117.85(7)C10-Mg -O/N 118.3(1)105.8(2)122.89(9)120.99(7)100.9(1)121.1(2)101.23(8)106.43(6)O/N -Mg -O/N88.4(1)75.3(1)87.90(8)75.28(6)Figure 7.Molecular structure and numbering scheme of sol-vent-separated [(thf)4Li]þ[Mg(Mes)3]-(7).The thermal ellip-soids represent a probability of 40%;H atoms are omitted forclarity reasons.Selected bond lengths (A):Mg -C1=2.168(2),Mg1-C10=2.169(2),Mg1-C19=2.166(2),Li1-O1=1.910(5),Li1-O2=1.938(5),Li1-O3=1.929(2),Li1-O4=1.905(5).Selected angles (deg):Mg1-C1-C2=121.3(2),Mg1-C1-C6=123.2(2),C2-C1-C6=115.5(2),Mg1-C10-C11=121.8(2),Mg1-C10-C15=122.1(2),C11-C10-C15=116.0(2),Mg1-C19-C20=125.0(2),Mg1-C19-C24=119.4(2),C20-C19-C24=115.4(2).Scheme 1.Reactivity Diagram of“MesMgBr”(40)Bartlett,R.A.;Olmstead,M.M.;Power,P.P.;Shoner,S.C.Organometallics 1988,7,1801–1806.(41)Thoennes,D.;Weiss,E.Chem.Ber.1978,111,3726–3731.(42)Pajerski,A.D.;Kushlan,D.M.;Parvez,M.;Richey,anometallics 2006,25,1206–1212.(43)Wehmschulte,R.J.;Power,anometallics 1995,14,3264–3267.(44)M €uller,G.-O.Lehr-und U ¨bungsbuch der anorganisch-analy-tischen Chemie ,7th ed.;Verlag Harri Deutsch:Frankfurt am Main,1992;V ol.3(Quantitativ-anorganisches Praktikum ).Article Organometallics,Vol.28,No.19,20095819in the case of diethyl ether)to literature procedures.37Benzyl-magnesium chloride in diethyl ether was purchased from Al-drich.4.2.Synthesis of[(μ-diox-O,O0)Mg(cyclo-C6H11)2]¥(1).Di-oxane(14mL,0.164mol)was added dropwise with rapid stirring to a solution of[(cyclo-C6H11)MgBr]freshly preparedfrom magnesium(3.0g,0.123mol)and cyclohexyl bromide (16.3g,0.1mol)in ether(100mL).The resulting white suspen-sion was allowed to stand overnight and filtered afterward.Thewhite residue was washed with ether(20mL)and discarded.The combined ether solutions were stored at-20°C for3days, yielding colorless crystals which were isolated by filtration and dried in vacuo.Yield:5.8g(42%).Mp:>270°C.Anal.Calcdfor C16H30MgO2(278.72g mol-1):Mg,8.5.Found:Mg,8.7.1H NMR(400.25MHz,25°C,[D6]benzene/[D8]THF(3:1)):δ0.14 (2H,m,H C1),1.48-3.19(20H,m,H2,20-H4),3.38(8H,s, C H2O,diox).13C{1H}NMR(50.32MHz,25°C,[D6]benzene/[D8]THF(3:1)):δ25.9(2C,C1),29.7(2C,C4),32.3(4C,C3,30), 35.9(4C,C2,20),66.9(12C,C H2O,dx).MS(EI,m/z[%]):88 (diox)[10],82(C6H10)[85],67(C5H7)[40],57(C4H9)[100],44(C2H2O)[60].IR(Nujol,KBr,ν,cm-1):2917,vs(br);2798,vs; 2756,m;2360,w;1659,w;1631,w;1548,w;1454,vs;1376,s; 1299,m;1257,s;1151,m;1106,s;1074,vs;1040,m;1022,m; 965,m;893,s;860,vs;830,m;791,w;721,w;615,s.Suitable crystals for X-ray diffraction experiments were obtained directly from the reaction mixture.4.3.Synthesis of[(diox)Bz2Mg(μ-diox-O,O0)Mg(diox)Bz2] (2).Dioxane(15mL,0.176mol)was added dropwise with rapid stirring to a solution of[BzMgCl]in ether(80mL,0.9M).The resulting white suspension was allowed to stand overnight and filtered afterward.The white residue was washed with ether (20mL)and discarded.The combined ether solutions were stored at room temperature for3months.The