SIMULATION ANALYSIS OF RLC TIMERS IN UMTS SYSTEMS
旋流中间包夹杂物碰撞去除的数值模拟
第20卷第丨2期 2020年12月过程工程学报The Chinese Journal of Process Engineering Vol.20 No. 12 Dec. 2020DOI: 10.12034/j.issn.l009-606X.220021Numerical simulation of collision removal of inclusions in swirling flowtundishJinlin L U 1, Dongsheng Z H A N G 1, Zhiguo LUO 1'2*, Zongshu ZO U 121. School of Metallurgy, Northeast University, Shenyang, Liaoning 110819, China2. Key Laboratory of Ecological Metallurgy Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeast University,Shenyang, Liaoning 110819, ChinaAbstract: The SFT (swirling flow tundish ) is atundish with swirl chamber placed in the flow injection zone . The gravitational potential energy is converted into swirling kinetic energy as the liquid steel flows into the tundish from the bottom of the SC (swirling chamber ) through a nozzle along the tangent direction .The swirling molten steel promotes the inclusions to gather towards the center of the swirling chamber , promoting the inclusions to collide and polymerize . In this work , the PBM model in A N SYS Fluent was used to simulatethe growth o f inclusions in SFT , the DPM model was used to simulate the removal rate and trajectory of different particle size inclusions . Simulation results showed that the average diameter of inclusions in the tundish without swirling chamber increased from 3.93 jam to 4.25 fim and the inclusion removal rate was 40.07% considering the collision polymerization between inclusions . Under the same operating conditions , the average diameter of inclusions in swirling flow tundish increased from 3.93to 4.35 |im , and the removal rate o f inclusions increased from 30.09%to 43.20%. The removal capacity of SFT was better than that of NSCT (non-swirling chamber tundish )Key words: inclusion removal ; collision polymerization ; numerical simulation ; swirling flow tundish. -__3流动与传递l ;收稿:2020-0卜14,修回:2020-03-17,网络发表:2020-04-01,Received: 2020-01-14, Revised: 2020-03-17,丨)ublished online: 2020-04-01 基金项目:国家自然科学基金资助项目(编号:51604068)作者简介:卢金霖(1994-),男,河南省鹿邑县人,硕士研宄生,钢铁冶金专业:罗志国,通讯联系人,E-mail:*************.引用格式:卢金霖,张东升,罗志国,等.旋流中间包夹杂物碰撞去除的数值模拟.过程工程学报,2020, 20(12): 1432-1438.Lu J L, Zhang D S, Luo Z G, et al. Numerical simulation of collision removal of inclusions in swirling flow tundish (in Chinese).Chin. J. Process Eng., 2020, 20(12): 1432-1438, DOI:10.12034/j.issn.l009-606X.220021.第12期卢金霖等:旋流中间包夹杂物碰撞去除的数值模拟1433旋流中间包夹杂物碰撞去除的数值模拟卢金霖、张东升、罗志国U2t,邹宗树h21.东北大学冶金学院,辽宁沈阳1108192.东北大学冶金学院多金属共生矿生态化冶金教育部重点实验室,辽宁沈阳110819摘要:旋流中间包是在中间包注流区内设置旋流室,钢液经长水口从旋流室底部沿着切线方向流入中间包内,使重力势能转 化为旋转动能,旋转的钢液促使夹杂物向旋流室中心聚集,促进夹杂物碰撞聚合长大。
RLC测试仪设计
RLC测试仪设计双击自动滚屏发布者:ebnar 发布时间:2012-2-7 阅读:865 次【字体:大中小】QQ 651552016 专做电子类毕业设计,机电一体化毕业设计。
熟悉51、ARM、电路设计、电路仿真等,欢迎咨询!绪论电子产品中,电阻(R)、电容(C)和电感(L)是最基本的元器件,也是使用最多的元器件。
在充满激烈竞争的电子行业中,要求电子产品必须具有越来越高的性能、质量及性价比,从而对所使用的元器件提出了更高、更严格的要求。
元器件在不同的信号频率、不同的信号电平下,其性能和技术指标会发生变化。
尤其在高频段,元器件参数以及元器件所表现出的特性变化更大。
此外,元器件虽然能满足出厂时的技术指标,但装入实际电路中会表现出不同的特性。
因此,了解元器件在实际工作条件下的性能特性,有助于设计出高质量的电路,提高产品的性能和可靠性。
总之,RLC测试仪在产品设计、研发、生产和维护的过程中必不可少。
1 方案选择RLC参数的测量方法主要有电桥法、谐振法和伏安法。
1.1电桥法电桥法是能同时测量电器元件R、L、C最典型的方法,如图1.1所示。
电阻R可用直流电桥测量,电感L、电容C可用交流电桥测量。
电桥平衡的条件为SHAPE \* MERGEFORMAT图1.1 RLC测量电桥通过调节阻抗Z1、Z2使电桥平衡,这时电表读数为零。
根据平衡条件及一些已知的电路参数就可以求出被测参数。
用这种测量方法,参数的值还要通过联立方程求解,调节电阻值一般只能手动,电桥平衡的判别亦难以用简单的电路实现。
这样,电桥法不易实现自动测量。
1.2谐振法谐振法可以用来测量L、C值,如图1.2所示。
它可以在工作频率上进行测量,使测量的条件更接近使用情况。
但是,这种测量方法要求的频率连续可调,直至谐振。
因此它对震荡器要求较高,另外,和电桥法一样,调节和平衡判断很难实现智能化。
图1.2 谐振法测量L、C原理图1.3伏安法伏安法是测量电阻的最基本方法,如图1.3所示。
matlab中Simulink在RLC电路仿真中的应用课程设计
4、MATLAB的M文件建模仿真
在MATLAB中建立脚本文件编写程序进行建模仿真,通过结果的对比可进一步验证对Simulink的动态仿真结果的正确性。
三、电路仿真设计步骤:
1、在MATLAB的Command窗口直接键入Simulink即可打开Simulink工作窗口,或者直接点击工具栏上的simulink菜单。
2、从元件库Sim powersystems及其它的一些库中拖出题目要求的元器件,包括直流电压、串联RLC电阻、scope及电压表(voltage measurement)、电流表(current measurement),按照电路图,并进行连接,建立Simulink电路仿真模型,电路布局图如图2所示:
图2 Simulink电路布局图
3、点击 运行,双击示波器Scope(或查看display),得到仿真出来I的电流值为-2.4A,得到电流I的simulink仿真波形图,如图3所示:
图3电流I的simulink仿真波形
1.1、用方框图的绘制代替了程序的编写。构成任何一个系统框图有三个步骤,即选定典型环节,相互联结和给定环节参数。
1.2、仿真的建立和运行是智能化的。首先,画好了框图并存起来,Simulink自动建立一个仿真的过程;其次,在运行时用户可以不给步长,只给出要求的仿真精度,软件会自动选择能保证给定精度的最大步长,使得在给定的精度要求下系统仿真具有最快的速度。
基于Multisim软件的RLC串联电路动态过程分析
基于Multisim软件的RLC串联电路动态过程分析陆建美(安庆师范学院物理与电气工程学院安徽安庆246011)指导老师:江巨浪摘要:本文采用Multisim10仿真软件对RLC串联电路动态过程进行分析,介绍了基于Multisim仿真软件对电路的幅频特性进行的研究。
针对RLC串联电路的特性对其进行了二阶时域微分方程的数学模型分析,研究了RLC串联二阶电路系统在外界方波激励信号作用下三种状态响应。
结论是二阶系统的响应会因RLC的参数的不同而变化,同时仿真实验能够直观形象地描述RLC串联电路的动态特性,用测量和仿真的方法验证了理论分析的正确性,使电路分析更加灵活和直观。
