福建省三明市2014-2015学年高一下学期期末质量检测数学试题

合集下载

2014—2015学年度高一数学竞赛试题(含答案)

2014—2015学年度高一数学竞赛试题(含答案)

2014—2015学年度高一数学竞赛试题(含答案)2014-2015学年度高一数学竞赛试题一.选择题:本大题共5小题,每小题6分,共30分。

在每个小题给出的四个选项中,只有一个正确的答案。

1.已知集合$M=\{x|x+3<0\}$,$N=\{x|x\leq -3\}$,则集合$M\cap N$=()A。

$\{x|x0\}$ D。

$\{x|x\leq -3\}$2.已知$\alpha+\beta=\frac{\pi}{4}$,则$(1-\tan\alpha)(1-\tan\beta)$等于()A。

2 B。

$-\frac{2}{3}$ C。

1 D。

$-\frac{1}{3}$3.设奇函数$f(x)$在$(0,+\infty)$上为增函数,且$f(1)=0$,则不等式$f(x)-f(-x)<0$的解集为()A。

$(-\infty,-1)\cup (0,1)$ B。

$(-1,0)\cup (1,+\infty)$ C。

$(-\infty,-1)\cup (1,+\infty)$ D。

$(0,1)$4.函数$f(x)=\ln|x-1|-x+3$的零点个数为()A。

3 B。

2 C。

1 D。

05.已知函数$f(x)=\begin{cases}1/x。

& x\geq 4 \\ 2.&x<4\end{cases}$,则$f(\log_2 5)$=()A。

$-\frac{11}{23}$ B。

$\frac{1}{23}$ C。

$\frac{11}{23}$ D。

$\frac{19}{23}$二.填空题:本大题共5小题,每小题6分,共30分。

将正确的答案写在题中横线上。

6.已知$0\leq x\leq \frac{\pi}{2}$,则函数$f(x)=4\sqrt{2}\sin x\cos x+\cos^2 x$的值域是\line(5,0){80}。

7.已知:$a,b,c$都不等于0,且$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}$,则$\max\{m,n\}=$\line(5,0){80},$\min\{m,n\}=$\line(5,0){80}。

福建省福州市2014_2015学年高一数学下学期期末试卷(含解析)

福建省福州市2014_2015学年高一数学下学期期末试卷(含解析)

福建省福州市2014-2015学年高一(下)期末数学试卷一、选择题(本大题共12题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.)1.(2015春•福州期末)的值为()A.B.﹣C. D.﹣考点:诱导公式的作用.专题:计算题.分析:直接根据诱导公式转化求解计算即可.解答:解:∵tan=tan(3π﹣)=﹣tan=﹣.故选:D.点评:本题考查诱导公式的应用:求值.此类题一般依照“负角化正角,大角化小角”的顺序进行角的转化.2.(2007•怀柔区模拟)cos20°cos25°﹣sin20°sin25°的值为()A.0 B. 1 C.D.考点:两角和与差的余弦函数.专题:计算题.分析:直接利用两角和的余弦公式代入即可求出结论.解答:解:因为cos20°cos25°﹣sin20°sin25°=cos(20°+25°)=.故选:C.点评:本题主要考查两角和与差的余弦公式的应用.在应用两角和与差的余弦公式时,一定要注意公式中的符号的写法,避免出错.3.(2015春•福州期末)若A(﹣1,1),B(1,3),C(x,5),且=,则实数λ等于()A. 1 B. 2 C. 3 D.4考点:向量数乘的运算及其几何意义.专题:计算题;平面向量及应用.分析:求出向量、,由=,列出方程,求出λ的值.解答:解:∵A(﹣1,1),B(1,3),C(x,5),∴=(2,2),=(x﹣1,2),又=,∴(2,2)=λ(x﹣1,2),∴2=2λ,解得λ=1.故选:A.点评:本题考查了平面向量的坐标运算问题,是基础题目.4.(2015春•福州期末)化简的结果为()A. B. C. D.考点:向量加减混合运算及其几何意义.专题:平面向量及应用.分析:利用向量的三角形法则即可得出.解答:解:=+++=+=.故选:B.点评:本题考查了向量的三角形法则,属于基础题.5.(2015春•福州期末)若(k∈Z),则sinα,cosα,tanα的大小关系为()A.tanα>sinα>cosαB. tanα>cosα>sinαC.tanα<sinα<cosαD. tanα<cosα<sinα考点:三角函数线.专题:三角函数的求值.分析:利用单位圆中的正切线、正弦线、余弦线,即可得出结论.解答:解:∵(k∈Z),所以在单位圆中,做出角α的正切线、正弦线、余弦线,可得正切线最长,余弦线最短,所以有tanα>sinα>cosα,故选:A点评:本题考查利用单位圆中的正切线、正弦线、余弦线的大小来比较对应的三角函数的大小.6.(2007•怀柔区模拟)使函数y=sin(2x+φ)为奇函数的φ值可以是()A. B. C.πD.考点:正弦函数的奇偶性.专题:计算题.分析:利用定义域包含0的函数f(x)为奇函数的条件是f(0)=0,求得sin φ=0,结合所给的选项可得结论.解答:解:定义域包含0的函数f(x)为奇函数的条件是f(0)=0,要使函数y=sin(2x+φ)为奇函数,需sin(2×0+φ)=sin φ=0,即sin φ=0,故φ=kπ,故选C.点评:本题考查奇函数的定义和性质,利用了定义域包含原点的函数f(x)为奇函数的条件是f(0)=0求得.7.(2015春•福州期末)已知α的终边在第一象限,则角的终边在()A.第一象限B.第二象限C.第一或第三象限D.第一或第四象限考点:象限角、轴线角.专题:三角函数的求值.分析:用不等式表示第一象限角α,再利用不等式的性质求出满足的不等式,从而确定角的终边在的象限解答:解:∵α是第一象限角,∴2kπ<α<2kπ+,k∈Z,则kπ<<kπ+,k∈Z,∴的终边的位置是第一或第三象限,故选:C.点评:本题考查象限角的表示方法,不等式性质的应用,通过角满足的不等式,判断角的终边所在的象限.8.(2012•马鞍山二模)为得到函数的图象,只需将函数y=sinx的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位考点:函数y=Asin(ωx+φ)的图象变换.专题:计算题.分析:利用诱导公式将y=cos(x+)转化为y=sin(x+),利用平移知识解决即可.解答:解:∵y=cos(x+)=cos(﹣x﹣)=sin[﹣(﹣x﹣)]=sin(x+),∴要得到y=sin(x+)的图象,只需将函数y=sinx的图象向左平移个长度单位,故选C.点评:本题考查函数y=Asin(ωx+φ)的图象变换,将y=cos(x+)转化为y=sin(x+)是关键,考查理解与转化的能力,属于中档题.9.(2013•北京校级模拟)如图所示,向量,A,B,C在一条直线上且,则()A.B.C.D.考点:平面向量的基本定理及其意义.专题:计算题.分析:由得=﹣3(),解出,即得答案.解答:解:由得=﹣3(),∴2=﹣+3,即 2=﹣+3,∴,故选A.点评:本题考查平面向量基本定理及其意义,由得=﹣3(),是解题的突破口.10.(2015春•福州期末)化简,得到()A.﹣2sin2 B.﹣2cos2 C.2sin2 D.2cos2考点:三角函数的化简求值.专题:三角函数的求值.分析:利用三角函数的基本关系式以及倍角公式对被开方数分解因式,化简即得.解答:解:=+==|sin2+cos2|+|sin2﹣cos2|()=sin2+cos2+sin2﹣cos2=2sin2;故选C.点评:本题考查了三角函数的基本关系式、倍角公式以及三角函数符号的运用;关键是正确化简,明确2的三角函数符号,正确去绝对值.11.(2012•监利县校级模拟)函数的定义域是()A.B.C.D.考点:函数的定义域及其求法.专题:计算题;综合题.分析:直接求无理式的范围,解三角不等式即可.解答:解:由2cos x+1≥0得,∴,k∈Z.故选D.点评:本题考查函数的定义域,三角不等式(利用三角函数的性质)的解法,是基础题.12.(2015春•福州期末)已知平面内的向量满足:||=1,(+)•(﹣)=0,且与的夹角为60°,又=λ+λ,0≤λ1≤1,1≤λ2≤2,则由满足条件的点P所组成的图形的面积是()A. 2 B.C. 1 D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据条件建立平面直角坐标系,将满足不等式表示的可行域表示出来,从而将P点对应的图形描述出来,即可求解.解答:解:∵||=1,(+)•(﹣)=0,得到,即OA=OB,且与的夹角为60°,三角形AOB是等边三角形,则不妨以O为原点,以OA方向为x轴正方向,建立坐标系,如图则=(1,0),又=λ+λ,0≤λ1≤1,1≤λ2≤2,令=(x,y),则=(λ1λ2,λ2)∴,∴,由于0≤λ1≤1,1≤λ2≤2,∴其表示的平面区域如图示:由图可知阴影部分的面积为=.故选D.点评:本题主要考查平面区域的面积问题,是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,然后结合有关面积公式求解.二、填空题(本题共4题,每小题4分,共16分.)13.(4分)(2015春•福州期末)与﹣2015°终边相同的最小正角是145°.考点:终边相同的角.专题:三角函数的求值.