2018版高中数学平面向量章末复习课导学案新人教A版必修4 含解析
高中数学 第二章《平面向量》导学案 新人教A版必修4
第二章《平面向量》导学案(复习课)【学习目标】1.理解向量、零向量、向量的模、单位向量、平行向量、反向量、相等向量、两向量的夹角等概念.2.了解平面向量基本定理.3.向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接).4.了解向量形式的三角形不等式:||a |-|b |≤|a ±b |≤|a |+|b |(试问:取等号的条件是什么?)和向量形式的平行四边形定理:2(|a |2+|b |2)=|a -b |2+|a +b |2.5.了解实数与向量的乘法(即数乘的意义).6.向量的坐标概念和坐标表示法.7.向量的坐标运算(加、减、实数和向量的乘法、数量积).8.数量积(点乘或内积)的概念,a ·b =|a ||b |cos θ=x 1x 2+y 1y 2,注意区别“实数与向量的乘法、向量与向量的乘法”.【导入新课】向量知识,向量观点在数学、物理等学科的很多分支中有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视. 数量积的主要应用:①求模长;②求夹角;③判垂直.新授课阶段例1 已知(3,0),(,5)a b k ==r r ,若a 与b 的夹角为43π,则k 的值为_______.解析:例2 对于任意非零向量a 与b ,求证:||a |-|b ||≤|a ±b |≤|a |+ |b |. 证明:例3 已知O 为△ABC 内部一点,∠AOB=150°,∠BOC=90°,设OA =a ,OB =b ,OC =c ,且|a |=2,|b |=1,| c |=3,用a 与b 表示c ,i ,j . 解:例4 下面5个命题:①|a ·b |=|a |·|b |②(a ·b )2=a 2·b2③a ⊥(b -c ),则a ·c =b ·c ④a ·b =0,则|a +b |=|a -b |⑤a ·b =0,则a =0或b =0,其中真命题是( )A .①②⑤ B.③④ C.①③ D.②④⑤ 解析:例 5 已知向量(3,4)OA =-u u u r ,(6,3)OB =-u u u r ,(5,(3))OC m m =--+u u u r,(1)若点A 、B 、C 能构成三角形,求实数m 应满足的条件; (2)若ABC ∆为直角三角形,且A ∠为直角,求实数m 的值. 解:例6 已知在△ABC 中,)3,2(=,),,1(k =且△ABC 中∠C 为直角,求k 的值. 解:课堂小结本章主要内容就是向量的概念、向量的线性运算、向量知识解决平面几何问题;掌握向量法和坐标法,以及用向量解决平面几何问题的步骤.作业 见同步练习 拓展提升 一、选择题1.在矩形ABCD 中,O 是对角线的交点,若e e 则213,5===( )A .)35(2121e e +B .)35(2121e e -C .)53(2112e e - D .)35(2112e e - 2.化简)]24()82(21[31--+的结果是( )A .b a -2B .a b -2C .a b -D .b a -3.对于菱形ABCD ,给出下列各式:①=;②||||=;③||||+=-; ④222||||4||,AC BD AB +=u u u ru u u ru u u r其中正确的个数为 ( )A .1个B .2个C .3个D .4个4.在 ABCD 中,设====,,,,则下列等式中不正确的是( )A .=+B .=-C .=-D .=-5.已知向量与反向,下列等式中成立的是( ) A .||||||-=- B .||||-=+ C .||||||-=+D .||||||+=+6.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个点的坐标为( )A .(1,5)或(5,-5)B .(1,5)或(-3,-5)C .(5,-5)或(-3,-5)D .(1,5)或(-3,-5)或(5,-5)7.下列各组向量中:①)2,1(1-=e )7,5(2=e ②)5,3(1=e )10,6(2=e ③)3,2(1-=e )43,21(2-=e 其中能作为表示它们所在平面内所有向量的基底的是 ( )A .①B .①③C .②③D .①②③8.与向量)5,12(=d 平行的单位向量为 ( )A .)5,1312(B .)135,1312(--C .)135,1312(或)135,1312(--D .)135,1312(±±9.若32041||-=-b a ,5||,4||==b a ,则b a 与的数量积为( )A .103B .-103C .102D .1010.若将向量)1,2(=a 围绕原点按逆时针旋转4π得到向量b ,则b 的坐标为( ) A .)223,22(--B .)223,22(C .)22,223(-D .)22,223(-11.已知||22p =u r ,||3q =r ,,p q u r r 的夹角为4π,如图,若52AB p q =+u u u r u r r ,3AC p q =-u u u r u r r ,D 为BC 的中点,则||AD uuu r为( ).A .215B .215C .7D .18二、填空题12.非零向量||||||,b a b a b a +==满足,则b a ,的夹角为 . 13.在四边形ABCD 中,若||||,,b a b a b AD a AB -=+==且,则四边形ABCD 的形状是 .14.已知)2,3(=a ,)1,2(-=b ,若b a b a λλ++与平行,则λ= . 15.已知e 为单位向量,||a =4,e a 与的夹角为π32,则e a 在方向上的投影为 .三、解答题16.已知非零向量b a ,满足||||b a b a -=+,求证: b a ⊥.17.设21,e e 是两个不共线的向量,2121212,3,2e e e e e k e -=+=+=,若A 、B 、D 三点共线,求k 的值.参考答案 例1解析:如图1,设a OA =,43π=∠AOC ,直线l 的方程为5=y ,设l 与OC 的交点为B ,则OB 即为b , 显然()5,5-=b ,5-=∴k . 例2证明:(1)两个非零向量a 与b 不共线时,a +b 的方向与a ,b 的方向都不同,并且 |a |-|b |<|a ±b |<|a |+|b |;(2)两个非零向量a 与b 共线时,①a 与b 同向,则a +b 的方向与a .b 相同且|a +b |=|a |+|b |.②a 与b 异向时,则a +b 的方向与模较大的向量方向相同,设|a |>|b |,则|a +b |=|a |-|b |.同理可证另一种情况也成立.例3解:建立平面直角坐标系xoy ,其中i , j 是单位正交基底向量, 则B (0,1),C (-3,0),设A (x ,y ),则条件知x=2cos(150°-90°),y=-2sin(150°-90°),即A (1,-3),也就是=-3, =, =-3.所以-3=33+,即=3-33.例4解析:根据向量的运算可得到,只有①③对,故选择答案 C 例 5解:(1)若点A 、B 、C 能构成三角形,则这三点不共线,∵(3,4)OA =-u u u r ,(6,3)OB =-u u u r ,(5,(3))OC m m =--+u u u r, ∴(3,1)AB =u u u r ,(1,)BC m m =---u u u r,而AB u u u r 与BC uuur 不平行,xy ABOCab图1即31m m -≠--,得12m ≠, ∴实数12m ≠时满足条件. (2)若ABC ∆为直角三角形,且A ∠为直角,则AB AC ⊥u u u r u u u r,而(3,1)AB =u u u r ,(2,1)AC m m =--u u u r,∴3(2)(1)0m m -+-=,解得74m =. 例6解:(1,)(2,3)(1,3),BC AC AB k k =-=-=--u u u ru u u ru u u rQ0(1,)(1,3)0C RT AC BC AC BC k k ∠∠⇒⊥⇒⋅=⇒⋅--=u u u r u u u r u u u r u u u rQ 为2313130.k k k ±⇒-+-=⇒=拓展提升 题号 1 2 3 4 5 6 7 8 9 10 11 答案 ABCBCDACABA11.提示:A 11()(6)22AD AC AB p q =+=-u u u r u u u r u u u r ur r ,∴222211||||(6)361222AD AD p q p p q q ==-=-+u u u r u u u r u r r u r u r r r g2211536(22)12223cos 3242π=⨯-⨯⨯⨯+=. 二、填空题:12. 120° 13. 矩形 14、 1± 15. 2- 三、解答题: 16.证:()()22b a b a b a b a -=+⇒+=+⇒-=+Θ2222220.a ab b a ab b ab ⇒++=-+⇒=r r r r r r r r r r,a b r rQ 又为非零向量,.a b ∴⊥r r17.()121212234,BD CD CB e e e e e e =-=--+=-u u u r u u u r u u u r u r u u r u r u u r u r u u rQ若A ,B ,D 三点共线,则与共线,,AB BD λ∴=u u u r u u u r设即121224.e ke e e λλ+=-u r u u r u r u u r 由于12e e u r u u r 与不共线,可得: 11222,4.e e ke e λλ==-u r u ru u r u u r故2,8.k λ==-。
2018版高中数学第二章平面向量导学案新人教A版必修4
第二章 平面向量1 向量和差作图全攻略两个非零向量的和差作图,对同学们是一个难点,这里对其作图方法作出细致分析,以求尽快掌握.一、向量a 、b 共线例1 如图,已知共线向量a 、b ,求作a +b . (1)a 、b 同向;(2)a 、b 反向,且|a |>|b |; (3)a 、b 反向,且|a |<|b |.作法 在与a 平行的同一条直线上作出三个向量OA →=a ,AB →=b ,OB →=a +b ,具体作法是:当a 与b 方向相同时,a +b 与a 、b 的方向相同,长度为|a |+|b |;当a 与b 方向相反时,a +b 与a 、b 中长度长的向量方向相同,长度为||a |-|b ||.为了直观,将三个向量中绝对值最大的向量沿与a 垂直的方向稍加平移,然后分别标上a ,b ,a +b .作图如下:例2 如图,已知共线向量a 、b ,求作a -b . (1)a 、b 同向,且|a |>|b |; (2)a 、b 同向,且|a |<|b |; (3)a 、b 反向.作法 在平面上任取一点O ,作OA →=a ,OB →=b ,则BA →=a -b .事实上a -b 可看作是a +(-b ),按照这个理解和a +b 的作图方法不难作出a -b ,作图如下:二、向量a 、b 不共线如果向量不共线,可以应用三角形法则或平行四边形法则作图.例3 如图,已知向量a 、b . 求作:(1)a +b ;(2)a -b . 作法1 (应用三角形法则)(1)一般情况下,应在两已知向量所在的位置之外任取一点O .第一步:作OA →=a ,方法是将一个三角板的直角边与a 重合,再将直尺一边与三角板的另一直角边重合,最后将三角板拿开,放到一直角边过点O ,一直角边与直尺的一边重合的位置,在此基础上取|OA →|=|a |,并使OA →与a 同向.第二步:同第一步方法作出AB →=b ,一定要保证方向相同且长度相等.(此处最易错的是把AB →作成与b 的方向相反.)第三步:作OB →,即连接OB ,在B 处打上箭头,OB →即为a +b . 作图如下:(2)第一步:在平面上a ,b 位置之外任取一点O ; 第二步:依照前面方法过O 作OA →=a ,OB →=b ; 第三步:连接AB ,在A 处加上箭头,向量BA →即为a -b . 作图如下:点评 向量加法作图的特点是“首尾相接,首尾连”;向量减法作图的特点是“共起点,连终点,箭头指被减”.作法2 (应用平行四边形法则)在平面上任取一点A ,以点A 为起点作AB →=a , AD →=b ,以AB ,AD 为邻边作▱ABCD ,则AC →=a +b ,DB →=a -b .作图如下:点评 向量的平行四边形法则和三角法则在本质上是一样的,但在解决某些问题时平行四边形法则有一定的优越性,因此两种法则都应熟练掌握.向量和差作图,要注意的是保证所作向量与目标向量“方向相同,长度相等”,最忌讳的是“作法不一”,比如作法中要求的是作AB →=b ,可实际上作的是AB →=-b .只要作图的过程与作法的每一步相对应,一定能作出正确的图形.2 向量线性运算的应用平面向量的线性运算包括加法、减法以及数乘运算,在解题中具有广泛的应用.在对向量实施线性运算时,要准确利用对应的运算法则、运算律,注意向量的大小和方向两个方面. 一、化简例1 化简下列各式: (1)(2AB →-CD →)-(AC →-2BD →); (2)124[3(2a +8b )-6(4a -2b )]. 解 (1)(2AB →-CD →)-(AC →-2BD →)=2AB →-CD →-AC →+2BD →=2AB →+DC →+CA →+2BD → =2(AB →+BD →)+(DC →+CA →)=2AD →+DA →=AD →. (2)124[3(2a +8b )-6(4a -2b )] =124(6a +24b -24a +12b )=124(-18a +36b ) =-34a +32b .点评 向量的基本运算主要有两个途径:一是基于“形”,通过作出向量,运用平行四边形法则或三角形法则进行化简;二是基于“数”,满足“首尾相接且相加”或“起点相同且相减”的两个向量进行化简,解题时要注意观察是否有这两种形式出现,同时注意向量加法法则、减法法则的逆向应用.数乘运算,可类比实数积的运算方法进行,将向量a ,b ,c 等看成一般字母符号,其中向量数乘之间的和差运算,相当于合并同类项或提取公因式,这里的“同类项”与“公因式”指的是向量. 二、求参数例2 如图,已知△ABC 和点M 满足MA →+MB →+MC →=0,若存在实数m 使得AB →+AC →=mAM →成立,则m =________.解析 如图,因为MA →+MB →+MC →=0,即MA →=-(MB →+MC →), 即AM →=MB →+MC →, 延长AM ,交BC 于D 点,所以D 是BC 边的中点,所以AM →=2MD →, 所以AD →=32AM →,所以AB →+AC →=2AD →=3AM →,所以m =3. 答案 3点评 求解含参数的向量线性运算问题,只需把参数当作已知条件,根据向量的加法、减法及数乘运算将问题中所涉及的向量用两个不共线的向量表示,列出向量方程,对比系数求参数的值. 三、表示向量例3 如图所示,在△ABC 中,AD →=23AB →,DE ∥BC 交AC 于E ,BC 边上的中线AM 交DE 于点N ,设AB →=a ,AC →=b ,用向量a ,b 表示AE →、BC →、DE →、DN →、AM →.解 因为DE ∥BC ,AD →=23AB →,所以AE →=23AC →=23b ,BC →=AC →-AB →=b -a ,由△ADE ∽△ABC ,得DE →=23BC →=23(b -a ),又M 是△ABC 底边BC 的中点,DE ∥BC , 所以DN →=12DE →=13(b -a ),AM →=AB →+BM →=a +12BC →=a +12(b -a )=12(a +b ).点评 用已知向量表示另外一些向量,应尽量将所求向量转化到平行四边形或三角形中,利用向量共线条件和平面几何知识的一些定理、性质,如三角形中位线性质,相似三角形对应边成比例等,再利用向量加法、减法法则,即可用已知向量表示所求向量.3 平面向量的基本定理应用三技巧技巧一 构造某一向量在同一基底下的两种不同的表达形式,用“若e 1,e 2为基底,且a =x 1e 1+y 1e 2=x 2e 1+y 2e 2,则用⎩⎪⎨⎪⎧x 1=x 2y 1=y 2来求解.例1 在△OAB 的边OA ,OB 上分别取点M ,N ,使|OM →|∶|OA →|=1∶3,|ON →|∶|OB →|=1∶4,设线段AN 与BM 交于点P ,记OA →=a ,OB →=b ,用a ,b 表示向量OP →. 解 ∵B ,P ,M 共线,∴存在常数s ,使BP →=sPM →, 则OP →=11+s OB →+s 1+s OM →.即OP →=11+s OB →+s 3(1+s )OA →=s3(1+s )a +11+sb . ①同理,存在常数t ,使AP →=tPN →, 则OP →=11+t a +t 4(1+t )b .②∵a ,b 不共线,∴⎩⎪⎨⎪⎧11+t =s 3(1+s )11+s =t4(1+t ),解之得⎩⎪⎨⎪⎧s =92t =83,∴OP →=311a +211b .点评 这里选取OA →,OB →作为基底,构造OP →在此基底下的两种不同的表达形式,再根据相同基底的系数对应相等得到实数方程组,最后进行求解.技巧二 构造两个共线向量在同一基底下的表达形式,用“若e 1,e 2为基底,a =x 1e 1+y 1e 2,b =x 2e 1+y 2e 2,且a ∥b ,则x 1y 2-x 2y 1=0”来求解.例2 如图,在△OAB 中,OC →=14OA →,OD →=12OB →,AD 与BC 交于点M ,设OA →=a ,OB →=b.(1)用a 、b 表示OM →;(2)已知在线段AC 上取一点E ,在线段BD 上取一点F ,使EF 过M 点,设OE →=pOA →,OF →=qOB →,求证:17p +37q =1.(1)解 设OM →=m a +n b ,则 AM →=(m -1)a +n b ,AD →=-a +12b .∵点A 、M 、D 共线,∴AM →与AD →共线, ∴12(m -1)-(-1)×n =0,∴m +2n =1.①而CM →=OM →-OC →=(m -14)a +n b ,CB →=-14a +b .∵C 、M 、B 共线,∴CM →与CB →共线, ∴-14n -(m -14)=0.∴4m +n =1.②联立①②可得m =17,n =37,∴OM →=17a +37b .(2)证明 EM →=(17-p )a +37b ,EF →=-p a +q b ,∵EF →与EM →共线,∴(17-p )q -37×(-p )=0. ∴17q -pq =-37p ,即17p +37q=1. 点评 这里多次运用构造一组共线向量的表达形式,再根据共线向量基底的系数关系建立方程组求解.技巧三 将题目中的已知条件转化成λ1e 1+λ2e 2=0的形式(e 1,e 2不共线),根据λ1=λ2=0来求解.例3 如图,已知P 是△ABC 内一点,且满足条件AP →+2BP →+3CP →=0,设Q 为CP 的延长线与AB 的交点,令CP →=p ,试用向量p 表示CQ →.解 ∵AP →=AQ →+QP →,BP →=BQ →+QP →, ∴(AQ →+QP →)+2(BQ →+QP →)+3CP →=0, ∴AQ →+3QP →+2BQ →+3CP →=0,又∵A ,B ,Q 三点共线,C ,P ,Q 三点共线, ∴AQ →=λBQ →,CP →=μQP →, ∴λBQ →+3QP →+2BQ →+3μQP →=0, ∴(λ+2)BQ →+(3+3μ)QP →=0.而BQ →,QP →为不共线向量,∴⎩⎪⎨⎪⎧λ+2=0,3+3μ=0.∴λ=-2,μ=-1.∴CP →=-QP →=PQ →. 故CQ →=CP →+PQ →=2CP →=2p .点评 这里选取BQ →,QP →两个不共线的向量作为基底,运用化归与转化思想,最终变成λ1e 1+λ2e 2=0的形式来求解.4 直线的方向向量和法向量的应用直线的方向向量和法向量是处理直线问题的有力工具.由于直线和平面向量的学习分散在必修2和必修4先后进行,学习中对它们的认识还不到位,重视程度还不够,下面对直线的方向向量和法向量的灵活应用结合例子加以剖析. 一、直线的方向向量 1.定义设P 1,P 2是直线l :Ax +By +C =0上的不同两点,那么向量P 1P 2→以及与它平行的非零向量都称为直线l 的方向向量,若P 1(x 1,y 1),P 2(x 2,y 2),则P 1P 2→的坐标为(x 2-x 1,y 2-y 1);特别当直线l 与x 轴不垂直时,即x 2-x 1≠0,直线的斜率k 存在时,那么(1,k )是它的一个方向向量;当直线l 与x 轴平行时,方向向量可为(1,0);而无论斜率存在与否,其方向向量均可表示为(-B ,A ). 2.应用 (1)求直线方程例1 已知三角形三顶点坐标分别为A (2,-3),B (-7,9),C (18,9),求AB 边上的中线、高线方程以及∠C 的内角平分线方程. 解 ①求中线方程由于CB →=(-25,0),CA →=(-16,-12),那么AB 边上的中线CD 的方向向量为CB →+CA →=(-41,-12),也就是⎝ ⎛⎭⎪⎫1,1241,因而直线CD 的斜率为1241, 那么直线CD 的方程为y -9=1241(x -18),整理得12x -41y +153=0. ②求高线方程由于k AB =9+3-7-2=-43,因而AB 的方向向量为⎝ ⎛⎭⎪⎫1,-43,而AB 边上的高CE ⊥AB ,则直线CE 的方向向量为⎝ ⎛⎭⎪⎫1,34, 那么高线CE 的方程为y -9=34(x -18),整理得3x -4y -18=0. ③求∠C 的内角平分线方程CB→|CB →|=(-1,0),CA →|CA →|=⎝ ⎛⎭⎪⎫-45,-35,则∠C 的内角平分线的方向向量为 CB→|CB →|+CA→|CA →|=⎝ ⎛⎭⎪⎫-95,-35,也就是⎝ ⎛⎭⎪⎫1,13, 因而内角平分线CF 的方程为y -9=13(x -18),整理得x -3y +9=0.点评 一般地,经过点(x 0,y 0),与直线Ax +By +C =0平行的直线方程是A (x -x 0)+B (y -y 0)=0;与直线Ax +By +C =0垂直的直线方程是B (x -x 0)-A (y -y 0)=0.(2)求直线夹角例2 已知l 1:x +3y -15=0与l 2:y -3mx +6=0的夹角为π4,求m 的值.解 直线l 1的方向向量为v 1=(-3,1), 直线l 2的方向向量为v 2=(1,3m ), ∵l 1与l 2的夹角为π4,∴|cos〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|=|3m -3|9+1·1+9m 2=22, 化简得18m 2+9m -2=0.解得m =-23或m =16.点评 一般地,设直线l 1:y =k 1x +b 1,其方向向量为v 1=(1,k 1),直线l 2:y =k 2x +b 2,其方向向量为v 2=(1,k 2),当1+k 1k 2=0时,两直线的夹角为90°;当1+k 1k 2≠0时,设夹角为θ,则cos θ=|v 1·v 2||v 1|·|v 2|=|1+k 1k 2|1+k 21·1+k 22;若设直线l 1:A 1x +B 1y +C 1=0,其方向向量为(-B 1,A 1),直线l 2:A 2x +B 2y +C 2=0,其方向向量为(-B 2,A 2),那么cos θ=|A 1A 2+B 1B 2|A 21+B 21·A 22+B 22.二、直线的法向量 1.定义直线Ax +By +C =0的法向量:如果向量n 与直线l 垂直,则称向量n 为直线l 的法向量.因此若直线的方向向量为v ,则n ·v =0,从而对于直线Ax +By +C =0而言,其方向向量为v =(B ,-A ),则由于n ·v =0,于是可取n =(A ,B ). 2.应用(1)判断直线的位置关系例3 已知直线l 1:ax -y +2a =0与直线l 2:(2a -1)x +ay +a =0. (1)若l 1⊥l 2,求实数a 的值; (2)若l 1∥l 2,求实数a 的值.解 直线l 1,l 2的法向量分别为n 1=(a ,-1),n 2=(2a -1,a ),(1)若l 1⊥l 2,则n 1·n 2=a (2a -1)+(-1)×a =0,解得a =0或a =1.∴a =0或1时,l 1⊥l 2.(2)若l 1∥l 2,则n 1∥n 2,∴a 2-(2a -1)×(-1)=0.解得a =-1±2,且a 2a -1=-1a≠2.∴a =-1±2时,l 1∥l 2.点评 一般地,设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,它们的法向量分别为n 1=(A 1,B 1),n 2=(A 2,B 2),当n 1⊥n 2,即A 1A 2+B 1B 2=0时,l 1⊥l 2,反之亦然;当n 1∥n 2,即A 1B 2-A 2B 1=0时,l 1∥l 2或l 1与l 2重合.(2)求点到直线的距离例4 已知点M (x 0,y 0)为直线l :Ax +By +C =0外一点. 求证:点M (x 0,y 0)到直线l 的距离d =|Ax 0+By 0+C |A 2+B 2.证明 设P (x 1,y 1)是直线Ax +By +C =0上任一点,n 是直线l 的一个法向量,不妨取n =(A ,B ).则M (x 0,y 0)到直线l :Ax +By +C =0的距离d 等于向量PM →在n 方向上投影的长度,如图所示.d =|PM →|·|cos〈PM →,n 〉|=|PM →·n ||n |=|(x 0-x 1,y 0-y 1)·(A ,B )|A 2+B 2=|A (x 0-x 1)+B (y 0-y 1)|A 2+B 2=|Ax 0+By 0-(Ax 1+By 1)|A 2+B 2.