关键词:RLC串联电路,Multisim,仿真分析。
1.引言RLC串联电路在高频电子线路中有很大的应用,文献[1]分析了RLC串联电路在高频电子技术中的应用,主要应用于选频网络。
在选频网络中主要分为两大类,第一类是由电感和电容元件组成的振荡回路,第二类是各种滤波器,如LC集中滤波器、石英晶体滤波器、陶瓷滤波器和声表面滤波器等。
各种形式的选频网络在现代电子线路中得到广泛的应用,它能选出我们需要的频率分量和滤除不需要的频率分量,因此掌握各种选频网络的特性是很重要的。
RLC串联电路也是众多选频网络的一种,具有选频特性。
RLC串联电路是针对抑制干扰而言的,目前,由于无线电台日益增多,因此无线电台的干扰日益严重。
所以RLC串联电路在现代滤除干扰信号中有很好的应用。
文献[2]主要讲述对RLC串联电路的分析。
本课题将研究RLC串联电路的响应与R、L、C参数的关系,可以让我们对RLC串联电路的特性有更加深入的了解。
Multisim仿真软件是由加拿大Interactive Image Technologies 公司开发的一种基于SPICE 工业标准的EDA软件,EDA技术以其电路绘制、元器件编辑、参数提取与检验、电路仿真、布局布线等功能,开始形成系统功能比较丰富的EDA软件,它就像一个真正的实验工作台,将电路原理图的输入、虚拟仪器的测试分析和结果的图形显示等集成到一个设计窗口。
RLC串联电路的时频特性仿真分析
或 当 电路 处于 零输 入 放 电状 态 时 , 由于 电感存 储 的
磁 场能 量与 电容储 存 的电 ห้องสมุดไป่ตู้ 能量 发 生 能 量交 换 , 电
点… 。直流 电路 中, L R C串联 电路是一 种 瞬态响
应 。正 弦交 流 电中 , L R C电路 的 响应 就 是 正 弦稳 态
路的响应会 受到不 同电阻值 的影 响。图 1 a 为 () R C串联 电路 的仿 真 电路 。开关 最 初 与 地 相 接 , L 在
摘要: L R C串联 电路是“ 电路 ” 课程教学中其 中的一个重点。本文应用 Mu i m仿真 软件对 R C串联 电路进行 了时域和频域仿真分 析, hs i L 给出了
R C串联电路 的零状态 响应 , L 正弦稳态响应及其 幅频特性的演示示例 , 知识和仿真演示相结合 , 学生加深 了对 R C串联 电路 的理解 和 理论 使 L
ZHANG Ruipi - ng
( p r etfEetcl n rai T iunU i rt o i c n eh o g ,T iun0 0 2 Deat n l ra f m tn, aya nv syf S e ead Tcnl y aya 3 04,C ia m o ci I o o e i c n o hn )
第3 4卷
第 3期
电气电子教学学报
J ouR NAL OFEE E
Vo . 4 N . 13 o 3
21 0 2年 6月
Jn 2 2 u . 01
R C 串联 电路 的 时频 特 性 仿 真分 析 L
张 瑞 平
( 太原科 技 大 学 电子信 息 工程 学院 ,山 西 太原 0 02 ) 304
不确定中立型随机多时滞系统的鲁棒镇定
第 37卷第 1期
Vo1.37 No.1 2016
青 岛 理 工 大 学 学 报
Journal of Qingdao University of Technology
不确 定 中立 型 随 机 多 时滞 系统 的鲁 棒 镇 定
周 丽 娜 ,刘 晓 华
(1.山东工商学院 数学与信息科 学学 院 ,烟 台 24025)
近 10年来 ,随 机时滞 系统 的鲁 棒控 制 问题成 为控 制 理论 研 究 的热 点 之一 .稳 定 性 是控 制 系 统设 计 首 先需要考虑的基本问题.目前 ,关于随机时滞系统 的稳定性 的研究成果很多.文献Eli研究了随机时滞系统 的稳 定性 问题 ,所 给出 的系统 稳定 的充 分条 件与 时滞 无关 ;为 了降低 条件 的保 守性 ,文 献 [2~5]研 究 了具 有 时滞 的随机 系统 的稳 定性 问题 ,给 出 了使 系统 稳 定且 与时 滞 相关 的充 分 条件 ;文 献 [6—7]研 究 了非线 性 随 机 时滞系 统 的稳定性 问题 ;文 献 [8—9]研究 了具 有 凸 多 面体 不 确定 性 的 随机 时滞 系 统 的鲁 棒 稳定 性 问 题 ; 文献[Io一12]研究了神经网络的稳定性 问题 ;文献El3—15]研究 了中立型随机时滞系统 的鲁棒稳定性 问题 ;
基于MATLAB的RLC阻尼振荡电路仿真分析
图 2为 t ≥ 0时 RLC串联放电电路 ,根据基尔霍夫电压定律有 :
uR ( t) + uL ( t) + uC ( t) = 0
(1)
R 、L 、C 三个元件的伏安关系分别为 : uR ( t)
= R i ( t) 、i ( t)
=C
duC ( t) dt
、uL
( t)
= L d i ( t) dt
= K1 es1t
+ K2 es2t , t ≥ 0式中 S1 、S2 是微分方程特征方程 S2
+ RS L
+1 LC
= 0的根 。
1. 2 三种放电过程的判定及其通解
在上述微分方程特征方程中 ,解得 S12
=- R ± 2L
( R ) 2 - 1 ,令 △ = ( R ) 2 - 1
2L LC
2L LC
基于 MATLAB的 RLC阻尼振荡电路仿真分析
张天瑜 3
(无锡市广播电视大学 ,江苏 无锡 214021)
摘 要 :在电路分析中经常会遇到一些阻尼振荡电路 ,由于这类电路在高压断路器开断能力测 试 、受控热核研究等许多重要的工程领域有着广泛的应用 ,因此有必要对此类电路的特性加以 研究 。本文首先介绍了建立数学模型的方法 ,然后利用了时域中传统的微分方程法和频域中 经典的拉普拉斯变换法对电路进行分析 。最后借助于 MATLAB 软件来对两类 RLC电路的过 渡过程进行仿真分析 ,并对其产生的错误作出了解释 ,此外还给出了一种解决的方法 。 关键词 :过渡过程 ;拉普拉斯变换 ;阻尼 ;振荡 中图分类号 : TN7 文献标识码 : B 文章编号 : 1672 - 9706 (2007) 01 - 0117 - 05
基于Multisim仿真的RLC串联稳态电路实验设计与实现
第34卷第1期2021年2月大学物理实验PHYSICAL EXPERIMENT OF COLLEGEVol.34No.1Feb.2021文章编号:1007-2934(2021)01-0100-05基于Multisim仿真的RLC串联稳态电路实验设计与实现罗志髙(中山大学公共实验教学中心,广东广州510006)摘要:利用Multisim14电路仿真软件完成RC电路的幅频特性和相频特性以及测RLC串联电路的相频特性,学习了用双踪示波器测量相位差。
特别是在疫情期间开出这个实验,学生不仅学会了RLC 稳态电路知识,也会使用Multisim电路仿真软件。
关键词:电路仿真;稳态电路;幅频特性;相频特性中图分类号:O4-39文献标志码:A D0l:10.14139/22-1228.2021.01.0251RLC稳态电路的基本特性简介在RLC串联电路中,若加在电路两端的正弦交流信号保持不变,则当电路中的电流和电压变化达到稳定状态时,电流(或某元件两端的电压)与频率之间的关系特性称为幅频特性;电压、电流之间的位相差与频率之间的关系特性称为相频特性。
从以下3种串联电路来分析。
1.1RC串联电路RC串联电路如图1所示,由于电容C的容抗为1/(jwC),可得:U=U r+u c=/[r+^c](1)式中,U为信号源输出的总电压,U R为电阻两端的电压,〃C为电容两端的电压,C为电容,e=2n f 为角频率。
由式(1)可得电路总阻抗IZ I、电流有效值/、电阻两端电压的有效值U r、电容两端电压的有效值U C及电路电流与总电压之间的位相差△p分别为IZI=R2+(1/eC)2(2);/=UeC/1+(ReC)2(3)U R=IR=UeRC/1+(ReC)2(4);U C=I/(eC)=U/1+(eRC)2(5)△p=p U r-p U=tan-1(1/eRC)(6)若总电压有效值U保持不变,根据式(4)和式(5)可画出U r~/和U c~/幅频特性曲线,如图2所示。
RLC电路并联谐振理论与仿真分析
RLC电路并联谐振理论与仿真分析潘杰;刘晓文;陈桂真【摘要】本文对RLC并联谐振电路进行了理论研究,包括理想RLC并联电路、实际RL-C并联电路的电压电流特性与相量图、电容电感无功功率关系、品质因数Q的推导计算及其对谐振特性的影响,并采用Multisim软件对两类并联谐振电路进行了仿真分析,结果不仅能很好地验证理论分析的正确性,同时可以快捷准确观测并联谐振电路的幅频与相频特性曲线,简化了实验操作,弥补了设备不足。
%This paper studies the theory of RLC parallel-resonantcircuit,including the voltage-current characteristics and the phase diagram of ideal RLC parallel circuit and actual RL-C parallel circuit,the relationship of capacitance and inductance reactive power,and the derivation and calculation of the quality factor Q.This paper also carries out simulation analysis on these two kinds of parallel-resonant circuits with Multisim software.The results not only easily verify the correctness of the theoretical analysis,but also quickly and accurately observe the amplitude frequency and phase frequency characteristic curve of parallel-resonant circuit,which simplifies the experimental operation,and makes up for the shortage of equipment.【期刊名称】《实验科学与技术》【年(卷),期】2016(014)005【总页数】5页(P21-25)【关键词】RLC电路;并联谐振;品质因数;频率特性;Multisim软件【作者】潘杰;刘晓文;陈桂真【作者单位】中国矿业大学信息与电气工程学院,江苏徐州 221008;中国矿业大学信息与电气工程学院,江苏徐州 221008;中国矿业大学信息与电气工程学院,江苏徐州 221008【正文语种】中文【中图分类】TM133电路的谐振分析不仅在理论上涉及电路的频率响应[1]、网络函数[2]、波特图[3]和相量图[4]等典型频域分析方法,同时在实践中影响到如何更好地利用选频网络[5]、规避谐振产生的高电压、大电流危害[6]等问题,因而在电路理论与实验教学过程中占有重要地位。
