2018届高考数学二轮05集合与常用逻辑用语、函数及不等式4专题卷(全国通用)

合集下载

2018年高考数学(理)二轮复习 精品课件:专题一 集合与常用逻辑用语、不等式 第1讲 集合与常用逻辑用语

2018年高考数学(理)二轮复习 精品课件:专题一 集合与常用逻辑用语、不等式  第1讲 集合与常用逻辑用语
的否定为“∀x∈M,綈p(x)”.
例3
x 2 ,x<0, (1)已知函数f(x)= 给出下列两个命题: 2 m-x ,x≥0,
1 命题p:若m= ,则f(f(-1))=0; 4
命题q:∃m∈(-∞,0),方程f(x)=0有解. 那么,下列命题为真命题的是 A.p∧q C.p∧(綈q) √ B.(綈p)∧q D.(綈p)∧(綈q)
f(x)≥2
2 · x+m=2 2-m,若 f(x)的值不小于 4, 2
x
1
则 2 2-m≥4,解得 m≤-2,故选 A.思维升华 Nhomakorabea析 答案
跟踪演练2 (1)有关命题的说法正确的是
A.命题“若xy=0,则x=0”的否命题为:“若xy=0,则x≠0”
2 B.命题“∃x0∈R,使得2x2 0-1<0”的否定是:“∀x∈R,2x -1<0”
x≥0},则A∩B等于 A.∅ C.{x|1≤x<2} √
解析 由已知可得A={x|0<x<2},B={y|y≥1}⇒A∩B={x|1≤x<2},故选C.
解析
答案
(2)(2017届潍坊临朐县月考 )已知集合M={(x,y)|y=f(x)},若对于任意(x1 , y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“理想
解析
答案
2 x (2)(2017 届四川雅安中学月考 )“m ≤ʃ 2 (4 - 3 x )d x ” 是 “ 函数 f ( x ) = 2 + 1 x+m的值不小于
1
2
4”的

A.充分不必要条件 C.充要条件
B.必要不充分条件 D.既不充分也不必要条件
2 3 2 解析 m≤ʃ 2 (4 - 3 x )d x = (4 x - x )|1=-3, 1

2018年高考数学二轮复习 专题一 集合与常用逻辑用语、不等式 第2讲 不等式课件 理

2018年高考数学二轮复习 专题一 集合与常用逻辑用语、不等式 第2讲 不等式课件 理

∴a4+a4bb4+1≥4a2abb2+1=4ab+a1b≥2 4ab·a1b=4,
a2=2b2, 当且仅当4ab=a1b,
a2= 22,

b2=
2 4
a4+4b4+1 故 ab 的最小值为 4.
时取得等号.
1234
解析 答案
押题预测
1.已知 x,y 为正实数,且 x+y+1x+1y=5,则 x+y 的最大值是
例 1 (1)(2017 届湖南衡阳八中月考)设 f(x)=2loegx-31x,2-x<12,,x≥2, 则不
等式 f(x)>2 的解集为
A.(1,2)∪(3,+∞)
B.( 10,+∞)
√C.(1,2)∪( 10,+∞)
D.(1,2)
解析 令2ex-1>2(x<2),解得1<x<2.
A.3
7 B.2
√C.4
9 D.2
押题依据 基本不等式在历年高考中的地位都很重要,已成为高考的重点
和热点,用基本不等式求函数(和式或积式)的最值问题,有ቤተ መጻሕፍቲ ባይዱ与解析几何、
数列等知识相结合.
1234
押题依据 解析 答案
2.在 R 上定义运算:ac db=ad-bc,若不等式ax-+11 a-x 2≥1 对任意实 数 x 恒成立,则实数 a 的最大值为
_{_x_|1__<_x_≤__5_}_.
解析 原不等式化为-x-x+15≥0,即xx- -51≤0,
等价于xx--15≠0x-,1≤0, 解得 1<x≤5, 即不等式5x--1x≥0 的解集是{x|1<x≤5}.
解析 答案
(2)已知函数f(x)=ln|x|,则f(x)>1的解集为__(-__∞__,__-__e_)_∪__(_e,__+__∞__)__. 解析 函数 f(x)的解析式为 f(x)=llnnx-,xx,>0x. <0, 当x>0时,解f(x)=ln x>1,得x>e,即x的取值范围是(e,+∞); 当x<0时,解f(x)=ln(-x)>1, 得x<-e,即x的取值范围是(-∞,-e). 综上可得f(x)>1的解集为(-∞,-e)∪(e,+∞).

2018浙江高考(理)二轮《集合与常用逻辑用语》专题能力训练含答案.doc

2018浙江高考(理)二轮《集合与常用逻辑用语》专题能力训练含答案.doc

专题能力训练 1 集合与常用逻辑用语(时间:60 分钟满分:100 分)一、选择题(本大题共8小题,每小题5分,共40分)1. 若集合A={x卜2vx<1}, B={x|x<- 1,或x>3},则A H B= )A. { x|- 2<x<-1}B. { x|- 2vxv3}C. { x|- 1vxv1}D. { x| 1vxv3}2. (2017 浙江镇海中学5 月模拟)设集合A={x|x<- 2,或x>1,x€ R},B={x|x<0,或x>2,x € R}, 则(?刈H B是()A. (-2,0)B. (-2,0]C. [ -2,0)D. R3. 原命题为“若va n, n€ N,则数列{a n}是递减数列”,关于其逆命题、否命题、逆否命题真假性的判断依次如下, 正确的是()A. 真,真,真B. 假,假,真C. 真,真,假D. 假,假,假4. 直线I与平面a内的两条直线都垂直”是"直线l与平面a垂直”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件5. 已知a , 3 € (0, n ),贝厂'sin a +sin 3 <” 是“ sin(a + 3 )<”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6. 已知集合A={1,2,3,4}, B=2,4,6,8}, 定义集合A X B={(x,y)|x € Ay€ B},则集合A XB 中属于集合{( x, y) | log x y€ N}的元素个数是()A. 3B.4C.8D.97. (2018浙江“超级全能生”8月联考)设A, B是有限集合,定义:d(A B)=,其中card( A)表示有限集合A中的元素个数,则下列不一定正确的是()Ad (A B) > card( A A E)B. d(AC d(A B) wD d (A B) =[card( A) +card( B) +| card( A) - card( B) | ]2 __________________________________________________________________________________________8. 已知集合Apx€R x -2x-3<0}, Bpx€R|- 1<x<m,若x €A是x€ B的充分不必要条件,则实数m的取值范围为()A. (3, +8)B. (-1,3)C. [3, +8)D. (-1,3]二、填空题(本大题共6小题,每小题5分,共30分)9. 已知集合A={3,吊}, B={-1,3,2 m-1}.若A? ________ B,则实数m的值为.210. 已知集合A={x| (x-2)( x+5)<0}, B={x|x - 2x- 3>0}, 全集U=R, 则A A B= ______________ , A U ( ?U B) = ______________ .11. ____________ 设全集U=R集合A={x|x (x- 2) <0}, B={x|x<a},若A与B的关系如图所示,则实数a的取值范围是.12.设集合P={t|数列{n2+tn(n€ N*)}单调递增},集合Q=t|函数f(x)=kx2+tx在区间[1, +8)上单调递增},若“ t € P”是“t € Q'的充分不必要条件,则实数k的最小值为__________ .13. 给出下列四个命题:①在△ ABC中,若A>B 则sin A>sin B;②若0<a<1,则函数f(x)=x2+a x-3只有一个零点;③函数y=2sin x cos x在上是单调递减函数;④若lg a+g b=lg( a+b),则a+b的最小值为4.其中真命题的序号是___________ .14. 若X是一个集合,T是一个以X的某些子集为元素的集合,且满足:①X属于T ,空集?属于T ;②T中任意多个元素的并集属于T ;③T中任意多个元素的交集属于T .则称T是集合X上的一个拓扑.已知集合X={ a, b, c},对于下面给出的四个集合T :①T ={? ,{ a},{ c},{ a, b, c}};②T ={? ,{ b},{ c},{ b, c},{ a, b, c}};③T ={? ,{ a},{ a, b},{ a, c}};④T ={? ,{ a, c},{ b, c},{ c},{ a, b, c}}.其中是集合X上的一个拓扑的集合T的所有序号是 ___________ .三、解答题(本大题共2小题,共30分.解答应写出必要的文字说明、证明过程或演算步骤)15. (本小题满分15 分)已知集合A={x| 2<x<7}, B={x| 2<x<10}, C={x| 5-a<x<a}.(1)求A U B( ?R A) n B;⑵若C? B求实数a的取值范围.16. (本小题满分15 分)已知p: -x +16x- 60>0, q: > 0, r:关于x 的不等式x - 3ax+2a <0(x € R).(1) 当a>0时,是否存在a使得r是p的充分不必要条件?(2) 若r是p的必要不充分条件,且r是q的充分不必要条件,试求a的取值范围.参考答案专题能力训练 1 集合与常用逻辑用语1. A 解析A H B={x|- 2vxv-1}.故选A2. C解析•••集合A={x|x<- 2 或x>1,x € R},•••?R A={X|- 2 w x< 1}.T 集合B={ x|x< 0 或x>2, x€ R},•(?R A)H B={x|- 2w x<0}=[-2,0) . 故选C.3. A 解析由<a n, 得a n+a n+1<2 a n, 即a n+1<a n.所以当<a n 时, 必有a n+1<a n,则数列{a n} 是递减数列.反之, 若数列{a n} 是递减数列, 必有a n+1<a n,从而有<a n. 所以原命题及其逆命题均是真命题, 从而其否命题及其逆否命题也均是真命题.4. B解析根据线面垂直的判定:l与a内的两条相交直线垂直?I丄a ,故是必要不充分条件, 应选B.5. A 解析当a =3 =时,sin a =sin 3 =1,sin a +sin 3 =2,sin( a + 3 ) =0<,所以后不能推前,又sin( a + 3 ) =sin a cos 3 +cos a sin 3 <sin a +sin 3 ,所以前推后成立.故选A.6. B 解析由给出的定义得A X B={(1,2),(1,4),(1,6),(1,8),(2,2),(2,4),(2,6),(2,8),(3,2),(3,4),(3,6),(3,8),(4,2),(4,4),(4,6),(4,8)} .其中log 22=1,log 24=2,log 28=3,log 44=1,因此一共有4 个元素,应选B.7. C 解析■/ card( A U B) > card( A H B),•d( A B) > card( A H B),选项A 正确;T d( A, B) =J•选项B 正确;T d(A,B)=,•••选项C错误;又| card( A)-card( B) | > 0, ."(A B) < [card( A)+card( B) +|card( A)-card( B) | ],选项 D 正确.故选C.8. A 解析A={x € R|x 2- 2x- 3<0} ={ x|- 1<x<3}, ■/x€ A 是x € B 的充分不必要条件,二A? B,二m:3.故选A.9. 1 解析■/ A? B 二m=2m-1 或m=-1(舍).由m=2m-1得m=.经检验m=l时符合题意.10. {x|- 5<x< -1} {x|- 5<x<3} 解析由题意知集合2A={ x| (x- 2)( x+5) <0} ={ x|- 5<x<2}, B={x|x - 2x- 3> 0} ={ x|x > 3 或x< -1},所以?u B={x|- 1<x<3},A n B={x|- 5<x<-1}, A U (?U B)={X|- 5<x<3}.11. a > 2 解析因为A={ x|x (x- 2) <0} ={ x| 0<x<2},又Venn图表达的集合关系是A? B, B={ x|x<a},所以a> 2.12. 解析因为数列{ n2+tn(n€ N*)}单调递增,2 2 __________________________________________________ *所以(n+1) +t( n+1) >n +tn,可得t>- 2n-1,又n € N,所以t>- 3.因为函数f (x) =kx2+tx在区间[1, +s)上单调递增,所以其图象的对称轴x=- < 1,且k>0, 所以t >-2k,又“ t € P是“ t € Q的充分不必要条件,所以-2k w-3,即k>.故实数k的最小值为.13. ①④ 解析在厶ABC中,A>田a>b? 2R sin A>2R sin B? sin A>sin B故①为真命题.v . , . ,在同一直角坐标系内作出函数y1=3-x ,y2=a(0<a<1)的图象如图所示.由图知两函数图象有两个交点,故②为假命题.由y=2sin x cos x=sin 2 x,又x €时,2 x € ,可知y=2sin x cos x在上是增函数,因此③为假命题.④中由lg a+lg b=lg( a+b 知ab=a+b 且a>0, b>0.2 又ab w ,所以令a+b=t(t>0),则4t < t ,即t > 4,因此④为真命题.14.②④解析① T ={? ,{ a},{ c},{ a, b, c}},但是{a} U {c}={a, c}?T ,所以①错;②④ 都满足集合X上的一个拓扑的集合T的三个条件,所以②④正确;③{a, b} U {a.c} ={ a, c, b} ? T ,故错.所以答案为②④.15. 解(1) A U B={x|2vxv10}, ?R A={X|X < 2 或x> 7},( ?R A) n B=>|7W x<10}.(2)①当C=?时,满足C? B,此时5-a > a,得a< ;②当C M ?时,若C? B,则解得<a w 3.故由①②得实数a的取值范围是a w 3.2 2 216. 解(1)由-x +16x-60>0,解得6vxv10,当a>0 时,由x-3ax+2a <0,解得a<x<2a.若r 是p的充分不必要条件,则(a,2 a) ? (6,10)且两集合不相等,则a无解,不存在.2(2)由-x +16x- 60>0,解得6VXV10,由>0,解得x>1.2 2当a>0 时, 由x2-3ax+2a2<0, 解得a<x<2a.若r是p的必要不充分条件,则(6,10) ? (a,2 a),此时5 w a< 6.①若r是q的充分不必要条件,则(a,2 a)? (1, +^),此时a> 1.②由①②得5w a w 6.22当a<0时,由x -3ax+2a <0,解得2a<x<a<0,而右r是p的必要不充分条件,(6,10) ? (a,2 a) 不成立,(a,2 a) ? (1, )也不成立,不存在a值.22当a=0时,由x - 3ax+2a <0,解得r为? ,(6,10) ? ?不成立,不存在a值.综上,5 w a w 6为所求.。

【高三数学试题精选】2018届高考数学集合与常用逻辑用语、函数、导数考点突破测试题及答案

【高三数学试题精选】2018届高考数学集合与常用逻辑用语、函数、导数考点突破测试题及答案
2018届高考数学集合与常用逻辑用语、函数、导数考点突破测试题及答案
5
c
专题检测卷(二) 集合与常题(本大题共12小题,每小题5分,共计60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(2018 标全国)已知集合A={x||x|≤2,x∈R},B={x|x≤4,x∈Z},则A∩B=
A.f(0)<f(-1)<f(2) B.f(-1)<f(0)<f(2)
c. f(-1)<f(2)<f(0) D.f(2)<f(-1)<f(0)
【解析】 由f(x-2)在[0,2]上单调递减,
∴f(x)在[-2,0]上单调递减.
∵=f(x)是偶函数,
∴f(x)在[0,2]上单调递增.
又f(-1)=f(1),∴f(0)<f(-1)<f(2).
15+2b+2c≤0 b+c≤-152
【答案】 B
7.(2018 东聊城摸底)函数f(x)的图象如下图所示,下列数值排序正确的是
A.0 f′(2) f′(3) f(3)-f(2)B.0 f′(3) f(3)-f(2) f′(2)
c.0 f′(3) f′(2) f(3)-f(2)D.0 f(3)-f(2) f′(2) f′(3)
【答案】 B
11.(2018 东泰安联考)已知函数f(x)的定义域为[-2,+∞),部分对应值如下表,f′(x)为f(x)的导函数,函数=f′(x)的图象如图所示.若两正数a、b满足f(2a+b)<1,则b+3a+3的取值范围是
x-204
f(x)1-11
A67,43 B35,73
c23,65 D-13,3
【解析】 由f(2a+b)<1及a>0,b>0得f(2a+b)<f(4).
又f(x)在(0,+∞)上单增,

2018年高考数学专题01集合与常用逻辑用语分项试题含解析理

2018年高考数学专题01集合与常用逻辑用语分项试题含解析理

专题 集合与常用逻辑用语1.【2018广西三校联考】如果集合{}|520M x y x ==-,集合{}3|log N x y x ==则M N ⋂=( )A. {}|04x x <<B. {}|4x x ≥C. {}|04x x <≤D. {}|04x x ≤≤ 【答案】B【解析】{}52004,?|4x x M x x -≥∴≥=≥, {}0N x x =, {}|4M N x x ⋂=≥ 故选B2.【2018豫南九校质考二】命题:,,命题:,,则是的( )A. 充分非必要条件B. 必要非充分条件C. 必要充分条件D. 既不充分也不必要条件 【答案】A点睛:充分必要条件中,小范围推大范围,大范围推不出小范围;这是这道题的跟本; 再者,根据图像判断范围大小很直观,快捷,而不是去解不等式;3.【2018吉林百校联盟联考】已知集合{}2|3410A x x x =-+≤, {}|43B x y x ==-,则A B ⋂= ( ) A. 3,14⎛⎤⎥⎝⎦ B. 3,14⎡⎤⎢⎥⎣⎦ C. 13,34⎡⎤⎢⎥⎣⎦D. 13,34⎡⎫⎪⎢⎣⎭【答案】B【解析】求解不等式: 23410x x -+≤可得: 1|13A x x ⎧⎫=≤≤⎨⎬⎩⎭, 函数43y x =-有意义,则: 430x -≥,则3|4B x x ⎧⎫=≥⎨⎬⎩⎭,据此可得: 3|14A B x x ⎧⎫⋂=≤≤⎨⎬⎩⎭. 本题选择B 选项.4.【2018湖南益阳联考】已知命题p :若复数z 满足()()5z i i --=,则6z i =;命题q :复数112i i ++的虚部为15i -,则下面为真命题的是( ) A.()()p q ⌝⌝∧ B. ()p q ⌝∧ C. ()p q ⌝∧ D. p q ∧【答案】C5.【2018湖南湘潭联考】设全集U R=,集合()()2{|log 2},{|210}A x x B x x x =≤=-+≥,则U A C B ⋂=( )A. ()0,2B. []2,4C. (),1-∞-D. (],4-∞ 【答案】A【解析】集合{}2|2{|04}A x log x x x =≤=<≤,()(){}|210{|12}B x x x x x x =-+≥=≤-≥或.{|12}U C B x x =-<<.所以{}()|020,2U A C B x x ⋂=<<=. 故障A. 6.【2018广东省广州市综合测试】已知集合()()22{,|4},{,|21}A x y x y B x y y x =+===+,则A B ⋂中元素的个数为( )A. 3B. 2C. 1D. 0 【答案】B【解析】由22201{ 540{ 121x x y x x y y x =+=⇒+=⇒==+或45{35x y =-=-, ∴集合A B ⋂中有两个元素,故选B.7.【2018江西省红色七校联考】在右边Venn 图中,设全集,U R =集合,A B 分别用椭圆内图形表示,若集合{}(){}2|2 ,|ln 1 A x x x B x y x =<==-,则阴影部分图形表示的集合为( )A. {}| 1 x x ≤B. {}| 1 x x ≥C. {}|0 1 x x <≤D. {}|1 2 x x ≤< 【答案】D8.【2018广西桂林柳州市模拟一】已知集合{}32,A x x n n N ==+∈, {}6,8,12,14B =,则集合A B ⋂中元素的个数为( ) A. 5 B. 4 C. 3 D. 2 【答案】D【解析】由题意可得,集合A 表示除以3之后余数为2的数,结合题意可得: {}8,14A B ⋂=, 即集合A B ⋂中元素的个数为2. 本题选择D 选项.9.【2018广东省珠海一中联考】下列选项中,说法正确的是( ) A. 若0a b >>,则ln ln a b <B. 向量()1,a m =, (),21b m m =-(R m ∈)垂直的充要条件是1m =C. 命题“*N n ∀∈, ()1322nn n ->+⋅”的否定是“*N n ∀∈, ()1322nn n -≥+⋅”D. 已知函数()f x 在区间[],a b 上的图象是连续不断的,则命题“若()()0f a f b ⋅<,则()f x 在区间(),a b 内至少有一个零点”的逆命题为假命题【答案】D10.【2018广东省珠海一中六校联考】已知集合(){}10A x x x =-<, {}e 1xB x =>,则()RA B ⋂=( )A. [)1,+∞B. ()0,+∞C. ()0,1D. []0,1 【答案】A 【解析】解A=(0,1) B=(0, ∞),()()R0,1A = ()()R 0,1A B ⋂=11.【2018陕西省西工大附中六模】下列说法正确的是( )A. “若1a >,则21a >”的否命题是“若1a >,则21a ≤”B. 在ABC ∆中,“A B >”是 “22sin sin A B >”的必要不充分条件C. “若tan 3α≠,则3πα≠”是真命题D. ()0,0,x ∃∈-∞ 使得0034xx<成立 【答案】C12.【2018陕西省西工大附中六模】已知集合{}1,A a =, {}2|540 ,B x x x x Z =-+=∈,若A B ⋂≠∅,则a 等于( ) A. 2 B. 3 C. 2或3 D. 2或4 【答案】C【解析】由题意可得: {}{}|14,2,3B x x x Z =<<∈=, 结合交集的定义可得:则a 等于2或3. 本题选择C 选项.13.【2018陕西省西工大附中七模】已知集合(){,|,,}xA x y y e x N y N ==∈∈,()2{,|1,,}B x y y x x N y N ==-+∈∈,则A B ⋂=( )A. ()0,1B. {}0,1C. (){}0,1D. φ【答案】C 【解析】(){}(){}0101A B A B =∈∴⋂=,,,选C. 14.【2018河北省石家庄二中模拟】已知函()1x xf x e x=++则120x x +>是()()()()1212f x f x f x f x +>-+-的 ( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】C现证充分性:∵120x x +>, 12x x >-,又()()1x xf x e x∞∞=+-++在,上为单调增函数,∴()()12f x f x >-,同理: ()()21f x f x >-,故()()()()1212f x f x f x f x +>-+-.充分性证毕. 再证必要性:记()()gx ? f x f x =--,由()()1x xf x e x∞∞=+-++在,上单调递增,可知()()f x ∞∞--+在,上单调递减,∴()()gx ? f x f x =--在()∞∞-+,上单调递增。

