福建省泉州市泉港三川中学七年级数学上册《图形的初步认识(一)》同步调查测试题 华东师大版
福建省泉州市泉港三川中学七年级数学上册 测试题3 华东师大版
测试题题号一二三总分附加题最后总分 1—7 8—1718 19 20 21 22 23 24 25 26得分一、选择题(单项选择,每小题3分,共21分) 1.-3的相反数是( ) A. 3; B. -3; C.31; D.31-. 2.在下列式子中,与2a 是同类项的是( ) A.a2; B. 2a ; C. 2ab ; D. -2a . 3.右边物体的俯视图...是( )4.用一副三角板不可以拼出的角是( ).A .75°;B .85°;C .105°;D .120°. 5..图中直线PQ 、射线AB 、线段MN 能相交的是( ).6. 如图OA ⊥OB ,∠BOC =30°,OD 平分∠AOC ,则∠AOD 的度数是( )A .30°;B .40 °;C .60° ;D .90°.7.若()0322=-++y x ,则代数式yx 的值是( )A. -8 ;B.8 ;C. -9 ;D. 9.A .B .C .D . 第6题CDBOAABP QA . MNPQ C . B P Q B .A BPD .二、填空题(每小题4分,共40分) 8.-2的绝对值是.9.地球离太阳约为150 000 000千米,用科学记数法表示为千米. 10.用代数式表示“a 的3倍与4的和”为. 11.用“<”号或“>”号填空: -34. 12.把多项式32432x x x ++-按x 的降幂排列. 13.若∠1和∠2互为余角,且∠1=50°,则∠2=°.14.下面是一个简单的数值运算程序框图,当输入x 的值为3时,输出的数值是.15..一个两位数,个位上的数字是a ,十位上的数字是b ,则这个两位数是________ 16.一楼梯共有n 级台阶,规定每步可以迈1级台阶或2级台阶或3级台阶,设从地面到第n 级台阶所有不同的走法为M 种. (1)当n =2时,M=种; (2)当n =7时,M=种.17.图1是一个边长为2的等边三角形和一个四边均长为1的四边形的组合图形,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼 下去(如图3),…,则第1个图形的周长是;第4个图形的周长是.三、解答题(共89分) 18.(12分)计算241214161⨯--)(2243435-÷+-)(图1图2图3……输入x输出+419.(第小题6分,共12分)(1)化简:()()x x x x 72315322+-+--(2)先化简,再求值:)23(2)2(322xy x xy x ---,其中2-=x ,3-=y .20.(8分)已知线段AB,在方格纸上画出以下图形. (1) 画∠ABC=45º;(2) 在(1)的条件下,过点A 画AD ⊥BC,垂足为D .21.(8分)如图是由圆柱和圆锥组成的一个几何体,请画出该几何体的三视图.22.(8分)如图,∠B=55°,∠EAC=110°,AD 平分∠EAC ,AD 与BC 平行吗?为什么?根据下面的解答过程,在括号内填空或填写理由. 解:∵AD 平分∠EAC ,∠EAC=110°(已知) ∴∠EAD =21∠ EAC =° ∵∠B =55°(已知)∴∠B =∠( ) ( ) ∴AD ∥BC ( )23.(8分)政府引导农民对生产的土特产进行加工后,分为甲、乙、丙三种不同包装这三种不同的包装的土特产都销售了120千克,那么本次销售中,那一种包装的 土特产获得的利润最大,最大利润是多少?24.(9分)直线AB 、CD 被直线EF 所截,EF 分别交AB 、CD 于 M ,N,∠EMB=50°, MG 平分∠BMF,MG 交CD 于G . (1)如图1,若AB ∥CD ,求∠1的度数. (2)如图2,若∠MNC=140°,求∠1的度数.1图150°GBC D EF MNA1ANME B50°CDE B A25.(12分)如图,一个用铝合金材料加工的长方形窗框,它的宽和高分别为a厘米,b厘米,解答下列问题(结果可用含a,b的代数式表示).(1)长方形窗框的面积是厘米2;(2)铝合金窗分为上、下两栏,四周框架和中间隔栏的材料均为宽度6厘米的铝合金材料,上栏和下栏的框内高度(不含铝合金部分)的比为1:2(接口用料忽略不计).①求制作一个该种窗框所需铝合金材料的总长度;②求该种窗框的透光部分的面积.草 稿26.(12分)如图,数轴上有三个点A 、B 、C ,它们可以沿着数轴左右移动,请回答:(1)将点B 向右移动三个单位长度后到达点D ,点D 表示的数是;(2)移动点A 到达点E ,使B 、C 、E 三点的其中任意一点为连接另外两点之间线段的中点,请你直接写出所有点A 移动的距离和方向;(3)若A 、B 、C 三个点移动后得到三个互不相等的有理数,它们既可以表示为1,a ,b a 的形式,又可以表示为0,b ,ba的形式,试求a ,b 的值.四、附加题(共10分)友情提示:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况.如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分最多不超过90分;如果你全卷得分已经达到或超过90分,则本题的得分不计入全卷总分. 填空:1.计算:(-2)×3=.A2.已知1=x ,求代数式23+x 的值.草 稿2012年秋季七年级期末检测数学科参考答案一.选择题(单项选择,每小题3分,共21分)1.A ;2. D ;3. C ;4.B ;5. D ;6.C ;7.A. 二.填空题(每小题4分,共40分)8. 2; ×108;10.43+a . 11.<; 12.32423-++x x x ;13. 40;14. -2; 15.10b+a ; 16.2;44; 17. 8, 64. 三、解答题(共89分)18.计算(每小题6分,共12分) (1) -4 (2) -1319.计算(每小题6分,共12分)(1) 222++x x (2)xy 4分 6 6分 20.每小题4分,共8分 21.解:22.每空格2分,共8分23.120千克可包装甲产品300袋,获得的利润300元; 2分 120千克可包装乙产品400袋,获得的利润280元; 4分 120千克可包装丙产品600袋,获得的利润360元; 6分 ∴丙包装的土特产获得的利润最大,7分 最大利润是360元 8分 24.(1)∵∠EMB=50°∴∠BMF=180°-50°=130° 1分∵MG 平分∠BMF ∴∠BMG=∠GMN =65° 3分俯视图正视图左视图∵AB ∥CD ∴∠1=∠BMG=65° 5分 (2)∵∠MNC=140°∴∠MNG=40° 7分∠GMN =65°∴∠1=75° 9分25.(1)ab 3分 (2)上栏框内高度318-b 厘米 下栏框内高度3)18(2-b 厘米 5分 总长度)12(32-+a b +3)18(2-b 8分=(48383-+b a )厘米 9分(3)透光部分的面积=ab -6(48383-+b a ) 11分 =(2881618+--b a ab )厘米212分26.(1) 1 2分(2)① 向左移动3个单位长度 4分 ② 向右移动4.5 单位长度 6分 ③ 向右移动12个单位长度; 8分(3)依题意得:a ≠0,a ≠b ,显然有b =1 9分a +b =0, 10分 a =ba, 11分 解得a =-1,b =1的值. 12分。
七年级“图形认识初步”检测试题
初一年级几何图形初步单元检测卷学号:____________班级:______________姓名:______________一、选择题(每小题3分,共18分)2.如图,直线a 与直线c 相交于点O ,∠1的度数是( )3.下面图形经过折叠可以围成一个棱柱的是()A .B .C .D .4.将如图所示的正方体沿某些棱展开后,能得到的图形是( )A .B. C . D .5.若∠A = 20°18′,∠C = 20.25°,则( )A .∠A >∠CB .∠A=∠C C .∠A <∠CD .无法判断6.已知O 为圆锥的顶点,M 为圆锥底面上一点,点P 在OM 上,一只蜗牛从P 点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短路线的痕迹如图所示,若沿OM 将圆锥侧面剪开并展开,所得侧面展开图是( )A B C D 二、填空题(每小题3分,共15分)7.如图,在△ABC 中,BD 是∠ABC 的角平分线,已知∠ABC=80°,则∠DBC= _________ °.8已知线段AB= 8cm,在直线AB 上画线段BC ,使BC=3cm ,则线段AC=_____cm .9.图1是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是__________cm 3.10.如图,若CB = 4 cm ,DB = 7 cm ,且D 是AC 的中点,则AC =_________________. BCDA11.有公共顶点的两条射线分别表示南偏东15°与北偏东25°,则这两条射线组成的角的度数为_____________________. 三、解答题(共41分)11.计算:(每题4分,共20分)(1)0'38.15_______=0 003242____'=(2)0'48396731'+=___________;(3)02117'5⨯=___________;(4)0905743'30''-=___________;(5)010740'5÷=___________;12.(7分)一个角比它的补角的23还少40°,求这个角。
【3套打包】泉州市七年级上册第四章《几何图形初步》培优测试卷.doc
人教版七年级上册第三章一元一次方程单元测试卷一.选择题(共12小题,共36分)1.下列说法:①直线AB和直线BA是同一条直线;②平角是一条直线;③两点之间,线段最短;④如果AB=BC,则点B是线段AC的中点.其中正确的有()A.1个B.2个C.3个D.4个2.如过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图所示的几何体,其正确展开图为()A.B.C.D.3.如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AB的长等于()A.6cm B.7cm C.10cm D.11cm4.如图是某几何体的表面展开图,则该几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱5.时钟的时间是3点30分,时钟面上的时针与分针的夹角是()A.90°B.100°C.75°D.105°6.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是()A.∠1=∠3B.∠1=180°﹣∠3C.∠1=90°+∠3D.以上都不对7.下列说法正确的是()A.射线比直线短B.小于平角的角可分为锐角和钝角两类C.两条射线组成的图形叫做角D.一个角的补角不一定比这个角大8.下列说法错误的是()A.长方体、正方体都是棱柱B.圆锥和圆柱的底面都是圆C.三棱柱的底面是三角形D.六棱柱有6条棱、6个侧面、侧面为长方形9.点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AC+BC=AB C.AB=2AC D.BC=AB 10.如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C 内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A、B、C的三个数依次是()A.0,﹣3,4B.0,4,﹣3C.4,0,﹣3D.﹣3,0,4 11.如图,∠AOB是直角,OA平分∠COD,OE平分∠BOD,若∠BOE=23°,则∠BOC的度数是()A.113°B.134°C.136°D.144°12.把14个棱长为1的正方体,在地面上堆叠成如图所示的立方体,然后将露出的表面部分染成红色,那么红色部分的面积为()A.21B.24C.33D.37二.填空题(共6小题,共18分)13.一个漂亮的礼物盒是一个有11个面的棱柱,那么它有个顶点.14.把一副三角板按照如图所示的位置拼在一起,不重叠也没有缝隙,则∠ABC 的度数为.15.已知∠AOB=80°,∠BOC=40°,射线OM是∠AOB平分线,射线ON是∠BOC 平分线,则∠MON=.16.如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=4,则CD=.17.如图是正方体的一个表面展开图,在这个正方体中,与“晋”字所在面相对的面上的汉字是.18.如图,C、D、E为线段AB上三点,且AC=CD,E为BD的中点,DE=AB=2cm,则CE的长为cm.三.解答题(共6小题,共46分)19.如图,OD是∠AOB的平分线,OE是∠BOC的平分线.(1)若∠BOC=50°,∠BOA=80°,求∠DOE的度数;(2)若∠AOC=150°,求∠DOE的度数;(3)你发现∠DOE与∠AOC有什么等量关系?给出结论并说明.20.某公园有海盗船、摩天轮、碰碰车三个娱乐项目,现要在公园内建一个售票中心,使三个娱乐项目所处位置到售票中心的距离相等,请在图中确定售票中心的位置.21.某宾馆大堂有6 根圆柱形大柱,高10 米,大柱周长25.12 分米,要全部涂上油漆,如果按每平方米的油漆费为80 元计算,需用多少钱?22.如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.23.尺规作图题(不写作图步骤,但保留作图痕迹).已知:如图∠MON(1)求作:∠MON的平分线OC.(2)根据作法,请说明所作的射线OC就是∠MON的平分线OC.24.点A,O,B依次在直线MN上,如图1,现将射线OA绕点O顺时针方向以每秒10°的速度旋转,同时射线OB绕着点O按逆时针方向以每秒15°的速度旋转,直线MN保持不动,如图2,设旋转时间为t秒(t≤12).(1)在旋转过程中,当t=2时,求∠AOB的度数.(2)在旋转过程中,当∠AOB=105°时,求t的值.(3)在旋转过程中,当OA或OB是某一个角(小于180°)的角平分线时,求t 的值.参考答案一.选择题1.解:①∵直线AB和直线BA是同一条直线,∴①正确;②∵角是角,线是线,∴平角是一条直线,∴②错误;③两点之间,线段最短,∴③正确;④∵如果A、B、C三点不共线,则AB=BC不能得出点B是线段AC的中点,∴④错误.故选:B.2.解:选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,•与正方体三个剪去三角形交于一个顶点符合.故选:B.3.解:∵CB=4cm,DB=7cm,∴CD=7﹣4=3(cm);∵D是AC的中点,∴AD=CD=3cm,∴AB=AD+DB=3+7=10(cm).故选:C.4.解:∵三棱柱的展开图是两个三角形和三个长方形组成,∴该几何体是三棱柱.故选:B.5.解:3点30分相距2+=份,3点30分,此时钟面上的时针与分针的夹角是30×=75°.故选:C.6.解:∵∠1+∠2=180°∴∠1=180°﹣∠2又∵∠2+∠3=90°∴∠3=90°﹣∠2∴∠1﹣∠3=90°,即∠1=90°+∠3.故选:C.7.解:A.射线和直线不可测量,不能比较长短,故A错误;B.小于平角的角可分为锐角和钝角和直角三类,故B错误;C.有公共端点的两条射线组成的图形叫做角,故C错误;D.一个角的补角不一定比这个角大,故D正确.故选:D.8.解:A、长方体、正方体都是棱柱,故本选项不符合题意;B、圆锥和圆柱的底面都是圆,故本选项不符合题意;C、三棱柱的底面是三角形,故本选项不符合题意;D、六棱柱有18条棱、6个侧面、侧面为长方形,故本选项符合题意;故选:D.9.解:A、AC=BC,则点C是线段AB中点;B、AC+BC=AB,则C可以是线段AB上任意一点;C、AB=2AC,则点C是线段AB中点;D、BC=AB,则点C是线段A B中点.