由递推公式求通项公式的方法
由递推公式求通项公式的三种方法
由递推公式求通项公式的三种方法递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接,下面介绍由递推公式求通项公式的几种方法.1.累加法[典例1] 数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11 [解析] 由已知得b n =2n -8,a n +1-a n =2n -8,所以a 2-a 1=-6,a 3-a 2=-4,…,a 8-a 7=6,由累加法得a 8-a 1=-6+(-4)+(-2)+0+2+4+6=0,所以a 8=a 1=3.[答案] B[题后悟道]对形如a n +1=a n +f (n )(f (n )是可以求和的)的递推公式求通项公式时,常用累加法,巧妙求出a n -a 1与n 的关系式.2.累乘法[典例2] 已知数列{a n }中,a 1=1,前n 项和S n =n +23a n . (1)求a 2,a 3;(2)求{a n }的通项公式.[解] (1)由S 2=43a 2得3(a 1+a 2)=4a 2, 解得a 2=3a 1=3.由S 3=53a 3得3(a 1+a 2+a 3)=5a 3, 解得a 3=32(a 1+a 2)=6. (2)由题设知a 1=1.当n >1时,有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1. 于是a 2=31a 1,a 3=42a 2,…,a n -1=n n -2a n -2,a n =n +1n -1a n -1. 将以上n -1个等式中等号两端分别相乘,整理得a n =n n +1 2. 综上可知,{a n }的通项公式a n =n n +1 2.[题后悟道]对形如a n +1=a n f (n )(f (n )是可以求积的)的递推公式求通项公式时,常用累乘法,巧妙求出a n a 1与n 的关系式.3.构造新数列[典例3] 已知数列{a n }满足a 1=1,a n +1=3a n +2;则a n =________.[解析] ∵a n +1=3a n +2,∴a n +1+1=3(a n +1),∴a n +1+1a n +1=3,∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1, ∴a n =2·3n -1-1.[答案] 2×3n -1-1[题后悟道]对于形如“a n +1=Aa n +B (A ≠0且A ≠1)”的递推公式求通项公式,可用迭代法或构造等比数列法.上面是三种常见的由递推公式求通项公式的题型和对应解法,从这些题型及解法中可以发现,很多题型及方法都是相通的,如果能够真正理解其内在的联系及区别,也就真正做到了举一反三、触类旁通,使自己的学习游刃有余,真正成为学习的主人.。
数列递推公式求通项公式的方法
数列递推公式求通项公式的方法数列是指按照一定规律排列的一组数。
而数列递推公式是指通过前一项或几项的数值,推导出数列中后一项的数值的公式。
而求解数列通项公式,即通过已知的数列的部分项求得数列的通项公式的方法,可以分为以下几种:1.列表法:通过列出数列的前几项进行观察和总结,找到数列的规律,从而推导出数列的通项公式。
这种方法常用于找出简单数列的通项公式,如等差数列和等比数列。
2.递推法:利用数列递推的性质,通过对数列进行递推推导出通项公式。
递推法常用于复杂的数列,需要将数列的前几项与后几项进行比较,找到规律并推导出通项公式。
3.数学归纳法:数学归纳法是一种利用已知的数学命题,在该命题的基础上证明该命题对任意自然数(或整数)都成立的方法。
对于数列来说,可以利用已知的数列部分项的性质,通过数学归纳法证明该数列的通项公式的正确性。
4.差分法:差分法是一种通过对数列进行差分操作,将数列变为新的数列,新数列有可能是个数列递推公式/规律更简单的数列。
然后,根据新数列的通项公式,再通过反差分操作推导出原数列的通项公式。
差分法常用于较为复杂的数列,特别适合于数列中的递推关系较为难以发现的情况。
5.比率法:比率法是一种通过比较数列的相邻项之间的比率或比值的变化规律,推导出数列的通项公式的方法。
比率法常用于等比数列或存在比率规律的数列。
需要注意的是,求解数列通项公式并不是一种机械性的计算过程,而是需要灵活运用数学知识、观察和总结数列的规律,并进行推理和证明的过程。
在实际应用中,也可能需要结合上述多种方法进行综合分析来求解数列的通项公式。
求数列通项公式的11种方法
求数列通项公式的11种方法方法总述:一.利用递推关系式求数列通项的11种方法:累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、换元法(目的是去递推关系式中出现的根号)、 数学归纳法(少用)不动点法(递推式是一个数列通项的分式表达式)、 特征根法二.四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。
2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。
例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
如何由递推式求数列的通项公式