高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第四讲 不等式教案 理-人教版高三

高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第四讲 不等式教案 理-人教版高三

第四讲不等式年份卷别考查角度及命题位置命题分析2018Ⅰ卷线性规划求最值·T131.选择、填空题中的考查以简单的线性规划与不等式性质为主,重点求目标函数的最值,有时也与其他知识交汇考查.2.基本不等式求最值及应用在课标卷考试中是低频点,很少考查.3.不等式的解法多与集合、函数、解析几何、导数交汇考查.Ⅱ卷线性规划求最值·T142017Ⅰ卷线性规划求最值·T14Ⅱ卷线性规划求最值·T5Ⅲ卷线性规划求最值·T132016Ⅰ卷一元二次不等式的解法、集合的交集运算·T1不等式比较大小、函数的单调性·T8线性规划的实际应用·T16Ⅱ卷一元二次不等式的解法、集合的并集运算·T2Ⅲ卷一元二次不等式的解法、集合的交集运算·T1不等式比较大小、函数的单调性·T6线性规划求最值·T13不等式性质及解法授课提示:对应学生用书第9页[悟通——方法结论]1.一元二次不等式ax2+bx+c>0(或<0)(a≠0,Δ=b2-4ac>0),如果a与ax2+bx+c 同号,那么其解集在两根之外;如果a与ax2+bx+c异号,那么其解集在两根之间.简言之:同号两根之外,异号两根之间.2.解简单的分式、指数、对数不等式的基本思想是利用相关知识转化为整式不等式(一般为一元二次不等式)求解.3.解含参数不等式要正确分类讨论.[全练——快速解答]1.(2018·某某一模)a >b >0,c <0,以下不等关系中正确的是( ) A .ac >bcB .a c>b cC .log a (a -c )>log b (b -c )D.aa -c >bb -c解析:法一:(性质推理法)A 项,因为a >b ,c <0,由不等式的性质可知ac <bc ,故A 不正确;B 项,因为c <0,所以-c >0,又a >b >0,由不等式的性质可得a -c >b -c>0,即1a c >1bc >0,再由反比例函数的性质可得a c <b c,故B 不正确; C 项,假设a =12,b =14,c =-12,那么log a (a -c )=1=0,log b (b -c )=34>1=0,即log a (a -c )<log b (b -c ),故C 不正确;D 项,a a -c -bb -c =a (b -c )-b (a -c )(a -c )(b -c )=c (b -a )(a -c )(b -c ),因为a >b >0,c <0,所以a -c >b -c >0,b -a <0,所以c (b -a )(a -c )(b -c )>0,即a a -c -b b -c>0,所以aa -c >bb -c,故D 正确.综上,选D.法二:(特值验证法)由题意,不妨取a =4,b =2,c =-2. 那么A 项,ac =-8,bc =-4,所以ac <bc ,排除A ; B 项,a c =4-2=116,b c =2-2=14,所以a c <b c,排除B ;C 项,log a (a -c )=log 4(4+2)=log 4 6,log b (b -c )=log 2(2+2)=2,显然log 4 6<2,即log a (a -c )<log b (b -c ),排除C.综上,选D. 答案:D2.(2018·某某四校联考)不等式mx 2+nx -1m <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-12或x >2,那么m -n =( )A.12 B .-52C.52D .-1解析:由题意得,x =-12和x =2是方程mx 2+nx -1m =0的两根,所以-12+2=-n m 且-12×2=-1m 2(m <0),解得m =-1,n =32,所以m -n =-52. 答案:B 3.不等式4x -2≤x -2的解集是( ) A .(-∞,0]∪(2,4] B .[0,2)∪[4,+∞) C .[2,4)D .(-∞,2]∪(4,+∞)解析:①当x -2>0,即x >2时,不等式可化为(x -2)2≥4,所以x ≥4;②当x -2<0,即x <2时,不等式可化为(x -2)2≤4,所以0≤x <2.综上,不等式的解集是[0,2)∪[4,+∞).答案:B4.x ∈(-∞,1],不等式1+2x +(a -a 2)·4x>0恒成立,那么实数a 的取值X 围为( ) A.⎝⎛⎭⎪⎫-2,14B.⎝⎛⎦⎥⎤-∞,14C.⎝ ⎛⎭⎪⎫-12,32D.(]-∞,6解析:根据题意,由于1+2x+(a -a 2)·4x >0对于一切的x ∈(-∞,1]恒成立,令2x=t(0<t≤2),那么可知1+t +(a -a 2)t 2>0⇔a -a 2>-1+tt2,故只要求解h (t)=-1+tt 2(0<t≤2)的最大值即可,h (t)=-1t 2-1t =-⎝ ⎛⎭⎪⎫1t +122+14,又1t ≥12,结合二次函数图象知,当1t =12,即t =2时,h (x )取得最大值-34,即a -a 2>-34,所以4a 2-4a -3<0,解得-12<a <32,故实数a 的取值X 围为⎝ ⎛⎭⎪⎫-12,32.答案:C5.设函数f (x )=⎩⎪⎨⎪⎧lg (x +1),x ≥0,-x 3,x <0,那么使得f (x )≤1成立的x 的取值X 围是________.解析:由⎩⎪⎨⎪⎧x ≥0,lg (x +1)≤1得0≤x ≤9,由⎩⎪⎨⎪⎧x <0,-x 3≤1得-1≤x <0,故使得f (x )≤1成立的x 的取值X 围是[-1,9].答案:[-1,9]1.明确解不等式的策略(1)一元二次不等式:先化为一般形式ax 2+bx +c >0(a >0),再结合相应二次方程的根及二次函数图象确定一元二次不等式的解集.(2)含指数、对数的不等式:利用指数、对数函数的单调性将其转化为整式不等式求解. 2.掌握不等式恒成立问题的解题方法(1)f (x )>a 对一切x ∈I 恒成立⇔f (x )min >a ;f (x )<a 对一切x ∈I 恒成立⇔f (x )max <a . (2)f (x )>g (x )对一切x ∈I 恒成立⇔f (x )的图象在g (x )的图象的上方.(3)解决恒成立问题还可以利用分离参数法,一定要搞清谁是自变量,谁是参数.一般地,知道谁的X 围,谁就是变量,求谁的X 围,谁就是参数.利用分离参数法时,常用到函数单调性、基本不等式等.基本不等式授课提示:对应学生用书第10页[悟通——方法结论]求最值时要注意三点:“一正〞“二定〞“三相等〞.所谓“一正〞指正数,“二定〞是指应用定理求最值时,和或积为定值,“三相等〞是指等号成立.[全练——快速解答]1.(2018·某某模拟)x >0,y >0,且4x +y =xy ,那么x +y 的最小值为( ) A .8B .9 C .12 D .16解析:由4x +y =xy 得4y +1x=1,那么x +y =(x +y )·⎝ ⎛⎭⎪⎫4y +1x =4x y +yx+1+4≥24+5=9,当且仅当4x y =yx,即x =3,y =6时取“=〞,应选B.答案:B2.(2017·高考某某卷)假设a ,b ∈R ,ab >0,那么a 4+4b 4+1ab 的最小值为________.解析:因为ab >0,所以a 4+4b 4+1ab ≥24a 4b 4+1ab =4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab=4,当且仅当⎩⎪⎨⎪⎧a 2=2b 2,ab =12时取等号,故a 4+4b 4+1ab的最小值是4.答案:43.(2017·高考某某卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,那么x 的值是________.解析:由题意,一年购买600x 次,那么总运费与总存储费用之和为600x×6+4x =4⎝ ⎛⎭⎪⎫900x +x ≥8900x·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30. 答案:30掌握基本不等式求最值的3种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:假设无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而可利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开,即化为y =m +Ag (x )+Bg (x )(A >0,B >0),g (x )恒正或恒负的形式,然后运用基本不等式来求最值.简单的线性规划问题授课提示:对应学生用书第10页[悟通——方法结论] 平面区域的确定方法解决线性规划问题首先要找到可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.[全练——快速解答]1.(2017·高考全国卷Ⅲ)设x ,y 满足约束条件 ⎩⎪⎨⎪⎧3x +2y -6≤0,x ≥0,y ≥0,那么z =x -y 的取值X 围是( )A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]解析:作出不等式组表示的可行域如图中阴影部分所示,作出直线l 0:y =x ,平移直线l 0,当直线z =x -y 过点A (2,0)时,z 取得最大值2,当直线z =x -y 过点B (0,3)时,z 取得最小值-3,所以z =x -y 的取值X 围是[-3,2].答案:B2.平面上的单位向量e 1与e 2 的起点均为坐标原点O ,它们的夹角为π3.平面区域D 由所有满足OP →=λe 1+μe 2的点P 组成,其中⎩⎪⎨⎪⎧λ+μ≤1,0≤λ,0≤μ,那么平面区域D 的面积为( )A.12B. 3C.32D.34解析:建立如下图的平面直角坐标系,不妨令单位向量e 1=(1,0),e 2=⎝ ⎛⎭⎪⎫12,32,设向量OP →=(x ,y ),因为OP →=λe 1+μe 2,所以⎩⎪⎨⎪⎧x =λ+μ2,y =3μ2,即⎩⎪⎨⎪⎧λ=x -3y3,μ=23y 3,因为⎩⎪⎨⎪⎧λ+μ≤1,λ≥0,μ≥0,所以⎩⎨⎧3x +y ≤3,3x -y ≥0,y ≥0表示的平面区域D 如图中阴影部分所示,所以平面区域D 的面积为34,应选D. 答案:D3.(2018·某某模拟)某工厂制作仿古的桌子和椅子,需要木工和漆工两道工序.生产一把椅子需要木工4个工作时,漆工2个工作时;生产一X 桌子需要木工8个工作时,漆工1个工作时.生产一把椅子的利润为1 500元,生产一X 桌子的利润为2 000元.该厂每个月木工最多完成8 000个工作时、漆工最多完成1 300个工作时.根据以上条件,该厂安排生产每个月所能获得的最大利润是________元.解析:设该厂每个月生产x 把椅子,y X 桌子,利润为z 元,那么得约束条件 ⎩⎪⎨⎪⎧4x +8y ≤8 000,2x +y ≤1 300,z =1 500x +2 000y .x ,y ∈N ,画出不等式组⎩⎪⎨⎪⎧x +2y ≤2 000,2x +y ≤1 300,x ≥0,y ≥0表示的可行域如图中阴影部分所示,画出直线3x +4y =0,平移该直线,可知当该直线经过点P 时,z 取得最大值.由⎩⎪⎨⎪⎧x +2y =2 000,2x +y =1 300,得⎩⎪⎨⎪⎧x =200,y =900,即P (200,900),所以z max =1 500×200+2 000×900=2 100 000.故每个月所获得的最大利润为2 100 000元.答案:2 100 000解决线性规划问题的3步骤[练通——即学即用]1.(2018·湘东五校联考)实数x ,y 满足⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k ,且z =x +y 的最大值为6,那么(x +5)2+y 2的最小值为( )A .5B .3 C. 5D. 3解析:作出不等式组⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k表示的平面区域如图中阴影部分所示,由z =x +y ,得y =-x +z ,平移直线y =-x ,由图形可知当直线y =-x +z 经过点A 时,直线y =-x +z 的纵截距最大,此时z 最大,最大值为6,即x +y ⎩⎪⎨⎪⎧x +y =6,x -y =0,得A (3,3),∵直线y =k 过点A ,∴k =3.(x +5)2+y 2的几何意义是可行域内的点与D(-5,0)的距离的平方,数形结合可知,(-5,0)到直线x +2y =0的距离最小,可得(x +5)2+y 2的最小值为⎝⎛⎭⎪⎫|-5+2×0|12+222=5.应选A. 答案:A2.变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≥0,2x +y ≤1,记z =4x +y 的最大值是a ,那么a =________.解析:如下图,变量x ,y 满足的约束条件的可行域如图中阴影部分所示.作出直线4x +y =0,平移直线,知当直线经过点A 时,z取得最大值,由⎩⎪⎨⎪⎧2x +y =1,x +y =0,解得⎩⎪⎨⎪⎧x =1,y =-1,所以A (1,-1),此时z =4×1-1=3,故a =3.答案:33.(2018·高考全国卷Ⅰ)假设x 、y 满足约束条件⎩⎪⎨⎪⎧x -2y -2≤0,x -y +1≥0,y ≤0,那么z =3x +2y 的最大值为________.解析:作出满足约束条件的可行域如图阴影部分所示.由z =3x +2y 得y =-32x +z2.作直线l 0:y =-32x .平移直线l 0,当直线y =-32x +z2过点(2,0)时,z 取最大值,z max=3×2+2×0=6.答案:6授课提示:对应学生用书第118页一、选择题1.互不相等的正数a ,b ,c 满足a 2+c 2=2bc ,那么以下等式中可能成立的是( ) A .a >b >c B .b >a >c C .b >c >aD .c >a >b解析:假设a >b >0,那么a 2+c 2>b 2+c 2≥2bc ,不符合条件,排除A ,D ; 又由a 2-c 2=2c (b -c )得a -c 与b -c 同号,排除C ;当b >a >c 时,a 2+c 2=2bc 有可能成立,例如:取a =3,b =5,c =1.应选B. 答案:B2.b >a >0,a +b =1,那么以下不等式中正确的是() A .log 3a >0B .3a -b<13C .log 2a +log 2b <-2D .3⎝ ⎛⎭⎪⎫b a +a b ≥6解析:对于A ,由log 3a >0可得log 3a >log 31,所以a >1,这与b >a >0,a +b =1矛盾,所以A 不正确;对于B ,由3a -b<13可得3a -b <3-1,所以a -b <-1,可得a +1<b ,这与b >a >0,a +b =1矛盾,所以B 不正确;对于C ,由log 2a +log 2b <-2可得log 2(ab )<-2=log 214,所以ab <14,又b >a >0,a +b =1>2ab ,所以ab <14,两者一致,所以C 正确;对于D ,因为b >a >0,a +b =1,所以3⎝ ⎛⎭⎪⎫b a +a b >3×2b a ×ab=6, 所以D 不正确,应选C. 答案:C3.在R 上定义运算:x y =x (1-y ).假设不等式(x -a )(x -b )>0的解集是(2,3),那么a +b =( )A .1B .2C .4D .8解析:由题知(x -a )(x -b )=(x -a )[1-(x -b )]>0,即(x -a )[x -(b +1)]<0,由于该不等式的解集为(2,3),所以方程(x -a )[x -(b +1)]=0的两根之和等于5,即a +b +1=5,故a +b =4.答案:C 4.a ∈R ,不等式x -3x +a≥1的解集为P ,且-2∉P ,那么a 的取值X 围为( ) A .(-3,+∞)B .(-3,2)C .(-∞,2)∪(3,+∞)D .(-∞,-3)∪[2,+∞)解析:∵-2∉P ,∴-2-3-2+a <1或-2+a =0,解得a ≥2或a <-3.答案:D5.x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x -3y +5≥0,x ≥0,y ≥0,那么z =8-x·⎝ ⎛⎭⎪⎫12y 的最小值为( )A .1 B.324C.116D.132解析:不等式组表示的平面区域如图中阴影部分所示,而z =8-x·⎝ ⎛⎭⎪⎫12y=2-3x -y,欲使z 最小,只需使-3x -y 最小即可.由图知当x =1,y =2时,-3x -y 的值最小,且-3×1-2=-5,此时2-3x -y最小,最小值为132.应选D.答案:D6.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6,x <0,那么不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)解析:由题意得,f (1)=3,所以f (x )>f (1),即f (xx <0时,x +6>3,解得-3<x <0;当x ≥0时,x 2-4x +6>3,解得x >3或0≤x <1.综上,不等式的解集为(-3,1)∪(3,+∞).答案:A7.实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =3x -2y 的最小值为0,那么实数m 等于( )A .4B .3C .6D .5解析:作出不等式组所表示的可行域如图中阴影部分所示,由图可知,当目标函数z =3x -2y 所对应的直线经过点A 时,z 取得最小值0.由⎩⎪⎨⎪⎧y =2x -1,x +y =m ,求得A ⎝ ⎛⎭⎪⎫1+m 3,2m -13.故z 的最小值为3×1+m 3-2×2m -13=-m 3+53,由题意可知-m 3+53=0,解得m =5.答案:D8.假设对任意正实数x ,不等式1x 2+1≤ax恒成立,那么实数a 的最小值为( ) A .1 B. 2 C.12 D.22解析:因为1x 2+1≤a x ,即a ≥x x 2+1,而x x 2+1=1x +1x≤12(当且仅当x =1时取等号),所以a ≥12.答案:C9.(2018·某某一模)实数x ,y 满足条件⎩⎪⎨⎪⎧3x +y +3≥0,2x -y +2≤0,x +2y -4≤0,那么z =x 2+y 2的取值X围为( )A .[1,13]B .[1,4]C.⎣⎢⎡⎦⎥⎤45,13D.⎣⎢⎡⎦⎥⎤45,4解析:画出不等式组表示的平面区域如图中阴影部分所示,由此得z =x 2+y 2的最小值为点O 到直线BC :2x -y +2=0的距离的平方,所以z min =⎝ ⎛⎭⎪⎫252=45,最大值为点O 与点A (-2,3)的距离的平方,所以z max =|OA |2=13,应选C.答案:C10.(2018·某某二模)假设关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),那么x 1+x 2+ax 1x 2的最小值是( ) A.63 B.233 C.433D.263解析:∵关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),∴Δ=16a 2-12a 2=4a 2>0,又x 1+x 2=4a ,x 1x 2=3a 2, ∴x 1+x 2+a x 1x 2=4a +a 3a 2=4a +13a ≥24a ·13a =433,当且仅当a =36时取等号.∴x 1+x 2+a x 1x 2的最小值是433. 答案:C11.某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,那么租金最少为( )A .31 200元B .36 000元C .36 800元D .38 400元解析:设租用A 型车x 辆,B 型车y 辆,目标函数为z =1 600x +2 400y ,那么约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,x +y ≤21,y -x ≤7,x ,y ∈N ,作出可行域如图中阴影部分所示,可知目标函数过点A (5,12)时,有最小值z min =36 800(元).答案:C12.(2018·某某模拟)点P (x ,y )∈{(x ,y )|⎩⎪⎨⎪⎧y ≥x x +2y ≤2},x ≥-2M (2,-1),那么OM →·OP→(O 为坐标原点)的最小值为( )A .-2B .-4C .-6D .-8解析:由题意知OM →=(2,-1),OP →=(x ,y ),设z =OM →·OP →=2x -y ,显然集合{(x ,y )|⎩⎪⎨⎪⎧y ≥x x +2y ≤2}x ≥-2对应不等式组⎩⎪⎨⎪⎧y ≥x x +2y ≤2x ≥-2所表示的平面区域.作出该不等式组表示的平面区域如图中阴影部分所示,由图可知,当目标函数z =2x -y 对应的直线经过点A 时,z 取得最小值.由⎩⎪⎨⎪⎧x =-2x +2y -2=0得A (-2,2),所以目标函数的最小值z min =2×(-2)-2=-6,即OM →·OP →的最小值为-6,应选C.答案:C二、填空题13.(2018·某某模拟)假设a >0,b >0,那么(a +b )·⎝ ⎛⎭⎪⎫2a +1b 的最小值是________.解析:(a +b )⎝ ⎛⎭⎪⎫2a +1b =2+2b a +a b +1=3+2b a +a b,因为a >0,b >0,所以(a +b )⎝ ⎛⎭⎪⎫2a +1b ≥3+22b a ×a b =3+22,当且仅当2b a =ab,即a =2b 时等号成立.所以所求最小值为3+2 2.答案:3+2 214.(2018·高考全国卷Ⅱ)假设x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≥0,x -2y +3≥0,x -5≤0,那么z =x +y的最大值为________.解析:由不等式组画出可行域,如图(阴影部分),x +y 取得最大值⇔斜率为-1的直线x +y =z (z 看做常数)的横截距最大,由图可得直线x +y =z 过点C 时z 取得最大值.由⎩⎪⎨⎪⎧x =5,x -2y +3=0得点C (5,4),∴z max =5+4=9. 答案:915.(2018·某某模拟)假设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤0,x -y ≤0,x 2+y 2≤4,那么z =y -2x +3的最小值为________.解析:作出不等式组表示的可行域如图中阴影部分所示,因为目标函数z =y -2x +3表示区域内的点与点P (-3,2)连线的斜率.由图知当可行域内的点与点P 的连线与圆相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,那么有|3k +2|k 2+1=2,解得k =-125或k =0(舍去),所以z min =-125. 答案:-12516.a >b >1,且2log a b +3log b a =7,那么a +1b 2-1的最小值为________. 解析:令log a b =t ,由a >b >1得0<t<1,2log a b +3log b a =2t +3t =7,得t =12,即log a b=12,a =b 2,所以a +1b 2-1=a -1+1a -1+1≥2(a -1)·1a -1+1=3,当且仅当a =2时取等号. 故a +1b 2-1的最小值为3. 答案:3。

2018届高考数学二轮复习送分专题(一)集合与常用逻辑用语课件(全国通用)