分析:先说明145°与﹣2015°终边相同,再说明在[0°,360°)上,只有145°与2015°终边相同.解答:解:∵﹣2015°=﹣6×360°+145°,∴145°与﹣1000°终边相同,又终边相同的两个角相差360°的整数倍,∴在[0°,360°)上,只有145°与﹣1000°终边相同,∴与﹣2015°终边相同的最小正角是145°,故答案为:145°.点评:本题考查终边相同的角的概念,终边相同的两个角相差360°的整数倍.14.(4分)(2015春•福州期末)已知,且||=3,||=5,||=7,则向量与的夹角是60°.考点:平面向量数量积的运算.专题:平面向量及应用.分析:首先利用余弦定理求出以||,||,||为边的三角形内角,然后由向量夹角与三角形内角的关系求出向量夹角.解答:解:由已知,且||=3,||=5,||=7则以||=BC,||=AC,||=AB为边的三角形中cosC=,所以三角形的内角C=120°,所以向量与的夹角是:60°;故答案为:60°.点评:本题考查了平面向量的夹角以及余弦定理的运用;关键是明确三个向量围成的三角形内角与向量夹角的关系.15.(4分)(2015春•福州期末)函数y=asinx+bcosx(x∈R)的最大值是3.则a2+b2的值为9 .考点:三角函数的最值.专题:三角函数的求值.分析:由条件利用辅助角公式化简函数的解析式,再利用正弦函数的值域求得a2+b2的值.解答:解:函数y=asinx+bcosx=(sinx+cosx),令cosθ=,sinθ=,则函数y= sin(x+θ),故函数y的最大值为=3,则a2+b2的值为9,故答案为:9.点评:本题主要考查辅助角公式,正弦函数的值域,属于基础题.16.(4分)(2015春•福州期末)如图,已知O是△ABC内一点,∠AOB=150°,∠AOC=120°,向量,的模分别为2,1,3,若=m,则实数m+n的值为.考点:平面向量的基本定理及其意义;向量的线性运算性质及几何意义.专题:平面向量及应用.分析:求出题意求出∠BOC=90°,由向量的数量积运算化简=0,再化简列出方程求值,由图象确定m、n的值.解答:解:∵∠AOB=150°,∠AOC=120°,∴∠BOC=90°,则=0,∵向量,的模分别为2,1,3,且=m,∴,则,化简得,,①∵,∴,则9=,②,由①②得,m2=9,m=±3,由图可得m=﹣3,代入①n=﹣3,∴m+n=,故答案为:.点评:本题考查向量的数量积运算,向量的模的转化,以及向量垂直的充要条件的应用,对数学思维的要求比较高,难度大,易出错.三、解答题(本大题共6小题,共74分.解答写出文字说明、证明过程或演算步骤.)17.(2015春•福州期末)已知||=2,||=3,与的夹角为120°.(Ⅰ)求(3)的值;(Ⅱ)求||的值.考点:平面向量数量积的运算.专题:平面向量及应用.分析:求解=||||c os120°(I)展开(3)•()=322,代入即可(II)根据||==求解.解答:解:∵||=2,||=3,与的夹角为120°∴=||||cos120°=2×=﹣3,(Ⅰ)(3)•()=322=12﹣15﹣18=﹣21(Ⅱ)||===+9=.点评:本题考察了平面向量的数量积的运用,向量的线性运算,属于中档题.18.(2015春•福州期末)已知角α的终边过点P(﹣3,4).(Ⅰ)求的值;(Ⅱ)若β为第三象限角,且tan,求cos(2α﹣β)的值.考点:任意角的三角函数的定义;两角和与差的余弦函数.专题:三角函数的求值.分析:(Ⅰ)首先分别求出sinα,cosα,tanα,然后利用诱导公式化简式子,代入数值计算;(Ⅱ)由已知β为第三象限角,且tan,求出β的正弦和余弦值,求出2α的正弦和余弦值,利用两角差的余弦公式解答.解答:解:(Ⅰ)因为角α的终边过点P(﹣3,4),所以sin,cos,tan﹣﹣﹣﹣﹣﹣﹣﹣(3分)所以==﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(Ⅱ)因为β为第三象限角,且tan,所以sin,cos.﹣﹣﹣﹣﹣﹣(8分)由(Ⅰ)知,sin2α=2sinαcosα=﹣,cos2α=2cos2α﹣1=﹣﹣﹣﹣﹣﹣﹣(10分)所以cos(2α﹣β)=cos2αcosβ+sin2αsinβ==﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣点评:本题考查了三角函数的坐标法定义以及三角函数的基本关系式、两角和与差的三角函数余弦公式的运用;熟记公式,正确运用是关键.19.(2015春•福州期末)如图为函数f(x)=Asin(ωx+φ)+c(A>0,ω>0,φ>0)图象的一部分.(Ⅰ)求此函数的周期及最大值和最小值;(Ⅱ)求此函数的单调递增区间.考点:正弦函数的图象.专题:三角函数的图像与性质.分析:(Ⅰ)由函数的最值求出A和c的值,由周期求出ω,可得函数的解析式,进而求得此函数的周期及最大值和最小值.(Ⅱ)把点(4,1)代入上式求得φ的值,再利用正弦函数的单调性求得f(x)的单调递增区间.解答:解:(Ⅰ)结合图象及解析表达式可知,c=1,A=4﹣1=3.再根据•=12﹣4,求得ω=,故函数f(x)=3sin(x+φ)+1.故函数f(x)的最小正周期为=,最大值为 3+1=4,最小值为﹣3+1=﹣2.(Ⅱ)把点(4,1)代入上式,可得 sin(+φ)=0,再根据φ>0,故可取φ=,故函数的解析式为:f(x)=3sin(x+)+1.由2kπ﹣≤x+≤2kπ+,k∈z,求得﹣4+k≤x≤+k,即函数f(x)的单调递增区间为:[﹣4+k,+k],k∈z.点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,正弦函数的周期性、最值、以及单调性,属于中档题.20.(2015春•福州期末)(Ⅰ)运用S(α+β)及C(α+β)证明:tan(α+β)=;(Ⅱ)在△ABC中,证明tanA+tanB+tanC=tanAtanBtanC.考点:两角和与差的正切函数.专题:三角函数的求值.分析:(Ⅰ)由条件利用同角三角函数的基本关系、两角和差的三角公式化简tan(α+β),即可证得结论.(Ⅱ)△ABC中,由tanA=﹣tan(B+C)利用两角和差的正切公式,求得tanB+tanC=﹣tanA+tanAtanBtanC,代入要证等式的左边,即可证得结论.解答:(Ⅰ)证明:∵tan(α+β)====,∴tan(α+β)=.(Ⅱ)证明:△ABC中,tanA=﹣tan(B+C)=﹣,∴tanB+tanC=﹣tanA+tanAtanBtanC,∴tanA+tanB+tanC=tanA﹣tanA+tanAtanBtanC=tanAtanBtanC,∴tanA+tanB+tanC=tanAtanBtanC成立.点评:本题主要考查同角三角函数的基本关系,两角和差的三角公式,属于基础题.21.(2015春•福州期末)已知||=4,||=3,且向量与互相垂直.(Ⅰ)若向量=3k+4k(k∈R),且||=12,求|k|的值;(Ⅱ)若向量满足(),求||的取值范围.考点:平面向量数量积的运算.专题:平面向量及应用.分析:(Ⅰ)建立坐标系设出,,坐标,用||=12,求出|k|的值;(Ⅱ)利用向量垂直数量积为0,得到的坐标关系式,利用其几何意义求最值.解答:解:据题意:建立坐标系.不妨设=(4,0),=(0,3),﹣﹣﹣﹣﹣﹣(2分)(Ⅰ)向量=3k+4k=(12k,12k)∴||==12,﹣﹣﹣﹣﹣﹣(4分)解得|k|=1﹣﹣﹣﹣﹣(6分)(Ⅱ)设=(x,y),则由(),得到()=(4﹣x)x﹣(y﹣3)y=0,﹣﹣﹣﹣﹣﹣(8分)即(x﹣2)2+(y﹣1.5)2=6.25.﹣﹣﹣﹣﹣﹣(10分)由此可以判定,向量的起点在原点,终点在以(2,1.5)为圆心,半径为2.5的圆上,注意到原点也在此圆上,所以,||的取值范围[0,5].﹣﹣﹣﹣﹣﹣点评:本题考查了平面向量的坐标运算、模的计算以及向量垂直的性质运用,用到了几何意义求模的范围;属于中档题.22.(14分)(2015春•福州期末)已知向量=((),﹣),=(sin(+mx),cos2mx)x∈R,m∈R,函数f(x)=.(Ⅰ)当m=1时,x时,求f(x)的最大值和最小值;(Ⅱ)当m=时,若f(x)在区间[0,2015]恰有2015个零点,求整数n的所有取值.考点:平面向量数量积的运算;函数零点的判定定理;三角函数中的恒等变换应用.专题:平面向量及应用.分析:(Ⅰ)由已知求出函数解析式并化简,利用正弦函数的性质求f(x)的最大值和最小值;(Ⅱ)讨论n的符号,利用函数在区间[0,2015]恰有2015个零点,确定n值.解答:解:(Ⅰ)f(x)==()(sin(+mx)﹣cos2mx=2sin2(mx+)﹣cos2mx=1﹣cos(+2mn)﹣cos2mx=sin2mx﹣cos2mx+1=2sin(2mx﹣)+1﹣﹣﹣﹣﹣(4分)当m=1时,f(x)=2sin(2x﹣)+1;当x时,2x﹣∈[,],∴f(x)∈[2,3].故当x时,f(x)的最大值为3,最小值为2.﹣﹣﹣﹣﹣(6分)(Ⅱ)当m=时,f(x)=2sin(nπx﹣)+1由f(x)=0,则sin(nπx﹣)=﹣①当n>0时,T=,nπx﹣=2kπ或nπx﹣=2kπ﹣,k∈Z,所以x=或x=,k∈Z依题意得即所以又n∈Z,所以n=1.﹣﹣﹣﹣﹣(10分)②当n<0时,T=,sin(﹣nπx+)=所以﹣πx+=或﹣nπx+=,k∈Z所以x=或x=,k∈Z依题意得即所以又n∈Z,所以n=﹣1.﹣﹣﹣﹣﹣(13分)③当n=0时,显然不合题意.综上得:n=±1.﹣﹣﹣﹣﹣1(4分)点评:本题考查了平面向量的数量积以及三角函数式的化简、正弦函数的性质以及讨论思想的运用,属于难题.。