基于自由轴法的智能RLC测量仪研究
相电路模型的基础上 , 提 出了一种能提 高测量精度 的差分测 量 电路和差分脉冲积分 鉴相 电路 。该种 方法 和 电路 既可 以用 于
阻抗测量又可以用于元件参数测量 。
1 智能 RL C测 量 仪 系统 设 计
1 . 1 测量 原 理
1 . 1 . 1 矢 量 自由轴 法
的激励 信号 , 精度不如 电桥法 , 而且 也很 难实现智能测量 。
0 引 言
的相位参 考基 准可 任意 选择 , 只需 要保 证 两个 坐标轴 准确 正
阻抗及元件参数 ( 电阻 R 、 电感 £ 、 电容 C) 的测 量广泛应用 于复阻抗测量 … 、 生物医学 阻抗分析 、 磁体 分析设 计 等 领 域 。常见 的测量方法有 电桥法 、 谐振法及伏 安法 。电桥 法能 获
2 01 5焦
仪 表 技 术 与 传 感 器
I n s t r u me n t T e c h n i q u e a n d S e n s o r
2 01 5
No .8
第 8期
基 于 自由轴 法 的智 能 RL C测量 仪 研 究
钱 莹晶 , 张仁 民
( 怀化学院物理与信息工程 系, 湖南 怀 化 4 1 8 0 0 8 )
基金项 目: 湖南省教育厅科 学技术 研究项 目( 1 2 C 0 8 3 5 ) ; 湖南省 科技计
划项 目( 2 0 1 3 G K 3 1 4 5 )
图1 为矢量 自由轴法测量 原理 图 , R 为 正弦信 号源 内阻 , z 是基准 电阻 , z 为待测 阻抗 , 与集成运 算放 大器组成 反相 比
级基准参考 电阻、 差分仪表放 大等 改进 电路 结构提 高测量精度 ; 脉冲积分鉴相采用模 拟开关正交鉴相 、 差分提 取投影标 量
multisim计时电路设计
multisim计时电路设计English Answer.Multisim Design of a Timer Circuit.Multisim is a powerful electronic circuit simulation software that can be used to design, simulate, and test various types of electronic circuits. In this article, wewill show you how to use Multisim to design a simple timer circuit.A timer circuit is a circuit that generates a timed pulse or signal. It can be used for a variety of applications, such as controlling the timing of other circuits, generating periodic waveforms, or creating delays.There are many different ways to design a timer circuit. In this article, we will show you how to design a simple timer circuit using a 555 timer IC. The 555 timer IC is a versatile and popular timer IC that can be used to create avariety of different timing circuits.Circuit Diagram.The circuit diagram of the timer circuit is shown below. [Image of the circuit diagram]Component List.The following components are required to build thetimer circuit:1x 555 timer IC.1x 10kΩ resistor.1x 100kΩ resistor.1x 0.1µF capacitor.1x LED.1x 1kΩ resistor.Operation.The operation of the timer circuit is as follows:1. When the power is turned on, the capacitor starts to charge through the 10kΩ and 100kΩ resistors.2. As the capacitor charges, the voltage at pin 2 of the 555 timer IC increases.3. When the voltage at pin 2 reaches 2/3 of the supply voltage, the output of the 555 timer IC goes high.4. When the output of the 555 timer IC goes high, the LED turns on.5. The capacitor continues to charge until the voltage at pin 2 reaches the supply voltage.6. When the voltage at pin 2 reaches the supply voltage, the output of the 555 timer IC goes low.7. When the output of the 555 timer IC goes low, the LED turns off.8. The capacitor then starts to discharge through the10kΩ resistor.9. As the capacitor discharges, the voltage at pin 2 of the 555 timer IC decreases.10. When the voltage at pin 2 reaches 1/3 of the supply voltage, the output of the 555 timer IC goes high again.11. The cycle then repeats.The time period of the timer circuit can be adjusted by changing the values of the 10kΩ and 100kΩ resistors. A larger value for the resistors will result in a longer time period.The timer circuit can be simulated using Multisim. To simulate the circuit, follow these steps:1. Open Multisim.2. Create a new project.3. Add the components to the circuit.4. Connect the components together according to the circuit diagram.5. Set the simulation parameters.6. Run the simulation.The simulation results are shown below.[Image of the simulation results]In this article, we have shown you how to use Multisim to design a simple timer circuit. We have also shown you how to simulate the circuit using Multisim.Chinese Answer.Multisim定时电路设计。
纳米级多耦合RLC互连延时分析的开题报告
纳米级多耦合RLC互连延时分析的开题报告题目:纳米级多耦合RLC互连延时分析一、研究背景及意义随着集成电路工艺的不断进步,芯片的尺寸越来越小,器件的数量越来越多,芯片内部的互连结构越来越复杂,互连延时也越来越成为影响芯片性能的重要因素之一。
在纳米级集成电路设计中,考虑到RLC参数对于芯片性能和功耗的影响,对RLC互连的分析和优化变得越来越重要。
本课题旨在研究纳米级多耦合RLC互连延时分析的方法,为芯片设计提供更加准确、稳定的互连网络分析工具。
通过对RLC互连的建模和仿真,可以更好地理解互连结构的特性并优化其设计,提高芯片性能和功耗的优化效果。
二、研究内容及方法本课题的主要研究内容为纳米级多耦合RLC互连延时分析。
主要思路为:1. 对多耦合RLC互连进行建模,确定互连网络的结构和参数。
2. 借鉴传统SPICE仿真器的建模方法,结合纳米级芯片的特点,开发针对多耦合RLC互连的仿真工具。
3. 利用所开发的仿真工具对多耦合RLC互连的时域响应进行仿真分析,获得互连延迟和毛刺等特性参数。
4. 通过对仿真结果的分析和比较,确定RLC互连在不同工艺条件下的优化方案,优化芯片的性能和功耗。