2018届高考数学二轮复习送分专题(一)集合与常用逻辑用语课件(全国通用)
3 A.-∞,2 3 C.1,2 3 B.1,2 3 D.2,3
(
)
解析: A={x|x2-4x+3≤0}={x|1≤x≤3}, B={x|ln(3-2x)<0}
x = {x|0<3 - 2x<1} = A∩B=x
答案:C
4. (2018 届高三· 西安八校联考)已知集合 =1-x2},则 M∩N= A.(-∞,2] C.[0,1] B.(0,1]
M=x
2 , ≥ 1 N={y|y x
(
)
D.(0,2] x- 2 2 解析:由x≥1 得 x ≤0,解得 0<x≤2,则 M={x|0<x≤2};
解析:依题意得,A={x|0<x<1},则∁RA={x|x≤0 或 x≥1}, 又 B={x|x>0},故(∁RA)∩B={x|x≥1}=[1,+∞),故选 A.
答案:A
1 6.(2017· 合肥质检)已知集合 A=[1,+∞),B= x∈R a≤ 2 x≤2a-1 ,若 A∩B≠∅,则实数 a 的取值范围是( A.[1,+∞)
2.设 a∈R,则“a=4”是“直线 l1:ax+8y-8=0 与直线 l2:2x+ay-a=0 平行”的 A.充分不必要条件 B.必要不充分条件 ( )
C.充要条件 D.既不充分也不必要条件 解析:若 a=4,则直线 l1:4x+8y-8=0,即 x+2y-2=0,
直线 l2:2x+4y-4=0,即 x+2y-2=0.此时两直线重合.反 过来, 若直线 l1 与
答案:B
3.(2017· 全国卷Ⅱ)设集合 A={1,2,4},B={x|x2-4x+m=0}. 若 A∩B={1},则 B= A.{1,-3} B.{1,0} C.{1,3} D.{1,5} ( )

(新课标)2018届高考数学二轮复习 专题一 集合、常用逻辑用语、不等式 1.1 集合与常用逻辑用语课件 理

(新课标)2018届高考数学二轮复习 专题一 集合、常用逻辑用语、不等式 1.1 集合与常用逻辑用语课件 理
专题一 集合、常用逻辑用语、 不等式
第1讲 集合与常用逻辑用语
-3-
热点考题诠释 高考方向解读
1.(2017浙江,1)已知集合P={x|-1<x<1},Q={x|0<x<2},则 P∪Q=( ) A.(-1,2) B.(0,1) C.(-1,0) D.(1,2)
取集合P,Q的所有元素,得P∪Q={x|-1<x<2}.故选A. A
.
(2)答案不唯一,如令 a=-1,b=-2,c=-3,则 a>b>c,而 a+b=-3=c,能够关闭
说(1明)C“设(2a)-,b1,c-2是,-3任(答意案实不数唯,若一a) >b>c,则 a+b>c”是假命题.
解析 答案
命题热点一 命题热点二 命题热点三
-13-
规律方法1.命题真假的判定方法: (1)一般命题p的真假由涉及的相关知识进行辨别; (2)四种命题的真假的判断根据:一个命题和它的逆否命题同真假, 它的逆命题跟否命题同真假. 2.常见词语的否定形式有:
关闭
D
解析 答案
热点考题诠释 高考方向解读
4.(2017
天津,理
4)设
θ∈R,则“
������-
π 12
< 1π2”是“sin θ<12”的(
A.充分而不必要条件 B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
-6-
)

������-
π 12
< 1π2时,0<θ<π6,∴0<sin θ<12.
|A5|=11.∵2n<3m<2n+1,∴23������<m<2������3+1.∵对于任意 n∈N*,2n 不能被

集合与常用逻辑用语(解析版)-五年(2018-2022)高考数学真题分项汇编(全国通用)

集合与常用逻辑用语(解析版)-五年(2018-2022)高考数学真题分项汇编(全国通用)

专题01集合与常用逻辑用语1.【2022年全国甲卷】设集合={−2,−1,0,1,2},=b0≤<∩=()A.0,1,2B.{−2,−1,0}C.{0,1}D.{1,2}【答案】A【解析】【分析】根据集合的交集运算即可解出.【详解】因为=−2,−1,0,1,2,=b0≤<∩=0,1,2.故选:A.2.【2022年全国甲卷】设全集={−2,−1,0,1,2,3},集合={−1,2},=b2−4+3= 0,则∁(∪p=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}【答案】D【解析】【分析】解方程求出集合B,再由集合的运算即可得解.【详解】由题意,J{U2−4+3=0}={1,3},所以∪={−1,1,2,3},所以∁U(∪p={−2,0}.故选:D.3.【2022年全国乙卷】集合=2,4,6,8,10,=−1<<6,则∩=()A.{2,4}B.{2,4,6}C.{2,4,6,8}D.{2,4,6,8,10}【答案】A【解析】【分析】根据集合的交集运算即可解出.【详解】因为=2,4,6,8,10,=U−1<<6,所以∩=2,4.故选:A.4.【2022年全国乙卷】设全集={1,2,3,4,5},集合M满足∁={1,3},则()A.2∈B.3∈C.4∉D.5∉【答案】A【分析】先写出集合,然后逐项验证即可【详解】由题知={2,4,5},对比选项知,A 正确,BCD 错误故选:A5.【2022年新高考1卷】若集合={b <4}, ={b3≥1},则∩=()A .{0≤<2}B .≤<2C .{3≤<16}D .≤<16【答案】D 【解析】【分析】求出集合s 后可求∩.【详解】={b0≤<16},={b ≥13},故∩={U 13≤<16},故选:D6.【2022年新高考2卷】已知集合={−1,1,2,4},=|−1|≤1,则∩=()A .{−1,2}B .{1,2}C .{1,4}D .{−1,4}【答案】B 【解析】【分析】求出集合后可求∩.【详解】={U0≤≤2},故∩={1,2},故选:B.7.【2021年甲卷文科】设集合{}{}1,3,5,7,9,27M N x x ==>,则M N = ()A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9【答案】B 【解析】【分析】求出集合N 后可求M N ⋂.【详解】7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=,8.【2021年甲卷理科】设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N = ()A .103x x ⎧⎫<≤⎨⎬⎩⎭B .143x x ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤【答案】B 【解析】【分析】根据交集定义运算即可【详解】因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:B.【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.9.【2021年乙卷文科】已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()U M N ⋃=ð()A .{}5B .{}1,2C .{}3,4D .{}1,2,3,4【答案】A 【解析】【分析】首先进行并集运算,然后进行补集运算即可.【详解】由题意可得:{}1,2,3,4M N =U ,则(){}5U M N = ð.故选:A.10.【2021年乙卷文科】已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是()A .p q ∧B .p q⌝∧C .p q∧⌝D .()p q ⌝∨【答案】A 【解析】【分析】由正弦函数的有界性确定命题p 的真假性,由指数函数的知识确定命题q 的真假性,由此确定正确选项.【详解】由于sin 0=0,所以命题p 为真命题;由于x y e =在R 上为增函数,0x ≥,所以||01x e e ≥=,所以命题q 为真命题;所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题.故选:A .11.【2021年乙卷理科】已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T Ç=()A .∅B .SC .TD .Z【答案】C 【解析】【分析】分析可得T S ⊆,由此可得出结论.【详解】任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C.12.【2021年新高考1卷】设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ()A .{}2B .{}2,3C .{}3,4D .{}2,3,4【答案】B 【解析】【分析】利用交集的定义可求A B .【详解】由题设有{}2,3A B ⋂=,故选:B .13.【2021年新高考2卷】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B 【解析】【分析】根据交集、补集的定义可求()U A B ⋂ð.【详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选:B.14.【2020年新课标1卷理科】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =()A .–4B .–2C .2D .4【答案】B 【解析】【分析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值.【详解】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭.由于{}|21A B x x ⋂=-≤≤,故:12a-=,解得:2a =-.故选:B.【点睛】本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.15.【2020年新课标1卷文科】已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ()A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D 【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B = ,故选:D.本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.16.【2020年新课标2卷理科】已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ⋃=ð()A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A 【解析】【分析】首先进行并集运算,然后计算补集即可.【详解】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =- ð.故选:A.【点睛】本题主要考查并集、补集的定义与应用,属于基础题.17.【2020年新课标2卷文科】已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =()A .∅B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}【答案】D 【解析】【分析】解绝对值不等式化简集合,A B 的表示,再根据集合交集的定义进行求解即可.【详解】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2A B =- .故选:D.【点睛】本题考查绝对值不等式的解法,考查集合交集的定义,属于基础题.18.【2020年新课标3卷理科】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B中元素的个数为()A .2B .3C .4D .6【解析】【分析】采用列举法列举出A B 中元素的即可.【详解】由题意,A B 中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4),故A B 中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.19.【2020年新课标3卷文科】已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为()A .2B .3C .4D .5【答案】B 【解析】【分析】采用列举法列举出A B 中元素的即可.【详解】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B 【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.20.【2020年新高考1卷(山东卷)】设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =()A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C 【解析】【分析】根据集合并集概念求解.【详解】[1,3](2,4)[1,4)A B ==U U【点睛】本题考查集合并集,考查基本分析求解能力,属基础题.21.【2020年新高考2卷(海南卷)】设集合A={2,3,5,7},B ={1,2,3,5,8},则A B =()A .{1,3,5,7}B .{2,3}C .{2,3,5}D .{1,2,3,5,7,8}【答案】C 【解析】【分析】根据集合交集的运算可直接得到结果.【详解】因为A{2,3,5,7},B ={1,2,3,5,8},所以{}2,3,5A B = 故选:C 【点睛】本题考查的是集合交集的运算,较简单.22.【2019年新课标1卷理科】已知集合{}}242{60M x x N x x x =-<<=--<,,则M N⋂=A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C 【解析】【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.23.【2019年新课标1卷理科】古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是A .165cmB .175cmC .185cmD .190cm【答案】B 【解析】【分析】理解黄金分割比例的含义,应用比例式列方程求解.【详解】设人体脖子下端至肚脐的长为x cm ,肚脐至腿根的长为y cm ,则2626105x x y +=+42.07, 5.15x cm y cm ≈≈.又其腿长为105cm ,头顶至脖子下端的长度为26cm ,所以其身高约为42.07+5.15+105+26=178.22,接近175cm .故选B .【点睛】本题考查类比归纳与合情推理,渗透了逻辑推理和数学运算素养.采取类比法,利用转化思想解题.24.【2019年新课标1卷文科】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A A .{}1,6B .{}1,7C .{}6,7D .{}1,6,7【答案】C 【解析】【分析】先求U A ð,再求U B A ð.【详解】由已知得{}1,6,7U C A =,所以U B C A ⋂={6,7},故选C .【点睛】本题主要考查交集、补集的运算.渗透了直观想象素养.使用补集思想得出答案.25.【2019年新课标2卷理科】设集合A ={x |x 2-5x +6>0},B ={x |x -1<0},则A ∩B =A .(-∞,1)B .(-2,1)C .(-3,-1)D .(3,+∞)【答案】A 【解析】【分析】先求出集合A ,再求出交集.【详解】由题意得,{}{}23,1A x x x B x x ==<或,则{}1A B x x ⋂=<.故选A .【点睛】本题考点为集合的运算,为基础题目.26.【2019年新课标2卷文科】已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B =A .(–1,+∞)B .(–∞,2)C .(–1,2)D .∅【答案】C 【解析】【分析】本题借助于数轴,根据交集的定义可得.【详解】由题知,(1,2)A B =- ,故选C .【点睛】本题主要考查交集运算,容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.27.【2019年新课标2卷文科】在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙【答案】A 【解析】【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A .【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.28.【2019年新课标3卷理科】已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B = A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A【解析】先求出集合B 再求出交集.【详解】21,x ≤∴ 11x -≤≤,∴{}11B x x =-≤≤,则{}1,0,1A B =- ,故选A .【点睛】本题考查了集合交集的求法,是基础题.29.【2019年新课标3卷文科】记不等式组620x y x y +⎧⎨-≥⎩表示的平面区域为D ,命题:(,),29p x y D x y ∃∈+ ;命题:(,),212q x y D x y ∀∈+ .给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝,这四个命题中,所有真命题的编号是A .①③B .①②C .②③D .③④【答案】A【解析】【分析】根据题意可画出平面区域再结合命题可判断出真命题.【详解】如图,平面区域D 为阴影部分,由2,6y x x y =⎧⎨+=⎩得2,4x y =⎧⎨=⎩即A (2,4),直线29x y +=与直线212x y +=均过区域D ,则p 真q 假,有p ⌝假q ⌝真,所以①③真②④假.故选A .【点睛】本题将线性规划和不等式,命题判断综合到一起,解题关键在于充分利用取值验证的方法进行判断.30.【2018年新课标1卷理科】已知集合{}220A x x x =-->,则A =R ðA .{}12x x -<<B .{}12x x -≤≤C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥【答案】B【解析】【详解】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果.详解:解不等式220x x -->得12x x <->或,所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.31.【2018年新课标1卷文科】已知集合{}02A =,,{}21012B =--,,,,,则A B = A .{}02,B .{}12,C .{}0D .{}21012--,,,,【答案】A【解析】【分析】分析:利用集合的交集中元素的特征,结合题中所给的集合中的元素,求得集合A B 中的元素,最后求得结果.【详解】详解:根据集合交集中元素的特征,可以求得{}0,2A B =I ,故选A.点睛:该题考查的是有关集合的运算的问题,在解题的过程中,需要明确交集中元素的特征,从而求得结果.32.【2018年新课标2卷理科】已知集合(){}223A x y x y x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【答案】A【解析】【分析】根据枚举法,确定圆及其内部整点个数.【详解】223x y +≤ 23,x ∴≤x Z∈ 1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.【点睛】本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.33.【2018年新课标2卷文科】已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B = A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,7【答案】C【解析】【详解】分析:根据集合{1,3,5,7},{2,3,4,5}A B ==可直接求解{3,5}A B = .详解:{1,3,5,7},{2,3,4,5}A B == ,{}3,5A B ∴⋂=,故选C点睛:集合题也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn 图法解决,若是“连续型”集合则可借助不等式进行运算.34.【2018年新课标3卷理科】已知集合{}|10A x x =-≥,{}012B =,,,则A B = A .{}0B .{}1C .{}12,D .{}012,,【答案】C【解析】【详解】分析:由题意先解出集合A,进而得到结果.详解:由集合A 得x 1≥,所以{}A B 1,2⋂=故答案选C.点睛:本题主要考查交集的运算,属于基础题.35.【2018年新课标3卷文科】已知集合1}{0|A x x -≥=,{0,1,2}B =,则A B = A .{0}B .{1}C .{1,2}D .{0,1,2}【答案】C【解析】【分析】由题意先解出集合A,进而得到结果.【详解】解:由集合A 得x 1≥,所以{}A B 1,2⋂=故答案选C.【点睛】本题主要考查交集的运算,属于基础题.36.【2020年新课标2卷理科】设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】【分析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.。

2018年高考数学二轮复习练习:专题限时集训1 集合与常用逻辑用语 含答案

2018年高考数学二轮复习练习:专题限时集训1 集合与常用逻辑用语 含答案

专题限时集训(一) 集合与常用逻辑用语(对应学生用书第77页)(限时:120分钟)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填写在题中横线上.) 1.(2017·江苏省苏、锡、常、镇四市高考数学二模)已知集合A={x|-1<x<3},B={x|x<2},则A∩B=________.{x|-1<x<2}[集合A={x|-1<x<3},B={x|x<2},则A∩B={x|-1<x<2},故答案为:{x|-1<x<2}.]2.(江苏省南通市如东县、徐州市丰县2017届高三10月联考)对于函数y=f(x),x∈R,“y=|f(x)|的图象关于y轴对称”是“y=f(x)是奇函数”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”).必要不充分[充分性不成立,如y=x2图象关于y轴对称,但不是奇函数;必要性成立,y =f(x)是奇函数,|f(-x)|=|-f(x)|=|f(x)|,所以y=|f(x)|的图象关于y轴对称.] 3.(江苏省泰州中学2017届高三上学期第二次月考)已知R为实数集,集合A={1,2,3,4,5},B ={x|x(4-x)<0},则A∩(∁R B) =________.{1,2,3,4}[集合A={1,2,3,4,5},B={x|x(4-x)<0}={x|x(x-4)>0}={x|x<0或x>4},∴∁R B={x|0≤x≤4},∴A∩(∁R B)={1,2,3,4}.故答案为:{1,2,3,4}.]4.(河北唐山市2017届高三年级期末)已知数列{a n},{b n}满足b n=a n+a n+1,则“数列{a n}为等差数列”是“数列{b n}为等差数列”的________条件.充分不必要[若数列{a n}为等差数列,设其公差为d1,则b n+1-b n=(a n+1+a n+2)-(a n+a na n+2-a n=2d1,所以数列{b n}是等差数列;若数列{b n}为等差数列,设其公差为d2,则+1)=b n+1-b n=(a n+1+a n+2)-(a n+a n+1)=a n+2-a n=d2,不能推出数列{a n}为等差数列,所以“数列{a n}为等差数列”是“数列{b n}为等差数列”的充分不必要条件.]5.(山东省枣庄市2017届高三上学期期末)若集合A={x∈Z|-2<x<2},B={x|y=log2x2},则A∩B=________.【导学号:56394004】{-1,1}[因为A={x∈Z|-2<x<2}={-1,0,1},B={x|y=log2x2}={x|x≠0},所以A∩B={-1,1}.]6.(广东省佛山市2017届高三教学质量检测(一))设等比数列{a n}的公比为q,前n项和为S n,则“|q|=1”是“S6=3S2”的________条件 .充要 [由S 6=3S 2,得a 1(1+q +q 2+q 3+q 4+q 5)=3a 1(1+q ),即q 5+q 4+q 3+q 2-2-2q =0,(q +1)2(q -1)(q 2+2)=0,解得q =±1,所以“|q |=1”是“S 6=3S 2”的充要条件.] 7.(四川省2016年普通高考适应性测试)设集合A ={-1,1},集合B ={x |ax =1,a ∈R },则使得B ⊆A 的a 的所有 取值构成的集合是________.{-1,0,1} [因为B ⊆A ,所以B =∅,{-1},{1},因此a =-1,0,1.]8.已知数列{a n }的前n 项和为S n =aq n+b (a ≠0,q ≠0,1),则“a +b =0”是数列{a n }为等比数列的________条件.充要 [当a +b =0时,a 1=S 1=aq +b =a (q -1),当n ≥2时,a n =S n -S n -1=aq n -1(q -1),当n =1时,也成立,于是a n +1a n =aq n q -1aq n -1q -1=q (n ∈N *),即数列{a n }为等比数列; 当n =1时,a 1=S 1=aq +b , 当n ≥2时,a n =S n -S n -1=aq n -1(q -1),∵q ≠0,q ≠1,∴a n +1a n =aq n q -1aq n -1q -1=q (n ∈N *), ∵{a n }为等比数列,∴a 2a 1=a n +1a n =q ,aq 2-aq aq +b=q , 即aq -a =aq +b ,∴a +b =0,综上所述,“a +b =0”是数列{a n }为等比数列的充要条件.]9.(江苏省南通中学2017届高三上学期期中考试)命题“∃x ∈R ,x 2-x +1≤0”的否定是________.∀x ∈R ,x 2-x +1>0 [命题“∃x ∈R ,x 2-x +1≤0”的否定是“∀x ∈R ,x 2-x +1>0”.]10.(中原名校豫南九校2017届第四次质量考评)下列四个命题:p 1:任意x ∈R,2x >0;p 2:存在x ∈R ,x 2+x +1<0;p 3:任意x ∈R ,sin x <2x ;p 4:存在x ∈R ,cos x >x 2+x +1.其中的真命题是________.p 1,p 4 [对于x ∈R,2x >0,p 1为真命题;x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34>0,p 2为假命题;sin ⎝ ⎛⎭⎪⎫-3π2=1>2-3π2,p 3为假命题;x =-12时,cos x >cos π6=32>34=x 2+x +1,p 4为真命题.]11.(广东郴州市2017届高三第二次教学质量监测试卷)若命题p :“∃x 0∈R,2x 0-2≤a 2-3a ”是假命题,则实数a 的取值范围是________.[1,2] [“∃x 0∈R,2x 0-2≤a 2-3a ”是假命题等价于∀x ∈R,2x -2>a 2-3a ,即-2≥a 2-3a ,解之得1≤a ≤2,即实数a 的取值范围是[1,2].]12.(江苏省泰州中学2017届高三上学期第二次月考)设集合S ={0,1,2,3,…,n },则集合S 中任意两个元素的差的绝对值的和为________.16n 3+12n 2+13n [设集合中第k 个元素,则其值为k -1. |(k -1)-k |+|(k -1)-(k +1)|+…+|(k -1)-n | =1+2+…+(n +1-k ) =n +1-kn +1-k +12,T n =12n 2·n +32n ·n +n -(1+2+…+n )n -32(1+2+…+n )+12·(12+22+…+n 2)=n n +1n +26=16n 3+12n 2+13n .故答案是:16n 3+12n 2+13n .] 13.(泰州中学2016-2017年度第一学期第一次质量检测)设实数a >1,b >1,则“a <b ”是“lna -lnb >a -b ”的________条件.(请用“充分不必要”“必要不充分”“充要”“既不充分也不必要”中之一填空)充要 [令f (x )=ln x -x (x >1),则f ′(x )=1x-1<0,因此a <b ⇔f (a )>f (b )⇔ln a -a>ln b -b ⇔ln a -ln b >a -b ,即“a <b ”是“ln a -ln b >a -b ”的充要条件.] 14.(四川省凉山州2017届高中毕业班第一次诊断性检测)下列四个结论:①若x >0,则x >sin x 恒成立;②命题“若x -sin x =0,则x =0”的逆否命题为“若x ≠0,则x -sin x ≠0”; ③“命题p ∧q 为真”是“命题p ∨q 为真”的充分不必要条件; ④命题“∀x ∈R ,x -ln x >0”的否定是“∃x 0∈R ,x 0-ln x 0≤0 ”. 其中正确结论的个数是________.4 [对于①,令y =x -sin x ,则y ′=1-cos x ≥0,则函数y =x -sin x 在R 上单调递增,则当x >0时,x -sin x >0-0=0,即x >sin x 恒成立,故①正确;对于②,命题“若x -sin x =0,则x =0” 的逆否命题为“若x ≠0,则x -sin x ≠0”正确;对于③,命题p ∧q 为真,则命题p ,q 均为真,命题p ∨q 为真,反过来,当命题p ∨q 为真时,则p ,q中至少有一个为真,不能推出命题p ∧q 为真,所以“命题p ∧q 为真”是“命题p ∨q 为真”的充分不必要条件, 故③正确;对于④,由全称命题与特称命题的关系可知,命题“∀x ∈R ,x -ln x >0 ”的否定是“∃x 0∈R ,x 0-ln x 0≤0”,所以④正确.]二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)(山东潍坊2017届高三上学期期中联考)已知m ∈R ,设p :∀x ∈[-1,1],x 2-2x -4m 2+8m -2≥0成立;q :∃x ∈[1,2],log 12(x 2-mx +1)<-1成立,如果“p ∨q ”为真,“p ∧q ”为假,求m 的取值范围.【导学号:56394005】[解] 若p 为真:对∀x ∈[-1,1],4m 2-8m ≤x 2-2x -2恒成立, 设f (x )=x 2-2x -2,配方得f (x )=(x -1)2-3, ∴f (x )在[-1,1]上的最小值为-3, ∴4m 2-8m ≤-3,解得12≤m ≤32,2分∴p 为真时:12≤m ≤32;若q 为真:∃x ∈[1,2],x 2-mx +1>2成立,∴m <x 2-1x 成立.4分设g (x )=x 2-1x =x -1x,易知g (x )在[1,2]上是增函数,∴g (x )的最大值为g (2)=32,∴m <32,∴q 为真时,m <32,∵“p ∨q ”为真,“p ∧q ”为假,∴p 与q 一真一假,9分 当p 真q 假时⎩⎪⎨⎪⎧ 12≤m ≤32,m ≥32,∴m =32,当p 假q 真时⎩⎪⎨⎪⎧m <12或m >32,m <32 ,∴m <12,12分综上所述,m 的取值范围是m <12或m =32.14分16.(本小题满分14分)(江苏省南通市如东县、徐州市丰县2017届高三10月联考)设集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪132≤2-x≤4,B ={x |x 2+2mx -3m 2<0}(m >0). (1)若m =2,求A ∩B ;(2)若A ⊇B ,求实数m 的取值范围.[解] 集合A ={x |-2≤x ≤5},因为m >0,所以B =(-3m ,m ),4分 (1)m =2时,B ={x |-6<x <2}, 所以A ∩B ={x |-2≤x <2}.8分(2)B =(-3m ,m ),要使B ⊆A ,10分只要⎩⎪⎨⎪⎧-3m ≥-2m ≤5⇒m ≤23,12分所以0<m ≤23.综上,知m 的取值范围是⎝ ⎛⎦⎥⎤0,23.14分 17.(本小题满分14分)已知集合A ={x |log 2x <log 23},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x +2x -4<0,C ={x |a <x <a +1}.(1)求集合A ∩B ;(2)若B ∪C =B ,求实数a 的取值范围. [解] (1)由log 2x <log 23,得0<x <3. 2分由不等式x +2x -4<0得(x -4)(x +2)<0, 所以-2<x <4.5分 所以A ∩B ={x |0<x <3}. 7分 (2)因为B ∪C =B ,所以C ⊆B ,9分 所以⎩⎪⎨⎪⎧a +1≤4,a ≥-2.11分解得-2≤a ≤3.所以,实数a 的取值范围是[-2,3].14分18.(本小题满分16分)设命题p :函数y =kx +1在R 上是增函数,命题q :∃x ∈R ,x 2+(2k -3)x +1=0,如果p ∧q 是假命题,p ∨q 是真命题,求k 的取值范围. [解] ∵函数y =kx +1在R 上是增函数,∴k >0,2分由∃x ∈R ,x 2+(2k -3)x +1=0得方程x 2+(2k -3)x +1=0有解,4分 ∴Δ=(2k -3)2-4≥0,解得k ≤12或k ≥52.6分 ∵p ∧q 是假命题,p ∨q 是真命题,∴命题p ,q 一真一假,10分①若p 真q 假,则⎩⎪⎨⎪⎧ k >0,12<k <52,∴12<k <52; 12分②若p 假q 真,则⎩⎪⎨⎪⎧k ≤0,k ≤12或k ≥52,解得k ≤0, 14分综上可得k 的取值范围为(-∞,0]∪⎝ ⎛⎭⎪⎫12,52. 16分19.(本小题满分16分)已知命题p :函数y =log a (2x +1)在定义域上单调递增;命题q :不等式(a -2)x 2+2(a -2)x -4<0对任意实数x 恒成立,若“p 且﹁q ”为真命题,求实数a 的取值范围.[解] 因为命题p :函数y =log a (2x +1)在定义域上单调递增,所以a >1.4分∴又因为命题q :不等式(a -2)x 2+2(a -2)x -4<0对任意实数x 恒成立;所以a =2或⎩⎪⎨⎪⎧a -2<0,Δ=4a -22+16a -2<0,综上所述:-2<a ≤2,10分因为p 且﹁q 为真命题,∴p 真q 假,12分 ∴⎩⎪⎨⎪⎧a >1,a ≤-2或a >2,∴a ∈(2,+∞).14分 ∴实数a 的取值范围为(2,+∞).16分20.(本小题满分16分)(江苏省泰州中学2017届高三上学期第二次月考)已知命题p :函数f (x )=x 3+ax 2+x 在R 上是增函数;命题q :若函数g (x )=e x-x +a 在区间[0,+∞)上没有零点.(1)如果命题p 为真命题,求实数a 的取值范围;(2)命题“p ∨q ”为真命题,“p ∧q ”为假命题,求实数a 的取值范围.【导学号:56394006】[解] (1)如果命题p 为真命题,∵函数f (x )=x 3+ax 2+x 在R 上是增函数,∴f ′(x )=3x 2+2ax +1≥0对x ∈(-∞,+∞)恒成立, 4分 ∴Δ=4a 2-12≤0⇒a ∈[-3,3].7分(2)g ′(x )=e x-1≥0对任意的x ∈[0,+∞)恒成立, ∴g (x )在区间[0,+∞)上递增,9分 若命题q 为真命题,g (0)=a +1>0⇒a >-1,11分由命题“p ∨q ”为真命题,“p ∧q ”为假命题知p ,q 一真一假,若p 真q 假,则⎩⎨⎧ -3≤a ≤3a ≤-1⇒a ∈[-3,-1], 13分若p 假q 真,则⎩⎨⎧a <-3或a >3a >-1⇒a ∈(3,+∞), 14分 综上所述,a ∈[-3,-1]∪(3,+∞). 16分。