福建省三明市第一中学2014-2015学年高一上学期半期考试数学试题

福建省三明市第一中学2014-2015学年高一上学期半期考试数学试题

福建省三明市第一中学2014-2015学年高一上学期半期考试数学试题(总分100分,时间:120分钟)(注意:请将所有题目的解答都写到“答题卷”上)一、选择题(本题12小题,每小题3分,共36分。

每小题只有一个选项符合题意,请将正确答案填入答题卷中。

) 1.已知集合}6,5,4,3,2,1{=U ,}5,4,2{=A ,}5,4,3,1{=B ,则)()(B C A C U U ⋃等于( ) A .}6,3,2,1{ B .}5,4{ C .}6,5,4,3,2,1{ D .}6,1{ 2.下列函数中,与函数()0y x x =≥相等的是( )A .y =B .2y =C .y =D .2x y x=3.已知幂函数()y f x =的图象过点(,则此函数的解析式是( )A .2y x =B .2y x =C .yD .21y x =4.下列函数中,图象过定点)0,1(的是( )A .xy 2= B .x y 2log = C .21x y = D .2x y =5.函数f (x )=2x -5的零点所在区间为[m ,m +1](m ∈N ),则m 为( )A.1B.2C.3D.46.已知函数()21,02,0x x x f x x -≤⎧=⎨>⎩,那么()3f 的值是( )A .5B .6C .7D .87.若b a ==5log ,3log 22,则59log 2的值是( ) A .b a -2B .b a -2C .ba 2D .b a 28. 三个数0.50.8,0.50.9,0.50.9-的大小关系是( )A .0.50.50.50.90.90.8-<<B .0.50.50.50.90.80.9-<<C .0.50.50.50.80.90.9-<<D .0.50.50.50.80.90.9-<< 9.函数2()23f x x ax =--在区间[1,2]上单调,则( )A .(],1a ∈-∞B .[)2,a ∈+∞C .[]1,2a ∈D .(][),12,a ∈-∞+∞10.某林场计划第一年造林10 000亩,以后每年比前一年多造林20%,则第四年造林( )A .14400亩B .172800亩C .17280亩D .20736亩 11.函数y =2-4x -x 2(x ∈[0,4])的值域是( )A .[-2,2]B .[1,2]C .[0,2]D .[-2,2] 12.函数f (x ),g (x )在区间[-a ,a ]上都是奇函数,有下列结论:①f (x )+g (x )在区间[-a ,a ]上是奇函数; ②f (x )-g (x )在区间[-a ,a ]上是奇函数; ③f (x )·g (x )在区间[-a ,a ]上是偶函数. 其中正确结论的个数是( ) A .0 B .1 C .2 D .3二、填空题(本题4小题,每小题3分,共12分)13.集合{}16,x x a x N =<∈,用列举法表示为 . 14.用“二分法”求方程0523=--x x 在区间[]3,2内的实数根,取区间中点为5.20=x ,那么下一个有根的区间是 . 15. 函数)23(log 32-=x y 的定义域为______________.16.设奇函数()f x 在R 上为减函数,则不等式()(1)0f x f +->的解集是 .三、解答题(共6题,52分),解答应写出文字说明,证明过程或演算步骤.17.(本题满分8分)已知集合{|37},{|410},{|}.A x x B x x C x x a =≤<=<<=< (1)求;B A (R C A )∩B ; (2)若,CB A a ⊆求的取值范围..18.(本题满分8分) 计算下列各式的值: (1)()4130.753350.064[(2)]169---⎛⎫--+-+ ⎪⎝⎭;(2)231lg 25lg 2log 9log 22+-⨯.19.(本题满分8分)设函数22()log (4)log (2)f x x x =⋅,144x ≤≤,(1)若t=log 2x ,求t 取值范围;(2)求()f x 的最大值和最小值及相对应的x 的值.20.(本题满分8分)已知()()110212x f x x x ⎛⎫=+≠ ⎪-⎝⎭,(1)判断()f x 的奇偶性; (2)证明:()0f x >.21.(本题满分10分)商场销售某一品牌的羊毛衫,购买人数n 是羊毛衫标价x 的一次函数,标价越高,购买人数越少.已知标价为每件300元时,购买人数为零.标价为每件225元时,购买人数为75人,若这种羊毛衫的成本价是100元/件,商场以高于成本价的相同价格(标价)出售,问:(1)商场要获取最大利润,羊毛衫的标价应定为每件多少元?(2)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?22.(本题满分10分) 已知函数()22x x f x -=+,(1)用函数单调性定义证明 ()f x 在()0,+∞上为单调增函数; (2)若()523x f x -=+,求x 的值.草 稿 纸三明一中2014~2015学年上学期学段考试卷高一 数学·答题卷位号 总分考一、选择题(共 12 小题,36 分,请将答案填入下表中。