∵点P (x 1,y 1)在直线l 上,∴Ax 1+By 1+C =0,∴Ax 1+By 1=-C ,∴d =|Ax 0+By 0+C |A 2+B 2.点评 同理应用直线的法向量可以证明平行直线l 1:Ax +By +C 1=0与直线l 2:Ax +By +C 2=0(A 2+B 2≠0且C 1≠C 2)的距离为d =|C 2-C 1|A 2+B 2.证明过程如下:设P 1(x 1,y 1),P 2(x 2,y 2)分别为直线l 1:Ax +By +C 1=0,直线l 2:Ax +By +C 2=0上任意两点,取直线l 1,l 2的一个法向量n =(A ,B ),则P 1P 2→=(x 2-x 1,y 2-y 1)在向量n 上的投影的长度,就是两平行线l 1、l 2的距离.d =|P 1P 2→||cos 〈P 1P 2→,n 〉|=|P 1P 2,→·n ||n |=|(x 2-x 1,y 2-y 1)·(A ,B )|A 2+B 2=|A (x 2-x 1)+B (y 2-y 1)|A 2+B 2=|(Ax 2+By 2)-(Ax 1+By 1)|A 2+B 2=|C 2-C 1|A 2+B 2.5 向量法证明三点共线平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力.下面就一道习题的应用探究为例进行说明. 典例 已知OB →=λOA →+μOC →,其中λ+μ=1.求证:A 、B 、C 三点共线. 思路 通过向量共线(如AB →=kAC →)得三点共线.证明 如图,由λ+μ=1得λ=1-μ,则OB →=λOA →+μOC →=(1-μ)OA →+μOC →.∴OB →-OA →=μ(OC →-OA →),∴AB →=μAC →, ∴A 、B 、C 三点共线.思考 1.此题揭示了证明三点共线的又一向量方法,点O 具有灵活性;2.反之也成立(证明略):若A 、B 、C 三点共线,则存在唯一实数对λ、μ,满足OB →=λOA →+μOC →,且λ+μ=1.揭示了三点共线的又一个性质;3.特别地,λ=μ=12时,OB →=12(OA →+OC →),点B 为AC →的中点,揭示了△OAC 中线OB 的一个向量公式,应用广泛. 应用举例例1 如图,平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且BN =13BD .利用向量法证明:M 、N 、C 三点共线.思路分析 选择点B ,只须证明BN →=λBM →+μBC →,且λ+μ=1.证明 由已知BD →=BA →+BC →,又点N 在BD 上,且BN =13BD ,得BN →=13BD →=13(BA →+BC →)=13BA →+13BC →.又点M 是AB 的中点,∴BM →=12BA →,即BA →=2BM →.∴BN →=23BM →+13BC →.而23+13=1.∴M 、N 、C 三点共线. 点评 证明过程比证明MN →=mMC →简洁.例2 如图,平行四边形OACB 中,BD =13BC ,OD 与AB 相交于E ,求证:BE =14BA .思路分析 可以借助向量知识,只需证明: BE →=14BA →,而BA →=BO →+BC →,又O 、D 、E 三点共线,存在唯一实数对λ、μ,且λ+μ=1,使BE →=λBO →+μBD →,从而得到BE →与BA →的关系.证明 由已知条件,BA →=BO →+BC →,又B 、E 、A 三点共线,可设BE →=kBA →,则BE →=kBO →+kBC →,①又O 、E 、D 三点共线,则存在唯一实数对λ、μ, 使BE →=λBO →+μBD →,且λ+μ=1. 又BD →=13BC →,∴BE →=λBO →+13μBC →,②根据①②得⎩⎪⎨⎪⎧k =λ,k =13μ,λ+μ=1,解得⎩⎪⎨⎪⎧k =14,λ=14,μ=34.∴BE →=14BA →,∴BE =14BA .点评 借助向量知识,充分运用三点共线的向量性质解决问题,巧妙、简洁.6 平面向量中的三角形“四心”问题在三角形中,“四心”是一组特殊的点,它们的向量表达形式具有许多重要的性质,在近年高考试题中,总会出现一些新颖别致的问题,不仅考查了向量等知识点,还培养了考生分析问题、解决问题的能力.现就“四心”作如下介绍: 1.重心三角形三条中线的交点叫重心,它到三角形顶点距离与该点到对边中心距离之比为2∶1.在向量表达形式中,设点G 是△ABC 所在平面内的一点,则当点G 是△ABC 的重心时,有GA →+GB →+GC →=0或PG →=13(PA →+PB →+PC →)(其中P 为平面任意一点).反之,若GA →+GB →+GC →=0,则点G 是△ABC 的重心.在向量的坐标表示中,若G ,A ,B ,C 分别是三角形的重心和三个顶点,且坐标分别为G (x ,y ),A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则有x =x 1+x 2+x 33,y =y 1+y 2+y 33.例 已知△ABC 内一点O 满足关系OA →+2OB →+3OC →=0,试求S △BOC ∶S △COA ∶S △AOB 的值. 解 如图,延长OB 至B 1,使BB 1=OB ,延长OC 至C 1,使CC 1=2OC ,连接AB 1,AC 1,B 1C 1.则OB 1→=2OB →,OC 1→=3OC →. 由条件,得OA →+OB 1→+OC 1→=0, ∴点O 是△AB 1C 1的重心.从而S △B 1OC 1=S △C 1OA =S △AOB 1=13S ,其中S 表示△AB 1C 1的面积.∴S △COA =19S ,S △AOB =16S ,S △BOC =12S △B 1OC =12×13S △B 1OC 1=118S .于是S △BOC ∶S △COA ∶S △AOB =118∶19∶16=1∶2∶3.点评 本题条件OA →+2OB →+3OC →=0与三角形的重心性质GA →+GB →+GC →=0十分类似,因此我们通过添加辅助线,构造一个三角形,使点O 成为辅助三角形的重心,而三角形的重心与顶点的连线将三角形的面积三等分,从而可求三部分的面积比.引申推广 已知△ABC 内一点O 满足关系λ1OA →+λ2OB →+λ3OC →=0,则S △BOC ∶S △COA ∶S △AOB =λ1∶λ2∶λ3. 2.垂心三角形三条高线的交点叫垂心,它与顶点的连线垂直于对边.在向量表达形式中,若H 是△ABC 的垂心,则HA →·HB →=HB →·HC →=HC →·HA →或HA →2+BC →2=HB →2+CA →2=HC →2+AB →2.反之,若HA →·HB →=HB →·HC →=HC →·HA →,则H 是△ABC 的垂心. 3.内心三角形三条内角平分线的交点叫内心.内心就是三角形内切圆的圆心,它到三角形三边的距离相等.在向量表达形式中,若点I 是△ABC 的内心,则有|BC →|·IA →+|CA →|·IB →+|AB →|·IC →=0.反之,若|BC →|·IA →+|CA →|·IB →+|AB →|·IC →=0,则点I 是△ABC 的内心. 4.外心三角形三条边的中垂线的交点叫外心.外心就是三角形外接圆的圆心,它到三角形的三个顶点的距离相等.在向量表达形式中,若点O 是△ABC 的外心,则(OA →+OB →)·BA →=(OB →+OC →)·CB →=(OC →+OA →)·AC →=0或|OA →|=|OB →|=|OC →|.反之,若|OA →|=|OB →|=|OC →|,则点O 是△ABC 的外心.。
2018版高中数学平面向量2.1平面向量的实际背景及基本概念导学案新人教A版必修4含解析
2.1平面向量的实际背景及基本概念【学习目标!1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别.2.会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量.3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形中这些相关的概念.ET问题导学--------------------------知识点一向量的概念思考i在日常生活中有很多量,如面积、质量、速度、位移等,这些量有什么区别?答案面积、质量只有大小,没有方向;而速度和位移既有大小又有方向思考2两个数量可以比较大小,那么两个向量能比较大小吗?答案数量之间可以比较大小,而两个向量不能比较大小梳理向量与数量(1)向量:既有大小,又有方向的量叫做向量(2)数量:只有大小,没有方向的量称为数量.知识点二向量的表示方法思考1向量既有大小又有方向,那么如何形象、直观地表示出来?答案可以用一条有向线段表示.思考2 0的模长是多少? 0有方向吗?答案 0的模长为0,方向任意.思考3单位向量的模长是多少?答案单位向量的模长为1个单位长度.梳理(1)向量的几何表示:向量可以用一条有向线段表示.带有方向的线段叫做有向线段,它包含三个要素:起点、方向、长度,如图所示.以A为起点、B为终点的有向线段记作X B⑵向量的字母表示:向量可以用字母a, b , c,…表示(印刷用黑体a, b, c,书写时用b , c).⑶向量AB勺大小,也就是向量AB勺长度(或称模),即有向线段AB勺长度,记作|AB.长度为0的向量叫做零向量,记作 0;长度等于1个单位的向量,叫做单位向量 .知识点三相等向量与共线向量思考1已知A B为平面上不同两点,那么向量AB和向量BAf等吗?它们共线吗?答案因为向量昭和向量BA方向不同,所以二者不相等•又表示它们的有向线段在同一直线上,所以两向量共线.思考2向量平行、共线与平面几何中的直线、线段平行、共线相同吗?答案不相同,由相等向量定义可知,向量可以任意移动•由于任意一组平行向量都可以移动到同一直线上,所以平行向量也叫做共线向量•因此共线向量所在的直线可以平行,也可以重合•思考3若a// b, b// c,那么一定有a// c吗?答案不一定•因为当b= 0时,a, c可以是任意向量•梳理⑴相等向量:长度相等且方向相同的向量叫做相等向量⑵平行向量:方向相同或相反的非零向量叫做平行向量①记法:向量a平行于b,记作a//b.②规定:零向量与任一向量平行•(3)共线向量:由于任意一组平行向量都可移动到同一直线上,所以平行向量也叫做共线向量•也就是说,平行向量与共线向量是等价的,因此要注意避免向量平行、共线与平面几何中的直线、线段的平行和共线相混淆•类型一向量的概念例i下列说法正确的是( )A.向量AB与向量BA勺长度相等B.两个有共同起点,且长度相等的向量,它们的终点相同C.零向量没有方向D.任意两个单位向量都相等答案 A解析两个有共同起点,且长度相等的向量,它们的方向不一定相同,终点也不一定相同;零向量的方向不确定,并不是没有方向;任意两个单位向量只有长度相等,方向不一定相同,故B, C, D都错误,A正确•故选A.反思与感悟解决向量概念问题一定要紧扣定义,对单位向量与零向量要特别注意方向问题•跟踪训练1下列说法正确的有•(1)若| a| = | b|,则a= b或a=—b;⑵ 向量AB^CD是共线向量,贝U A B C D四点必在同一条直线上;⑶向量ABW BA 是平行向量. 答案⑶解析(1)错误.| a | = | b |仅说明a 与b 的模相等,不能说明它们方向的关系 .(2)错误.共线向量即平行向量,只要方向相同或相反,并不要求两个向量 AB &必须在同一直线上,因此点 A B 、G D 不一定在同一条直线上•⑶ 正确•向量AB 和BA 是长度相等,方向相反的两个向量 •类型二共线向量与相等向量例2如图所示,△ ABG 勺三边均不相等,E 、F 、D 分别是AG AB BC 的中点•(1)写出与EF 共线的向量;⑵ 写出与EF 的模大小相等的向量;(3)写出与EF 相等的向量•解⑴因为E F 分别是AC AB 的中点, 1所以EF 綊j BC 又因为D 是BC 的中点,所以与 吝共线的向量有F^E BD DB D C CD , B C , C B⑵ 与&模相等的向量有F E, E3D, DB D C , C D ⑶ 与EF 相等的向量有C D反思与感悟(i)非零向量共线是指向量的方向相同或相反相等的向量一定共线•跟踪训练2 如图所示,O 是正六边形 ABCDE 的中心•(1)与0A 勺模相等的向量有多少个?(2)是否存在与OA 长度相等、方向相反的向量?若存在,有几个?⑶与0A 共线的向量有哪些?• (2)共线的向量不一定相等,但解(1)与0A勺模相等的线段是六条边和六条半径(如OB,而每一条线段可以有两个向量,所以这样的向量共有 23个.⑵ 存在.由正六边形的性质可知,BC// AO/ EF,所以与OA勺长度相等、方向相反的向量有X Q 5D F E BC 共 4 个.⑶ 由⑵ 知,BC/ OA/ EF,线段OD AD与0A在同一条直线上,所以与OA共线的向量有EBCCB X,FE, AO O D DO A D DA 共 9 个.类型三向量的表示及应用例3 一辆汽车从A点出发向西行驶了 100 km到达B点,然后又改变方向,向西偏北50°的方向走了 200 km到达C点,最后又改变方向,向东行驶了100 km到达D点.(1)作出向量X B B C CD⑵求|AD.解⑴向量屁BC CD如图所示.⑵ 由题意,易知A B W CD方向相反,故A B W A[共线,•••I X B = |CD,•••在四边形ABCD^ , AB綊CD•••四边形ABC曲平行四边形,• AD= BC, •I AD = | BC = 200 km.反思与感悟准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点.跟踪训练3在如图的方格纸上,已知向量 a ,每个小正方形的边长为 1.(1)试以B为终点画一个向量b,使b= a;(2)在图中画一个以A为起点的向量c ,使|c|=[ 5 ,并说出向量c的终点的轨迹是什么?解(1)根据相等向量的定义,所作向量与向量a 平行,且长度相等(作图略).⑵ 由平面几何知识可知所有这样的向量 c 的终点的轨迹是以 A 为圆心,半径为:5的圆(作图1. 下列结论正确的个数是( ) ①温度含零上和零下温度,所以温度是向量;②向量的模是一个正实数;③ 向量a 与b 不共线,则a 与b 都是非零向量; ④ 若 |a |>| b |,则 a >b . A. 0 B.1 C.2 D.3 答案 B解析 ①温度没有方向,所以不是向量,故①错;②向量的模也可以为0,故②错;④向量不可以比较大小,故④错;③若 a , b 中有一个为零向量,则 a 与b 必共线,故a 与b 不共 线,则应均为非零向量,故③对 • 2.下列说法错误的是( )A. 若 a = 0,则 | a | = 0B. 零向量是没有方向的C. 零向量与任一向量平行D. 零向量的方向是任意的 答案 B解析 零向量的长度为 0,方向是任意的,它与任何向量都平行,所以 B 是错误的•3. 如图所示,梯形 ABCD 为等腰梯形,则两腰上的向量 ABW DC 勺关系是(A .AB = DC C .A B >D C答案 B 解析| AB 与|DC 表示等腰梯形两腰的长度,故相等 .4. 如图所示,以1X2方格纸中的格点(各线段的交点)为起点和终点的向量中⑴写出与XF> AE 相等的向量;当堂训练B.| AB = |D Q D.AB^DC(2)写出与忌莫相等的向量.-> -> -> -> -> -> -> ->解⑴ AF= BE= CD, AE= BD(2) DA CF, FC厂规律与方法----- -------------------------------- ■]1.向量是既有大小又有方向的量,从其定义可以看出向量既有代数特征又有几何特征,因此借助于向量,我们可以将某些代数问题转化为几何问题,又将几何问题转化为代数问题,故向量能起到数形结合的桥梁作用•2.共线向量与平行向量是一组等价的概念•两个共线向量不一定要在一条直线上•当然,同一直线上的向量也是平行向量.3.注意两个特殊向量一一零向量和单位向量,零向量与任何向量都平行,单位向量有无穷多个,起点相同的所有单位向量的终点在平面内形成一个单位圆课时作业一、选择题1.下列物理量:①质量;②速度;③位移;④力;⑤加速度;⑥路程•其中是向量的有( )A.2个B.3 个C.4个D.5个答案 C解析②③④⑤是向量•2.下列说法中正确的个数是( )①任一向量与它的相反向量不相等;②一个向量方向不确定当且仅当模为0;③共线的向量,若起点不同,则终点一定不同;④单位向量的模都相等A.0B.1C.2D.3答案 C3.下列说法正确的是( )A.若a// b,贝U a与b的方向相同或相反B.若a / b, b / c,贝U a / cC.若两个单位向量平行,则这两个单位向量相等D.若a= b, b = c,贝U a = c答案 D4.如图,在四边形ABC即,若云B= DC则图中相等的向量是( )A.疋与CBC .X C 与 B DD.°与 OC答案 D解析 •/ °B=OC •••四边形 ABCD 是平行四边形,••• AC BD 互相平分,••• °O= OC 5.如图,在菱形 ABCC 中,/ BA* 120° 则以下说法错误的是( )A.与AB 相等的向量只有一个(不含AB B •与AB 勺模相等的向量有 9个(不含AB C.BD 勺模恰为[°勺勺模的:3倍D .C BI DA 不共线答案 D解析 由于AB = D C ,因此与AB 相等的向量只有 D C ,而与AB 的模相等的向量有 D A De Ac , °B °D°D C A BC , B A 因此选项B 正确.而 Rt △ AOD 中, •••/ADO= 30°,A| D O =¥I DA ,故|DB = _.''3| DA ,因此选项 C 正确.由于CB = DA 因此cB<DA 是共线的,故选 D . 6.如图所示,四边形 ABCD CEFG CGHD 是全等的菱形,则下列结论中不一定成立的是 ( )A.|= | E FB .A BI °共线 C.B [与 EH 共线 D .°= F G 答案 C7. 以下命题:①| a |与| b |是否相等与a , b 的方向无关;②两个具有公共终点的向量,一定 是共线向量;③两个向量不能比较大小,但它们的模能比较大小;④单位向量都是共线向量其中,正B. OB OD确命题的个数是( )A.0B.1C.2D.3答案 C解析②④错误•二、填空题8.在四边形ABCDh若AB= BC a |A B = | A[D,则四边形的形状为.答案菱形解析•/ XB=D C ••• AB綊DC•••四边形ABC[是平行四边形,•••|A B = I AD,•四边形ABCD是菱形.9.给出以下5个条件:①a = b;②| a| = | b| :③a与b的方向相反;④| a| = 0或| b| = 0:⑤a与b都是单位向量其中能使a // b成立的是.( 填序号)答案①③④解析相等向量一定是共线向量,故①能使 a / b;方向相同或相反的向量一定是共线向量,故③能使a / b;零向量与任一向量平行,故④成立10.如图,若四边形ABCC为正方形,△ BCE为等腰直角三角形,则:\A(1)____________________________ 图中与AB共线的向量有;⑵图中与AB相等的向量有__________ ;(3)________________________________ 图中与AB勺模相等的向量有;⑷图中与ECW等的向量有.答案⑴ 6C E3E, B A CD EB, A E E A⑵ D C E3E⑶ A A BE E B, DC C D X D DA BC CB⑷BD三、解答题11.一辆消防车从A地去B地执行任务,先从A地向北偏东30°方向行驶2千米到D地,然后从D 地沿北偏东60°方向行驶6千米到达C地,从C地又向南偏西30°方向行驶2千米才到达B地•rt(1) 画出X D 5C , CB X B(2) 求B 地相对于A 地的位置向量 解 ⑴向量死 DC CB AB 如图所示•⑵由题意知AD = B e••• AD 綊BC 则四边形ABCD^平行四边形,••• AB= DC 贝U B 地相对于A 地的位置向量为“北偏东 60°,长度为6千米”12.如图,已知A A = B B = C C .求证:cn 1(2) X B = —, AC=—厂& 证明(1)••• A X = B A,••I A X | = | B E? |,且点 // B 目. 又•••点 A 不在B E?上,• AA // BB ,•四边形AA B' B 是平行四边形, • I X B = | A ' ~B ' |.同理 |AC = 1 &A| , I BC = 1 —&—A|.• △ ABC2AA 'B ' C'.⑵•/四边形 AA B ' B 是平行四边形, • AB// ———A,且 | AB = |———A|,••• AB=———.同理可证 AC= A——.13.如图的方格纸由若干个边长为1的小正方形并在一起组成,方格纸中有两个定点A, B 点C 为小正方形的顶点,且|AC = '5.(1)画出所有的向量(2)求|B C|的最大值与最小值.解(1)画出所有的向量A C如图所示(2)由(1)所画的图知,①当点C位于点C或C2时,| B C取得最小值,:12+ 22= :5;②当点C位于点G或C6时,| B C取得最大值,:42+ 52= 41.所以| BC的最大值为,41,最小值为.''5.四、探究与拓展14.设a o,b o是两个单位向量,则下列结论中正确的是①a o= b o;②a o=—b o;③| a o| + | b o| = 2;④a。
高中数学第二章平面向量2.3.1平面向量基本定理学案(含解析)新人教A版必修4
2.3.1 平面向量基本定理考试标准学法指导1.平面向量基本定理既是本节的重点,也是本节的难点.2.为了更好地理解平面向量基本定理,可以通过改变向量的方向及模的大小作图观察λ1,λ2取不同值时的图形特征,得到平面上任一向量都可以由这个平面内两个不共线的向量e 1,e 2表示出来.3.在△ABC 中,明确AC →与AB →的夹角与CA →与AB →的夹角互补.1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫作表示这一平面内所有向量的一组基底.状元随笔 平面向量基本定理的理解(1)e →1,e →2是同一平面内的两个不共线的向量,e →1,e →2的选取不唯一,即一个平面可以有多组的基底.(2)平面内的任一向量a →都可以沿基底进行分解. (3)基底e →1,e →2确定后,实数λ1、λ2是唯一确定的. 2.关于两向量的夹角(1)两向量夹角的概念:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ,叫作向量a 与b 的夹角.①范围:向量a 与b 的夹角的范围是[0°,180°]. ②当θ=0°时,a 与b 同向. ③当θ=180°时,a 与b 反向.(2)垂直:如果a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b . 状元随笔 两向量夹角概念的正确理解(1)由于零向量的方向是任意的,因此,零向量可以与任一向量平行,零向量也可以与任一向量垂直.(2)按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC 不是向量CA →与向量AB →的夹角,∠BAD 才是向量CA →与向量AB →的夹角.[小试身手]1.判断下列命题是否正确. (正确的打“√”,错误的打“×”)(1)一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底.( ) (2)若e 1,e 2是同一平面内两个不共线向量,则λ1e 1+λ2e 2(λ1,λ2为实数)可以表示该平面内所有向量.( )(3) 若a e 1+b e 2=c e 1+d e 2(a ,b ,c ,d ∈R ),则a =c ,b =d .( ) 答案:(1)× (2)√ (3)×2.设O 是平行四边形ABCD 两对角线的交点,给出下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →,其中可作为这个平行四边形所在平面的一组基底的是( )A .①②B .①③C .①④ D.③④解析:①AD →与AB →不共线;②DA →=-BC →,则DA →与BC →共线;③CA →与DC →不共线;④OD →=-OB →,则OD →与OB →共线.由平面向量基底的概念知,只有不共线的两个向量才能构成一组基底,故①③满足题意.答案:B3.在△ABC 中,向量AB →,BC →的夹角是指( )A .∠CAB B .∠ABC C .∠BCAD .以上都不是解析:由两向量夹角的定义知,AB →与BC →的夹角应是∠ABC 的补角,故选D. 答案:D4.如图所示,向量OA →可用向量e 1,e 2表示为________.解析:由图可知,OA →=4e 1+3e 2. 答案:OA →=4e 1+3e 2类型一 平面向量基本定理的理解例1 设e 1,e 2是不共线的两个向量,给出下列四组向量: ①e 1与e 1+e 2; ②e 1-2e 2与e 2-2e 1; ③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中,不能作为平面内所有向量的一组基底的是________(写出满足条件的序号).【解析】 ①设e 1+e 2=λe 1,则⎩⎪⎨⎪⎧λ=1,1=0,无解,∴e 1+e 2与e 1不共线,即e 1与e 1+e 2能作为一组基底. ②设e 1-2e 2=λ(e 2-2e 1),则(1+2λ)e 1-(2+λ)e 2=0,则⎩⎪⎨⎪⎧1+2λ=0,2+λ=0,无解,∴e 1-2e 2与e 2-2e 1不共线,即e 1-2e 2与e 2-2e 1能作为一组基底. ③∵e 1-2e 2=-12(4e 2-2e 1),∴e 1-2e 2与4e 2-2e 1共线,即e 1-2e 2与4e 2-2e 1不能作为一组基底.