西南石油大学物理实验课——赛曼效应

合集下载

塞曼效应物理实验报告

塞曼效应物理实验报告

塞曼效应物理实验报告引言塞曼效应是指在外磁场存在时,原子或分子谱线发生的能级分裂现象。

它是经典电动力学和量子力学相结合的重要现象,对于理解物质的微观结构和性质具有重要意义。

本实验旨在通过观察氢原子光谱的塞曼效应,验证量子力学理论,并通过实验测定氢原子的g因子。

实验原理当外磁场B存在时,原子或分子的能级会发生塞曼分裂。

设原子核的自旋和电子的轨道角动量平行,则能级分裂的数量为2J+1,其中J表示总角动量。

能级分裂的能量差为ΔE= gμBm B,其中m表示角动量z方向的投影,B为外磁场强度。

对于氢原子来说,g因子g=2,μB为玻尔磁子。

所以,当外磁场B存在时,氢原子谱线会发生分裂,其中一条谱线的波长为λ'=λ+Δλ,另一条谱线的波长为λ''=λ-Δλ,其中λ是无外磁场时的波长,Δλ=(gμB/λ)B。

实验装置- 氢原子气体灯管- 磁铁- 光栅- CCD相机- 电源、电流表等其他实验用具实验步骤1. 将磁铁放置在氢原子气体灯管周围,调整磁场强度B,并确定方向。

2. 开启氢原子气体灯管,使其发出光线。

3. 将氢原子光线通过光栅,使其分散成光谱。

4. 通过CCD相机记录光谱图像。

5. 分析光谱图像,测量不同塞曼分裂的波长差。

数据处理与分析我们测量和记录了不同磁场强度下的氢原子光谱图像,并通过图像处理软件提取出塞曼分裂的主要峰的位置。

然后,通过测量两个峰的波长差Δλ,可以计算出塞曼分裂的能量差ΔE。

为了验证实验结果的准确性,我们对每个磁场强度下的ΔE进行了多次测量,并计算均值和标准差。

通过测量得到的数据,我们绘制了氢原子的塞曼分裂能级示意图,其中能级分裂的数量符合量子力学的预测。

我们还通过线性回归,求得氢原子的g因子,并与理论值进行对比。

结论通过实验观察到氢原子谱线的塞曼效应,验证了量子力学理论的正确性。

实验测得的氢原子的g因子结果与理论值吻合较好,证明了实验的可靠性和准确性。

此外,实验结果还进一步加深了对于塞曼效应和量子力学的理解。

塞曼效应实验资料报告材料完整版

塞曼效应实验资料报告材料完整版

学生: 学号: 5502210039 专业班级:应物101班 实验时间: 教师编号:T017 成绩:塞曼效应 一、实验目的1.观察塞曼效应现象,把实验结果与理论结果进行比较。

2.学习观测塞曼效应的实验方法。

3.计算电子核质比。

二、实验仪器WPZ —Ⅲ型塞曼效应实验仪三、实验原理塞曼效应:在外磁场作用下,由于原子磁矩与磁场相互作用,使原子能级产生分裂。

垂直于磁场观察时,产生线偏振光(π线和σ线);平行于磁场观察时,产生圆偏振光(左旋、右旋)。

按照半经典模型,质量为m ,电量为e 的电子绕原子核转动,因此,原子具有一定的磁矩,它在外磁场B 中会获得一定的磁相互作用能E ∆,由于原子的磁矩J μ与总角动量J P 的关系为2J J e g P mμ=(1) 其中g 为朗德因子,与原子中所有电子德轨道和自旋角动量如何耦合成整个原子态的角动量密切相关。

因此,cos cos 2J J e E B g P B mμαα∆=-=-(2) 其中α是磁矩与外加磁场的夹角。

又由于电子角动量空间取向的量子化,这种磁相互作用能只能取有限个分立的值,且电子的磁矩与总角动量的方向相反,因此在外磁场方向上,cos ,,1,,2J h P M M J J J απ-==--(3)学生: 惠文 学号: 5502210039 专业班级:应物101班实验时间: 教师编号:T017 成绩:式中h 是普朗克常量,J 是电子的总角动量,M 是磁量子数。

设:4B he mμπ=,称为玻尔磁子,0E 为未加磁场时原子的能量,则原子在外在磁场中的总能量为00B E E E E Mg B μ=+∆=+(4)由于朗德因子g 与原子中所有电子角动量的耦合有关,因此,不同的角动量耦合方式其表达式和数值完全不同。

在L S -耦合的情况下,设原子中电子轨道运动和自旋运动的总磁矩、总角动量及其量子数分别为L μ、L P 、L 和S μ、S P 、S ,它们的关系为2L L e P m μ==(5)S S e P m μ==(6) 设J P 与L P 和S P 的夹角分别为LJ α和SJ α,根据矢量合成原理,只要将二者在J μ方向的投影相加即可得到形如(1)式的总电子磁矩和总轨道角动量的关系:2222222222cos cos (cos 2cos )2(2)222(1)222J L LJ S SJL LJ S SJ J L S J L S J J J L S J J J e P P mP P P P P P e m P P P P P e P P me g P m μμαμααα=+=++--+=+-+=+=(7) 其中朗德因子为(1)(1)(1)1.2(1)J J L L S S g J J +-+++=++(8) 由(*)式中可以看出,由于M 共有(2J +1)个值,所以原子的这个能级在学生: 惠文 学号: 5502210039 专业班级:应物101班实验时间: 教师编号:T017 成绩:外磁场作用下将会分裂为(2J +1)个能级,相邻两能级间隔为B g B μ。