2014年三明市高中毕业班质量检查理科数学试题含答案

2014年三明市高中毕业班质量检查理科数学试题含答案

2014年三明市普通高中毕业班质量检查理 科 数 学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题), 第Ⅱ卷第21题为选考题,其他题为必考题.本试卷共6页.满分150分.考试时间120分钟. 注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上,请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签)笔或碳素笔书写,字体工整、笔记清楚.4.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑. 5.保持答题卡卡面清洁,不折叠、不破损,考试结束后,将本试卷和答题卡一并交回. 参考公式:样本数据12,x x ,…,n x 的标准差 锥体体积公式s = 13V Sh =其中x -为样本平均数 其中S 为底面面积,h 为高柱体体积公式 球的表面积、体积公式V Sh = 2344,3S R V R ==ππ 其中S 为底面面积,h 为高 其中R 为球的半径第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z 满足i 45i z =- (其中i 为虚数单位),则复数z 为A .54i -B .54i -+C .54i +D .54i -- 2.已知集合}1)2lg(|{<-=x x A ,集合}8221|{<<=x x B ,则A B 等于 A .(2,12)B .(2,3)C .(1,3)-D .(1,12)-3.观察下列关于两个变量x 和y 的三个散点图,它们从左到右的对应关系依次为A .正相关、负相关、不相关B .负相关、不相关、正相关C .负相关、正相关、不相关D .正相关、不相关、负相关4. 设b a ,是两条不同直线,βα,是两个不同平面,下列四个命题中正确的是A .若b a ,与α所成的角相等,则b a //B .若α//a ,β//b ,βα//,则b a //C .若α⊥a ,β⊥b ,βα⊥,则b a ⊥D .若α⊂a ,β⊂b ,b a //,则βα// 5.在二项式1()nx x-的展开式中恰好第5项的二项式系数最大,则展开式中含2x 项的系数是 A .-56B .-35C . 35D .566.设0a >且1a ≠,命题p :函数()x f x a =在R 上是增函数 ,命题q :函数3()(2)g x a x =-在R 上是减函数,则p 是q 的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.已知双曲线221()my x m -=∈R 与椭圆2215y x +=有相同的焦点,则该双曲线的渐近线方程为 A.y =B.3y x =±C .13y x =±D .3y x =±8.如图是某个四面体的三视图,若在该四面体的外接球内任取一 点,则点落在四面体内的概率为A .913p B . 113pC .169p D .169p9.已知函数11,[0,2],()1(2),(2,),2x x f x f x x ì-- ïïï=íï-? ïïïî则函数()ln(1)y f x x =-+的零点个数为A .1B .2C .3D .410.在数列{}n a 中,112a =,且55n n a a +≥+,11n n a a +≤+,若数列{}n b 满足1n n b a n =-+,则数列{}n b 是 A .递增数列B .递减数列C .常数列D .摆动数列第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡相应位置. 11.曲线21y x =+与直线0,1x x ==及x 轴所围成的图形的面积是 . 12.执行如图所示的程序框图,若输入的5a =,则输出的结果是__ __.13.已知变量,x y 满足约束条件1,1,3,2x y x y y ⎧⎪-≤⎪+≥⎨⎪⎪≤⎩若,x y 取整数,则目标函数2z x y =+的最大值是 .14.已知矩形的周长为36,矩形绕它的一条边旋转形成一个圆柱,则旋转形成的圆柱的侧面积的最大值为 .15.对于集合A ,如果定义了一种运算“⊕”,使得集合A 中的元素间满足下述4个条件: (ⅰ),a b A ∀∈,都有a b A ⊕∈;(ⅱ)e A ∃∈,使得对a A ∀∈,都有e a a e a ⊕=⊕=; (ⅲ)a A ∀∈,a A '∃∈,使得a a a a e ''⊕=⊕=; (ⅳ),,a b c A ∀∈,都有()()a b c a b c ⊕⊕=⊕⊕, 则称集合A 对于运算“⊕”构成“对称集”. 下面给出三个集合及相应的运算: ①{}A =整数,运算“⊕”为普通加法; ②{}A =复数,运算“⊕”为普通减法; ③{}A =正实数,运算“⊕”为普通乘法.其中可以构成“对称集”的有 .(把所有正确的序号都填上)三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分13分)某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本测得它们的重量(单位:克),在重量分组区间为(490,495⎤⎦,(495,500⎤⎦,(500,505⎤⎦,(505,510⎤⎦,(510,515⎤⎦的前提下,得到样本的频率分布直方图(如图所示).若规定重量超过495克但不超过5102n克的产品为合格产品,且视频率为概率,回答下列问题:(Ⅰ)在上述抽取的40件产品中任取2件,设X 为合格产品的数量,求X 的分布列和数学期望EX ;(Ⅱ)若从流水线上任取3件产品,求恰有2件合格产品的概率. 17.(本小题满分13分)如图,在四棱锥P ABCD -中,底面ABCD 是直角梯形,//AB DC ,AB AD ⊥, 平面PAD ⊥平面ABCD ,若8,AB =2DC =,AD =4PA =,45PAD ∠=,且13AO AD =. (Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)设平面PAD 与平面PBC 所成二面角的大小为(090)θθ<≤,求cos θ的值.18.(本小题满分13分)已知点,A B 是抛物线2:2(0)C y px p =>上不同的两点,点D 在抛物线C 的准线l 上,且焦点F 到直线20x y -+=(I )求抛物线C 的方程; (Ⅱ)现给出以下三个论断:①直线AB 过焦点F ;②直线AD 过原点O ;③直线BD 平行x 轴. 请你以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题,并加以证明. 19.(本小题满分13分)已知函数()sin cos (,f x a x b x a b R =+ 且0)ab ≠,记向量(,)a b =m ,我们称m 为函数()f x 的“相伴向量”,()f x 为向量m 的“相伴函数”.(Ⅰ)若函数22()(sin cos )2cos2(0)f x x x x ωωωω=++->的最小正周期为2π,求函数()f x 的“相伴向量”;(Ⅱ)记向量=n 的“相伴函数”为g()x ,将g()x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象上所有点向左平移23π个单位长度,得到函数()h x ,PABCD O 17题图若6(2),(0,)352h ππαα+=∈,求sin α的值; (Ⅲ)对于函数()sin cos 2x x x ϕ=,是否存在“相伴向量”?若存在,求出()x ϕ“相伴向量”;若不存在,请说明理由.20.(本小题满分14分)已知函数()ln (,f x a x bx a b =+∈R),211()() (0)2g x x m x m m=-+>,且()y f x =在点 (1,(1))f 处的切线方程为10x y --=.(Ⅰ)求,a b 的值;(Ⅱ)若函数()()()h x f x g x =+在区间(0,2)内有且仅有一个极值点,求m 的取值范围;(Ⅲ)设两曲线() ()y f x c c =+∈R ,()y g x =的一个交点为1(,) ()M x y x m m>+,且在交点M 处的切线分别为12,l l .若取1m =,试判断当直线12,l l 与x 轴围成等腰三角形时c 值的个数并说明理由.21.本题设有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2个小题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中. (1)(本小题满分7分)选修4—2:矩阵与变换若二阶矩阵M 满足:12583446M ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭.(Ⅰ)求二阶矩阵M ;(Ⅱ)若曲线22:221C x xy y ++=在矩阵M 所对应的变换作用下得到曲线C ',求曲线C '的方程.(2)(本小题满分7分)选修4—4:坐标系与参数方程已知在平面直角坐标系xOy 中,圆M 的方程为()2241x y -+=.以原点O 为极点,以x 轴正半轴为极轴,且与直角坐标系取相同的单位长度,建立极坐标系,直线l 的极坐标方程为1sin 62πρθ⎛⎫+= ⎪⎝⎭.(Ⅰ)求直线l 的直角坐标方程和圆M 的参数方程; (Ⅱ)求圆M 上的点到直线l 的距离的最小值.(3)(本小题满分7分)选修4—5:不等式选讲设函数()211f x x x =--+. (Ⅰ)求不等式()0f x £的解集D ;(Ⅱ)若存在实数{|02}x x x 危 ,a 恒成立,求实数a 的取值范围.2014年三明市普通高中毕业班质量检查理科数学参考答案及评分标准一、选择题1.D 2.B 3.D 4.C 5.A 6.D 7.A 8.C 9.B 10.C 二.填空题: 11.4312.62 13.5 14.162π 15.①、③ 三、解答题: 16.解:(Ⅰ)由样本的频率分布直方图得,合格产品的频率为0.0450.0750.0550.8⨯+⨯+⨯=. ………………………………………………2 分所以抽取的40件产品中,合格产品的数量为400.832⨯=. ……………………………3 分 则X 可能的取值为0,1,2, …………………………………………4分所以()2824070195C P X C ===,()11832240641195C C P X C ===,()2322401242195C P X C ===, 因此X 的分布列为7分故X 数学期望76412431280121951951951955EX =⨯+⨯+⨯==. …………………9分 (Ⅱ)因为从流水线上任取1件产品合格的概率为40.85=, ……………10分 所以从流水线上任取3件产品,恰有2件合格产品的概率为223144855125P C ⎛⎫⎛⎫==⎪⎪⎝⎭⎝⎭. ……………………………………………13分 17.解:(Ⅰ)因为13AO AD =,AD =,所以AO = ……………1分 在PAO ∆中,由余弦定理2222cos PO PA AO PA AO PAO =+-⋅∠, 得(22242482PO =+-⨯⨯=, ……………………………………3分 PO ∴=222PO AO PA ∴+=, ………………………………………………4分 PO AD ∴⊥, …………………………………………………………………5分又平面PAD ⊥平面ABCD ,平面PAD平面ABCD AD =,PO ⊂平面PAD ,PO ∴⊥平面ABCD . ………………………………………………………………6分(Ⅱ)如图,过O 作//OE AB 交BC 于E ,则OA ,OE ,OP 两两垂直,以O 为坐标原点,分别以OA ,OE ,OP 所在直线为z x 、y 、轴,建立空间直角坐标系O xyz -, …………………………7分 则)0,0,0(O,,A B ,(42,2,0),C P - ………8分(6,0)BC ∴=--,PB =8,-,……………………9分 设平面PBC 的一个法向量为=()x ,y ,zn ,由,,BC PB ⎧⊥⎪⎨⊥⎪⎩n n 得60,80,y y ⎧--=⎪⎨+-=⎪⎩即,3,y z x ⎧=⎪⎨=-⎪⎩取1x =则3y z ==-,所以(1,3)=-n 为平面PBC 的一个法向量. ……………………………11分 AB ⊥平面PAD , ()0,8,0AB ∴=为平面PAD 的一个法向量. 所以cos ,ABAB AB =⋅n n n==, ………………………………12分 cos cos ,6AB θ∴==n .…………………………………………………13分18. 解:(I )因为(,0)2p F , 依题意得d ==, …………………………2分解得2p =,所以抛物线C 的方程为24y x = …………………………………4分(Ⅱ)①命题:若直线AB 过焦点F ,且直线AD 过原点O ,则直线BD 平行x 轴.…………………………………5分设直线AB 的方程为1x ty =+,1122(,),(,)A x y B x y , ………………………6分由21,4,x ty y x =+⎧⎨=⎩ 得2440y ty --=, 124y y ∴=-, ……………………………………………8分直线AD 的方程为11yy x x =, ……………………………………………9分所以点D 的坐标为11(1,)yx --,112211144y y y x y y ∴-=-=-=, ……………………………………………………12分∴直线DB 平行于x 轴. ………………………………………………………13分 ②命题:若直线AB 过焦点F ,且直线BD 平行x 轴,则直线AD 过原点O .…………………………………5分设直线AB 的方程为1x ty =+,1122(,),(,)A x yB x y , ………………………6分由21,4,x ty y x =+⎧⎨=⎩ 得2440y ty --=,124y y ∴=-, ……………………………………………8分即点B 的坐标为224(,)x y -, ……………………………………………9分∵直线BD 平行x 轴,∴点D 的坐标为14(1,)y --, …………………………10分∴11(,)OA x y =,14(1,)OD y =--,由于111114()(1)0x y y y y ---=-+=,∴OA ∥OD ,即,,A O D 三点共线, ……………………………………………12分∴直线AD 过原点O . ………………………………………………………13分 ③命题:若直线AD 过原点O ,且直线BD 平行x 轴,则直线AB 过焦点F .…………………………………5分设直线AD 的方程为 (0)y kx k =≠,则点D 的坐标为(1,)k --, …………6分 ∵直线BD 平行x 轴,∴B y k =-,∴24B k x =,即点B 的坐标为2(,)4k k -, ……………………8分由2,4,y kx y x =⎧⎨=⎩得224k x x =, ∴244,,A A x y k k ==即点A 的坐标为244(,)k k , ……………………………10分∴2244(1,),(1,)4k FA FB k k k =-=--,由于224444(1)()(1)04k k k k k k k k---⋅-=-+-+=,∴FA ∥FB ,即,,A F B 三点共线, ………………………………………12分 ∴直线AB 过焦点F . ………………………………………………………13分19.解:(Ⅰ)22()(sin cos )2cos2f x x x x ωωω=++-22sin cos sin 21cos 22x x x x ωωωω=++++- sin 2cos 2x x ωω=+)4x πω=+, ………………………………………1分依题意得222ππω=,故12ω=. ………………………………………2分 ∴()sin cos f x x x =+,即()f x 的“相伴向量”为(1,1). ………3分(Ⅱ)依题意,g()cos 2sin()6x x x x π=+=+, ……………………………4分将g()x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变), 得到函数12sin()26y x π=+, ………………………………………………………5分再将所得的图象上所有点向左平移23π个单位长度,得到12()2sin[()]236h x x ππ=++, 即11()2sin()2cos 222h x x x π=+=, ……………………………6分∵6(2)35h πα+=,∴3cos()65πα+=,∵(0,)2πα∈,∴2(,)663πππα+∈,∴4sin()65πα+=, ……………8分∴3sin sin[()]sin()cos cos()sin 66666610ππππππαααα=+-=+-+=. ………………………………………………………10分(Ⅲ)若函数()sin cos 2x x x ϕ=存在“相伴向量”,则存在,a b ,使得sin cos 2sin cos x x a x b x =+对任意的x R ∈都成立,……………11分 令0x =,得0b =,因此sin cos 2sin x x a x =,即sin 0x =或cos 2x a =, 显然上式对任意的x R ∈都成立是错误的,所以函数()sin cos 2x x x ϕ=不存在“相伴向量”. …………………………13分 (注:本题若化成3()sin sin x x x ϕ=-2,直接说明不存在的,给1分) 20. 解:(Ⅰ)()af x b x'=+,∴(1)1f a b '=+=,又(1)0f b ==, ∴1,0a b ==. …………………………………3分(Ⅱ)211()ln ()2h x x x m x m=+-+; ∴11()()h x x m x m'=+-+由()0h x '=得1()()0x m x m--=,∴x m =或1x m= …………………………………5分∵函数()h x 在区间(0,2)内有且仅有一个极值点,且0m >,∴102m m <<≤或102m m<<≤, …………………………………6分若102m m <<≤,即102m <≤,当(0,)x m ∈时()0h x '>,当(,2)x m ∈时()0h x '<,函数()h x 有极大值点x m =,若102m m <<≤,即2m ≥时,当1(0,)x m ∈时()0h x '>,当1(,2)x m∈时()0h x '<,函数()h x 有极大值点1x m=,综上,m 的取值范围是1|022m m m ⎧⎫<≤≥⎨⎬⎩⎭或. …………………………………8分(Ⅲ)当1m =时,设两切线12,l l 的倾斜角分别为,αβ,则1tan ()()2f x g x x xαβ''===-,tan =, ∵2x >, ∴,αβ均为锐角, …………………………………………9分 若直线12,l l 能与x 轴围成等腰三角形,则2αβ=或2βα=. 当2αβ=时,由2tan 1βαββ==-2t a n t a n2t a n , 得212(2)1(2)x x x ---=,即23830x x -+=,此方程有唯一解2x =>,直线12,l l 能与x 轴围成一个等腰三角形.………11分 当2βα=时,由2tan 1αβαα==-2t an tan2t an , 得21211x x x⋅--2=,即322320x x x --+=, 设32()232F x x x x =--+,2()343F x x x '=--,当(2,)x ∈+∞时,()0F x '>,∴()F x 在(2,)+∞单调递增,由于(2)(3)0F F <,即方程322320x x x --+=在(2,)+∞有唯一解,直线12,l l 能与x 轴围成一个等腰三角形.因此,当1m =时,若直线12,l l 能与x 轴围成等腰三角形,c 值的个数有2个.………14分21.(1)解:(Ⅰ)设1234A ⎛⎫= ⎪⎝⎭,则12234A ==-,1213122A --⎛⎫⎪∴= ⎪-⎝⎭,…………2分21582131461122M -⎛⎫⎛⎫⎛⎫ ⎪∴== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭. …………………………3分 (Ⅱ)11112x x x x x M M y y y y y -'''-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=∴== ⎪ ⎪ ⎪ ⎪ ⎪⎪'''-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 即,2,x x y y x y ''=-⎧⎨''=-+⎩ …………………………………………4分 代入22221x xy y ++=可得 ()()()()2222221x y x y x y x y ''''''''-+--++-+=,即2251x y ''+=,故曲线C '的方程为2251x y +=. ……………………………………7分21.(2)解:(Ⅰ)由1sin 62πρθ⎛⎫+= ⎪⎝⎭,得1sin cos cos sin 662ππρθθ⎛⎫+= ⎪⎝⎭,11222x y ∴+=,即10x -=, ………………………1分 设4cos ,sin ,x y ϕϕ-=⎧⎨=⎩4cos ,sin ,x y ϕϕ=+⎧∴⎨=⎩ ………………………2分 所以直线l的直角坐标方程为10x -=;圆M 的参数方程4cos ,sin x y ϕϕ=+⎧⎨=⎩ (ϕ为参数). …………………………………3分(Ⅱ)设()4cos ,sin M ϕϕ+,则点M 到直线l 的距离为32sin 62d πϕ⎛⎫++ ⎪⎝⎭==, ………………………5分 ∴当sin 16πϕ⎛⎫+=- ⎪⎝⎭即22()3k k Z πϕπ=-+∈时,min 12d =. 圆M 上的点到直线l 的距离的最小值为12. ………………………7分(21)(3)解:(Ⅰ)当1x ≤-时,由()20f x x =-+≤得2x ≥,所以x ∈∅;当112x -<≤时,由()30f x x =-≤得0x ≥,所以102x ≤≤; 当12x >时,由()20f x x =-≤得2x ≤,所以122x <≤. …………2分 综上不等式()0f x ≤的解集D {}02x x =≤≤. ………………3分(= ……………………………………4分由柯西不等式得2(31)((2))8x x ?+-=,≤ …………………………………………………………5分 当且仅当32x =时取“=”,∴ a 的取值范围是(- . …………………………………………………7分。