故选:B.10.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“0”是相对面,“B”与“3”是相对面,“C”与“﹣4”是相对面,∵相对面上的两数互为相反数,∴A、B、C内的三个数依次是0、﹣3、4.故选:A.11.解:∵OE平分∠BOD,∠BOE=23°,∴∠BOD=23°×2=46°;∵∠AOB是直角,∴∠AOD=90°﹣46°=44°,又∵OA平分∠COD,∴∠COD=2∠AOD=2×44°=88°,∴∠BOC=∠BOD+∠COD=46°+88°=134°.故选:B.12.解:根据题意得:第一层露出的表面积为:1×1×6﹣1×1=5,第二层露出的表面积为:1×1×6×4﹣1×1×13=11,第三层露出的表面积为:1×1×6×9﹣1×1×37=17,所以红色部分的面积为:5+11+17=33.方法2:立方体俯视图9:,前后左右视图各6格,红色部分的面积为9+6×4=33.故选:C.二.填空题(共6小题)13.解:∵礼物盒是一个有11个面的棱柱,∴侧面有11﹣2=9个,∴顶点数为9+9=18,故答案为:18.14.解:∠ABC=30°+90°=120°,故答案为:120°15.解:当OA与∠BOC的位置关系如图1所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠BOC=40°∴∠AOM=∠AOB=×80°=40°,∠BON=∠COB=×40°=20°,∴∠MON=∠BON﹣∠AOM=40°﹣20°=20°;当OA与∠BOC的位置关系如图2所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠BOC=40°∴∠BOM=∠AOB=×80°=40°,∠BON=∠BOC=×40°=20°,∴∠MON=∠BOM+∠BON=40°+20°=60°.故答案为:20°或60°.16.解:∵DA=6,DB=4,∴AB=DB+DA=4+6=10,∵C为线段AB的中点,∴BC=AB=×10=5,∴CD=BC﹣DB=5﹣4=1.故答案为:1.17.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“晋”与“祠”是相对面,“汾”与“酒”是相对面,“恒”与“山”是相对面.故答案为:祠.18.解:∵DE=AB=2cm,∴AB=2×5=10,∵E为BD的中点,∴BD=2DE=2×2=4cm,∴AD=AB﹣B D=10﹣4=6cm,∵AC=CD,∴CD=AD=×6=4m,∴CE=CD+DE=4+2=6cm.故答案为;6.三.解答题(共6小题)19.解:(1)∵OD是∠AOB的平分线,OE是∠BOC的平分线,∴∠AOD=∠BOD=∠BOC,∠BOE=∠COE=∠BOA,∵∠BOC=50°,∠BOA=80°,∴∠BOD=25°,∠BOE=40°,∴∠DOE=25°+40°=65°;(2)∵OD是∠AOB的平分线,OE是∠BOC的平分线,∴∠AOD=∠BOD=∠BOC,∠BOE=∠COE=∠BOA,∵∠AOC=150°,∴∠DOE=∠DOB+∠EOB=(∠BOC+∠BOA)=∠AOC=75°;(3)∠DOE=∠AOC;理由是:∵OD是∠AOB的平分线,OE是∠BOC的平分线,∴∠AOD=∠BOD=∠BOC,∠BOE=∠COE=∠BOA,∴∠DOE=∠DOB+∠EOB=(∠BOC+∠BOA)=∠AOC.20.解:如图,①连接AB,AC,②分别作线段AB,AC的垂直平分线,两垂直平分线相较于点P,则P即为售票中心.21.解:6×2.512×10×80=12057.6(元),答:需用12057.6元.22.解:∵M是AC的中点,∴MC=AM=AC=×6=3cm,又∵CN:NB=1:2∴CN=BC=×15=5cm,∴MN=MC+NC=3cm+5cm=8cm.23.解:(1)如图,射线OC是∠MON的平分线,(2)证明:如图,连接OC、BC、AC,根据作法可得BC=AC,OA=OB,在△OAC和△OBC中,∵∴△OAC≌△OBC(SSS),∴∠AOC=∠BOC,即射线OC是∠MON的平分线.24.解:(1)当t=2时,∠AOM=10°t=20°,∠BON=15°t=30°,所以∠AOB=180°﹣∠AOM﹣∠BON=130°;(2)当∠AOB=105°时,有两种情况:①10t+15t=180﹣105,解得:t=3;②10t+15t=180+105,解得:t=11.4;(3)①当OB是∠AON的角平分线时,10t+15t+15t=180,解得:t=4.5;②当OA是∠BOM的角平分线时,10t+10t+15t=180,解得:t=;③当OB是∠AOM的角平分线时,5t+20t=180,解得:t=9;④当OA是∠BON的角平分线时,10t+7.5t=180,解得:t=.几何图形初步单元测试卷一、选择题(本题共计12 小题,每题分,共计36分,)1. 下列图形中,不是立体图形的是()A.棱柱B.圆锥C.正方形D.长方体2. 如图所示的棱柱有()A.个面B.个面C.条棱D.条棱3. 如图,是一直角,,平分,则等于()A. B. C. D.4. 如图,,是内部任意一条射线,、分别是、的角平分线,下列叙述正确的是()A.的度数不能确定B.C. D.5. 已知,那么的余角为()A. B. C. D.6. 下列语句错误的是()A.锐角的补角一定是钝角B.一个锐角和一个钝角一定互补C.互补的两角不能都是钝角D.互余且相等的两角都是7. 有同样大小的立方体个,把它们竖个,横个,紧密地没有缝隙地搭成一个大的立方体(如右图),如果用根坚硬笔直的细铁丝扎进这个大立方体,最多可以穿透几个小立方体()A.个B.个C.个D.个8. 下列结论不正确的是()A.正方体和长方体都是四棱柱B.棱柱的侧面个数与底面图形的边数一样C.三棱柱的侧面是三角形D.六棱柱的侧面是四边形9. 已知:,,,下列结论正确的是()A. B.C. D.三个角互不相等10. 下列说法正确的是()A.在墙上固定一根木条,至少需要颗钉子B.射线和射线是同一条射线C.延长直线D.线段和线段不是同一条线段11. 下列说法正确的有()个①连接两点的线段的长叫两点之间的距离;②直线比线段长;③若,则为的中点;④由不在同一直线上的几条线段首尾顺次相连所组成的封闭图形叫多边形.A. B. C. D.12. 把一副三角板按如图方式的位置摆放,则形成两个角,设分别是,,若,则A. B. C. D.二、填空题(本题共计6 小题,每题分,共计18分,)13. 有时需要把弯曲的河流改直,以达到缩短航程的目的,这样做的依据是________.14. 如图,在利用量角器画一个 的 的过程中,对于先找点 ,再画射线 这一步骤的画图依据,小华认为是两点确定一条直线,小阳认为是两点之间线段最短.你认为________同学的说法是正确的.15. 长方形铁片绕它的一边快速旋转一周,形成一个________体.16. 如图,已知线段 ,线段 ,是线段 的中点, 是线段 的中点,则线段 长为________.17. 如图,图中有________条直线,有________条射线,有________条线段,以 为顶点的角有________个.18. 今天晚上九点半安庆电人教版七年级上册第四章几何图形初步单元测试卷一、 选择题 (本题共计 10 小题,每题 分,共计30分 , )1. 以下几何图形中,表示立体图形的是( )A.B.C.D.2. 同一副三角板(两块)画角,不可能画出的角的度数是( )A. B. C.D.3. 两个锐角的和( )A.必定是锐角B.必定是钝角C.必定是直角D.可能是锐角,可能是直角,也可能是钝角4. 如图,下列说法正确的是( )A. 的方向是北偏东B. 的方向是南偏东C. 的方向是南偏西D. 的方向是北偏西5. 已知 ″,则 的余角是( )A. B. C. D.6. 如图所示的图形绕虚线旋转一周,所形成的几何体是( )A.B. C. D.7. 下列说法:①射线 和射线 是同一条射线;②若 ,则点 为线段 的中点;③同角的补角相等;④点 在线段 上, , 分别是线段 , 的中点.若 ,则线段 . 其中说法正确的是( )A.①②B.②③C.②④D.③④8. 已知,是的平分线,,是的平分线,则的度数为()A. B. C. D.或9. 五棱柱的顶点总个数有()个.A. B. C. D.10. 延长线段到点,使,点是线段的中点,则为()A. B. C. D.二、填空题(本题共计6 小题,每题分,共计18分,)11. 如图所示:小明从学校回家有条路行径走,他走最近的路线是________号路线.其道理用几何知识解释为________.12. 如图所示的图形绕虚线旋转一周得到的几何体的名称是________.13. 工人师傅在砌墙时,先在两端各固定一点,中间拉紧一条细线,然后沿着细线砌墙就能砌直.运用的数学原理:________.14. 如图,线段,点分线段为,是线段的中点,则线段________.15. 观察下列各图,在第个图中有一个角,第个图中共有个角,第个图中共有个角,则第个图中角的个数是________,第个图中角的个数为________.16. 时钟在。
初中数学 福建省泉州市泉港三川中学七年级数学上册 第四、五章单元综合测考试题 及答案
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:下面几种几何图形中,属于平面图形的是()(1)三角形(2)长方形(3)正方体(4)圆(5)四梭锥(6)圆柱(A)(1)、(2)、(4)(B)(1)、(2)、(3)(C)(1)、(2)、(6)(D)(4)、(5)、(6)试题2:用一副三角板的角,拼出一切可能的不同的角是()(A)一个锐角、一个钝角、一个平角(B)一个锐角、两个钝角、一个平角(C)一个锐角、三个钝角、一个平角(D)一个锐角、四个钝角、一个平角试题3:一个锐角的补角与这个锐角的余角的差是一个()(A)锐角(B)直角(C)钝角(D)锐角或直角或钝角试题4:如图所示,图中的同旁内角有()(A)7对(B)6对(C)5对(D)4对试题5:钟表在三点半时,它的时针和分针所成的角度是()(A)70°(B)75°(C)85°(D)90°试题6:如图所示,图中的线段共有______条,射线共有______条,直线共有____条试题7:如图所示,BC<AB+AC,理由:______ 。
试题8:线段AB上一点C分线段AB为1:1,线段AC上一点D分线段AC为1:3,如图CD=2cm,则AB=______cm。
试题9:22°32′24″=______度;已知∠α=35°36′47″,则∠α的余角为______。
试题10:OB平分∠AOC,OC平分∠AOD,如果∠DOC=60°∠AOD的度数为,∠BOC的度数为______。
试题11:如图,a//b,∠1=80°,∠2=70°,则∠3=_______,∠4=______。
试题12:画一个三棱锥的平面展开图.试题13:已知∠α的补角比它的余角的3倍还大10°,求∠α的度数。
福建省泉州市七年级数学上册《第四章 图形的初步认识》测试题 华东师大版
一、选择(3分×10=30分)1、下面四个图形每个均有六个相同的小正方形组成,折叠后能围成正方体的是( )A B C D2、桌子上放着一个圆柱和一个长方体,你认为俯视图应是 ( )A B C D 3、过平面内三点中任意两点画直线,可画的直线条数为 ( )A 、2条B 、3条C 、4条D 、3条或1条4、下列说法错误的是 ( )A 、长方体和正方体都是四棱柱B 、棱柱的侧面都是四边形。
C 、棱柱的上下底面形状可以不同D 、长方形绕一边旋转可形成圆柱。
5、如图,∠AOB 是一个平角,OD 、OE 分别平分∠AOC 、∠BOC ,则∠DOE 为 ( )A 、锐角,B 、直角,C 、钝角,D 、不能确定6、已知:∠1=35°18′,∠2=35.18°,∠3=35.2°,则下列说法正确的是( )A 、∠1=∠2B 、∠2=∠3C 、∠1=∠3D 、∠1、∠2、∠3互不相等7、如图,O 是直线AE 上的一点,且∠AOC=∠BOD=︒90,则图中共有几对互余的角 ( )A 、3B 、4C 、5D 、68、若P 是线段AB 的中点,则下列等式错误的是 ( )A 、AP =PB B 、AB =2PBC 、AP =21AB D 、AP =2PB 9、学校、电影院、公园在平面图上的标点分别是A 、B 、C ,已知电影院在学校的正东方向,公园在学校的南偏西25°方向,那么平面图上的∠CAB 等于 ( )A 、115° B、155° C、25° D 、65°10、下列说法中:①过两点有且只有一条直线,②两点之间线段最短,③到线段两个端点距离相等的点叫做线段的中点,④线段的中点到线段的两个端点的距离相等。
其中正确的有()A、1个B、2个C、3个D、4个二、填空(3分×10=30分)11、已知线段AB=8c m,点C为任意一点,那么线段AC与BC 的和的最小值等于,此时点C的位置在。
七年级上《图形的初步认识》测试及答案
图形的初步认识一、填空题(36分)1、 6000″ = ′= °,12°15′36″= °。
2、锯木料时,先在木板上画出两点,再过这两点弹出一条墨线,这是利用了 的原理。
3、如图,从A 地到B 地走 条路线最近,它根据的是 .4、当图中的∠1和∠2满足 时,能使OA ⊥OB (只需填上一个条件即可).5、在甲、乙两地之间要修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地同时开工,若干天后公路准确接通,则乙地所修公路的走向是南偏西 度.6、如图,直线AB 、CD 相交于点O ,OA 平分∠EOC ,∠EOC =76°,则∠BOD = °.7、小明每天下午5:30回家,这时分针与时针所成的角的度数为 °; 8、如图所示的4×4正方形网格中,∠l+∠2+∠3+∠4+∠5+∠6+∠7= °.9、点A 、B 、C 是数轴上的三个点,且BC=2AB 。
已知点A 表示的数是-1,点B 表示的数是3,点C 表示的数是 ;10、如图,C 是线段AB 的中点,D 是线段AC 的中点,已知图中所有线段的长度之和为26,则线段AC 的长度为 ;11、如图,从点O 出发的5条射线,可以组成的角的个数是 ;12、α、β、γ中有两个锐角和一个钝角,其数值已经给出,在计算)(151γβα++的值时,有三位同学分别算出了23°、24°、25°这三个不同的结果,其中只有一个是正确的答案, 则 = °. 二、选择题(30分)1 、下列说法中,正确的有( )(1)过两点有且只有一条线段 (2)连结两点的线段叫做两点的距离 (3)两点之间,线段最短 (4)AB =BC ,则点B 是线段AC 的中点 (5) 射线比直线短A B①②③A BCD E O第6题B C EDA Oαβγ++数学七年级(上) 复习测试题A .1个 B.2个 C.3个 D.4个 2、下列各直线的表示法中,正确的是( )A .直线ab B.直线Ab C .直线A D.直线AB 3、三条互不重合的直线的交点个数可能是( )A 、0、1、3B 、0、2、3C 、0、1、2、3D 、0、1、2 4、钝角减去锐角的差是( )A 、锐角B 、直角C 、钝角D 、都有可能 5、一个角的补角为158°,那么这个角的余角是( )A 、22°B 、68°C 、52°D 、112° 6、平面上有三点A 、B 、C ,如果AB=8,AC=5,BC=3,则( )A .点C 在线段AB 上 B .点B 在线段AB 的延长线上C . 点C 在直线AB 外D .点C 可能在直线AB 上,也可能在直线AB 外 7、下列各图形中,有交点的是( )8、12:45时,钟表的时针与分针所成的角是 ( )A.直角B.锐角C.钝角D.平角 9、在图中的五个半圆,邻近的两半圆紧紧相连,两只小虫同时出发,以相同的速度从A 点到B 点.甲虫沿弧ADA 1、A 1EA 2 、A 2FA 3、A 3GB 路线爬行,乙虫沿路线爬行,则下列结论正确的是( )A .甲先到B 点 B .乙先到B 点C .甲、乙同时到B 点D .无法确定10、小华用如图所示的胶滚沿从左到右的方向将图案滚涂到墙上,下列给出的四个图案中,符合图示胶滚涂出的图案是( )三、解答题(34分)1、已知∠1与∠2互为补角,且∠2的2倍比∠1大30°,求∠1的度数.(7分)DDCBACDCBABDCBA A DC BA3、如图,AD=12DB, E 是BC 的中点,BE=1AC=2cm,线段DE 的长,求线段DE 的长.(9分)4、把一副三角尺如图所示拼在一起。