探索探索与与研研究究由递推式求数列的通项公式问题在数列中比较常见,主要考查对递推式的变形、整合技巧.此类问题解法多样,因此我们需要熟悉各类递推式,掌握由递推式求数列的通项公式的常用方法和技巧,这样才能顺利破解此类问题.本文主要分析三种常见的递推式以及求通项公式的方法.一、a n+1=Aa n+B型递推式对于a n+1=Aa n+B(A,B为常数,且A≠0,1)型递推式,我们首先可以引入参数t,将其转化为a n+1+t=A(an+t),其中t=B A-1,这样便构造出等比数列{}an+t,利用等比数列的通项公式即可求出a n.例1.已知{}a n首项a1=1,且满足a n=3a n-1+2(n≥2),试求数列{}a n的通项公式.解:设a n+t=3()a n-1+t,∴a n=3a n-1+2t,∴t=1,∴an+1=3()a n-1+1,∴{}a n+1是以2为首项,公比为3的等比数列,∴an+1=2∙3n-1,∴a n=2∙3n-1-1.我们观察已知递推式,可发现该递推式为a n+1=Aan+B型,可直接引入参数,构造等比数列,利用等比数列的通项公式来解题.二、Aa n+1+Ba n+Ca n-1=0型递推式若数列的递推式为Aa n+1+Ba n+Ca n-1=0型,其中A,B,C为常数,且互不为0,我们可根据递推式的形式和特点构造一个新的等比数列:A()an+1+αa n=β()an+αa n-1()n≥2,然后利用待定系数法求解,列出方程组{A∙α-β=B,-β∙α=C,解出α、β,再根据等比数列的通项公式得出{}an+1+αa n的通项公式,最后将递推式转化为a n+1=Aa n+B型递推式或运用累加法来求解.例2.已知{}a n中a1=2,a2=4,且满足a n+1=3a n-2a n-1()n≥2,求数列{}a n的通项公式.解:设a n+1+αa n=β(a n+αa n-1),n≥2,即a n+1=(β-α)a n+a∙βa n-1,于是有{β-α=3,α∙β=-2,解得α=-1,β=2;∴a n+1-a n=2()a n-a n-1()n≥2,∴{}an+1-a n是以2为首项,公比为2的等比数列,∴a n+1-a n=2×2n-1=2n.∴a2-a1=2,a3-a2=22,a4-a3=23,…an-a n-1=2n-1,∴a n-a1=2(1-2n-1)1-2=2n-2,∴a n=2n()n∈N*.已知递推式为Aa n+1+Ba n+Ca n-1=0型,可直接运用待定系数法构造等比数列,然后运用等比数列的通项公式和累加法求得数列的通项公式.三、a n+1=c⋅a n pa n+d型递推式由形如a n+1=c⋅a n pa n+d(其中c⋅p⋅d≠0)型的递推式求数列的通项公式时,我们首先可以利用取倒数法对递推式进行变形:1a n+1=p c+d c∙1a n,然后再利用待定系数法构造等比数列,再运用等比数列的通项公式求出数列{}a n的通项公式.例3.若数列{}a n中a1=4,a n+1=2∙a n2a n+1,求a n的通项公式.解:将递推式变形可得1a n+1-12a n=1,令1a n=b n,∴b n+1-12b n=1,∴bn+1+t=12(b n+t),∴t=-2,∴b n+1-2bn-2=12,∴{}b n-2是以-74为首项,公比为12的等比数列.∴b n-2=æèöø-74æèöø12n-1,即1an-2=æèöø-74æèöø12n-1,∴an=2n+12n+2-7.已知递推式为a n+1=c⋅a n pa n+d型递推式,需先在递推式的两边取倒数,然后两次运用待定系数法构造出等比数列,利用等比数列的通项公式求解.由此可见,解答由递推式求数列的通项公式问题也是有规律可循的,只要我们运用取倒数法、待定系数法等方法将已知的递推式进行合理变形,构造出等比数列,将陌生的、复杂的问题转化为熟悉的、简单的等比数列问题,便能快速求出数列的通项公式.(作者单位:甘肃省酒泉市肃州区玉门油田第一中学)56Copyright©博看网 . All Rights Reserved.。
(完整版)求数列通项公式的十种方法
求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、换元法(目的是去递推关系式中出现的根号)、 数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、 特征根法二。
四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。
2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=L L两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2n a n =。
例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
由递推公式求an的通项公式
由递推公式求的通项公式类型1叠加法:)(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。
例1:已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
解:由条件知:111)1(1121+-=+=+=-+n n n n n n a a n n分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累加之,即)()()()(1342312--+⋅⋅⋅⋅⋅⋅+-+-+-n n a a a a a a a a )111()4131()3121()211(nn --+⋅⋅⋅⋅⋅⋅+-+-+-=所以n a a n 111-=- 211=a ,nn a n 1231121-=-+=∴类型2累乘法:n n a n f a )(1=+解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。
例2:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。