塞曼效应的实验报告

塞曼效应的实验报告

塞曼效应一、实验目的1、研究塞曼分裂谱的特征2、学习应用塞曼效应测量电子的荷质比和研究原子能级结构的方法。

二、实验原理对于多电子原子,角动量之间的相互作用有LS 耦合模型和JJ 耦合某型。

对于LS 耦合,电子之间的轨道与轨道角动量的耦合作用及电子间自旋与自旋角动量的耦合作用强,而每个电子的轨道与自旋角动量耦合作用弱。

原子中电子的轨道磁矩和自旋磁矩合成为原子的总磁矩。

总磁矩在磁场中受到力矩的作用而绕磁场方向旋进,可以证明旋进所引起的附加能量为 B Mg E B μ=∆ (1)其中M 为磁量子数,μB 为玻尔磁子,B 为磁感应强度,g 是朗德因子。

朗德因子g 表征原子的总磁矩和总角动量的关系,定义为 )1(2)1()1()1(1++++-++=J J S S L L J J g (2)其中L 为总轨道角动量量子数,S 为总自旋角动量量子数,J 为总角动量量子数。

磁量子数M 只能取J ,J-1,J-2,…,-J ,共(2J+1)个值,也即E ∆有(2J+1)个可能值。

这就是说,无磁场时的一个能级,在外磁场的作用下将分裂成(2J+1)个能级。

由式(1)还可以看到,分裂的能级是等间隔的,且能级间隔正比于外磁场B 以及朗德因子g 。

能级E 1和E 2之间的跃迁产生频率为v 的光,其中 12E E hv -=在磁场中,若上、下能级都发生分裂,新谱线的频率v ’满足B g M g M hv E E E E E E E E hv B μ)()()()()('112212121122-+=∆-∆+-=∆+-∆+= 即分裂后谱线与原谱线的频率差为 hBg M g M v v v B μ)('1122-=-=∆ (3)代入玻尔磁子mehB πμ4=,得到 B meg M g M v π4)(1122-=∆ (4) 等式两边同除以c ,可将式(4)表示为波数差的形式 B mceg M g M πσ4)(1122-=∆ (5) 令 mc eBL π4=则 L g M g M )(1122-=∆σ (6)其中L 称为洛伦兹单位,且 B L 467.0= 塞曼跃迁的选择定则为:1,0±=∆M当0=∆M ,为π成分,是振动方向平行于磁场的线偏振光,只在垂直于磁场的方向上才能观察到,平行于磁场的方向上观察不到,但当0=∆J 时,02=M 到01=M 的跃迁被禁止;当1±=∆M ,为σ成分,垂直于磁场观察时为振动垂直于磁场的线偏振光,沿磁场正向观察时,1+=∆M 为右旋圆偏振光,1-=∆M 为左旋圆偏振光。

塞曼效应实验报告

塞曼效应实验报告

塞曼效应实验报告塞曼效应实验报告引言:塞曼效应是物理学中的一个重要现象,它揭示了原子和分子在磁场中的行为。

本实验旨在通过观察和分析塞曼效应,深入了解原子和分子的磁性质,并探索其在科学研究和应用领域的潜在价值。

实验装置:本实验所使用的装置主要包括:磁场产生装置、光源、光栅、光电探测器等。

其中,磁场产生装置通过电流在线圈中产生磁场,光源发出一束光线,经过光栅分解成多条光谱线,最后由光电探测器接收并转化为电信号。

实验步骤:1. 首先,将磁场产生装置放置在实验台上,并通过电源调节线圈中的电流,使得磁场强度达到所需的数值。

2. 将光源对准光栅,确保光线垂直入射,并调节光源的亮度,使得光线足够明亮。

3. 调整光栅的角度,使得光线经过光栅后分解成多条光谱线。

4. 将光电探测器放置在光谱线的路径上,并连接到示波器上,以观察电信号的变化。

5. 在无磁场的情况下,记录下光电探测器接收到的电信号的强度,并作为基准值。

6. 开启磁场产生装置,调节电流,使得磁场强度逐渐增大。

观察并记录下光电探测器接收到的电信号的变化情况。

实验结果与分析:在实验中,我们观察到了明显的塞曼效应。

当磁场强度逐渐增大时,光电探测器接收到的电信号发生了明显的变化。

这是因为原子和分子在磁场中会发生能级的分裂,导致光谱线的位置发生变化。

通过对实验数据的分析,我们可以得出以下结论:1. 塞曼效应的大小与磁场强度成正比。

当磁场强度增大时,塞曼效应的程度也随之增加。

这与塞曼效应的理论预测相符。

2. 塞曼效应的方向与磁场方向有关。

根据实验结果,我们可以确定光谱线的分裂方向与磁场方向垂直。

这是因为原子和分子在磁场中会受到洛伦兹力的作用,使得能级分裂成多个子能级。

3. 塞曼效应的大小与原子或分子的性质有关。

不同的原子或分子在磁场中会产生不同程度的塞曼效应。

这是由于不同原子或分子的磁矩不同,从而导致其在磁场中的行为差异。

实验应用:塞曼效应在科学研究和应用领域具有广泛的应用价值。

实验一 塞 曼 效 应

实验一 塞 曼 效 应

实验一塞曼效应塞曼效应实验是近代物理中的一个重要实验,它证实了原子具有磁矩和空间量子化,可由实验结果确定有关原子能级的几个量子数如M,J和g因子的值,有力地证明了电子自旋理论,各高等院校都普遍开设了此实验。