七年级数学上册图形认识初步单元试题附答案
《图形认识初步》一、选择题(每小题3分,共30分)1.下列空间图形中是圆柱的为()2.桌上放着一个茶壶,4个同学从各自的方向观察,请指出下图右边的四幅图,从左至右分别是由哪个同学看到的()A.①②③④ B.①③②④ C.②④①③D.④③①②3.将如图2所示的直角三角形ABC绕直角边AC旋转一周,所得的几何体从正面看是图3中()4.小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是( )5.如图所示,从A 地到达B 地,最短的路线是( ) A.A →C →E →B B.A →F →E →B C.A →D →E →B D.A →C →G →E →B6.(2013•云南昭通中考)如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是( )A .美B .丽C .云D .南 7.如图所示的立体图形从上面看到的图形是( )8.如果∠1与∠2互为补角,且∠1∠2,那么∠2的余角是( )第5题图A.∠1B.∠2C.(∠1-∠2)D.(∠1+∠2)二、填空题(每小题2分,共20分)1.长方体由 个面, 条棱, 个顶点.2.下列图形是一些立体图形的平面展开图,请将这些立体图形的名称填在对应的横线上.3.(2012•山东菏泽中考)已知线段AB =8 cm ,在直线AB 上画线段BC ,使它等于3 cm ,则线段AC =_______cm .4.(1) 度 分 秒。
(2)= 度。
5.如图甲,用一块边长为10 cm 的正方形的厚纸板,做了一套七巧板.将七巧板拼成一座桥(如图乙),这座桥的阴影部分的面积是 .21212121048.32///04223726.把一张长方形纸条按图的方式折叠后,量得∠AOB'=110°,则∠B'OC=______.7.下图是由一些相同的小正方体构成的几何体从不同方向看得到的平面图形,这些相同的小正方体的个数是_______.8.如图所示的几何体是由棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第n个几何体中只有两个面...涂色的小立方体共有个.三、解答题1.计算:(1)22°18′×5;(2)90°-57°23′27″.12.已知∠α与∠β互余,且∠α比∠β小25°,求2∠α-∠β3的值3. 一个角的补角加上后等于这个角的余角的3倍,求这个角.4.⑴已知如图,点C 在线段AB 上,线段AC =10,BC =6,点M 、N 分别是AC 、BC 的中点,求MN 的长度。
七年级数学上册《图形的初步认识》测试卷(含答案)
图形的初步认识章末达标测试卷一、选择题(每题3分,共30分)1.在如图所示方位角中,射线OA表示的方向是()A.东偏南30° B.南偏东60° C.西偏南30° D.南偏西60°(第1题)(第2题)2.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆锥,正方体,三棱锥,圆柱B.正方体,圆锥,四棱锥,圆柱C.正方体,圆锥,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱3.下列说法中,正确的是()①射线AB和射线BA是同一条射线;②若AB=BC,则点B为线段AC的中点;③同角的补角相等;④线段AB和线段BA是同一条线段A.①②B.②③C.②④D.③④4.下列说法中,正确的是()A.一条射线把一个角分成两个角,这条射线叫做这个角的平分线B.两个锐角的和为钝角C.相等的角互为余角D.钝角的补角一定是锐角5.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()6.如图,点C在线段AB上,点D是AC的中点,如果CB=2CD,AB=20 cm,那么BC的长为()A.5cm B.8 cm C.10 cm D.12 cm(第6题) (第7题)7.如图,∠AOC=∠BOD=80°,如果∠AOD=140°,那么∠BOC等于()A.20° B.30° C.50° D.40°8.如图①②所示的所有的正方形都完全相同,将图①的正方形放在图②中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④(第8题)(第9题)9.如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则搭成这个几何体的小正方体的个数不可能是()A.3 B.4 C.5 D.610.若∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子:①90°-∠β;②∠α-90°;③12(∠α+∠β);④12(∠α-∠β).其中正确的有()A.4个B.3个C.2个D.1个二、填空题(每题3分,共18分)11.已知线段MN=16 cm,点P为任意一点,那么线段MP与NP和的最小值是________cm.12.若∠α=54°12′,则∠α的补角是________°.13.如图是正方体的展开图,则正方体相对两个面上的数字之和的最小值是____.(第13题)(第16题)14.已知线段AB,延长线段AB到C使BC=AB,延长线段BA到D使AD=AC,如果AB=1 cm,则CD=________cm.15.10时30分时,钟面上时针与分针的夹角为________°.16.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=34°,则∠DBC=________°.三、解答题(17~20题每题8分,其余每题10分,共52分)17.已知线段AB=12 cm,点C在直线AB上,且BC=3 cm,D为AB的中点,求线段CD的长.18.如图,将一副直角三角板的直角顶点C叠放在一起.(1)试判断∠ACE与∠BCD的大小关系,并说明理由;(2)若∠DCE=30°,求∠ACB的度数.19.如图是由若干个相同的小正方体组成的几何体.(1)请画出这个几何体的主视图、左视图、俯视图;(要画出各个正方形的边框并涂上阴影)(2)如果在这个几何体上,再添加或拿掉一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加几个小正方体?最多可以拿掉几个?20.如图,OC是∠AOB内部的一条射线,∠BOC=2∠AOC,OD平分∠AOC.(1)若∠AOB=120°,求∠BOC和∠BOD的度数;(2)画出∠BOC的平分线OE,说明∠DOE=12∠AOB.21.如图,把一根绳子对折成线段AB,从点P处把绳子剪断,已知AP∶BP=2∶3,若剪断后的各段绳子中最长的一段为60 cm,求绳子的原长.22.如图,OM、OB、ON是∠AOC内的三条射线,OM、ON分别是∠AOB、∠BOC的平分线,∠NOC是∠AOM的3倍,∠BON比∠MOB大30°.求∠AOC 的度数.答案一、1.B2.D3.D 4.D5.B6.C点拨:由点D是AC的中点,得AC=2CD.由CB=2CD,得AC=CB,则BC=12AB=10 cm.7.A点拨:因为∠AOC=80°,∠AOD=140°,所以∠COD=∠AOD-∠AOC=60°.因为∠BOD=80°,所以∠BOC=∠BOD-∠COD=80°-60°=20°.8.A9.D10.B点拨:因为∠α和∠β互补,所以∠α+∠β=180°.因为90°-∠β+∠β=90°,所以①正确.因为∠α-90°+∠β=∠α+∠β-90°=180°-90°=90°,所以②正确.因为12(∠α+∠β)+∠β=12×180°+∠β=90°+∠β≠90°,所以③错误;因为12(∠α-∠β)+∠β=12(∠α+∠β)=12×180°=90°,所以④正确.综上可知,①②④均正确.二、11.1612.125.8点拨:180°-54°12′=125°48′=125.8°.13.6点拨:易得2和4是相对的两个面,3和5是相对的两个面,1和6是相对的两个面,所以正方体相对两个面上的数字之和的最小值是6.14.4点拨:如图,由题意易得BC=1 cm,AD=2 cm,则CD=AD+AB+BC =2+1+1=4(cm).15.13516.56点拨:根据折叠的性质,可知∠ABE=∠A′BE,∠DBC=∠DBC′.又因为∠ABE+∠A′BE+∠DBC+∠DBC′=180°,所以∠ABE+∠DBC=90°. 又因为∠ABE=34°,所以∠DBC=56°.三、17.解:当点C在线段AB上时,由AB=12 cm,D为AB的中点,得BD=12AB=12×12=6(cm),则CD=BD-BC=6-3=3(cm);当点C在线段AB的延长线上时,由AB=12 cm,D为AB的中点,得BD=12AB=12×12=6(cm),则CD=BD+BC=6+3=9(cm).综上所述,CD的长为3 cm或9 cm.18.解:(1)∠ACE=∠BCD,理由如下:∵∠ACE+∠DCE=90°,∠BCD+∠DCE=90°,∴∠ACE=∠BCD.(2)由余角的定义,得∠ACE=90°-∠DCE=90°-30°=60°.由角的和差,得∠ACB=∠ACE+∠BCE=60°+90°=150°.19.解:(1)三视图如图所示.(2)保持这个几何体的俯视图和左视图不变,最多可以添加3个小正方体,最多可以拿掉1个小正方体.20.解:(1)设∠AOC=x,则∠BOC=2x,所以x+2x=120°,则x=40°,即∠AOC=40°,∠BOC=80°.因为OD平分∠AOC,所以∠DOC=20°,所以∠BOD=∠DOC+∠BOC=20°+80°=100°.(2)∠BOC的平分线OE如图所示.因为OD平分∠AOC,所以∠DOC=12∠AOC,因为OE平分∠BOC,所以∠EOC=12∠BOC,所以∠DOE=∠DOC+∠EOC=12∠AOC+12∠BOC=12∠AOB.21.解:①当点A是绳子的对折点时,将绳子展开,如图①.由题意得2AP=60 cm,所以AP=30 cm.因为AP∶BP=2∶3,所以BP=45 cm.所以绳子的原长为2(AP+BP)=150 cm.②当点B是绳子的对折点时,将绳子展开,如图②.由题意得2BP=60 cm,所以BP=30 cm.因为AP∶BP=2∶3,所以AP=20 cm.所以绳子的原长为2(AP+BP)=100 cm.综上,绳子的原长为150 cm或100 cm.22.解:设∠AOM=x,则∠NOC=3x.因为OM、ON分别是∠AOB、∠BOC的平分线,所以∠MOB=∠AOM=x,∠BON=∠NOC=3x.依题意得3x-x=30°,解得x=15°,即∠AOM=15°,所以∠MOB=15°,∠BON=∠NOC=45°.所以∠AOC=∠AOM+∠MOB+∠BON+∠NOC=15°+15°+45°+45°=120°.。
初一《图形的初步认识》测试题
初一《图形的初步认识》测试题一、选择题(每小题3分,共30分,请将选择题答案填入方格中) 1、下列说法错误的是( )A 、平面内过一点有且只有一条直线与已知直线垂直B 、两点之间的所有连线中,线段最短C 、过一点有且只有一条直线与已知直线平行D 、经过两点有且只有一条直线 2、如图,共有()个长方形。
A 、12B 、16C 、20D 、以上都不对3、已知x ,y 都是钝角的度数,甲、乙、丙、丁计算)(61y x 的结果依次为500,260,720,900,其中确有正确的结果,那么算得结果正确的是( ) A 、甲B 、乙C 、丙D 、丁5、如图,已知A 、B 、C 、D 、E 五点在同一直线上,D 点是线段AB 的中点,点E 是线段BC 的中点,若线段AC=12,则线段DE 等于( ) A 、10B 、8C 、6D 、45、下列说法错误的是( )A 、长方体和正方体都是四棱柱B 、棱柱的侧面都是四边形。
C 、棱柱的上下底面形状可以不同D 、长方形绕一边旋转可形成圆柱。
6、下列各图经过折叠不能围成一个正方体的是( )A、B 、C 、D 、7、如图所示的圆锥的三视图是( ).A 、正视图和侧视图是三角形,俯视图是圆B 、正视图和侧视图是三角形,俯视图是圆和圆心C 、正视图是圆和圆心,俯视图和侧视图是三角形D 、正视图和俯视图是三角形,侧视图是圆和圆心8、下列各图形中,有交点的是 ( )ABA BCBACD9、两条平行线被第三条直线所截得的角中,角平分线互相垂直的是( ) A 、内错角 B 、同旁内角 C 、同位角 D 、内错角和同位角 10、如图,在三角形ABC 中,∠A=600,CP ,BP 分别是∠ABC 和∠ACB 的平分线,则∠C. . . . AD E B.P=( ) A 、900B 、1000C 、1100D 、1200二、填空题(每小题3分,共30分) 11、18.03°=__________°__________′12、平面上有四个点,过其中每两个点画直线,可以画________________________条。
七年级数学上册图形认识初步专项训练题.docx
《图形的认识初步》专项训练题 一、选择题(每小题只有一个选项符合题意,请把你认为正确的标号填入题干后的括号内) 1、 如图,这个儿何体从上而看到的平而图形是 B 2、 A 下列图形屮可能是匸方体展开图的是 ) D ( 4、 A 、 5、 C D B 将左边的平面图形沿虚线折叠成一个立体图形后, 右•边的图形是由左边图形折叠二成的是( 点共可以画出 B 、两条宜线 A 经过任意三点屮的1 i 条肓线 如图所示,由A 到B 有①、②、③三条路线,最短的 路线选①的理由是 c 、i 条或三条肓线 A 、因为它直 C 、两点间距离的定义 6、如图,G 是AC 的中点, D.三条玄线 ① B () B 、两点确定一条肖•线 D 、两点Z 间,线段最短 M 是A3的中点,N 是BC 的中点,那么后面的四个等式中, 不成立的是 () A > MN =GC B 、MG=£(AC — AB) jA M G B Nj C C 、GN =-(AC-CB) D > MN=—(AC + GB) 2 2 7、 A 、 C 、 8、 下面关于平角、周角的说法正确的是 平角是一条直线 B 、周角是一条射线 反向延长射线0A,就形成一个平角 D 、两个锐角的和不一定小于平角 如图,Z1 = Z2, ,Z3=Z4,则下列结论正确的个数为 ①、AD 平分ZBAF ;②、AF 平分ABAC :③、AE 平分ZDAF ; ④、AF 平分ZDAC;⑤、人£平分ZB4C. A 、4 B 、3 C 、2 D 、1 () Zl=15° , ZA0C=90°,点B 、0、D 在同一肓线上,则Z2的度数为 9、如图, A 、75° B 、15° C 、 105° D 、 165°10、对于互补的下列说法中: ①、ZA+ZB+ZC=90°则ZA 、ZB. ZC 互补;②、若Z1是Z2的补角,则Z2是Z1的补角;③、同一 锐角的补角一定比它的余角大90° :④、互补的两个角中,一定是一个钝角与一个锐角•其中正确的有 A 、1个 B 、2个 C 、3个 D 、4个 11、如图所示,点0在直线/上,Z1与Z2互余,乙a“l6。
最新-福建省泉州市泉港三川中学七年级数学上册 第一次