2018届高考数学(理)二轮限时规范训练(Word版,含答案解析)

2018届高考数学(理)二轮限时规范训练(Word版,含答案解析)

限时规范训练一 集合、常用逻辑用语限时40分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分) 1.集合A ={x ∈N |-1<x <4}的真子集个数为( ) A .7 B .8 C .15D .16解析:选C.A ={0,1,2,3}中有4个元素,则真子集个数为24-1=15.2.已知集合A ={x |2x 2-5x -3≤0},B ={x ∈Z |x ≤2},则A ∩B 中的元素个数为( ) A .2 B .3 C .4D .5解析:选B.A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12≤x ≤3,∴A ∩B ={0,1,2},A ∩B 中有3个元素,故选B. 3.设集合M ={-1,1},N ={x |x 2-x <6},则下列结论正确的是( ) A .N ⊆M B .N ∩M =∅ C .M ⊆ND .M ∩N =R解析:选C.集合M ={-1,1},N ={x |x 2-x <6}={x |-2<x <3},则M ⊆N ,故选C. 4.已知p :a <0,q :a 2>a ,则﹁p 是﹁q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B.因为﹁p :a ≥0,﹁q :0≤a ≤1,所以﹁q ⇒﹁p 且﹁p ⇒/﹁q ,所以﹁p 是﹁q 的必要不充分条件.5.下列命题正确的是( )A .若p ∨q 为真命题,则p ∧q 为真命题B .“a >0,b >0”是“b a +ab≥2”的充要条件C .命题“若x 2-3x +2=0,则x =1或x =2”的逆否命题为“若x ≠1或x ≠2,则x 2-3x +2≠0”D .命题p :∃x ∈R ,x 2+x -1<0,则﹁p :∀x ∈R ,x 2+x -1≥0解析:选D.若p ∨q 为真命题,则p ,q 中至少有一个为真,那么p ∧q 可能为真,也可能为假,故A 错;若a >0,b >0,则b a +a b ≥2,又当a <0,b <0时,也有b a +a b≥2,所以“a >0,b >0”是“b a +a b≥2”的充分不必要条件,故B 错;命题“若x 2-3x +2=0,则x =1或x =2”的逆否命题为“若x ≠1且x ≠2,则x 2-3x +2≠0”,故C 错;易知D 正确.6.设集合A ={x |x >-1},B ={x ||x |≥1},则“x ∈A 且x ∉B ”成立的充要条件是( )A .-1<x ≤1B .x ≤1C .x >-1D .-1<x <1解析:选D.由题意可知,x ∈A ⇔x >-1,x ∉B ⇔-1<x <1,所以“x ∈A 且x ∉B ”成立的充要条件是-1<x <1.故选D.7.“a =0”是“函数f (x )=sin x -1x+a 为奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C.f (x )的定义域为{x |x ≠0},关于原点对称.当a =0时,f (x )=sin x -1x,f (-x )=sin(-x )-1-x =-sin x +1x =-⎝⎛⎭⎪⎫sin x -1x =-f (x ),故f (x )为奇函数;反之,当f (x )=sin x -1x+a 为奇函数时,f (-x )+f (x )=0,又f (-x )+f (x )=sin (-x )-1-x +a +sin x -1x +a =2a ,故a =0,所以“a =0”是“函数f (x )=sin x -1x+a 为奇函数”的充要条件,故选C.8.已知命题p :“∃x ∈R ,e x-x -1≤0”,则﹁p 为( ) A .∃x ∈R ,e x-x -1≥0 B .∃x ∈R ,e x -x -1>0 C .∀x ∈R ,e x -x -1>0 D .∀x ∈R ,e x -x -1≥0解析:选C.特称命题的否定是全称命题,所以﹁p :∀x ∈R ,e x-x -1>0.故选C. 9.下列命题中假命题是( ) A .∃x 0∈R ,ln x 0<0 B .∀x ∈(-∞,0),e x>x +1 C .∀x >0,5x>3xD .∃x 0∈(0,+∞),x 0<sin x 0解析:选D.令f (x )=sin x -x (x >0),则f ′(x )=cos x -1≤0,所以f (x )在(0,+∞)上为减函数,所以f (x )<f (0),即f (x )<0,即sin x <x (x >0),故∀x ∈(0,+∞),sin x <x ,所以D 为假命题,故选D.10.命题p :存在x 0∈⎣⎢⎡⎦⎥⎤0,π2,使sin x 0+cos x 0>2;命题q :命题“∃x 0∈(0,+∞),ln x 0=x 0-1”的否定是∀x ∈(0,+∞),ln x ≠x -1,则四个命题(﹁p )∨(﹁q )、p ∧q 、(﹁p )∧q 、p ∨(﹁q )中,正确命题的个数为( )A .1B .2C .3D .4解析:选B.因为sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4≤2,故命题p 为假命题;特称命题的否定为全称命题,易知命题q 为真命题,故(﹁p )∨(﹁q )真,p ∧q 假,(﹁p )∧q 真,p ∨(﹁q )假.11.下列说法中正确的是( )A .命题“∀x ∈R ,e x >0”的否定是“∃x ∈R ,e x>0”B .命题“已知x ,y ∈R ,若x +y ≠3,则x ≠2或y ≠1”是真命题C .“x 2+2x ≥ax 在x ∈[1,2]上恒成立”⇔“对于x ∈[1,2],有(x 2+2x )min ≥(ax )max ” D .命题“若a =-1,则函数f (x )=ax 2+2x -1只有一个零点”的逆命题为真命题 解析:选B.全称命题“∀x ∈M ,p (x )”的否定是“∃x ∈M ,﹁p (x )”,故命题“∀x ∈R ,e x >0”的否定是“∃x ∈R ,e x≤0”,A 错;命题“已知x ,y ∈R ,若x +y ≠3,则x ≠2或y ≠1”的逆否命题为“已知x ,y ∈R ,若x =2且y =1,则x +y =3”,是真命题,故原命题是真命题,B 正确;“x 2+2x ≥ax 在x ∈[1,2]上恒成立”⇔“对于x ∈[1,2],有(x +2)min ≥a ”,由此可知C 错误;命题“若a =-1,则函数f (x )=ax 2+2x -1只有一个零点”的逆命题为“若函数f (x )=ax 2+2x -1只有一个零点,则a =-1”,而函数f (x )=ax 2+2x -1只有一个零点⇔a =0或a =-1,故D 错.故选B.12.“直线y =x +b 与圆x 2+y 2=1相交”是“0<b <1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B.若“直线y =x +b 与圆x 2+y 2=1相交”,则圆心到直线的距离为d =|b |2<1,即|b |<2,不能得到0<b <1;反过来,若0<b <1,则圆心到直线的距离为d =|b |2<12<1,所以直线y =x +b 与圆x 2+y 2=1相交,故选B. 二、填空题(本题共4小题,每小题5分,共20分)13.若命题“∃x 0∈R ,x 20-2x 0+m ≤0”是假命题,则m 的取值范围是________. 解析:由题意,命题“∀x ∈R ,x 2-2x +m >0”是真命题,故Δ=(-2)2-4m <0,即m >1.答案:(1,+∞)14.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m-2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)15.设集合S ,T 满足∅≠S ⊆T ,若S 满足下面的条件:(i)对于∀a ,b ∈S ,都有a -b ∈S 且ab ∈S ;(ⅱ)对于∀r ∈S ,n ∈T ,都有nr ∈S ,则称S 是T 的一个理想,记作S ⊲T .现给出下列集合对:①S ={0},T =R ;②S ={偶数},T =Z ;③S =R ,T =C (C 为复数集),其中满足S ⊲T 的集合对的序号是________.解析:①(ⅰ)0-0=0,0×0=0;(ⅱ)0×n =0,符合题意.②(ⅰ)偶数-偶数=偶数,偶数×偶数=偶数;(ⅱ)偶数×整数=偶数,符合题意. ③(ⅰ)实数-实数=实数,实数×实数=实数;(ⅱ)实数×复数=实数不一定成立,如2×i=2i ,不合题意.答案:①②16.已知f (x )=m (x -2m )(x +m +3),g (x )=2x-2.若同时满足条件: ①∀x ∈R ,f (x )<0或g (x )<0;②∃x ∈(-∞,-4),f (x )g (x )<0,则m 的取值范围是________.解析:当x <1时,g (x )<0;当x >1时,g (x )>0;当x =1时,g (x )=0.m =0不符合要求.当m >0时,根据函数f (x )和函数g (x )的单调性,一定存在区间[a ,+∞)使f (x )≥0且g (x )≥0,故m >0时不符合第①条的要求.当m <0时,如图所示,如果符合①的要求,则函数f (x )的两个零点都得小于1,如果符合第②条要求,则函数f (x )至少有一个零点小于-4,问题等价于函数f (x )有两个不相等的零点,其中较大的零点小于1,较小的零点小于-4.函数f (x )的两个零点是2m ,-(m +3),故m 满足⎩⎪⎨⎪⎧m <0,2m <-m +,2m <-4,-m +<1或⎩⎪⎨⎪⎧m <0,-m +<2m ,2m <1,-m +<-4,解第一个不等式组得-4<m <-2,第二个不等式组无解,故所求m 的取值范围是(-4,-2).答案:(-4,-2)限时规范训练二 平面向量、复数运算限时45分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分)1.设i 是虚数单位,如果复数a +i2-i的实部与虚部相等,那么实数a 的值为( )A.13 B .-13C .3D .-3解析:选C.a +i 2-i =2a -1+a +5,由题意知2a -1=a +2,解之得a =3.2.若复数z 满足(1+2i)z =(1-i),则|z |=( ) A.25 B.35 C.105D.10解析:选C.z =1-i 1+2i =-1-3i 5⇒|z |=105.3.已知复数z =1+i(i 是虚数单位),则2z-z 2的共轭复数是( )A .-1+3iB .1+3iC .1-3iD .-1-3i 解析:选 B.2z -z 2=21+i -(1+i)2=-+--2i =1-i -2i =1-3i ,其共轭复数是1+3i ,故选B.4.若z =(a -2)+a i 为纯虚数,其中a ∈R ,则a +i 71+a i=( )A .iB .1C .-iD .-1解析:选C.∵z 为纯虚数,∴a =2,∴a +i 71+a i =2-i 1+2i=2--2+2-2=-3i 3=-i.5.已知复数z =11-i ,则z -|z |对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 解析:选B.∵复数z =11-i =1+i -+=12+12i , ∴z -|z |=12+12i -⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122=1-22+12i ,对应的点⎝ ⎛⎭⎪⎫1-22,12所在的象限为第二象限.故选B.6.若复数z 满足z (1-i)=|1-i|+i ,则z 的实部为( ) A.2-12B.2-1C .1D.2+12解析:选 A.由z (1-i)=|1-i|+i ,得z =2+i1-i=2++-+=2-12+2+12i ,z 的实部为2-12,故选A. 7.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =( )A .2B .3C .4D .5解析:选B.由MA →+MB →+MC →=0知,点M 为△ABC 的重心,设点D 为边BC 的中点,则AM →=23AD →=23×12(AB →+AC →)=13(AB →+AC →),所以AB →+AC →=3AM →,故m =3,故选B. 8.已知向量a =(3,-2),b =(x ,y -1)且a ∥b ,若x ,y 均为正数,则3x +2y的最小值是( )A .24B .8 C.83D.53解析:选B.∵a ∥b ,∴-2x -3(y -1)=0,即2x +3y =3,∴3x +2y =⎝ ⎛⎭⎪⎫3x +2y ×13(2x +3y )=13⎝ ⎛⎭⎪⎫6+9y x +4x y +6≥13⎝ ⎛⎭⎪⎫12+29y x·4x y =8,当且仅当2x =3y =32时,等号成立.∴3x +2y的最小值是8.故选B.9.在平行四边形ABCD 中,AC =5,BD =4,则AB →·BC →=( ) A.414B .-414C.94D .-94解析:选 C.因为BD →2=(AD →-AB →)2=AD →2+AB →2-2AD →·AB →,AC →2=(AD →+AB →)2=AD →2+AB →2+2AD →·AB →,所以AC →2-BD →2=4AD →·AB →,∴AD →·AB →=AB →·BC →=94.10.在△ABC 中,已知向量AB →=(2,2),|AC →|=2,AB →·AC →=-4,则△ABC 的面积为( ) A .4 B .5 C .2D .3解析:选C.∵AB →=(2,2),∴|AB →|=22+22=2 2. ∵AB →·AC →=|AB →|·|AC →|cos A =22×2cos A =-4, ∴cos A =-22,∵0<A <π,∴sin A =22, ∴S △ABC =12|AB →|·|AC →|sin A =2.故选C.11.△ABC 的外接圆的圆心为O ,半径为1,2AO →=AB →+AC →且|OA →|=|AB →|,则向量BA →在BC →方向上的投影为( )A.12B.32 C .-12D .-32解析:选A.由2AO →=AB →+AC →可知O 是BC 的中点,即BC 为△ABC 外接圆的直径,所以|OA →|=|OB →|=|OC →|,由题意知|OA →|=|AB →|=1,故△OAB 为等边三角形,所以∠ABC =60°.所以向量BA →在BC →方向上的投影为|BA →|cos∠ABC =1×cos 60°=12.故选A.12.如图,菱形ABCD 的边长为2,∠BAD =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM →·AN →的最大值为( )A .3B .2 3C .6D .9解析:选D.由平面向量的数量积的几何意义知, AM →·AN →等于AM →与AN →在AM →方向上的投影之积,所以(AM →·AN →)max =AM →·AC →=⎝ ⎛⎭⎪⎫12AB →+AD →·(AB→+AD →)=12AB 2→+AD 2→+32AB →·AD →=9.二、填空题(本题共4小题,每小题5分,共20分) 13.已知复数z =3+i -32,z 是z 的共轭复数,则z ·z =________.解析:∵z =3+i -32=3+i-2-23i =3+i -2+3=3+-3-+3-3=23-2i -8=-34+14i ,∴z ·z =⎝ ⎛⎭⎪⎫-34+14i ⎝ ⎛⎭⎪⎫-34-14i =316+116=14. 答案:1414.已知向量a ,b 满足|a |=2,|b |=1,且对一切实数x ,|a +x b |≥|a +b |恒成立,则a ,b 夹角的大小为________.解析:|a +x b |≥|a +b |恒成立⇒a 2+2x a ·b +x 2b 2≥a 2+2a·b +b 2恒成立⇒x 2+2a ·b x -1-2a ·b ≥0恒成立,∴Δ=4(a·b )2-4(-1-2a·b )≤0⇒(a·b +1)2≤0,∴a·b =-1,∴cos〈a ,b 〉=a·b |a |·|b |=-12,又〈a ,b 〉∈[0,π],故a 与b 的夹角的大小为2π3.答案:23π15.已知在△ABC 中,AB =4,AC =6,BC =7,其外接圆的圆心为O ,则AO →·BC →=________.解析:如图,取BC 的中点M ,连OM ,AM ,则AO →=AM →+MO →, ∴AO →·BC →=(AM →+MO →)·BC →.∵O 为△ABC 的外心,∴OM ⊥BC ,即OM →·BC →=0,∴AO →·BC →=AM →·BC →=12(AB →+AC →)·(AC →-AB →)=12(AC 2→-AB 2→)=12(62-42)=12×20=10.答案:1016.已知非零向量a ,b ,c 满足|a |=|b |=|a -b |,〈c -a ,c -b 〉=2π3,则|c ||a |的最大值为________.解析:设OA →=a ,OB →=b ,则BA →=a -b . ∵非零向量a ,b ,c 满足|a |=|b |=|a -b |, ∴△OAB 是等边三角形. 设OC →=c ,则AC →=c -a ,BC →=c -b .∵〈c -a ,c -b 〉=2π3,∴点C 在△ABC 的外接圆上,∴当OC 为△ABC 的外接圆的直径时,|c ||a |取得最大值,为1cos 30°=233.答案:233限时规范训练三 算法、框图与推理限时45分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分)1.请仔细观察1,1,2,3,5,( ),13,运用合情推理,可知写在括号里的数最可能是( )A.8 B.9C.10 D.11解析:选A.观察题中所给各数可知,2=1+1,3=1+2,5=2+3,8=3+5,13=5+8,∴括号中的数为8.故选A.2.执行如图所示的程序框图,若输入的x的值为2,则输出的y的值为( )A.2 B.5C.11 D.23解析:选 D.x=2,y=5,|2-5|=3<8;x=5,y=11,|5-11|=6<8;x=11,y=23,|11-23|=12>8.满足条件,输出的y的值为23,故选D.3.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R 上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)等于( ) A.f(x) B.-f(x)C.g(x) D.-g(x)解析:选D.由所给等式知,偶函数的导数是奇函数.∵f(-x)=f(x),∴f(x)是偶函数,从而g(x)是奇函数.∴g(-x)=-g(x).4.执行如图所示的程序框图,输出的S值为-4时,则输入的S0的值为( )A .7B .8C .9D .10解析:选D.根据程序框图知,当i =4时,输出S .第1次循环得到S =S 0-2,i =2;第2次循环得到S =S 0-2-4,i =3;第3次循环得到S =S 0-2-4-8,i =4.由题意知S 0-2-4-8=-4,所以S 0=10,故选D.5.(2017·高考山东卷)执行如图所示的程序框图,当输入的x 的值为4时,输出的y 的值为2,则空白判断框中的条件可能为()A .x >3B .x >4C .x ≤4D .x ≤5解析:选B.输入x =4,若满足条件,则y =4+2=6,不符合题意;若不满足条件,则y =log 24=2,符合题意,结合选项可知应填x >4.故选B.6.如图所示的程序框图的运行结果为()A .-1B .12C .1D .2解析:选A.a =2,i =1,i ≥2 019不成立;a =1-12=12,i =1+1=2,i ≥2 019不成立; a =1-112=-1,i =2+1=3,i ≥2 019不成立;a=1-(-1)=2,i=3+1=4,i≥2 019不成立;…,由此可知a是以3为周期出现的,结束时,i=2 019=3×673,此时a=-1,故选A.7.设△ABC的三边长分别为a,b,c,△ABC的面积为S,内切圆半径为r,则r=2Sa+b+c.类比这个结论可知:四面体S­ABC的四个面的面积分别为S1,S2,S3,S4,内切球半径为R,四面体S­ABC的体积为V,则R等于( )A.VS1+S2+S3+S4B.2VS1+S2+S3+S4C.3VS1+S2+S3+S4D.4VS1+S2+S3+S4解析:选C.把四面体的内切球的球心与四个顶点连起来分成四个小三棱锥,其高都是R,四个小三棱锥的体积和等于四面体的体积,因此V=13S1R+13S2R+13S3R+13S4R,解得R=3VS1+S2+S3+S4.8.按照如图所示的程序框图执行,若输出的结果为15,则M处的条件为( )A.k≥16B.k<8C.k<16 D.k≥8解析:选 A.根据框图的循环结构依次可得S=0+1=1,k=2×1=2;S=1+2=3,k =2×2=4;S=3+4=7,k=2×4=8;S=7+8=15,k=2×8=16,根据题意此时跳出循环,输出S=15.所以M处的条件应为k≥16.故A正确.9.如图所示的程序框图中,输出S=( )A .45B .-55C .-66D .66解析:选B.由程序框图知,第一次运行T =(-1)2·12=1,S =0+1=1,n =1+1=2;第二次运行T =(-1)3·22=-4,S =1-4=-3,n =2+1=3;第三次运行T =(-1)4·32=9,S =-3+9=6,n =3+1=4…直到n =9+1=10时,满足条件n >9,运行终止,此时T =(-1)10·92,S =1-4+9-16+…+92-102=1+(2+3)+(4+5)+(6+7)+(8+9)-100=1+92×9-100=-55.故选B.10.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={5n +k |n ∈Z },k =0,1,2,3,4.给出如下四个结论:①2 018∈[3]; ②-2∈[2];③Z =[0]∪[1]∪[2]∪[3]∪[4];④整数a ,b 属于同一“类”的充要条件是“a -b ∈[0]”. 其中正确结论的个数为( ) A .1 B .2 C .3D .4解析:选C.因为2 018=403×5+3,所以2 018∈[3],①正确;-2=-1×5+3,-2∈[3],所以②不正确;因为整数集中被5除的数可以且只可以分成五类,所以③正确;整数a ,b 属于同一“类”,因为整数a ,b 被5除的余数相同,从而a -b 被5除的余数为0,反之也成立,故整数a ,b 属于同一“类”的充要条件是“a -b ∈[0]”,故④正确.所以正确的结论有3个,故选C.11.执行如图所示的程序框图,如果输入x ,t 的值均为2,最后输出S 的值为n ,在区间[0,10]上随机选取一个数D ,则D ≤n 的概率为( )A.25B.12C.35D.710解析:选D.这是一个循环结构,循环的结果依次为M=2,S=2+3=5,k=1+1=2;M =2,S=2+5=7,k=2+1=3.最后输出7,所以在区间[0,10]上随机选取一个数D,则D≤n的概率P=710,故选D.12.定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新驻点”,若函数g(x)=x,h(x)=ln(x+1),φ(x)=x3-1的“新驻点”分别为α,β,γ,则α,β,γ的大小关系为( )A.α>β>γB.β>α>γC.γ>α>βD.β>γ>α解析:选C.g(x)=g′(x),即x=1,所以α=1;h(x)=h′(x),即ln(x+1)=1x+1,0<x<1,所以β∈(0,1);φ(x)=φ′(x),即x3-1=3x2,即x3-3x2=1,x2(x-3)=1,x>3,所以γ>3.所以γ>α>β.二、填空题(本题共4小题,每小题5分,共20分)13.执行如图所示的程序框图,若输出的结果是8,则输入的数是________.解析:令a≥b得,x2≥x3,解得x≤1.所以当x≤1时,输出a=x2,当x>1时,输出b =x3.当x≤1时,由题意得a=x2=8,解得x=-8=-2 2.当x>1时,由题意得b=x3=8,得x=2,所以输入的数为2或-2 2.14.刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况.四名学生回答如下:甲说:“我们四人都没考好.”乙说:“我们四人中有人考得好.”丙说:“乙和丁至少有一人没考好.”丁说:“我没考好.”结果,四名学生中有两人说对了,则这四名学生中的________两人说对了.解析:甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果选丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确.故答案为乙,丙.答案:乙,丙15.已知实数x∈[2,30],执行如图所示的程序框图,则输出的x不小于103的概率是________.解析:实数x∈[2,30],经过第一次循环得到x=2x+1,n=2;经过第二次循环得到x =2(2x+1)+1,n=3;经过第三次循环得到x=2[2(2x+1)+1]+1,n=4,此时输出x,输出的值为8x +7.令8x +7≥103,解得x ≥12.由几何概型的概率公式,得到输出的x 不小于103的概率为30-1230-2=914.16.集合{1,2,3,…,n }(n ≥3)中,每两个相异数作乘积,将所有这些乘积的和记为T n ,如:T 3=1×2+1×3+2×3=12×[62-(12+22+32)]=11;T 4=1×2+1×3+1×4+2×3+2×4+3×4=12×[102-(12+22+32+42)]=35; T 5=1×2+1×3+1×4+1×5+…+3×5+4×5=12×[152-(12+22+32+42+52)]=85.则T 7=________.(写出计算结果)解析:由T 3,T 4,T 5归纳得出T n =12[(1+2+…+n )2-(12+22+…+n 2)],则T 7=12×[282-(12+22+…+72)].又∵12+22+…+72=16×7×8×15=140,∴T 7=12×(784-140)=322.答案:322限时规范训练四 函数的图象与性质 限时40分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分) 1.函数y =x +x -2的定义域是( )A .(-1,+∞)B .[-1,+∞)C .(-1,2)∪(2,+∞)D .[-1,2)∪(2,+∞)解析:选C.由题意知,要使函数有意义,需⎩⎪⎨⎪⎧x -2≠0x +1>0,即-1<x <2或x >2,所以函数的定义域为(-1,2)∪(2,+∞).故选C.2.设函数f :R →R 满足f (0)=1,且对任意,x ,y ∈R 都有f (xy +1)=f (x )f (y )-f (y )-x +2,则f (2 017)=( )A .0B .1C .2 016D .2 018解析:选D.令x =y =0,则f (1)=f (0)f (0)-f (0)+2=1×1-1+2=2,令y =0,则f (1)=f (x )f (0)-f (0)-x +2,将f (0)=1,f (1)=2代入,可得f (x )=1+x ,所以f (2 017)=2 018.故选D.3.若函数f (x )满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”,则f (x )的解析式可以是( )A .f (x )=(x -1)2B .f (x )=e xC .f (x )=1xD .f (x )=ln(x +1)解析:选C.根据条件知,f (x )在(0,+∞)上单调递减. 