解:由条件知11+=+n n a a n n ,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累乘之,即 1342312-∙⋅⋅⋅⋅⋅⋅∙∙∙n n a a a a a a a a n n 1433221-⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯=n a a n 11=⇒又321=a ,na n 32=∴ (2004,全国I,理15.)已知数列{a n },满足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a (n ≥2),则{a n }的通项1___n a ⎧=⎨⎩ 12n n =≥ 解:由已知,得n n n na a n a a a a +-+⋅⋅⋅+++=-+13211)1(32,用此式减去已知式,得当2≥n 时,n n n na a a =-+1,即n n a n a )1(1+=+,又112==a a ,n a a a a a a a a a n n =⋅⋅⋅====∴-13423121,,4,3,1,1,将以上n 个式子相乘,得2!n a n =)2(≥n 类型3(待定系数法)q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。
(完整版)求数列通项公式的十种方法
求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。
四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。
2.若1()n n a a f n +-=(2)n ≥,则 21321(1)(2)()n n a a f a a f a a f n +-=-=-=L L两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2n a n =。
例2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
递推公式求通项公式
用递推公式求通项的六种方法:等差数列和等比数列有通项公式;累加法;累乘法;构造法;错位相减法。
按一定次序排列的一列数称为数列,而将数列{an}的第n项用一个具体式子表示出来,称作该数列的通项公式。
累加法:用于递推公式为an+1=an+f(n),且f(n)可以求和。
累乘法:用于递推公式为an+1/an=f(n)且f(n)可求积。
构造法:将非等差数列、等比数列,转换成相关的等差等比数列。
错位相减法:用于形如数列由等差×等比构成:如an=n·2^n。
用迭代法:此题也可用归纳猜想法求之,但要用数学归纳法证明.。
求数列通项公式的十一种方法
递推数列的通项公式的十一种求法一、累加法:a n = a 1 +(a 2―a 1)+……+(a n ―a n ―1)。
型如a n+1=a n +f (n )的递推数列例1 已知a n+1=a n +2n+1 ,a 1=1 ,求数列{ a n }的通项公式。
解:112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= ∴通项公式为2n a n =例2 已知a n +1 = a n +2×3n+1,a 1 = 3,求数列{ a n }的通项公式。
解: 已知得 a n +1 -a n = 2×3n+111232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+- ∴ 3 1.nn a n =+-例3 已知a n +1 = 3a n +2×3n+1,a 1 = 3,求数列{ a n }的通项公式。
解:已知两边除以13n + , 得111213333n n n n n a a +++=++,则111213333n n n n n a a +++-=+ 112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++,则 21133.322n n n a n =⨯⨯+⨯- 关键是把13231n n n a a +=+⨯+转化为111213333n n n n n a a +++-=+,求得数列3n n a ⎧⎫⎨⎬⎩⎭的通项公式。
由递推公式求通项的9种方法经典总结word精品
精析由递推公式求通项的 9种方法1. a n +1= a n + f(n)型把原递推公式转化为a n +1 — a n = f(n),再利用累加法(逐差相 加法)求解,即 a “= a i + (a ? — a° + (巫一 a ?) + …+ (a n _a “-1) = a i + f(1)+ f(2)+ f(3) + •••+ f(n — 1).1 1 、[例1] 已知数列{ a n }满足a i = 2, a n +i = a n +孑右,求a n .1 1 11[解] 由条件,知 a n +1— an = n 2+ n = n n + 1 = n—n+ 1,贝V (a2一 a1)+ 但3— a 2)+ 但4 一a3) + •••+(an— an-1)=1— 2 +£一1+ 1一4 FT所以an— ai = 1-J1 1 13 1因为 a 1 = 1,所以 a n = 2+ 1 — n = 3— 12 . a n +1 = f(n)a n 型把原递推公式转化为a a ±J = f(n),再利用累乘法(逐商相乘法)a n求解,即由 a 2= f(1), a ^ = f(2),…,a 1a 2f(1)f(2)…f(n — 1).