④设e 1+e 2=λ(e 1-e 2),则(1-λ)e 1+(1+λ)e 2=0,则⎩⎪⎨⎪⎧1-λ=0,1+λ=0,无解,∴e 1+e 2与e 1-e 2不共线,即e 1+e 2与e 1-e 2能作为一组基底.【答案】 ③由基底的定义知,平面α内两个不共线的向量e →1、e →2叫做表示这一平面内所有向量的一组基底,要判断所给的两个向量能否构成基底,只要看这两个向量是否共线即可.方法归纳对基底的理解(1)两个向量能否作为一组基底,关键是看这两个向量是否共线.若共线,则不能作基底,反之,则可作基底.(2)一个平面的基底一旦确定,那么平面上任意一个向量都可以由这组基底唯一线性表示出来.设向量a 与b 是平面内两个不共线的向量,若x 1a +y 1b =x 2a +y 2b ,则{ x 1=x 2,y 1=y 2.提醒:一个平面的基底不是唯一的,同一个向量用不同的基底表示,表达式不一样.跟踪训练1 下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底; ②一个平面内有无数多对不共线向量可作为该平面所有向量的基底; ③零向量不可以作为基底中的向量.其中正确的说法是( )A.①② B .②③ C .①③ D .①②③解析:平面内向量的基底是不唯一的,在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;零向量可看成与任何向量平行,故零向量不可以作为基底中的向量,故B 项正确.答案:B平面内任意一对不共线的向量都可以作为该平面内所有向量的基底,一定要注意“不共线”这一条件,在做题时容易忽略此条件而导致错误,同时还要注意零向量不能作基底.类型二 用基底表示平面向量例2 如图所示,在▱ABCD 中,点E ,F 分别为BC ,DC 边上的中点,DE 与BF 交于点G ,若AB →=a ,AD →=b ,试用a ,b 表示向量DE →,BF →.【解析】 DE →=DA →+AB →+BE →=-AD →+AB →+12BC →=-AD →+AB →+12AD →=a -12b .BF →=BA →+AD →+DF →=-AB →+AD →+12AB →=b -12a .解决此类问题的关键在于以一组不共线的向量为基底,通过向量的加、减、数乘以及向量共线的结论,把其他相关的向量用这一组基底表示出来.方法归纳用基底表示向量的两种方法(1)运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止. (2)通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解.跟踪训练2 (1)本例条件不变,试用基底a ,b 表示AG →;(2)若本例中的基向量“AB →,AD →”换为“CE →,CF →”即若CE →=a ,CF →=b ,试用a ,b 表示向量DE →,BF →.解析:(1)由平面几何知识知BG =23BF ,故AG →=AB →+BG →=AB →+23BF →=a +23⎝ ⎛⎭⎪⎫b -12a =a +23b-13a =23a +23b . (2)DE →=DC →+CE →=2FC →+CE →=-2CF →+CE →=-2b +a . BF →=BC →+CF →=2EC →+CF →=-2CE →+CF →=-2a +b .用基底表示平面向量,要充分利用向量加法、减法的三角形法则或平行四边形法则. 类型三 向量的夹角例3 已知|a |=|b |,且a 与b 的夹角为120°,求a +b 与a 的夹角及a -b 与a 的夹角.【解析】 如图,作OA →=a ,OB →=b ,∠AOB =120°,以OA →,OB →为邻边作平行四边形OACB ,则OC →=a +b ,BA →=a -b .因为|a |=|b |,所以平行四边形OACB 为菱形. 所以OC →与OA →的夹角∠AOC =60°,BA →与OA →的夹角即为BA →与BC →的夹角∠ABC =30°.所以a +b 与a 的夹角为60°,a -b 与a 的夹角为30°.作图,由图中找到a →-b →与a →的夹角,利用三角形、四边形的知识求角. 方法归纳两个向量夹角的实质及求解的关键(1)实质:两个向量的夹角,实质上是从同一起点出发的两个非零向量构成的角. (2)关键:求两个向量的夹角,关键是利用平移的方法使两个向量的起点重合,然后按照“一作二证三算”的步骤,并结合平面几何知识求出两个向量的夹角.跟踪训练3 已知|a |=|b |=2,且a 与b 的夹角为60°,求a +b 与a 的夹角,a -b 与a 的夹角.解析:如图,作OA →=a ,OB →=b ,且∠AOB =60°,以OA ,OB 为邻边作▱OACB , 则OC →=OA →+OB →=a +b ,BA →=OA →-OB →=a -b ,BC →=OA →=a . 因为|a |=|b |=2,所以△OAB 为正三角形. 所以∠OAB =60°=∠ABC . 即a -b 与a 的夹角为60°. 因为|a |=|b |,所以▱OACB 为菱形.所以OC ⊥AB ,所以∠COA =90°-60°=30°. 即a +b 与a 的夹角为30°.作出向量a →,b →,a →+b →,a →-b →,利用平面几何知识求解. 2.3.1[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.已知向量a =e 1-2e 2,b =2e 1+e 2,其中e 1,e 2不共线,则a +b 与c =6e 1-2e 2的关系是( )A .不共线B .共线C .相等D .不确定 解析:∵a +b =3e 1-e 2,∴c =2(a +b ).∴a +b 与c 共线. 答案:B2.当向量a 与b 共线时,则这两个向量的夹角θ为( ) A .0° B.90°C .180°D .0°或180°解析:当向量a 与b 共线,即两向量同向时夹角θ=0°,反向时夹角θ=180°. 答案:D3.已知AD 是△ABC 的中线,AB →=a ,AD →=b ,以a ,b 为基底表示AC →,则AC →=( ) A.12(a -b ) B .2b -a C.12(b -a ) D .2b +a解析:如图,AD 是△ABC 的中线,则D 为线段BC 的中点,从而AD →=12(AB →+AC →),则AC →=2AD →-AB →=2b -a .答案:B4.在正方形ABCD 中,AC →与CD →的夹角等于( ) A .45° B.90° C .120° D.135° 解析:如图所示,将AC →平移到CE →,则CE →与CD →的夹角即为AC →与CD →的夹角,夹角为135°. 答案:D5.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为( )55C.85D.45解析:∵CD →=4DB →=rAB →+sAC →, ∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,∴r =45,s =-45.∴3r +s =125-45=85.答案:C二、填空题(每小题5分,共15分)6.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为________.解析:因为a ,b 是一组基底,所以a 与b 不共线, 因为(3x -4y )a +(2x -3y )b =6a +3b ,所以⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,所以x -y =3.答案:37.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,若OA →=a ,OB →=b ,用a ,b 表示向量OC →,则OC →=________.解析:AC →=OC →-OA →,CB →=OB →-OC →,∵2AC →+CB →=0,∴2(OC →-OA →)+(OB →-OC →)=0,∴OC →=2OA →-OB →=2a -b .答案:2a -b8.在正方形ABCD 中,E 是DC 边上的中点,且AB →=a ,AD →=b ,则BE →=________.解析:BE →=BC →+CE →=AD →-12AB →=b -12a .2三、解答题(每小题10分,共20分)9.已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =7e 1-4e 2,试用向量a 和b 表示c .解析:因为a ,b 不共线,所以可设c =x a +y b , 则x a +y b =x (3e 1-2e 2)+y (-2e 1+e 2) =(3x -2y )e 1+(-2x +y )e 2=7e 1-4e 2. 又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧3x -2y =7,-2x +y =-4,解得⎩⎪⎨⎪⎧x =1,y =-2,所以c =a -2b .10.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB→=a ,AC →=b ,试用a ,b 将MN →、NP →、PM →表示出来.解析:NP →=AP →-AN →=13AB →-23AC →=13a -23b ,MN →=CN →-CM →=-13AC →-23CB →=-13b -23(a -b )=-23a +13b ,PM →=-MP →=-(MN →+NP →)=13(a +b ).[能力提升](20分钟,40分)11.设非零向量a ,b ,c 满足|a |=|b |=|c |,a +b =c ,则向量a ,b 的夹角为( ) A .150° B.120° C .60° D.30°解析:设向量a ,b 的夹角为θ,作BC →=a ,CA →=b ,则c =a +b =BA →(图略),a ,b 的夹角为180°-∠C .∵|a |=|b |=|c |,∴∠C =60°,∴θ=120°.答案:B 12.如图,在△ABC 中,已知AB =2,BC =3,∠ABC =60°,AH ⊥BC 于H ,M 为AH 的中点,若AM →=λAB →+μBC →,则λ+μ=________.解析:因为AB =2,∠ABC =60°,AH ⊥BC ,所以BH =1,又M 为AH 的中点,BC =3,所以AM →=12AH →=12(AB →+BH →)=12(AB →+13BC →)=12AB →+16BC →,所以λ+μ=23. 答案:2313.如图,在△OAB 中,OC →=14OA →,OD →=12OB →,AD 与BC 交于点M ,设OA →=a ,OB →=b ,试以a ,b 为基底表示OM →.解析:根据平面向量基本定理可设OM →=m a +n b (m ,n ∈R ),则AM →=OM →-OA →=(m -1)a +n b ,AD →=OD →-OA →=12b -a =-a +12b , ∵A 、M 、D 三点共线,∴AM →=λAD →(λ为实数),∴AM →=-λa +λ2b , ∴⎩⎪⎨⎪⎧ m -1=-λ,n =12λ,消去λ得m +2n =1.而CM →=OM →-OC →=⎝ ⎛⎭⎪⎫m -14a +n b ,CB →=OB →-OC →=b -14a =-14a +b , ∵C 、M 、B 三点共线,∴CM →=μCB →(μ为实数),∴CM →=-μ4a +μb ,∴⎩⎪⎨⎪⎧ m -14=-14μ,n =μ,消去μ得4m +n =1.由⎩⎪⎨⎪⎧ m +2n =1,4m +n =1解得⎩⎪⎨⎪⎧ m =17,n =37,∴OM →=17a +37b . 14.在△ABC 中,AB =3,BC =1,AC =2,D 是AC 的中点.求:(1)AD →与BD →夹角的大小;(2)DC →与BD →夹角的大小.解析:(1)如图所示,在△ABC 中,AB =3,BC =1,AC =2,所以AB 2+BC 2=(3)2+1=22=AC 2,所以△ABC 为直角三角形.因为tan A =BC AB =13=33, 所以A =30°.又因为D 为AC 的中点,所以∠ABD =∠A =30°,AD →=DC →.在△ABD 中,∠BDA =180°-∠A -∠ABD =180°-30°-30°=120°,所以AD →与BD →的夹角为120°.(2)因为AD →=DC →,所以DC →与BD →的夹角也为120°.。
2018版高中数学平面向量2.2.3向量数乘运算及其几何意义导学案新人教A版必修4 含解析
2.2.3 向量数乘运算及其几何意义学习目标 1.了解向量数乘的概念,并理解这种运算的几何意义.2.理解并掌握向量数乘的运算律,会运用向量数乘运算律进行向量运算.3.理解并掌握两向量共线的性质及其判定方法,并能熟练地运用这些知识处理有关共线向量问题.知识点一 向量数乘的定义思考1 实数与向量相乘结果是实数还是向量? 答案 向量.思考2 向量3a ,-3a 与a 从长度和方向上分析具有怎样的关系? 答案 3a 的长度是a 的长度的3倍,它的方向与向量a 的方向相同. -3a 的长度是a 的长度的3倍,它的方向与向量a 的方向相反. 思考3 λa 的几何意义是什么?答案 λa 的几何意义就是将表示向量a 的有向线段伸长或压缩.当|λ|>1时,表示a 的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的|λ|倍. 梳理 向量数乘运算实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,其长度与方向规定如下:(1)|λa |=|λ||a |. (2)λa (a ≠0)的方向⎩⎪⎨⎪⎧当λ>0时,与a 方向相同,当λ<0时,与a 方向相反;特别地,当λ=0或a =0时,0a =0或λ0=0. 知识点二 向量数乘的运算律思考 类比实数的运算律,向量数乘有怎样的运算律? 答案 结合律,分配律. 梳理 向量数乘运算律 (1)λ(μa )=(λμ)a ; (2)(λ+μ)a =λa +μa ; (3)λ(a +b )=λa +λb . 知识点三 向量共线定理思考1 若b =2a ,b 与a 共线吗?答案 根据共线向量及向量数乘的意义可知,b 与a 共线.如果有一个实数λ,使b =λa (a ≠0),那么b 与a 是共线向量;反之,如果b 与a (a ≠0)是共线向量,那么有且只有一个实数λ,使得b =λa .思考2 若b 与非零向量a 共线,是否存在λ满足b =λa ?若b 与向量a 共线呢? 答案 若b 与非零向量a 共线,存在λ满足b =λa ;若b 与向量a 共线,当a =0,b ≠0时,不存在λ满足b =λa . 梳理 (1)向量共线定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa . (2)向量的线性运算向量的加、减、数乘运算统称为向量的线性运算,对于任意向量a 、b ,以及任意实数λ、μ1、μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .类型一 向量数乘的基本运算例1 (1)化简:14[2(2a +4b )-4(5a -2b )].解 14[2(2a +4b )-4(5a -2b )]=14(4a +8b -20a +8b ) =14(-16a +16b ) =-4a +4b .(2)已知向量为a ,b ,未知向量为x ,y ,向量a ,b ,x ,y 满足关系式3x -2y =a ,-4x +3y =b ,求向量x ,y .解 ⎩⎪⎨⎪⎧3x -2y =a , ①-4x +3y =b , ②由①×3+②×2,得x =3a +2b ,代入①得3×(3a +2b )-2y =a , 所以x =3a +2b ,y =4a +3b .反思与感悟 (1)向量的数乘运算类似于代数多项式的运算,例如实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是这里的“同类项”、“公因式”是指向量,实数看作是向量的系数.(2)向量也可以通过列方程和方程组求解,同时在运算过程中多注意观察,恰当的运用运算律,简化运算.跟踪训练1 (1)计算:(a +b )-3(a -b )-8a . 解 (a +b )-3(a -b )-8a =(a -3a )+(b +3b )-8a=-2a +4b -8a =-10a +4b .(2)若2⎝ ⎛⎭⎪⎫y -13a -13(c +b -3y )+b =0,其中a ,b ,c 为已知向量,则未知向量y =________.答案 29a -29b +19c解析 因为2⎝ ⎛⎭⎪⎫y -13a -13(c +b -3y )+b =0,3y -23a +23b -13c =0,所以y =29a -29b +19c .类型二 向量共线的判定及应用 命题角度1 判定向量共线或三点共线 例2 已知非零向量e 1,e 2不共线.(1)若a =12e 1-13e 2,b =3e 1-2e 2,判断向量a ,b 是否共线.解 ∵b =6a ,∴a 与b 共线.(2)若AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线. 证明 ∵AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB →. ∴AB →,BD →共线,且有公共点B , ∴A 、B 、D 三点共线.反思与感悟 (1)向量共线的判断(证明)是把两向量用共同的已知向量来表示,进而互相表示,从而判断共线.(2)利用向量共线定理证明三点共线,一般先任取两点构造向量,从而将问题转化为证明两向量共线,需注意的是,在证明三点共线时,不但要利用b =λa (a ≠0),还要说明向量a ,b 有公共点.跟踪训练 2 已知非零向量e 1,e 2不共线,如果AB →=e 1+2e 2,BC →=-5e 1+6e 2,CD →=7e 1-2e 2,则共线的三个点是________. 答案 A ,B ,D解析 ∵AB →=e 1+2e 2,BD →=BC →+CD →=-5e 1+6e 2+7e 1-2e 2=2(e 1+2e 2)=2AB →. ∴AB →,BD →共线,且有公共点B , ∴A ,B ,D 三点共线.命题角度2 利用向量共线求参数值例3 已知非零向量e 1,e 2不共线,欲使k e 1+e 2和e 1+k e 2共线,试确定k 的值.解 ∵k e 1+e 2与e 1+k e 2共线,∴存在实数λ,使k e 1+e 2=λ(e 1+k e 2), 则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎪⎨⎪⎧k -λ=0,λk -1=0,∴k =±1.反思与感悟 利用向量共线定理,即b 与a (a ≠0)共线⇔b =λa ,既可以证明点共线或线共线问题,也可以根据共线求参数的值.跟踪训练3 已知A ,B ,P 三点共线,O 为直线外任意一点,若OP →=xOA →+yOB →,则x +y =________. 答案 1解析 由于A ,B ,P 三点共线,则AB →,AP →在同一直线上,由向量共线定理可知,一定存在实数λ使得AP →=λAB →,即OP →-OA →=λ(OB →-OA →), ∴OP →=(1-λ)OA →+λOB →. ∴x =1-λ,y =λ,则x +y =1. 类型三 用已知向量表示其他向量例4 在△ABC 中,若点D 满足BD →=2DC →,则AD →等于( ) A.13AC →+23AB → B.53AB →-23AC →C.23AC →-13AB →D.23AC →+13AB → 答案 D解析 示意图如图所示,由题意可得AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →.反思与感悟 用已知向量表示未知向量的求解思路(1)先结合图形的特征,把待求向量放在三角形或平行四边形中.(2)然后结合向量的三角形法则或平行四边形法则及向量共线定理用已知向量表示未知向量.(3)当直接表示比较困难时,可以利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.跟踪训练4 如图,在△ABC 中,D ,E 为边AB 的两个三等分点,CA →=3a ,CB →=2b ,求CD →,CE →.解 ∵CA →=3a ,CB →=2b , ∴AB →=CB →-CA →=2b -3a ,又∵D ,E 为边AB 的两个三等分点, ∴AD →=13AB →=23b -a ,∴CD →=CA →+AD →=3a +23b -a =2a +23b ,CE →=CA →+AE →=3a +23AB →=3a +23(2b -3a )=a +43b .1.已知a =5e ,b =-3e ,c =4e ,则2a -3b +c 等于( ) A.5e B.-5e C.23e D.-23e答案 C解析 2a -3b +c =2×5e -3×(-3e )+4e =23e . 2.在△ABC 中,M 是BC 的中点,则AB →+AC →等于( ) A.12AM → B.AM → C.2AM → D.MA → 答案 C解析 如图,作出平行四边形ABEC ,M 是对角线的交点,故M 是BC 的中点,且是AE 的中点,由题意知,AB →+AC →=AE →=2AM →,故选C.3.设e 1,e 2是两个不共线的向量,若向量m =-e 1+k e 2 (k ∈R )与向量n =e 2-2e 1共线,则( ) A.k =0 B.k =1 C.k =2 D.k =12答案 D解析 当k =12时,m =-e 1+12e 2,n =-2e 1+e 2.所以n =2m ,此时,m ,n 共线.4.已知△ABC 的三个顶点A ,B ,C 及平面内一点P ,且PA →+PB →+PC →=AB →,则( ) A.P 在△ABC 内部 B.P 在△ABC 外部C.P 在AB 边上或其延长线上D.P 在AC 边上 答案 D解析 ∵PA →+PB →+PC →=PB →-PA →, ∴PC →=-2PA →,∴P 在AC 边上.5.如图所示,已知AP →=43AB →,用OA →,OB →表示OP →.解 OP →=OA →+AP →=OA →+43AB →=OA →+43(OB →-OA →)=-13OA →+43OB →.1.实数与向量可以进行数乘运算,但不能进行加减运算,例如λ+a ,λ-a 是没有意义的.2.λa 的几何意义就是把向量a 沿着a 的方向或反方向扩大或缩小为原来的|λ|倍.向量a|a |表示与向量a 同向的单位向量.3.向量共线定理是证明三点共线的重要工具.即三点共线问题通常转化为向量共线问题.4.已知O ,A ,B 是不共线的三点,且OP →=mOA →+nOB →(m ,n ∈R ),A ,P ,B 三点共线⇔m +n =1.课时作业一、选择题1.下列说法中正确的是( ) A.λa 与a 的方向不是相同就是相反 B.若a ,b 共线,则b =λa C.若|b |=2|a |,则b =±2a D.若b =±2a ,则|b |=2|a | 答案 D解析 显然当b =±2a 时,必有|b |=2|a |.2.在△ABC 中,如果AD ,BE 分别为BC ,AC 上的中线,且AD →=a ,BE →=b ,那么BC →等于( ) A.23a +43b B.23a -23b C.23a -43b D.-23a +43b答案 A解析 由题意,得BC →=BE →+EC →=b +12AC →=b +12(AD →+DC →)=b +12a +14BC →,即BC →=b +12a +14BC →,解得BC →=23a +43b .3.如图,AB 是⊙O 的直径,点C ,D 是半圆弧AB 上的两个三等分点,AB →=a ,AC →=b ,则AD →等于( )A.a -12bB.12a -b C.a +12bD.12a +b 答案 D解析 连接CD ,OD ,如图所示.∵点C ,D 是半圆弧AB 上的两个三等分点, ∴AC =CD ,∠CAD =∠DAB =13×90°=30°.∵OA =OD ,∴∠ADO =∠DAO =30°. 由此可得∠CAD =∠ADO =30°,∴AC ∥DO . 由AC =CD ,得∠CDA =∠CAD =30°, ∴∠CDA =∠DAO , ∴CD ∥AO ,∴四边形ACDO 为平行四边形, ∴AD →=AO →+AC →=12AB →+AC →=12a +b .4.在△ABC 中,已知D 是AB 边上的一点,若CD →=13CA →+λCB →,则λ等于( )A.13B.23 C.12 D.34答案 B解析 ∵A ,B ,D 三点共线,∴13+λ=1,λ=23.5.设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →答案 A解析 ∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3AD →,∴AD →=-13AB →+43AC →.6.已知m ,n 是实数,a ,b 是向量,则下列命题中正确的是( ) ①m (a -b )=m a -m b ;②(m -n )a =m a -n a ; ③若m a =m b ,则a =b ;④若m a =n a ,则m =n . A.①④ B.①② C.①③ D.③④答案 B解析 ①和②属于数乘对向量与实数的分配律,正确;③中,若m =0,则不能推出a =b ,错误;④中,若a =0,则m ,n 没有关系,错误. 二、填空题7.已知AB →=a +5b ,BC →=-2a +8b ,CD →=3(a -b ),则________三点共线. 答案 A ,B ,D8.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________. 答案 12解析 ∵向量a ,b 不平行,∴a +2b ≠0,又∵向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,则⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12. 9.(a +9b -2c )+(b +2c )=________. 答案 a +10b10.在▱ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →=________.(用a ,b 表示) 答案 14b -14a解析 如图,MN →=MB →+BA →+AN →=-12b -a +34AC →=-12b -a +34(a +b )=14(b -a ).三、解答题11.如图所示,设M ,N 为△ABC 内的两点,且AM →=14AB →+13AC →,AN →=25AB →+12AC →,求△ABM 的面积与△ABN 的面积之比.解 如图所示,设AP →=14AB →,AQ →=13AC →,则AM →=AP →+AQ →.由平行四边形法则知,MQ ∥AB ,∴S △ABM S △ABC =|AQ →||AC →|=13. 同理S △ABN S △ABC =12.∴S △ABM S △ABN =23. 12.若非零向量a 与b 不共线,k a +2b 与3a +k b 共线,试求实数k 的值. 解 ∵k a +2b 与3a +k b 共线,∴存在实数λ,使得k a +2b =λ(3a +k b ), ∴(k -3λ)a +(2-λk )b =0, ∴(k -3λ)a =(λk -2)b . ∵a 与b不共线,∴⎩⎪⎨⎪⎧k -3λ=0λk -2=0,∴k =± 6.13.在平行四边形ABCD 中,M ,N 分别是DC ,BC 的中点,已知AM →=c ,AN →=d ,试用c ,d 表示AB →和AD →.解 如图,设AB →=a ,AD →=b . ∵M ,N 分别是DC ,BC 的中点,∴BN →=12b ,DM →=12a .∵在△ADM 和△ABN 中,⎩⎪⎨⎪⎧AD →+DM →=AM →,AB →+BN →=AN →,即⎩⎪⎨⎪⎧ b +12a =c , ①a +12b =d . ②①×2-②,得b =23(2c -d ), ②×2-①,得a =23(2d -c ). ∴AB →=43d -23c ,AD →=43c -23d . 四、探究与拓展14.已知向量a ,b 是两个不共线的向量,且向量m a -3b 与a +(2-m )b 共线,则实数m 的值为________.答案 -1或315.已知在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,求证:四边形ABCD为梯形.证明 如图所示.∵AD →=AB →+BC →+CD →=(a +2b )+(-4a -b )+(-5a -3b )=-8a -2b =2(-4a -b ),∴AD →=2BC →.∴AD →与BC →共线,且|AD →|=2|BC →|.又∵这两个向量所在的直线不重合,∴AD ∥BC ,且AD =2BC .∴四边形ABCD 是以AD ,BC 为两条底边的梯形.。