福建省泉州市泉港三川中学七年级数学上册 第一次单元小测 华东师大版一.选择题(10*3分=30分)1. 如图所示的图形为四位同学画的数轴,其中正确的是 ( )2. 计算)12()26(----所得的结果是 ( )A.-38B.-14C.38D.143. 式子2124+---的正确读法是: ( )A.减4减2减1加2B.-4减2减1加2C.-4,-2,-1加2D.4,2,1,2的和4. 一个有理数的绝对值等于它的相反数,那么这个数是 ( )A.-1B.0C.1D.以上都不对5. 如果一个数的平方等于这个数的绝对值,那么这个数是 ( )A.0B.1C.-1D.0,1或-16. 若一个数的相反数不是负数,那么这个数一定是 ( )A.负数B.正数C.正数或0D.负数或07. 下列比较大小的式子中,错误的是 ( )A. 32)2()2(->-B. 32)2()2(-<-C. 98109-<-D. 313.0->- 8. 如果有理数a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,d 是倒数等于它本身的数,那么式子=-++d c b a 2 ( ) A.-2 B.-1 C.0 D.19. 找规律填数,1,5,14,30,55,_,… _中应该填的数是 ( ) A.91 B.81 C.80 D.9210. a 为有理数,下列说法中,正确的是 ( ) A. 2)21(+a 为正数 B.212+a 为正数 C. 2)21(--a 为负数 D. 212+-a 值不小于21 二.填空题(8*2=16分) 1. 41-的相反数是_______,___________的绝对值是4. 2. 大于-3且不大于5的整数有___个,它们分别是__________________________ 3. 用科学记数法表示:2018=__________,51052.7⨯表示的原来的数是_______4. 用四舍五入法把255.49018精确到千分位后的数是____________.5. 四舍五入把3692.45保留2个有效数字为____________.6. 在数轴上,互为相反数的两个数所表示的点之间的距离是4,那么这两个数分别是______和______.7.4瓶空矿泉水瓶可以换一瓶矿泉水喝,现在有27个空矿泉水瓶子,最多能喝_____瓶矿泉水。
泉州市七年级数学上册第四单元《几何图形初步》-解答题专项复习题(答案解析)
一、解答题1.已知线段10cm AB =,在直线AB 上取一点C ,使16cm AC =,求线段AB 的中点与AC 的中点的距离.解析:13cm 或3cm .【分析】结合题意画出简单的图形,再结合图形进行分类讨论:当C 在BA 延长线上时,当C 在AB 延长线上时,分别依据线段的和差关系求解.【详解】解:①如图,当C 在BA 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点, 所以15cm 2AD AB ==,18cm 2AE AC ==, 所以81513(cm)DE AE AD =+=+=. ②如图,当C 在AB 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以853(cm)DE AE AD =-=-=. 综上,线段AB 的中点与AC 的中点的距离为13cm 或3cm .【点睛】本题主要考查了两点间的距离,解决问题的关键是依据题意画出图形,进行分类讨论. 2.如图所示,∠AOB =35°,∠BOC =50°,∠COD =22°,OE 平分∠AOD ,求∠BOE 的度数.解析:5°【解析】【分析】首先根据角的和差关系算出∠AOD 的度数,再根据角平分线的性质可得∠AOE =12∠AOD ,进而得到答案.【详解】∵∠AOB =35°,∠BOC =50°,∠COD =22°,∴∠AOD =35°+50°+22°=107°.∵OE 平分∠AOD ,∴∠AOE =12∠AOD =12×107°=53.5°,∴∠BOE =∠AOE -∠AOB =53.5°-35°=18.5°.【点睛】本题考查了角平分线的性质,关键是掌握角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.3.已知直线l 上有三点A 、B 、C ,AB=3,AC=2,点M 是AC 的中点.(1)根据条件,画出图形;(2)求线段BM 的长.解析:(1)见解析;(2)2或4.【分析】(1)分C 点在线段AB 上和C 点在BA 的延长线上两种情况画出图形即可;(2)利用(1)中所画图形,根据中点的定义及线段的和差故选,分别求出MB 的长即可.【详解】(1)点C 的位置有两种:当点C 在线段AB 上时,如图①所示:当点C 在BA 的延长线上时,如图②所示:(2)∵点M 是AC 的中点,AC=2,∴AM=CM=12AC=1, 如图①所示,当点C 在线段AB 上时,∵AB=AM+MB ,AB=3,∴MB=AB-AM=2.如图②所示:当点C 在BA 的延长线上时,MB=AM+AB=4.综上所述:MB 的长为2或4.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用分类讨论的思想是解题关键. 4.已知点C 是线段AB 的中点(1)如图,若点D 在线段CB 上,且BD =1.5厘米,AD =6.5厘米,求线段CD 的长度;(2)若将(1)中的“点D 在线段CB 上”改为“点D 在线段CB 的延长线上”,其他条件不变,请画出相应的示意图,并求出此时线段CD 的长度.解析:(1)CD=2.5厘米;(2)CD=4厘米.【分析】根据BD+AD=AB 可求出AB 的长,利用中点的定义可求出BC 的长,根据CD=BC-BD 求出CD 的长即可;(2)根据题意画出图形,利用线段中点的定义及线段的和差关系求出CD 的长即可.【详解】(1)∵BD=1.5厘米,AD=6.5厘米,∴AB=BD+AD=8(厘米),∵点C 是线段AB 的中点,∴BC=12AB=4(厘米) ∴CD=BC-BD=2.5(厘米).(2)当点D 在线段CB 的延长线上时,如图所示:∵BD=1.5厘米,AD=6.5厘米,∴AB=AD-BD=5(厘米),∵点C 是线段AB 的中点,∴BC=12AB=2.5(厘米) ∴CD=BC+BD=4(厘米)【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.5.古时候,传说捷克的公主柳布莎曾出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取余下的一半又两个给第二个人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”解析:34个【分析】在最后一次送了一半加三个,篮子的李子没有剩余,可以知道最后一次的一半就是三个,所以上一次剩余6个,6个加上送的2个合计8个,为第二次的一半,可以知道第一次送出后还有16个,16在加上第一次送的1个为17个,所以最初一共有34个.【详解】用逆推法:解: ()32221234⎡⎤⨯+⨯+⨯=⎣⎦(个)【点睛】送出一半又3个的时候,剩余为0,直接可以知道一半就是3个.6.如图,有一只蚂蚁想从A点沿正方体的表面爬到G点,走哪一条路最近?(1)请你利用部分平面展开图画出这条最短的路线,并说明理由.(2)探究若这只蚂蚁在正方体上爬行的最短路线,请你找出所有的最短路线,并画出示意.解析:如图①,(1)见解析,理由:两点之间线段最短;(2)见解析.【分析】(1)先把正方体展开,根据两点之间线段最短,即可得出由A爬到G的最短途径.(2)分情况讨论,作图解答即可.【详解】(1)如图①,理由:两点之间线段最短.(2)如图②,这种最短路线有4条.【点睛】本题考查了几何体的展开图和最短路线问题,把几何体展开为平面图形是解决“怎样爬行最近”这类问题的关键.7.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.8.说出下列图形的名称.解析:依次是圆、三角形、正方形、长方形、平行四边形、梯形、五边形、六边形.【分析】根据平面图形:一个图形的各部分都在同一个平面内可得答案.【详解】根据平面图形的定义可知:它们依次是圆、三角形、正方形、长方形、平行四边形、梯形、五边形、六边形.【点睛】此题考查认识平面图形,解题关键在于掌握其定义对图形的识别.9.蜗牛爬树一棵树高九丈八,一只蜗牛往上爬.白天往上爬一丈,晚上下滑七尺八.试问需要多少天,爬到树顶不下滑?解析:蜗牛需41天才爬到树顶不下滑.【分析】根据题意可知蜗牛一个白天加一个晚上所爬行的路程,即蜗牛每天前进的路程,最后一天,也就是还剩下一丈的时候,他爬到树顶就不再往下滑了,在这之前都是白天爬一丈,晚上下滑七尺八;接下来设需要x天,爬到树顶不下滑,列出方程即可解答.设蜗牛需x 天才爬到树顶不下滑,即爬到九丈八需x 天,可列方程(10-7.8)(x -1)+10=98,解得x =41.答:蜗牛需41天才爬到树顶不下滑.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找到等量关系列出方程. 10.如图,点C 在线段AB 上,点,M N 分别是AC BC 、的中点.(1)若9,6AC cm CB cm ==,求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC CB acm +=,其它条件不变,你能求出MN 的长度吗?请说明理由.(3)若C 在线段AB 的延长线上,且满足,,AC BC bcm M N -=分别为 AC 、BC 的中点,你能求出MN 的长度吗?请画出图形,写出你的结论,并说明理由.解析:(1)7.5;(2)12a ,理由见解析;(3)能,MN=12b ,画图和理由见解析 【分析】(1)据“点M 、N 分别是AC 、BC 的中点”,先求出MC 、CN 的长度,再利用MN=CM+CN 即可求出MN 的长度即可.(2)据题意画出图形,利用MN=MC+CN 即可得出答案.(3)据题意画出图形,利用MN=MC-NC 即可得出答案.【详解】解:(1)点M 、N 分别是AC 、BC 的中点,∴CM=12AC=4.5cm , CN=12BC=3cm , ∴MN=CM+CN=4.5+3=7.5cm .所以线段MN 的长为7.5cm .(2)MN 的长度等于12a , 根据图形和题意可得:MN=MC+CN=12AC+12BC=12(AC+BC )=12a ;(3)MN 的长度等于12b , 根据图形和题意可得:MN=MC-NC=12AC-12BC=12(AC-BC )=12b .本题主要考查了两点间的距离,关键是掌握线段的中点把线段分成两条相等的线段,注意根据题意画出图形也是关键.11.已知长方形纸片ABCD ,点E 在边AB 上,点F ,G 在边CD 上,连接EF ,EG .将BEG ∠对折,点B 落在直线BG 上的点B '处,得折痕EM ;将AEF ∠对折,点A 落在直线EF 上的点A '处,得折痕EN .(1)如图(1),若点F 与点G 重合,求MEN ∠的度数;(2)如图(2),若点G 在点F 的右侧,且30FEG ︒∠=,求MEN ∠的度数; (3)若MEN α∠=,请直接用含α的式子表示FEG ∠的大小.解析:(1)90︒;(2)105︒;(3)若点G 在点F 的右侧,2180FEG α︒∠=-;若点G 在点F 的左侧,1802FEG α︒∠=-【分析】(1)由题意根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)由题意根据∠MEN=∠NEF+∠FEG+∠MEG ,求出∠NEF+∠MEG 即可解决问题. (3)根据题意分点G 在点F 的右侧以及点G 在点F 的左侧两种情形分别求解即可.【详解】解:(1)因为EN 平分AEF ∠,EM 平分BEF ∠, 所以12NEF AEF ∠=∠,12MEF BEF ∠=∠, 所以1111()2222MEN NEF MEF AEF BEF AEF BEF AEB ∠=∠+∠=∠+∠=∠+∠=∠. 因为180AEB ︒∠=, 所以1180902MEN ︒︒∠=⨯=. (2)因为EN 平分AEF ∠,EM 平分BEG ∠, 所以12NEF AEF ∠=∠,12MEG BEG ∠=∠, 所以1111()()2222NEF MEG AEF BEG AEF BEG AEB FEG ∠+∠=∠+∠=∠+∠=∠-∠. 因为180AEB ︒∠=,30FEG ︒∠=,所以()118030752NEF MEG ︒︒︒∠+∠=-=, 所以7530105MEN NEF FEG MEG ︒︒︒∠=∠+∠+∠=+=.(3)因为EN 平分AEF ∠,EM 平分BEG ∠,所以12NEF AEF AEN ∠=∠=∠,12MEG BEG BEM ∠=∠=∠, 若点G 在点F 的右侧,MEN NEF FEG MEG α∠=∠+∠+∠=, ()()(180)2180FEG NEF MEG AEN BEM ααααα︒︒∠=-∠+∠=-∠+∠=-=--;若点G 在点F 的左侧,MEN NEF MEG FEG α∠=∠+∠-∠=1801802FEG NEF MEG AEN BEM ααααα︒︒∠=∠+∠-=∠+∠-=--=-.【点睛】本题考查角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.12.已知:如图,18cm AB =,点M 是线段AB 的中点,点C 把线段MB 分成:2:1MC CB =的两部分,求线段AC 的长.请补充下列解答过程:解:因为M 是线段AB 的中点,且18cm AB =,所以AM MB ==________AB =________cm .因为:2:1MC CB =,所以MC =________MB =________cm .所以AC AM =+________=________+________=________(cm).解析:12,9,23,6,MC ,9,6,15. 【分析】根据线段中点的性质,可得AM ,根据线段的比,可得MC ,根据线段的和差,可得答案.【详解】解:∵M 是线段AB 的中点,且18cm AB =,∴19cm 2AM MB AB ===. ∵:2:1MC CB =,∴26cm 3MC MB ==. ∴9615(cm)AC AM MC =+=+=. 故答案为:12,9,23,6,MC ,9,6,15. 【点睛】本题考查了两点间的距离,利用线段中点的性质得出AM,线段的比得出MC是解题关键.13.线段AD=6cm,线段AC=BD=4cm ,E、F分别是线段AB、CD中点,求EF.解析:【分析】根据题意和图形可以求得线段EB、BC、CF的长,从而可以得到线段EF的长.【详解】∵E,F分别是线段AB,CD的中点,∴AB=2EB=2AE,CD=2CF=2FD,∵AD=AB+BC+CD=2EB+BC+2CF=6,AC=2EB+BC=4,∴AC+2CF=6,解得,CF=1,同理可得:EB=1,∴BC=2,∴EF=EB+BC+CF=1+2+1=4.【点睛】此题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.如图,已知点C是线段AB的中点,点D在线段CB上,且DA=5,DB=3.求CD的长.解析:1【解析】【分析】根据线段的和差,可得AB的长,根据线段中点的性质,可得AC的长,根据线段的和差,可得答案.【详解】由线段的和差,得AB=AD+BD=5+3=8.AB=4.由线段中点的性质,得AC=CB=12由线段的和差,得CD=AD−AC=5−4=1.【点睛】此题考查两点间的距离,解题关键在于掌握各性质定义.15.如图,直线AB与CD相交于点O,∠AOE=90°.(1)如图1,若OC平分∠AOE,求∠AOD的度数;(2)如图2,若∠BOC=4∠FOB,且OE平分∠FOC,求∠EOF的度数.解析:(1)135°;(2)54°【分析】(1)利用OC平分∠AOE,可得∠AOC=12∠AOE=12×90°=45°,再利用∠AOC+∠AOD=180°,即可得出.(2)由∠BOC=4∠FOB,设∠FOB=x°,∠BOC=4x°,可得∠COF=∠COB-∠BOF=3x°,根据OE平分∠COF,可得∠COE=∠EOF=12∠COF=32x°,即可得出.【详解】(1)∵∠AOE=90°,OC平分∠AOE,∴∠AOC=12∠AOE=12×90°=45°,∵∠AOC+∠AOD=180°,∴∠AOD=180°-∠AOC=180°-45°=135°,即∠AOD的度数为135°.