传统的塞曼效应实验手段,例如照相干版法,目镜观测法,CCD摄像头观测法等,都有其难以克服的局限性:面阵CCD(摄像头+图像卡)在观测上的引入在一定程度上缓解了上述矛盾,但它的空间分辨率较低,幅度分辨率只有1/256(8位量化),因而图像粗糙,实验精度较低,并且操作上还需要定圆心,人为修正等烦锁的操作。

由此,我们推出了线阵CCD的解决方案,利用分裂圆环的光强分布曲线来显示和测量塞曼效应,甚至可同屏显示分裂前、π光和σ光曲线,不仅物理内涵丰富,也更易学生理解和掌握,同时,线阵CCD微米级的空间分辨率、12位量化4096级的幅度分辨率,使实验精度大为提高,操作上也无需定圆心,人为修正等处理。

本实验由硬件和软件(祥看说明书)两部分组成。

本套仪器的硬件部分主要由三个部分组成:CCD采集盒、计算机数据采集盒和成像透镜部分。

各部分连接示意图图1如下:图1仪器的硬件部分组成1.CCD采集盒的核心器件是一个数千像元的CCD线阵,它可以将照射在其上的光强信号转化为模拟电信号,实时送往计算机数据采集盒。

每一个CCD线阵具体的指标参数,请详见其CCD采集盒上的铭牌。

2.计算机数据采集盒将由CCD采集盒送来的光强模拟电信号经12位A/D转换后量化为4096级数字信号,交给ZEEMAN软件处理。

它通过USB接口与计算机相连。

3.成像透镜部分由遮光罩和成像透镜组成。

前端仪器产生的光信号经过成像透镜会聚,在CCD线阵上产生实像,从而进行光/电变换。

一、实验目的1.掌握塞曼效应理论,确定能级的量子数与朗德因子,绘出跃迁的能级图;2.掌握法布里-珀罗标准具的原理及使用;3.熟练掌握光路的调节:4.了解线阵CCD器件的原理和应用。

实验-塞曼效应

实验-塞曼效应

实验三 塞曼效应实验目的:1.观察汞5461埃光谱线的塞曼效应,并测量它分裂的波长差。

2.测定电子的荷质比e/m 值。

实验原理:当光源置于外磁场中,光源发出的每一条光谱线都将分裂成几条波长相差很小的偏振化分谱线,这一现象称为塞曼效应。

设原子某一能级的能量为E 0,在磁感应强度为B 的外磁场的作用下,原子将获得附加的能量∆E :∆E=Mg B μ BM 为磁量子。

M=J,J-1,…..,-J,共有(2J+1)个值。

因此,原来的一个能级将分裂成(2J+1)个子能级。

子能级的间隔相等,并正比于B 和朗德因子g ,对于L-S 耦合的情况:g=1+)1(2)1()1()1(++-+++J J L L S S J J式中B μ为玻尔磁子,B μ=mhe π4。

设频率为υ的光谱线是由原子的上能级E 2跃迁到下能级E 1所产生(h υ= E 2- E 1),在外磁场的作用下,上下两能级各获得附加能量∆E 2,∆E 1,因此,每个能级各分裂成(2J 2+1)个和(2J 1+1)个子能级。

这样,上下两个子能级之间的跃迁,将发出频率为υ'的谱线,并有h υ'=(E 2+∆E 2)-( E 1+∆E 1)= (E 2- E 1)+(∆E2-∆E 1)= h υ+(M 2g 2- M 1g 1)B μ B分裂后的谱线与原谱线的频率差将为∆υ=(M 2g 2- M 1g 1)B μB/hc=(M 2g 2- M 1g 1)L其中L=B μB/hc=4.67*105-B(cm 1-)L 称为洛仑兹单位,正是正常塞曼效应所分裂的裂距。

在能级跃迁时,磁量子数受到选择性定则和偏振定则所限制。

1.选择性定则:∆M =M 2- M 1=0(当∆J=0 M 1=0 M 2=0 被禁止) ∆M=±1 2.偏振性定则:说明:1.K 为光传播方向矢量,H为外磁场方向。

2. π成分表示光波的电矢量E 平行于B ,σ成分表示E 垂直于B.3.在光学中,如果光线对于观察者迎面而来,这时电矢量若按逆时针方向旋转,我们称之为左旋圆偏振光;若逆时针方向旋转,则称之为右旋圆偏振光。

实验报告之塞曼效应

实验报告之塞曼效应

近代物理实验报告(四)————塞曼效应实验小组:实验班级:指导老师:日期:2011-12-10一、实验目的:1)了解并掌握塞曼效应原理;2)了解本实验的基本操作;3)利用高分辨光谱仪器法布里—珀罗(Fabry—Perot)标准具研究汞546.1nm光谱线的塞曼(Zeeman)效应,并测量塞曼分裂的波长差;二、实验原理:由量子的物理基本知识,我们知道原子能级之间如果受到外磁场作用下,会使得两个能级获得一个外加能量,这两个能级会各分裂成两个子能级,这样上下两个能级之间的跃迁会产生若干条谱线。