三、研究目标及预期成果1. 实现对多耦合RLC互连的建模和仿真,为芯片设计提供更加准确、稳定的互连网络分析工具。
2. 获得多耦合RLC互连的时域响应,分析互连延迟和毛刺等特性参数,为芯片设计提供参考。
3. 在不同工艺条件下确定RLC互连的优化方案,优化芯片的性能和功耗,提高芯片的竞争力。
四、研究计划及进度1. 研究RLC互连建模方法、仿真工具开发技术,预计用时1个月。
2. 构建RLC互连仿真模型,并进行初步仿真分析,预计用时2个月。
3. 优化仿真工具的性能,获取更加精确的仿真结果,预计用时3个月。
4. 在不同工艺条件下进行仿真实验,得出RLC互连的优化方案,预计用时2个月。
5. 撰写论文及报告,预计用时2个月。
总计用时12个月。
simulation and analysis of power system transient
Auxiliary Procedures are dedicated supporting programs which enable calculation of
parameters for Data Input File for power network elements of complex models. Most frequently used ( out of many other available) are: LINE CONSTANTS – for calculation of power lineout of geometrical and material data for lumped and distributed parameter line models, CABLE CONSTANTS – like Line Constants but for cable model, CABLE PARAMETERS – extension of Cable Constants for distributed transverse parameter model JMARTI SETUP - calculates parameters for distributed frequency dependent line model, NETWORK EQUIVALENT – calculates equivalent parameters of the complex network fragment, XFORMER – procedure that, on basis of measurement data calculates the π-cell parameters representing 2 or 3-windingsingle phase transformer HISTERESIS – calculates the magnetizing characteristic with hysteresis for a given material ZNOFITTER – calculates analytical parameters of a varistors or a group of varistors basing on few point v-i characteristic DATA BASE MODULE – compilation of data for selected part of the network that can be included into the investigated model using the control instruction $INCLUDE. BCTRAN – calculation of linear multi-port circuit on the basis of measurement data for representation of a single or multi-phase multi-winding transformer The simulation results can be processed and used in the following way: The results of auxiliary procedure (*.pch) can be applied to the network model by use of $INCLUDE in DATA BASE MODULE The frequency characteristic of the simulated network for specified variables can be obtained by use of FREQUENCY SCAN procedure The time characteristics for the selected variables are stored in the file *.pl4. Format of the file can be set in STARTUP file. The *.pl4 files can be plotted directly using PLOTXY or TOP programs. If the simulation results are to be used in MATLAB environment, the ATP-EMTP package offers special filters: PL42MAT, PL4TOMAT.
用RLC互连线模型实现时钟电路的动态优化.
第 3期用 R LC 互连线精确矩模型实现时钟电路的动态优化 343 证输出信号没有失真 . 图 12 表示出了采用本文方法处理后得到的时钟电路布局. 表2 不同算法的比较结果 Tab. 2 Com par ison of different algo rithms 插入缓冲器个数电路汇点 * 1 2 3 4 5 8 4 4 8 # 4 5 7 * 3 3 4 # 3 3 4 * 8 9 14 # 37 38 97 时钟树层数仿真时间 / s 4结论本文通过一个解析表达式, 分析不同条件下的信号延迟和上升沿变化的情况, 提出针对深亚微米条件下优化时钟电路的有效方法. 利用本文的表达式可以对时钟电路进行快速、有效的信号完整性分析, 实现对时钟电路进行优化, 并设计一个模拟仿真器进行验证; 与传统的方法相比较 , 在保证设计精度的同时, 节约仿真时间, 这在 CAD 工具中将会有很大的应用 . 本文的工作主要是针对单层时钟电路布线进行优化, 多层布线电路的信号完整性分析是下一步工作的内容. 参考文献( References [ 1] Cong J, Leung K S, Zhou D. Per for mance driven inter connect desig n based on distributed RC delay mo del [ C ] , P roceeding s of the 30 th Int ernational Confer ence on Desig n A uto matio n. N Y : ACM Pr ess, [ 2] 1993: 606 611. Boese K D, Kahng A B, M cCo y B A, et al. N ear o pt imal critical sink routing tr ee const ruct ions [ J ] . I EEE T r ans. on Co mputer Aided Desig n of Integ rated 注 : * , 本文结果 # , 采用傅立叶逆变换得到的结果图 11 8 个汇点的时钟电路的仿真结果 Fig. 11 Simulatio n r esults wit h 8 leaf clo ck circuit [ 3] Circuits and Systems, 1995, 14( 12 : 1 417 1 436. Cong J, L eung K S. O pt imal wiresizing under the distr ibuted Elmo re delay mo del [ J] . IEEE T r ans. on Com puter A ided Desig n o f Integ rated Cir cuits and [ 4] Sy stems, 1995, 14( 3 : 321 336. Chen C P , Chen Y P, W ong D F . O ptimal w ire sizing fo rmula under the Elmore dela y model [ C] , P ro ceedings o f the 33r d A nnual Co nfer ence on Desig n [ 5] A utomation. N Y : A CM Pr ess, 1996: 487 490. Y u Q , K uh E S. Ex act mo ment matching mo del o f t ransm ission lines and applicatio n to interconnect delay estimat ion [ J ] . I EEE T rans. on V ery L ar ge Scale [ 6] 图 12 插入缓冲器后时钟电路布局 Fig. 12 L ayo ut o f clock cir cuit after inserting buffer I nteg ration ( V L SI Systems, 1995, 3( 2 : 311 322. H U Xi heng . FF Pade met ho d o f model reductio n in f requency domain [ J ] . IEEE T rans. Contr ol, 1987, 32( 3 : 243 246. on Automat ic。
基于虚拟仪器技术的RLC参数测量仪的设计
式中:妒为口。和口。的相位差。 若已知阻抗z。为电阻、电容的串联阻抗,即
则有:
卜南 z。二R。一j壶
(5) ∞’
若已知阻抗忍为电阻、电感的串联阻抗,即
Zx=尺x+j∞L
(7)
则有:
£:引吲RRs:in妒!