新人教A版必修4高中数学2.3.3平面向量的坐标运算导学案
1高中数学 2.3.3平面向量的坐标运算导学案新人教A 版必修4【学习过程】 一、自主学习(一)知识链接:复习:⑴向量()122,0e e e ≠是共线的两个向量,则12,e e 之间的关系可表示为 .⑵向量12,e e 是同一平面内两个不共线的向量,a 为这个平面内任一向量,则向量a 可用12,e e 表示为 。
(二)自主探究:(预习教材P96—P97) 探究:平面向量的坐标运算问题1:已知()11,a x y =,()22,b x y =,能得出a b +,a b -,a λ的坐标吗?1、已知:==1122(,),(,)a x y b x x ,λ为一实数+a b =__________________________ _。
-a b =___________。
这就是说,两个高量和(差)的坐标分别等于__________________ ____。
λa =_______________这就是说,实数与向量的积的坐标等于:________________________。
问题2:如图,已知()11,A x y ,()22,B x y ,则怎样用坐标表示向2量AB 呢?2、若已知(,)A x y 11,(,)B x y 22,则AB =_____________=___________________ 即一个向量的坐标等于此向量的有向线段 的________________________。
问题3:你能在上图中标出坐标为()2121,x x y y --的P 点吗?标出P 点后,你能发现向量的坐标与点的坐标之间的联系吗?二、合作探究1、已知()2,8a b +=-,()8,16a b -=-,求a 和b .2、已知平行四边形ABCD 的顶点()1,2A --,()3,1B -,()5,6C ,试求:(1)顶点D 的坐标.(2)若AC 与BD 的交点为O ,试求点O 的坐标.3、已知△ABC 中,A (7,8),B (3,5),C (4,3),M 、N 是AB 、AC 的中点,D 是BC 的中点,MN 与AD 交于点F ,求DF →.3三、目标检测(A 组必做,B 组选做)A 组1. 若向量()2,3a x =-与向量()1,2b y =+相等,则( )A .1,3x y == B.3,1x y == C.1,5x y ==- D.5,1x y ==-2. 已知(),AB x y =,点B 的坐标为()2,1-,则OA 的坐标为( ) A.()2,1x y -+ B.()2,1x y +- C.()2 1x y ---, D.()2,1x y ++3. 已知()3,1a =-,()1,2b =-,则32a b --等于( )A.()7,1B.()7,1--C.()7 1-,D.()7,1-4. 设点()1,2A -,()2,3B ,()3,1C -且AD =2AB 3BC -,求D 点的坐标。
人教A版高中数学必修四 2.5《平面向量应用举例》导学案
2.5《平面向量应用举例》导学案【学习目标】1.通过应用举例,让学生会用平面向量知识解决几何问题的两种方法-----向量法和坐 标法,可以用向量知识研究物理中的相关问题的“四环节” 和生活中的实际问题;2.通过本节的学习,让学生体验向量在解决几何和物理问题中的工具作用,增强学生的 积极主动的探究意识,培养创新精神。
【导入新课】 回顾提问:(1)若O 为ABC ∆重心,则OA +OB +OC =0。
(2)水渠横断面是四边形ABCD ,DC =12AB,且|AD |=|BC |,则这个四边形为等腰梯形.类比几何元素之间的关系,你会想到向量运算之间都有什么关系?(3) 两个人提一个旅行包,夹角越大越费力.为什么?教师:本节主要研究了用向量知识解决平面几何和物理问题;掌握向量法和坐标法,以及用向量解决平面几何和物理问题的步骤,已经布置学生们课前预习了这部分,检查学生预习情况并让学生把预习过程中的疑惑说出来。
新授课阶段探究一:(1)向量运算与几何中的结论"若a b = ,则||||a b =,且,a b 所在直线平行或重合"相类比,你有什么体会?(2)由学生举出几个具有线性运算的几何实例.教师:平移、全等、相似、长度、夹角等几何性质可以由向量线性运算及数量积表示出来:例如,向量数量积对应着几何中的长度.如图: 平行四边行ABCD 中,设AB=a ,AD =b ,则AC AB BC a b =+=+ (平移),DB AB AD a b =-=- ,222||AD b AD == (长度).向量AD ,AB的夹角为DAB ∠.因此,可用向量方法解决平面几何中的一些问题。
通过向量运算研究几何运算之间的关系,如距离、夹角等.把运算结果“翻译”成几何关系.本节课,我们就通过几个具体实例,来说明向量方法在平面几何中的运用。
例1 证明:平行四边形两条对角线的平方和等于四条边的平方和. 已知:平行四边形ABCD .求证:222222AC BD AB BC CD DA +=+++. 分析:证明:用向量方法解决平面几何问题,主要有下面三个步骤:⑴建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;⑵通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; ⑶把运算结果“翻译”成几何关系.变式训练:ABC ∆中,D 、E 、F 分别是AB 、BC 、CA 的中点,BF 与CD 交于点O ,设,.AB a AC b == (1)证明A 、O 、E 三点共线;(2)用,a b表示向量AO 。
高中数学必修四第二章 平面向量 章末小结导学案
高中数学必修四第二章平面向量章末小结导学案本资料为woRD文档,请点击下载地址下载全文下载地址第二章平面向量章末小结【本章知识体系】【题型归纳】专题一、平面向量的概念及运算包含向量的有关概念、加法、减法、数乘。
向量的加法遵循三角形法则和平行四边形法则,减法可以转化为加法进行运算。
利用向量证明三点共线时,应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.、1.AB→+Ac→-Bc→+BA→化简后等于A.3AB→B.AB→c.BA→D.cA→2、在平行四边形ABcD中,oA→=a,oB→=b,oc→=c,oD→=d,则下列运算正确的是A.a+b+c+d=0B.a-b+c-d=0c.a+b-c-d=0D.a-b-c+d=03、已知圆o的半径为3,直径AB上一点D使AB→=3AD →,E、F为另一直径的两个端点,则DE→•DF→=A.-3B.-4c.-8D.-64、如图,在正方形ABcD中,设AB→=a,AD→=b,BD →=c,则在以a,b为基底时,Ac→可表示为________,在以a,c为基底时,Ac→可表示为________.5、下列说法正确的是A.两个单位向量的数量积为1B.若a•b=a•c,且a≠0,则b=cc.AB→=oA→-oB→D.若b⊥c,则•b=a•b专题二、平面向量的坐标表示及坐标运算向量的坐标表示及运算强化了向量的代数意义。
若已知有向线段两端点的坐标,则应先求向量的坐标,解题过程中,常利用向量相等,则其坐标相同这一原则。
6、已知向量a=,b=,若2a-b与b垂直,则|a|等于A.1B.2c.2D.47、设向量a=,b=,c=,若表示向量4a,4b-2c,2,d的有向线段首尾相接能构成四边形,则d=A.B.c.D.8、已知a=,b=,c满足a•c=0,且|a|=|c|,b•c>0,则c=________.专题三、平面向量的基本定理平面向量的基本定理解决了所有向量之间的相互关系,为我们研究向量提供了依据。
最新人教A版高中数学必修4第二章平面向量章末复习课导学案
第二章 平面向量学习目标.1.回顾梳理向量的有关概念,进一步体会向量的有关概念的特征.2.系统整理向量线性运算、数量积运算及相应的运算律和运算性质.3.体会应用向量解决问题的基本思想和基本方法.4.进一步理解向量的“工具”性作用.1.向量的运算:设a =(x 1,y 1),b =(x 2,y 2).2.两个定理(1)平面向量基本定理①定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.②基底:把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底.(2)向量共线定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa . 3.向量的平行与垂直a ,b 为非零向量,设a =(x 1,y 1),b =(x 2,y 2),类型一.向量的线性运算例1.如图所示,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.答案.311解析.设BP →=λBN →,则BP →=BA →+AP →=-AB →+mAB →+211AC →=(m -1)AB →+211AC →.BN →=BA →+AN →=-AB →+14AC →.∵BP →与BN →共线,∴14(m -1)+211=0,∴m =311.反思与感悟.向量共线定理和平面向量基本定理是进行向量合成与分解的核心,是向量线性运算的关键所在,常应用它们解决平面几何中的共线、共点问题.跟踪训练1.在△ABC 中,E 为线段AC 的中点,试问在线段AC 上是否存在一点D ,使得BD →=13BC→+23BE →,若存在,说明D 点位置;若不存在,说明理由.解.假设存在D 点,使得BD →=13BC →+23BE →.BD →=13BC →+23BE →⇒BD →=13BC →+23(BC →+CE →)=BC →+23CE →⇒BD →-BC →=23CE →⇒CD →=23CE →⇒CD →=23×⎝ ⎛⎭⎪⎫12CA →⇒CD →=13CA →.所以当点D 为AC 的三等分点⎝⎛⎭⎪⎫CD →=13CA →时,BD →=13BC →+23BE →.类型二.向量的数量积运算例2.已知a =(cos α,sin α),b =(cos β,sin β),且|k a +b |=3|a -k b |(k >0). (1)用k 表示数量积a ·b ;(2)求a ·b 的最小值,并求出此时a 与b 的夹角θ的大小. 解.(1)由|k a +b |=3|a -k b |, 得(k a +b )2=3(a -k b )2,∴k 2a 2+2k a ·b +b 2=3a 2-6k a ·b +3k 2b 2. ∴(k 2-3)a 2+8k a ·b +(1-3k 2)b 2=0.∵|a |=cos 2α+sin 2α=1,|b |=cos 2β+sin 2β=1, ∴k 2-3+8k a ·b +1-3k 2=0, ∴a ·b =2k 2+28k =k 2+14k.(2)a ·b =k 2+14k =14(k +1k).由函数的单调性可知,f (k )=14(k +1k )在(0,1]上单调递减,在[1,+∞)上单调递增,∴当k =1时,f (k )min =f (1)=14×(1+1)=12,此时a 与b 的夹角θ的余弦值cos θ=a ·b |a ||b |=12,∴θ=60°.反思与感悟.数量积运算是向量运算的核心,利用向量数量积可以解决以下问题: (1)设a =(x 1,y 1),b =(x 2,y 2),a ∥b ⇔x 1y 2-x 2y 1=0, a ⊥b ⇔x 1x 2+y 1y 2=0.(2)求向量的夹角和模的问题 ①设a =(x 1,y 1),则|a |=x 21+y 21. ②两向量夹角的余弦(0≤θ≤π)cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22. 跟踪训练2.已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-(3+m )). (1)若点A ,B ,C 能构成三角形,求实数m 应满足的条件; (2)若△ABC 为直角三角形,且∠A 为直角,求实数m 的值. 解.(1)若点A ,B ,C 能构成三角形,则这三点不共线, ∵OA →=(3,-4),OB →=(6,-3), OC →=(5-m ,-(3+m )),∴AB →=(3,1),BC →=(-m -1,-m ), ∵AB →与BC →不平行,∴-3m ≠-m -1,解得m ≠12,∴当实数m ≠12时满足条件.(2)若△ABC 为直角三角形,且∠A 为直角,则AB →⊥AC →,而AB →=(3,1),AC →=(2-m ,1-m ), ∴3(2-m )+(1-m )=0,解得m =74.类型三.向量坐标法在平面几何中的应用例3.已知在等腰△ABC 中,BB ′,CC ′是两腰上的中线,且BB ′⊥CC ′,求顶角A 的余弦值的大小.解.建立如图所示的平面直角坐标系,设A (0,a ),C (c ,0),则B (-c ,0),OA →=(0,a ),BA →=(c ,a ),OC →=(c ,0),BC →=(2c ,0).因为BB ′,CC ′为AC ,AB 边上的中线, 所以BB ′—→=12(BC →+BA →)=⎝ ⎛⎭⎪⎫3c 2,a 2,同理CC ′—→=⎝ ⎛⎭⎪⎫-3c 2,a 2.因为BB ′—→⊥CC ′—→,所以BB ′—→·CC ′—→=0, 即-9c 24+a 24=0,化简得a 2=9c 2,又因为cos A =AB →·AC→|AB →||AC →|=a 2-c 2a 2+c 2=9c 2-c 29c 2+c 2=45.即顶角A 的余弦值为45.反思与感悟.把几何图形放到适当的坐标系中,就赋予了有关点与向量具体的坐标,这样就能进行相应的代数运算和向量运算,从而解决问题.这样的解题方法具有普遍性.跟踪训练3.如图,半径为3的扇形AOB 的圆心角为120°,点C 在AB 上,且∠COB =30°,若OC →=λOA →+μOB →,则λ+μ等于(..)A. 3B.33C.433D.2 3 答案.A解析.由题意,得∠AOC =90°,故以O 为坐标原点,OC ,OA 所在直线分别为x 轴,y 轴建立平面直角坐标系,则O (0,0),A (0,3),C (3,0),B (3×cos 30°,-3×sin 30°),因为OC →=λOA →+μOB →,所以(3,0)=λ(0,3)+μ(3×32,-3×12), 即⎩⎪⎨⎪⎧3=μ×3×32,0=3λ-3×12μ,则⎩⎪⎨⎪⎧μ=233,λ=33,所以λ+μ= 3.1.在菱形ABCD 中,若AC =2,则CA →·AB →等于(..) A.2 B.-2C.|AB →|cos A D.与菱形的边长有关答案.B解析.如图,设对角线AC 与BD 交于点O ,∴AB →=AO →+OB →.CA →·AB →=CA →·(AO →+OB →) =-2+0=-2.2.设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4.若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于(..) A.20 B.15 C.9 D.6答案.C解析.▱ABCD 的图象如图所示,由题设知,AM →=AB →+BM →=AB →+34AD →,NM →=13AB →-14AD →,∴AM →·NM →=⎝ ⎛⎭⎪⎫AB →+34AD →·⎝ ⎛⎭⎪⎫13AB →-14AD →=13|AB →|2-316|AD →|2+14AB →·AD →-14AB →·AD →=13×36-316×16=9. 3.已知向量a =(2,3),b =(-1,2),若m a +4b 与a -2b 共线,则m 的值为(..) A.12 B.2 C.-12 D.-2 答案.D解析.m a +4b =(2m -4,3m +8),a -2b =(4,-1). ∵m a +4b 与a -2b 共线,∴(2m -4)×(-1)-(3m +8)×4=0,解得m =-2.4.若向量OA →=(1,-3),|OA →|=|OB →|,OA →·OB →=0,则|AB →|=________. 答案.2 5解析.由题意可知,△AOB 是以O 为直角顶点的等腰直角三角形,且腰长|OA →|=|OB →|=10,由勾股定理得|AB →|=20=2 5.5.平面向量a =(3,-1),b =⎝ ⎛⎭⎪⎫12,32,若存在不同时为0的实数k 和t ,使x =a +(t 2-3)b ,y =-k a +t b ,且x⊥y ,试求函数关系式k =f (t ). 解.由a =(3,-1),b =⎝ ⎛⎭⎪⎫12,32,得a·b =0,|a |=2,|b |=1,由x ⊥y ,得[a +(t 2-3)b ]·(-k a +t b )=0, -k a 2+t a·b -k (t 2-3)a·b +t (t 2-3)b 2=0, 即-4k +t 3-3t =0,所以k =14(t 3-3t ),令f (t )=14(t 3-3t ),所以函数关系式为k =f (t )=14(t 3-3t ).1.由于向量有几何法和坐标法两种表示方法,它的运算也因为这两种不同的表示方法而有两种方式,因此向量问题的解决,理论上讲总共有两个途径,即基于几何表示的几何法和基于坐标表示的代数法,在具体做题时要善于从不同的角度考虑问题.2.向量是一个有“形”的几何量,因此,在研究向量的有关问题时,一定要结合图形进行分析判断求解,这是研究平面向量最重要的方法与技巧.课时作业一、选择题1.下列命题中正确的是(..) A.OA →-OB →=AB → B.AB →+BA →=0 C.0·AB →=0 D.AB →+BC →+CD →=AD → 答案.D解析.OA →-OB →=BA →;AB →,BA 是一对相反向量,它们的和应该为零向量,即AB →+BA →=0;0·AB →=0.2.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB →=(1,-2),AD →=(2,1),则AD →·AC →等于(..) A.5 B.4 C.3 D.2 答案.A解析.∵四边形ABCD 为平行四边形,∴AC →=AB →+AD →=(1,-2)+(2,1)=(3,-1),∴AD →·AC →=2×3+(-1)×1=5.3.设向量a =(2,4)与向量b =(x ,6)共线,则实数x 等于(..) A.2 B.3 C.4 D.6 答案.B解析.∵a ∥b ,∴2×6-4x =0,∴x =3.4.若平面向量b 与向量a =(1,-2)的夹角是180°,且|b |=35,则b 等于(..) A.(-3,6) B.(3,-6) C.(6,-3) D.(-6,3)答案.A解析.设b =k a =(k ,-2k ),k <0,而|b |=35,则5k 2=35,∴k =-3,b =(-3,6).5.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ等于(..) A.-4 B.-3 C.-2 D.-1 答案.B6.在△ABC 中,若AB →2-AB →·AC →=BA →·BC →-CA →·BC →,则△ABC 是(..) A.等边三角形 B.锐角三角形 C.直角三角形 D.钝角三角形答案.C解析.由已知,得AB →·(AB →-AC →)-BC →·(BA →-CA →)=0, ∴AB →·CB →-BC →·BC →=0,∴BC →·(-AB →-BC →)=0,即-BC →·AC →=0,BC →⊥AC →, ∴BC ⊥AC ,∴△ABC 为直角三角形.故选C.7.若a ,b 是非零向量且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角θ的大小为(..) A.π6 B.π3 C.2π3D.5π6答案.B解析.∵a 2-2a ·b =0,b 2-2a ·b =0, ∴a 2=b 2,|a |=|b |,又∵cos θ=a ·b |a ||b |=12a 2|a |2=12,θ∈[0,π],∴θ=π3.8.如图所示,在△ABC 中,AD =DB ,AE =EC ,CD 与BE 交于点F .设AB →=a ,AC →=b ,AF →=x a +y b ,则(x ,y )为(..)A.⎝ ⎛⎭⎪⎫12,12B.⎝ ⎛⎭⎪⎫23,23C.⎝ ⎛⎭⎪⎫13,13 D.⎝ ⎛⎭⎪⎫23,12 答案.C解析.令BF →=λBE →.由题可知,AF →=AB →+BF →=AB →+λBE →=AB →+λ⎝ ⎛⎭⎪⎫12AC →-AB →=(1-λ)AB →+12λAC →.令CF →=μCD →,则AF →=AC →+CF →=AC →+μCD →=AC →+μ⎝ ⎛⎭⎪⎫12AB →-AC →=12μAB →+(1-μ)AC →.由⎩⎪⎨⎪⎧1-λ=12μ,12λ=1-μ,解得⎩⎪⎨⎪⎧λ=23,μ=23,所以AF →=13AB →+13AC →,故选C.二、填空题9.若|a |=1,|b |=2,a 与b 的夹角为60°,若(3a +5b )⊥(m a -b ),则m 的值为________. 答案.238解析.由题意知(3a +5b )·(m a -b )=3m a 2+(5m -3)a·b -5b 2=0,即3m +(5m -3)×2×cos 60°-5×4=0,解得m =238.10.已知向量a ,b 的夹角为120°,|a |=1,|b |=3,则|5a -b |=________. 答案.711.在△ABC 中,点O 在线段BC 的延长线上,且|BO →|=3|CO →|,当AO →=xAB →+yAC →时,x -y =________. 答案.-2解析.由|BO →|=3|CO →|,得BO →=3CO →, 则BO →=32BC →,所以AO →=AB →+BO →=AB →+32BC →=AB →+32(AC →-AB →)=-12AB →+32AC →.所以x =-12,y =32,所以x -y =-12-32=-2.12.已知向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则b 在a 方向上的投影是________. 答案.1解析.∵|a |=|b |=2,a 与b 的夹角为60°,∴b 在a 方向上的投影是|b |cos 60°=1.13.已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.答案.712解析.∵AP →⊥BC →,∴AP →·BC →=(λAB →+AC →)·(AC →-AB →)=-λAB →2+(λ-1)AB →·AC →+AC →2=-9λ+(λ-1)×3×2×(-12)+4=0, ∴λ=712. 三、解答题14.若OA →=(sin θ,-1),OB →=(2sin θ,2cos θ),其中θ∈[0,π2],求|AB →|的最大值. 解.∵AB →=OB →-OA →=(sin θ,2cos θ+1)⇒|AB →|=sin 2θ+4cos 2θ+4cos θ+1=3cos 2θ+4cos θ+2= 3(cos θ+23)2+23, ∴当cos θ=1,即θ=0时,|AB →|取得最大值3.四、探究与拓展15.已知OA →=(1,0),OB →=(0,1),OM →=(t ,t )(t ∈R ),O 是坐标原点.(1)若A ,B ,M 三点共线,求t 的值;(2)当t 取何值时,MA →·MB →取到最小值?并求出最小值.解.(1)AB →=OB →-OA →=(-1,1),AM →=OM →-OA →=(t -1,t ).∵A ,B ,M 三点共线,∴AB →与AM →共线, ∴-(t -1)-t =0,∴t =12. (2)∵MA →=(1-t ,-t ),MB →=(-t ,1-t ),∴MA →·MB →=2t 2-2t =2⎝ ⎛⎭⎪⎫t -122-12,易知当t =1 2时,MA→·MB→取得最小值-12.。