colorless crystals that had formed were isolated by filtration and dried in vacuo. Yield:1.31g(1.93mmol,11%).Decomposition above43°C. Anal.Calcd for C40H52Mg2O6(677.47g mol-1):Mg,7.2. Found:Mg,7.1.1H NMR(400.25MHz,25°C,[D6]benzene/ [D8]THF(3:1)):δ1.59(8H,s,PhC H2),3.32(24H,s,C H2O,dx), 6.54(4H,t,3J=7.2Hz,p-H),6.89(8H,dt,3J=7.2Hz,m,m0-H), 6.96(8H,t,3J=7.2Hz,o,o0-H).13C{1H}NMR(100.65MHz, 25°C,[D6]benzene/[D8]THF(3:1)):δ23.1(4C,Ph C H2),67.6 (12C,O C H2,diox),116.1(4C,p-C),123.6(8C,m-C),129.2(8C, o-C),157.2(4C,i-C).MS(EI,m/z[%]):91(C7H7)[100],88 (diox)[30],79(C6H7)[55],77(C6H5)[40].IR(Nujol,KBr,ν, cm-1):2918,vs(b);2854,vs;1937,w;1711,w;1585,s;1477,s; 1453,vs;1409,w;1377,s;1299,m;1256,s;1208,s;1174,m; 1122,s;1105,m;1071,m;1061,m;1044,m;1026,m;998,w;912, s;895,m;873,vs;827,m;713,s;750,s;727,m;703,s;617,m; 577,m;551,m;521,m.The crystals obtained as described above were suitable for X-ray diffraction experiments.4.4.Synthesis of[(diox)Mg(Mes)(μ-OEt)]2(3),[(EtOCH(Me)-CH(Me)OEt)Mg(Mes)2](4),and[(diox)2Mg(Mes)2](5).Diox-ane(5.1mL,60mmol)was added dropwise with rapid stirring to a freshly prepared solution of[MesMgBr]in diethyl ether (50mL,0.8M).The resulting off-white suspension was allowed to stand overnight and was diluted afterward with additional ether(40mL).Filtration gave50mL of a pale yellow solution, while the rest of the solvent remained in the voluminous residue. This solution was stored for3days at0°C,and a small amount of precipitate that had formed was removed by filtration.Then the volume of the mother liquor was reduced to10mL by eva-poration of the solvent in vacuo.Colorless crystals of4(110mg, 0.27mmol,2.7%)were obtained from this solution at0°C overnight and isolated by decantation.The mother liquor was further concentrated to4mL and stored again at0°C for1week. The newly formed crystals were isolated by filtration and dried in vacuo.Yield:450mg;mixture of3(190mg,0.36mmol,3.6%) and5(260mg,0.59mmol,3.0%)as judged by NMR.Data for3 are as follows.1H NMR(200.13MHz,25°C,[D8]THF):δ1.19 (6H,t,3J H-H=7.0Hz,C H3OEt),2.16(6H,s,p-C H3),2.41(12H,s,o-C H3),3.54(16H,s,OCH2diox),3.93(4H,q,3J H-H= 7.0Hz,C H2OEt),6.61(4H,s,m-C H).13C{1H}NMR(50.33 MHz,25°C,[D8]THF):δ21.4(2C,p-C H3),22.2(2C,C H3OEt), 28.3(4C,o-C H3),67.7(8C,O C H2diox),124.8(4C,m-C H), 133.7(2C,p-C H),147.3(4C,o-C),162.3(2C,i-C).Data for4are as follows.1H NMR(200.13MHz,25°C,[D8]THF):δ0.97(6H, m,CHC H3),1.07(6H,t,3J H-H=7.0Hz,C H3OEt),2.07(6H,s, p-C H3),2.26(12H,s,o-C H3),3.3-3.5(6H,m,C H2OEtþC H CH3),6.48(4H,s,m-C H).13C{1H}NMR(50.33MHz, 25°C,[D8]THF):δ14.3(2C,CH C H3),16.0(2C,CH3OEt),21.4(2C,p-C H3),27.6(4C,o-C H3),64.9(2C,O C H2),77.5(2C,C HCH3),125.0(4C,m-C H),133.1(2C,p-C H),141.3(4C,o-C), 165.2(2C,i-C).Data for5are as follows.1H NMR(200.13 MHz,25°C,[D8]THF):δ2.14(6H,s,p-C H3),2.33(12H,s,o-C H3),3.54(16H,s,OC H2diox),6.56(4H,s,m-C H).13C{1H} NMR(50.33MHz,25°C,[D8]THF):δ21.4(2C,p-C H3),27.7 (4C,o-C H3),67.7(8C,O C H2diox),125.0(4C,m-C