(8)
收稿日期:2004—12JD6;修回日期:2005旬1—17。
万方数据
·1·
u=骊 ·测控技术·
使用kbVIEw软件平台开发RLC参数测量仪等 虚拟仪器实现了更高的效率,节省了更多的硬件开销, 方便了系统的维护,减轻了仪器更新的负担。使用虚 拟仪器逐步代替传统仪器已经成为测试领域发展的趋 势。但是在实际应用中,仍要根据具体情况进行程序 的优化和软硬件的结合,使虚拟仪器发挥更高的性能。
(下转第10页)
基于虚拟仪器技术的RLC参数测量仪的设计
作者: 作者单位: 刊名:
英文刊名: 年,卷(期):
Hale Waihona Puke 张聪, 杨泽富, 李军 华中科技大学电气与电子工程学院,湖北省武汉市,430074
电子工程师 ELECTRONIC ENGINEER 2005,31(3)
参考文献(3条) 1.Bishop R H;乔瑞萍;林欣 LabVIEW 6i实用教程 2003 2.孙焕根 电子测量与智能仪器 1992
因此,只要得知参数l巩I、I口。I和9的值,就可求 出被测阻抗毛的组成。
被测信号巩和盯。直接送人数据采集卡的A/D
转换部分进行采样测量。为了能精确测量较大范围的
电阻、电容和电感,我们把取样电阻R。分为5个量级。
这样,测量R、己、C时就有5个量程,基本能满足教学 的需要。数字信号D01、D02和D03用来选择控制量
多元有理函数域上RLCM有源网络分析软件
多元有理函数域上RLCM有源网络分析软件1王宗涛,鲁凯生,于龙飞武汉理工大学能源与动力工程学院(430063)E-mail: zeltaw@摘要:多元有理函数域[1](F(z)域)上的电网络结构性能的分析涉及到电网络图形绘制、网络拓扑结构分析和复杂的符号运算。
如果采用手工推导的方式,整个分析过程将非常耗时,而且极易出错,因此F(z)域上电网络结构性质的研究迫切需要一套计算机辅助分析软件。
我们根据这一需求开发出了F(z)域上RLCM有源网络分析软件ENA1.1,该软件的成功开发,对于加快F(z)域上的电网络结构性质的理论研究具有重要意义。
关键词:多元有理函数;RLCM有源网络;软件开发1.引言多元有理函数矩阵(RFM)和多元有理函数系统(RFS)是研究系统结构性质的有力工具。
多元有理函数系统或者F(z)上系统上成立的性质只与系统的结构有关,而与参量z的取值无关,这是因为域F(z)上成立的性质,参量z是从来不取值的。
在研究F(z)域上电网络的结构性质时,需要得到其状态方程,并利用状态方程来进行网络结构性能的分析。
这涉及到了网络的拓扑分析和大量复杂的符号运算,在对网络进行了计算机编程考虑以后,我们开发出了电网络分析软件ENA1.1。
2.电网络计算机编程的考虑在编写RLCM有源网络时,关键的是选择一棵树[2],同时进行状态变量的选取,下面将写出这些基本考虑。
1.我们希望最后的方程不含积分。
2.我们希望最后的方程是一阶微分方程。
3.可以独立指定的是电容器电压的初值(全电容器回路除外)电感器电流的初值(全电感器割集除外)。
(这里所说的全电容器回路包括全电容器回路和全电压源电容器回路,全电感器割集包括全电感器割集和全电流源电感器割集,下同) 4.从拓扑结构上讲,树支电压是所有电压的基底,我们尽可能地把电容器置于树枝中。
对于所有的支路电流,连支电流是基底,所以我们尽可能地把电感器置于余树中。
5.独立源的处理。
所有的独立电压源按树支处理,所有的独立电流源按连支处理。
RLC二阶电路暂态过程的Multisim仿真
RLC二阶电路暂态过程的Multisim仿真祁国权【摘要】Applies Multisim circuit simulation software to analyze the transient state process of second-order RLC method based on the purpose exploring experiment techniques of the second-order RLC circuit simulation. As a consequence, the Muhisim simulation programs of zero-input response and zero-state response of circuit under the scenarios of overdamped vibration, critically damped vibration, and underdamped vibration are presented. Moreover, the selection and setting conditions of the Muhisim simulation signal source under the different operating conditions are introduced. The application discovers that this software can graphically simulate the working process of the second-order RLC circuit. It presents the innovative method which can transfer the circuit's hardware experimental mode to diversified modes, with which the capabilities of knowledge synthesis, knowledge application, and knowledge transfer can be developed and the circuit analysis will become more flexible and intuitive.%基于探索RLC二阶电路仿真实验技术的目的,采用Multisim仿真软件对RLC二阶电路暂态过程进行了仿真实验测试.给出了电路在过阻尼、临界阻尼、欠阻尼等情况下零输入响应及零状态响应的Multisim仿真方案,并介绍了不同工作条件下仿真时Multisim中信号源的选取及设置条件。
准动态模型的直冷式冰箱系统仿真_卢智利
准动态模型的直冷式冰箱系统仿真
卢智利1 , 丁国良 1 , 黄 斌 2
( 1.上海交通大学 制冷与低温工程研究所 ,上海 200030; 2. 佛山市 立德工程监理有限公司 , 佛山 523800)
摘 要: 在分析了冰箱冷凝器、蒸发器的瞬态过程对系统动态过程影响较小后 ,对冰箱冷凝器、蒸 发器采用了稳态模型 ,建立了冰箱仿真的准动态模型 .通过动态模型及实验数据的比较发现 ,冰箱 仿真采用准动态模型同样能与实验数据吻合得很好 . 运行中发现 ,准动态模型不仅提高了仿真程序 运行的稳定性 ,而且程序运行的速度提高了 25% 左右 . 关键词: 冰箱 ; 系统仿真 ; 准动态模型 ; 冷凝器 ; 蒸发器 中图分类号: TB 65 文献标识码: A
的计算值
qmcap—
毛细管质量流量的计
算值
qm
—
com
压
缩机质量流量的计算值
图 1 冰箱准动态仿真系统算法流程图
Fig . 1 Flo wchar t of th e quasi-steady sim ulatio n
system a lg orithm
看出 ,准动态模型与动态模型第 1次开机误差比较 大 . 这主要是因为准动态模型在任何时刻假设制冷 系统中各部件的流量是相等的 (即准稳态 ) . 第 1打 冷过程 ,准动态模型与动态模型的仿真结果与实验 数据也比较大 .这是因为刚开机时 ,压缩机吸取了大 量润滑油 ,并把润滑油送到需要润滑的部件 ,而润滑 油在系统内的分配及对系统性能的影响很难用数学 模型来描述 . 第 1次打冷结束后 ,准动态模型与动态 模型一样 ,都能与实验数据有 较好的吻合 .从而说 明 ,用准动态模型代替动态模型 ,不会造成仿真精度 的损失 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Proceedings of the 2002 Winter Simulation ConferenceE. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, edsABSTRACTRadio Link Control (RLC) is the layer two protocol used in 3G UMTS cellular systems for flow control and error re-covery. Due to the complexity of the protocol and the mul-titude of parameter configurations available, it is extremely difficult to model RLC analytically. Therefore we present a simulation model to study RLC performance in UMTS systems. We focus on the impacts of the poll prohibit timer and the poll timer on RLC throughput, goodput and delay. Our simulation results provide some insight into the opti-mization of these two timer values.1 INTRODUCTIONAnalog cellular systems, commonly referred to as the first generation systems, and digital cellular systems, the second generation (2G) systems, have been widely deployed and enabled wireless voice communications for decades. In re-cent years the demand for data services such as text messag-ing and wireless internet access has increased significantly. As a result, data communications become vital in the third generation (3G) systems to be deployed in the near future. UMTS (Universal Mobile Telecommunication System) is the evolved 3G system for GSM (Global System for Mobile Communications), which is currently the most widely de-ployed 2G cellular systems in the world. Compared to GSM, UMTS offers significant improvement in network capacity and data transmission rate and therefore facilitates a great variety of new packet data applications.Since the air interface is the most critical resource in cellular systems, and RLC (Radio Link Control) is the ma-jor radio interface protocol of UMTS systems, we focus on RLC layer performance in our analysis. Packet data service protocols such as TCP, that are originally designed for faster and more reliable wire line communication links, are not well suited to handle the error-prone wireless air inter-face. RLC is designed to improve the performance of data traffic over the air interface so that higher layer protocols such as TCP can function effectively.We devote special attention to two RLC timers, namely the poll prohibit timer and the poll timer. RLC im-plements multiple-reject ARQ (Automatic Repeat Request) for its flow control and error recovery through retransmis-sions. The poll prohibit timer and the poll timer play im-portant roles in the poll triggering and status report trans-mission processes and have significant impacts on RLC performance in terms of throughput, goodput and delay. Therefore fine-tuning their settings is essential to UMTS network operators. In this paper we provide some insight into the optimization of these two timer values.The paper is organized as follows: Section 2 provides an overview of the RLC protocol and its configurations. Section 3 describes the simulation model and parameter settings. Section 4 presents the simulation results and analysis. Final remarks and discussions of future work are addressed in Section 5.2 RLC PROTOCOL OVERVIEWIn the layered architecture of UMTS radio interface proto-cols, RLC sits above the MAC (Medium Access Control) layer, which handles the scheduling of radio bearers with different QoS requirements, and below the RRC (Radio Resource Control) layer, which is responsible for setting up, modifying and releasing all the lower layer protocol entities. The specifications of the RLC protocol are in (3GPP TS 25.322 2001) and (Holma and Toskala 2000).The functions of RLC cover both the control plane and the user plane of UMTS. Since our focus is on the user bearer traffic performance, the control plane functions, such as ciphering, protocol suspension, recovery, etc, are not included in the simulation model. There are three op-erational modes for RLC in UMTS, namely, transparentSIMULATION ANALYSIS OF RLC TIMERS IN UMTS SYSTEMSXiao XuYi-Chiun ChenHua XuEren GonenGlobal Telecom Solutions SectorMotorola, Inc.1501 West Shure Drive Arlington Heights, IL 60004, U.S.A. PeijuanLiuDepartment of Electrical & Computer EngineeringNorthwestern University2145 Sheridan RoadEvanston, IL 60208, U.S.A.mode, unacknowledged mode, and acknowledged mode. The acknowledged mode is designed to provide reliable transport for packet data. It is the default mode for han-dling interactive and background applications, which are the applications of interest to us. Therefore we assume the acknowledged mode is the RLC operational mode throughout this paper and all the following discussions about RLC functions, configurations and parameters refer to the acknowledged mode of RLC.As an overview, the basic RLC functions that are im-plemented in our simulation model are:• Segmentation and reassembly – Higher layer data packets, or SDUs (Service Data Units) are seg-mented into RLC PDUs (Protocol Data Units). TheRLC PDU size is set according to the lowest possi-ble bit rate for the services using RLC. In case ofsmall SDUs, several SDUs can be concatenatedinto one RLC PDU. At the receiving end, the PDUsthat contain fragments of an SDU are reassembledand the SDU is delivered to the higher layer.