(2)∵∠BOC=4∠FOB,∴设∠FOB=x°,∠BOC=4x°∴∠COF=∠COB-∠BOF=4x°-x°=3x°∵OE平分∠COF∴∠COE=∠EOF=12∠COF=32x°∵32x+x=90°∴x=36,∴∠EOF=32x°=32×36°=54°即∠EOF的度数为54°.【点睛】本题考查了角平分线的性质、方程思想方法、数形结合方法,考查了推理能力与计算能力.16.读下列语句,画出图形,并回答问题.(1)直线l经过A,B,C三点,且C点在A,B之间,点P是直线l外一点,画直线BP,射线PC,连接AP;(2)在(1)的图形中,能用已知字母表示的直线、射线、线段各有几条?写出这些直线、射线、线段.解析:(1)见解析;(2)直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC 【分析】(1)根据直线、射线、线段的定义作图;(2)根据直线、射线、线段的定义解答.【详解】(1)如图所示.(2) 直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC.【点睛】此题考查作图,确定图形中的直线、射线、线段,掌握直线、射线、线段的定义是解题的关键.17.如图,长度为12cm的线段AB的中点为M,点C将线段MB分成两部分,且MC CB ,则线段AC的长度为________.:1:2解析:8cm【分析】先由中点的定义求出AM,BM的长,再根据MC:CB=1:2的关系,求MC的长,最后利用AC=AM+MC得其长度.【详解】∵线段AB的中点为M,∴AM=BM=6cm设MC=x,则CB=2x,∴x+2x=6,解得x=2即MC=2cm.∴AC=AM+MC=6+2=8cm.故答案为:8cm .【点睛】本题主要考查了两点间的距离,在解题时要能根据两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键.同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.18.一个锐角的补角比它的余角的4倍小30,求这个锐角的度数和这个角的余角和补角的度数.解析:这个锐角的度数为50︒,这个角的余角的度数为40︒,补角的度数为130︒.【分析】设这个锐角为x 度,根据余角的和等于90°,补角的和等于180°表示出这个角的补角与余角,然后根据题意列出方程求解即可.【详解】设这个锐角为x 度,由题意得:()18049030x x -=--,解得50x =.即这个锐角的度数为50︒.905040︒︒︒-=,18050130︒︒︒-=.答:这个锐角的度数为50︒,这个角的余角的度数为40︒,补角的度数为130︒.【点睛】本题考查了余角与补角,熟记“余角的和等于90°,补角的和等于180°”是解题的关键. 19.如图,射线ON ,OE ,OS ,OW 分别表示以点O 为中心的北,东,南,西四个方向,点A 在点O 的北偏东45︒方向,点B 在点O 的北偏西30方向.(1)画出射线OB ,若BOC ∠与AOB ∠互余,请在图(1)或备用图中画出BOC ∠; (2)若OP 是AOC ∠的平分线,直接写出AOP ∠的度数.(不需要计算过程) 解析:(1)见解析;(2)45︒或30.【分析】(1)根据题意作出图形即可;(2)根据角平分线的定义即可得到结论.【详解】(1)如图所示,BOC ∠与BOC '∠即为所求.(2)AOP ∠的度数为45︒或30︒.∵∠AON=45°,∠BON=30°,∴∠AOB=75°,∵∠BOC 与∠AOB 互余,∴∠BOC=∠BOC′=15°,∴∠AOC=90°,∠AOC=60°,∵OP 是∠AOC 的角平分线,∴∠AOP=45°或30°.【点睛】本题主要考查了方向角的定义,余角的定义,作出图形,正确掌握方向角的定义是解题关键.20.关于度、分、秒的换算.(1)5618'︒用度表示;(2)123224'''︒用度表示;(3)12.31︒用度、分、秒表示.解析:(1)56.3︒.(2)12.54︒.(3)121836'''︒.【分析】(1)将18'转化为118()0.360⨯︒=︒即可得到答案; (2)将24''转化为124()0.460''⨯=,32.4'转化为132.4()0.5460⨯︒=︒即可得到答案; (3)将0.31︒转化为0.316018.6''⨯=,将0.6'转化为0.66036''''⨯=即可得到答案. 【详解】(1)1561856185618()56.360''︒=︒+=︒+⨯︒=︒; (2)123224︒''' 123224'''=︒++1123224()60''=︒++⨯ 1232.4'=︒+11232.4()60=︒+⨯︒ 12.54=︒;(3)12.31120.31︒=︒+︒120.3160'=︒+⨯1218.6'=︒+12180.6''=︒++12180.660'''=︒++⨯121836'''=︒++121836'''=︒.【点睛】本题主要考查了度分秒的换算,关键是掌握将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.21.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示,设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .解析:(1)-4;(2)-88【分析】(1)根据以B 为原点,则C 表示1,A 表示-2,进而得到p 的值;根据以C 为原点,则A 表示-3,B 表示-1,进而得到p 的值;(2)根据原点O 在图中数轴上点C 的右边,且CO=28,可得C 表示-28,B 表示-29,A 表示-31,据此可得p 的值.【详解】(1)若以B 为原点,则点C 对应1,点A 对应2-,所以1021p =+-=-;若以C 为原点,则点A 对应3-,点B 对应1-,所以3104p =--+=-.(2)若原点O 在题图中数轴上点C 的右边,且28CO =,则点C 对应28-,点B 对应29-,点A 对应31-,所以31292888p =---=-.【点睛】本题考查了两点间的距离以及数轴的运用,解题时注意:连接两点间的线段的长度叫两点间的距离.22.如图,点O 是直线AB 上一点,OC 为任一条射线,OD 平分∠AOC ,OE 平分∠BOC . (1)分别写出图中∠AOD 和∠AOC 的补角(2)求∠DOE 的度数.解析:(1)∠BOD ,∠BOC ;(2)90°.【分析】(1)由题意根据补角的定义即和是180度的两个角互补,一个角是另一个角的补角进行分析;(2)根据角平分线的性质,可得∠COE ,∠COD ,再根据角的和差即可得出答案.【详解】解:(1)根据补角的定义可知,∠AOD 的补角是∠BOD ;∠AOC 的补角是∠BOC ;(2)∵OD 平分∠AOC ,OE 平分∠BOC ,∴∠COD= 12∠AOC ,∠COE=12∠BOC . 由角的和差得∠DOE=∠COD+∠COE=12∠AOC+12∠BOC=12∠AOB=90°. 【点睛】本题考查余角和补角,利用了补角的定义和角的和差以及角平分线的性质进行分析求解. 23.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 的长;(2)求线段MN 的长;(3)若C 在线段AB 延长线上,且满足AC ﹣BC=b cm ,M ,N 分别是线段AC ,BC 的中点,你能猜想MN 的长度吗?请写出你的结论(不需要说明理由)解析:(1)BC= 7cm ;(2)MN= 6.5cm ;(3)MN=2b 【分析】(1)根据线段中点的性质,可得MC 的长,根据线段的和差,可得BC 的长;(2)根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得MN 的长; (3)根据(1)(2)的结论,即可解答.【详解】解:(1)∵AC=6cm ,点M 是AC 的中点,∴12MC AC =3cm ,∴BC=MB ﹣MC=10﹣3=7cm .(2)∵N 是BC 的中点,∴CN=12BC=3.5cm , ∴MN=MC+CN=3+3.5=6.5cm . (3)如图,MN=MC ﹣NC=1122AC BC -=12(AC ﹣BC )=12b . MN=2b . 【点睛】 本题考查两点间的距离.24.如图,点C 是AB 的中点,D ,E 分别是线段AC ,CB 上的点,且AD =23AC ,DE =35AB ,若AB =24 cm ,求线段CE 的长.解析:CE =10.4cm .【分析】根据中点的定义,可得AC 、BC 的长,然后根据题已知求解CD 、DE 的长,再代入CE=DE-CD 即可.【详解】∵AC=BC=12AB=12cm ,CD=13AC=4cm ,DE=35AB=14.4cm , ∴CE=DE ﹣CD=10.4cm. 25.已知线段14AB =,在线段AB 上有点C ,D ,M ,N 四个点,且满足AC :CD :1DB =:2:4,12AM AC =,且14DN BD =,求MN 的长. 解析:7或3【分析】 求出AC ,CD ,BD ,求出CM ,DN ,根据MN CM CD DN =++或MN CM CD ND =+-求出即可.【详解】如图,14AB =,AC :CD :1BD =:2:4,2AC ∴=,4CD =,8BD =,12AM AC =,14DN DB =, 1CM ∴=,2DN =,1427MN CM CD DN ∴=++=++=或1423MN CM CD ND =+-=+-=. 则MN 的长是7或3.【点睛】本题考查了求出两点间的距离的应用及分类讨论的数学思想,关键是找找出线段间的数量关系.26.已知:如图AB ∥CD ,EF 交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE =50°,求:∠BHF 的度数.解析:∠BHF=115° .【分析】由AB ∥CD 得到∠AGE=∠CFG ,由此根据邻补角定义可得∠GFD 的度数,又FH 平分∠EFD ,由此可以先后求出∠GFD ,∠HFD ,继而可求得∠BHF 的度数.【详解】∵AB ∥CD ,∴∠CFG=∠AGE=50°,∴∠GFD=130°;又FH 平分∠EFD ,∴∠HFD=12∠EFD=65°; ∵AB ∥CD ,∴∠BHF=180°-∠HFD=115°.【点睛】本题考查了平行线的性质,角平分线的定义,邻补角等知识,两直线平行时,应该想到它们的性质;由两直线平行的关系可以得到角之间的数量关系,从而达到解决问题的目的. 27.已知:点O 为直线AB 上一点,过点O 作射线OC ,100BOC ∠=︒.(1)如图1,求AOC ∠的度数;(2)如图2,过点O 作射线OD ,使90COD ∠=︒,作AOC ∠的平分线OM ,求MOD ∠的度数;(3)如图3,在(2)的条件下,作射线OP ,若BOP ∠与AOM ∠互余,请画出图形,并求COP ∠的度数.解析:(1)80°;(2)50°;(3)50︒或150︒,图见解析【分析】(1)直接根据邻补角的概念即可求解;(2)直接根据角平分线的性质即可求解;(3)根据P BO ∠与M AO ∠互余,可得50BOP ∠=︒,分①当射线P O 在C BO ∠内部时;②当射线P O 在C BO ∠外部时,两种情况进行讨论即可.【详解】解:(1)180********∠=︒-∠=︒-︒=︒AOC BOC ;(2)由(1)得80AOC ∠=︒,90COD ∠=︒,10AOD COD AOC ∴∠=∠-∠=︒, OM 是AOC ∠的平分线, 11804022AOM AOC ∴∠=∠=⨯︒=︒, 401050MOD AOM AOD ∴∠=∠+∠=︒+︒=︒;(3)由(2)得40AOM ∠=︒,BOP ∠与AOM ∠互余,90BOP AOM ∴∠+∠=︒,90904050BOP AOM ∴∠=︒-∠=︒-︒=︒,①当射线OP 在BOC ∠内部时(如图3-1),1005050COP BOC BOP ∠=∠-∠=︒-︒=︒;②当射线OP 在BOC ∠外部时(如图3-2),10050150COP BOC BOP ∠=∠+∠=︒+︒=︒.综上所述,COP ∠的度数为50︒或150︒.【点睛】此题主要考查邻补角的概念、角平分线的性质、余角的概念,熟练进行逻辑推理是解题关键.28.如图,已知线段AB和CD的公共部分1134BD AB CD==,线段AB、CD的中点E、F之间的间距是10cm,求AB、CD的长.解析:AB=12cm,CD=16cm【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE=1.5xcm和CF=2xcm,再根据EF=AC-AE-CF=2.5xcm,且E、F之间距离是EF=10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.【详解】设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=12AB=1.5xcm,CF=12CD=2xcm.∴EF=AC-AE-CF=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.【点睛】本题考查了线段中点的性质,设好未知数,用含x的式子表示出各线段的长度是解题关键.29.把如图图形沿虚线折叠,分别能折叠成什么几何体(图中的五边形均为正五边形)?观察折成的几何体,回答下列问题:(1)每个几何体有多少条棱?哪些棱的长度相等?(2)每个几何体有多少个面?它们分别是什么图形?哪些面的形状、大小完全相同?解析:(1)第一个图形能折成一个正五棱锥,有10条棱,侧棱相等,底面上的五条棱相等;第二个图形能折成一个正五棱柱,有15条棱,上下底面上的棱相等,侧棱相等;(2)第一个几何体有6个面,分别是5个等腰三角形,1个正五边形,等腰三角形的形状、大小相同;第二个几何体有7个面,分别是5个长方形,2个正五边形,长方形的形状、大小相同,正五边形的形状、大小相同【分析】(1)由五棱锥与五棱柱的折叠及五棱锥与五棱柱的展开图解题.(2)根据五棱锥与五棱柱的特征即可求解.【详解】解:(1)图形(1)有10条棱,底面棱的长度相等,侧面棱的长度相等;图形(2)有15条棱,两个底面棱的长度相等,侧面棱的长度相等;(2)图形(1)有6个面,底面是五边形,侧面是形状、大小完全相同的三角形;图形(2)有7个面,底面是形状、大小完全相同的五边形,侧面是形状、大小完全相同的长方形.【点睛】本题考查了展开图折叠成几何体的知识,有一定难度,同时考查了学生的想象和动手能力.30.如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。
福建省泉州市七年级数学上册《图形的初步认识》同步调查测试题(2) 华东师大版
七年级数学同步调查测试九图形的初步认识(4.7~4.8)一、 选择(3分×10=30分)1、栽树时,只要确定两个树坑的位置,就可以确定同一行树坑所在的位置。
其理由 ( )A 、过两点有且只有一条直线,B 、两点之间线段最短,C 、过线外一点有且只有一条直线与已知直线垂直,D 、垂线段最短2、平面上不重合的两条直线,它们的位置关系只可能是 ( )A 、相交或垂直B 、垂直或平行C 、相交或平行D 、以上都不对3、如图,下列说法错误的是 ( )A 、∠A 与∠3是同位角B 、∠A 与∠B 是同旁内角C 、∠A 与∠C 是内错角D 、∠1与∠2是同旁内角4、如图,AB 、CD 相交于点O ,EO ⊥AB 于O ,则图中∠1与∠2的关系是( )A 、对顶角,B 、互补的两角,C 、互余的两角,D 、一对相等的角。
5、有以下说法:①两条直线相交所成的四个角中有一个角是直角,则这两条直线互相垂直,②两条直线相交,若有一组对顶角互补,则这两条直线互相垂直,③两条直线相交,若所成的四个角相等,则这两条直线互相垂直,④两条直线相交,若一组邻角相等,则这两条直线互相垂直。