H),133.2 (2C,p-C H),147.1(4C,o-C),165.3(2C,i-C).The NMR data for 3and5were obtained from an isolated mixture of these compounds.The signals were assigned on the basis of two-dimensional NMR experiments(H,H-COSY,HMBC,HSQC) as well as their different signal intensities.The crystals of3-5 obtained directly from the reaction mixture were suitable for X-ray diffraction measurements.Alternatively,crystals of 53(toluene)in extremely low yields were obtained by extraction of the voluminous precipitate formed during the dioxane addi-tion(see above)with a hot mixture(60°C)of toluene and dioxane(4:1)and subsequent cooling of the resulting solution to -40°C.4.5.Synthesis of[(bpy)Mg(Mes)2](6).Solid[(thf)2Mg(Mes)2] (0.52g,1.28mmol)was suspended in Et2O(15mL)and a solution of2,20-bipyridine(0.20g,1.28mmol)in Et2O(5mL) was added dropwise at-40°C.Stirring of the mixture was continued for4h at-20°C,after which yellow microcrystals had formed(the mother liquor turned dark red).Separation, washing with Et2O(4mL),and drying in vacuo yielded0.46g (1.10mmol,86%)of pyrophoric6.Decomposition above150°C. Anal.Calcd for C28H30MgN2(418.88g mol-1):Mg,5.8.Found: 5.5.1H NMR(400.25MHz,25°C,[D8]THF):δ1.31(6H,s, p-C H3),2.23(12H,s,o-C H3),6.75(4H,s,m-C H),7.46(2H,t, 3JH-H=7.6Hz,H4,40-bpy),7.77(2H,d,3J H-H=7.6Hz,H5,50-bpy),8.49(2H,br,H6,60-bpy),8.63(2H,br,H3,30-bpy).13C{1H} NMR(100.65MHz,25°C,[D8]THF):δ21.3(2C,p-C H3),27.3 (4C,o-C H3),121.3(2C,C6,60-bpy),127.5(4C,m-C H),128.2(2C, p-C H),128.9(2C,C5,50-bpy),129.5(2C,C4,40-bpy),138.0(4C, o-C),149.9(2C,C3,30-bpy),157.0(2C,C1,10-bpy),172.1(2C,i-C). MS(EI-,m/z[%]):121(MesH)[100],105(C8H9þ)[30],77(py) [38].Single crystals suitable for X-ray crystallographic measure-ments were obtained by recrystallization of6in a mixture of diethyl ether and tetrahydrofuran(10:1)at-78°C.4.6.Synthesis of[Li(thf)4][Mg(Mes)3](7).Solid[(thf)2Mg(Mes)2](0.65g,1.60mmol)was dissolved in THF(5mL),and LiMes(1.96mL,1.60mmol,0.814M)in THF was added at0°C.After the mixture was stirred at room temperature for12h,Et2O(10mL)was added and the yellow solution was filtered.Cooling of the filtrate to-40°C led to precipitation of colorless crystals.Separation, washing with n-pentane(10mL),and drying in vacuo yielded0.72g (1.06mmol,66%)of[Li(thf)4][Mg(Mes)3](7).Decomposition above134°C.1H NMR(400.25MHz,25°C,[D8]THF):δ1.78 (16H,m,C H2,thf),2.08(9H,s,p-C H3),2.35(18H,s,o-C H3),3.61 (16H,m,C H2O,thf),6.40(6H,s,m-H).13C{1H}NMR(100.65 MHz,25°C,[D8]THF):δ21.6(3C,p-C H3),25.2(8C,C H2,thf), 27.9(6C,o-C H3),67.5(6C,C H2O,thf),123.8(6C,m-C),131.2(3C, p-C),147.0(6C,o-C),172.1(3C,i-C).7Li NMR(155.55MHz, 25°C,[D8]THF):δ-0.82.MS(ESI-,m/z[%]):381(MgMes3) [15],353(MgMes3-2Me)[25],339(MgMes3-3Me)[30].IR (Nujol,KBr,ν,cm-1):2924,vs(br);2361,w;1608,m;1588,w;1460, s;1376,s;1310,w;1254,w;1208,w;1045,m;887,m;834,m;721,w; 687,m;548,m.Crystals suitable for X-ray diffraction experiments were obtained directly from the reaction mixture.。

相关文档
最新文档