• Transfer of User Data – Transfer of data by RLC is controlled by QoS settings at the higherlayers and scheduled at the MAC layer.• Error Correction – Multiple-reject ARQ as de-scribed in (Chen et al. 2002) and (Yoon, Park andMin 2000) is used for retransmission in the event oferroneous or missing PDUs. It is a refined ap-proach of the well-know selective-reject ARQ asdescribed in (Stallings 1998) and (Fantacci 1996).The receiver sends a bitmap status report to thesender when it is polled. Inside the bitmap statusreport, the reception status (i.e., either ACK orNAK) within the receiving window and up to thelast received PDU is listed. Several options of poll-ing as well as status reports triggering are availableand will be discussed in further details later.• In-sequence Delivery of SDUs – This function preserves the order of SDUs, which are submittedfor transfer by RLC from the sender to the receiver.• Duplicate Detection – This function detects du-plicate received RLC PDUs and ensures that thereassembled SDU is delivered only once to thehigher layer.• Sliding Window Flow Control – This function allows the receiver to control the rate at which thesender may send the PDUs. A receiving windowsize and a transmitting window size are negotiatedbetween the receiver and sender during call setup.Unlike TCP’s slow start with varying windowsize according to (Stevens 1994), the window sizeof RLC is fixed during the entire call unless a newwindow size is re-negotiated between the receiverand the sender. This is also part of the multiple-reject ARQ functions.With multiple-reject ARQ, the RLC protocol provides a reliable service through retransmission to packet data ap-plications over UMTS networks in the presence of high air interface bit error rates. In case of erroneous or lost PDUs retransmission is conducted by the sender upon reception of a status report from the receiver. A status report is sent either when the receiver is polled by the sender or self-triggered. For the sender, a polling request is made by marking the poll bit in the header of an outgoing RLC PDU. The possible triggers and inhibitors of polling are listed as follows:• Last PDU in Buffer – The poll bit is set when the last PDU in the transmission buffer is sent.• Last PDU in Retransmission Buffer – The poll bit is set when the last PDU in the retransmissionbuffer is sent.• Expiry of Poll Timer – A poll timer is started when a PDU with the poll bit set is sent. If astatus report is received before the timer expiresthe timer is cancelled. If the timer expires and nostatus reports have been received, a PDU with thepoll bit set is sent.• Window Based Polling – A status variable J, ex-pressed in percentage terms, is maintained byRLC. It is calculated by dividing the number ofPDUs sent within the current transmission win-dow by the transmission window size. When Jexceeds a certain percentage threshold, a PDUwith the poll bit set is sent.• Periodic Polling – A PDU with the poll bit set is sent periodically.• Poll Prohibit Timer – Under the circumstances where several poll triggering options are presentsimultaneously in a system, a potential risk is thatthe network could be overwhelmed by excessivepolling and status reports sent over the air inter-face. In WCDMA (Wideband CDMA), which isthe air interface technology for UMTS, that trans-lates to excessive power consumption and subse-quently high level of interference to other usersand reduction of overall system capacity. Accord-ing to (3GPP TS 25.322 2001), one mechanismcalled the poll prohibit timer can be implementedto deal with this problem of excessive polling andstatus report transmission. At the transmitter, thepoll prohibit timer is started once a PDU with thepoll bit set is sent. No polling is allowed until thistimer expires. If multiple polls were triggered dur-ing the period when this timer was in effect, onlyone poll is transmitted upon expiry of the timer.As described above, RLC can be quite complicated with the large number of parameters that need fine-tuning. On the one hand, the UMTS operator has a great amount offlexibility with such a multitude of parameter settings to choose from; on the other hand, optimizing these parame-ters presents a significant challenge given the complex in-teractions among them.The RLC parameter optimization is important, since in-appropriate setting could deteriorate RLC performance or even cause deadlocks, as pointed out by (Chen et al. 2002). Unfortunately, there is very limited literature in this area be-sides (Chen et al. 2002), which provides guidance on choos-ing the optimal RLC window size and polling periods, and (Lefevre and Vivier 2001), which analyses the maximum number of retransmissions allowed (MaxDAT) and RLC buffer size and their interaction with TCP. In the subsequent ‘Results and Discussion’ section, we will present our find-ings about the poll prohibit timer and the poll timer.3 SIMULATION MODELFigure 1 illustrates a UMTS network that is simulated in this study. The network nodes include SGSN (Serving GPRS Support Node), GGSN (Gateway GPRS Support Node), MSC (Mobile Switching Center), RNC (Radio Network Controller), Node B (Base Station), and UE (User Equipment). In addition, there are Iu-PS, Iu-CS, Iub, and Uu interfaces connecting those nodes in the UMTS net-work. The simulation modules have been developed as a framework to conduct analysis on all the major perform-ance aspects at the TCP, RLC and MAC layers. But the scope of this paper is to cover only RLC performance is-sues related to two timers, i.e., the poll prohibit timer and the poll timer.Figure 1: A Typical UMTS NetworkAs Figure 1 shows, voice traffic, which uses the stan-dard AMR (Adaptive Multiple Rate) speech coding tech-nique as specified by (3GPP TS 26.101 2001), comes from the PSTN (Public Switched Telephone Network). Data traffic, which uses TCP/IP, comes from the Internet. After core network switching nodes including GGSN, SGSN or MSC, data traffic and voice traffic are fed into the RNC, in which the RLC and MAC reside. Voice traffic is transpar-ent to the RLC and has higher priority than data traffic. For data traffic, all the data flows are assumed to have the same priority. Each flow has a pair of transmission and retrans-mission buffers, of which retransmission has higher prior-ity. The MAC scheduler schedules all the data flows based on the available resources, including air interface power and Iub link bandwidth. The scheduled data traffic then joins voice traffic for transmission over the Iub link. After reaching the Node B, both data and voice traffic will then be sent over the Uu air interface to the UE.The simulation was developed with OpNet Modeler from OpNet Technologies, Inc., which is one of the most popular event-driven network simulators used by the tele-communications and networking industries for system de-velopment. The details of the major components in the simulation are described in the following.• TCP Data Traffic Source – The TCP data traffic source is simulated as a Markov Modulated Pois-son Process (MMPP) based on (Anagnostou, San-chez-P and Venieries 1996). The active periods andidle periods are exponentially distributed. No pack-ets are generated during the idle periods. Duringthe active periods, packet inter-arrival times andpacket sizes follow exponential distributions.• AMR Voice Traffic Source – The AMR voice traffic is simulated as a two-state ON-OFFMarkov process. In the ON and OFF states, thevoice frame sizes and their patterns are generatedaccording to (3GPP TS 26.101 2001).• MAC/RLC – The MAC and RLC functions are modeled in a single simulation module to facili-tate better interaction between these two layers.The RLC functions implemented in the simulationare detailed in Section 2 above. The function ofMAC is to schedule among voice users and datausers based on the air interface power and Iub linkbandwidth constraints.• Iub Link – In practice, ATM protocol is used for the Iub link in UMTS. In the simulation, however,the Iub is modeled as a direct link with priorityqueuing between voice and data packets.• Uu Air Interface – The air interface power con-sumption for voice and data packets using differ-ent WCDMA spreading factors is modeled as aGaussian distribution. The mean and variance ofthis Gaussian distribution are extracted from sta-tistical results of a Motorola proprietary simula-tor. We considered air interface error rates of 0%,10% and 20%.