对于A ,f (x )=(x -1)2在(1,+∞)上单调递增,排除A ; 对于B ,f (x )=e x在(0,+∞)上单调递增,排除B ; 对于C ,f (x )=1x在(0,+∞)上单调递减,C 正确;对于D ,f (x )=ln(x +1)在(0,+∞)上单调递增,排除D. 4.已知函数f (x )=2x +1(1≤x ≤3),则( ) A .f (x -1)=2x +2(0≤x ≤2) B .f (x -1)=2x -1(2≤x ≤4) C .f (x -1)=2x -2(0≤x ≤2) D .f (x -1)=-2x +1(2≤x ≤4)解析:选B.因为f (x )=2x +1,所以f (x -1)=2x -1.因为函数f (x )的定义域为[1,3],所以1≤x -1≤3,即2≤x ≤4,故f (x -1)=2x -1(2≤x ≤4).5.若函数y =f (x )的定义域是[0,2 018],则函数g (x )=f x +x -1的定义域是( ) A .[-1,2 017]B .[-1,1)∪(1,2 017]C .[0,2 019]D .[-1,1)∪(1,2 018]解析:选B.要使函数f (x +1)有意义,则0≤x +1≤2 018,解得-1≤x ≤2 017,故函数f (x +1)的定义域为[-1,2 017],所以函数g (x )有意义的条件是⎩⎪⎨⎪⎧-1≤x ≤2 017x -1≠0,解得-1≤x <1或1<x ≤2 017.故函数g (x )的定义域为[-1,1)∪(1,2 017].6.下列函数为奇函数的是( ) A .y =x 3+3x 2B .y =e x +e -x2C .y =x sin xD .y =log 23-x3+x解析:选D.依题意,对于选项A ,注意到当x =-1时,y =2;当x =1时,y =4,因此函数y =x 3+3x 2不是奇函数.对于选项B ,注意到当x =0时,y =1≠0,因此函数y =e x +e-x2不是奇函数.对于选项C ,注意到当x =-π2时,y =π2;当x =π2时,y =π2,因此函数y=x sin x 不是奇函数.对于选项D ,由3-x3+x>0得-3<x <3,即函数y =log 23-x3+x的定义域是(-3,3),该数集是关于原点对称的集合,且log 23--x 3+-x +log 23-x 3+x =log 21=0,即log 23--x 3+-x =-log 23-x 3+x,因此函数y =log 23-x 3+x是奇函数.综上所述,选D.7.设函数f (x )=ln(1+x )+m ln(1-x )是偶函数,则( ) A .m =1,且f (x )在(0,1)上是增函数 B .m =1,且f (x )在(0,1)上是减函数 C .m =-1,且f (x )在(0,1)上是增函数 D .m =-1,且f (x )在(0,1)上是减函数解析:选B.因为函数f (x )=ln(1+x )+m ln(1-x )是偶函数,所以f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫-12,则(m -1)ln 3=0,即m =1,则f (x )=ln(1+x )+ln(1-x )=ln(1-x 2),在(0,1)上,当x 增大时,1-x 2减小,ln(1-x 2)减小,即f (x )在(0,1)上是减函数,故选B.8.若关于x 的不等式4a x -1<3x -4(a >0,且a ≠1)对于任意的x >2恒成立,则a 的取值范围为( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎦⎥⎤0,12 C .[2,+∞) D .(2,+∞)解析:选B.不等式4ax -1<3x -4等价于ax -1<34x -1.令f (x )=ax -1,g (x )=34x -1,当a >1时,在同一坐标系中作出两个函数的图象,如图1所示,由图知不满足条件;当0<a <1时,在同一坐标系中作出两个函数的图象,如图2所示,则f (2)≤g (2),即a2-1≤34×2-1,即a ≤12,所以a 的取值范围是⎝ ⎛⎦⎥⎤0,12,故选B.9.已知函数y =a +sin bx (b >0且b ≠1)的图象如图所示,那么函数y =log b (x -a )的图象可能是( )解析:选C.由三角函数的图象可得a >1,且最小正周期T =2πb<π,所以b >2,则y=log b (x -a )是增函数,排除A 和B ;当x =2时,y =log b (2-a )<0,排除D ,故选C.10.已知函数y =f (x )是定义在R 上的偶函数,当x ∈(-∞,0]时,f (x )为减函数,若a =f (20.3),b =f (log 124),c =f (log 25),则a ,b ,c 的大小关系是( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b解析:选B.函数y =f (x )是定义在R 上的偶函数,当x ∈(-∞,0]时,f (x )为减函数,∴f (x )在[0,+∞)为增函数, ∵b =f (log 124)=f (-2)=f (2),1<20.3<2<log 25,∴c >b >a ,故选B. 11.已知函数f (x )=x -4+9x +1,x ∈(0,4),当x =a 时,f (x )取得最小值b ,则函数g (x )=a |x +b |的图象为( )解析:选A.∵x ∈(0,4),∴x +1>1, ∴f (x )=x -4+9x +1=x +1+9x +1-5≥ 29x +1x +-5=1,当且仅当x =2时取等号,此时函数f (x )有最小值1. ∴a =2,b =1,∴g (x )=2|x +1|=⎩⎪⎨⎪⎧2x +1,x ≥-1,⎝ ⎛⎭⎪⎫12x +1,x <-1,此函数可以看成由函数y =⎩⎪⎨⎪⎧2x,x ≥0,⎝ ⎛⎭⎪⎫12x,x <0的图象向左平移1个单位得到,结合指数函数的图象及选项可知A 正确.故选A.12.若函数f (x )=1+2x +12x +1+sin x 在区间[-k ,k ](k >0)上的值域为[m ,n ],则m +n的值是( )A .0B .1C .2D .4解析:选D.∵f (x )=1+2·2x2x +1+sin x=1+2·2x+1-12x +1+sin x=2+1-22x +1+sin x=2+2x-12x +1+sin x .记g (x )=2x-12x +1+sin x ,则f (x )=g (x )+2,易知g (x )为奇函数,g (x )在[-k ,k ]上的最大值a 与最小值b 互为相反数, ∴a +b =0,故m +n =4.(a +2)+(b +2)=a +b +4=4. 二、填空题(本题共4小题,每小题5分,共20分)13.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=log 2x -1,则f ⎝ ⎛⎭⎪⎫-22=________.解析:因为f (x )是定义在R 上的奇函数,所以f ⎝ ⎛⎭⎪⎫-22=-f ⎝ ⎛⎭⎪⎫22=-⎝ ⎛⎭⎪⎫log 222-1=32. 答案:3214.若函数f (x )=⎩⎪⎨⎪⎧log a x ,x >2,-x 2+2x -2,x ≤2(a >0,且a ≠1)的值域是(-∞,-1],则实数a 的取值范围是________.解析:当x ≤2时,f (x )=-x 2+2x -2=-(x -1)2-1,f (x )在(-∞,1)上递增,在(1,2]上递减,∴f (x )在(-∞,2]上的最大值是-1, 又f (x )的值域是(-∞,-1],∴当x >2时, log a x ≤-1,故0<a <1,且log a 2≤-1, ∴12≤a <1,故答案为⎣⎢⎡⎭⎪⎫12,1.答案:⎣⎢⎡⎭⎪⎫12,115.已知函数f (x )在实数集R 上具有下列性质:①直线x =1是函数f (x )图象的一条对称轴;②f (x +2)=-f (x );③当1≤x 1<x 2≤3时,[f (x 2)-f (x 1)]·(x 2-x 1)<0,则f (2 015)、f (2 016)、f (2 017)从大到小的顺序为______________.解析:由f (x +2)=-f (x )得f (x +4)=f (x ),所以f (x )的周期是4,所以f (2 015)=f (3),f (2 016)=f (0),f (2 017)=f (1).因为直线x =1是函数f (x )图象的一条对称轴,所以f (0)=f (2).由1≤x 1<x 2≤3时,[f (x 2)-f (x 1)]·(x 2-x 1)<0,可知当1≤x ≤3时,函数f (x )单调递减,所以f (1)>f (2)>f (3),即f (2 017)>f (2 016)>f (2 015).答案:f (2 017)>f (2 016)>f (2 015)16.已知函数f (x )=⎩⎪⎨⎪⎧|2x +1|,x <1,log 2x -m ,x >1,若f (x 1)=f (x 2)=f (x 3)(x 1,x 2,x 3互不相等),且x 1+x 2+x 3的取值范围为(1,8),则实数m 的值为________.解析:作出f (x )的图象,如图所示,可令x 1<x 2<x 3,则由图知点(x 1,0),(x 2,0)关于直线x =-12对称,所以x 1+x 2=-1.又1<x 1+x 2+x 3<8,所以2<x 3<9.结合图象可知点A的坐标为(9,3),代入函数解析式,得3=log 2(9-m ),解得m =1.答案:1限时规范训练五 不等式及线性规划限时45分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分) 1.设0<a <b <1,则下列不等式成立的是( ) A .a 3>b 3B.1a <1bC .a b >1D .lg(b -a )<a解析:选D.∵0<a <b <1,∴0<b -a <1-a ,∴lg(b -a )<0<a ,故选D. 2.已知a ,b 是正数,且a +b =1,则1a +4b( )A .有最小值8B .有最小值9C .有最大值8D .有最大值9解析:选B.因为1a +4b =⎝ ⎛⎭⎪⎫1a +4b (a +b )=5+b a +4ab≥5+2b a ·4a b =9,当且仅当b a =4a b且a +b =1,即a =13,b =23时取“=”,所以1a +4b的最小值为9,故选B.3.对于任意实数a ,b ,c ,d ,有以下四个命题: ①若ac 2>bc 2,则a >b ;②若a >b ,c >d ,则a +c >b +d ; ③若a >b ,c >d ,则ac >bd ;④若a >b ,则1a >1b.其中正确的有( ) A .1个 B .2个 C .3个D .4个解析:选B.①ac 2>bc 2,则c ≠0,则a >b ,①正确; ②由不等式的同向可加性可知②正确; ③需满足a 、b 、c 、d 均为正数才成立;④错误,如:令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选B. 4.已知不等式ax 2-bx -1>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13,则不等式x 2-bx -a ≥0的解集是( )A .{x |2<x <3}B .{x |x ≤2或x ≥3}C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <12 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <13或x >12 解析:选B.∵不等式ax 2-bx -1>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13, ∴ax 2-bx -1=0的解是x 1=-12和x 2=-13,且a <0.∴⎩⎪⎨⎪⎧-12-13=ba ,⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎪⎨⎪⎧a =-6,b =5.则不等式x 2-bx -a ≥0即为x 2-5x +6≥0,解得x ≤2或x ≥3. 5.若x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y ≥0,x +y -4≤0,y ≥12x 2,则z =y -x 的取值范围为( )A .[-2,2] B.⎣⎢⎡⎦⎥⎤-12,2C .[-1,2]D.⎣⎢⎡⎦⎥⎤-12,1 解析:选B.作出可行域(图略),设直线l :y =x +z ,平移直线l ,易知当l 过直线3x-y =0与x +y -4=0的交点(1,3)时,z 取得最大值2;当l 与抛物线y =12x 2相切时,z 取得最小值,由⎩⎪⎨⎪⎧z =y -x ,y =12x 2,消去y 得x 2-2x -2z =0,由Δ=4+8z =0,得z =-12,故-12≤z ≤2,故选B.6.设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是( ) A.92 B.72 C .22+12D .22-12解析:选A.∵a n =a 1+(n -1)d =n ,S n =n+n2, ∴S n +8a n=n+n2+8n=12⎝ ⎛⎭⎪⎫n +16n +1≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时取等号.∴S n +8a n 的最小值是92,故选A. 7.一条长为2的线段,它的三个视图分别是长为3,a ,b 的三条线段,则ab 的最大值为( )A. 5B. 6C.52D .3解析:选C.如图,构造一个长方体,体对角线长为2,由题意知a 2+x 2=4,b 2+y 2=4,x 2+y 2=3,则a 2+b 2=x 2+y 2+2=3+2=5,又5=a 2+b 2≥2ab ,所以ab ≤52,当且仅当a =b 时取等号,所以选C.8.设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是( ) A .[1,5] B .[2,6] C .[3,11]D .[3,10]解析:选C.画出约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12的可行域如图阴影部分所示,则x +2y +3x +1=x +1+2y +2x +1=1+2×y +1x +1,y +1x +1的几何意义为过点(x ,y )和(-1,-1)的直线的斜率.由可行域知y +1x +1的取值范围为k MA ≤y +1x +1≤k MB ,即y +1x +1∈[1,5],所以x +2y +3x +1的取值范围是[3,11].9.设x ,y 满足不等式⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,若M =3x +y ,N =⎝ ⎛⎭⎪⎫12x-72,则M -N 的最小值为( )A.12 B .-12C .1D .-1解析:选A.作出不等式组所表示的平面区域,如图中阴影部分所示,易求得A (-1,2),B (3,2),当直线3x +y -M =0经过点A (-1,2)时,目标函数M =3x +y 取得最小值-1.又由平面区域知-1≤x ≤3,所以函数N =⎝ ⎛⎭⎪⎫12x-72在x =-1处取得最大值-32,由此可得M -N 的最小值为-1-⎝ ⎛⎭⎪⎫-32=12.10.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域的形状是三角形,则a 的取值范围是( )A .a ≥43B .0<a ≤1C .1≤a ≤43D .0<a ≤1或a ≥43解析:选 D.作出不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图中阴影部分所示.其中直线x -y =0与直线2x +y =2的交点是⎝ ⎛⎭⎪⎫23,23,而直线x +y =a 与x 轴的交点是(a,0).由图知,要使原不等式组表示的平面区域的形状为三角形,只需a ≥23+23或0<a ≤1,所以选D.11.已知不等式组⎩⎪⎨⎪⎧3x +4y -10≥0,x ≤4,y ≤3表示区域D ,过区域D 中任意一点P 作圆x2+y 2=1的两条切线,切点分别为A 、B ,当∠APB 最大时,cos∠APB =( )A.32 B.12 C .-32D .-12解析:选B.画出不等式组表示的可行域如图中阴影部分所示,易知当点P 到点O 距离最小时,∠APB 最大,此时|OP |=|3×0+4×0-10|32+42=2,又OA =1,故∠OPA =π6, ∴∠APB =π3,∴cos∠APB =12.12.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A .c ≤3 B .3<c ≤6 C .6<c ≤9D .c >9解析:选C.由0<f (-1)=f (-2)=f (-3)≤3,得0<-1+a -b +c =-8+4a -2b +c =-27+9a -3b +c ≤3,由-1+a -b +c =-8+4a -2b +c ,得3a -b -7=0,① 由-1+a -b +c =-27+9a -3b +c ,得 4a -b -13=0,②由①②,解得a =6,b =11,∴0<c -6≤3, 即6<c ≤9,故选C.二、填空题(本题共4小题,每小题5分,共20分)13.函数f (x )=1+log a x (a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -2=0上,其中mn >0,则1m +1n的最小值为________.解析:因为log a 1=0,所以f (1)=1,故函数f (x )的图象恒过定点A (1,1). 由题意,点A 在直线mx +ny -2=0上,所以m +n -2=0,即m +n =2. 而1m +1n =12⎝ ⎛⎭⎪⎫1m +1n ×(m +n ) =12⎝⎛⎭⎪⎫2+n m +m n ,因为mn >0,所以nm >0,m n>0. 由均值不等式,可得n m +m n ≥2×n m ×mn=2(当且仅当m =n 时等号成立), 所以1m +1n =12⎝ ⎛⎭⎪⎫2+n m +m n ≥12×(2+2)=2,即1m +1n的最小值为2.答案:214.设P (x ,y )是函数y =2x(x >0)图象上的点,则x +y 的最小值为________.解析:因为x >0,所以y >0,且xy =2.由基本不等式得x +y ≥2xy =22,当且仅当x =y 时等号成立.答案:2 215.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,y ≥x ,3x +2y ≤15,则w =4x ·2y的最大值是________.解析:作出不等式组表示的可行域如图阴影部分所示.w =4x ·2y =22x +y,要求其最大值,只需求出2x +y =t 的最大值即可,由平移可知t =2x +y 在A (3,3)处取得最大值t =2×3+3=9,故w =4x·2y的最大值为29=512.答案:51216.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,若对任意的x ∈R ,不等式f (x )≤m 2-34m 恒成立,则实数m 的取值范围为________.解析:由题意知,m 2-34m ≥f (x )max .当x >1时,f (x )=log 13x 是减函数,且f (x )<0;当x ≤1时,f (x )=-x 2+x ,其图象的对称轴方程是x =12,且开口向下,∴f (x )max =-14+12=14.∴m 2-34m ≥14,即4m 2-3m -1≥0,∴m ≤-14或m ≥1.答案:⎝ ⎛⎦⎥⎤-∞,-14∪[1,+∞)限时规范训练六 导数的简单应用限时45分钟,实际用时分值81分,实际得分一、选择题(本题共6小题,每小题5分,共30分)1.设函数f (x )=x 24-a ln x ,若f ′(2)=3,则实数a 的值为( )A .4B .-4C .2D .-2解析:选B.f ′(x )=x 2-a x ,故f ′(2)=22-a2=3,因此a =-4.2.曲线y =e x在点A 处的切线与直线x -y +3=0平行,则点A 的坐标为( ) A .(-1,e -1) B .(0,1) C .(1,e)D .(0,2)解析:选B.设A (x 0,e x 0),y ′=e x,∴y ′|x =x 0=e x 0.由导数的几何意义可知切线的斜率k =e x 0.由切线与直线x -y +3=0平行可得切线的斜率k =1. ∴e x 0=1,∴x 0=0,∴A (0,1).故选B.3.若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为 ( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B.⎝⎛⎭⎪⎫32,+∞ C.⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞ D.⎝⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫32,+∞ 解析:选D.若函数f (x )=x 3-2cx 2+x 有极值点,则f ′(x )=3x 2-4cx +1=0有两根,故Δ=(-4c )2-12>0,从而c >32或c <-32. 4.已知f (x )=a ln x +12x 2(a >0),若对任意两个不等的正实数x 1,x 2都有f x 1-f x 2x 1-x 2≥2恒成立,则实数a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(0,1)D .(0,1]解析:选 A.由条件可知在定义域上函数图象的切线斜率大于等于2,所以函数的导数f ′(x )=ax+x ≥2.可得x =a 时,f ′(x )有最小值2.∴a ≥1.5.若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .f ⎝ ⎛⎭⎪⎫1k<1kB .f ⎝ ⎛⎭⎪⎫1k >1k -1C .f ⎝⎛⎭⎪⎫1k -1<1k -1D .f ⎝⎛⎭⎪⎫1k -1>k k -1解析:选C.构造函数g (x )=f (x )-kx +1,则g ′(x )=f ′(x )-k >0,∴g (x )在R 上为增函数. ∵k >1,∴1k -1>0,则g ⎝ ⎛⎭⎪⎫1k -1>g (0). 而g (0)=f (0)+1=0, ∴g ⎝⎛⎭⎪⎫1k -1=f ⎝ ⎛⎭⎪⎫1k -1-k k -1+1>0,即f ⎝⎛⎭⎪⎫1k -1>k k -1-1=1k -1,所以选项C 错误,故选C.6.由曲线y =x 2,y =x 围成的封闭图形的面积为( ) A.16 B.13 C.23D .1解析:选 B.由题意可知所求面积(如图中阴影部分的面积)为⎠⎛01(x -x 2)d x =⎝⎛⎪⎪⎪⎭⎪⎪⎫23x 32-13x 310=13.所以选B.二、填空题(本题共3小题,每小题5分,共15分)7.(2016·高考全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.解析:直线y =kx +b 与曲线y =ln x +2,y =ln(x +1)均相切,设切点分别为A (x 1,y 1),B (x 2,y 2),由y =ln x +2得y ′=1x ,由y =ln(x +1)得y ′=1x +1,∴k =1x 1=1x 2+1,∴x 1=1k ,x 2=1k-1,∴y 1=-ln k +2,y 2=-ln k .即A ⎝ ⎛⎭⎪⎫1k,-ln k +2,B ⎝ ⎛⎭⎪⎫1k-1,-ln k ,∵A 、B 在直线y =kx +b 上, ∴⎩⎪⎨⎪⎧2-ln k =k ·1k +b ,-ln k =k ·⎝ ⎛⎭⎪⎫1k -1+b解得⎩⎪⎨⎪⎧b =1-ln 2,k =2.答案:1-ln 28.已知函数f (x )=-12x 2-3x +4ln x 在(t ,t +1)上不单调,则实数t 的取值范围是________.解析:由题意得,f (x )的定义域为(0,+∞),∴t >0, ∴f ′(x )=-x -3+4x=0在(t ,t +1)上有解,∴x 2+3x -4x=0在(t ,t +1)上有解,∴x 2+3x -4=0在(t ,t +1)上有解,由x 2+3x -4=0得x =1或x =-4(舍去),∴1∈(t ,t +1),∴t ∈(0,1),故实数t 的取值范围是(0,1).答案:(0,1)9.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则实数b 的最大值是________.解析:函数的定义域是x +2>0,即x >-2,而f ′(x )=-x +bx +2=-x 2-2x +bx +2.因为x +2>0,函数f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,即-x 2-2x +b ≤0在x ∈(-1,+∞)上恒成立,得b ≤x 2+2x 在x ∈(-1,+∞)上恒成立,令g (x )=x 2+2x =(x +1)2-1,x ∈(-1,+∞),g (x )>g (-1)=-1,所以b ≤-1.所以b 的最大值为-1.答案:-1三、解答题(本题共3小题,每小题12分,共36分) 10.已知f (x )=2x +3-x +2x +1.(1)求证:当x =0时,f (x )取得极小值;(2)是否存在满足n >m ≥0的实数m ,n ,当x ∈[m ,n ]时,f (x )的值域为[m ,n ]?若存在,求m ,n 的值;若不存在,请说明理由.解:(1)证明:由已知得f (x )的定义域为⎝ ⎛⎭⎪⎫-12,+∞. 当x >-12时,f ′(x )=2-2-x +x +2=8x 2+8x +x +x +2.设F (x )=8x 2+8x +2ln(2x +1),则f ′(x )=F x x +2.当x >-12时,y =8x 2+8x =8⎣⎢⎡⎦⎥⎤x -⎝ ⎛⎭⎪⎫-122-2是单调递增函数,y =2ln(2x +1)也是单调递增函数.∴当x >-12时,F (x )=8x 2+8x +2ln(2x +1)单调递增.∴当-12<x <0时,F (x )<F (0)=0,当x >0时,F (x )>F (0)=0.∴当-12<x <0时,f ′(x )<0,f (x )单调递减,当x >0时,f ′(x )>0,f (x )单调递增.∴当x =0时,f (x )取得极小值.(2)由(1)知f (x )在[0,+∞)上是单调递增函数,若存在满足n >m ≥0的实数m ,n ,当x ∈[m ,n ]时,f (x )的值域为[m ,n ],则f (m )=m ,f (n )=n ,即f (x )=x 在[0,+∞)上有两个不等的实根m ,n .∴2x 2+7x +3-ln(2x +1)=0在[0,+∞)上有两个不等的实根m ,n . 设H (x )=2x 2+7x +3-ln(2x +1),则 H ′(x )=8x 2+18x +52x +1.当x >0时,2x +1>0,8x 2+18x +5>0, ∴H ′(x )=8x 2+18x +52x +1>0.∴H (x )在[0,+∞)上是单调递增函数,即当x ≥0时,H (x )≥H (0)=3. ∴2x 2+7x +3-ln(2x +1)=0在[0,+∞)上没有实数根. ∴不存在满足条件的实数m ,n .11.(2017·河南郑州质量检测)设函数f (x )=12x 2-m ln x ,g (x )=x 2-(m +1)x .(1)求函数f (x )的单调区间;(2)当m ≥0时,讨论函数f (x )与g (x )图象的交点个数.。