故 a n = — a2Lj …a^ a 1= -一一- X-一22X 3 = 3■•即 a n =右. a n —1 a n — 2 a 1 n n — 1 2 3 3 n 3n_a^ = f(n — 1),累乘可得 a° =a n — 1 a1[例2]已知数列{a n }满足a i = £nan +1= n + 1 a n , 求a n .[解]由 an +1=an,得 a ^1n n 1,3. a n +1= pa n + q(其中 p , q 均为常数,pq(p — 1)工0)型对于此类问题,通常采用换元法进行转化, 假设将递推公式 改写为a n +1 + t = p(a n + t),比较系数可知t = =b n + 1换元即可转化为等比数列来解决.[例 3]已知数列{a n }中,a i = 1, a n +1= 2a n + 3,求 a n .[解]设递推公式 a n +i = 2a n + 3 可以转化为 a n +i — t = 2(a n — t ),即 a n +1 = 2a “— t ,贝V t =—3.故递推公式为 a n +1 + 3= 2(a n + 3).b n + 1 a n + 1 + 3-令 bn =an+ 3,则 b 1 =a1+ 3= 4,且= =2. b n a n + 3所以{b n }是以b 1= 4为首项,2为公比的等比数列. 所以 b n = 4 X 2n —1= 2n +1,即卩 a n = 2n +1 — 3.4. a n +1= pa n + q n (其中 p, q 均为常数,pq (p — 1)工0)型(1) 一般地,要先在递推公式两边同除以q n+s 得a n +1=q$+q q q£引入辅助数列{b n }其中b n = ~n ,,得b n +1 = p b n + 再用待定q i q 丿 q q 系数法解决;(2) 也可以在原递推公式两边同除以p n +1,得p n +1=0?+p [p j n,引入辅助数列{0}其中b n = p J,得b n + 1一 g = £加 再利用叠 加法(逐差相加法)求解.[例 4] 已知数列{ a n }中,a 1 = 5,a n +1 = fa n + £厂,求 a n .[解]法一:在 a n + 1=如+ £厂两边乘以 2^1,得 2^1 a n + 1= 3(2n a n ) + 1. 2令 b n = 2n a n ,贝V b n + 1 = ~b n + 1,3p -1,可令 “1+1根据待定系数法,得b n+ 13所以数列{b n—3}是以b1 —3= 2X5—3=—£为首项,6 3以3为公比的等比数列.3所以b n— 3 = — 4 n—S 即b n= 3—2 2 n.令 b n = a n + n +1.(*)3n +1a n +1= 3n a n + 扌卄1. 令 b n = 3n a n ,则 b n + 1 = b n +所以 g — g —1= g —1— bn -2 = g ;1,b 2 - b 1 = g 2 将以上各式叠加, 得 b n - b 1=l|〉1+ g).5 53又 b1=3a1= 3x 6= 2 =1+3, 所以 3 b n = 1 + 扌 +|2+•••+ |n -1+2n即 b n = 2 3 n +1 — 2. 故 a n =爭=3j -23 n .5. a n +1= pa n + an + b(p z 1, p H 0, a ^0)型这种类型一般利用待定系数法构造等比数列,即令 x(n + 1) + y = p(a n + xn + y),与已知递推式比较,解出 an + l +x , y,从而转化为{a n + xn + y }是公比为p 的等比数列.[例 5]设数列{a n }满足 a 1 = 4, a n = 3a n - 1+ 2n — 1(n》2),求 an .[解]设递推公式可以转化为 a n + An+B =3[an -1+A(n — 1)+ B ],化简后与原递推式比较,得a=2,2B — 3A =— 1,法二:在a n +1 = |a n + 1 n +1两边乘以3n +1,得解得贝U b n = 3b n —i ,又 b i = 6,故 b n = 6 3n 1=2 3n , 代入(*)式,得 a n = 2 3“一 n — 1.6. a “+1 = pa n (p>0, a n >0)型这种类型一般是等式两边取对数后转化为 数列,再利用待定系数法求解.[例6]已知数列{a n }中,a i = 1, a n +1 =1 a ;(a>0),求数列{a n }的通项公式.a 1 2[解]对a n + 1=匚a n 的两边取对数,a 1得 lg a n +1 = 2lg a n + Ig 一.a1令 b n = l g a n ,贝U b n +1 = 2b n + lga1 f 1、 1由此得 b n + 1+ lg = 2 b n + lg 一,记 C n = g + lg ,贝V C n +1 = 2®,a I a 丿 a 所以数列{C n }是以C 1 =b 1 + lg 2= lg 1为首项,2为公比的等比数列.a a 所以 C n = 2n T lg 1.y a所以 b n = C n — lg 1 = 2n —1 lga — lg 1a a a=lg [a 0n —1 1= lga 1—2n,即 lg a n = lga 1—2n,所以 a “= a 1—2n.7. a n +1= Ba. + " B ,C 为常数)型对于此类递推数列,可通过两边同时取倒数的方法得出关系 式又 1—1=3, a 1 3a n + 1= pa n + q 型[例7] 已知数列{ a n }的首项a 1 5, a n +1 = 2a + 1, n = h 2,3,…,求{a n }的通项公式._ 3a n an +1 = 2a n + 1,丄=2+丄 a n +1 3 3a n1 a n +111a n1,21 2 —1 =二• n _ 1 = Tna n 33 3,n38. a n 1 a n - f (n)型类讨论即可解析:;a n 1• a n=2n.