如果没有磁场,则原子能级之间不会产生分裂。

本实验使用的是汞光灯,在外加强磁场的作用下,使得汞光灯所发出的光子能级发生分裂。

再经过放大透镜、法布里帕罗标准具、会聚透镜、CCD相机所组成的成像系统在软件内生成一个类似于牛顿环的干涉图像。

通过观察所生成的图像,理解塞曼效应,通过计算机所携带的分析软件,可以计算出原子能级分裂后所产生光谱图像的各个半径大小,从而计算出塞曼分裂的波长差。

三、光电检测技术在本实验的应用:①.法布里帕罗标准具使得光产生干涉现象;②.强磁场使得原子能级发生分裂,经过光子跃迁辐射出电磁波;四、实验过程、现象、数据:NO.1实验过程:①.将放大透镜、法布里帕罗标准具、会聚透镜、CCD像机放在同一高度,使得各仪器在同一轴线上(由于本次实验中我们的笔型汞光灯损坏,所以我们拿来了光道分析所用的汞光灯,并使得该汞光灯也与其它仪器同轴同高度,中心在一条直线上);②.开启计算机,打开该实验软件,开启汞光灯,调节CCD像机并且调节法布里帕罗标准具的厚度(就是调节标准具上3个旋钮使上下移动),并观察显示器上出现的干涉;③.由于本实验汞光灯的损坏,所以我们组无法在汞光灯外围加上磁场,所以无法观察到塞曼效应所产生的干涉图样的变化。

NO、2实验现象及数据:批注:由于本实验汞光灯的损坏,我们只能观察到无磁场状态下的干涉图样,如右图所示:对实验现象,我们的结论和认识:假如汞光灯周围加有强磁场,我们会发现原来的单个光环会分裂为若干个子光环,这便是由于强磁场使的能级分裂所产生的光谱。

实验报告塞曼效应

实验报告塞曼效应

实验报告塞曼效应题目:实验报告-萨曼效应一、引言塞曼效应是指原子核或原子自旋在外磁场中的能级分裂现象。

其原理是:当原子核或原子自旋进入外磁场时,它的能级将会发生分裂,分裂的程度与外磁场的强弱有关。

这种效应的发现对研究原子核、原子结构以及核磁共振等领域产生了重要影响。

本实验就是要通过测量并分析原子核在外磁场中的分裂现象,来探究塞曼效应的基本原理。

二、实验目的1. 观察并分析原子核在外磁场中的能级分裂现象;2. 确定原子核能级的分裂规律;3. 探究外磁场强度对能级分裂的影响。

三、实验仪器与方法1. 仪器:萨曼效应实验装置、数字照相机、计算机等;2. 方法:a) 将所需的原子核放置在实验装置中,使其位于外磁场中;b) 调整外磁场的强度,保持稳定;c) 使用数字照相机拍摄原子核的能级分裂图像;d) 将图像导入计算机,利用图像处理软件进行分析。

四、实验结果与数据处理1. 实验现象:根据测量结果,所有原子核的能级在外磁场中均发生了分裂现象;2. 数据处理:通过对分裂图像的测量和分析,得到了原子核能级分裂的数量和间距等数据;3. 数据结果:经过实验,我们发现能级分裂的数量与外磁场的强度成正比,而能级分裂的间距与外磁场的强度成反比。

五、实验讨论1. 本实验结论与理论预期基本一致,说明塞曼效应的存在是客观存在的现象;2. 外磁场的强度可以影响原子核能级的分裂,这与塞曼效应的基本原理相符;3. 在实验过程中可能存在的误差源包括外磁场非均匀性、原子核数目的变化、图像处理软件误差等。

六、实验总结本实验通过观察和分析原子核在外磁场中的能级分裂现象,验证了塞曼效应的存在,并进一步研究了外磁场强度对能级分裂的影响。

实验结果与预期一致,进一步加深了对塞曼效应的理解。

然而,实验中也发现了一些潜在的误差源,需要进一步的研究和改进。

总体而言,本实验取得了较好的结果,对深入研究原子核与原子结构等领域具有一定的意义。

七、参考文献1. 塞曼效应的基本原理与应用,物理学报;2. 原子核与原子结构的基本原理,化学与物理杂志。

实验三塞曼效应实验

实验三塞曼效应实验

实验三塞曼效应实验塞曼效应实验是一种经典的物理学实验,它涉及到对原子和原子光谱的研究。

这个实验的目标是验证塞曼效应的存在,以及测量塞曼分裂的大小。

塞曼效应是指原子在磁场中分裂其光谱线的现象,它为研究原子结构和磁学提供了重要的基础。

一、实验目的本实验的目的是通过塞曼效应观察和测量光谱线的分裂,以加深对原子结构和磁学性质的理解。

二、实验原理塞曼效应是荷兰物理学家塞曼在1896年发现的。

他在研究原子光谱时发现,原子光谱线在磁场中会发生分裂。

这是因为在磁场中,原子中的电子自旋和轨道运动会产生磁偶极矩,从而与磁场相互作用,导致能级分裂。

根据塞曼效应的机制,光谱线的分裂规律遵循以下公式:ΔE = E0 + qB其中ΔE是分裂后相邻谱线的能量差,E0是原子能级的能量,q是原子能级的磁量子数,B是磁场的强度。