高考文科数学二轮专项训练专题:01 集合与常用逻辑用语

高考文科数学二轮专项训练专题:01 集合与常用逻辑用语

专题01 集合与常用逻辑用语一、选择题1.(2018全国卷Ⅰ)已知集合{0,2}=A ,{21012}=--,,,,B ,则A B =I A .{0,2} B .{1,2}C .{0}D .{21012}--,,,, A 【解析】由题意{0,2}A B =I ,故选A .2.(2018浙江)已知全集{1,2,3,4,5}U =,{1,3}A =,则=U A ð A .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}C 【解析】因为{1,2,3,4,5}U =,{1,3}A =,所以=U A ð{2,4,5}.故选C . 3.(2018全国卷Ⅱ)已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =I A .{3}B .{5}C .{3,5}D .{}1,2,3,4,5,7C 【解析】因为{}1,3,5,7A =,{}2,3,4,5B =,所以{3,5}A B =I ,故选C . 4.(2018北京)已知集合{|||2}A x x =<,{2,0,1,2}B =-,则A B =IA .{0,1}B .{–1,0,1}C .{–2,0,1,2}D .{–1,0,1,2}A 【解析】{|||2}(2,2)A x x =<=-,{2,0,1,2}B =-,∴{0,1}A B =I ,故选A . 5.(2018全国卷Ⅲ)已知集合{|10}A x x =-≥,{0,1,2}B =,则A B =I A .{0}B .{1}C .{1,2}D .{0,1,2}C 【解析】由题意知,{|10}A x x =-≥,则{1,2}A B =I .故选C6.(2018天津)设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x x =∈-<R ≤,则()A B C =U IA .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}C 【解析】由题意{1,0,1,2,3,4}A B =-U ,∴(){1,0,1}A B C =-U I ,故选C . 7.已知集合{|2}A x x =<,{320}B x =->,则A .3{|}2A B x x =<I B .A B =∅IC .3{|}2A B x x =<U D .A B =R UA 【解析】∵3{|}2B x x =<,∴3{|}2A B x x =<I , 选A .8.设集合{1,2,3}A =,{2,3,4}B =则A B U =A .{1,2,3,4}B .{1,2,3}C .{2,3,4}D .{1,3,4} A 【解析】由并集的概念可知,{1,2,3,4}A B =U ,选A .9.已知集合{1,2,3,4}A =,{2,4,6,8}B =,则A B I 中元素的个数为A .1B .2C .3D .4 B 【解析】由集合交集的定义{2,4}A B =I ,选B .10.设集合{1,2,6}A =,{2,4}B =,{1,2,3,4}C =,则()A B C =U IA .{2}B .{1,2,4}C .{1,2,4,6}D .{1,2,3,4,6} B 【解析】∵{1,2,4,6}A B =U ,(){1,2,4}A B C =U I ,选B . 11.设集合{}11M x x =-<,{}2N x x =<,则M N =I A .()1,1- B .()1,2-C .()0,2D .()1,2C 【解析】{|02}M x x =<<,所以{|02}M N x x =<<I ,选C . 12.已知U =R ,集合{|22}A x x x =<->或,则U A ð=A .(2,2)-B .(,2)(2,)-∞-+∞UC .[2,2]-D .(,2][2,)-∞-+∞U C 【解析】{|22}U A x x =-≤≤ð,选C .13.已知集合{|11}P x x =-<<,{|02}Q x x =<<,那么P Q U =A .(1,2)-B .(0,1)C .(1,0)-D .(1,2) A 【解析】由题意可知{|12}P Q x x =-<<U ,选A . 14.设集合{}2|30,{|14}A x x xB x x =-<=<<,则A B =I ( )A .(0,4)B .(1,4)C .(3,4)D .(1,3)【答案】D 【解析】{}2|30{|03}A x x x x x =-<=<<,AB =I (1,3)故选:D15.设集合{}2|,{|31420}1A x x B x x x =-<<-=--≤,则A B =I ( )A .[)21--, B .(21)--,C .(16]-,D .(31)--,【答案】A 【解析】因为{}31, 26|{|}A x xB x x =-<<-=-≤≤,所以 |}1{2A B x x ⋂=-≤<-.故选:A . 16.设集合{}12A x x =-<≤,{}1,0,1,2,3B =-,则A B =I ( )A .{}1,0,1,2-B .{}0,1,2C .{}0,1D .{}12,3x x x -<≤=或【答案】B 因为{}12A x x =-<≤,{}1,0,1,2,3B =-,所以A B =I {0,1,2}.故选:B17.已知集合{|22}A x x =∈-<<N ,{1,1,2,3}B =-,则A B =I ( ) A .{}1 B .{}0,1C .{}0,1,2D .{}0,1,2,3【答案】A 【解析】{}{|22}0,1A x x =∈-<<=Q N ,因此,{}1A B ⋂=.故选:A.18.已知集合{}{}241,0,1,2,3A x x B =<=-,,则A B =I ( ) A .{}0,1,2 B .{}0,1C .{}1,0,1-D .{}2,1,0,1,2--C 【解析】{}{}221,0,1,2,3A x x B =-<<=-,,则A B =I {}1,0,1-.故选:C 19.已知集合{}{}2230,ln()A x x x B x y x =+-≤==-,则A B =I ( ) A .[3,0]- B .[3,1]-C .[3,0)-D .[1,0)-【答案】C 【解析】由2230x x +-≤有(1)(3)0x x -+≤,即31x -≤≤,又ln()x -中0x ->即0x <. 故A B =I [3,0)-故选:C20.已知集合{}|124xM x =<≤,{}0,1,2N =,则M N =I ( )A. {}0,1,2B. {}1,2C. {}1D. ∅【答案】B 【解析】{}{}|124|02xM x x x =<≤=<≤,M N =I {}1,2.故选:B21.(2018浙江)已知平面α,直线m ,n 满足m α⊄,n α⊂,则“m ∥n ”是“m ∥α”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件A 【解析】若m α⊄,n α⊂,m ∥n ,由线面平行的判定定理知m ∥α.若m ∥α,m α⊄,n α⊂,不一定推出m ∥n ,直线m 与n 可能异面,故“m ∥n ”是“m ∥α”的充分不必要条件.故选A . 22.(2018北京)设a ,b ,c ,d 是非零实数,则“ad bc =”是“a ,b ,c ,d 成等比数列”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件B 【解析】a ,b ,c ,d 是非零实数,若ad bc =,则b da c=,此时a ,b ,c ,d 不一定成等比数列;反之,若a ,b ,c ,d 成等比数列,则a cb d=,所以ad bc =,所以“ad bc =”是“a ,b ,c ,d 成等比数列”的必要而不充分条件.故选B .23.(2018天津)设x ∈R ,则“38x >”是“||2x >” 的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件A 【解析】由38x >,得2x >,由||2x >,得2x >或2x <-,故“38x >”是“||2x >” 的充分而不必要条件,故选A .24.(2018上海)已知a R ∈,则“1a >”是“11a<”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件 A 【解析】由1>a 可得11<a 成立;当11<a ,即1110--=<a a a, 解得0<a 或1>a ,推不出1>a 一定成立;所以“1a >”是“11a<”的充分非必要条件.故选A .25.设x ∈R ,则“20x -≥”是“|1|1x -≤”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 B 【解析】由20x -≥,得2x ≤,由|1|1x -≤,得02x ≤≤,所以“20x -≥”是“|1|1x -≤”的必要而不充分条件.选B .26.已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a b <.下列命题为真命题的是A .p q ∧B .p q ⌝∧C .p q ⌝∧D .p q ⌝⌝∧B 【解析】取0x =,知1p 成立;若22a b <,得||||a b =,q 为假,所以p q ⌝∧为真,选B . 27.设m , n 为非零向量,则“存在负数λ,使得λ=m n ”是“0⋅<m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件A 【解析】因为,m n 为非零向量,所以||||cos ,0⋅=<><m n m n m n 的充要条件是cos ,0<><m n .因为0λ<,则由λ=m n 可知,m n 的方向相反,,180<>=om n ,所以cos ,0<><m n ,所以“存在负数λ,使得λ=m n ”可推出“0⋅<m n ”;而0⋅<m n 可推出cos ,0<><m n ,但不一定推出,m n 的方向相反,从而不一定推得“存在负数λ,使得λ=m n ”,所以“存在负数λ,使得λ=m n ”是“0⋅<m n ”的充分而不必要条件.28.已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是“465+2S S S >”的A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D .既不充分也不必要条件C 【解析】∵655465()()S S S S a a d ---=-=,当0d >,可得465+2S S S >;当465+2S S S >,可得0d >.所以“0d >”是“465+2S S S >” 充分必要条件,选C . 29.已知直线,a b 分别在两个不同的平面α,b 内,则“直线a 和直线b 相交”是“平面α和平面β相交”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A 【解析】根据已知,如果直线,a b 相交,则平面,αβ一定存在公共点,故其一定相交;反之,如果平面,αβ相交,分别位于这两个平面内的直线不一定相交,故为充分不必要条件,选A . 30.已知函数2()f x x bx =+,则“0b <”是“(())f f x 的最小值与()f x 的最小值相等”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件A 【解析】当0b <时,2min()()24b b f x f =-=-,即2()[,)4b f x ∈-+∞,而222(())()()(())24b b f f x f x bf x f x =+=+-的对称轴也是2b-,又2[,) 24b b-∈-+∞,所以当()2bf x=-时,2min(())4bf f x=-,故(())f f x的最小值与()f x的最小值相等;另一方面,取0b=,2()f x x=与4(())f f x x=有相等的最小值0,故选A.31.已知:293p ln ln ln lna⋅>⋅,:q函数()f x lnx a=-在4(0,]e上有2个零点,则p是q的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【答案】A【解析】对p,12932232ln ln ln lna ln ln⋅>⋅⇔⨯13ln042ln a a>⋅⇔<<;对q,函数()f x lnx a=-在(40,e⎤⎦上有2个零点,即函数()4y lnx x e=<≤与y a=的图象有两个交点,因为44lne=,画出它们的图象,可知04a<≤,所以,p q q p⇒⇒,即p是q的充分不必要条件.故选:A.32.“x0>”是“20x x+>”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【答案】A【解析】设A={x|x>0},B={x|x<1-,或x>0},∵A≠⊂B,故“x>0”是“20x x+>”成立的充分不必要条件.故选:A.二、填空题33.(2018江苏)已知集合{0,1,2,8}A=,{1,1,6,8}B=-,那么A B=I.{1,8}【解析】由集合的交运算可得A B=I{1,8}.34.已知集合{1,2}A=,2{,3B a a=+},若{1}A B=I,则实数a的值为____.1【解析】由题意1B∈,显然1a=,此时234a+=,满足题意,故1a=.35.已知集合{}123A =,,,{}245B =,,,则集合A B U 中元素的个数为 . 5【解析】{1,2,3}{2,4,5}{1,2,3,4,5}A B ==U U ,5个元素36.已知集合U ={}1,2,3,4,A ={}1,3,B ={}1,3,4,则A U (U B ð)= . {1,2,3}【解析】{2}U B =ð,A U (U B ð)={1,2,3}. 37.(2018北京)能说明“若a b >,则11a b<”为假命题的一组a ,b 的值依次为____. 11-(答案不唯一)【解析】由题意知,当1a =,1b =-时,满足a b >,但是11a b>,故答案可以为11-.(答案不唯一,满足0a >,0b <即可)。