• UE – The UE acts as the peer entity to the RLC in RNC. For downlink, it terminates the voice anddata packets from the RNC and Node B. For up-link, it also generates voice and data traffics to theNode B and RNC according to the TCP data traf-fic source and the AMR voice traffic source de-scribed above.4 RESULTS AND DISCUSSION4.1 Simulation Configurationand Metric DefinitionWe simulated 60 AMR voice users at 12.2 kbps and 16 data users at 100 kbps. At the Iub link, we provided an E1 link with 2 Mbps. The Iub link buffers were adjusted to sufficient capacities in the simulation such that packet loss at the Iub link was minimal.Compared with an analytical approach as in (Yoon, Park and Min 2000), the simulation is capable of exploring the system behavior in the presence of very complex pa-rameter settings. In our case, we implemented all of the RLC polling mechanisms specified by (3GPP TS 25.322 2001). Table 1 shows the specific RLC polling settings in the simulation. We disabled Periodic Polling because in the presence of the poll prohibit timer, the periodic timer is no longer able to trigger polling periodically. (Please note that the values of the poll timer and the poll prohibit timer will not be fixed at the same time. When we study the effects of the poll timer, the poll prohibit timer is set at 0.1 second; when we study the effects of the poll prohibit timer, the poll timer is set at 0.5 second.)Table 1: RLC Parameter SettingsWith several poll triggering mechanisms interacting with each other, it is almost impossible to derive RLC be-havior analytically, but with our simulation we were able to present some noteworthy trends for this setting.In our results, we focus on three RLC performance met-rics: data throughput, data goodput and RLC SDU delay. Throughput (kbps) is defined as the total bit rate measured at the Iub that is used for transmitting data traffic. This in-cludes both transmission of data packets for the first time and retransmission. Goodput (kbps) is measured at the UE for the received PDUs, which carry “good” information for reassembly of an SDU. Therefore, neither erroneous PDUs nor duplicate PDUs are counted into the goodput. In our simulation, since the amount of data generated at the TCP data traffic source (i.e., the offered load) is fluctuating from scenario to scenario, it is difficult and meaningless to com-pare absolute values of throughputs and goodputs for differ-ent scenarios. To solve this problem, we normalized throughputs and goodputs with respect to their offered loads in each scenario. We express normalized throughputs and goodputs in percentage terms of their offered loads in our analysis. Since throughput also counts in retransmissions, its value may exceed 100% of the offered load.The RLC SDU delay is from the time at which the higher layer delivers the packets to RLC at the transmitter till the time at which RLC relays the correctly reassembled packets to the higher layer at the receiver. The RLC SDU delay consists of: queueing delay and MAC scheduling de-lay at RNC, queueing delay and transmission delay at the Iub link, processing delay at Node B, transmission delay over the Uu air interface, and reassembly delay at UE. In the simulation, the Node B processing delay and the Uu air in-terface transmission delay together are set to a fixed 60ms for all the PDUs according to (3GPP TS 25.853 2001).In (Chen et al. 2002), the impact of RLC window size was studied in detail. The major findings are: a large RLC window size will generally increase throughput and goodput and reduce RLC SDU delay. When window size is small, RLC is not able to utilize the bandwidth resources available to it and SDU delay also suffers from this low utilization. After window size surpasses a threshold, this restriction posed by window size no longer exists. Since we are using very similar configurations for our model, we are able to use the window size threshold values indicated by (Chen et al. 2002) for the benefit of our analysis. For our simulations, we set a sufficiently large window size of 128 PDUs.4.2 Poll Prohibit TimerFigure 2 and Figure 3 present the effects of poll prohibit timer on throughput and goodput, respectively. The two figures demonstrate that if the value of the poll prohibit timer is very large, i.e., polling is prohibited for a long time, throughput and goodput will be low. In multiple-reject ARQ, status reports are essential for advancing the transmission window. A large poll prohibit timer value im-plies infrequent polling and therefore infrequent status re-ports. The RLC transmission window may stall frequently in this case. Furthermore, the throughput and goodput deg-radation is more severe at higher error rates because poll-ing requests and status reports are more prone to loss over the air, thereby making the effect of a large poll prohibit timer more pronounced.When poll prohibit timer value is sufficiently small, RLC is able to accommodate all the offered load since the goodput values at the left part of Figure 3 are 100%. But when poll prohibit timer value is extremely small, there is an increase in throughput as shown in Figure 2. At such small poll prohibit timer values, RLC could experience ex-cessive polling and unnecessary retransmissions before the arrival of the requested status reports. These retransmis-sions account for the up-tick of throughputs in the extreme left part of Figure 2.Last PDU in Buffer Enabled Last PDU in Retransmission Buffer Enabled Periodic Polling Disabled Window Based Polling Threshold Value 90% Poll Timer Value 0.5 sec Poll Prohibit Timer Value 0.1 secFigure 2: Throughput vs. Poll Prohibit Timer ValueFigure 3: Goodput vs. Poll Prohibit Timer ValueFigure 4 illustrates the effects of poll prohibit timer onRLC SDU delay. When the goodputs in Figure 3 are wellbelow 100%, the RLC SDU delays approach infinity assome RLC PDUs never get transmitted. With adequatepolling frequencies (i.e., small poll prohibit timer values),RLC SDU delays are finite and small. Also with the samepoll prohibit timer value, the higher the air interface errorrate, the longer the RLC SDU delay. This is because athigher error rates, more retransmissions are needed beforethe successful reassembly of an RLC SDU.In (Chen et al. 2002), the effects of periodic timer onthroughput, goodput and RLC SDU delay are studied in amodel where the periodic timer is the only poll trigger andthe poll prohibit timer is disabled. Comparing the through-put, goodput and RLC SDU delay figures in (Chen et al.2002) with Figures 2, 3 and 4, we can see that the shapeand trend of the curves are identical. We believe the under-lying rationale is that given a sufficiently large windowsize, and in the presence of multiple poll triggering mecha-nisms, whenever the poll prohibit timer expires, a poll willbe sent. Therefore the poll prohibit timer is essentially act-ing like a periodic poll timer, and the length of the pollingperiod is exactly the poll prohibit timer value.Figure 4: RLC SDU Delay vs. Poll Prohibit TimerValueBased on our observations of Figures 2, 3 and 4, wefind that setting the poll prohibit timer value to be 100ms isoptimal in the sense that SDU delay is small whilethroughput is not excessively high. Please note that due tothe way throughput is defined in this paper, given that thegoodput is 100% (all the offered load is accommodated),the lower the throughput, the smaller the waste of band-width and the better the RLC performance. Actually, anynormalized throughput higher than 100% means there areerrors and retransmissions.More generally, we define the RLC round trip time(RTT) as the time it takes a PDU to arrive at the receiverplus the time it takes a status report to arrive back at thesender, in case no error or retransmission occurs. Furthersimulation results points out that the ratio of poll prohibittimer value to RLC RTT has an optimal performance rangeof between 0.8 and 1.2.4.3 Poll TimerFor our analysis of the poll timer, we fixed the poll prohibittimer at 100ms based on the above results of the poll pro-hibit timer. Figure 5 illustrates the effects of the poll timeron throughput. At small poll timer values, throughputs arehigh. As we increase the poll timer value, throughput de-creases and it levels off after a certain poll timer threshold.When poll timer values are small (especially smaller