即数列Bn [是奇数项和偶数项都是公差为2的等差数列,9. On 耳二 f(n)型将原递推关系改写成a n .2 a n 1 = f (n • 1),两式作商可得a n 2 - f (n' ° 然后分奇数、偶数讨论即可例9.已知数列&匚中,印=3,a n彳,a n= 2n ,求"、a n:3 2—, n 为奇数1n , n >1, n* + -22, n 为偶数.32 1是以3为首项,3为公比的等比数列,3 3 •-an=3T2 -由原递推关系改写成 O n .2 - a n 二f (n • 1) - f (n),然后再按奇偶分例8•已知数列玄讪,a i二 1, a nd- a n二 2n.求 a na n 2 a n 1 = 2n 2 ,=2a nn, n 为奇数 n -1, n 为偶数'a nf(n)解析:a n。
八种通项公式求解方法
求数列通项公式的八种方法总述:一.利用递推关系式求数列通项的8种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、二.等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1.适用于:----------这是广义的等差数列累加法是最基本的二个方法之一。
2.若,则两边分别相加得例1已知数列满足,求数列的通项公式。
解:由得则所以数列的通项公式为。
例2已知数列满足,求数列的通项公式。
解法一:由得则所以解法二:两边除以,得,则,故因此,则评注:已知,,其中f(n)可以是关于n的一次函数、二次函数、指数函数、分式函数,求通项.若f(n)是关于n的一次函数,累加后可转化为等差数列求和;若f(n)是关于n的二次函数,累加后可分组求和;若f(n)是关于n的指数函数,累加后可转化为等比数列求和;若f(n)是关于n的分式函数,累加后可裂项求和。
例3.已知数列中,且,求数列的通项公式.解:由已知得,化简有,由类型(1)有,又得,所以,又,,则二、累乘法1.适用于:----------这是广义的等比数列累乘法是最基本的二个方法之二。
2.若,则两边分别相乘得,∏=+=nk n k f a a 111)(例4已知数列满足,求数列的通项公式。
解:因为,所以,则,故所以数列的通项公式为例5.设是首项为1的正项数列,且(=1,2,3,…),则它的通项公式是=________.解:已知等式可化为:()(n+1),即时,==.评注:本题是关于和的二次齐次式,可以通过因式分解(一般情况时用求根公式)得到与的更为明显的关系式,从而求出.三、待定系数法适用于基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。
求数列通项公式的十种方法
求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。
四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1.适用于:1()n na a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。
2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=L L两边分别相加得111()nn k a a f n +=-=∑例1 已知数列{}na 满足11211n n aa n a +=++=,,求数列{}na的通项公式。
例2 已知数列{}na 满足112313n n n a a a +=+⨯+=,,求数列{}na 的通项公式。
解法一:由1231n n n aa +=+⨯+得1231n n n aa +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-L L L所以3 1.n nan =+-解法二:13231nn naa +=+⨯+两边除以13n +,得111213333n n n n n aa +++=++,则111213333n n n n n a a +++-=+,故112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++L L L因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯,则21133.322n n nan =⨯⨯+⨯-练习1.已知数列{}na 的首项为1,且*12()n na a n n N +=+∈写出数列{}na 的通项公式.答案:12+-n n练习2.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:裂项求和na n 12-=评注:已知a a =1,)(1n f a a nn =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项na .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和;②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;④若f(n)是关于n 的分式函数,累加后可裂项求和。
根据递推关系求数列通项公式的几种方法
一、定义法 例 1、已知数列an 的递推公式,求an
1)a1 3, an1 an 2
1 2)a1 2, an 1 an 3
等差数列
等比数列
二、累加相消法(累加法)
形如:a1 a, an1 an f n
当所给数列每依次相邻两项之间的差 组成等差或等比数列时,就可用累加 法进行消元。
p 1 , 求a n ?