2018年秋新课堂高中数学人教A版必修4教师用书第2章 阶段复习课 第3课 平面向量
第三课 平面向量[核心速填]1.向量的运算(1)加法:①OA →+AB →=OB →,②若四边形OABC 为平行四边形,则OA →+OC →=OB →.(2)减法:OA →-OB →=BA →. (3)数乘:|λa |=|λ||a |.(4)数量积:a·b =|a ||b |cos θ(a 与b 的夹角为θ). 2.两个重要定理(1)向量共线定理:向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa .(2)平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底.3.两个非零向量平行、垂直的充要条件 若a =(x 1,y 1)b =(x 2,y 2),则: (1)a ∥b ⇔a =λb (λ≠0)⇔x 1y 2-x 2y 1=0. (2)a ⊥b ⇔a·b =0⇔x 1x 2+y 1y 2=0. 4.平面向量的三个性质(1)若a =(x ,y ),则|a |=a·a =x 2+y 2.(2)若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 2-x 1)2+(y 2-y 1)2.(3)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a·b|a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.[体系构建][题型探究](1)在直线AB 上,且AC →=12BC →,连接DC 延长至E ,使|CE →|=14|ED →|,则点E 的坐标为________.图2-1(2)如图2-1,在正五边形ABCDE 中,若AB →=a ,BC →=b ,CD →=c ,DE →=d ,EA →=e ,求作向量a -c +b -d -e . 【导学号:84352275】(1)⎝ ⎛⎭⎪⎫83,-7 [(1)∵AC →=12BC →, ∴OC →-OA →=12(OC →-OB →). ∴OC →=2OA →-OB →=(3,-6), ∴点C 坐标为(3,-6).由|CE →|=14|ED →|,且E 在DC 的延长线上,∴CE →=-14ED →.设E (x ,y ),则(x -3,y +6)=-14(4-x ,-3-y ), 得⎩⎪⎨⎪⎧x -3=-1+14x ,y +6=34+14y ,解得⎩⎪⎨⎪⎧x =83,y =-7,即E ⎝ ⎛⎭⎪⎫83,-7.(2)a -c +b -d -e =(a +b )-(c +d +e )=(AB →+BC →)-(CD →+DE →+EA →) =AC →-CA →=AC →+AC →.如图,连接AC ,并延长至点F ,使CF =AC ,则CF →=AC →,所以AF →=AC →+AC →,即为所求作的向量a -c +b -d -e .][规律方法] 1.向量加法是由三角形法则定义的,要点是“首尾相连”,即AB →+BC →=AC →.向量加法的平行四边形法则:将两向量移至共起点,分别为邻边作平行四边形,则同起点对角线的向量即为向量的和.加法满足交换律、结合律.2.向量减法实质是向量加法的逆运算,是相反向量的作用.几何意义有两个:一是以减向量的终点为起点,被减向量的终点为终点的向量;二是加法的平行四边形法则的另外一条对角线的向量.注意两向量要移至共起点.3.数乘运算即通过实数与向量的乘积,实现同向或反向上向量长度的伸缩变换.[跟踪训练]1.如图2-2所示,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB→+211AC →,则实数m 的值为________.图2-2311[设BP →=λBN →, 则BP →=BA →+AP →=-AB →+mAB →+211AC →=(m -1)AB →+211AC →. BN →=BA →+AN →=-AB →+14AC →.∵BP →与BN →共线,∴14(m -1)+211=0, ∴m =311.](1)已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的投影为( )A .322 B .3152 C .-322D .-3152(2)如图2-3,在梯形ABCD 中,AB ∥CD ,AB =4,AD =3,CD =2,AM →=2MD →.若AC →·BM →=-3,则AB →·AD →=________. 【导学号:84352276】图2-3(1)A (2)32[(1)AB →=(2,1),CD →=(5,5),向量AB →=(2,1)在CD →=(5,5)上的投影为|AB →|cos 〈AB →,CD →〉=|AB →|·AB →·CD →|AB →||CD →|=AB →·CD →|CD →|=1552=322.(2)因为AC →·BM →=⎝ ⎛⎭⎪⎫AD →+12AB →·⎝ ⎛⎭⎪⎫-AB →+23AD →=-2-23AB →·AD →=-3, 所以AB →·AD →=32.][规律方法] 向量数量积的求解策略 (1)利用数量积的定义、运算律求解.在数量积运算律中,有两个形似实数的完全平方公式在解题中的应用较为广泛,即(a +b )2=a 2+2a·b +b 2,(a -b )2=a 2-2a·b +b 2,上述两公式以及(a +b )·(a -b )=a 2-b 2这一类似于实数平方差的公式在解题过程中可以直接应用.(2)借助零向量.即借助“围成一个封闭图形且首尾相接的向量的和为零向量”,再合理地进行向量的移项以及平方等变形,求解数量积.(3)借助平行向量与垂直向量.即借助向量的拆分,将待求的数量积转化为有垂直向量关系或平行向量关系的向量数量积,借助a ⊥b ,则a·b =0等解决问题.(4)建立坐标系,利用坐标运算求解数量积. [跟踪训练]2.在边长为1的菱形ABCD 中,∠BAD =60°,E 是BC 的中点,则AC →·AE →等于( )A.3+33B.92C. 3D.94D [建立如图平面直角坐标系,则A ⎝ ⎛⎭⎪⎫-32,0,C ⎝ ⎛⎭⎪⎫32,0,B ⎝ ⎛⎭⎪⎫0,-12.∴E 点坐标为⎝ ⎛⎭⎪⎫34,-14,∴AC →=(3,0),AE →=⎝ ⎛⎭⎪⎫334,-14, ∴AC →·AE →=3×334=94.]),则λ=( )A .-4B .-3C .-2D .-1(2)设A ,B ,C ,D 为平面内的四点,且A (1,3),B (2,-2),C (4,1). ①若AB →=CD →,求D 点的坐标.②设向量a =AB →,b =BC →,若k a -b 与a +3b 平行,求实数k 的值.【导学号:84352277】(1)B [(1)因为m +n =(2λ+3,3), m -n =(-1,-1), 且(m +n )⊥(m -n ),所以(m +n )·(m -n )=-2λ-3-3=0, 解得λ=-3. (2)①设D (x ,y ). 因为AB →=CD →,所以(2,-2)-(1,3)=(x ,y )-(4,1), 化为(1,-5)=(x -4,y -1), 所以⎩⎨⎧x -4=1,y -1=-5,解得⎩⎨⎧x =5,y =-4,所以D (5,-4).②因为a =AB →=(2,-2)-(1,3)=(1,-5),b =BC →=(4,1)-(2,-2)=(2,3),所以k a -b =k (1,-5)-(2,3)=(k -2,-5k -3),a +3b =(1,-5)+3(2,3)=(7,4).因为k a -b 与a +3b 平行, 所以7(-5k -3)-4(k -2)=0, 解得k =-13.所以k =-13.]母题探究:1.将例3(2)②中的“BC →”改为“AC →”,“平行”改为“垂直”,求实数k 的值.[解] 因为a =AB →=(1,-5),b =AC →=(3,-2), 所以k a -b =(k -3,-5k +2), a +3b =(10,-11), 因为(k a -b )⊥(a +3b ),所以(k a -b )·(a +3b )=10(k -3)-11(-5k +2) =65k -52=0, 解得k =5265.2.在例3(2)中若A ,B ,D 三点共线,且AC ⊥CD ,求点D 的坐标. [解] 设点D 的坐标为(x ,y ),则 AB →=(1,-5),AD →=(x -1,y -3), AC →=(3,-2),CD →=(x -4,y -1), 由题意得AB →∥AD →,AC →⊥CD →,所以⎩⎨⎧ -5(x -1)-(y -3)=0,3(x -4)-2(y -1)=0,整理得⎩⎨⎧5x +y =8,3x -2y =10,解得x =2,y =-2, 所以点D 的坐标为(2,-2).[规律方法] 1.证明共线问题常用的方法(1)向量a ,b (a ≠0)共线⇔存在唯一实数λ,使b =λa . (2)向量a =(x 1,y 1),b =(x 2,y 2)共线⇔x 1y 2-x 2y 1=0. (3)向量a 与b 共线⇔|a ·b |=|a ||b |.(4)向量a与b共线⇔存在不全为零的实数λ1,λ2,使λ1a+λ2b=0.2.证明平面向量垂直问题的常用方法a⊥b⇔a·b=0⇔x1x2+y1y2=0,其中a=(x1,y1),b=(x2,y2).(1)|b|=________.(2)已知c=m a+n b,c=(-23,2),a⊥c,b与c的夹角为2π3,b·c=-4,|a|=22,求实数m,n的值及a与b的夹角θ. 【导学号:84352278】(1)32[(1)因为向量a,b夹角为45°,且|a|=1,|2a-b|=10,所以4a2+b2-4a·b=10,化为4+|b|2-4|b|cos 45°=10,化为|b|2-22|b|-6=0,因为|b|≥0,解得|b|=3 2.(2)∵c=(-23,2),∴|c|=4.∵a⊥c,∴a·c=0.∵b·c=|b||c|cos 2π3=|b|×4×⎝⎛⎭⎪⎫-12=-4,∴|b|=2.∵c=m a+n b,∴c2=m a·c+n b·c,∴16=n×(-4),∴n=-4.在c=m a+n b两边同乘以a,得0=8m-4a·b. ①在c=m a+n b两边同乘以b,得m a·b=12. ②由①②,得m=±6,∴a·b=±26,∴cos θ=±2622×2=±32,∴θ=π6或5π6.][规律方法] 1.解决向量模的问题常用的策略(1)应用公式:|a|=x2+y2(其中a=(x,y)).(2)应用三角形或平行四边形法则.(3)应用向量不等式||a|-|b||≤|a±b|≤|a|+|b|.(4)研究模的平方|a±b|2=(a±b)2.2.求向量的夹角设非零向量a=(x1,y1),b=(x2,y2),两向量夹角θ(0≤θ≤π)的余弦cos θ=a·b|a||b|=x1x2+y1y2x21+y21x22+y22.[跟踪训练]3.已知向量a=(1,2),b=(-2,-4),|c|=5,若(c-b)·a=152,则a与c的夹角为()A.30°B.60°C.120°D.150°C[a·b=-10,则(c-b)·a=c·a-b·a=c·a+10=15 2,所以c·a=-52,设a与c的夹角为θ,则cos θ=a·c|a|·|c|=-525×5=-12,又θ∈[0°,180°],所以θ=120°.]知物体的重力大小为10 N,则每根绳子的拉力大小是________.图2-4(2)如图2-5所示,在正方形ABCD中,P为对角线AC上任一点,PE⊥AB,PF⊥BC,垂足分别为E,F,连接DP,EF,求证:DP⊥EF. 【导学号:84352279】图2-5(1)10 N [因绳子等长,所以每根绳子上的拉力和合力所成的角都相等,且等于60°,故每根绳子的拉力大小都是10 N .](2)证明:法一:(基向量法)设正方形ABCD 的边长为1,AE =a (0<a <1),则EP =AE =a ,PF =EB =1-a ,AP =2a ,∴DP →·EF →=(DA →+AP →)·(EP →+PF →)=DA →·EP →+DA →·PF →+AP →·EP →+AP →·PF →=1×a ×cos 180°+1×(1-a )×cos 90°+2a ×a ×cos 45°+2a ×(1-a )×cos 45°=-a +a 2+a (1-a )=0,∴DP →⊥EF →,即DP ⊥EF .法二:(坐标法)设正方形边长为1,建立如图所示的平面直角坐标系,设P (x ,x ),则D (0,1),E (x,0),F (1,x ),所以DP →=(x ,x -1),EF →=(1-x ,x ), 由DP →·EF →=x (1-x )+x (x -1)=0, 所以DP →⊥EF →,即DP ⊥EF .[规律方法] 平面向量两个方面的应用 (1)平面几何应用[跟踪训练]4.已知点O ,N ,P 在△ABC 所在平面内,且|OA →|=|OB →|=|OC →|,NA →+NB →+NC →=0,P A →·PB →=PB →·PC →=PC →·P A →,则点O ,N ,P 依次是△ABC 的( )A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心C [因为点O 到△ABC 的三个顶点距离相等,11 所以点O 是△ABC 的外心.因为NA →+NB →+NC →=0,所以NA →+NB →=-NC →,设线段AB 的中点为M ,则2NM →=-NC →.由此时可知N 为AB 边中线的三等分点(靠近中点M ) 所以N 是△ABC 的重心.因为P A →·PB →=PB →·PC →,所以PB →·(P A →-PC →)=0,即PB →·CA →=0,所以PB →⊥CA →.同理由PB →·PC →=PC →·P A →可证PC →⊥AB →,所以P 是△ABC 的垂心.]。
2017-2018学年高中数学人教A版浙江专版必修4讲义:复习课(三) 平面向量 Word版含答案
复习课(三)平面向量1.题型为选择题和填空题.主要考查向量的线性运算及对向量有关概念的理解,常与向量共线和平面向量基本定理及数量积运算交汇命题.2.向量的加法遵循三角形法则和平行四边形法则,减法可以转化为加法进行运算,向量的加减法满足交换律、结合律,数乘运算满足结合律、分配律.实数运算中的去括号、移项、合并同类项等变形方向在向量的线性运算中都可以使用.[典例] (北京高考)在△ABC中,点M,N满足AM=2MC,BN=NC.若MN=xAB+yAC,则x=________;y=________.[解析]∵AM=2MC,∴AM=23AC.∵BN=NC,∴AN=12(AB+AC),∴MN=AN-AM=12(AB+AC)-23AC=12AB-16AC.又MN=xAB+yAC,∴x=12,y=-16.[答案]12-16[类题通法]向量线性运算的基本原则向量的加法、减法和数乘运算统称为向量的线性运算.向量的线性运算的结果仍是一个向量,因此,对它们的运算法则、运算律的理解和运用要注意向量的大小和方向两个方面.[题组训练]1.若A(3,-6),B(-5,2),C(6,y)三点共线,则y=()A.13B.-13C.9 D.-9解析:选DAB=(-8,8),AC=(3,y+6).∵AB∥AC,∴-8(y+6)-24=0.∴y =-9.2.设点M 是线段BC 的中点,点A 在直线BC 外, | BC |2=16,| AB + AC |=|AB - AC |,则|AM |=( )A .8B .4C .2D .1解析:选C 由| BC |2=16,得|BC |=4.∵| AB + AC |=| AB -AC |=| BC |=4, | AB + AC |=2| AM |, ∴|AM |=2.3.已知点O ,A ,B 不在同一条直线上,点P 为该平面上一点,且 OP =3 OA - OB2,则( )A .点P 在线段AB 上B .点P 在线段AB 的反向延长线上C .点P 在线段AB 的延长线上D .点P 不在直线AB 上解析:选B 由于2 OP =3 OA -OB ,∴2 OP -2 OA = OA - OB ,即2 AP = BA , ∴ AP =12BA ,则点P 在线段AB 的反向延长线上.1.题型既有选择题、填空题,又有解答题,主要考查数量积运算、向量的垂直等问题,常与平面几何、三角函数、解析几何等知识交汇命题.2.解决此类问题要掌握平面向量数量积的两种求法:一是根据数量积的定义,即a ·b =|a ||b |cos θ,二是利用坐标运算,即a ·b =x 1x 2+y 1y 2;同时还要掌握利用数量积求向量的夹角、求向量的长度和判断两个向量垂直的方法.[典例] (1)(福建高考)设a =(1,2),b =(1,1),c =a +kb .若b ⊥c ,则实数k 的值等于( ) A .-32B .-53C.53D.32(2)(四川高考)设四边形ABCD 为平行四边形,| AB |=6,| AD |=4.若点M ,N 满足BM =3 MC ,DN =2 NC ,则 AM ·NM =( )A .20B .15C .9D .6[解析] (1)c =a +kb =(1+k,2+k ), 又b ⊥c ,所以1×(1+k )+1×(2+k )=0,解得 k =-32.(2)如图所示,由题设知:AM = AB + BM = AB +34 AD ,NM = NC -MC =13 AB -14 AD ,∴ AM · NM =⎝⎛⎭⎫ AB +34 AD ·⎝⎛⎭⎫13 AB -14 AD=13| AB |2-316| AD |2+14 AB · AD -14AB · AD =13×36-316×16=9. [答案] (1)A (2)C [类题通法](1)数量积的计算通常有三种方法:数量积的定义,坐标运算,数量积的几何意义; (2)可以利用数量积求向量的模和夹角,向量要分解成题中已知向量的模和夹角进行 计算.[题组训练]1.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 的夹角为( ) A .30° B .45° C .60°D .以上都不对解析:选C ∵a +b +c =0,∴c =-(a +b ), ∴c 2=(a +b )2,即|c |2=|a |2+|b |2+2|a ||b |cos 〈a ,b 〉, ∴19=4+9+12cos 〈a ,b 〉, ∴cos 〈a ,b 〉=12.又∵0°≤〈a ,b 〉≤180°,∴〈a ,b 〉=60°.2.在△ABC 中,AB =4,∠ABC =30°,D 是边BC 上的一点,且 AD · AB = AD ·AC ,则 AD ·AB 的值为( )A .0B .-4C .8D .4解析:选D 由 AD · AB = AD · AC ,得 AD ·( AB - AC )=0,即 AD ·CB =0,所以 AD ⊥CB ,即AD ⊥CB .又AB =4,∠ABC =30°,所以AD =AB sin 30°=2,∠BAD=60°,所以 AD · AB =AD ·AB ·cos ∠BAD =2×4×12=4.3.已知向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则b 在a 方向上的投影是________.解析:∵|a |=|b |=2,a 与b 的夹角为60°,∴b 在a 方向上的投影是|b |cos 60°=1. 答案:14.在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若 AC ·BE =1,则AB 的长为________.解析:设| AB |=x ,x >0,则 AB · AD =12x .又 AC · BE =( AD +AB )·⎝⎛⎭⎫ AD -12AB =1-12x 2+14x =1,解得x =12,即AB 的长为12. 答案:121.题目以解答题为主.主要包括向量与三角函数化简、求值与证明的结合,向量与三角函数的图象与性质的结合等几个方面.此类题目所涉及向量的知识往往是数量积的运算,所研究的问题主要是讨论三角函数的图象与性质.2.解决此类问题,首先要根据向量的运算性质将向量问题转化为三角函数问题,然后利用三角公式进行恒等变换,转化为题目中所要求的问题.[典例] (广东高考)在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎫0,π2. (1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.[解] (1)若m ⊥n ,则m ·n =0. 由向量数量积的坐标公式得22sin x -22cos x =0, ∴tan x =1.(2)∵m 与n 的夹角为π3,∴m ·n =|m |·|n |cos π3,即22sin x -22cos x =12, ∴sin ⎝⎛⎭⎫x -π4=12. 又∵x ∈⎝⎛⎭⎫0,π2, ∴x -π4∈⎝⎛⎭⎫-π4,π4, ∴x -π4=π6,即x =5π12.[类题通法]在平面向量与三角函数的综合问题中,一方面用平面向量的语言表述三角函数中的问题,如利用向量平行、垂直的条件表述三角函数式之间的关系,利用向量模表述三角函数之间的关系等;另一方面可以利用三角函数的知识解决平面向量问题,在解决此类问题的过程中,只要根据题目的具体要求,在向量和三角函数之间建立起联系,就可以根据向量或者三角函数的知识解决问题.[题组训练]1.设a =(sin x,1),b =⎝⎛⎭⎫12,cos x ,且a ∥b ,则锐角x 为( ) A.π3 B.π4 C.π6D.π12解析:选B 因为a ∥b ,所以sin x cos x -12=0,所以sin 2x =1,又x 为锐角,所以0<2x <π, 所以2x =π2,x =π4,故选B.2.设向量a =(sin x ,cos x ),b =(cos x ,cos x ),x ∈R ,函数ƒ(x )=a ·(a +b ). (1)求函数ƒ(x )的最大值与最小正周期; (2)求使不等式ƒ(x )≥32成立的x 的取值范围.解:(1)∵ƒ(x )=a ·(a +b )=a ·a +a ·b =sin 2x +cos 2x +sin x cos x +cos 2x =1+12sin 2x +12(cos 2x +1)=32+22sin ⎝⎛⎭⎫2x +π4, ∴ƒ(x )的最大值为32+22,最小正周期T =2π2=π.(2)由(1)知ƒ(x )≥32⇔32+22sin ⎝⎛⎭⎫2x +π4≥32⇔sin ⎝⎛⎭⎫2x +π4≥0⇔2k π≤2x +π4≤2k π+π⇔k π-π8≤x ≤k π+3π8(k ∈Z ). ∴使ƒ(x )≥32成立的x 的取值范围是⎩⎨⎧⎭⎬⎫x ⎪⎪k π-π8≤x ≤k π+3π8,k ∈Z .1.设P ,Q 是线段AB 的三等分点,若 OA =a , OB =b ,则 OP +OQ =( )A .a +bB .a -bC .2(a +b ) D.13(a +b ) 解析:选A 如图,OP = OA + AP , OQ = OB + BQ , ∵ AP =- BQ , ∴ OP + OQ = OA +OB =a +b .2.已知向量a ,b 满足a ·b =0,|a |=1,|b |=2,则|a -b |=( ) A .0 B .1 C .2D. 5解析:选D 因为|a -b |2=a 2-2a ·b +b 2=1-0+22=5,所以|a -b |=5,故选D. 3.若平面向量a =(-1,2)与b 的夹角是180°,且|b |=35,则b 的坐标为( ) A .(3,-6) B .(-3,6) C .(6,-3)D .(-6,3)解析:选A 由题意设b =λa =(-λ,2λ)(λ<0),而|b |=35,则λ2+4λ2=35,所以λ=-3,b =(3,-6).4.已知|a |=1,|b |=2,且a ⊥(a -b ),则向量a 与向量b 的夹角为( ) A.π6 B.π4 C.π3D.2π3解析:选B ∵a ⊥(a -b ),∴a ·(a -b )=a 2-a ·b =0,∴a ·b =a 2,∵|a |=1,|b |=2,∴cos 〈a ,b 〉=a ·b |a ||b |=a 2|a ||b |=22,∴向量a 与向量b 的夹角为π4,故选B.5.在△ABC 中,( BC + BA )· AC =| AC |2,则△ABC 的形状一定是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形解析:选C 由( BC + BA )· AC =| AC |2,得 AC ·( BC +BA - AC )=0,即 AC ·( BC + BA + CA )=0,∴2 AC · BA =0,∴ AC ⊥BA ,∴A =90°.故选C. 6.已知平面向量a ,b ,c 满足|a |=1,|b |=2,|c |=3,且a ,b ,c 两两所成的角相等,则|a +b +c |等于( )A .6或 3B .6或 2 C. 2D .6解析:选A ∵a ,b ,c 两两所成的角相等, ∴这个角为0°或120°.