通过测量光谱线的分裂和已知的实验参数,可以计算出原子的磁量子数q,从而了解原子的结构。

此外,通过测量分裂谱线的相对强度,还可以推导出原子的磁矩。

三、实验步骤1.准备实验器材:光源(如钠灯)、磁场装置(如电磁铁)、望远镜、光电效应装置、稳压电源等。

2.安装实验器材:将光源、磁场装置和望远镜组装在一起,保证光源发出的光线经过磁场装置后能够投影到望远镜上。

3.调节磁场强度:通过稳压电源调节磁场装置的电流,改变磁场强度B。

4.观察光谱线分裂:在望远镜中观察光谱线的分裂情况。

随着磁场强度的改变,光谱线会分裂成多个线条。

5.测量分裂谱线的相对强度:使用光电效应装置测量分裂谱线的相对强度。

这可以通过测量不同谱线被光电效应装置吸收的程度来实现。

6.记录实验数据:将测量到的光谱线分裂情况和相对强度记录在实验记录表中。

7.数据处理与分析:根据实验数据计算出原子的磁量子数q和磁矩等参数,并对这些参数进行分析。

四、实验结果与讨论通过本实验,我们观察到了明显的塞曼效应,并测量了光谱线的分裂情况。

实验结果显示,随着磁场强度的增加,光谱线分裂程度逐渐增大。

塞曼效应实验报告

塞曼效应实验报告

一、实验目的1. 理解塞曼效应的原理和现象;2. 通过实验观察塞曼效应,验证其存在;3. 学习光栅摄谱仪的使用方法;4. 掌握数据处理和误差分析的方法。

二、实验原理塞曼效应是指在外加磁场作用下,原子或分子的光谱线发生分裂的现象。

塞曼效应的发现对研究原子结构和电子角动量有重要意义。

本实验采用光栅摄谱仪观察汞原子谱线的分裂情况,以此对外加磁感应强度进行估测。

根据量子力学理论,原子中的电子具有轨道角动量L和自旋角动量S,两者耦合形成总角动量J。

原子总磁矩与总角动量不共线,在外加磁场作用下,总磁矩与磁场有相互作用,导致能级发生分裂。

三、实验仪器与材料1. 光栅摄谱仪;2. 阿贝比长仪;3. 汞原子光源;4. 电磁铁装置;5. 望远镜;6. 测微目镜;7. 数据采集卡;8. 计算机。

四、实验步骤1. 将汞原子光源、电磁铁装置和光栅摄谱仪连接好;2. 调节光栅摄谱仪,使汞原子光源发出的光通过光栅后成像于望远镜;3. 将电磁铁装置通电,产生外加磁场;4. 观察并记录汞原子谱线的分裂情况;5. 关闭电磁铁装置,重复实验步骤,观察无外加磁场时的谱线情况;6. 对比两组数据,分析塞曼效应的存在;7. 使用阿贝比长仪测量光栅常数;8. 根据光栅摄谱仪的成像原理和能级分裂公式,计算外加磁感应强度。

五、实验结果与分析1. 实验现象:在外加磁场作用下,汞原子谱线发生分裂,形成若干条偏振的谱线;2. 数据处理:根据光栅摄谱仪的成像原理和能级分裂公式,计算外加磁感应强度;3. 误差分析:分析实验过程中可能存在的误差来源,如光栅常数测量误差、光栅角度测量误差等;4. 结果验证:将实验结果与理论值进行对比,验证塞曼效应的存在。

六、实验总结1. 本实验成功观察到了塞曼效应,验证了其存在;2. 通过实验,掌握了光栅摄谱仪的使用方法;3. 学会了数据处理和误差分析的方法;4. 对原子结构和电子角动量的研究有了更深入的了解。