福建省三明市2014-2015学年高二下学期期末质量检测数学(理)试题 Word版含答案

福建省三明市2014-2015学年高二下学期期末质量检测数学(理)试题 Word版含答案

三明市2014—2015学年第二学期普通高中阶段性考试高二理科数学试题(考试时间:2015年7月7日上午8:30—10:30 满分:150分)参考公式和数表:1.独立性检验可信程度表:独立性检验临界值表参考公式:K 2=))()()(()(2d b c a d c b a bc ad n ++++-2.回归直线的方程是:a bx y+=ˆ,其中xb y a x xy y x xb ni ini i i-=---=∑∑==,)())((211第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项符合题目要求,请把答案填在答题卷相应的位置上.1.在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,点M 的直角坐标是(1,,则点M 的极坐标为 A .π(2,)3- B .π(2,)3 C .2π(2,)3 D .π(2,2π+)()3k k ∈Z 2.已知随机变量X 服从正态分布(3,1)N ,且(24)P X ≤≤=0.6826,则=>)4(X PA .0.1585B .0.1588C .0.1587D .0.15863.已知复数2(1)(1)i z m m =-+-,R m ∈,i 是虚数单位,若z 是纯虚数,则m 的值为A .1m =±B .1m =C .1m =-D .0m =4.用反证法证明命题:“若整数系数的一元二次方程20(0)ax bx c a ++=≠有有理根,则,,a b c 中至少有一个是偶数”时,下列假设正确的是A.假设,,a b c 都是偶数B.假设,,a b c 都不是偶数C.假设,,a b c 至多有一个是偶数D.假设,,a b c 至多有两个是偶数5.曲线3y x =在点2x =处的切线方程是A. 12160x y --=B. 12320x y +-=C.40x y -=D.4160x y +-= 6.学校开设美术、舞蹈、计算机三门选修课,现有四名同学参与选课,且每人限选一门课程,那么不同的选课方法的种数是 A .12 B .24 C . 64 D .817.若随机变量X 的分布列为:已知随机变量Y aX b =+(,,0)a b a ∈>R ,且()10,()21E Y D Y ==,则a 与b 的值为 A .10,3a b == B .3,10a b == C .100,60a b ==- D .60,100a b ==- 8.极坐标方程cos sin 2ρθθ=表示的曲线为A .一条射线和一个圆B .一条直线和一个圆C .两条直线D .一个圆 9.把一枚硬币任意抛掷三次,事件A 表示“至少一次出现反面”,事件B 表示“恰有一次出现正面”,则)(A B P 值等于 A.2164 B.764C. 17D. 3710.如图是函数()f x 的导函数...()f x '的图象.现给出如下结论:①()f x 在(-3,-1)上是增函数; ②4x =是()f x 的极小值点;③()f x 在(-1,2)上是增函数,在(2,4)上是减函数;④1x =-一定是()f x 的零点. 其中正确结论的个数是A. 0B.1C.2D.311.一个边长为6的正方形铁片,铁片的四角截去四个边长均为x 的小正方形,然后做成一个无盖方盒.当无盖方盒的容积V 最大时,x 的值为A.3B. 2C. 1D.1612.已知数集{,,,}A a b c d =,且,,,a b c d 都是实数,数组,,,x y z t 是集合A 中四个元素的某一排列.设2()m x y =-2()y z +-22()()z t t x +-+-的所有值构成集合B ,那么集合B 的元素个数是A .2B .3C .4D .6第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题中,每小题5分,共20分.请把答案写在答题卷相应位置上. 13.如图,曲边梯形ABCD 由直线1=x ,e x =,x 轴及曲线3y x=围成,则这个曲边梯形的面积是******. (注:e 为自然对数的底数)14.某田径兴趣小组有6名同学组成.现从这6名同学中选出4人参加4100⨯接力比赛,则同学甲不跑第一棒.....的安排 方法共有******种.15.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的4组对应数据:若通过上表的4组数据,得到y 关于x 的线性回归方程为ˆ0.70.35yx =+,那么表中t 的值应为******.16.已知函数2342015()12342015x x x x f x x =+-+-++,2342015()12342015x x x x g x x =-+-+--, 设函数()(4)(3)F x f x g x =+⋅-,且函数()F x 的零点均在区间[,](,,)a b a b a b ∈<Z 内, 则b a -的最小值为******.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)设复数i (0)z a a =+>,i 是虚数单位,且10||=z . (Ⅰ)求复数z ;(Ⅱ)在复平面内,若复数i()1im z m ++∈-R 对应的点在第四象限,求实数m 取值范围.18.(本小题满分12分)某校高一年级有200人,其中100人参加数学第二课堂活动. 在期末考试中,分别对参加数学第二课堂活动的同学与未参加数学第二课堂活动的同学的数学成绩进行调查.按照学生数学成绩优秀与非优秀人数统计后,构成如下不完整的2⨯2列联表:已知p 是5(1+2)x 展开式中的第三项系数,q 是5(1+2)x 展开式中的第四项的二项式系数. (Ⅰ)求p 与q 的值;(Ⅱ)请完成上面的2⨯2列联表,并判断若按99%的可靠性要求,能否认为“成绩优秀与参加数学第二课堂活动有关”.19.(本小题满分12分)为了检测某种水果的农药残留,要求这种水果在进入市场前必须对每箱水果进行两轮检测,只有两轮检测都合格水果才能上市销售,否则不能销售.已知每箱这种水果第一轮检测不合格的概率为19,第二轮检测不合格的概率为110,每轮检测结果只有“合格”、“不合格”两种,且两轮检测是否合格相互之间没有影响.(Ⅰ)求每箱水果不能上市销售的概率;(Ⅱ)如果这种水果可以上市销售,则每箱水果可获利20元;如果这种水果不能上市销售,则每箱水果亏损30元(即获利为-30元).现有这种水果4箱,记这4箱水果获利的金额为X 元,求X 的分布列及数学期望.20.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且满足3()2n n n S a n ++=-∈N . (Ⅰ) 计算1a ,2a ,3a ,4a ;(Ⅱ) 猜想数列{}n a 的通项公式n a ,并用数学归纳法加以证明.21.(本小题满分12分)已知函数()ln(1)f x x =+, (Ⅰ)设()()()F x f x g x =-,试判断函数()F x 在区间(0,)+∞上是增函数还是减函数? 并证明你的结论;(Ⅱ)若方程1)(+=x m x f 在区间2211[1,1)e e -++上有两不相等的实数根,求m 的取值范围;(Ⅲ)当0x >k 的最大值;22.(本小题满分10分)在平面直角坐标系xOy 中,直线l 的参数方程为1,2(x t t y t ⎧=⎪⎨⎪=⎩为参数),在极坐标系中(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴),曲线1C 的极坐标方程为2ρ=.(Ⅰ)判断直线l 与曲线1C 的位置关系;(Ⅱ)已知曲线2C的参数方程为2cos ,(x y θθθ=⎧⎪⎨=⎪⎩为参数),且M ,N 分别为曲线2C 的上下顶点,点P 为曲线1C 上任意一点,试判断22PM PN +是否为定值?并说明理由.三明市2014—2015学年第二学期普通高中阶段性考试高二理科数学试题参考答案与评分标准二、填空题:13.3 14. 300 15.2.8 16.10 三、解答题:17.解:(Ⅰ)∵i z a =+,10||=z ,∴101||2=+=a z ,………………………2分92=a ,3±=a ,又∵0>a , ………………………4分∴3=a , ………………………5分∴3i z =+. ………………………6分 (Ⅱ)∵3i z =+,则3i z =-, …………………7分∴i (i)(1i)5(1)i3i 1i (1i)(1i)22m m m m z ++++-+=-+=+--+, …………………9分 又∵复数i1im z ++-对应的点在第四象限, ∴50,210,2m m +⎧>⎪⎪⎨-⎪<⎪⎩ 得5,1,m m >-⎧⎨<⎩ …………………11分∴15<<-m . …………………12分18. 解:(Ⅰ)∵5(1+2)x 的展开式通项是51551(2)2r r r r r rr T C x C x -+==, ………1分∴展开式的第三项是:2222215240T C x x +==,即第三项系数是40p =. …………3分又∵展开式的第四项的二项式系数为35C ,∴3510q C ==.…………5分 (Ⅱ)由(Ⅰ)得40p =,10q =,则………8分22200(40901060)50150100100k ⨯-⨯=⨯⨯⨯ =24>6.635, (11)分2( 6.635)0.010P K ≥=,所以按照99%的可靠性要求,能够判断成绩优秀与参加数学第二课堂活动有关. ……12分19、解:(Ⅰ)记“每箱水果不能上市销售”为事件A ,则111()1(1)(1)9105P A =---=, 所以每箱水果不能上市销售的概率为15. …………3分 (Ⅱ)由已知,可知X 的取值为120,70,20,30,80---. …………4分4404141(120)()()55625P X C =-==,33141416(70)()()55625P X C =-==,22241496(20)()()55625P X C =-==,113414256(30)()()55625P X C ===,004414256(80)()()55625P X C ===. (9)分所以X 的分布列为:………………10分11696256256()1207020308040625625625625625E X =-⨯-⨯-⨯+⨯+⨯=, 所以X 的数学期望为40元. (12)分(注:设4箱水果中可销售水果箱数为Y ,用Y 为0,1,2,3,4,先求出(P Y ),然后算()E X 的酌情给分). 20. 解:(Ⅰ) 11,=a 23,4=a 35,8=a 49,16=a ………… 4分(Ⅱ) 由此猜想121()2n n na n -++=∈N . ………… 5分证明:①当1n =时,11a =,结论成立. ………… 6分②假设n k =(1k ≥且k ∈N *)时,结论成立,即1212-+=k k ka , ………… 7分那么1n k =+时,1111(1)331222+++++++=-=--+=+-k k k k k k k k k a S S a a a a , 所以1122+=+k k a a , ………… 9分则1111111212212122222222---++++++++====∙k k k k k k k k k a a , 这表明1n k =+时,结论成立, ………………… 11分由①②知121()2n n na n -++=∈N 成立. …………… 12分21.解:(Ⅰ)x x x F 1)1ln()(-+= , 2111)(xx x F ++=', …………………1分由题设0>x ,所以得0)(>'x F ,故)(x F 在区间(0,)+∞上是增函数. …………………3分(Ⅱ) ∵ 1)(+=x mx f ,∴m x x =++)1ln()1(, 设()(1)ln(1)h x x x =++ 则()ln(1)1h x x '=++, …………………4分x[2111,1)e e -+-+ 11e-+211(1,1)e e-++()h x ' -0 +()h x↘↗∵(0)0h =,2212(1)e e h -+=-,11(1)e eh -+=-, ∴21(1)(0)0e h h -+<=,又21(1)(0)0eh h +>=, …………………6分 ∴221em e -≤<-, 即212(,]m ee ∈--时,方程1)(+=x m x f 在区间2211[1,1)e e-++有两不相等的实数根. …………………7分(Ⅲ)当0x >时, , 即1[1ln(1)]x k x x+<++在(0,)+∞上恒成立,…………………8分 再设()1ln(1)G x x x =--+,则 …………………9分 故()G x 在(0,)+∞上单调递增,而(1)ln 20,(2)1ln30,(3)22ln 20G G G =-<=-<=->, 故()0G x =在(0,)+∞上存在唯一实数根(2,3)a ∈,即x a =是方程1ln(1)0x x --+=在(0,)+∞上有唯一解. …………………10分 故当(0,)x a ∈时,()0G x <,()0x ϕ'<;当(,)x a ∈+∞时()0G x >,()0x ϕ'>,3k ∴≤,故max 3k =. …………………12分22.解法一:(Ⅰ)∵直线l的参数方程为1,2,x t y t ⎧=⎪⎨⎪=⎩∴直线l的直角坐标方程为20x y -+=, ……………… 1分 又∵曲线1C 的极坐标方程为2ρ=,∴曲线1C 的直角坐标方程为224x y +=,圆心为1(0,0)C ,2r =,…………… 3分 ∴圆心1C 到直线l的距离为2d r ===, …………… 4分 ∴直线l 与圆1C 相切. ……………… 5分(Ⅱ)∵曲线2C的参数方程为2cos ,(x y θθθ=⎧⎪⎨=⎪⎩为参数),∴曲线2C 的普通方程为22143x y +=, ……………………6分又∵,M N 分别为曲线2C 的上下顶点,∴(0,M N ,……………7分 由曲线1C :224x y +=,可得其参数方程为2cos ,2sin ,x y αα=⎧⎨=⎩所以P 点坐标为(2cos ,2sin )αα,因此222222(2cos )(2sin (2cos )(2sin PM +PNαααα=+++7714αα=-++=为定值.………………10分 解法二:(Ⅰ)同解法一.(Ⅱ)∵曲线2C的参数方程为2cos ,(x y θθθ=⎧⎪⎨=⎪⎩为参数),∴曲线2C 的普通方程为22143x y +=, ……………………6分又∵,M N 分别为曲线2C 的上下顶点,∴(0,M N , ……………7分 设P 点坐标为(,)x y ,则224x y +=,因此222222((PM +PNx y x y =+-+++7714=-++=为定值. ………………10分。

福建省四地六校2014-2015学年高一下学期第一次联考数学试卷 Word版含解析

福建省四地六校2014-2015学年高一下学期第一次联考数学试卷 Word版含解析

福建省四地六校2014-2015学年高一下学期第一次联考数学试卷一、单选题(共12小题)1.已知数列,则5是这个数列的()A.第12项B.第13项C.第14项D.第25项2.不等式的解集为()A.或B.C.或D.3.若,则下列不等式一定成立的是()A .B.C.D.4.是首项,公差的等差数列,如果,则序号等于()A.667B.668C.669D.6705.在中,角、、所对应的边分别为、、,若角、、依次成等差数列,且,,则等于()A.B.C.D.26.在等差数列中,已知,则()A.12B.24C.36D.487.在三角形中,若,则的大小为()A.B.C.D.8.在中,、、分别为角、、所对的边,若,则此三角形的形状一定是()A.等腰直角B.等腰或直角C.等腰D.直角9.数列中,若,,则这个数列的第10项()A.19B.21C.D.10.已知等差数列的公差且成等比数列,则()A.B.C.D.11.已知表示数列的前项和,若对任意的满足,且,则()A.B.C.D.12.在等比数列中,,前项和为,若数列也是等比数列,则等于()A.B.C.D.二、填空题(共4小题)13.在中,角、、所对应的边分别为、、,若,则_________14.已知数列的前项和是, 则数列的通项__________15.已知关于的不等式在上恒成立,则实数的取值范围是__________16.已知是等差数列,为其公差, 是其前项和,若只有是中的最小项,则可得出的结论中所有正确的序号是___________①②③④⑤三、解答题(共6小题)17.在中,,,.(1)求的值;(2)求的值。

18.已知等比数列中,。

(1)求数列的通项公式;(2)设等差数列中,,求数列的前项和.19.已知不等式的解集为或(1)求,的值(2)解不等式.20.在中,、、是角、、所对的边,是该三角形的面积,且(1)求的大小;(2)若,,求的值。

21.火车站北偏东方向的处有一电视塔,火车站正东方向的处有一小汽车,测得距离为31,该小汽车从处以60的速度前往火车站,20分钟后到达处,测得离电视塔21,问小汽车到火车站还需多长时间?22.设数列的前项和为,且满足,数列满足,且(1)求数列和的通项公式(2)设,数列的前项和为,求证:(3)设数列满足(),若数列是递增数列,求实数的取值范围。

福建省三明市高一数学下学期期末质量检测试题(扫描版)

福建省三明市高一数学下学期期末质量检测试题(扫描版)