构造等比数列an , 使an 1 p(an ),
an 2 1
n
则q (p 1 ) ,
q 即 p1
4)a1 2, an1 2an 3
an 2
n1
an1 3 2(an 3)
2 an 5 4n
例6、已知数列an 的递推关系为: an 1 a ,a1 3,求an
2 n
两边同取常用对数
an 3
2 n1
当一个数列每依次相邻两项之商构成 一个等比数列或其它数列时,就可用 累乘法进行消元。
例3、已知数列an 的递推公式,求an
1)a1 2, an1 3 an
n
an 2 3
n n 1 2
n 2)a1 1, an 1 an n 1
1 an n
四、换元法
通过“换元”,构造一个等差或等比的 新数列,利用等差或等比的知识解决 问题。
3
1 5)a1 1, an 1 an 6 2
1 an 1 4 (an 4) 2
1 an 5 2
n 1
4
例5、已知数列an 的递推关系为: an 1 an 2an 1an,a1 2,an 0, 求an
递推数列通项公式的求法
递推数列通项公式的求法递推数列是指通过前一项或前几项推导出后一项的数列。
通项公式是指通过数列中的任意一项可以直接计算出该项的数值的公式。
在求递推数列的通项公式时,可以使用多种方法,包括直接法、联立方程法、差分法、母函数法等。
下面将详细介绍这些方法。
一、直接法二、联立方程法联立方程法适用于一些复杂的递推数列,通过联立多个方程来求出通项公式。
该方法需要已知的一些数列值,然后根据这些值建立方程组,通过解方程组来求得通项公式。
例如,对于数列1,3,7,13,21,...,我们可以通过观察得到an = a(n-1) + 2n-1、然后,我们可以通过已知项确定初始值,如a1 = 1、通过逐一代入这些值,可以得到如下的方程组:a2 = a1 + 2(2) - 1,a3 = a2 + 2(3) - 1,...,以此类推。
然后我们可以通过求解这个方程组来得到数列的通项公式。
三、差分法差分法是通过求解数列项之间的差分来求得通项公式。
该方法常用于递推数列的高阶通项公式的求解。
对于数列an,我们可以通过计算an+1- an的值,然后继续计算相邻项之间的差分,直到得到一个关于n的表达式。
例如,对于数列1,3,6,10,15,...,我们可以计算出相邻项之间的差分:2,3,4,5,...。
我们发现这个差分数列是一个等差数列,其通项公式为an = n(n+1)/2、通过这个通项公式,我们可以进一步求得原数列的通项公式。
四、母函数法母函数法是一种重要的数学工具,适用于一些复杂的递推数列。
该方法通过构造一个函数来表示数列的各项,然后通过求解函数的表达式来得到数列的通项公式。
例如,对于数列1,1,2,3,5,...,我们可以构造一个函数F(x)=1+x+x^2+x^3+x^4+...。
我们可以通过求解这个函数关于x的表达式来得到数列的通项公式。
这个函数有一个特点,即F(x)=xF(x)+1,通过求解这个方程我们可以得到F(x)=1/(1-x)。
(完整版)求数列通项公式的十种方法
求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11 种方法:累加法、累乘法、待定系数法、阶差法(逐差法) 、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号) 、数学归纳法、不动点法(递推式是一个数列通项的分式表达式) 、特征根法二。
四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
、累加法1.适用于:a n 1 a n f (n) ------------------ 这是广义的等差数列累加法是最基本的二个方法之一。
2.若a n 1 a n f (n) (n 2) ,a2 a1 f (1)a3 a2 f (2) LLa n 1 a n f ( n)n两边分别相加得a n 1 a1 f (n )k1例1已知数列{a n }满足a n 1a n 2n 1, a i 1,求数列{a n }的通项公式。
解:由 a n 1 a n 2n 1 得 a n 1 a n 2n 1 则a n (a n a n 1) (a n 1 a n 2) L @3a 2) (a 2 aja 1 [2( n 1) 1] [2( n 2) 1]L (2 21) (2 11) 12[(n 1) (n 2) L 2 1] (n 1) 1 (n 1)n 2 (n 1) 12(n 1)( n 1) 1 2n2所以数列{a n }的通项公式为a n n 。
例2已知数列{a n }满足a n 1 a n 2 3n 1,印3,求数列 佝}的通项公式。