七、实验拓展1. 研究不同磁场强度下塞曼效应的变化规律;2. 观察其他元素原子的塞曼效应;3. 研究塞曼效应在激光技术、天体物理等领域的应用。

塞曼效应实验

塞曼效应实验

塞曼效应实验塞曼效应是物理学中的一个重要现象,它描述了原子或分子在强磁场作用下的光谱线的分裂现象。

它的发现对于量子力学的发展有着重要的意义,因此塞曼效应实验也是物理学教育中的经典实验之一。

首先,我们来了解一下塞曼效应的基本原理。

塞曼效应是由于原子或分子的磁矩在外磁场作用下发生取向运动而产生的。

当原子或分子处于外磁场中时,其电子绕核运动的轨道和电子自旋会发生相互作用,并且会对能级结构产生影响。

在无磁场情况下,原子或分子的能级是简并的,即不同的能级具有相同的能量。

但是在磁场作用下,能级会发生拆分,变得非简并。

这种能级的拆分现象就是塞曼效应。

为了观察和研究塞曼效应,我们需要进行一系列实验准备工作。

首先,我们需要准备一个强磁场装置,可以使用电磁铁或永磁铁来产生较强的磁场。

这个装置需要提供稳定的磁场,并且能够调节磁场的强度。

接下来,我们需要选择适当的原子或分子样品。

塞曼效应可以发生在不同的原子或分子上,但是要求它们具有磁矩。

其中最常用的实验材料是原子氢。

氢原子具有一个单个的质子核和一个电子,其运动轨道和自旋都可能对能级结构产生影响。

因此,氢原子是进行塞曼效应实验的理想材料。

在实验过程中,我们首先将选定的原子或分子样品置于强磁场中,并将其加热。

加热样品可以激发原子或分子的内部能级,使其向更高的能级跃迁。

当样品的能级跃迁时,会吸收或发射特定波长的光。

我们可以使用光谱仪来检测这些光的波长和强度。

在有磁场的情况下,样品能级的简并会被拆分成多个非简并的能级。

这些拆分的能级具有不同的能量,对应于不同的波长。

通过光谱仪观测到的光谱线将会出现分裂的现象,其中分裂的数量和模式取决于磁场的强度和样品的性质。

塞曼效应实验的应用非常广泛。

首先,它帮助我们认识到电子具有自旋磁矩和轨道磁矩,进而为研究原子结构和量子力学提供了重要线索。

其次,塞曼效应还广泛应用于光谱学领域,通过观测光谱线的分裂模式,可以确定原子或分子的磁性质和能级结构。

塞曼效应(含思考题答案)

塞曼效应(含思考题答案)

课程:专业班号: 姓名: 学号: 同组者:塞曼效应一、实验目得1、学习观察塞曼效应得方法观察汞灯发出谱线得塞曼分裂;2、观察分裂谱线得偏振情况以及裂距与磁场强度得关系;3、 利用塞曼分裂得裂距,计算电子得荷质比e m e 数值。

二、实验原理1、谱线在磁场中得能级分裂设原子在无外磁场时得某个能级得能量为0E ,相应得总角动量量子数、轨道量子数、自旋量子数分别为S L J 、、。

当原子处于磁感应强度为B 得外磁场中时,这一原子能级将分裂为12+J 层。

各层能量为B Mg E E B μ+=0 (1)其中M 为磁量子数,它得取值为J ,1-J ,、、、,J -共12+J 个;g 为朗德因子;B μ为玻尔磁矩(mhcB πμ4=);B 为磁感应强度。

对于S L -耦合 )()()()(121111++++-++=J J S S L L J J g (2)假设在无外磁场时,光源某条光谱线得波数为)(010201~E E hc-=γ (3)式中 h 为普朗克常数;c 为光速。

而当光源处于外磁场中时,这条光谱线就会分裂成为若干条分线,每条分线波数为别为hc B g M g M E E hcB μγγγγγ)()(112201200~1~~~~-+=∆-∆+=∆+= L g M g M )(11220~-+=γ 所以,分裂后谱线与原谱线得频率差(波数形式)为mcBe g M g M L g M g M πγγγ4~~~112211220)()(-=-=-=∆ (4) 式中脚标1、2分别表示原子跃迁后与跃迁前所处在得能级,L 为洛伦兹单位(B L 7.46=),外磁场得单位为T (特斯拉),波数L 得单位为 []11--特斯拉米。

12M M 、得选择定则就是:0=∆M 时为π 成分,就是振动方向平行于磁场得线偏振光,只能在垂直于磁场得方向上才能观察到,在平行于磁场方向上观察不到,但当0=∆J 时,0012==M M ,到得跃迁被禁止;1±=∆M 时,为σ成分,垂直于磁场观察时为振动垂直于磁场得线偏振光,沿磁场正方向观察时,1+=∆M 为右旋偏振光, 1-=∆M 为左旋偏振光。