【新课标】高三数学二轮精品专题卷_ 集合与常用逻辑用语

【新课标】高三数学二轮精品专题卷_ 集合与常用逻辑用语

高三数学二轮精品专题卷: 集合与常用逻辑用语考试范围:集合与常用逻辑用语一、选择题(本大题共15小题;每小题5分,共75分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.将集合{{}512),(=+=-y x y x y x 用列举法表示,正确的是 ( ) A .}{3,2 B .()}{3,2 C .}{3,2==y x D .()3,22.设集合=U R ,{|2011}M x x =>,集合}10|{<<=x x N ,则下列关系中正确的是( )A .()R N C M U =B .{}10<<x x N M =C .()M C N U ⊆D .φ≠N M3.已知集合{}9|7|<-=x x M ,{|N x y =,且N M 、都是全集U 的子集,则下图韦恩图中阴影部分表示的集合 A .{}23-≤-<x x B .}{23-≤≤-x xC .}{16≥x xD .}{16>x x 4.定义集合}{n x x x A ,...,,21=,{}()+∈=N m n y y y B m ,,,...,21,若m n y y y x x x +++=+++......2121则称集合A 、B 为等和集合。

已知以正整数为元素的集合M ,N 是等和集合,其中集合}{3,2,1=M ,则集合N 的个数有 ( )A .3B .4C .5D .6 5.命题“所有能被5整除的数都是偶数”的否定形式是( ) A .所有不能被5整除的数都是偶数 B .所有能被5整除的数都不是偶数C .存在一个不能被5整除的数都是偶数D .存在一个能被5整除的数不是偶数6.若集合22310.5|25|1{|3},{|log (44)0},{|2}252x x x A x B x x x C x x -+-=<=-+>=<-,则“B A x ∈”是“C x ∈” ( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件1. (理)非负整数a ,b 满足1=+-ab b a ,记集合(){}b a M ,=,则M 的元素的个数为 ( )A .1个B .2个C .3个D .4个 (文)下列特称命题中,假命题是 ( )A .∃x ∈R ,x 2-2x -3=0B .至少有一个x ∈Z ,x 能被2和3整除[来源: ]C .存在两个相交平面垂直于同一直线D .∃x ∈{x |x 是无理数},使x 2是有理数[来源:金太阳新课标资源网]8.(理)下列命题中的真命题是 ( )A .3是有理数B .22是实数C .2e 是有理数D .{}R x x =是小数|(文)若三角方程cos 0x =与cos 20x =的解集分别为E,F ,则 ( )A .E ⊃≠ FB .E ⊂≠FC .E=FD .φ=F E9.已知平面向a ,b 满足1=a ,2=b ,a 与b 的夹角为 60,则1=m 是()a b m a⊥-的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条10.在下列结论中,正确的结论为 ( )①“q p 且”为真是“q p 或”为真的充分不必要条件;②“q p 且”为假是“q p 或”为真的充分不必要条件;③“q p 或”为真是“p ⌝”为假的必要不充分条件;④“p ⌝”为真是“q p 且”为假的必要不充分条件.A .①②B .①③C .②④D .③④11.设有两个命题,命题p :对a ,b 均为单位向量,其夹角为θ,>b a +1是⎪⎭⎫⎢⎣⎡∈32,0πθ的充要条件,命题q :若函数28y kx kx =--的值恒小于0,则320k -<<,那么 ( )A .“p 且q ”为真命题B .“p 或q ”为真命题C .“﹁p ”为真命题D .“﹁q ”为假命题 12.已知⎩⎨⎧>-≤-=0,230,2)(2x x x x x f ,试求[1,1x ∀∈-,ax x f ≥|)(|成立的充要条件( )A .(][)+∞--∞∈,01, aB .[]0,1-∈aC .[]1,0∈aD .[)0,1-∈a 13.对于数列{}n a ,“)3,2,1(,,21⋯=++n a a a n n n 成等比数列”是“221++=n n n a a a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 14.在四棱锥V-ABCD 中,B 1,D 1分别为侧棱VB ,VD 上的点,则命题P :“若B 1,D 1分别为侧棱VB ,VD 的中点,则四面体AB 1CD 1的体积与四棱锥V-ABCD 的体积之比为1:4”和它的逆命题,否命题,逆否命题中真命题的个数为 ( )A .1B .2C .3D .4[来源:金太阳新课标资源网 ]15.(理)设M 为平面内一些向量组成的集合,若对任意正实数t 和向量M a ∈ ,都有M a t ∈ ,则称M 为“点射域”.现有下列平面向量的集合:①2{(,)|}x y x y ≥;②0(,)|0x y x y x y ⎧-≥⎫⎧⎨⎨⎬+≤⎩⎩⎭; ③22{(,)|20}x y x y x +-≥; ④22{(,)|3260}x y x y +-<;上述为“点射域”的集合的个数是( )[来源: ]A .1B .2C .3D .4(文)在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={5n+k n ∈Z },k =0,1,2,3,4.给出如下四个结论:①2011∈[1];②-3∈[3];③Z =[0]∪[1]∪[2]∪[3]∪[4]④“整数a ,b 属于同一“类”的充要条件是“b a -∈[0]”.其中正确的个数为( )A .1B .2C .3D .4 二、填空题(本大题共15小题;每小题5分,共75分。

【高三数学试题精选】2018高考数学集合、不等式、复数等二轮专题复习题(有答案)

【高三数学试题精选】2018高考数学集合、不等式、复数等二轮专题复习题(有答案)

2018高考数学集合、不等式、复数等二轮专题复习题(有
答案)
5 专题升级训练集合与常用逻辑用语
(时间60分钟满分100分)
一、选择题(本大题共6小题,每小题6分,共36分)
1(x)},则图中阴影部分表示的集合为( )
A{x|x≥1}B{x|1≤x 2}
c{x|0 x≤1}D{x|x≤1}
3(1
D对任意x∈,使sin x x
二、填空题(本大题共3小题,每小题6分,共18分)
7已知集合A={3,2}, B={-1,3,2-1}若A B,则实数的值为
8若命题“ x∈R,ax2-ax-2≤0”是真命题,则a的取值范围是
9已知下列命题
①命题“ x∈R,x2+1 3x”的否定是“ x∈R,x2+1
②已知p,q为两个命题,若“p∨q”为假命题,则“(&#1051729;p)∧(&#1051729;q)”为真命题;
③ “a 2”是“a 5”的充分不必要条;
④“若x=0,则x=0且=0”的逆否命题为真命题
其中所有真命题的序号是
三、解答题(本大题共3小题,共46分解答应写出必要的字说明、证明过程或演算步骤)
10(本小题满分15分)已知集合A={x|3≤x 7},B={x|2 x 10},c={x|x a},全集为实数集R
(1)求A∪B;
(2)( RA)∩B;
(3)如果A∩c≠ ,求a的取值范围。

2018年高考数学二轮复习专项精练(高考22题)12+4分项练1集合与常用逻辑用语理

2018年高考数学二轮复习专项精练(高考22题)12+4分项练1集合与常用逻辑用语理

12+4分项练1 集合与常用逻辑用语1.(2017·湖北省襄阳四中适应性考试)已知集合U =R ,集合A ={x |1<x ≤3},B ={x |x 2-3x ≥0},则如图所示阴影部分表示的集合为( )A .[0,1)B .(0,3]C .(1,3)D .[1,3] 答案 C解析 B ={x |x 2-3x ≥0}={x |x ≥3或x ≤0},图中阴影部分所表示的集合为A ∩(∁U B ).因为∁U B ={x |0<x <3} ,所以A ∩(∁U B )={x |1<x <3}=(1,3),故选C.2.(2017届安徽省蚌埠市质量检查)已知集合A ={x |x 2-2x ≤0},B ={-1,0,1,2},则A ∩B 等于( ) A .[0,2]B .{0,1,2}C .(-1,2)D .{-1,0,1}答案 B解析 集合A ={x |x 2-2x ≤0}={x |0≤x ≤2},B ={-1,0,1,2},∴A ∩B ={0,1,2},故选B.3.已知集合A ={(x ,y )|y =x +1,0≤x ≤1},集合B ={(x ,y )|y =2x,0≤x ≤10},则集合A ∩B 等于( )A .{1,2}B .{x |0≤x ≤1}C .{(1,2)}D .∅答案 C解析 由题意可得,集合A 表示0≤x ≤1时线段y =x +1上的点,集合B 表示0≤x ≤10时线段y =2x 上的点,则A ∩B 表示两条线段的交点坐标,据此可得A ∩B ={(1,2)}.故选C.4.(2017届江西省南昌市二模)命题“∀x >1,⎝ ⎛⎭⎪⎫12x <12”的否定是( )A .∀x >1,⎝ ⎛⎭⎪⎫12x ≥12B .∀x ≤1,⎝ ⎛⎭⎪⎫12x ≥12C .∃x 0>1,011()22x≥ D .∃x 0≤1,011()22x≥答案 C解析 因为“∀x >1,⎝ ⎛⎭⎪⎫12x <12”是全称命题,所以依据含一个量词的命题的否定可知,其否定是特称命题(存在性命题),即“∃x 0>1,011()22x≥”,故选C. 5.(2017届湖南省长沙市一中二模)已知集合A ={y |y =log 2x ,x >1},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪y =11-2x,则A ∩B 等于( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪ 0<y <12 B .{y |0<y <1} C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪12<y <1 D .∅ 答案 A解析 由题意可得,A ={y |y >0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <12, ∴A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪0<y <12. 故选A.6.(2017届上海市宝山区二模)设a ,b ∈R ,则“a +b >4”是“a >1且b >3”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 显然“a >1且b >3”成立时,“a +b >4”一定会成立,所以是必要条件.当a >4,b >2时,“a +b >4”成立,但“a >1且b >3”不成立,所以不是充分条件.故选B. 7.(2017届河北省衡水中学二模)已知命题p :∃x 0>e ,01()2x>ln x 0;命题q :∀a >1,b >1,log a b +2log b a ≥22,则下列命题中为真命题的是( ) A .(綈p )∧q B .p ∧qC .p ∧(綈q )D .p ∨(綈q ) 答案 A解析 根据⎝ ⎛⎭⎪⎫12x 和ln x 的图象可知,当x =e 时,ln x >⎝ ⎛⎭⎪⎫12x,由两者图象可知当x >e 时,lnx 的图象始终比⎝ ⎛⎭⎪⎫12x 的图象高,故命题p 为假命题;命题q, a >1,b >1,log a b >0,2log b a >0,由基本不等式可得,log a b +2log b a ≥22,故命题q 为真命题,故选A.8.(2017届湖南省长沙市一中二模)已知A ={y |y =12x ,0≤x ≤1},B ={y |y =kx +1,x ∈A },若A ⊆B ,则实数k 的取值范围为( )A .k =-1B .k <-1C .-1≤k ≤0D .k ≤-1 答案 D解析 由已知可得A ={y |y =12x ,0≤x ≤1}=[0,1], 当k >0时,B =[1,1+k ]; 当k <0时,B =[1+k,1]. 由A ⊆B 知,当k >0时不合题意,当k <0时,则1+k ≤0,得k ≤-1,故选D.9.(2017届福建省泉州市三模)集合A ={x |2x 2-3x ≤0,x ∈Z },B ={x |1≤2x<32,x ∈Z },集合C 满足A ⊆C ⊆B ,则集合C 的个数为( ) A .3 B .4 C .7 D .8 答案 C解析 由题意可得A ={0,1},B ={0,1,2,3,4},集合C =A ∪M ,其中M 为集合{2,3,4}的真子集,由子集个数公式可得,C 的个数为23-1=7. 故选C.10.(2017届黑龙江省双鸭山市第一中学四模)设A ,B 是两个非空集合,定义集合A -B ={x |x ∈A 且x ∉B },若A ={x ∈N |0≤x ≤5},B ={x |x 2-7x +10<0},则A -B 等于( ) A .{0,1} B .{1,2} C .{0,1,2} D .{0,1,2,5}答案 D解析 由题意可得A ={0,1,2,3,4,5},B ={x |2<x <5}, 结合题中新定义的集合运算可得A -B ={0,1,2,5}. 故选D.11.(2017届陕西省西安市铁一中学模拟)给出下列四个结论: ①命题“∀x ∈(0,2),3x>x 3”的否定是“∃x 0∈(0,2),3x 0≤x 30”; ②“若θ=π3,则cos θ=12”的否命题是“若θ≠π3,则cos θ=12”;③若“p ∧q ”或“p ∨q ”是真命题,则命题p ,q 一真一假;④“函数y =2x+m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的充要条件.其中正确结论的个数为( ) A .1 B .2 C .3 D .4 答案 A解析 由题意得,根据全称命题与特称命题(存在性命题)的否定关系,可知①正确; ②中,命题的否命题为“若θ≠π3,则cos θ≠12”,所以②错误;③中,若“p ∧q ”或“p ∨q ”是真命题,则命题p ,q 都是真命题或一真一假,故③错误; ④中,由函数y =2x +m -1有零点,则1-m =2x>0⇒m <1,而函数y =log m x 为减函数,则0<m <1,所以④错误,故选A.12.(2017届辽宁省锦州市质量检测)设命题p :实数x ,y 满足:(x -1)2+(y -1)2≤2,命题q :实数x ,y 满足:⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 B解析 命题p 表示一个圆及其内部,命题q 表示一个三角形及其内部,如图,所以p 是q 的必要不充分条件.13.(2017·湖北省黄冈中学三模)若命题“∃x 0∈R ,x 20-2x 0+m ≤0”是假命题,则m 的取值范围是__________. 答案 (1,+∞)解析 因为命题“∃x 0∈R ,x 20-2x 0+m ≤0”是假命题,所以∀x ∈R ,x 2-2x +m >0为真命题,即Δ=4-4m <0,m >1,故答案为(1,+∞).14.(2017届天津市耀华中学一模)已知集合U =R ,集合A ={x ∈R ||x +3|-|x -3|>3},B={x ∈R |x =t 2-4t +1t,t ∈(0,+∞)},则集合B ∩(∁U A )=________.答案 ⎣⎢⎡⎦⎥⎤-2,32解析 ∵|x +3|-|x -3|>3,当x ≤-3时,-x -3-(3-x )>3,-6>3,无解;当-3<x <3时,x +3-(3-x )>3,解得32<x <3;当x ≥3时,x +3-x +3>3,解得x ≥3;∴集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x >32,x ∈R, ∴∁U A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤32,x ∈R, 对于集合B ,x =t +1t-4≥2-4=-2,当且仅当t =1时“=”成立. 即集合B ={x |x ≥-2}, 可得B ∩(∁U A )=⎣⎢⎡⎦⎥⎤-2,32. 15.(2017·北京市朝阳区模拟)已知两个集合A ,B ,满足B ⊆A .若对任意的x ∈A ,存在a i ,a j ∈B (i ≠j ),使得x =λ1a i +λ2a j (λ1,λ2∈{-1,0,1}),则称B 为A 的一个基集.若A={1,2,3,4,5,6,7,8,9,10},则其基集B 元素个数的最小值是________. 答案 4解析 若基集B 元素个数为3:a i ,a j ,a k (i ,j ,k 互不相等),则最多可表示a i ,a j ,a k ,a i +a j ,a k +a i ,a j +a k ,|a i -a j |,|a k -a i |,|a j -a k |九个元素,因此基集B 元素个数的最小值是4,如B ={2,3,6,7}.16.(2017·安徽省江淮十校联考)设有两个命题,p :关于x 的不等式a x>1(a >0,且a ≠1)的解集是{x |x <0};q :函数y =lg(ax 2-x +a )的定义域为R .如果p ∨q 为真命题,p ∧q 为假命题,则实数a 的取值范围是__________________. 答案 0<a ≤12或a ≥1解析 若p 真:0<a <1.若q 真:函数y =lg(ax 2-x +a )的定义域为R ,等价于∀x ∈R ,ax 2-x +a >0,则⎩⎪⎨⎪⎧a >0,Δ=1-4a 2<0,解得a >12,故q :a >12,若p ∨q 为真命题,p ∧q 为假命题,则p 真q 假或p 假q 真,即⎩⎪⎨⎪⎧0<a <1,a ≤12或⎩⎪⎨⎪⎧a ≤0或a ≥1,a >12,解得0<a ≤12或a ≥1.。

(通用版)高考数学二轮复习自测过关卷(一)集合、常用逻辑用语、不等式理(重点生,含解析)

(通用版)高考数学二轮复习自测过关卷(一)集合、常用逻辑用语、不等式理(重点生,含解析)