其中正确的是( )A 、1个B 、2个C 、3个D 、4个6、如 图,直线EF 与直线AB 、CD 相交,∠1=︒110,则∠2= ( )A 、︒110B 、︒70C 、︒90D 、不能确定7、如图,AB∥CD,∠1的度数是∠2的度数的一半,则∠3= ( )A 、︒60B 、︒100C 、︒120D 、︒1308、两条直线被第三条直线所截,下列条件不能识别这两条直线平行的是( )A 、同位角相等B 、内错角相等C 、同旁内角互补D 、对顶角相等9、两条平行线被第三条直线所截得的角中,角平分线互相垂直的是 ( )A 、内错角B 、同旁内角C 、同位角D 、内错角和同位角10、在同一平面内,有12条互不重合的直线,,,,12321l l l l 若21l l ⊥,2l ∥3l ,43l l ⊥,4l ∥5l ……以此类推,则1l 和12l 的位置关系是 ( )A 、平行B 、垂直C 、平行或垂直D 、无法确定二、填空(第1小题6分+3分×7=27分)11、如图,下列各组角是由两条直线被第三条直线所截而成的,请写出它们之间的关系。
七年级上《图形的初步认识》测试及答案(2021年整理)
七年级上《图形的初步认识》测试及答案(word版可编辑修改)七年级上《图形的初步认识》测试及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级上《图形的初步认识》测试及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级上《图形的初步认识》测试及答案(word版可编辑修改)的全部内容。
七年级上《图形的初步认识》测试及答案(word 版可编辑修改) 图形的初步认识一、填空题(36分)1、 6000″ = ′= °,12°15′36″= °。
2、锯木料时,先在木板上画出两点,再过这两点弹出一条墨线,这是利用了的原理。
3、如图,从A 地到B 地走 条路线最近,它根据的是 。
4、当图中的∠1和∠2满足 时,能使OA ⊥OB(只需填上一个条件即可)。
5、在甲、乙两地之间要修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地同时开工,若干天后公路准确接通,则乙地所修公路的走向是南偏西度.6、如图,直线AB 、CD 相交于点O ,OA 平分∠EOC ,∠EOC =76°,则∠BOD = °.7、小明每天下午5:30回家,这时分针与时针所成的角的度数为 °;8、如图所示的4×4正方形网格中,∠l+∠2+∠3+∠4+∠5+∠6+∠7= °.9、点A 、B 、C 是数轴上的三个点,且BC=2AB 。
已知点A 表示的数是-1,点B 表示的数是3,点C 表示的数是 ;10、如图,C 是线段AB 的中点,D 是线段AC 的中点,已知图中所有线段的长度之和为26,则线段AC 的长度为 ;A B ① ② ③A B C D E O 第6题数学七年级(上)复习测试题11、如图,从点O 出发的5条射线,可以组成的角的个数是 ; 12、α、β、γ中有两个锐角和一个钝角,其数值已经给出,在计算算出了23°、24°、25°这三)(151γβα++的值时,有三位同学分别个不同的结果,其中只有一个是正确的答案,则 = °.二、选择题(30分)1 、下列说法中,正确的有( )(1)过两点有且只有一条线段 (2)连结两点的线段叫做两点的距离(3)两点之间,线段最短 (4)AB =BC ,则点B 是线段AC 的中点 (5) 射线比直线短A .1个 B.2个 C 。
福建省泉州市泉港三川中学七年级数学上册 测试题2 华东师大版
测试题2(满分:150分;考试时间:120分钟)一、选择题(单项选择,每小题3分,共21分) 1.-3的绝对值为( ). A. 3B. -3C.13-D.132.下列合并同类项的结果正确的是( )A .a +3a=3a 2B . 3a -a=2C .3a +b=3abD . a 2-3a 2=-2a 23. 用一副三角板不可以拼出的角是().A .105°B .75°C .85°D .15° 4.下列6个数中,是负数的个数是() -6.1,1||2--,-(-1),(-2)2,(-2)3,-[-(-3)] A .3个 B .4个 C .5个 D .6个5.用边长为1的正方形做了一套七巧板,拼成如图所示的一座桥,则桥中阴影部分的面积为原正方形面积的(). A .31 B. 21C.32D.不能确定6.如图OA ⊥OB ,∠BOC =30°,OD 平分∠AOC ,则∠BOD 的度数是( )度。
A .40B . 60C .20D .30 7. 如图,把左边的图形折起来,它会变成右边的正方体( ).第5题图DCOBA第6题图○二、填空题(每小题4分,共40分) 8.-2的相反数是_________.9.温度升高1C记做+1C,气温下降5°c 记做________.10.人的大脑每天能记录大约86000000条信息,数据86000000用科学计数法表示为. 11.表示“x 与-4的和的3倍”的代数式为_____________.12.已知线段AB=7cm ,在直线AB 上画线段2BC cm =,那么线段AC 的长是________ cm 或_____cm..13.把多项式1532432-+-+x x x x 按字母x 降幂排列是__________________.223x x -+-得到12-x ,这个多项式是.15.如图,已知∠AOB 是直角,COD 是一条直线,∠AOC=300,则∠BOD=度.16.如图,已知EF GH ,与AB CD ,都相交,162=∠,2118=∠,374=∠,则4∠=度。
七年级上册《图形的初步认识》综合测试题
《图形的初步认识》综合测试题(时间60分钟满分100分)一、填空题(每小题3分,共36分)1.要把木条固定在墙上,至少要钉两颗钉子,这是因为。
2.平面上四条直线,最多有个交点。
3.已知直线AB上有一点O,射线OD和射线OC在AB同侧,∠AOD=42°,∠BOC=34°,则∠AOD与∠BOC的平分线的夹角的度数是。
4.如图,若直线BC∥DE,则∠B=∠,∠B+∠ =180°。
AD EB C5.用度分秒表示:78.36°= 。
6.如图,AB⊥BC,BD⊥AC,垂足是D。
ADB C(1)图中共有几个直角?它们是。
(2)点C到AB所在直线的距离是线段的长度。
(3)线段AB的长表示为的距离或的距离。
7.如图,要得到AB∥CD的结论,则需添加的条件是或。
A B C DE8.在同一平面内,和已知点A 的距离等于3厘米的点有 个,和已知点A的距离等于3厘米的直线有 条。
9.如图,射线OA 表示的方向是 ,OB 表示的方向是 。
A BO 东北35°40°10.钟面上从2点到4点有 次时针与分针夹成60°的角。
11.如图所示,是 的平面展开图。
12.已知直线1l 和2l 都经过点P ,并且直线1l ∥3l ,2l ∥3l ,那么1l 与2l 必重合,这是因为。
二、选择题(每小题3分,共18分)13.两条直线被第三条直线所截,下列条件不能识别这两条直线平行的是()A.同位角相等B.内错角相等C.同旁内角相等D.同旁内角互补14.如图:AB∥EF∥ DC,AD∥BC,且AC平分∠DAB,则图中与∠AGE相等的角(不包括∠AGE)有()A B CDE GFA.2个B.3个C.4个D.5个15.下列说法中,正确的是()A.角的大小与两边的长短无关。
B.直线的一半是射线C.平角就是一条直线D.射线AB与射线BA表示同一条射线16.在下列图形中,∠1与∠2是同位角的是()1212 1212A B C D17.正方体的截面中,边数最多的多边形是()A.四边形B.五边形C.六边形D.七边形18.下列说法中正确的个数为()(1)过一点有且只有一条直线(2)连结两点的线段叫两点间的距离(3)只有锐角才有补角(4)一个角的补角比它的余角大90°(5)相等的角为对顶角(6)对顶角相等(7)内错角相等A.2B.3C.4D.5三、解答题(共46分)19.(6分)如图,已知∠1=∠2,∠D=60°,求∠B的度数。
【3套打包】泉州市七年级上册第四章《几何图形初步》 单元测试.doc
人教版七年级上册第三章一元一次方程单元测试卷一、填空题1、如图,把弯曲的河道改直,能够缩短航程,这样做根据的道理是 .2、如图,点A 在点O 北偏东32°方向上,点B 在点O 南偏东43°方向上,则∠AOB=3、平面上有任意三点,过其中两点画直线,共可以画 .4、两根木条,一根长60cm ,另一根长80cm ,将它们的一端重合,放在同一直线上,此时两根木条的中点间的距离是 .5、.计算:175°26′÷3= .6、一个角的余角比这个角的补角的一半小30°,则这个角的大小为度.7、一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是 .8、如图,将三个同样的正方形的一个顶点重合放置,如果∠1=45°,∠3=30°时,那么∠2的度数是 .9、下列四种说法:①因为AM=MB,所以M是AB的中点;②在线段AM的延长线上取一点B,如果AB=2AM,那么M是AB的中点;③因为M是AB的中点,所以AM=MB=AB;④因为A、M、B在同一条直线上,且AM=BM,所以M是AB的中点,其中正确的是(只填写序号)10、如图,OB是∠AOC的平分线,OD是∠COE的平分线,若∠AOC=70°,∠COE=40°,那么∠BOD=度.二、选择题11.下列说法中正确的是().A.射线AB和射线BA是同一条射线B. 延长线段AB和延长线段BA的含义是相同的C. 延长直线ABD.经过两点可以画一条直线,并且只能画一条直线12.如图,下列说法不正确的是().A.∠1与∠AOB是同一个角B. ∠AOC也可用∠O来表示C. 图中共有三个角:∠AOB, ∠AOC, ∠BOCD. ∠ 与∠BOC是同一个角13.甲看乙的方向为北偏东30°,那么乙看甲的方向是().A. 南偏东60°B.南偏西60°C. 南偏西30°D.南偏东30°14.那么这个几何体是().β1OCBA15.下面四个图形中,经过折叠能围成如图所示的几何图形的是()16.一个角的度数为54°11′23〞,则这个角的余角和补角的度数分别为().A. 35°48′37〞, 125°48′37〞B. 35°48′37〞, 144°11′23〞C. 36°11′23〞, 125°48′37〞D. 36°11′23〞, 144°11′23〞三、解答题17.(1)如图1,已知点D是线段AC的中点,点B在线段DC上,且AB=4BC,若BD=6 cm,求AB的长;(2)如图2,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE,试求∠COE的度数.A B C DA B C D18.如图,已知线段AB上有两点C,D,且AC∶CD∶DB=2∶3∶4,E,F分别为AC,DB的中点,EF=2.4 cm,求线段AB的长.19.如图,P是线段AB上任一点,AB=12 cm,C、D两点分别从P、B同时向A点运动,且C点的运动速度为2 cm/s,D点的运动速度为3 cm/s,运动的时间为t s.(1)若AP=8 cm.①运动1 s后,求CD的长;②当D在线段PB运动上时,试说明AC=2CD;(2)如果t=2 s时,CD=1 cm,试探索AP的值.参考答案一、填空题1、如图,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最知 .2、如图,点A在点O北偏东32°方向上,点B在点O南偏东43°方向上,则∠AOB=1053、平面上有任意三点,过其中两点画直线,共可以画1或3条 .4、两根木条,一根长60cm,另一根长80cm,将它们的一端重合,放在同一直线上,此时两根木条的中点间的距离是7或10 .5、.计算:175°26′÷3= .6、一个角的余角比这个角的补角的一半小30°,则这个角的大小为60度.7、一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是功 .8、如图,将三个同样的正方形的一个顶点重合放置,如果∠1=45°,∠3=30°时,那么∠2的度数是15 .9、下列四种说法:①因为AM=MB ,所以M 是AB 的中点;②在线段AM 的延长线上取一点B ,如果AB=2AM ,那么M 是AB 的中点;③因为M 是AB 的中点,所以AM=MB=AB ;④因为A 、M 、B 在同一条直线上,且AM=BM ,所以M 是AB 的中点,其中正确的是②③ (只填写序号) 10、如图,OB 是∠AOC 的平分线,OD 是∠COE 的平分线,若∠AOC=70°,∠COE=40°,那么∠BOD=55度.二、选择题11.下列说法中正确的是(D ).A.射线AB 和射线BA 是同一条射线B. 延长线段AB 和延长线段BA 的含义是相同的C. 延长直线ABD.经过两点可以画一条直线,并且只能画一条直线 12.如图,下列说法不正确的是(B ).A.∠1与∠AOB是同一个角B. ∠AOC也可用∠O来表示C. 图中共有三个角:∠AOB, ∠AOC, ∠BOCD. ∠ 与∠BOC是同一个角(C)C13.甲看乙的方向为北偏东30°,那么乙看甲的方向是().A. 南偏东60°B.南偏西60°C. 南偏西30°D.南偏东30°14.那么这个几何体是(B).15.下面四个图形中,经过折叠能围成如图所示的几何图形的是(B)β1OCBAA B C D16.一个角的度数为54°11′23〞,则这个角的余角和补角的度数分别为(A ). A. 35°48′37〞, 125°48′37〞 B. 35°48′37〞, 144°11′23〞 C. 36°11′23〞, 125°48′37〞 D. 36°11′23〞, 144°11′23〞三、解答题17(1)如图1,已知点D 是线段AC 的中点,点B 在线段DC 上,且AB =4BC ,若BD =6 cm ,求AB 的长;(2)如图2,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE ,试求∠COE 的度数.解:(1)因为AB =4BC ,AB +BC =AC ,所以AC =5BC.因为点D 是线段AC 的中点, 所以AD =DC =12AC =12BC. 因为BD =DC -BC =6 cm , 所以52BC -BC =6 cm. 所以BC =4 cm. 所以AB =4BC =16 cm.(2)因为∠AOB =90°,OC 平分∠AOB , 所以∠BOC =12∠AOB =45°.因为∠BOD =∠COD -∠BOC =90°-45°=45°,∠BOD =3∠DOE , 所以∠DOE =15°.所以∠COE =∠COD -∠DOE =90°-15°=75°.A B C D18.如图,已知线段AB上有两点C,D,且AC∶CD∶DB=2∶3∶4,E,F分别为AC,DB的中点,EF=2.4 cm,求线段AB的长.解:因为AC∶CD∶DB=2∶3∶4,所以设AC=2x cm,CD=3x cm,DB=4x cm.所以EF=EC+CD+DF=x+3x+2x=6x cm.所以6x=2.4,即x=0.4.所以AB=2x+3x+4x=9x=3.6 cm.19.如图,P是线段AB上任一点,AB=12 cm,C、D两点分别从P、B同时向A点运动,且C点的运动速度为2 cm/s,D点的运动速度为3 cm/s,运动的时间为t s.几何图形初步单元测试卷一、选择题(本题共计10 小题,每题分,共计30分,)1. 与如图相对应的几何图形名称为()A.四棱锥B.三棱锥C.四棱柱D.三棱柱2. 已知,,那么A. B. C.或 D.3. 已知,则的补角度数是()A. B. C. D.4. ,,则与的大小关系是()A. B.C. D.以上都不对5. 下列说法正确的是()A.一个角的余角只有一个B.一个角的补角必大于这个角C.钝角的补角一定是锐角D.若两个角互为补角,则一个是钝角,一个是锐角6. 如图,,,则的度数为()A. B. C. D.7. 用 , , , 各代表四种简单几何图形(线段、正三角形、正方形、圆)中的一种.