解法一:由a n 1 a n n 2 31 得 a n 1a n n2 31则a n (a * an 1)(a n 1 a n 2) L(a 3 a 2) (a 2 a 1) a 1n (2 3 1 1) (2 3n 21)L (2 32 31 1) (2 31) 312(33n2L 32 ;31)(n 1)3「(1 3n1)2(n 1) 31 3n3 3 n 133 n1所以a n 3n n 1.解法二:时3an 2 3 1两边除以3n1,得鄴J 3 3a n 2 n3 32132)3 32 3a3na n 3a n 1)a n 1(an 1a n 1a n 2) (a n 2(尹z a2 q 色(3231)33n )1)12门22(n 1)313n 3n13n2Lan 13n22答案:n数、分式函数,求通项 an .① 若f(n)是关于n 的一次函数,累加后可转化为等差数列求和 ② 若f(n)是关于n 的二次函数,累加后可分组求和 ; ③ 若f(n)是关于n 的指数函数,累加后可转化为等比数列求和 ④ 若f(n)是关于n 的分式函数,累加后可裂项求和。
通项公式
{an } 的通项公式
an
是否满足
an与 sn间的关系式
s1 (n = 1) 来求 an = sn − sn −1 (n ≥ 2)
在运用这一关系时,要特别注意, 进行讨论, 在运用这一关系时,要特别注意,对n进行讨论,并检验 进行讨论
an = sn − sn −1 若满足,则通项公式可合并在 若满足,
n
小结: 求数列通项公式的方法如下: 小结: 求数列通项公式的方法如下:
1.归纳法(给定数列观察项与项数之间的关系,不严密。) 归纳法(给定数列观察项与项数之间的关系,不严密。) 归纳法 2.由递推公式求通项: 由递推公式求通项: 由递推公式求通项 不严密) (1)列举归纳法(不完全归纳法) (不严密) )列举归纳法(不完全归纳法) (2)累加法(迭加法)an +1 )累加法(迭加法) (3)累乘法(迭乘法) )累乘法(迭乘法) (4)换元法(构造法) )换元法(构造法) (5)迭代法 ) 3.用 用
a2 a ∴ = 3, a1 a
3 2
= 3
2
a , a
4 3
an = 3 ... = 3 a n−1
3
n −1
将以上各式两边相乘, 将以上各式两边相乘,得:
an = 3 ⋅ 3 L 3 = 31+ 2+L+ n −1
2
n −1
=3
Q a1 = 1
满足上式, 满足上式,所以
n ( n−1) 2
an = 3
将上述 (n−1) 个式子相加得通项公式 进行验证。 = 1时 ,进行验证。
LL
当n
an = a1 + f (1) + f (2) + L f (n − 1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由递推公式求通项公式的方法
已知数列的递推公式,求取其通项公式是数列中一类常见的题型,这类题型如果单纯的看某一个具体的题目,它的求解方法灵活是灵活多变的,构造的技巧性也很强,但是此类题目也有很强的规律性,存在着解决问题的通法,本文就高中数学中常见的几类题型从解决通法上做一总结,方便于学生学习和老师的教学,不涉及具体某一题目的独特解法与技巧。
一、1()n n a a f n +=+型数列,(其中()f n 不是常值函数)
此类数列解决的办法是累加法,具体做法是将通项变形为1()n n a a f n +-=,从而就有
21321(1),(2),,(1).n n a a f a a f a a f n --=-=-=-
将上述1n -个式子累加,变成1(1)(2)(1)n a a f f f n -=++
+-,进而求解。
例1. 在数列{}n a 中,112,21,.n n n a a a n a +==+-求
解:依题意有
213211,3,
,23n n a a a a a a n --=-=-=- 逐项累加有221(123)(1)1323(1)212
n n n a a n n n n +---=++
+-==-=-+,从而223n a n n =-+。
注:在运用累加法时,要特别注意项数,计算时项数容易出错.
变式练习:已知{}n a 满足11=a ,)
1(11+=-+n n a a n n ,求}{n a 的通项公式。
二、)(1n f a a n n ⋅=+型数列,(其中()f n 不是常值函数) 此类数列解决的办法是累积法,具体做法是将通项变形为1()n n
a f n a +=,从而就有 3212
1(1),(2),,(1)n n a a a f f f n a a a -===- 将上述1n -个式子累乘,变成1
(1)(2)(1)n a f f f n a =⋅⋅⋅-,进而求解。
例2. 已知数列{}n a 中11123,(2)321
n n n a a a n n --==⋅≥+,求数列{}n a 的通项公式。
解:当2n ≥时,324123113523,,,,,57921n n a a a a n a a a a n --====+将这1n -个式子累乘,得到113(21)(21)n a a n n ⨯=-+,从而21311(21)(21)341
n a n n n ⨯=⨯=-+-,当1n =时,1211413a n ==-,所以2141
n a n =-。
注:在运用累乘法时,还是要特别注意项数,计算时项数容易出错.
变式练习:在数列{}n a 中, n a >0,221112,(1)n n n n a na n a a a ++==++,求n a .