当夹角为0°时,|a +b +c |=|a |+|b |+|c |=1+2+3=6,排除C ;当夹角为120°时,a ·b =|a ||b |cos 120°=1×2×⎝⎛⎭⎫-12=-1,b ·c =|b ||c |·cos 120°=2×3×⎝⎛⎭⎫-12=-3,c ·a =|c ||a |cos 120°=3×1×⎝⎛⎭⎫-12=-32, ∴|a +b +c |2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a ) =12+22+32+2⎝⎛⎭⎫-1-3-32=3, ∴|a +b +c |= 3. ∴|a +b +c |=6或 3.7.已知向量a =(-1,3),b =(1,t ),若(a -2b )⊥a ,则|b |=________.解析:∵a =(-1,3),b =(1,t ),∴a -2b =(-3,3-2t ).∵(a -2b )⊥a ,∴(a -2b )·a =0,即(-1)×(-3)+3(3-2t )=0,即t =2,∴b =(1,2),∴|b |=12+22= 5.答案: 58.已知平面向量a 与b 的夹角等于2π3,如果|a |=2,|b |=3,那么|2a -3b |=________.解析:|2a -3b |2=(2a -3b )2=4a 2-12a ·b +9b 2=4×22-12×2×3×cos 2π3+9×32=133,∴|2a -3b |=133.答案:1339.已知|a |=2|b |≠0,且关于x 的方程x 2+|a |x +a ·b =0有实根,则a 与b 的夹角的取值范围是________.解析:由于|a |=2|b |≠0,且关于x 的方程x 2+|a |x +a ·b =0有实根,则|a |2-4a ·b ≥0.设向量a 与b 的夹角为θ,则cos θ=a ·b |a ||b |≤14|a |212|a |2=12,∴θ∈⎣⎡⎦⎤π3,π. 答案:⎣⎡⎦⎤π3,π10.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求a 与b 的夹角θ; (2)求|a +b |.解:(1)∵(2a -3b )·(2a +b )=61, ∴4a 2-4a ·b -3b 2=61, 即64-4a ·b -27=61. ∴a ·b =-6.∴cos θ=a ·b |a ||b |=-64×3=-12,∴θ=120°.(2)|a +b |=a 2+2a ·b +b 2=16+2×(-6)+9=13. 11.已知向量a =(-3,2),b =(2,1),c =(3,-1),t ∈R . (1)求|a +tb |的最小值及相应的t 值; (2)若a -tb 与c 共线,求实数t . 解:(1)∵a =(-3,2),b =(2,1),∴a +tb =(-3,2)+t (2,1)=(-3+2t,2+t ), ∴|a +tb |=(-3+2t )2+(2+t )2 =5t 2-8t +13=5⎝⎛⎭⎫t -452+495≥495=755, 当且仅当t =45时取等号,即|a +tb |的最小值为755,此时t =45.(2)∵a -tb =(-3,2)-t (2,1)=(-3-2t,2-t ), 又a -tb 与c 共线,c =(3,-1), ∴(-3-2t )×(-1)-(2-t )×3=0. 解得t =35.12.已知向量m =(1,1),向量n 与向量m 的夹角为3π4,且m ·n =-1.(1)求向量n ;(2)设向量a =(1,0),向量b =(cos x ,sin x ),其中x ∈R ,若n ·a =0,试求|n +b |的取值 范围.解:(1)令n =(x ,y ),则⎩⎪⎨⎪⎧x +y =-1,2·x 2+y 2cos 3π4=-1,∴⎩⎪⎨⎪⎧ x =-1,y =0或⎩⎪⎨⎪⎧x =0,y =-1.∴n =(-1,0)或n =(0,-1). (2)∵a =(1,0),n ·a =0,∴n =(0,-1).∴n +b =(cos x ,sin x -1).∴|n +b |=cos 2x +(sin x -1 )2=2-2sin x =2(1-sin x ). ∵-1≤sin x ≤1,∴0≤|n +b |≤2.(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.tan 8π3的值为( ) A.33B .-33C. 3D .- 3解析:选D tan8π3=tan ⎝⎛⎭⎫2π+2π3=tan 2π3=- 3. 2.下列函数中最值是12,周期是6π的三角函数的解析式是( )A .y =12sin ⎝⎛⎭⎫x 3+π6 B .y =12sin ⎝⎛⎭⎫3x +π6 C .y =2sin ⎝⎛⎭⎫x 3-π6D .y =12sin ⎝⎛⎭⎫x +π6 解析:选A 由题意得,A =12,2πω=6π,ω=13,故选A.3.设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则 OA + OB + OC +OD 等于 ( )A . OMB .2 OMC .3 OMD .4 OM解析:选D 依题意知,点M 是线段AC 的中点,也是线段BD 的中点,所以 OA + OC =2 OM , OB + OD =2 OM ,所以 OA + OC + OB +OD =4 OM ,故选D.4.若点(sin α,sin 2α)在第四象限,则角α在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B ∵点(sin α,sin 2α)在第四象限,∴⎩⎪⎨⎪⎧ sin α>0,sin 2α<0,∴⎩⎪⎨⎪⎧sin α>0,2sin αcos α<0.即⎩⎪⎨⎪⎧sin α>0,cos α<0.∴α在第二象限. 5.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b 等于( ) A .(-5,-10) B .(-4,-8) C .(-3,-6)D .(-2,-4)解析:选B ∵a =(1,2),b =(-2,m ), ∴1×m -2×(-2)=0, ∴m =-4.∴2a +3b =(2,4)+(-6,-12)=(-4,-8).6.若α∈⎝⎛⎭⎫π2,π,且sin α=45,则sin ⎝⎛⎫α+π4-22cos(π-α)的值为( ) A.225B .-25 C.25D .-225解析:选B sin ⎝⎛⎭⎫α+π4-22cos(π-α) =22sin α+22cos α+22cos α =22sin α+2cos α. ∵sin α=45,α∈⎝⎛⎭⎫π2,π, ∴cos α=-35.∴22sin α+2cos α=22×45-2×35=-25. 7.已知向量a =(1,2),b =(-2,-4),|c |=5,若(c -b )·a =152,则a 与c 的夹角为( ) A .30° B .60° C .120°D .150°解析:选C a ·b =-10,则(c -b )·a =c ·a -b ·a =c ·a +10=152,所以c ·a =-52,设a 与c 的夹角为θ,则cos θ=a ·c |a |·|c |=-525×5=-12,又0°<θ<180°,所以θ=120°.8.将函数y =sin ⎝⎛⎭⎫2x +π3的图象经怎样的平移后所得的图象关于点⎝⎛⎭⎫-π12,0成中心对称( )A .向左平移π12个单位长度B .向左平移π6个单位长度C .向右平移π12个单位长度D .向右平移π6个单位长度解析:选C 函数y =sin ⎝⎛⎭⎫2x +π3的对称中心为⎝⎛⎭⎫k π2-π6,0,其中离⎝⎛⎭⎫-π12,0最近的对称中心为⎝⎛⎭⎫-π6,0,故函数图象只需向右平移π12个单位长度即可. 9.函数ƒ(x )=A sin(ωx +φ)(A >0,ω>0,x ≥0)的部分图象如图2所示,则ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(11)的值等于( )A .2B .2+ 2C .2+2 2D .-2-2 2解析:选C 由图象可知,函数的振幅为2,初相为0,周期为8,则A =2,φ=0,2πω=8,从而ƒ(x )=2sin π4x .∴ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(11)=ƒ(1)+ƒ(2)+ƒ(3)=2sin π4+2sin π2+2sin 3π4=2+2 2.10.已知3a +4b +5c =0,且|a |=|b |=|c |=1,则a ·(b +c )=( ) A .0 B .-35C.35D .-45解析:选B 由3a +4b +5c =0,得向量3a,4b,5c 能组成三角形,又|a |=|b |=|c |=1,所以三角形的三边长分别是3,4,5,故三角形为直角三角形,且a ⊥b ,所以a ·(b +c )=a ·c =-35. 11.如图,在四边形ABCD 中,| AB |+| BD |+| DC |=4,| AB |·|BD |+| BD |·| DC |=4, AB ·BD = BD · DC =0,则( AB + DC )·AC 的值为( )A .4B .2C .4 2D .2 2解析:选A ∵ AC = AB + BD + DC , AB · BD = BD ·DC =0,∴( AB + DC )· AC=( AB + DC )·( AB + BD + DC )= AB 2+ AB · BD + AB · DC + DC · AB + DC · BD + DC 2= AB 2+2 AB · DC + DC 2. ∵ AB · BD =0, BD · DC =0, ∴ AB ⊥ BD , DC ⊥ BD ,∴ AB ∥ DC , ∴ AB · DC =| AB || DC |,∴原式=(|AB |+| DC |)2.设| AB |+| DC |=x ,则| BD |=4-x ,|BD |·x =4,∴x 2-4x +4=0,∴x =2,∴原式=4,故选A.12.已知函数y =2sin(ωx +θ)(ω>0,0<θ<π)为偶函数,其图象与直线y =2的交点的横坐标为x 1,x 2,若|x 1-x 2|的最小值为π,则( )A .ω=2,θ=π2B .ω=12,θ=π2C .ω=12,θ=π4D .ω=2,θ=π4解析:选A ∵函数y =2sin(ωx +θ)(ω>0,0<θ<π)为偶函数,∴θ=π2,∴y =2cos ωx ,排除C 、D ;y =2cos ωx ∈[-2,2],结合题意可知T =π,∴2πω=π,ω=2,排除B ,选A.二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若 AC =λ AE +μAF ,其中λ,μ∈R ,则λ+μ=________.解析:设 AB =a ,AD =b ,则 AF =a +12b , AE =12a +b , AC =a +b ,代入条件得λ=μ=23,∴λ+μ=43.答案:4314.在平面直角坐标系 xOy 中,已知 OA =(-1,t ),OB =(2,2).若∠ABO =90°,则实数t 的值为________.解析:∵∠ABO =90°,∴ AB ⊥OB ,∴ OB · AB =0.又 AB =OB - OA =(2,2)-(-1,t )=(3,2-t ),∴(2,2)·(3,2-t )=6+2(2-t )=0. ∴t =5. 答案:515.已知ƒ(x )=sin ⎝⎛⎭⎫x +π6,若cos α=35⎝⎛⎭⎫0<α<π2,则ƒ⎝⎛⎭⎫α+π12=________. 解析:因为cos α=35⎝⎛⎭⎫0<α<π2,所以sin α=45; ƒ⎝⎛⎭⎫α+π12=sin ⎝⎛⎭⎫α+π12+π6=sin ⎝⎛⎭⎫α+π4 =22(sin α+cos α)=7210. 答案:721016.有下列四个命题:①若α,β均为第一象限角,且α>β,则sin α>sin β; ②若函数y =2cos ⎝⎛⎭⎫ax -π3的最小正周期是4π,则a =12; ③函数y =sin 2x -sin xsin x -1是奇函数;④函数y =sin ⎝⎛⎭⎫x -π2在[0,π]上是增函数. 其中正确命题的序号为________.解析:α=390°>30°=β,但sin α=sin β,所以①不正确; 函数y =2cos ⎝⎛⎭⎫ax -π3的最小正周期为T =2π|a |=4π, 所以|a |=12,a =±12,因此②不正确;③中函数定义域是⎩⎨⎧x ⎪⎪⎭⎬⎫x ≠2k π+π2,k ∈Z ,显然不关于原点对称,所以③不正确; 由于函数y =sin ⎝⎛⎭⎫x -π2=-sin ⎝⎛⎭⎫π2-x =-cos x ,它在(0,π)上单调递增,因此④正确. 答案:④三、解答题(本大题共6个小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知|a |=1,|b |=2,a 与b 的夹角为θ. (1)若a ∥b ,求a ·b ; (2)若a -b 与a 垂直,求θ.解:(1)∵a ∥b ,∴θ=0°或180°, ∴a ·b =|a ||b |cos θ=±2.(2)∵a -b 与a 垂直,∴(a -b )·a =0, 即|a |2-a ·b =1-2cos θ=0, ∴cos θ=22. 又0°≤θ≤180°,∴θ=45°.18.(本小题满分12分)已知tan α=12,求1+2sin (π-α)cos (-2π-α)sin 2(-α)-sin 2⎝⎛⎭⎫5π2-α的值.解:原式=1+2sin αcos αsin 2α-cos 2α=sin 2α+cos 2α +2sin αcos αsin 2α-cos 2α=(sin α+cos α)2(sin α-cos α )(sin α+cos α ) =sin α+cos αsin α-cos α =tan α+1tan α-1,又∵tan α=12,∴原式=12+112-1=-3.19.(本小题满分12分)已知a =(cos 2α,sin α),b =(1,2sin α-1),α∈π2,π,a ·b =25,求52sin 2α-4cos ⎝⎛⎭⎫α+π42cos 2 α2.解:∵a ·b =cos 2α+sin α(2sin α-1) =cos 2α+2sin 2α-sin α =1-sin α=25,∴sin α=35.∵α∈⎝⎛⎭⎫π2,π,∴cos α=-45, ∴sin 2α=2sin αcos α=-2425,∴52sin 2α-4cos ⎝⎛⎭⎫α+π42cos 2α2=52sin 2α-22(cos α-sin α)1+cos α=52×⎝⎛⎭⎫-2425-22⎝⎛⎭⎫-45-351-45=-10 2.20.(本小题满分12分)已知函数ƒ(x )=2cos x ·sin ⎝⎛⎭⎫x +π3-3sin 2x +sin x cos x . (1)当x ∈⎣⎡⎦⎤0,π2时,求ƒ(x )的值域; (2)用五点法在下图中作出y =ƒ(x )在闭区间⎣⎡⎦⎤-π6,5π6上的简图;解:ƒ(x )=2cos x ·sin ⎝⎛⎭⎫x +π3-3sin 2x +sin x cos x =2cos x ⎝⎛⎭⎫sin x cos π3+cos x sin π3-3sin 2x +sin x cos x =sin 2x +3cos 2x =2sin ⎝⎛⎭⎫2x +π3. (1)∵x ∈⎣⎡⎦⎤0,π2,∴π3≤2x +π3≤4π3, ∴-32≤sin ⎝⎛⎭⎫2x +π3≤1,∴当x ∈⎣⎡⎦⎤0,π2时,ƒ(x )的值域为[-3,2]. (2)由T =2π2,得T =π,列表:21.(本小题满分12分)已知f (x )=sin x +2sin π4+x2·cos ⎝⎛⎭⎫π4+x 2. (1)若f (α)=22,α∈⎝⎛⎭⎫-π2,0,求α的值; (2)若sin x 2=45,x ∈⎝⎛⎭⎫π2,π,求f (x )的值. 解:f (x )=sin x +2sin ⎝⎛⎭⎫π4+x 2cos ⎝⎛⎭⎫π4+x 2=sin x +sin ⎝⎛⎭⎫x +π2=sin x +cos x =2sin ⎝⎛⎭⎫x +π4. (1)由f (α)=22,得2sin ⎝⎛⎭⎫α+π4=22, ∴sin ⎝⎛⎭⎫α+π4=12. ∵α∈⎝⎛⎭⎫-π2,0,∴α+π4∈⎝⎛⎭⎫-π4,π4. ∴α+π4=π6,∴α=-π12.(2)∵x ∈⎝⎛⎭⎫π2,π,∴x 2∈⎝⎛⎭⎫π4,π2. 又∵sin x 2=45,∴cos x 2=35.∴sin x =2sin x 2cos x 2=2425,cos x =-1-sin 2x =-725. ∴f (x )=sin x +cos x =2425-725=1725.22.(本小题满分12分)已知函数ƒ(x )=A sin(ωx +φ)ω>0,0<φ<π2的部分图象如图所示.(1)求ƒ(x )的解析式;(2)将函数y =ƒ(x )的图象上所有点的纵坐标不变,横坐标缩短为原来的12倍,再将所得函数图象向右平移π6个单位,得到函数y =g (x )的图象,求g (x )的单调递增区间;(3)当x ∈⎣⎡⎦⎤-π2,5π12时,求函数y =ƒ⎝⎛⎭⎫x +π12-2ƒ⎝⎛⎭⎫x +π3的最值. 解:(1)由图得34T =11π6-π3=9π6=3π2,∴T =2π,∴ω=2πT=1. 又ƒ⎝⎛⎭⎫11π6=0,得A sin ⎝⎛⎭⎫11π6+φ=0, ∴11π6+φ=2k π,k ∈Z ,φ=2k π-11π6,k ∈Z. ∵0<φ<π2,∴当k =1时,φ=π6.又由ƒ(0)=2,得A sin π6=2,∴A =4,∴ƒ(x )=4sin ⎝⎛⎭⎫x +π6. (2)将ƒ(x )=4sin ⎝⎛⎭⎫x +π6的图象上所有点的横坐标缩短为原来的12倍,纵坐标不变得到y =4sin ⎝⎛⎭⎫2x +π6,再将图象向右平移π6个单位得到g (x )= 4sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6+π6=4sin ⎝⎛⎭⎫2x -π6, 由2k π-π2≤2x -π6≤2k π+π2(k ∈Z)得k π-π6≤x ≤k π+π3(k ∈Z),∴g (x )的单调递增区间为⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z). (3)y =ƒ⎝⎛⎭⎫x +π12-2ƒ⎝⎛⎭⎫x +π3 =4sin ⎣⎡⎦⎤⎝⎛⎭⎫x +π12+π6-2×4sin ⎣⎡⎦⎤⎝⎛⎭⎫x +π3+π6 =4sin ⎝⎛⎭⎫x +π4-42sin ⎝⎛⎭⎫x +π2 =4⎝⎛⎭⎫sin x ·cos π4+cos x ·sin π4-42cos x =22sin x +22cos x -42cos x=22sin x -22cos x =4sin ⎝⎛⎭⎫x -π4. ∵x ∈⎣⎡⎦⎤-π2,5π12,x -π4∈⎣⎡⎦⎤-3π4,π6, ∴sin ⎝⎛⎭⎫x -π4∈⎣⎡⎦⎤-1,12, ∴函数的最小值为-4,最大值为2.。
2018-2019学年新设计高中数学(人教A版)必修四讲义:第二章 平面向量章末复习课2Word版含答案
章末复习课网络构建核心归纳1.五种常见的向量(1)单位向量:模为1的向量.(2)零向量:模为0的向量.(3)平行(共线)向量:方向相同或相反的向量.(4)相等向量:模相等,方向相同的向量.(5)相反向量:模相等,方向相反的向量.2.两个重要定理(1)向量共线定理:向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使b=λa.(2)平面向量基本定理:如果e1,e2是同一个平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2,其中e1,e2是一组基底.3.两个非零向量平行、垂直的等价条件若a=(x1,y1),b=(x2,y2),则:(1)a∥b⇔a=λb(λ≠0)⇔x1y2-x2y1=0,(2)a⊥b⇔a·b=0⇔x1x2+y1y2=0.4.平面向量的三个性质(1)若a =(x ,y ),则|a |=a ·a =x 2+y 2.(2)若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 2-x 1)2+(y 2-y 1)2.(3)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a ·b|a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.5.向量的投影向量a 在b 方向上的投影为|a |cos θ=a ·b |b |. 6.向量的运算律(1)交换律:a +b =b +a ,a ·b =b ·a .(2)结合律:a +b +c =(a +b )+c ,a -b -c =a -(b +c ),(λa )·b =λ(a ·b )=a ·(λb ). (3)分配律:(λ+μ)a =λa +μa ,λ(a +b )=λa +λb ,(a +b )·c =a ·c +b ·c . (4)重要公式:(a +b )·(a -b )=a 2-b 2,(a ±b )2=a 2±2a ·b +b 2.要点一 平面向量的线性运算及应用 向量线性运算的基本原则和求解策略 (1)基本原则:向量的加法、减法和数乘运算统称为向量的线性运算.向量的线性运算的结果仍是一个向量,因此,对它们的运算法则、运算律的理解和运用要注意向量的大小和方向两个方面.(2)求解策略:①向量是一个有“形”的几何量,因此在进行向量线性运算时,一定要结合图形,这是研究平面向量的重要方法与技巧.②字符表示下线性运算的常用技巧:首尾相接用加法的三角形法则,如AB →+BC →=AC →;共起点两个向量作差用减法的几何意义,如OB →-OA →=AB →.③平行向量(共线向量)、相等向量与相反向量、单位向量等,理解向量的有关概念并进行恰当地应用.④注意常见结论的应用.如△ABC 中,点D 是BC 的中点,则AB →+AC →=2AD →. 【例1】 (1)已知向量a =(2,1),b =(-3,4),则2a -b 的结果是( ) A .(7,-2) B .(1,-2) C .(1,-3)D .(7,2) 解析 ∵a =(2,1),b =(-3,4),∴2a -b =2(2,1)-(-3,4)=(4,2)-(-3,4)=(4+3,2-4)=(7,-2),故选A .答案 A(2)设D 为△ABC 所在平面内一点,则BD →=3CD →,则( ) A .AD →=-13AB →+43AC →B .AD →=43AB →-13AC →C .AD →=32AB →-12AC →D .AD →=-12AB →+32AC →解析 ∵BD →=3CD →,∴AD →-AB →=3(AD →-AC →),∴2AD →=3AC →-AB →,∴AD →=32AC →-12AB →.答案 D【训练1】 已知A (-2,4),B (3,-1),C (-3,-4),设AB →=a ,BC →=b ,CA →=c . (1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n . 解 由已知得a =(5,-5), b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42). (2)因为m b +n c =(-6m +n ,-3m +8n ),a =m b +n c ,所以⎩⎪⎨⎪⎧ -6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.要点二 平面向量的数量积运算 向量数量积的两种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a ·b =|a ||b |cos 〈a ,b 〉. (2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.运用两向量的数量积解决长度、夹角、垂直等问题,解题时应灵活选择相应公式求解. 【例2】 (1)如图所示,在平面四边形ABCD 中,若AC =3,BD =2,则(AB →+DC →)·(AC →+BD →)=________;解析 由于AB →=AC →+CB →,DC →=DB →+BC →, 所以AB →+DC →=AC →+CB →+DB →+BC →=AC →-BD →.(AB →+DC →)·(AC →+BD →)=(AC →-BD →)·(AC →+BD →) =|AC →|2-|BD →|2=9-4=5. 答案 5(2)在Rt △ABC 中,CA =CB =2,M ,N 是斜边AB 上的两个动点,且MN =2,则CM →·CN →的取值范围为________.解析 以C 为坐标原点,CA 所在直线为x 轴,CB 所在直线为y 轴,建立平面直角坐标系(如图所示),则C (0,0),A (2,0),B (0,2),所以直线AB 的方程为x +y -2=0.设M (t,2-t ),因为MN =2,所以N (t +1,1-t )(0≤t ≤1),所以CM →·CN →=t (t +1)+(2-t )(1-t )=2t 2-2t +2=2⎝⎛⎭⎫t -122+32.因为0≤t ≤1.所以CM →·CN →的取值范围为⎣⎡⎦⎤32,2.答案 [32,2]【训练2】 已知两个单位向量e 1,e 2的夹角为π3,若向量b 1=e 1-2e 2,b 2=3e 1+4e 2,则b 1·b 2=________.解析 b 1·b 2=(e 1-2e 2)·(3e 1+4e 2)=3e 21-2e 1·e 2-8e 22=3-2×1×1×12-8=-6. 答案 -6要点三 平面向量的平行与垂直问题 1.证明共线问题常用的方法(1)向量a ,b (a ≠0)共线⇔存在唯一实数λ,使b =λa . (2)向量a =(x 1,y 1),b =(x 2,y 2)共线⇔x 1y 2-x 2y 1=0.(3)向量a 与b 共线⇔存在不全为零的实数λ1,λ2,使λ1a +λ2b =0. 2.证明平面向量垂直问题的常用方法 a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0, 其中a =(x 1,y 1),b =(x 2,y 2).【例3】 已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.解析 由AP →⊥BC →知AP →·BC →=0, 即AP →·BC →=(λAB →+AC →)·(AC →-AB →) =(λ-1)AB →·AC →-λAB →2+AC →2=(λ-1)×3×2×⎝⎛⎭⎫-12-λ×9+4=0,解得λ=712. 答案712【训练3】 直角坐标系xOy 中,AB →=(2,1),AC →=(3,k ),若△ABC 是直角三角形,则k 的可能值个数是( )A .1B .2C .3D .4解析 BC →=AC →-AB →=(1,k -1),若AB →⊥AC →,则AB →·AC →=6+k =0得k =-6;若AB →⊥BC →,则AB →·BC →=2+k -1=0,得k =-1;若AC →⊥BC →,则AC →·BC →=3+k 2-k =0,此方程无解,故k 的可能值为-6或-1.答案 B要点四 平面向量的模与夹角 (1)利用数量积求解长度的方法 ①|a |2=a 2=a ·a ; ②|a ±b |2=a 2±2a ·b +b 2;③若a =(x ,y ),则|a |=x 2+y 2. (2)求两个非零向量的夹角时要注意 ①向量的数量积不满足结合律;②数量积大于0说明不共线的两个向量的夹角为锐角;数量积等于0说明两个向量的夹角为直角;数量积小于0且两个向量不共线时两个向量的夹角就是钝角.【例4】 (1)已知a ,b 为平面向量,若a +b 与a 的夹角为π4,a +b 与b 的夹角为π4,则|a ||b |=________; 解析 设OA →=a ,OB →=b (O 为坐标原点),以OA ,OB 为邻边作平行四边形OACB ,则OC →=a +b ,由于a +b 与a 的夹角为π4,a +b 与b 的夹角为π4,所以∠AOC =π4,∠ACO =π4,在△AOC 中,|a |=|b |,故|a ||b |=1.。