下图是由 , , , 中的两种图形组合而成的(组合用“&”表示).那么,下列组合图形中,表示 & ;的是( )A.B.C.D.8. 如果线段 , ,那么下列说法正确的是( ) A.点 在线段 上 B.点 在直线 上 C.点 在直线 外D.点 在直线 上,也可能在直线 外9. 在墙壁上固定一根横放的木条,则至少需要钉子的枚数是( ) A. 枚 B. 枚 C. 枚 D.任意枚10. 如图,把左边的图形绕着给定的直线旋转一周后形成的几何体是( )A.B.C.D.二、 填空题 (本题共计 4 小题,每题 分,共计12分 , )11. 如图所示,小明到小颖家有三条路,小明想尽快到小颖家请你帮他选条线路________.12. 如图, 是线段 的中点, 在直线 上, , ,则 的长等于________.13. 由 时 分到 时 分,时钟的分针旋转的角度为________,时针旋转的角度为________.14. 如图所示,表示________偏________方向,射线表示________方向,________.三、解答题(本题共计6 小题,每题分,共计58分,)15.(8分) 计算:(1)(2).16. (10分)已知线段,按要求画出图形并计算:延长线段到,使得,延长到点,使,若,求出与的长.17. (10分)如图,已知,平分,且,求的度数.18. (10分)一缉私船队在的南偏东方向,、两处相距.接通知后,缉私队立刻通过全球定位系统测得走私地点在的北偏东方向,的南偏东方向,七年级数学第四章几何图形初步单元检测题一、选择题(每小题3分,共30分)1.生活中的实物可以抽象出各种各样的几何图形,如图所示蛋糕的形状类似于( A )A.圆柱B.球C.圆D.圆锥2.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是( A )A.三亚﹣﹣永兴岛B.永兴岛﹣﹣黄岩岛C.黄岩岛﹣﹣弹丸礁D.渚碧礁﹣﹣曾母暗山3.下列语句错误的是( D )A.两点确定一条直线B.同角的余角相等C.两点之间线段最短D.两点之间的距离是指连接这两点的线段4.如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AB的长为( A )A.10cmB.11cmC.12cmD.14cm5.如图,C、D是线段AB上的两个点,CD=3cm,M是AC的中点,N是DB的中点,AB=9.8cm,那么线段MN的长等于( B )A.5.4cm B.6.4cm C.6.8cm D.7cm6.下列各组图形中都是平面图形的是( C )A.三角形、圆、球、圆锥B.点、线段、棱锥、棱柱C.角、三角形、正方形、圆D.点、角、线段、长方体7.用一副三角板可以画出的最大锐角的度数是( B )A.85°B.75°C.60°D.45°8.若∠1=40.4°,∠2=40°4′,则∠1与∠2的关系是( B )A.∠1=∠2B.∠1>∠2C.∠1<∠2D.以上都不对9.在同一条直线上依次有A,B,C,D四个点,若CD﹣BC=AB,则下列结论正确的是( D )A.B是线段AC的中点B.B是线段AD的中点C.C是线段BD的中点D.C是线段AD的中点10.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,则剪掉的这个小正方形是( D )A.甲B.乙C.丙D.丁二、填空题(每小题3分,共24分)11.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出现这一现象的原因两点之间,线段最短W.12.32.48°×2= 64 度 57 分36 秒.13.一副三角板按如图方式摆放,若∠α=21°37',则∠β的度数为68°23′.14.直线AB,BC,CA的位置关系如图所示,则下列语句:①点A在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC,CA 的公共点,正确的有③(只填写序号).15.青青同学把一张长方形纸折了两次,如图,使点A,B都落在DG上,折痕分别是DE,DF,则∠EDF的度数为90°.16.已知BD=4,延长BD到A,使BA=6,点C是线段AB的中点,则CD的长为1 .17.往返于甲、乙两地的客车,中途停靠3个车站(来回票价一样),且任意两站间的票价都不同,共有10 种不同的票价,需准备20 种车票.18.将一副三角板如图放置,若∠AOD=20°,则∠BOC的大小为160°.三、解答题(共66分)19.(8分)计算:(1)48°39′+67°31′-21°17′;(2)23°53′×3-107°43′÷5.解:(1)48°39′+67°31′-21°17′=116°10′-21°17′=94°53′.(4分)(2)23°53′×3-107°43′÷5=71°39′-21°32′36″=50°6′24″.(8分)20.(12分)如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时,P,Q之间的距离恰好等于4?(4)若A点表示的数为a(a>0),B点表示的数为b(b<0),M,N分别把AO、BO分成两段,且较短的线段长度分别是AO、BO的n分之一,请直接写出线段MN的长度(用含有a,b,n的代数式表示).【解答】解:(1)数轴上点B表示的数为8﹣20=﹣12;点P表示的数为8﹣5t;故答案为:﹣12,8﹣5t;(2)由题意得:AP=AB+BQ,5t=20+3t,t=10,答:若点P、Q同时出发,点P运动10秒时追上点Q;(3)分两种情况:①点Q在P的左边时,BQ+4+AP=20,3t+4+5t=20,t=2,②点Q在P的右边时,BQ+AP=20+4,3t+5t=20+4,t=3,综上,点P、Q同时出发,2秒或3秒时,P,Q之间的距离恰好等于4;(4)分4种情况:①当OM<AM,ON<BN时,如图,OM==,ON==﹣,∴MN=OM+ON=﹣=;②当OM<AM,ON>BN时,如图,OM==,ON=OB=﹣=,∴MN=OM+ON=+=;③当OM >AM ,ON <BN 时,如图,OM=OA=,ON==﹣,∴MN=OM+ON=﹣=;④当OM >AM ,ON >BN 时,如图,OM=OA=,ON=OB=﹣=,∴MN=OM+ON=+=21.(10分)如图,已知线段AB ,按下列要求完成画图和计算: (1)延长线段AB 到点C ,使BC=2AB ,取AC 中点D ; (2)在(1)的条件下,如果AB=4,求线段BD 的长度.【解答】解:(1)如图:(2)∵BC=2AB ,且AB=4, ∴BC=8.∴AC=AB+BC=8+4=12. ∵D 为AC 中点,(已知)∴AD=21AC=6.(线段中点的定义)∴BD=AD ﹣AB=6﹣4=2.【点评】本题考查了两点间的距离,利用线段的和差是解题关键.21.(12分)如图,将两块直角三角尺的顶点叠放在一起.(1)若∠DCE=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE的关系,并说明理由.解:(1)由题意知∠ACD=∠ECB=90°,∴∠ACB=∠ACD+∠DCB=∠ACD+∠ECB-∠ECD=90°+90°-35°=145°.(3分)(2)由(1)知∠ACB=180°-∠ECD,∴∠ECD=180°-∠ACB=40°.(6分)(3)∠ACB+∠DCE=180°.(7分)理由如下:∵∠ACB=∠ACD+∠DCB=90°+90°-∠DCE,∴∠ACB+∠DCE=180°.(12分)23.(14分)如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,(1)在图1中,若∠AOC=40°,则∠BOC= °,∠NOB= °.(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.【分析】(1)先根据余角的定义计算∠BOC=50°,再由角平分线的定义计算∠BOM=100°,根据角的差可得∠BON的度数;(2)同理先计算∠MOB=2∠BOC=2(90°﹣α)=180°﹣2α,再根据∠BON=∠MON ﹣∠BOM列等式即可;(3)同理可得∠MOB=180°﹣2α,再根据∠BON+∠MON=∠BOM列等式即可.【解答】(10分)解:(1)如图1,∵∠AOC与∠BOC互余,∴∠AOC+∠BOC=90°,∵∠AOC=40°,∴∠BOC=50°,∵OC平分∠MOB,∴∠MOC=∠BOC=50°,∴∠BOM=100°,∵∠MON=40°,∴∠BON=∠MON﹣∠BOM=140°﹣100°=40°,故答案为:50,40;…(4分)(2)解:β=2α﹣40°,理由是:如图1,∵∠AOC=α,∴∠BOC=90°﹣α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°﹣α)=180°﹣2α,…(5分)又∵∠MON=∠BOM+∠BON,∴140°=180°﹣2α+β,即β=2α﹣40°;(7分)(3)不成立,此时此时α与β之间的数量关系为:2α+β=40°,(8分)理由是:如图2,∵∠AOC=α,∠NOB=β,∴∠BOC=90°﹣α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°﹣α)=180°﹣2α,∵∠BOM=∠MON+∠BON,∴180°﹣2α=140°+β,即2α+β=40°,答:不成立,此。
【3套打包】泉州市七年级上册第四章《几何图形初步》培优测试卷.doc
人教版七年级数学上册_第四章_几何图形初步_单元检测试卷(有答案)一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )1. 下列立体图形中是圆柱的是( )A.B.C.D. 2. 如图所示的是五星红旗上的一颗五角星,其图中所示的角 的度数为( )A. B. C. D.3. 在下列说法中,正确的有( )①比较角的大小就是比较它们角的度数大小②角的大小与边的长短无关③从角的顶点出发的一条射线把这个角分成两个角,这条射线叫做这个角的平分线④如果 ,则 是 的平分线.A. 个B. 个C. 个D. 个4. 比较 与 时,把它们的顶点 和边 重合,把 和 放在 的同一侧,若 ,则( )A. 落在 的内部B. 落在 的外部C. 和 重合D.不能确定 的位置 5. 如图所示,点 在直线 上, 与 互余, ,则 的度数是( )A. B. C. D.6. 下列说法错误的是( )A. ″的余角是B.点 是线段 上的点, , ,点 是线段 的中点,则线段C. ,经过顶点 引一条射线 ,且 ,则D.已知线段 , 如图,则尺规作图中,线段7. 如图,将一个直角三角形板 的顶点 放在直线 上,若 ,则 等于( )A. B. C.D.8. 平面内有三条直线,它们的交点个数可能有( )种情形.A. B. C. D.9. 时钟钟面上的秒针绕中心旋转,下列说法正确的是()A.时针不动,分针旋转了B.时针不动,分针旋转了C.时针和分针都没有旋转D.分针旋转了,时针旋转角度很小10. 下列说法正确的是()A.经过一点可以作两条直线B.棱柱侧面的形状可能是一个三角形C.长方体的截面形状一定是长方形D.棱柱的每条棱长都相等二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 在一平面内有四个点,过其中任意两个点画直线,可以画________条直线.12. 如图所示,从地到地有多条道路,一般地,为了省时人们会走中间的一条直路而不会走其他的路.其理由是________.13. 已知直线上有三点,,,线段,,点是线段的中点,则________.14. 工人师傅在用方砖铺地时,常常打两个木桩,然后沿着拉紧的线铺砖,这样地砖就铺得整齐,这个事实说明的原理是________.15. 如图,线段表示一根对折以后的绳子,现从处把绳子剪断,剪断后的各段绳子中最长的一段,若,则这条绳子的原长为________.16. 若与互余,则与的关系是________.17. 一天小时中,时钟的分针和时针共组合成________次平角,________次周角.18. 如图所示,已知,,且点是的中点,则________.19. 从小丽家出发,向南走,再向西走到公园;从小刚家出发,向南走,再向西走也到公园,那么小刚家在小丽家的________方向.20. 如图,可以表示成________或________,可以表示成_人教版七年级数学上册第4章《几何图形初步》单元检测一.选择题(共10小题,每小题3分,共30分)1.下列几何体是棱锥的是()A.B.C.D.2.下面几种几何图形中,属于平面图形的是()①三角形;②长方形;③正方体;④圆;⑤四棱锥;⑥圆柱.A.①②④B.①②③C.①②⑥D.④⑤⑥3.如图的平面图形绕直线l旋转一周,可以得到的立体图形是()A.B.C.D.4.如图,图中共有线段()A.7条B.8条C.9条D.10条5.如图,轩轩同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.两条直线相交,只有一个交点B.两点确定一条直线C.经过一点的直线有无数条D.两点之间,线段最短6.已知线段AB=10cm,PA+PB=20cm,下列说法正确的是()A.点P不能在直线AB上B.点P只能在直线AB上C.点P只能在线段AB的延长线上D.点P不能在线段AB上7.在△ABC中,作BC边上的高,以下作图正确的是()A.B.C.D.8.如图,下列条件中不能确定的是OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOB=2∠AOCC.∠AOC+∠BOC=∠AOB D.9.嘉琪同学将一副三角板按如图所示位置摆放,其中∠α与∠B一定互补的是()A.B.C.D.10.下列说法正确的个数是()(1)连接两点之间的线段叫两点间的距离;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点之间,线段最短;(3)若AB=2CB,则点C是AB的中点;(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A>∠C>∠B.A.1个B.2个C.3个D.4个二.填空题(共8小题,每小题3分,共24分)11.如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是.12.如图,C是线段BD的中点,AD=3,AC=7,则AB的长等于.13.把一根木条固定在墙上,至少要钉2根钉子,这是根据.14.从重庆乘火车到北京,沿途经过5个车站方可达到北京站,那么在重庆与北京两站之间需要安排不同的车票种.15.已知∠A=110.32°,用度、分、秒表示为∠A=.16.如图,上午6:30时,时针和分针所夹锐角的度数是.17.若一个角的补角比它的余角的2倍还多70°,则这个角的度数为度.18.图中,∠1与∠2的关系是.三.解答题(共5小题,19--22每小题6分,23题5分,满分29分)19.两种规格的长方体纸盒,尺寸如下(单位:厘米)(1)做这种规格的纸盒各一个,共用料多少平方厘米?(2)做一个大纸盒与做三个小纸盒,哪个用料多?多多少平方厘米?20.如图,已知∠AOB=∠COD=90°,∠BOC=34°.(1)判断∠BOC与∠AOD之间的数量关系,并说明理由;(2)若OE平分∠AOC,求∠EOC的余角的度数.21.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.22.如图,点O在直线AB上,OM平分∠AOC,ON平分∠BOC,如果∠1:∠2=1:2,求∠1的度数.23.如图,∠AOB=90°,∠COD=90°,OE平分∠BOC,若∠1=30°,求∠COE的度数.解:∵∠AOB=90°∴∠1与∠2互余∵∠COD=90°∴∠BOC与∠2互余∴∠1=∠()∵∠1=30°∴∠BOC=30°∵OE平分∠BOC(已知)∴∠COE=BOC∴∠COE=15°四.