提示:依题意分解因式可得11[(1)]()0n n n n n a na a a +++-+=,而n a >0,所以1(1)0n n n a na ++-=,即11
n n a n a n +=+。
三、q pa a n n +=+1型数列
此类数列解决的办法是将其构造成一个新的等比数列,再利用等比数列的性质进行求解,构造的办法有两种,一是待定系数法构造,设)(1m a p m a n n +=++,展开整理1n n a pa pm m +=+-,比较系数有pm m b -=,所以1b m p =-,所以1n b a p +-是等比数列,公比为p ,首项为11
b a p +-。
二是用作差法直接构造,1n n a pa q +=+, 1n n a pa q -=+,两式相减有11()n n n n a a p a a +--=-,所以1n n a a +-是公比为p 的等比数列。
例3. 在数列{}n a 中,11a =,当2n ≥时,有132n n a a -=+,求{}n a 的通项公式。
解法1:设13()n n a m a m -+=+,即有132n n a a m -=+
对比132n n a a -=+,得1m =,于是得113(1)n n a a -+=+,即31
11=++-n n a a 所以数列{1}n a +是以112a +=为首项,以3为公比的等比数列
则1231n n a -=⋅-。
解法2:由已知递推式,得1132,32,(2)n n n n a a a a n +-=+=+≥,
上述两式相减,得113()n n n n a a a a +--=-,即31
1=---+n n n n a a a a 因此,数列1{}n n a a +-是以214a a -=为首项,以3为公比的等比数列。
所以1143n n n a a -+-=⋅,即13243n n n a a -+-=⋅,
所以1231n n a -=⋅-。
变式练习:已知数列{}n a 满足*111,21().n n a a a n N +==+∈求数列{}n a 的通项公式.
注:根据题设特征恰当地构造辅助数列,利用基本数列可简捷地求出通项公式.
四、()n f pa a n n +=+1型数列(p 为常数) 此类数列可变形为()111++++=n n n n n p n f p a p a ,则⎭
⎬⎫⎩⎨⎧n n p a 可用累加法求出,由此求得n a . 例4已知数列{}n a 满足1111,32n n n a a a ++==+,求n a .
解:将已知递推式两边同除以12n +得1131222n n n n a a ++=⨯+,设2n n n
a b =,故有132(2)2
n n b b ++=⨯+,15322n n n b -⨯=-,从而11532n n n a -+=⨯-. 注:通过变形,构造辅助数列,转化为基本数列的问题,是我们求解陌生的递推关系式的常用方法.
若()f n 为n 的一次函数,则n a 加上关于n 的一次函数构成一个等比数列; 若()f n 为n 的二次函数, 则n a 加上关于n 的二次函数构成一个等比数列.这时我们用待定系数法来求解.
例5.已知数列{}n a 满足1111,2,21,.2
n n n a n a a n a -=≥=+-当时求 解:作n n b a An B =++,则n n a b An B =--,11(1)n n a b A n B --=---代入已知递推式中得:11111(2)(1)2222
n n b b A n A B -=++++-. 令1202111022
A A
B ⎧+=⎪⎪⎨⎪+-=⎪⎩46A B =-⎧⇒⎨=⎩ 这时112
n n b b -=
且46n n b a n =-+ 显然,132n n b -=,所以13462n n a n -=+-. 注:通过引入一些待定系数来转化命题结构,经过变形和比较,把问题转化成基本数列,从而使问题得以解决.
变式练习:(1)已知{}n a 满足11122,2+++==n n n a a a ,求n a 。
(2)已知数列{}n a ,n S 表示其前n 项和,若满足231n n S a n n +=+-,求数列
{}n a 的通项公式。
提示:(2)中利用111,2n n
n S n a S S n -=⎧=⎨-≥⎩,把已知条件转化成递推式。
五、C
Ba Aa a n n n +=型数列(C B A ,,为非零常数) 这种类型的解法是将式子两边同时取倒数,把数列的倒数看成是一个新数列,便可顺利地转化为1n n a pa q +=+型数列。
例6.已知数列{}n a 满足1122,2
n n n a a a a +==+,求n a . 解:两边取倒数得:11112n n a a +=+,所以1111(1)22n n n a a =+-⨯=,故有2n a n
=。
变式练习:数列{}n a 中,11112,22n n n n n
a a a a +++⋅==+,求{}n a 的通项。
六、n n n qa pa a +=++12型数列(,p q 为常数)
这种类型的做法是用待定糸数法设()n n n n a a a a λχλ-=--=+112构造等比数列。
例7.数列{}n a 中,,3,221==a a 且()2,211≥∈+=++-n N n a a a n n n ,求n a .。