福建省三明市2015-2016学年高一数学下学期期末质量检测试题(扫描版)三明市2015—2016学年第二学期普通高中期末质量检测高一数学试题参考答案及评分标准一、选择题:1-3 DAB 4-6 CBC 7-9 ABB 10-12 CCD 二、填空题: 13. 3 14. π6 15. 216. 7. 三、解答题:17. 解:(Ⅰ)∵直线l 与直线10x y +-=平行,∴直线l 的斜率1k =-. ……………2分又∵直线l 过点(3,1),∴直线l 的方程为1(3)y x -=--,即40x y +-=. ……………………4分 (Ⅱ)设直线l :40x y +-=与x 轴、y 轴交点分别为点,A B ,则点(4,0) , (0,4)A B∴直线l 与x 轴、y 轴所围成的平面图形为△OAB ,则△OAB 绕y 轴旋转一周得到的几何体为圆锥, ……………………6分∴2164=π44=π33V ⨯⨯⨯圆锥(). ………………8分 18. 解:(Ⅰ)设等差数列{}n a 的公差为d ,∵35a =,611a =,∴1125,511,a d a d +=⎧⎨+=⎩解得11,2.a d =⎧⎨=⎩∴12(1)21n a n n =+-=-. ……………………2分 设等比数列{}n b 的公比为q ,∵13=1,9b b =,∴219q ⨯=, 又∵1q >,∴3q =,∴1113n n n b b q --==. ……………………4分 (Ⅱ)由(Ⅰ)知21n a n =-,13n n b -=,∴1213n n n n c a b n -=-=--, ……………………5分1231n n n S c c c c c L -=++++01221(13)(33)(53)(233)(213)n n n n --=-+-+-+--+--L21+21131()(13)2132n n n n n --=-=+--. ……………………8分19. 解:(Ⅰ)∵在△ABC 中,45A =o,105C =o ,则30B o=,01221[135(23)(21)](333+33)n n n n --=++++-+--++++L L根据正弦定理:sin sin a c A C =,∴6sin 45sin 30bo o=,∴b =. …………………4分(Ⅱ) )∵在△ABC 中,45A =o,6a =,根据余弦定理2222cos a b c bc A =+-,得22362cos 45b c bc =+-o,∴2236b c +=+. …………………6分又∵222b c bc +≥,∴362bc +≥, …………………7分∴18(2bc ≤==+,∴11sin 18(21)222ABC S bc A ∆=≤⨯+⨯=+,当且仅当b c ==, △ABC面积取得最大值为1).………9分 20. 解:(Ⅰ)设圆C 的方程是220x y Dx Ey F ++++=,因为(0,0)O ,1(1,1)M ,2(4,2)M 三点都在圆C 上,代入上面方程得到方程组0,20,42200,F D E F D E F =⎧⎪+++=⎨⎪+++=⎩解得8D =-,6E =,0F =,所以圆C 的方程是22860x y x y +-+=. …………………4分 (Ⅱ)设直线0x y m -+=与圆C 交于11(,)A x y ,22(,)B x y 两点,线段AB 的中点为00(,)M x y ,由220,860,x y m x y x y -+=⎧⎨+-+=⎩消去y 得22()86()0x x m x x m ++-++=, 即2222(1)60x m x m m +-++=, ……………………6分 由224(1)8(6)0m m m --+>,得77m --<<, ……………………7分 由根与系数的关系得121x x m +=-,所以01211()(1)22x x x m =+=-,01212111()(2)(1)222y y y x x m m =+=++=+,由M 在圆225x y +=上,所以2211(1)(1)544m m -++=,则29m =,综上可得3m =-. ……………………9分 21.解:(Ⅰ)∵2a =,则2()232f x x x =-+,由()1f x >,得22321x x -+>,则22310x x -+>,∴(21)(1)0x x -->,解得1,12x x <>或,∴不等式的解集为1|,12x x x ⎧⎫<>⎨⎬⎩⎭或. …………………4分(Ⅱ)由题意对任意[1,3]x ∈-,都有()0f x ≥成立, 即min ()0f x ≥在[1,3]x ∈-上成立.⑴当0a =时,则()2f x x =-+在[1,3]-上单调递减, ∴min ()(3)10f x f ==-<,与min ()0f x ≥相矛盾,∴0a =不合题意,舍去. ………………5分 ⑵当0a >时,函数2()(1)2f x ax a x =-++的对称轴为102a x a+=>, ①当1132a a +-<<时,即15a >时,()f x 在1[1,]2a a +-上单调递减,在1[,3]2a a+上单调递增, 2min1(1)()()2024a a f x f a a++==-≥,解得33a -≤≤+,此时135a <≤+ ②当132a a+≥时,即15a ≤时,()f x 在[1,3]-上单调递减,min ()(3)610f x f a ==-≥,16a ≥,此时1165a ≤≤. …………………7分⑶当0a <时,函数2()(1)2f x ax a x =-++的对称轴为12a x a+=①当112a a+≤时,即1a ≤时,∴ 0a <, min ()(3)610f x f a ==-≥,即 16a ≥ ,与0a <相矛盾,舍去.②当112a a+>时,即1a >时,与0a <相矛盾,舍去.综上所述:实数a 的取值范围是:1[,36a ∈+. …………………9分22.解法一:(Ⅰ)证明:取PD 的中点H ,连结,AH HF ,∵点F 为线段PC 的中点,点H 为线段PD 的中点 ∴HF =12DC ,HF //12DC , 又∵点E 为线段AB 的中点,底面ABCD 是正方形,∴AE =12DC ,AE //12DC , ∴HF =AE ,HF //AE ,∴四边形AEFH 是平行四边形,∴AH //EF 又∵AH PAD ⊂面,EF PAD ⊄面, ∴EF ∥平面PAD .……………………4分 (Ⅱ)∵2AD PD ==,22PA =, ∴222AD PD PA +=,∴AD PD ⊥,又∵AD CD ⊥,且PD DC D =I ,PD ,CD ⊂平面PCD , ∴AD ⊥平面PCD ,又∵AD ⊂平面ABCD ,∴平面ABCD ⊥平面PCD . ……………………6分 过点P 作平面ABCD 的垂线PG ,则垂足G 在CD 的延长线上, 又∵120PDC ∠=o ,则60PDG o ∠= ∴112GD PD ==. ……………………7分 ∴四棱锥P ABCD -的俯视图如图所示: ……………………9分解法二:(Ⅰ)取CD 的中点H ,连结,EH FH , ∵点F 为线段PC 的中点,点H 为线段CD 的中点,∴HF //PD ,又∵PD PAD ⊂面,FH PAD ⊄面, ∴FH ∥平面PAD ,同理EH ∥平面PAD 又∵FH ÇEH H =∴平面FEH ∥平面PAD ,又∵EF ⊂平面PAD , ∴EF ∥平面PAD . ……………………4分 (Ⅱ)同解法一.。

福建省三明市高一下册第二学期期末考试数学试题含答案【精校】.doc

福建省三明市高一下册第二学期期末考试数学试题含答案【精校】.doc

BM

BM AM
∴ AM
BM 2 MQ
9 36

62

2
a0
2
7 a1
3
6
,整理得
2a 2
12a
45
0,
2
2
∵ 144 4 2 45 16 0 ,所以方程无解, 2
所以不存在点 A ,使得 BC 2 3 .
时等号成立,
3
所以 m 2 3 ,即 m 的取值范围为
,2 3 .
20.解:( 1)∵ BAD ABC 90 ,∴ BC ∥ AD , ∵ AD 平面 PAD , BC 平面 PAD ∴ BC ∥ 平面 PAD .
( 2)取 AD 的中点为 E ,连接 PE, CE ,
∵ PAD 为等腰三角形, PE AD , 又因为平面 PAD 平面 ABCD 且相交于 AD ,
∴ Sn
2 1 3n 13
3n 1 n N* .
( 2)∵ bn log 3 Sn 1 log 3 3n 1 1 n ,
∴ bn x n n xn
当 x 0 时, Tn 0 ,
当 x 1 时, Tn 1 2 3 L
n
1 n n n2 n

2
2
当 x 0 且 x 1 时, Tn x 2 x2 3x3 L nxn ,①
, a U 2a, .
( 2)不等式 f x a2 化为 x2 3ax a 2 0 ,
所以 x1 Βιβλιοθήκη 2 3a , x1x2 a 2 , a 0 ,
所以,由题可知 a 3a a 2 m a 2 1 0 恒成立,
所以 m
3a 2
1 a2 恒成立,