高中数学 第2章 平面向量章末整合导学案 新人教A版必修4-新人教A版高一必修4数学学案
章末整合考点一 向量的线性运算 1.平面向量的线性运算及运算律(1)向量加法是由三角形法则定义的,要点是“首尾相连”,即AB →+BC →=AC →向量加法的平行四边形法则:将两向量移至共起点,分别为邻边平行四边形,则同起点对角线的向量即为向量的和.加法满足交换律、结合律.(2)向量减法实质是向量加法的逆运算,是相反向量的作用.几何意义有两个:一是以减向量的终点为起点,被减向量的终点为终点的向量;二是加法的平行四边形法则的另外一条对角线的向量.注意两向量要移至共起点.(3)数乘运算即通过实数与向量的乘积,实现同向或反向上向量长度的伸缩变换. 2.向量共线及平面向量基本定理(1)共线向量定理:向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使得b =λa . 共线向量定理是证明平行的主要依据,也是解决三点共线问题的重要方法.特别地,平面内一点P 位于直线AB 上的条件是存在实数x ,使AP →=xAB →,或对直线外任意一点O ,有OP →=xOA →+yOB →(x +y =1).(2)平面向量基本定理:如果向量e 1,e 2不共线,那么对于平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中e 1,e 2是平面的一组基底,e 1,e 2分别称为基向量.由定理可知,平面内任一向量都可以用两个不共线的向量表示出来,而且任意两个不共线的非零向量都可以作为基底.如图,梯形ABCD 中,AB ∥CD ,点M 、N 分别是DA 、BC 的中点,且DCAB=k ,设AD →=e 1,AB →=e 2,以e 1、e 2为基底表示向量DC →、BC →、MN →.[解] ∵AB →=e 2,且DCAB=k ,∴DC →=kAB →=k e 2.∵AB →+BC →+CD →+DA →=0,∴BC →=-AB →-CD →-DA → =-AB →+DC →+AD →=e 1+(k -1)e 2. 又∵MN →+NB →+BA →+AM →=0,且NB →=-12BC →,AM →=12AD →,∴MN →=-AM →-BA →-NB →=-12AD →+AB →+12BC →=k +12e 2.向量共线定理和平面向量基本定理是进行向量合成与分解的核心;是向量线性运算的关键所在,常应用它们解决平面几何中的共线问题、共点问题.[跟踪训练2](1)平面上有A (2,-1),B (1,4),D (4,-3)三点,点C 在直线AB 上,且AC →=12BC →,连接DC 延长至E ,使|CE →|=14|ED →|,则点E 的坐标为________.(2)在△ABC 中,E 为线段AC 的中点,试问在线段AC 上是否存在一点D ,使得BD →=13BC →+23BE →,若存在,说明D 点位置;若不存在,说明理由. [解析] (1)∵AC →=12BC →,∴OC →-OA →=12(OC →-OB →).∴OC →=2OA →-OB →=(3,-6). ∴点C 坐标为(3,-6).|CE →|=14|ED →|,且E 在DC 的延长线上,CE →=-14ED →.设E (x ,y ),则(x -3,y +6)=-14(4-x ,-3-y ),得⎩⎪⎨⎪⎧x -3=-1+14x ,y +6=34+14y ,解得⎩⎪⎨⎪⎧x =83,y =-7.(2)假设存在D 点,使得BD →=13BC →+23BE →.则BD →=13BC →+23(BC →+CE →)=BC →+23CE →BD →-BC →=23CE →,即CD →=23CE →,CD →=23×⎝ ⎛⎭⎪⎫12CA →,所以CD →=13CA →.所以,存在点D 为AC 的三等分点⎝⎛⎭⎪⎫CD →=13CA →时,使得BD →=13BC →+23BE →.[答案] (1)⎝ ⎛⎭⎪⎫83,-7 (2)见解析考点二 平面向量的坐标运算 若a =(a 1,a 2),b =(b 1,b 2),则 (1)a +b =(a 1+b 1,a 2+b 2); (2)a -b =(a 1-b 1,a 2-b 2); (3)λa =(λa 1,λa 2); (4)a ·b =a 1b 1+a 2b 2;(5)a ∥b ⇔a 1=λb 1,a 2=λb 2(λ∈R ),或a 1b 1=a 2b 2(b 1≠0,b 2≠0);(6)a ⊥b ⇔a 1b 1+a 2b 2=0; (7)|a |=a ·a =a 21+a 22; (8)若θ为a 与b 的夹角,则cos θ=a ·b |a ||b |=a 1b 1+a 2b 2a 21+a 22b 21+b 22. (1)已知点A (1,3),B (4,-1),则与向量AB →同方向的单位向量为( ) A.⎝ ⎛⎭⎪⎫35,-45B.⎝ ⎛⎭⎪⎫45,-35C.⎝ ⎛⎭⎪⎫-35,45D.⎝ ⎛⎭⎪⎫-45,35 (2)已知向量a =(1,m ),b =(m,2),若a ∥b ,则实数m 等于( ) A .- 2 B. 2 C .-2或 2D .0(3)已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的投影为( )A.322B.3152C .-322D .-3152[解析] (1)由已知,得AB →=(3,-4),所以|AB →|=5,因此与AB →同方向的单位向量是15AB→=⎝ ⎛⎭⎪⎫35,-45.(2)a ∥b 的充要条件的坐标表示为1×2-m 2=0,∴m =±2,选C.(3)AB →=(2,1),CD →=(5,5),向量AB →=(2,1)在CD →=(5,5)上的投影为|AB →|cos 〈AB →,CD →〉=|AB →|·AB →·CD →|AB →||CD →|=AB →·CD →|CD →|=1552=322,故选A.[答案] (1)A (2)C (3)A在实际考查中,向量的坐标运算是考查的重点,也是热点,主要考查用向量的坐标求有关向量,判断向量平行、垂直,求向量夹角等.[跟踪训练2](1)若a =(2,3),b =(-4,7),则a 在b 方向上的投影为( )A.655 B.65 C.135D.13 (2)已知向量a =(1,2),b =(-2,-4),|c |=5,若(a +b )·c =52,则a 与c 的夹角的大小为________.[解析] (1)设a 与b 夹角为θ,则a 在b 方向上的投影为|a |cos θ=|a |a ·b |a ||b |=a ·b|b |=2×(-4)+3×742+72=1365=655(2)a +b =(-1,-2),|a |=5,设c =(x ,y ), ∵(a +b )·c =52,∴x +2y =-52.设a 与c 的夹角为θ,∵a ·c =x +2y , ∴cos θ=a ·b |a |·|c |=-525=-12.又∵θ∈[0°,180°],∴θ=120°. [答案] (1)A (2)120° 考点三 平面向量的数量积 1.两向量的数量积及其运算律两个向量的数量积是a ·b =|a ||b |cos θ,θ为a 与b 的夹角,数量积满足运算律: (1)与数乘的结合律,即(λa )·b =λ(a ·b ); (2)交换律,即a ·b =b ·a ;(3)分配律,即(a +b )·c =a ·c +b ·c .2.平面向量的数量积是向量的核心内容,向量的平行、垂直是向量中最基本、最重要的位置关系,而向量的夹角、长度是向量的数量特征.3.利用向量的数量积可以证明两向量垂直、平行,求两向量的夹角,计算向量的长度等.已知c =m a +n b ,c =(-23,2),a ⊥c ,b 与c 的夹角为2π3,b ·c =-4,|a |=22,求实数m ,n 的值及a 与b 的夹角θ.[解] ∵c =(-23,2),∴|c |=4.∵a ⊥c ,∴a ·c =0. ∵b ·c =|b ||c |cos 2π3=|b |×4×⎝ ⎛⎭⎪⎫-12=-4,∴|b |=2.∵c =m a +n b ,∴c 2=m a ·c +n b ·c . ∴16=n ×(-4).∴n =-4. 以c =m a +n b 两边同乘以a , 得0=8m -4a ·b .①在c =m a +n b 两边同乘以b ,得m a ·b =12.② 由①②,得m =± 6. ∴a ·b =±2 6.∴cos θ=±2622×2=±32.∴θ=π6或5π6.解答该类题目要注意以下几个方面:(1)平面向量的数量积很好地体现了向量与数量的统一与相互转化,运用向量的数量积可以解决有关模、夹角的问题.解决过程中主要用到向量数量积的两个公式:定义式和坐标式.(2)向量与其他知识的综合,例如与几何综合的数目,求解关键在于向量语言和平面几何语言的转换,比如模相等就是线段长度相等,数量积为零就是两向量所在直线互相垂直等.[跟踪训练3]若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4B.π2C.3π4D .π[解析] 由(a -b )⊥(3a +2b )得(a -b )·(3a +2b )=0,即3a 2-a ·b -2b 2=0, 又∵|a |=223|b |,设〈a ,b 〉=θ,则3|a |2-|a |·|b |·cos θ-2|b |2=0, ∴83|b |2-223|b |2·cos θ-2|b |2=0, ∴cos θ=22,又∵0≤θ≤π,∴θ=π4. [答案] A考点四 定义新运算类比或利用向量的数量积定义一种新运算,是近几年高考中常考的新题型.此类题有一定的难度,需要理解题中的新定义,并结合学过的知识解答.对任意两个非零的平面向量α和β,定义α∘β=α·ββ·β.若平面向量a ,b 满足|a |≥|b |>0,a 与b 的夹角θ∈⎝ ⎛⎭⎪⎫0,π4,且a ∘b 和b ∘a 都在集合⎩⎨⎧⎭⎬⎫n 2| n ∈Z 中,则a ∘b =( )A.12 B .1 C.32 D.52[解析] 根据题中给定的两个向量的新运算可知a ∘b =a ·b b ·b =|a |×|b |×cos θ|b |2=|a |cos θ|b |,b ∘a =|b |cos θ|a |,又由θ∈⎝⎛⎭⎪⎫0,π4可得22<cos θ<1,由|a |≥|b |>0可得0<|b ||a |≤1,于是0<|b |cos θ|a |<1,即b ∘a ∈(0,1),又由于b ∘a ∈⎩⎨⎧⎭⎬⎫n 2| n ∈Z ,所以|b |cos θ|a |=12,即|a |=2|b |cos θ.所以a ∘b =2cos 2θ,又22<cos θ<1,a ∘b ∈⎩⎨⎧⎭⎬⎫n 2| n ∈Z ,于是1<n 2<2(n ∈Z ),故n =3,∴a ∘b =32,故选C. [答案] C解决此类题应理解题目中所给的信息和定义,能应用新定义写出有关的表达式及结论,注意新定义中已学的概念.[跟踪训练4]已知两个不相等的非零向量a ,b ,两组向量x 1,x 2,x 3,x 4,x 5和y 1,y 2,y 3,y 4,y 5均由2个a 和3个b 排列而成.记S =x 1·y 1+x 2·y 2+x 3·y 3+x 4·y 4+x 5·y 5,S min 表示S 所有可能取值中的最小值.则下列命题正确的是________(写出所有正确命题的编号).①S 有5个不同的值②若a ⊥b ,则S min 与|a |无关③若a ∥b ,则S min 与|b |无关④若|b |>4|a |,则S min >0⑤若|b |=2|a |,S min =8|a |2,则a 与b 的夹角为π4[解析] 根据题意得,S 的取值依据含a 2的个数,分三类:有0个a 2,有1个a 2,有2个a 2.分别得S 的取值为 S 1=4|a ||b |·cos θ+b 2,S 2=2|a ||b |cos θ+a 2+2b 2,S 3=2a 2+3b 2(记θ=〈a ,b 〉).S 至多有3个不同的值,故①错误;若a ⊥b ,则θ=90°,易知S min =S 1=b 2=|b |2,与|a |无关,故②正确;若a ∥b ,则S 的三个值均与|b |有关,所以S min 也一定与|b |有关,故③错误;若|b |>4|a |,则S 1>-16a 2|cos θ|+16a 2=16a 2(1-|cos θ|)≥0,S 2>-8a 2|cos θ|+a 2+32a 2=a 2(33-8|cos θ|)>0,S 3>0,∴S min >0,故④正确;若|b |=2|a |,则S 1=8a 2cos θ+4a 2,S 2=4a 2cos θ+9a 2,S 3=2a 2+12a 2=14a 2,∵S 2-S 1=a 2(5-4cos θ)>0,S 3-S 1=2a 2(5-4cos θ)>0,∴S min =S 1=8a 2cos θ+4a 2,若S min =8|a |2,则可解得cos θ=12,∴θ=π3.故⑤错误. [答案] ②④。
2018版高中数学平面向量2.5.1平面几何中的向量方法导学案新人教A版必修4 含解析
2.5.1 平面几何中的向量方法学习目标 1.学习用向量方法解决某些简单的平面几何问题及其他一些实际问题的过程.2.体会向量是一种处理几何问题的有力工具.3.培养运算能力、分析和解决实际问题的能力.向量是数学中证明几何命题的有效工具之一.在证明几何命题时,可先把已知条件和结论表示成向量的形式,再通过向量的运算就很容易得出结论.一般地,利用实数与向量的积可以解决共线、平行、长度等问题,利用向量的数量积可解决长度、角度、垂直等问题.向量的坐标表示把点与数联系了起来,这样就可以用代数方程研究几何问题,同时也可以用向量来研究某些代数问题.向量的数量积体现了向量的长度与三角函数间的关系,把向量的数量积应用到三角形中,就能解决三角形的边角之间的有关问题.知识点一几何性质及几何与向量的关系设a=(x1,y1),b=(x2,y2),a,b的夹角为θ.思考1 证明线段平行、点共线及相似问题,可用向量的哪些知识?答案可用向量共线的相关知识:a∥b⇔a=λb⇔x1y2-x2y1=0(b≠0).思考2 证明垂直问题,可用向量的哪些知识?答案可用向量垂直的相关知识:a⊥b⇔a·b=0⇔x1x2+y1y2=0.梳理平面几何图形的许多性质,如平移、全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来.知识点二向量方法解决平面几何问题的步骤1.建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题.2.通过向量运算,研究几何元素之间的关系,如距离、夹角等问题.3.把运算结果“翻译”成几何关系.类型一用平面向量求解直线方程例1 已知△ABC的三个顶点A(0,-4),B(4,0),C(-6,2),点D,E,F分别为边BC,CA,AB的中点.(1)求直线DE,EF,FD的方程;(2)求AB 边上的高线CH 所在的直线方程.解 (1)由已知得点D (-1,1),E (-3,-1),F (2,-2),设M (x ,y )是直线DE 上任意一点,则DM →∥DE →. DM →=(x +1,y -1),DE →=(-2,-2).∴(-2)×(x +1)-(-2)×(y -1)=0, 即x -y +2=0为直线DE 的方程. 同理可求,直线EF ,FD 的方程分别为x +5y +8=0,x +y =0.(2)设点N (x ,y )是CH 所在直线上任意一点, 则CN →⊥AB →. ∴CN →·AB →=0.又CN →=(x +6,y -2),AB →=(4,4). ∴4(x +6)+4(y -2)=0,即x +y +4=0为所求直线CH 的方程.反思与感悟 利用向量法解决解析几何问题,首先将线段看成向量,再把坐标利用向量法则进行运算.跟踪训练1 在△ABC 中,A (4,1),B (7,5),C (-4,7),求∠A 的平分线所在的直线方程. 解 AB →=(3,4),AC →=(-8,6), ∠A 的平分线的一个方向向量为a =AB→|AB →|+AC →|AC →|=⎝ ⎛⎭⎪⎫35,45+⎝ ⎛⎭⎪⎫-45,35 =⎝ ⎛⎭⎪⎫-15,75. 设P (x ,y )是角平分线上的任意一点, ∵∠A 的平分线过点A , ∴AP →∥a ,∴所求直线方程为-75(x -4)-15(y -1)=0.整理得7x +y -29=0.类型二 用平面向量求解平面几何问题例 2 已知在正方形ABCD 中,E 、F 分别是CD 、AD 的中点,BE 、CF 交于点P .求证:(1)BE ⊥CF ;(2)AP =AB .证明 建立如图所示的平面直角坐标系,设AB =2,则A (0,0),B (2,0),C (2,2),E (1,2),F (0,1).(1)∵BE →=(-1,2),CF →=(-2,-1). ∴BE →·CF →=(-1)×(-2)+2×(-1)=0, ∴BE →⊥CF →,即BE ⊥CF .(2)设点P 坐标为(x ,y ),则FP →=(x ,y -1), FC →=(2,1),∵FP →∥FC →,∴x =2(y -1),即x =2y -2, 同理,由BP →∥BE →,得y =-2x +4,由⎩⎪⎨⎪⎧x =2y -2,y =-2x +4,得⎩⎪⎨⎪⎧x =65,y =85,∴点P 的坐标为(65,85).∴|AP →|= (65)2+(85)2=2=|AB →|, 即AP =AB .反思与感悟 用向量证明平面几何问题的两种基本思路: (1)向量的线性运算法的四个步骤:①选取基底;②用基底表示相关向量;③利用向量的线性运算或数量积找出相应关系;④把几何问题向量化.(2)向量的坐标运算法的四个步骤:①建立适当的平面直角坐标系;②把相关向量坐标化;③用向量的坐标运算找出相应关系;④把几何问题向量化.跟踪训练2 如图,在正方形ABCD 中,P 为对角线AC 上任一点,PE ⊥AB ,PF ⊥BC ,垂足分别为E ,F ,连接DP ,EF ,求证:DP ⊥EF .证明 方法一 设正方形ABCD 的边长为1,AE =a (0<a <1), 则EP =AE =a ,PF =EB =1-a ,AP =2a , ∴DP →·EF →=(DA →+AP →)·(EP →+PF →) =DA →·EP →+DA →·PF →+AP →·EP →+AP →·PF →=1×a ×cos 180°+1×(1-a )×cos 90°+2a ×a ×cos 45°+2a ×(1-a )×cos 45° =-a +a 2+a (1-a )=0. ∴DP →⊥EF →,即DP ⊥EF .方法二 如图,以A 为原点,AB ,AD 所在直线分别为x 轴,y 轴建立平面直角坐标系.设正方形ABCD 的边长为1,AP =λ(0<λ<2),则D (0,1),P (22λ,22λ),E (22λ,0),F (1,22λ). ∴DP →=(22λ,22λ-1),EF →=(1-22λ,22λ).∴DP →·EF →=22λ-12λ2+12λ2-22λ=0,∴DP →⊥EF →,即DP ⊥EF .1.已知在△ABC 中,若AB →=a ,AC →=b ,且a·b <0,则△ABC 的形状为( ) A.钝角三角形 B.直角三角形 C.锐角三角形 D.不能确定答案 A2.过点A (2,3),且垂直于向量a =(2,1)的直线方程为( ) A.2x +y -7=0B.2x +y +7=0C.x -2y +4=0D.x -2y -4=0答案 A解析 设P (x ,y )为直线上一点,则AP →⊥a ,即(x -2)×2+(y -3)×1=0,即2x +y -7=0. 3.在四边形ABCD 中,若AD →+CB →=0,AC →·BD →=0,则四边形ABCD 为( ) A.平行四边形 B.矩形 C.等腰梯形 D.菱形答案 D解析 ∵AD →+CB →=0,∴AD →=BC →,∴四边形ABCD 为平行四边形. 又∵AC →·BD →=0,∴AC →⊥BD →, 即平行四边形ABCD 的对角线垂直, ∴平行四边形ABCD 为菱形.4.如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是________.答案 22解析 由CP →=3PD →,得DP →=14DC →=14AB →,AP →=AD →+DP →=AD →+14AB →,BP →=AP →-AB →=AD →+14AB →-AB →=AD →-34AB →.因为AP →·BP →=2,所以(AD →+14AB →)·(AD →-34AB →)=2,即AD →2-12AD →·AB →-316AB →2=2.又因为AD →2=25,AB →2=64,所以AB →·AD →=22.5.如图所示,在△ABC 中,点O 是BC 的中点.过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为________.答案 2解析 ∵O 是BC 的中点,∴AO →=12(AB →+AC →).又∵AB →=mAM →,AC →=nAN →, ∴AO →=m 2AM →+n 2AN →.又∵M ,O ,N 三点共线, ∴m 2+n2=1,则m +n =2.利用向量方法可以解决平面几何中的平行、垂直、夹角、距离等问题.利用向量解决平面几何问题时,有两种思路:一种思路是选择一组基底,利用基向量表示涉及的向量;另一种思路是建立坐标系,求出题目中涉及的向量的坐标.课时作业一、选择题1.在△ABC 中,已知A (4,1),B (7,5),C (-4,7),则BC 边的中线AD 的长是( ) A.2 5B.552 C.3 5 D.752答案 B解析 ∵BC 的中点为D ⎝ ⎛⎭⎪⎫32,6,AD →=⎝ ⎛⎭⎪⎫-52,5, ∴|AD →|=552.2.点O 是三角形ABC 所在平面内的一点,满足OA →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的( )A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点 答案 D解析 ∵OA →·OB →=OB →·OC →, ∴(OA →-OC →)·OB →=0,∴OB →·CA →=0, ∴OB ⊥AC .同理OA ⊥BC ,OC ⊥AB , ∴O 为三条高的交点.3.已知非零向量AB →与AC →满足⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0且AB ,→|AB ,→|·AC →|AC →|=12,则△ABC 的形状是( )A.三边均不相等的三角形B.直角三角形C.等腰(非等边)三角形D.等边三角形 答案 D解析 由⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,得角A 的平分线垂直于BC ,∴AB =AC .而AB →|AB →|·AC →|AC →|=cos〈AB →,AC →〉=12,又〈AB →,AC →〉∈[0°,180°],∴∠BAC =60°. 故△ABC 为等边三角形,故选D.4.在四边形ABCD 中,若AC →=(1,2),BD →=(-4,2),则该四边形的面积为( ) A. 5 B.2 5 C.5 D.10 答案 C解析 ∵AC →·BD →=0,∴AC ⊥BD . ∴四边形ABCD 的面积S =12|AC →||BD →|=12×5×25=5.5.已知点A (-2,-3),B (19,4),C (-1,-6),则△ABC 是( ) A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形答案 C解析 AB →=(19,4)-(-2,-3)=(21,7), AC →=(-1,-6)-(-2,-3)=(1,-3),AB →·AC →=21-21=0,∴AB →⊥AC →,又|AB →|≠|AC →|,∴△ABC 为直角三角形.6.