自测过关卷(一) 集合、常用逻辑用语、不等式A组——高考题点全面练1.(2018·全国卷Ⅰ)已知集合 A={0,2},B={-2,-1,0,1,2},则 A∩B=( )A.{0,2} B.{1,2}C.{0} D.{-2,-1,0,1,2}解析:选 A A∩B={0,2}∩{-2,-1,0,1,2}={0,2}.2.(2018·全国卷Ⅱ)已知集合 A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则 A 中元素的个数为( )A.9B.8C.5D.4解析:选 A 法一:将满足 x2+y2≤3 的整数 x,y 全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有 9 个.故选 A.法二:根据集合 A 的元素特征及圆的方程在坐标系中作出图形,如图,易知在圆 x2+y2=3 中有 9 个整点,即为集合 A 的元素个数,故选 A.法三:由 x2+y2≤3 知,- 3≤x≤ 3,- 3≤y≤ 3.又 x∈Z,y∈Z,所以 x∈{-1,0,1},y∈{-1,0,1},所以 A 中元素的个数为 C13C13=9,故选 A.3.(2019 届高三·广西联考)已知全集 U={x∈Z|x2-5x-6<0},A={x∈Z|-1<x≤2},B={2,3,5},则(∁UA)∩B=( )A.{2,3,5}B.{3,5}C.{2,3,4,5}D.{3,4,5}解析:选 B ∵全集 U={x∈Z|x2-5x-6<0}={x∈Z|-1<x<6}={0,1,2,3,4,5},A={x∈Z|-1<x≤2}={0,1,2},∴∁UA={3,4,5}. 又∵B={2,3,5},∴(∁UA)∩B={3,5}.4.(2018·贵阳模拟)命题 p:∃x0∈R,x20+2x0+2≤0,则綈 p 为( ) A.∀x∈R,x2+2x+2>0B.∀x∈R,x2+2x+2≥0C.∃x0∈R,x20+2x0+2>0 D.∃x0∈R,x20+2x0+2≥0 解析:选 A 因为命题 p 为特称命题,所以綈 p 为“∀x∈R,x2+2x+2>0”,故选 A.5.(2018·沈阳质监)命题“若 xy=0,则 x=0”的逆否命题是( )A.若 xy=0,则 x≠0B.若 xy≠0,则 x≠0C.若 xy≠0,则 y≠0D.若 x≠0,则 xy≠0解析:选 D “若 xy=0,则 x=0”的逆否命题为“若 x≠0,则 xy≠0”.6.(2019 届高三·南昌调研)已知 m,n 为两个非零向量,则“m 与 n 共线”是“m·n=|m·n|”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选 D 当 m 与 n 反向时,m·n<0,而|m·n|>0,故充分性不成立.若 m·n=|m·n|,则 m·n=|m|·|n|cos〈m,n〉=|m|·|n|·|cos〈m,n〉|,则 cos〈m,n〉=|cos〈m,n〉|,故 cos〈m,n〉≥0,即 0°≤〈m,n〉≤90°,此时 m 与 n 不一定共线,即必要性不成立.故“m 与 n 共线”是“m·n=|m·n|”的既不充分也不必要条件,故选 D.7.(2018·唐山模拟)设变量 x,y 满足Error!则目标函数 z=2x+y 的最小值为( )A.32 C.4B.2 D.6解析:选 A 作出不等式组Error!所对应的可行域如图中阴影部分所示.当直线 y=-2x+z 过点 C 时,在 y 轴上的截距最小,此时 z 最小.由Error!得Error!( ) 所以 C 12,12 ,zmin=2×12+12=32.8.(2018·长春质检)已知 x>0,y>0,且 4x+y=xy,则 x+y 的最小值为( )A.8B.9C.12D.16( ) 解析:选 B 由 4x+y=xy,得4y+1x=1,则 x+y=(x+y) 4y+1x =4yx+xy+1+4≥2 4+5=9,当且仅当4yx=xy,即 x=3,y=6 时取“=”,故选 B. 9.定义一种集合运算 A∁B={x|x∈A∪B,且 x∁A∩B},设 M={x||x|<2},N={x|x2-4x+3<0},则 M∁N 表示的集合是( )A.(-∞,-2]∪[1,2)∪(3,+∞) B.(-2,1]∪[2,3)C.(-2,1)∪(2,3) D.(-∞,-2]∪(3,+∞)解析:选 B ∵M={x||x|<2}={x|-2<x<2},N={x|x2-4x+3<0}={x|1<x<3},∴M∩N={x|1<x<2},M∪N={x|-2<x<3}.∵A∁B={x|x∈A∪B,且 x∁A∩B},∴M∁N={x|-2<x≤1 或 2≤x<3},故选 B.10.关于 x 的不等式 x2-(a+1)x+a<0 的解集中,恰有 3 个整数,则 a 的取值范围是( )A.(4,5)B.(-3,-2)∪(4,5)C.(4,5]D.[-3,-2)∪(4,5]解析:选 D ∵关于 x 的不等式 x2-(a+1)x+a<0 可化为(x-1)(x-a)<0,∴当 a>1 时,得 1<x<a,此时解集中的整数为 2,3,4,则 4<a≤5.当 a<1 时,得 a<x<1,此时解集中的整数为-2,-1,0,则-3≤a<-2,故 a 的取值范围是[-3,-2)∪(4,5].11.已知实数 x,y 满足约束条件Error!使 z=x+ay(a>0)取得最小值的最优解有无数个,则 a 的值为( )A.-3B.3C.-1D.1解析:选 D 作出不等式组表示的可行域如图中阴影部分所示,z=x+ay 可化为 y=-1ax+az,az为直线 y=-1ax+az在 y 轴上的截距,要使目标函数取得最小值的最优解有无数个,则截距最小时的最优解有无数个.∵a>0,∴把直线 x+ay=z 平移,使之与可行域中的边界 AC 重合即可,∴-a=-1,即 a=1,故选D.12.已知命题 p:函数 f(x)=2ax2-x-1 在(0,1)内恰有一个零点;命题 q:函数 y=x2-a 在(0,+∞)上是减函数.若 p∧綈 q 为真命题,则实数 a 的取值范围是( )A.(1,+∞)B.(-∞,2]C.(1,2]D.(-∞,1]∪(2,+∞)解析:选 C 由题意可得,对命题 p,令 f(0)·f(1)<0,即-1·(2a-2)<0,得 a>1;对命题 q,令 2-a<0,得 a>2,则綈 q 对应的 a 的取值范围是(-∞,2].因为 p∧綈 q 为真命题,所以实数 a 的取值范围是(1,2].13.已知 A={x|-1<2x-1<5},B={y|y=2x,x>0},则(∁RA)∪B=________. 解析:∵A={x|-1<2x-1<5}={x|0<x<3},B={y|y=2x,x>0}={y|y>1},∴∁RA={x|x≤0 或 x≥3}, ∴(∁RA)∪B={x|x≤0 或 x>1}. 答案:{x|x≤0 或 x>1}14.(2018·全国卷Ⅰ)若 x,y 满足约束条件Error!则 z=3x+2y 的最大值为________.解析:作出满足约束条件的可行域如图中阴影部分所示.由 z=3x+2y,得 y=-32x+2z. 作直线 l0:y=-32x. 平移直线 l0,当直线 y=-32x+2z过点(2,0)时,z 取最大值,zmax=3×2+2×0=6. 答案:6 15.(2019 届高三·辽宁五校协作体联考)已知命题“∃x0∈R,4x20+(a-2)x0+14≤0”是假命题,则实数 a 的取值范围为________. 解析:因为命题“∃x0∈R,4x20+(a-2)x0+14≤0”是假命题,所以其否定“∀x∈R,4x2+(a-2)x+14>0”是真命 题,则 Δ=(a-2)2-4×4×1=a2-4a<0,解得 0<a<4.4 答案:(0,4) 16.若关于 x 的不等式 2x-1>m(x2-1)对满足|m|≤2 的一切实数 m 的取值都成立,则 x 的取值范围为 ________. 解析:由 2x-1>m(x2-1), 可得(x2-1)m-(2x-1)<0. 构造关于 m 的函数 f(m)=(x2-1)m-(2x-1),|m|≤2,即-2≤m≤2. ①当 x2-1>0, 即 x<-1 或 x>1 时,则 f(2)<0, 从而 2x2-2x-1<0, 解得1-2 3<x<1+2 3, 所以 1<x<1+2 3. ②当 x2-1<0, 即-1<x<1 时,则 f(-2)<0, 可得-2x2-2x+3<0,从而 2x2+2x-3>0, 解得 x<-1-2 7或 x> 72-1, 所以 72-1<x<1. ③当 x2-1=0,即 x=±1 时, 则 f(m)=1-2x<0,从而 x>12,故 x=1.综上可得 72-1<x<1+2 3.( ) 答案: 72-1,1+2 3B组——高考达标提速练(对应配套卷 P162)1.(2018·全国卷Ⅰ)已知集合 A={x|x2-x-2>0},则∁RA=( )A.{x|-1<x<2} B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}解析:选 B ∵x2-x-2>0,∴(x-2)(x+1)>0,∴x>2 或 x<-1,即 A={x|x>2 或 x<-1}.则∁RA={x|-1≤x≤2}.故选 B. 2.(2018·南宁模拟)设集合 M={x|x<4},集合 N={x|x2-2x<0},则下列关系中正确的是A.M∪N=MB.M∪∁RN=MC.N∪∁RM=RD.M∩N=M解析:选 A ∵M={x|x<4},N={x|0<x<2},∴M∪N={x|x<4}=M,故选项 A 正确;M∪∁RN=R≠M,故选项 B 错误;N∪∁RM={x|0<x<2}∪{x|x≥4}≠R,故选项 C 错误;M∩N={x|0<x<2}=N,故选项 D 错误.{ } 3.(2018·贵阳模拟)设集合 A={x|(x-1)(x+2)<0},B= xxx+-13 < 0 ,则 A∪B=( )A.(-2,1)B.(-2,3)C.(-1,3)D.(-1,1)解析:选 B 因为 A={x|-2<x<1},B={x|-1<x<3},所以 A∪B={x|-2<x<3},故选 B.4.已知集合 A={2,3},B={x|mx-6=0},若 B⊆A,则实数 m=( )A.3B.2C.2 或 3D.0 或 2 或 3( ){ } 解析:选D ∵A={2,3},B={x|mx-6=0}=6 m,B⊆A,∴2=m6 或 3=m6 或m6 不存在, ∴m=2 或 m=3 或 m=0,5.(2018·天津高考)设变量 x,y 满足约束条件Error!则目标函数 z=3x+5y 的最大值为( )A.6B.19C.21D.45解析:选 C 作出不等式组所表示的可行域如图中阴影部分所示,由 z= 3x+5y 得 y=-3x+z. 55设直线 l0 为 y=-35x,平移直线 l0,当直线 y=-35x+5z过点 P 时, 值.联立Error!解得Error!即 P(2,3),z取得最大所以 zmax=3×2+5×3=21.6.设 x>0,y>0,x+y-x2y2=4,则1x+1y的最小值等于( )A.2B.4C.12D.14解析:选 B 由 x+y-x2y2=4,可得 x+y=x2y2+4,x>0,y>0.∴1x+1y=x+xyy=x2yx2y+4=xy+x4y≥2 xy·x4y=4,当且仅当 xy=2 时取等号,因此1x+1y的最小值等于 4. 7.(2019 届高三·武汉调研)已知 x>y>0,a>b>1,则一定有( )A.ax>by C.logax>logbyB.sin ax>sin by D.ax>by解析:选 D 对于 A 选项,不妨令 x=8,y=3,a=5,b=4,显然58=ax<by=43,A 选项错误; 对于 B 选项,不妨令 x=π,y=2π,a=2,b=32,此时 sin ax=sin 2π=0,sin by=sin34π= 22, 显然 sin ax<sin by,B 选项错误;对于 C 选项,不妨令 x=5,y=4,a=3,b=2,此时 logax=log35,logby=log24=2, 显然 logax<logby,C 选项错误; 对于 D 选项,∵a>b>1,∴当 x>0 时,ax>bx,又 x>y>0,∴当 b>1 时,bx>by,∴ax>by,D 选项正确.综上,选 D.8.已知满足约束条件Error!的可行域为 Ω,直线 x+ky-1=0 将可行域 Ω 划分成面积相等的两部分,则 k 的值为( )A.-13B.13C.0D.23解析:选 B 作出不等式组所对应的平面区域如图中阴影部分所示.∵直线 x+ky-1=0 过定点 C(1,0), ∴要使直线 x+ky-1=0 将可行域分成面积相等的两部分,则直线 x+ky-1=0 必过线段 AB 的中点 D. 由Error!解得Error!即 B(1,4). 由Error!解得Error!即 A(-1,2). ∴AB 的中点 D(0,3), 将点 D 的坐标代入直线 x+ky-1=0,得 3k-1=0,解得 k=13,故选 B. 9.(2018·郑州第一次质量预测)下列说法正确的是( )A.“若 a>1,则 a2>1”的否命题是“若 a>1,则 a2≤1”B.“若 am2<bm2,则 a<b”的逆命题为真命题C.存在 x0∈(0,+∞),使 3x0>4x0 成立 D.“若 sin α≠12,则 α≠6π”是真命题 解析:选 D 对于选项 A,“若 a>1,则 a2>1”的否命题是“若 a≤1,则 a2≤1”,选项 A 错误;对于选项 B,“若 am2<bm2,则 a<b”的逆命题为“若 a<b,则 am2<bm2”,因为当 m=0 时,am2=bm2,所以其逆命题为假命题,故选项 B 错误;对于选项 C,由指数函数的图象知,对任意的 x∈(0,+∞),都有 4x>3x,选项 C 错误;对于选项 D,“若 sin α≠1,则 α≠π”的逆否命题为“若 α=π,则 sin α=1”,且其逆否命题为真命题,所2662以原命题为真命题,故选 D.10.(2019 届高三·湖南湘东五校联考)“不等式 x2-x+m>0 在 R 上恒成立”的一个必要不充分条件是( )A.m>14 C.m>0B.0<m<1 D.m>1解析:选 C 若不等式 x2-x+m>0 在 R 上恒成立,则 Δ=(-1)2-4m<0,解得 m>14,因此当不等式 x2 -x+m>0 在 R 上恒成立时,必有 m>0,但当 m>0 时,不一定推出不等式在 R 上恒成立,故所求的必要不充分条件可以是 m>0.11.(2018·武汉调研)某公司生产甲、乙两种桶装产品,已知生产甲产品 1 桶需耗 A 原料 2 千克,B 原料 3 千克;生产乙产品 1 桶需耗 A 原料 2 千克,B 原料 1 千克,每桶甲产品的利润是 300 元,每桶乙产品的利润是 400 元,公司在每天消耗 A,B 原料都不超过 12 千克的条件下,生产这两种产品可获得的最大利润为( )A.1 800 元B.2 100 元C.2 400 元D.2 700 元解析:选 C 设生产甲产品 x 桶,生产乙产品 y 桶,每天的利润为 z 元.根据题意,有 Error!z=300x+400y.作出不等式组所表示的可行域如图中阴影部分所示,作出直线 3x+4y=0 并平移,当直线经过点 A(0,6)时,z 有最大值,zmax=400×6=2 400,故选 C.12.在下列结论中,正确的个数是( )①命题 p:“∃x0∈R,x20-2≥0”的否定形式为綈 p:“∀x∈R,x2-2<0”; ②O 是△ABC 所在平面上一点,若―O→A ·―O→B =―O→B ·―O→C =―O→C ·―O→A ,则 O 是△ABC 的垂心;( ) ( ) ③“M>N”是“2 3M>2 3N”的充分不必要条件;④命题“若 x2-3x-4=0,则 x=4”的逆否命题为“若 x≠4,则 x2-3x-4≠0”.A.1B.2C.3D.4解析:选 C 由特称命题与全称命题的关系可知①正确.∵―O→A ·―O→B =―O→B ·―O→C ,∴―O→B ·(―O→A -―O→C )=0,即―O→B ·―C→A =0,∴―O→B ⊥―C→A .同理可知―O→A ⊥―B→C ,―O→C ⊥―B→A ,故点 O 是△ABC 的垂心,∴②正确.( ) ∵y= 2 x 是减函数, 3( ) ( ) ( ) ( ) ∴当 M >N 时, 2 M< 2 N,当 2 M> 2 N 时,M<N.3333( ) ( ) ∴“M>N”是“ 2 M> 2 N”的既不充分也不必要条件,∴③错误. 33由逆否命题的定义可知,④正确.∴正确的结论有 3 个.13.已知实数 x,y 满足Error!若 z=ax+y 的最大值为 16,则实数 a=________.解析:作出不等式组所表示的可行域如图中阴影部分所示.目标函数 z=ax+y 对应直线 ax+y-z=0 的斜率 k=-a.①当 k∈(-∞,1],即-a≤1,a≥-1 时,目标函数在点 A 处取得最大值,由Error!可得A (5,6),故z 的最大值为5a +6=16,解得a =2.②当k ∈(1,+∞),即-a >1,a <-1时,目标函数在点C 处取得最大值,由Error!可得C (0,1),故z 的最大值为0×a +1=1,显然不符合题意.综上,a =2.答案:214.(2018·郑州第一次质量预测)已知函数f (x )=Error!若不等式f (x )≤5-mx 恒成立,则实数m 的取值范围是________.解析:作出函数f (x )的大致图象如图所示,令g (x )=5-mx ,则g (x )恒过点(0,5),由f (x )≤g (x )恒成立,并数形结合得-≤-m ≤0,52解得0≤m ≤.52答案:[0,52]15.记min{a ,b }为a ,b 两数的最小值.当正数x ,y 变化时,令t =min ,则t 的最{2x +y ,2y x 2+2y 2}大值为________.解析:因为x >0,y >0,所以问题转化为t 2≤(2x +y )·=≤==2y x 2+2y 24xy +2y 2x 2+2y 24·x 2+y 22+2y 2x 2+2y 22∁x 2+2y 2∁x 2+2y 22,当且仅当x =y 时等号成立,所以0<t ≤,所以t 的最大值为.22答案:216.(2018·洛阳第一次联考)已知x ,y 满足条件Error!则的取值范围是________.x +2y +3x +1解析:作出不等式组所表示的可行域如图中阴影部分所示.由于=1+2×,其中表示可行域中的点(x ,y )与点P (-1,-1)连线的斜率.由图可x +2y +3x +1y +1x +1y +1x +1知,当x =0,y =3时,取得最大值,且max =9.因为点P (-1,-1)在直线y =x 上,所x +2y +3x +1(x +2y +3x +1)以当点(x ,y )在线段AO 上时,取得最小值,且min =3.所以的取值范围是[3,9].x +2y +3x +1(x +2y +3x +1)x +2y +3x +1答案:[3,9]。

2018届高考数学二轮温习专题一集合与经常使用逻辑用语不等式课时作业一集合与经常使用逻辑用语理

2018届高考数学二轮温习专题一集合与经常使用逻辑用语不等式课时作业一集合与经常使用逻辑用语理
A.[-1,+∞)
B.[3,+∞)
C.(-∞,-1]∪[3,+∞)
D.[-1,3]
解析:由p:(x+3)(x-1)>0,解得x<-3或x>1,要使得綈p是綈q的充分没必要要条件,那么q是p的充分没必要要条件,即q⇒p,p q.因此a2-2a-2≥1,解得a≤-1或a≥3,应选C.
答案:C
13.命题:“∃x∈R,cos2x≤cos2x”的否定是________.
B.必要不充分条件
C.充要条件
D.既不充分也没必要要条件
解析:∵a=(sinα,cosα),b=(cosβ,sinβ),∴|a|=1,|b|=1.假设|a-b|=1,|a-b|= = =1⇔a2+b2-2a·b=1⇔|a|2+|b|2-2|a||b|cosθ=1⇔cosθ= ⇔θ= ;假设θ= ,那么|a-b|=
因此m≥0.①
由q:∀x∈R,x2-2mx+1>0为假命题,
得綈q:∃x∈R,x2-2mx+1≤0为真命题,
因此Δ=(-2m)2-4≥0⇒m2≥1⇒m≤-1或m≥1.②
由①和②得m≥1.应选A.
答案:A
11.(2017·广东五校高三第一次考试)以下命题错误的选项是( )
A.假设p∨q为假命题,那么p∧q为假命题
A.∀x∈N*, x>
B.∀x∉N*, x>
C.∃x∉N*, x>
D.∃x∈N*, x>
解析:命题p的否定是把“∀”改成“∃”,再把“ x≤ ”改成“ x> ”即可,应选D.
答案:D
4.(2017·长沙模拟)已知集合A={1,2,3},B={x|x2-3x+a=0,a∈A},假设A∩B≠∅,那么a的值为( )
答案:a≤2
15.已知∀x∈R,不等式ax2+ax+1>0恒成立,那么实数a的取值范围是________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合与常用逻辑用语、函数及不等式04
34.设向量a ,b 是非零向量,若函数()()f x xa b =+ ·()()a xb x R -∈
的图象不是直线,且在x=0处取得最值,则必有 A .a ⊥b B .a ∥b
C .a ,b 苫不垂直且||||a b =
D .a ,b ,不垂直且||||a b ≠
【答案】 C
【解析】b a x b a x b a b x b a x a x b x a b a x x f ⋅+-+⋅-=-⋅-=-⋅+=)()()()(222222
因为图象不是直线,所以二次项系数不为0,即0≠⋅-b a
,即
0,cos ||||22>≠<⋅⋅-b a b a ,
即a <cos ,0>≠b ,故><b a
,不等于90°,所以a 与b 不垂直.)(x f 在0=x 处取最值,即0=x 为)(x f 的对称轴,故022
2=⋅---b
a b a ,所
以022=-b a ,即||||b a =,所以a 与b 不垂直,且||||b a
=,故选C 。

35.
【答案】20
【解析】一年要买400吨货物,则买的次数为
x
400
,每年的运费x
x y 1600
40041=

=。

一年的总储存费用x y 42=。

所以总花费160640021600421=⨯≥+=+=x x y y y 万元,等号当且仅当x
x 1600
4=
时取,即20=x ,故答案为20。

36.已知函数()y f x =的图象是连续不断的曲线,且有如下的对应值表
A、2个
B、3个
C、4个
D、5个
【答案】B
【解析】根据表格画出该函数大致图象。

由该函数图象可知,在]6,1[内至少有3个零点,故选B。

37.如图所示的四个容器高度都相同,将水从容器顶部一个小孔以相同的速度注
入其中,注满为止.用下面对应的图像显示该容器中水面的高度h和时间t 之间的关系,其中不正确的
....是
A.1个B.2个 C.3个D.4个
【答案】A
【解析】水不停地注入,所以随着时间的增加,水面的高度h是增大的。

分析第二个容器,发现其底面由小变大,故在相同的时间内,由于增加的水的体积是不变的,则水面的高度h增加的幅度越来越小,图像就越来越平缓,所以第二个图像是正确的,同理可得第3、4个图像也正确;而第一个图像应为一条直线,错误。

故只有1个图像错误,选A
38. “0<a ”是“方程0122=++x ax 至少有一个负根”的( )A. 充分不必
要条件 B. 必要不充分条件
C. 充要条件
D.既不充分又不必要条件 【答案】A
【解析】当0a =时,方程0122=++x ax 等价为210x +=,解得1
02
x =-<,
满足条件.当0a ≠时,令2()21f x ax x =++,因为(0)10f =>,要使
0122
=++x ax 至少有一个负根,则满足002
02a a

⎪>⎪∆≥⎨⎪⎪-<⎩或0(0)0a f <⎧⎨
>⎩,解得01a <≤或0a <,综上方程0122=++x ax 至少有一个负根的条件为1a ≤.所以“0<a ”是“方程0122=++x ax 至少有一个负根” 充分不必要条件,选A.
39.已知某质点的位移s 与移动时间t 满足22
t s t e -=⋅,则质点在2t =的瞬时速度是
( )
A .4
B .6
C .8
D .16 【答案】C
【解析】质点在2t =的瞬时速度是22
22
(2)8t t t s t t e -=='=+=,所以选择C 。

40. (如右图所示)函数)(x f y =在点P 处的切线方程是8+-=x y ,则
)5()5(f f '+=
【答案】2.
【解析】由图象信息可知(5)(5)(58)(1)2f f '+=-++-=
41.直线1+=kx y 与曲线b ax x y ++=3相切于点)3,1(A ,则b a +2的值等于 A. 2 B .1- C .1 D . 2- 【答案】C
【解析】由⎪⎩

⎨⎧=+=++=+k a b a k 33131得,2,1=-=b a 所以.12=+b a
42.函数f (x )=lnx+ax 存在与直线2x ﹣y=0平行的切线,则实数a 的取值范围是( )
A .(﹣∞,2]
B .(﹣∞,2)
C .[0,+∞) D. (2,+∞) 【答案】B
【解析】函数f (x )=lnx+ax 存在与直线2x ﹣y=0平行的切线,即f′(x )=2在(0,+∞)上有解,而f′(x )
=+a ,即+a=2在(0,+∞)上有解,a=2
﹣,因为x >0,所以2﹣<2,所以a 的取值范围是(﹣∞,2). 故选B .
43.若曲线f (x )=acosx 与曲线g (x )=x 2+bx+1在交点(0,m )处有公切线,则a+b=( )
A. -1
B. 0
C. 1
D. 2
44.已知二次函数()f x =2ax bx c ++的导数为()f x ',(0)f '>0,对任意实数x 都有()f x ≥0,则
(1)
(0)
f f '的最小值为 A.4 B.3 C.8 D.2 【答案】D
【解析】∵()f x '=2ax b +,∴(0)f '=b >0,
∵对任意实数x 都有()f x ≥0,∴2
040a b ac >⎧⎨∆=-≤⎩,即2
4ac b ≥,∴c >0, ∴(1)(0)f f '=a b c b ++=1a c b ++
≥1+
≥1+
=2, 当且仅当a c =取等号,故选D.
45.设函数()f x 在定义域内可导,()y f x =的图象如下左图所示,则导函数
()y f x '=的图象可能是
【答案】A
【解析】由函数()f x 的图象及其单调性和导函数()f x '的关系知:
0x <时,()0f x '>;0x <时,()f x '的符号变化为负-正-负,所以选A 。

相关文档
最新文档