2024福建省三明市高三下学期5月质量检测三模数学试题及答案

2024福建省三明市高三下学期5月质量检测三模数学试题及答案

三明市2024年普通高中高三毕业班质量检测数 学 试 题(本试卷总分150分, 考试时间120分钟。

)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将答题卡交回。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线y=-x+2与圆 x ²+y ²=4相交于M ,N 两点,则|MN|= 2 B.2 2 D.42. 已知a ,b ,c 分别为ΔABC 三个内角A ,B ,C 的对边, a =3,b =37,c =7,则A+C 的值为 A.π6 B.π3 C.2π3D.5π63.随机变量ξ~ N (μ,σ²),函数 f (x )=x ²−4x +ξ没有零点的概率是 12,则μ的值为 A. 1 B.2 C.3 D.44.若 a =−b =−c =log 2313,则A. c>a>bB. c>b>aC. a>b>cD. b>c>a5.各种不同的进制在生活中随处可见,计算机使用的是二进制,数学运算一般使用的是十进制,任何进制数均可转换为十进制数,如八进制数(3750)8转换为十进制数的算法为3×8³+7×8²+5×¹+0×8⁰=2024.若将八进制数 77⋯76个7转换为十进制数,则转换后的数的末位数字是A.3B.4C.5D.66.函数 f (x )=sin (ωx +φ)(ω>0,0<φ<π)的部分图象如图所示,其中A ,B 两点为图象与x 轴的交点,C 为图象的最高点,且△ABC 是等腰直角三角形,若 OB =−3OA ,则向量 A O 在向量 AC 上的投影向量的坐标为A. −14 , −14B. 14 , 14C. −12 , −12D. 12 ,127.已知抛物线x ²=2p y(p >0)的焦点为F ,第一象限的两点A ,B 在抛物线上,且满足|AF|-|BF|=3,|AB|=3 2若线段AB 中点的横坐标为3,则p 的值为A.2 B.3 C.4 D.58.已知函数f (x )=e ˣ⁻¹−e ¹⁻ˣ+x ³−3x ²+3x ,若实数x ,y 满足f (3x ²)+f (2y ²−4)=2,则x+y 的最大值为A. 1B.52C. 5D.303二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.i 是虚数单位,下列说法正确的是 A.i 2024=−1B.若 ω=−12−32i ,则 ω2=ωC.若|z|=l,z∈C,则|z-2|的最小值为1D.若-4+3i是关于x的方程x²+px+q=0(p,q∈R)的根,则q=710.假设甲袋中有3个红球和2个白球,乙袋中有2个白球和2个红球.现从甲袋中任取2个球放入乙袋,混匀后再从乙袋中任取2个球.下列选项正确的是A.从甲袋中任取2个球是1个红球1个白球的概率为35B.从甲、乙两袋中取出的2个球均为红球的概率为120C.从乙袋中取出的2个球是红球的概率为37150D.已知从乙袋中取出的是2个红球,则从甲袋中取出的也是2个红球的概率为183711.在棱长为2的正方体ABCD−A1B1C1D1中,E,F,G分别为AB,B C,C1D1的中点,则下列说法正确的是A.若点P在正方体的表面上,且PE⋅PG=0,则点P的轨迹长度为24πB.若三棱锥F-C1CE的所有顶点都在球O的表面上,则球O的表面积为14πC.过点E,F,D1的平面截正方体ABCD−A1B1C1D1所得截面多边形的周长为2+213D.若用一张正方形的纸把此正方体完全包住,不考虑纸的厚度,不将纸撕开,则所需纸的面积的最小值为32三、填空题:本大题共3小题,每小题5分,共15分.12.已知从小到大排列的一组数据:1,5,a,10,11,13,15,21,42,57,若这组数据的极差是其第30百分位数的7倍,则a的值为 .13.已知关于x的不等式(x−keˣ)[x²−(k+3)x+9]≤0对任意x∈(0,+∞)均成立,则实数k的取值范围为 .14.记N∗m ={1,2,3,⋯,m}(m∈N∗),A k表示k个元素的有限集,S(E)表示非空数集E中所有元素的和,若集合Mm,k ={S(Ak)|Ak⊆N∗m},则M4,3=,若S(M m,2)≥817,则m的最小值为 .四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)如图,多面体PABCD中,△PBD和△CBD均为等边三角形,平面ABD⊥平面PBD,BD=2,PC=3.(1)求证:BD⊥PC;(2)求平面ABD与平面PBC夹角的余弦值.16.(15分)已知函数f(x)=sinωx+cosωx+>0)图象的两条相邻对称轴间的距离为π2.(1)若f(x)在(0,m)上有最大值无最小值,求实数m的取值范围;(2)将函数f(x)的图象向右平移π6个单位长度;再将图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到g(x)的图象,设ℎ(x)=g(x)+12x,求h(z)在(−2π,π)的极大值点.17.(15分)某校开设劳动教育课程,为了有效推动课程实施,学校开展劳动课程知识问答竞赛,现有家政、园艺、民族工艺三类问题海量题库,其中家政类占14,园艺类占14民族工艺类占12.根据以往答题经验,选手甲答对家政类、园艺类、民族工艺类题目的概率分别为25,25,45,选手乙答对这三类题目的概率均为12.(1)求随机任选1题,甲答对的概率;(2)现进行甲、乙双人对抗赛,规则如下:两位选手进行三轮答题比赛,每轮只出1道题目,比赛时两位选手同时回答这道题,若一人答对且另一人答错,则答对者得1分,答错者得-1分,若两人都答对或都答错,则两人均得0分,累计得分为正者将获得奖品,且两位选手答对与否互不影响,每次答题的结果也互不影响,求甲获得奖品的概率.18.(17分)已知数列{aₙ}满足a1⋅a2⋯ao−1⋅an=(2)n2+a,n∈N∗.(1)求数列{aₙ}的通项公式;(2)设数列{aₙ}的前n项和为Sₙ,若不等式(−1)n t Sn−14≤S n2对任意的n∈N∗恒成立,求实数t的取值范围;(3)记bn =1log2a n,求证:b1−b2b1+b2−b3b2+⋯+b a−b n+1b a<2(n∈N∗).19.(17分)已知平面直角坐标系xoy中,有真命题:函数y=mx+nx (m≥0,n>0)的图象是双曲线,其渐近线分别为直线y=mx和y轴.例如双曲线y=4x 的渐近线分别为x轴和y轴,可将其图象绕原点O顺时针旋转π4得到双曲线x²−y²=8的图象.(1)求双曲线y=1x的离心率:(2)已知曲线E:x²−y²=2,过E上一点P作切线分别交两条渐近线于A,B 两点,试探究△AOB面积是否为定值,若是,则求出该定值;若不是,则说明理由;(3)已知函数y=33x+32x的图象为Γ,直线l:x+3y−3=0,过F(1,3)的直线与Γ在第一象限交于M,N两点,过M,N作l的垂线,垂足分别为C,D,直线MD,NC交于点H,求△MNH面积的最小值.三明市2024年普通高中高三毕业班质量检测数学参考答案及评分细则评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分40分.1.C 2.C 3.D 4.A 5.A 6.B 7.B 8.C二、选择题:本大题考查基础知识和基本运算.每小题6分,满分18分.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.BC 10.ACD 11.BCD三、填空题:本大题考查基础知识和基本运算.每小题5分,满分15分.12.613.1,3e ⎡⎤⎢⎥⎣⎦14.{}6,7,8,9,21(第一空2分,第二空3分)四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.解法一:(1)证明:取BD 的中点M ,连接PM MC 、,·······················1分∵BPD △和BCD △均为等边三角形,∴BD PM ⊥,BD CM ⊥.··································································2分又PM CM M = ,∴BD ⊥平面CPM ,·········································································3分CP ⊂ 又平面CPM ,∴BD CP ⊥.····················································································4分(2)以M 为原点,,MB MC所在直线为,x y 轴,过M 作平面BCD 的垂线所在直线为z 轴,如图所示建立空间直角坐标系,···········································5分∵平面ABD ⊥平面PBD ,平面ABD 平面PBD BD =,PM ⊂平面PBD ,PM BD ⊥∴PM ⊥平面ABD .∵PBD △和CBD △均为等边三角形,∴3PM MC PC ===,60PMC ∠=︒,∴330,,22P ⎛⎫ ⎪ ⎪⎝⎭,()3,0C ,()1,0,0B ,··············································6分∴331,,22BP ⎛⎫=- ⎪ ⎪⎝⎭ ,()3,0BC =- .330,22MP ⎛⎫= ⎪ ⎪⎝⎭设平面PBC 的法向量为(,,)x y z =m ∴0,0BP BC ⎧⋅=⎪⎨⋅=⎪⎩m m 即330,2230x y z x ⎧-++=⎪⎨⎪-+=⎩取1z =,则()3,1=m ,···································································8分平面ABD 的法向量330,22MP ⎛⎫= ⎪ ⎪⎝⎭,·················································10分设平面ABD 与平面PBC 的夹角为θ,∴cos cos ,MP MP MP θ⋅==nn n33913313==⋅··································12分∴平面ABD 与平面PBC 夹角的余弦值为3913.····································13分解法二:(1)同解法一······································································4分(2)如图,取MC 的中点E 为原点,连接PE ,过点E 作//EF MB ,交BC 于点F ,由(1)知CM BD ⊥,EF MC ⊥,又由(1)知BD ⊥平面CPM ,PE ⊂ 又平面CPM ,∴BD PE ⊥,∵PBD △和CBD △均为等边三角形且棱长为2,∴3PM MC PC ===,PE MC ∴⊥,BD MC M ∴= PE CBD∴⊥平面∴以E 为原点,,,EF EC EP所在直线为,,x y z 轴,建立空间直角坐标系,如图所示··························································5分∵平面ABD ⊥平面PBD ,平面ABD 平面PBD BD =,PM ⊂平面PBD ,PM BD ⊥∴PM ⊥平面ABD ,∴平面ABD的法向量30,,22MP ⎛⎫= ⎪ ⎪⎝⎭···················································7分∴30,0,2P ⎛⎫ ⎪⎝⎭,0,,02C ⎛⎫ ⎪ ⎪⎝⎭,1,,02B ⎛⎫- ⎪ ⎪⎝⎭·············································8分∴()1,CB = ,330,,22CP ⎛⎫=- ⎪ ⎪⎝⎭,设平面PBC 的法向量为(),,x y z =m ,∴00CP CB ⎧⋅⎪⎨⋅⎩==⎪m m,即033022x y z ⎧-=⎪⎨-+=⎪⎩,取1z =,则()=m ,·················10分设平面ABD 与平面PBC 的夹角为θ,∴39cos cos ,13MP MP MP θ⋅===mm m,······························12分∴平面ABD 与平面PBC 夹角的余弦值为3913.····································13分16.解法一:(1)由题意13()sin cos()sin cos sin(6223f x x x x x x ππωωωωω=++=+=+·····································································································2分因为()f x 图象的两条相邻对称轴间的距离为π2,所以周期2ππ22T ω==⨯,故2ω=,所以()πsin 23f x x ⎛⎫=+ ⎪⎝⎭,·····················4分当()0,x m ∈时,πππ2,2333x m ⎛⎫+∈+ ⎪⎝⎭,·················································5分因为()f x 在区间()0,m 上有最大值无最小值,所以ππ3π2232m <+≤,·········6分解得π7π1212m <≤,所以m 的取值范围为π7π,1212⎛⎤⎥⎝⎦.···································7分(2)将函数()f x 图象向右平移6π个单位长度,得到sin 2()sin 263y x x ππ⎡⎤=-+=⎢⎥⎣⎦的图象,············································8分再将图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到()sin g x x =的图象,···································································9分所以函数1()sin 2h x x x =+,所以1()cos 2h x x '=+,································10分令()0h x '=得1cos 2x =-,因为(2,)x ππ∈-,所以当4(2,)3x ππ∈--时,()0h x '>,()h x 单调递增,····························11分当42(,)33x ππ∈--时,()0h x '<,()h x 单调递减,································12分当22(,33x ππ∈-时,()0h x '>,()h x 单调递增,··································13分当2(,)3x ππ∈时,()0h x '<,()h x 单调递减.·········································14分所以函数()h x 的极大值点为43π-和23π.··············································15分解法二:(1)同解法一.·····································································7分(2)将函数()f x 图象向右平移6π个单位长度,得到sin 2()sin 263y x x ππ⎡⎤=-+=⎢⎥⎣⎦的图象,············································8分再将图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到()sin g x x =的图象,···································································9分所以函数1()sin 2h x x x =+,所以1()cos 2h x x '=+,································10分令()0h x '=得1cos 2x =-,当222233k x k ππππ-+<<+时,()0h x '>,()h x 单调递增,因为(2,)x ππ∈-所以1k =-时,423x ππ-<<-,()h x 单调递增,··································11分1k =时,2233x ππ-<<()h x 单调递增·················································12分当242233k x k ππππ+<<+时,()0h x '<,()h x 单调递减,因为(2,)x ππ∈-0k =时,23x ππ<<,()h x 单调递减,··············································13分1k =-时,4233x ππ-<<-,()h x 单调递减,······································14分所以函数()h x 的极大值点为43π-和23π.··············································15分解法三:(1)同解法一.