已知点P 是△ABC 所在平面内一点,若CB →=λPA →+PB →,其中λ∈R ,则点P 一定在( ) A.△ABC 的内部 B.AC 边所在的直线上 C.AB 边所在的直线上 D.BC 边所在的直线上答案 B解析 ∵CB →=λPA →+PB →,∴CB →-PB →=λPA →, ∴CP →=λPA →,∴P ,A ,C 三点共线, ∴点P 一定在AC 边所在的直线上.7.在▱ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点,若AC →·BE →=1,则AB 的长为( ) A.1 B.12 C.13 D.32答案 B解析 设AB 的长为a (a >0),因为AC →=AB →+AD →,BE →=BC →+CE →=AD →-12AB →,所以AC →·BE →=(AB →+AD →)·(AD →-12AB →)=12AB →·AD →-12AB →2+AD →2=-12a 2+14a +1. 由已知,得-12a 2+14a +1=1,又因为a >0,所以a =12,即AB 的长为12.二、填空题8.已知在矩形ABCD 中,AB =2,AD =1,E ,F 分别为BC ,CD 的中点,则(AE →+AF →)·BD →=________. 答案 -92解析 如图,以AB 所在直线为x 轴,以AD 所在直线为y 轴建立平面直角坐标系,则A (0,0),B (2,0),D (0,1), ∴C (2,1).∵E ,F 分别为BC ,CD 的中点,∴E ⎝ ⎛⎭⎪⎫2,12,F (1,1), ∴AE →+AF →=⎝ ⎛⎭⎪⎫3,32,BD →=(-2,1),∴(AE →+AF →)·BD →=3×(-2)+32×1=-92.9.已知直线ax +by +c =0与圆x 2+y 2=1相交于A ,B 两点,若|AB |=3,则OA →·OB →=________. 答案 -12解析 如图,作OD ⊥AB 于点D ,则在Rt△AOD 中,OA =1,AD =32,所以∠AOD =60°,∠AOB =120°,所以OA →·OB →=|OA →||OB →|cos 120°=1×1×(-12)=-12.10.若点M 是△ABC 所在平面内的一点,且满足3AM →-AB →-AC →=0,则△ABM 与△ABC 的面积之比为________. 答案 1∶3解析 如图,D 为BC 边的中点,则AD →=12(AB →+AC →).因为3AM →-AB →-AC →=0, 所以3AM →=2AD →, 所以AM →=23AD →,所以S △ABM =23S △ABD =13S △ABC .三、解答题11.在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°,动点E 和F 分别在线段BC 和DC 上,且BE →=λBC →,DF →=19λDC →,求AE →·AF →的最小值.解 在等腰梯形ABCD 中,由AB =2,BC =1,∠ABC =60°,可得DC =1,AE →=AB →+λBC →,AF →=AD →+19λDC →,∴AE →·AF →=(AB →+λBC →)·(AD →+19λDC →)=AB →·AD →+AB →·19λDC →+λBC →·AD →+λBC →·19λDC →=2×1×cos 60°+2×19λ+λ×1×1×cos 60°+λ·19λ×cos 120°=29λ+λ2+1718,由对勾函数的性质知AE →·AF →≥229λ·λ2+1718=2918, 当且仅当29λ=λ2,即λ=23时,取得最小值2918.12.如图所示,在正三角形ABC 中,D 、E 分别是AB 、BC 上的一个三等分点,且分别靠近点A 、点B ,且AE 、CD 交于点P .求证:BP ⊥DC .证明 设PD →=λCD →,并设△ABC 的边长为a ,则有 PA →=PD →+DA →=λCD →+13BA →=λ(23BA →-BC →)+13BA →=13(2λ+1)BA →-λBC →, EA →=BA →-13BC →.∵PA →∥EA →,∴13(2λ+1)BA →-λBC →=kBA →-13kBC →.于是有⎩⎪⎨⎪⎧13(2λ+1)=k ,λ=13k ,解得λ=17.∴PD →=17CD →,∴BP →=BC →+CP →=17BC →+47BA →,CD →=23BA →-BC →,从而BP →·CD →=(17BC →+47BA →)·(23BA →-BC →)=821a 2-17a 2-1021a 2cos 60°=0,∴BP →⊥CD →, ∴BP ⊥DC .13.如图,已知平行四边形ABCD 的顶点A (0,0),B (4,1),C (6,8).(1)求顶点D 的坐标;(2)若DE →=2EC →,F 为AD 的中点,求AE 与BF 的交点I 的坐标.解 (1)设点D (m ,n ),因为AD →=BC →,所以(m ,n )=(6,8)-(4,1)=(2,7),所以顶点D 的坐标为(2,7).(2)设点I (x ,y ),则点F 坐标为⎝ ⎛⎭⎪⎫1,72, 由于DE →=2EC →,故(x E -2,y E -7)=2(6-x E ,8-y E ),所以E ⎝ ⎛⎭⎪⎫143,233, 由于BF →=⎝⎛⎭⎪⎫-3,52,BI →=(x -4,y -1),BF →∥BI →, 所以52(x -4)=-3(y -1), ① 又AE →∥AI →,所以233x =143y , ②解①②得x =74,y =238. 则点I 的坐标为(74,238). 四、探究与拓展14.在△ABC 中,AB =3,AC 边上的中线BD =5,AC →·AB →=5,则AC 的长为________.答案 2解析 设∠BAC =θ,AD =x ,则AC →·AB →=2x ·3·cos θ=5,∴x ·cos θ=56. 作DE ⊥AB 于点E ,由DE 2+EB 2=BD 2,得(x ·sin θ)2+(3-x ·cos θ)2=5,解得x ·sin θ=116. ∴x 2·cos 2θ+x 2·sin 2θ=x 2=2536+1136=1, ∴x =1,∴AC =2x =2.15.已知点A (2,-1).求过点A 与向量a =(5,1)平行的直线方程. 解 设所求直线上任意一点P (x ,y ),则AP →=(x -2,y +1).由题意知AP →∥a ,故5(y +1)-(x -2)=0,即x -5y -7=0.故过点A 与向量a =(5,1)平行的直线方程为x -5y -7=0.。
人教A版《必修4》“2.5平面向量应用”导学案
高一数学《必修4》导学案 2.5 平面向量数量积的几何、物理背景及应用【课前导学】1.向量在平面几何中的应用:平面向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相似、长度、夹角等问题.(1)证明线段平行或点共线问题,包括相似问题,常用共线向量定理:(2)证明垂直问题,常用数量积的运算性质:a b ⊥⇔ ⇔ .(3)求夹角问题,利用夹角公式:cos ____________________________a b θθ==(是与的夹角)____________.2.平面向量在物理中的应用(1)由于物理学中的力、速度、位移都是 ,它们的分解与合成与向量的 相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,这是力F 与位移s 的数量积.即__________W F s F s θ=⋅=(是与的夹角).【课内探究】变式:如图,在正方形ABCD 中,E ,F 分别为AB ,BC 的中点.求证:AF ⊥DE (利用向量证明).变式2:已知作用于同一物体的两个力1F 、2F ,大小分别是5 N 、3 N ,1F 、2F 所成的角为60°,则合力F 的大小为________;合力F 与1F 的夹角的余弦值为________.【总结提升】 平面向量作为一种运算工具,经常与函数、不等式、三角函数、数列、解析几何等知识结合,当平面向量给出的形式中含有未知数时,由向量平行或垂直的充要条件可以得到关于该未知数的关系式.【课后作业】1.已知在△ABC 中,AB →=a ,AC →=b ,且a ·b <0,则△ABC 的形状为( ).A .钝角三角形B .直角三角形C .锐角三角形D .等腰直角三角形2.已知作用于原点的两个力F 1=(3,4),F 2=(2,-5),现增加一个力F ,使这三个力F 1,F 2,F 的合力为0,则F =________.3.在平面直角坐标系中,正方形OABC 的对角线OB的两端点分别为O (0,0),B (1,1),则AB →·AC →=________.4.已知点A (1,0),直线l :y =2x -6,点R 是直线l 上的一点,若RA →=2AP →,求点P (,)x y 的坐标中,x y 的关系式.宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章平面向量学习目标 1.回顾梳理向量的有关概念,进一步体会向量的有关概念的特征.2.系统整理向量线性运算、数量积运算及相应的运算律和运算性质.3.体会应用向量解决问题的基本思想和基本方法.4.进一步理解向量的“工具”性作用.1.向量的运算:设a=(x1,y1),b=(x2,y2).向量运算法则(或几何意义)坐标运算向量的线性运算加法a+b=(x1+x2,y1+y2)减法a-b=(x1-x2,y1-y2)数乘(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0λa=(λx1,λy1) 向量的数量积运算a·b=|a||b|cos θ(θ为a与b的夹角)规定0·a=0,数量积的几何意义是a的模与b在a方向上的投影的积a·b=x1x2+y1y22.两个定理(1)平面向量基本定理①定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.②基底:把不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.(2)向量共线定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa . 3.向量的平行与垂直a ,b 为非零向量,设a =(x 1,y 1),b =(x 2,y 2),a ∥b 有唯一实数λ使得b =λa (a ≠0) x 1y 2-x 2y 1=0 a ⊥ba ·b =0x 1x 2+y 1y 2=0类型一 向量的线性运算例1 如图所示,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.答案311解析 设BP →=λBN →,则BP →=BA →+AP →=-AB →+mAB →+211AC →=(m -1)AB →+211AC →.BN →=BA →+AN →=-AB →+14AC →.∵BP →与BN →共线,∴14(m -1)+211=0,∴m =311.反思与感悟 向量共线定理和平面向量基本定理是进行向量合成与分解的核心,是向量线性运算的关键所在,常应用它们解决平面几何中的共线、共点问题.跟踪训练1 在△ABC 中,E 为线段AC 的中点,试问在线段AC 上是否存在一点D ,使得BD →=13BC →+23BE →,若存在,说明D 点位置;若不存在,说明理由.解 假设存在D 点,使得BD →=13BC →+23BE →.BD →=13BC →+23BE →⇒BD →=13BC →+23(BC →+CE →)=BC →+23CE →⇒BD →-BC →=23CE →⇒CD →=23CE →⇒CD →=23×⎝ ⎛⎭⎪⎫12CA →⇒CD →=13CA →.所以当点D 为AC 的三等分点⎝⎛⎭⎪⎫CD →=13CA →时,BD →=13BC →+23BE →.类型二 向量的数量积运算例2 已知a =(cos α,sin α),b =(cos β,sin β),且|k a +b |=3|a -k b |(k >0). (1)用k 表示数量积a ·b ;(2)求a ·b 的最小值,并求出此时a 与b 的夹角θ的大小. 解 (1)由|k a +b |=3|a -k b |, 得(k a +b )2=3(a -k b )2,∴k 2a 2+2k a ·b +b 2=3a 2-6k a ·b +3k 2b 2. ∴(k 2-3)a 2+8k a ·b +(1-3k 2)b 2=0.∵|a |=cos 2α+sin 2α=1,|b |=cos 2β+sin 2β=1, ∴k 2-3+8k a ·b +1-3k 2=0, ∴a ·b =2k 2+28k =k 2+14k.(2)a ·b =k 2+14k =14(k +1k).由函数的单调性可知,f (k )=14(k +1k )在(0,1]上单调递减,在[1,+∞)上单调递增,∴当k =1时,f (k )min =f (1)=14×(1+1)=12,此时a 与b 的夹角θ的余弦值cos θ=a ·b |a ||b |=12,∴θ=60°.反思与感悟 数量积运算是向量运算的核心,利用向量数量积可以解决以下问题: (1)设a =(x 1,y 1),b =(x 2,y 2),a ∥b ⇔x 1y 2-x 2y 1=0, a ⊥b ⇔x 1x 2+y 1y 2=0.(2)求向量的夹角和模的问题 ①设a =(x 1,y 1),则|a |=x 21+y 21. ②两向量夹角的余弦(0≤θ≤π)cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22. 跟踪训练2 已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-(3+m )). (1)若点A ,B ,C 能构成三角形,求实数m 应满足的条件; (2)若△ABC 为直角三角形,且∠A 为直角,求实数m 的值. 解 (1)若点A ,B ,C 能构成三角形,则这三点不共线, ∵OA →=(3,-4),OB →=(6,-3), OC →=(5-m ,-(3+m )),∴AB →=(3,1),BC →=(-m -1,-m ), ∵AB →与BC →不平行,∴-3m ≠-m -1,解得m ≠12,∴当实数m ≠12时满足条件.(2)若△ABC 为直角三角形,且∠A 为直角,则AB →⊥AC →,而AB →=(3,1),AC →=(2-m ,1-m ), ∴3(2-m )+(1-m )=0,解得m =74.类型三 向量坐标法在平面几何中的应用例3 已知在等腰△ABC 中,BB ′,CC ′是两腰上的中线,且BB ′⊥CC ′,求顶角A 的余弦值的大小.解 建立如图所示的平面直角坐标系,设A (0,a ),C (c ,0),则B (-c ,0),OA →=(0,a ),BA →=(c ,a ),OC →=(c ,0),BC →=(2c ,0).因为BB ′,CC ′为AC ,AB 边上的中线, 所以BB ′—→=12(BC →+BA →)=⎝ ⎛⎭⎪⎫3c 2,a 2,同理CC ′—→=⎝ ⎛⎭⎪⎫-3c 2,a 2.因为BB ′—→⊥CC ′—→,所以BB ′—→·CC ′—→=0, 即-9c 24+a 24=0,化简得a 2=9c 2,又因为cos A =AB →·AC→|AB →||AC →|=a 2-c 2a 2+c 2=9c 2-c 29c 2+c 2=45.即顶角A 的余弦值为45.反思与感悟 把几何图形放到适当的坐标系中,就赋予了有关点与向量具体的坐标,这样就能进行相应的代数运算和向量运算,从而解决问题.这样的解题方法具有普遍性.跟踪训练 3 如图,半径为3的扇形AOB 的圆心角为120°,点C 在»AB 上,且∠COB =30°,若OC →=λOA →+μOB →,则λ+μ等于( )A. 3B.33C.433D.2 3 答案 A解析 由题意,得∠AOC =90°,故以O 为坐标原点,OC ,OA 所在直线分别为x 轴,y 轴建立平面直角坐标系,则O (0,0),A (0,3),C (3,0),B (3×cos 30°,-3×sin 30°),因为OC →=λOA →+μOB →,所以(3,0)=λ(0,3)+μ(3×32,-3×12), 即⎩⎪⎨⎪⎧3=μ×3×32,0=3λ-3×12μ,则⎩⎪⎨⎪⎧μ=233,λ=33,所以λ+μ= 3.1.在菱形ABCD 中,若AC =2,则CA →·AB →等于( ) A.2 B.-2C.|AB →|cos A D.与菱形的边长有关答案 B解析 如图,设对角线AC 与BD 交于点O ,∴AB →=AO →+OB →.CA →·AB →=CA →·(AO →+OB →) =-2+0=-2.2.设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4.若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于( ) A.20 B.15 C.9 D.6答案 C解析 ▱ABCD 的图象如图所示,由题设知,AM →=AB →+BM →=AB →+34AD →,NM →=13AB →-14AD →,∴AM →·NM →=⎝ ⎛⎭⎪⎫AB →+34AD →·⎝ ⎛⎭⎪⎫13AB →-14AD →=13|AB →|2-316|AD →|2+14AB →·AD →-14AB →·AD →=13×36-316×16=9. 3.已知向量a =(2,3),b =(-1,2),若m a +4b 与a -2b 共线,则m 的值为( ) A.12 B.2 C.-12 D.-2 答案 D解析 m a +4b =(2m -4,3m +8),a -2b =(4,-1). ∵m a +4b 与a -2b 共线,∴(2m -4)×(-1)-(3m +8)×4=0,解得m =-2.4.若向量OA →=(1,-3),|OA →|=|OB →|,OA →·OB →=0,则|AB →|=________. 答案 2 5解析 由题意可知,△AOB 是以O 为直角顶点的等腰直角三角形,且腰长|OA →|=|OB →|=10,由勾股定理得|AB →|=20=2 5.5.平面向量a =(3,-1),b =⎝ ⎛⎭⎪⎫12,32,若存在不同时为0的实数k 和t ,使x =a +(t 2-3)b ,y =-k a +t b ,且x⊥y ,试求函数关系式k =f (t ). 解 由a =(3,-1),b =⎝ ⎛⎭⎪⎫12,32,得a·b =0,|a |=2,|b |=1,由x ⊥y ,得[a +(t 2-3)b ]·(-k a +t b )=0, -k a 2+t a·b -k (t 2-3)a·b +t (t 2-3)b 2=0, 即-4k +t 3-3t =0,所以k =14(t 3-3t ),令f (t )=14(t 3-3t ),所以函数关系式为k =f (t )=14(t 3-3t ).1.由于向量有几何法和坐标法两种表示方法,它的运算也因为这两种不同的表示方法而有两种方式,因此向量问题的解决,理论上讲总共有两个途径,即基于几何表示的几何法和基于坐标表示的代数法,在具体做题时要善于从不同的角度考虑问题.2.向量是一个有“形”的几何量,因此,在研究向量的有关问题时,一定要结合图形进行分析判断求解,这是研究平面向量最重要的方法与技巧.课时作业一、选择题1.下列命题中正确的是( ) A.OA →-OB →=AB → B.AB →+BA →=0 C.0·AB →=0 D.AB →+BC →+CD →=AD → 答案 D解析 OA →-OB →=BA →;AB →,BA 是一对相反向量,它们的和应该为零向量,即AB →+BA →=0;0·AB →=0.2.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB →=(1,-2),AD →=(2,1),则AD →·AC →等于( ) A.5 B.4 C.3 D.2 答案 A解析 ∵四边形ABCD 为平行四边形,∴AC →=AB →+AD →=(1,-2)+(2,1)=(3,-1),∴AD →·AC →=2×3+(-1)×1=5.3.设向量a =(2,4)与向量b =(x ,6)共线,则实数x 等于( ) A.2 B.3 C.4 D.6 答案 B解析 ∵a ∥b ,∴2×6-4x =0,∴x =3.4.若平面向量b 与向量a =(1,-2)的夹角是180°,且|b |=35,则b 等于( ) A.(-3,6) B.(3,-6) C.(6,-3) D.(-6,3)答案 A解析 设b =k a =(k ,-2k ),k <0,而|b |=35,则5k 2=35,∴k =-3,b =(-3,6).5.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ等于( ) A.-4 B.-3 C.-2 D.-1答案 B6.在△ABC 中,若AB→2-AB →·AC →=BA →·BC →-CA →·BC →,则△ABC 是( ) A.等边三角形 B.锐角三角形 C.直角三角形 D.钝角三角形答案 C解析 由已知,得AB →·(AB →-AC →)-BC →·(BA →-CA →)=0, ∴AB →·CB →-BC →·BC →=0,∴BC →·(-AB →-BC →)=0,即-BC →·AC →=0,BC →⊥AC →, ∴BC ⊥AC ,∴△ABC 为直角三角形.故选C.7.若a ,b 是非零向量且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角θ的大小为( ) A.π6 B.π3 C.2π3D.5π6答案 B解析 ∵a 2-2a ·b =0,b 2-2a ·b =0, ∴a 2=b 2,|a |=|b |,又∵cos θ=a ·b |a ||b |=12a 2|a |2=12,θ∈[0,π],∴θ=π3.8.如图所示,在△ABC 中,AD =DB ,AE =EC ,CD 与BE 交于点F .设AB →=a ,AC →=b ,AF →=x a +y b ,则(x ,y )为( )A.⎝ ⎛⎭⎪⎫12,12B.⎝ ⎛⎭⎪⎫23,23C.⎝ ⎛⎭⎪⎫13,13 D.⎝ ⎛⎭⎪⎫23,12 答案 C解析 令BF →=λBE →.由题可知,AF →=AB →+BF →=AB →+λBE →=AB →+λ⎝ ⎛⎭⎪⎫12AC →-AB →=(1-λ)AB →+12λAC →.令CF →=μCD →,则AF →=AC →+CF →=AC →+μCD →=AC →+μ⎝ ⎛⎭⎪⎫12AB →-AC →=12μAB →+(1-μ)AC →.由⎩⎪⎨⎪⎧1-λ=12μ,12λ=1-μ,解得⎩⎪⎨⎪⎧λ=23,μ=23,所以AF →=13AB →+13AC →,故选C.二、填空题9.若|a |=1,|b |=2,a 与b 的夹角为60°,若(3a +5b )⊥(m a -b ),则m 的值为________. 答案238解析 由题意知(3a +5b )·(m a -b )=3m a 2+(5m -3)a·b -5b 2=0,即3m +(5m -3)×2×cos 60°-5×4=0,解得m =238.10.已知向量a ,b 的夹角为120°,|a |=1,|b |=3,则|5a -b |=________. 答案 711.在△ABC 中,点O 在线段BC 的延长线上,且|BO →|=3|CO →|,当AO →=xAB →+yAC →时,x -y =________. 答案 -2解析 由|BO →|=3|CO →|,得BO →=3CO →, 则BO →=32BC →,所以AO →=AB →+BO →=AB →+32BC →=AB →+32(AC →-AB →)=-12AB →+32AC →.所以x =-12,y =32,所以x -y =-12-32=-2.12.已知向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则b 在a 方向上的投影是________. 答案 1解析 ∵|a |=|b |=2,a 与b 的夹角为60°,∴b 在a 方向上的投影是|b |cos 60°=1.13.已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.答案 712解析 ∵AP →⊥BC →,∴AP →·BC →=(λAB →+AC →)·(AC →-AB →)=-λAB →2+(λ-1)AB →·AC →+AC →2=-9λ+(λ-1)×3×2×(-12)+4=0, ∴λ=712. 三、解答题14.若OA →=(sin θ,-1),OB →=(2sin θ,2cos θ),其中θ∈[0,π2],求|AB →|的最大值. 解 ∵AB →=OB →-OA →=(sin θ,2cos θ+1)⇒|AB →|=sin 2θ+4cos 2θ+4cos θ+1=3cos 2θ+4cos θ+2= 3(cos θ+23)2+23, ∴当cos θ=1,即θ=0时,|AB →|取得最大值3.四、探究与拓展15.已知OA →=(1,0),OB →=(0,1),OM →=(t ,t )(t ∈R ),O 是坐标原点.(1)若A ,B ,M 三点共线,求t 的值;(2)当t 取何值时,MA →·MB →取到最小值?并求出最小值.解 (1)AB →=OB →-OA →=(-1,1),AM →=OM →-OA →=(t -1,t ).∵A ,B ,M 三点共线,∴AB →与AM →共线, ∴-(t -1)-t =0,∴t =12. (2)∵MA →=(1-t ,-t ),MB →=(-t ,1-t ),∴MA →·MB →=2t 2-2t =2⎝ ⎛⎭⎪⎫t -122-12,易知当t =1 2时,MA→·MB→取得最小值-12.。