塞曼效应实验报告

塞曼效应实验报告

塞曼效应实验报告一、实验目的1.通过实验观察塞曼效应的发生,验证原子核磁矩对外磁场的取向作用。

二、实验器材1.塞曼效应实验装置,包括强磁场、光源、分光仪、接收屏等。

2.气泡瓶、稳流源、透镜、准直器等。

三、实验原理塞曼效应是电子在外磁场中发生能级分裂的现象。

当处于磁场中的一些原子的电子由高能级向低能级跃迁时,如果有出射光,它的频率会因磁场的作用发生分裂,而出射光的谱线会因此而加宽。

根据Δν=2ν(H=0)-(ν(H≠0)1+ν(H≠0)2),可以得到磁场对于光谱线频率的分裂。

四、实验步骤1.将实验装置放在一个较为安静的环境中,避免外界光的干扰。

2.通过气泡瓶和稳流源将光线发射到空气中,然后利用透镜和准直器将光线聚焦。

3.调整实验装置中的光源和分光仪,使其达到最佳状态。

4.打开分光仪和接收屏,观察到塞曼效应的现象。

5.调节外磁场的强弱,观察到光谱线频率的分裂情况。

6.记录实验数据,并进行分析。

五、实验结果在实验中,我们通过调节外磁场的强弱,观察到了光谱线频率的分裂情况。

随着外磁场的增强,光谱线逐渐分裂成多个衍射条纹,而且分裂的条纹数随着磁场的增强而增多。

六、实验分析通过实验观察到的结果,我们可以得出以下结论:1.塞曼效应的发生是由于原子核磁矩对外磁场的取向作用引起的。

2.外磁场的增强会导致光谱线频率的分裂,分裂的条纹数与磁场的强弱成正比关系。

3.塞曼效应的观察需要一个相对安静的环境,避免外界光的干扰。

七、实验总结通过本次实验,我学习了塞曼效应的发生机制,并通过实验验证了原子核磁矩对外磁场的取向作用。

在实验中,我对实验器材的操作也更加熟悉了,提高了我实验操作的能力。

然而,本次实验还存在一些问题。

首先,实验装置中的光源和分光仪需要精细调节,操作起来比较繁琐。

其次,由于实验环境的限制,外界光的干扰对实验结果也会产生影响。

希望在今后的实验中能够进一步改进和完善。

总的来说,本次实验收获颇多,学到了新的知识,提高了实验技能。

实验报告塞曼效应

实验报告塞曼效应

一、实验目的1. 观察塞曼效应,了解其在原子物理中的重要性。

2. 通过实验,加深对原子磁矩和能级结构的理解。

3. 掌握光栅摄谱仪的使用方法,以及如何通过摄谱法观测谱线的分裂情况。

二、实验原理塞曼效应是指在外加磁场的作用下,原子发射或吸收的光谱线发生分裂的现象。

根据能级分裂的条数和偏振状态,可以推断出原子的能级结构。

当原子置于外磁场中时,其总磁矩与外磁场相互作用,使得原子能级发生分裂。

分裂的条数与能级的类别有关,分裂的能级间隔与外磁场的强度成正比。

实验中,我们采用光栅摄谱仪观测汞原子(546.1nm)谱线的分裂情况,并通过计算能级间隔,验证塞曼效应的存在。

三、实验仪器与设备1. 光栅摄谱仪2. 阿贝比长仪3. 汞灯4. 电磁铁装置5. 聚光透镜6. 偏振片7. 546nm滤光片8. Fabry-Perot标准具9. 成像物镜与测微目镜组合而成的测量望远镜四、实验步骤1. 将汞灯安装在电磁铁装置上,调节磁场强度,使磁场平行于汞灯发出的光束。

2. 使用聚光透镜将汞灯发出的光变为平行光束,通过偏振片过滤掉未偏振的光。

3. 将平行光束照射到Fabry-Perot标准具上,使其发生多光束干涉,形成干涉条纹。

4. 通过调节标准具间距,使干涉条纹清晰可见。

5. 将光栅摄谱仪放置在测量望远镜的物镜前方,调节望远镜的位置,使光谱线聚焦在光栅上。

6. 观察并记录汞原子(546.1nm)谱线的分裂情况,包括分裂的条数和偏振状态。

7. 通过计算能级间隔,验证塞曼效应的存在。

五、实验结果与分析1. 实验观察到了汞原子(546.1nm)谱线的分裂现象,分裂的条数为3条,符合塞曼效应的理论预测。

2. 通过计算能级间隔,验证了塞曼效应的存在。

计算结果与理论值基本吻合。

六、实验总结通过本次实验,我们成功地观察到了塞曼效应,并验证了其理论预测。

实验过程中,我们掌握了光栅摄谱仪的使用方法,以及如何通过摄谱法观测谱线的分裂情况。

此外,我们还加深了对原子磁矩和能级结构的理解。

西南石油大学物理实验课——赛曼效应

西南石油大学物理实验课——赛曼效应
DK
实验仪器
法布里—珀罗标准具 J为光源 N,S为电磁铁的磁极 L1为会聚透镜 L2为成像透镜 P为偏振片 F为透射干涉滤光片 F-P为法布里—珀罗标准具 L3和L4分别为望远镜的 物镜和目镜
λ a − λb =
λ2 D 2 b − D 2 a
2d D 2 κ −1 − D 2 κ
1 D 2b − D 2 a ~ ~ ⋅ 2 ν b −ν a = 2d D κ −1 − D 2 κ
塞曼效应
内容:测量荷质比-公认值是:1.76×10 c/kg 认值是:1.76× 基本要求:出现7条以上的分裂线
11
前言
1896年,荷兰物理学家塞曼(P.Zeeman) 在实验中发现,当光源放在足够强的磁场 中时,原来的一条光谱线会分裂成几条光 谱线,分裂的条数随能级类别的不同而不 同,且分裂的谱线是偏振光。这种效应被 称为塞曼效应
µJ = g
e PJ , 2m pJ = J ( J + 1)h
(3)
实验原理
轨道磁矩和自旋磁矩合成为原子的总磁矩
e ∆ν = ( M 2 g 2 − M 1 g1 ) B 4πmc
上能级6s7s2s1分裂为三个子能级,下能级分裂为五个能 级,选择定则允许的跃迁共有九种。因此,原来的 谱线 将分裂成九条谱线。分裂后的九条谱线是频率间隔相等的, 间距都为二分之一的洛仑兹单位,九条谱线的光谱范围为 4个洛仑兹单位。各线段的长度表示谱线的相对强度。
作业
(1)如何从塞曼分裂谱确定能级的J量子数? (2)根据塞曼分裂谱的裂距如何确定能级的 g因子?
2 b 2 K −1 2 a 2 K
=7.85×1011×0.223 =1.75×1011c/kg
公认值是: 公认值是:1.76×1011c/kg × /

塞曼效应实验报告

塞曼效应实验报告

塞曼效应实验报告一、实验介绍塞曼效应(The Zeeman Effect)是指在磁场中,原本具有简并的能态(即能量相同但量子数不同的态)被分裂成多个能量不同的态的现象。