thanthe RLC RTT), the poll timer expires soon after a PDUwith the poll bit set is sent. No associated status reportswould arrive within this period of time since it is evenshorter than the RLC RTT. In this scenario premature re-polling PDUs are sent, and a significant portion of thosere-polling PDUs are unnecessary retransmission PDUswhich increase the throughput with no benefit to goodputor SDU delays.As the poll timer value surpasses the threshold, furtherincreasing it no longer has any influence on the throughput.That is because at large poll timer values, the significance of the poll timer is reduced. Before the poll timer expires, it is highly likely that the associated status report has already been received or that other poll triggering mechanisms such as Last PDU in Buffer, Last PDU in Retransmission Buffer or Window Based Polling will take effect. Therefore RLC is less likely to rely on the poll timer to trigger polling.A second trend demonstrated by Figure 5 is that for poll timer values of less than 100ms, throughput values are the same. Since the poll timer, as well as other poll triggering mechanisms, is subject to the constraint of the poll prohibit timer. As noted before, the poll timer and the poll prohibit timer are always started simultaneously when a PDU with the poll bit set is sent. In our simulation, the poll prohibit timer value is 100ms. Setting the poll timer value to be less than that is equivalent to setting it at 100ms because even if it expires before 100ms, it has to wait for the poll prohibit timer to expire before polling can be triggered.Figure 5: Normalized Throughput vs. Poll Timer ValueFigure 6 shows the effects of the poll timer on good-put. The three curves overlay at 100%. As we have pro-vided a sufficiently large RLC window size and multiple poll triggering mechanisms, the RLC is able to accommo-date all the offered load. Therefore goodput values are not sensitive to the poll timer.The relationship between RLC SDU delays and poll timer values is displayed in Figure 7. At small poll timer values, the RLC SDU delays are small. As poll timer val-ues increase, RLC SDU delays also increase. A small poll timer value helps the RLC to recover quickly from a lost or erroneous PDU by way of timely retransmissions. We no-tice that as we increase the value of the poll timer, the rate of increase for RLC SDU delays slows down. This is con-sistent with our earlier findings that the significance of the poll timer reduces as its value increases. As an extreme ex-ample, assume the poll timer value approaches infinity, i.e., there is no poll timer. Due to the existence of other poll triggering mechanisms, we still find the RLC SDU de-lay to be finite. (Simulation results are not shown.) There-fore the RLC SDU delays cannot keep increasing fast with increasing poll timer values.Figure 6: Normalized Goodput vs. Poll Timer ValueFigure 7: RLC SDU Delay vs. Poll Timer ValueAgain, we notice the trend that for poll timer values smaller than 100ms, the RLC SDU delay curve is flat. This is consistent with our observations about the throughput curves. Therefore the poll timer value in general should not be set to be smaller than the poll prohibit timer value.5 CONCLUSIONS AND FUTURE WORKWe have studied the RLC poll prohibit timer and poll timer using our simulation model. Our results suggest that there is a tradeoff between throughput and delay. Generally, small values for these two timers produce low delays but high throughputs (which could overload the WCDMA air inter-face), while large values for these two timers produce mod-erate throughputs but long delays. Unusually large values for the two timers should be avoided as they deteriorate RLC performance. We are able to identify in our simulation sce-narios an optimal combination (0.1 second for the poll pro-hibit timer and 0.5 second for the poll timer), which results in a moderate throughput and a low delay.In practice, a UMTS operator may not be able to iden-tify such an optimal parameter combination. Under that circumstance, the traffic load sensitivity of the WCDMA air interface must be weighed against the delay require-ments of data applications before a choice is made about these two parameters. Further research will be conducted to study the RLC be-havior under different higher layer traffic models e.g., WAP (Wireless Application Protocol), and the interaction between RLC and higher layer protocols including TCP and WAP. REFERENCES3GPP TS 25.322. 2001. 3rd Generation Partnership Project;Technical Specification Group Radio Access Network; RLC protocol specification, version 4.3.0. Available online via <h t tp://> [ac-cessed November 12, 2001].3GPP TS 25.853. 2001. 3rd Generation Partnership Project;Technical Specification Group Radio Access Network; Delay budget within the access stratum, version 3.1.0. Available online via <> [accessed November 12, 2001].3GPP TS 26.101. 2001. 3rd Generation Partnership Project;Technical Specification Group Services and System Aspects; AMR speech codec frame structure, version 3.2.0. Available online via http://www.3gpp. org [accessed November 12, 2001].Anagnostou, M. E., Sanchez-P, J.-A., and Venieries, I. S.1996. A multiservice user descriptive traffic source model. IEEE Trans. On Communic ations 44: 1243-1246.Chen, Y., Xu, X., Xu, H., Liu, P., and Gonen, E. 2002.Simulation analysis of RLC for packet data services in UMTS systems. Submitted to IEEE Wireless Commu-nications and Networking Conference 2003.Fantacci, R. 1996, Queuing analysis of the selective rejectautomatic repeat protocol wireless packet networks. IEEE Trans. on Vehicular Technology 45: 258-264. Holma H. and Toskala A. 2000. WCDMA for UMTS, NewYork: John Wiley & Sons.Lefevre, F. and Vivier, G. 2001. Optimizing UMTS linklayer parameters for a TCP connection. In Proceedings of IEEE Vehicular Technology Conference, 2318-2322. Stallings, W. 1998. High-speed Networks: TCP/IP and ATMDesign Principles, Upper Saddle River, NJ: Pretice Hall. Stevens, W. R. 1994. TCP/IP Illustrated, Volume I – TheProtocols, Reading, MA: Addison Wesley.Yoon, U., Park, S. and Min, P. 2000. Performance analysisof multiple rejects ARQ at RLC (Radio Link Control) for packet data service in W-CDMA system. In Pro-ceedings of IEEE Global Communications Conference 2000, 48-52. AUTHOR BIOGRAPHIESXIAO XU received his M.S. degree in Industrial Engineer-ing and Management Sciences from Northwestern Univer-sity, Evanston, IL, in 2000. Since 2001 he has been work-ing at Motorola on wireless networks performance modeling and analysis. H is main focus of work has been stochastic modeling , simulation analysis and network ca-pacity planning of 3G UMTS cellular systems. H is email address is <xiao.xu@ >.YI-CHIUN CHEN received his M.S. and Ph.D. degrees in Electrical and Computer Engineering from Northwestern University, Evanston, IL, in 1994 and 2000 respectively. Since 1995, he has been with Motorola working on the per-formance analysis and system design of wireless commu-nication systems. His research experience and interests in-clude performance evaluation, traffic engineering, simulation modeling, capacity planning, system architec-ture, and algorithm design. H is email address is <y.chen@ >.HUA XU received her Ph.D. degree in Industrial Engineer-ing from Georgia Institute of Technology, Atlanta, GA, in 1992. She has been working at Motorola on the perform-ance analysis of digital cellular systems since. H er re-search interests include probability and stochastic model-ing and simulation of communication system/network in wireless systems, and real-time traffic management and ac-cess control techniques. Her email address is <hua.xu@ >.PEIJUAN LIU is a Ph.D. candidate in the Department of Electrical and Computer Engineering at Northwestern Uni-versity, Evanston, IL. She was a Motorola Engineering In-tern during the summers of 2000 and 2001. Her research interests include wireless resource allocation, stochastic modeling and its applications in communication networks. Her email address is <peijuan@>. EREN K. GONEN received his M.S. degree in Electrical and Computer Engineering from Georgia Institute of Technology, Atlanta, GA, in 2000. Since 2001, he has been with Motorola working on performance analysis of com-munication systems. His main focus of work has been sto-chastic modeling, simulation and performance analysis of 3G cellular networks based on UMTS. His email address is <eren.gonen@ >.。