综合运用(共2小题,24题8分,25题9分,满分17分)24.如图,数轴上有三个点A,B,C,表示的数分别是﹣4,﹣2,3.(1)若使C、B两点的距离是A、B两点的距离的2倍,则需将点C向左移动个单位;(2)点A、B、C开始在数轴上运动,若点A以每秒a个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t秒:①点A、B、C表示的数分别是、、(用含a、t的代数式表示);②若点B与点C之间的距离表示为d1,点A与点B之间的距离表示为d2,当a为何值时,5d1﹣3d2的值不会随着时间t的变化而改变,并求此时5d1﹣3d2的值.25.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=15∠AOE.求∠BOD的度数.2018—2019学年人教版七年级数学上册第4章《几何图形初步》单元检测参考简答一.选择题(共10小题)1.D.2.A.3.B.4.B.5.D.6.D.7.D.8.C.9.D.10.A.二.填空题(共8小题)11.圆锥.12.11.13.两点确定一条直线.14.42.15.110°19′12″.16.15°.17.70.18.互余.三.解答题(共5小题)19.两种规格的长方体纸盒,尺寸如下(单位:厘米)(1)做这种规格的纸盒各一个,共用料多少平方厘米?(2)做一个大纸盒与做三个小纸盒,哪个用料多?多多少平方厘米?【解】:(1)2 (1.5a×2b+1.5a×30+2b×30)+2(ab+20a+20b)=6ab+90a+120b+2ab+40a+40b=8ab+130a+160b(平方厘米).答:共用料(8ab+130a+160b)平方厘米;(2)2 (1.5a×2b+1.5a×30+2b×30)=6ab+90a+120b(平方厘米);2(ab+20a+20b)×3=6ab+120a+120b (平方厘米);(6ab+120a+120b)﹣(6ab+90a+120b)=30a(平方厘米).答:做三个小纸盒的用料多,多30a平方厘米.20.如图,已知∠AOB=∠COD=90°,∠BOC=34°.(1)判断∠BOC与∠AOD之间的数量关系,并说明理由;(2)若OE平分∠AOC,求∠EOC的余角的度数.【解】:(1)∠BOC与∠AOD之间的数量关系为∠BOC+∠AOD=180°,因为∠AOB=∠COD=90°,∠AOB+∠BOC+∠COD+∠AOD=360°,所以∠BOC+∠AOD=360°﹣∠AOB﹣∠COD=180°,(2)因为∠AOB=90°,∠BOC=34°,所以∠AOC=∠AOB+∠BOC=124°,因为OE平分∠AOC,所以∠E0C=∠AOE=12∠AOC=62°,所以∠EOC余角的度数为90°﹣∠E0C=28°.21.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.【解】:(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段;(2)设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x=mm+m+…+m=m(m﹣1),∴x=12m(m﹣1);(3)把45位同学看作直线上的45个点,每两位同学之间的一握手看作为一条线段,直线上45个点所构成的线段条数就等于握手的次数,因此一共要进行12×45×(45﹣1)=990次握手.22.如图,点O在直线AB上,OM平分∠AOC,ON平分∠BOC,如果∠1:∠2=1:2,求∠1的度数.【解】:∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠1=12∠BOC,∠2=12∠AOC,∵∠AOC+∠BOC=180°,∴∠1+∠2=90°,∵∠1:∠2=1:2,∴∠1=30°,答:∠1的度数为30°.23.如图,∠AOB=90°,∠COD=90°,OE平分∠BOC,若∠1=30°,求∠COE的度数.解:∵∠AOB=90°∴∠1与∠2互余互余定义∵∠COD=90°∴∠BOC与∠2互余∴∠1=∠BOC(同角的余角相等)∵∠1=30°∴∠BOC=30°等量代换∵OE平分∠BOC(已知)∴∠COE=BOC角平分线定义∴∠COE=15°【解】:∵∠AOB=90°∴∠1与∠2互余(互余定义)∵∠COD=90°∴∠BOC与∠2互余∴∠1=∠BOC (同角的余角相等)∵∠1=30°∴∠BOC=30°(等量代换)∵OE平分∠BOC(已知)∴∠COE=BOC (角平分线定义)∴∠COE=15°;故答案为:互余定义;BOC;同角的余角相等;等量代换;角平分线定义.四.综合运用(共2小题)24.如图,数轴上有三个点A,B,C,表示的数分别是﹣4,﹣2,3.(1)若使C、B两点的距离是A、B两点的距离的2倍,则需将点C向左移动1或10个单位;(2)点A、B、C开始在数轴上运动,若点A以每秒a个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t秒:①点A、B、C表示的数分别是﹣4﹣at、﹣2+2t、3+5t(用含a、t的代数式表示);②若点B与点C之间的距离表示为d1,点A与点B之间的距离表示为d2,当a为何值时,5d1﹣3d2的值不会随着时间t的变化而改变,并求此时5d1﹣3d2的值.【解】:(1)由数轴可知:A、B两点的距离为2,B点、C点表示的数分别为:﹣2、3,所以当C、B两点的距离是A、B两点的距离的2倍时,需将点C向左移动1或10个单位;故答案是:1或10;(2)①点A表示的数是﹣4﹣at;点B表示的数是﹣2+2t;点C所表示的数是3+5t.故答案是:﹣4﹣at;﹣2+2t;3+5t;②∵点A以每秒a个单位的速度向左运动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴d1=3t+5,d2=(a+2)t+2,∴5d1﹣3d2=5(3t+5)﹣3[(a+2)t+2]=(9﹣3a)t+19,9﹣3a=0,解得a=3,故当a为3时,5d1﹣3d2的值不会随着时间t的变化而改变,此时5d1﹣3d2的值为19.25.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=30°;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=15∠AOE.求∠BOD的度数.【解】:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=30°,故答案为:30°;(2)∵OE平分∠AOC,∴∠COE=∠AOE=12 COA,∵∠EOD=90人教版七年级数学上册第四章几何图形初步单元测试B卷一、填空题1.已知线段AB=8 cm,在直线AB上画线段BC使BC=3 cm,则线段AC=.2.如图是某个几何体的表面展开图,那么这个几何体是.3.如图,点A,B,C在直线l上,则图中共有条线段,有条射线.4.如图,点O是直线AD上的点,∠AOB,∠BOC,∠COD三个角从小到大依次相差25°,则这三个角的度数分别是.5.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOD=120°,则∠DOE=,∠COE=.6.如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为.二、选择题7.如图的几何体,从左边看到的图是()8.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是() A .用两个钉子就可以把木条固定在墙上 B .利用圆规可以比较两条线段的大小关系 C .把弯曲的公路改直,就能缩短路程D .植树时,只要定出两棵树的位置,就能确定同一行树所在的直线 9. 如图,直线AB ,CD 交于点O ,射线OM 平分∠AOC ,若 ∠AOC =76°,则∠BOM 等于() A .38°B .104°C .142°D .144°10.将两块直角三角板的直角顶点重合,如图所示,若, 则∠BOC 的度数是().A. 45° B .52° C. 60° D. 50° 11.下列说法中错误的有( ). (1)线段有两个端点,直线有一个端点; (2)角的大小与我们画出的角的两边的长短无关; (3)线段上有无数个点; (4)同角或等角的补角相等; (5)两个锐角的和一定大于直角.A .1个B .2个C .3个D .4个128AOD ∠第3题第4题12.下列四个图中,能用上∠1、∠AOB 、∠O 三种方法表示同一个的是( ).13.对于直线AB ,线段CD ,射线EF ,在下列各图中能相交的是( ).14.在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位于这个灯塔的( ). A :南偏西50°方向 B :南偏西40°方向 C :北偏东50°方向 D :北偏东40°方向15.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是() A. 正方体、圆柱、三棱柱、圆锥B. 正方体、圆锥、三棱柱、圆柱C. 正方体、圆柱、三棱锥、圆锥D. 正方体、圆柱、四棱柱、圆锥16.点E 在线段CD 上,下面四个等式①CE =DE ;②DE =21CD ;③CD =2CE ; ④CD =21DE.其中能表示E 是线段CD 中点的有() A. 1个 B. 2个 C. 3个 D. 4个 三、解答题17.一个角的补角比它的余角的3倍小20°,求这个角的度数.18.(1)如图1,已知点D是线段AC的中点,点B在线段DC上,且AB=4BC,若BD=6 cm,求AB的长;(2)如图2,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE,试求∠COE的度数.19.如图,已知线段AB上有两点C,D,且AC∶CD∶DB=2∶3∶4,E,F分别为AC,DB的中点,EF=2.4 cm,求线段AB的长.20.(12分)如图,P是线段AB上任一点,AB=12 cm,C、D两点分别从P、B同时向A点运动,且C点的运动速度为2 cm/s,D点的运动速度为3 cm/s,运动的时间为t s.(1)若AP=8 cm.①运动1 s后,求CD的长;②当D在线段PB运动上时,试说明AC=2CD;(2)如果t=2 s时,CD=1 cm,试探索AP的值.参考答案一、填空题1.已知线段AB=8 cm,在直线AB上画线段BC使BC=3 cm,则线段AC=5cm或11cm .2.如图是某个几何体的表面展开图,那么这个几何体是圆锥.3.如图,点A,B,C在直线l上,则图中共有3条线段,有6条射线.4.如图,点O是直线AD上的点,∠AOB,∠BOC,∠COD三个角从小到大依次相差25°,则这三个角的度数分别是35°,60°,85°.5.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOD=120°,则∠DOE=30°,∠COE =150°.6.如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为10.二、选择题7.如图的几何体,从左边看到的图是( B )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择(3分×10=30分)
1、下面四个图形每个均有六个相同的小正方形组成,折叠后能围成正方体的是
( )
A B C D
2、桌子上放着一个圆柱和一个长方体,你认为俯视图应是 ( )
A B C D
3、过平面内三点中任意两点画直线,可画的直线条数为 ( ) A 、2条 B 、3条 C 、4条 D 、3条或1条
4、下列说法错误的是 ( )
A 、长方体和正方体都是四棱柱
B 、棱柱的侧面都是四边形。
C 、棱柱的上下底面形状可以不同
D 、长方形绕一边旋转可形成圆柱。
5、如图,∠AOB 是一个平角,OD 、O
E 分别平分∠AOC 、∠BOC ,则∠DOE 为 ( )
A 、锐角,
B 、直角,
C 、钝角,
D 、不能确定
6、已知:∠1=35°18′,∠2=35.18°,∠3=35.2°,则下列说法正确的是( )
A 、∠1=∠2
B 、∠2=∠3
C 、∠1=∠3
D 、∠1、∠2、∠3互不相等
7、如图,O 是直线AE 上的一点,且∠AOC=∠BOD=︒90,则图中共有几对互余的角 ( )
A 、3
B 、4
C 、5
D 、6
8、若P 是线段AB 的中点,则下列等式错误的是 ( )
A 、AP =P
B B 、AB =2PB
C 、AP =2
1AB D 、AP =2PB 9、学校、电影院、公园在平面图上的标点分别是A 、B 、C ,已知电影院在学校的正东方向,公园
在学校的南偏西25°方向,那么平面图上的∠CAB 等于 ( )
A 、115° B、155° C、25° D、65°
10、下列说法中:①过两点有且只有一条直线,②两点之间线段最短,③到线段两个端点
距离相等的点叫做线段的中点,④线段的中点到线段的两个端点的距离相等。
其中正确的有()
A、1个
B、2个
C、3个
D、4个
二、填空(3分×10=30分)
11、已知线段AB=8cm,点C为任意一点,那么线段AC与BC 的和的最小值等于,
此时点C的位置在。
12、将弯曲的公路改直,可以缩短路程,这是根据。
13
、如图,点A、B、O在同一直线上,且∠2=3∠1,则∠1= 。
14、角度换算:27°21′36″=°,38.25°=°′″。
15、列车往返于A、B两地之间,中途有4个停靠点,
(1)有中不同的票价,(2)要准备种不同的车票。
16、若∠1+∠2=90°,∠2+∠3 = 90°,则∠2与∠3的关系是。
17、在直线l上有顺次取A、B、C三点,AB=10,BC=4,取AC的中点O,则AO= 。
18、3点45分时,时针与分针的夹角为。
19、下图是由一些相同的小正方体构成的几何体的三视图:
这个几体何中相同的小正方体的个数是。
20、已知α,β都是钝角,甲、乙、丙、丁四人计算1
6
(α+β)的结果依次为28º,48º,
88º,60º,其中只有一个是正确的,那么算的正确的是。
三、解答题
21、画出如图所示的半个圆柱的三视图。
(6分)
主视图左视图俯视图
22、互补的两个角的差为︒60,求较小的角的余角。
(5分)
23、如图,一只蚂蚁从O 出发,沿着北偏东45o 的方向爬行2.5cm ,碰到障碍物(记作B )
后折向北偏西60o 的方向爬行3cm ,(此时位置记作C ),(1)画出蚂蚁爬行的路线,(2)
求出∠OBC 的度数。
(7分)
24、如图,直线AB 、CD 、EF 相交于同一点O ,而且∠BOC=∠AOC ,∠DOF=21∠BOE ,求∠EOC 的度数。
(6分)
25、如图,点C 在线段AB 上,线段AC=8cm ,BC=4cm ,点M 、N 分别是AC 、BC 的中点, 求:
(1) 线段MN 的长度。
(2) 根据(1)的计算过程和结果,设AC+BC=a ,其它条件不变,你能猜测出MN 的长度
吗?请用一句简洁的话表述你发现的规律。
(8分)
26、(1)如图,已知∠AOB=︒90,∠BOC=︒30,OM 平分∠AOC ,ON 平分∠BOC ,求∠MON 的度数。
(2)如果(1)中∠AOB=α,其它条件不变,求∠MON 的度数。
(3)如果(1)中,∠BOC=β(β为锐角),其它条件不变,求∠MON 的度数。
(4)从(1)、(2)、(3)的结果中,你能看出什么规律?(8分)
测试八:1~10、CCDCB DBDAC ;11、8㎝,在AB 上;12、两点之间线段最短;13、︒45;
14、︒36.27,38°15′0″;15、14,28;16、相等;17、7;18、︒5.157;19、5;20、2;
21、略;22、︒30;23、︒75;24、︒30;25、6,a 21;26、45°;α2
1;45°∠MON 的大小与∠B0C 无关。