·····································································7分(2)将函数()f x 图象向右平移6π个单位长度,得到sin 2()sin 263y x x ππ⎡⎤=-+=⎢⎥⎣⎦的图象,············································8分再将图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到()sin g x x =的图象,···································································9分所以函数1()sin 2h x x x =+,所以1()cos 2h x x '=+,································10分令()0h x '=得1cos 2x =-因为(2,)x ππ∈-,所以,(),()x h x h x '的变化情况如下:x4(2,)3ππ--43π-42(,)33ππ--23π-22(,)33ππ-23π2(,)3ππ()h x '+0-0+0-()h x 单调递增极大值单调递减极小值单调递增极大值单调递减···································································································14分所以函数()h x 的极大值点为43π-和23π.··············································15分17.解:(1)记随机任选1题为家政、园艺、民族工艺试题分别为事件(1,2,3)i A i =,记随机任选1题,甲答对为事件B ,··············································1分则31122331()()(|)()(|)()(|)()(|)i i i P B P A P B A P A P B A P A P B A P A P B A ===++∑······························································································2分12121434545255=⨯+⨯+⨯=,·······························································4分所以随机任选1题,甲答对的概率为35;···········································5分(2)乙答对记为事件C ,则1122331111111()()(|)()(|)()(|)4242222P C P A P C A P A P C A P A P C A =++=⨯+⨯+⨯=·····································································································7分设每一轮比赛中甲得分为X ,则331(1)()()()15210P X P BC P B P C ⎛⎫====⨯-= ⎪⎝⎭,·································8分331511(0)()()()225112P X P BC BC P BC P BC ⎛⎫⎛⎫===+=⨯+-⨯-= ⎪ ⎪⎝⎭⎝⎭ ,········9分35511(1)()12P X P BC ⎛⎫=-==-⨯= ⎪⎝⎭.····················································10分三轮比赛后,设甲总得分为Y ,则33(3)10100207P Y ⎛⎫=== ⎪⎝⎭,······························································11分22331(2)C 10200272P Y ⎛⎫==⨯= ⎪⎝⎭,··························································12分22123311279(1)C C 331051000102P Y ⎛⎫⎛⎫==⨯⨯+⨯⨯= ⎪ ⎪⎝⎭⎝⎭,···································13分所以甲最终获得奖品的概率为27272794411(3)0002001000100(2)(1)0P P Y P Y P Y =++====++=.····················15分18.(1)因为2121nn n n a a a a +-⋅⋅= ①所以当2(1)11212,n n n n n a a a a -+--≥⋅⋅= ②,·············································1分由②①得2n n a =··················································································2分因为1n =时12a =也符合上式,····························································3分所以数列{}n a 是以2为首项,2为公比的等比数列,所以*,2n n N a n =∈.·············································································4分(2)由(1)知,()12122212nn n S +-==--,···············································5分因为不等式2(1)14n n n tS S -⋅-≤对任意的n *∈N 恒成立,又0n S >且n S 单调递增,·····································································································6分所以14(1)n n nt S S -⋅≤+对任意的n *∈N 恒成立,···········································7分因为1234=26=14=30S S S S =,,,,··························································8分所以当n 为偶数时,原式化简为14n n t S S ≤+对任意的n *∈N 恒成立,即min 14n n t S S ⎛⎫≤+ ⎪⎝⎭因为26S =>2n =时,253t ≤,············································10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三明市2014—2015学年第二学期普通高中阶段性考试高一数学试题(考试时间:2015年7月 日上午8:30-10:30 满分:100分)注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卷上.2.考生作答时,将答案答在答题卷上,请按照题号在各题的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效. 参考公式:锥体体积公式13V Sh =(其中S 为底面面积,h 为高)柱体体积公式V Sh =(其中S 为底面面积,h 为高)圆锥的侧面积公式S rl π=(其中r 为圆锥底面的半径,l 为母线的长) 球的体积公式34π3V r =(其中r 为球的半径)第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有2.设数列{}n a 的前n 项和(1)2n n n S +=,则5a = A .3 B .4 C .5 D .6 3.下列结论正确的是A .若bc ac >,则b a >B .若22a b >,则a b >C .若,,d c b a >> 则bd ac >D .若0a b >> 则2a ba ab b +>> 4.圆1O :2220x y x +-=和圆2O :2240x y y +-=的公切线条数为A .1条B .2条C .3条D .4条5.设变量x y ,满足约束条件0121,x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩,,则目标函数5z x y =+的最大值为A .2B .3C .4D .56.在△ABC 中,角,,A B C 所对的边分别为,,a b c ,且10=a ,8=b ,30B =,那么△ABC的解的情况是A .无解B .一解C .两解D .一解或两解7.一个多面体的三视图如图所示,其中正视图是正方形,侧视图是等腰三角形,则该几何体的表面积 是A .64B .76C .88D .112 8.已知直线3450x y +-=与圆224x y +=相交于A ,B 两点,则弦AB 的长等于A. B . C .112.如图,将平面直角坐标系中的纵轴绕原点O 顺时针旋转30后,构成一个斜坐标平面xOy .在此斜坐标平面xOy 中,点(,)P x y 的 坐标定义如下:过点P 作两坐标轴的平行线,分别交两轴于M 、N 两点,则M 在Ox 轴上表示的数为x ,N 在Oy 轴上表示的数为 y .那么以原点O 为圆心的单位圆在此斜坐标系下的方程为A .2210x y xy ++-=B .2210x y xy +++= C .2210x y xy +--= D .2210x y xy +-+=第Ⅱ卷(非选择题 共64分)12P ,则12PP =________.15.设长方体的长、宽、高分别为2,1, 1,其顶点都在同一个球面上,则该球的体积为_______. 16.对于任意x ∈R ,令[]x 为不大于x 的最大整数,则函数()[]f x x =称为高斯函数或取整函,)y数.若数列{}n a 满足()4n n a f =()n +∈N ,且数列{}n a 的前n 项和为n S ,则4n S 等于 .三、解答题:本大题共6小题,共52分.解答应写出文字说明,证明过程或演算步骤.在答题卷相应题目的答题区域内作答. 17.(本小题满分8分)设等差数列{}n a 的前n 项和为n S ,且32a =,615S =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ) 设2n a n b =,求数列{}n b 的前n 项和n T . 18.(本小题满分8分)已知函数22()(1)()f x mx m x m m =-++∈R . (Ⅰ)当2m =时,解关于x 的不等式()0f x ≤;(Ⅱ) 当0m >时,解关于x 的不等式()0f x >.三角形,底面ABCD 是正方形,M 是侧棱PB 上的点,N 是底面对角线AC 上的点,且2PM MB =,2AN NC =.(Ⅰ)求证:⊥AD PB ;(Ⅱ)求证://MN 平面PAD ; (Ⅲ)求点N 到平面PAD 的距离.21.(本小题满分9分)在平面直角坐标系xOy 中,过点(0,1)A 作斜率为k 的直线l ,若直线l 与以C 为圆心的圆22430x y x +-+=有两个不同的交点P 和Q . (Ⅰ)求k 的取值范围;(Ⅱ)是否存在实数k ,使得向量CP CQ +与向量(2,1)=-m 共线?如果存在,求k 的值;如果不存在,请说明理由.22.(本小题满分10分)如图,已知△ABC 是边长为4的正三角形,D 是BC 的中点,E ,F 分别是边AB ,AC 上的点,且π3EDF ∠=,设ππ()62BDE θθ∠=<<. (Ⅰ)试将线段DF 的长表示为θ的函数;(Ⅱ)设△DEF 的面积为S ,求()S f θ=的解析式, 并求()f θ的最小值;(Ⅲ)若将折线BE ED DF FC ---绕直线BC 旋转一 周得到空间几何体,试问:该几何体的体积是否有最小 值?若有,求出它的最小值;若没有,请说明理由.三明市2014—2015学年第二学期普通高中阶段性考试高一数学参考答案及评分标准一、选择题:(θFE DCBA1.B 2.C 3.D 4.B 5.D 6.C 7.C 8. B 9.D 10. B 11.A 12.A 二、填空题:13.45 141516. 22n n - 三、解答题:17.解:(Ⅰ)因为数列{}n a 是等差数列,设其公差为d ,由题设可得1122,61515,a d a d +=⎧⎨+=⎩解得10,1,a d =⎧⎨=⎩所以1(1)1n a a n d n =+-=-. ………………………………………4分 (Ⅱ)由(Ⅰ)1n a n =-,所以12n n b -=,可知数列{}n b 是首项为1,公比为2的等比数列,因此1(1)1221112n nn n b q T q --===---. ………………………………………8分所以不等式()0f x ≤的解集为1{|2}2x x ≤≤. (3)则1()()0x m x x m-->,………………………………………5分当1m >时,101m <<,则不等式的解集为1{|x x m<,或}x m >. (8)20.解法一:(Ⅰ) 侧面PAB ⊥底面ABCD ,且平面PAB 与平面ABCD 的交线为AB ,AD AB ⊥,AD ⊂平面ABCD ,AD ∴⊥平面PAB ,PB ⊂平面PAB ,AD PB ∴⊥. ………………………3分 (Ⅱ)证明:过M 作//MS BA 交PA 于点S ,过N 作//NT CD 交AD 于点T ,连接ST ,223PM MBMS BA =∴=, 同理可得2233NT CD BA ==,//,MS NTMS NT ∴=,MNTS ∴是平行四边形,//MN ST ,又ST ⊂平面PAD ,MN ⊄平面PAD ,//MN ∴平面PAD .………………………6分(Ⅲ)//MN 平面PAD ,∴点M 到平面PAD 的距离 是点N 到平面PAD 的距离,在平面PAB 内过M 作MH PA ⊥于H , AD ⊥ 平面PAB ,AD MH ∴⊥, MH ∴⊥平面PAD ,MH ∴是点M 到平面PAD 的距离, 在Rt PMH ∆中,2,,3PM MPH MH π=∠=∴=所以点N 到平面PAD 9分 解法二:(Ⅰ)同解法一.(Ⅱ)过M 作//ME PA 交AB 于点E , 连接EN ,2AE EB = ,又2//AN NC EN BC =∴ , //EN AD ∴,又AD ⊂平面PAD ,EN ⊄平面PAD ,//EN ∴平面PAD ,//ME PA ,PA ⊂平面PAD ,ME ⊄平面PAD ,//ME ∴平面PAD ,又ME EN E = , ∴平面//MEN 平面PAD //MN ∴平面PAD .………………6分(Ⅲ)设点N 到平面PAD 的距离为h ,取AB 的中点O ,连接PO ,则PO AB ⊥,侧面PAB ⊥底面ABCD ,CCPO ∴⊥底面ABCD ,1133N PAD P AND PAD AND V V S h S PO --∆∆=∴⋅=⋅ ,1(32)3)221332AND PADS PO h S ∆∆⨯⨯⨯⋅∴===⨯⨯即点N 到平面PAD………………………9分 解法三:(Ⅰ)同解法一.(Ⅱ)连接BN 并延长交直线AD 于点F ,22AN NC FN NB =∴= ,12BM BNMP NF∴==,//MN PF ∴, 又PF ⊂平面PAD ,MN ⊄平面PAD ,//MN ∴平面PAD . ………………………6分 (Ⅲ)//MN 平面PAD ,∴点M 到平面PAD 的距离是点N 到平面PAD 的距离, 设点M 到平面PAD 的距离为h ,1133M PAD D PAM PAD PAM V V S h S AD --∆∆=∴⋅=⋅ ,1(23sin )3231332PAM PADS AD h S π∆∆⨯⨯⨯⨯⋅∴===⨯⨯即点N 到平面PAD………………………………………9分 21.解:(Ⅰ)直线l 的斜率存在,设其方程为:1y kx =+,圆的方程:22430x y x +-+=,联立并消元得22(1)(24)40k x k x ++-+=, 设两个交点的坐标分别为1122(,),(,)P x y Q x y , 由韦达定理得:121222424, 11k x x x x k k -+=⋅=++, 由直线与圆有两个不同的交点可知22(24)16(1)0,k k ∆=--+>解不等式得403k -<<. ………………………………………4分 另解:借助圆心到直线的距离小于半径求解. (Ⅱ)存在,实数12k =-,理由如下:由(Ⅰ)假设可得1122(2,),(2,),CP x y CQ x y =-=-所以1212(4,)CP CQ x x y y +=+-+,又(2,1)=-m ,由向量CP CQ +与(2,1)=-m 共线可知121242()0x x y y +-++=,…(※)而11221,1y kx y kx =+=+,得1212()2y y k x x +=++,代入(※)式化简得12(12)()0k x x ++=, ……………………………………7分从而得到2(12)(42)01k k k +-=+,解得12k =-或2k =(舍去), 所以存在12k =-满足题意. ………………………………………9分22.解:(Ⅰ)在DFC ∆中,2ππ,,.33FDC C DFC θθ∠=-∠=∠=由正弦定理:sin sin DF DCC θ=,得2πsin sin 3DF θ=,即ππ()62DF θ=<<. ………………………3分 (Ⅱ)在BDE ∆中,2ππ,,.33BED CB BDE θθ∠=-∠=∠=由正弦定理:sin sin BD DEBED B=∠,得sin sin sin()3BD B DE BED θ==∠-,所以1πsin 23sin()2sin(2)136S DE DF θθ=⋅⋅=--+, ππππ5π(,),2(,)62666θθ∈∴-∈ ,当ππ262θ-=,即π3θ=时,min S = ………………………7分 (Ⅲ)存在,最小值为4π,理由如下:该几何体是由四个圆锥构成的组合体,过E 点作EM BD ⊥于M 点,则sin EM ED θ=,过F 点作FN DC ⊥于N 点,则2πsin()3FN DF θ=-,2πsin()33sin()3EM FN θθθ⋅=-=-,则组合体的体积2222112πππ()333V EM BD FN DC EM FN =⋅⋅+⋅⋅=+,所以2π24π3V EM FN ≥⋅⋅=,当且仅当EM FN =时取“=”, (θFE DCBA所以所得几何体的体积有最小值为4π.………………………10分。

相关文档
最新文档