这个现象是荷兰物理学家塞曼在1896年发现的,它不仅是原子物理学的重要实验现象,也为研究原子结构、基本粒子相互作用等领域提供了实验及理论方法。

本实验通过自行制作一个塞曼效应装置和使用精密光谱仪测量氢原子的光谱移动来探究塞曼效应。

二、实验装置实验装置主要包括:单色光源、狭缝、准直器、光栅、分束器、氢放电管、塞曼效应装置以及测量仪器等。

其中,主要测量仪器包括CCD探测器、数字多道分析器(MCA)等。

三、实验过程1. 制作实验装置:在强磁场中通过光谱法测量氢原子谱线的位移。

通过一个氢放电管,使得放电管中水银的激发能量被红外线激起,氢原子被激发成原子核+电子状态。

2. 预备工作:首先通过单色光源照向狭缝,然后通过准直器和光栅将光分为从三个单色光防止器出射的三道谱线。

将分束器放置在特定位置从而选择需要的波长(颜色)输出到CCD。

3. 实验记录:在强磁场下分别测量氢原子的三条谱线的移动情况,记录下移动的波长和强度。

四、实验结果分析实验数据处理得到各个谱线的移动信息,包括波长位移和强度,根据原子光谱理论可以将标准谱线计算出尖峰位置和强度。

通过与预测的尖峰位置进行比较,验证了中心谱线移动最大,两旁的谱线移动稍微变小的规律。

通过分析数据可以说明,塞曼效应不仅是一个重要的实验现象,也可以为研究原子结构和基本粒子相互作用等领域提供有价值的理论和实验方法。

五、结论与讨论本实验通过自行制作塞曼效应装置,并使用精密光谱仪测量氢原子的光谱移动来探究塞曼效应,实验结果验证了该效应中心谱线移动最大,两旁的谱线移动稍微变小的规律。

该实验丰富了我们对于原子结构和基本粒子相互作用等领域的认识,也为一些重要的领域提供了有价值的理论和实验方法。

在未来的学习中,我们应该继续深入探究各种物理学现象,并在实验中注重实践能力的提高,为未来的科学研究打好基础。

塞曼效应实验报告步骤

塞曼效应实验报告步骤

一、实验目的1. 通过观察塞曼效应,加深对原子结构和量子力学基本概念的理解。

2. 学习使用光栅摄谱仪和阿贝比长仪等实验仪器。

3. 掌握塞曼效应的原理和实验方法。

二、实验原理1. 塞曼效应是指在外加磁场作用下,原子发射的光谱线发生分裂的现象。

这种现象是由原子总磁矩在外磁场中的取向量子化所引起的。

2. 根据量子力学理论,原子总磁矩与总角动量不共线,因此在磁场中,总磁矩与总角动量方向上的分量J与磁场有相互作用,产生附加能量。

由于磁量子数m的量子化,原子的能级在外磁场作用下将分裂成2J+1个能级。

3. 在实验中,利用光栅摄谱仪观测汞原子谱线的分裂情况,通过分析分裂谱线的波长和间距,可以计算出外加磁场的强度。

三、实验步骤1. 准备实验仪器:光栅摄谱仪、阿贝比长仪、汞灯、电磁铁装置、聚光透镜、偏振片、546nm滤光片、F-P标准具、成像物镜与测微目镜组合而成的测量望远镜。

2. 调节光路:将汞灯与电磁铁装置固定在实验台上,调节电磁铁装置使磁场方向与实验台垂直。

将汞灯发出的光通过聚光透镜、偏振片和546nm滤光片,使光束聚焦在F-P标准具上。

3. 调节F-P标准具:将F-P标准具的两个平行面调节至严格平行,调整测微目镜,使观察到清晰明锐的干涉圆环。

4. 观察塞曼效应:在不加磁场的情况下,调节F-P标准具的间距,使干涉圆环直径适中。

然后逐渐增加电磁铁装置的电流,观察干涉圆环的变化。

5. 记录数据:在磁场作用下,记录干涉圆环的直径和间距,分别对应不同的磁感应强度。

6. 分析数据:利用光栅摄谱仪和阿贝比长仪,分别测量分裂谱线的波长和间距。

根据实验原理,计算出外加磁场的强度。

7. 比较结果:将实验测得的外加磁场强度与理论计算值进行比较,分析误差来源。

8. 撰写实验报告:整理实验数据、分析结果,撰写实验报告。

四、注意事项1. 实验过程中,注意安全操作,避免触电和烫伤。

2. 调节F-P标准具时,要细心操作,确保平行面严格平行。

塞曼效应的实验报告

塞曼效应的实验报告

塞曼效应的实验报告引言:塞曼效应是描述原子或分子在外加磁场中能级分裂的现象。

它是由于原子的磁矩和外磁场之间的相互作用所导致的。

本实验的目的是通过测量塞曼效应来研究这种相互作用。

实验设备:本实验使用的设备包括:强磁场、光源、光栅、测量仪器等。

实验步骤:1.在实验室中搭建一个强磁场,保证其磁场方向是均匀的。

2.设置一个光源,用于照射光线。

3.在光线路径上放置一个光栅,用于分光。

4.将待测物质放置在强磁场中,并调节物质的位置,使其与光线垂直。

5.调节磁场强度,使其逐渐增加,观察塞曼效应的变化。

6.使用测量仪器测量塞曼效应的角度。

结果分析:实验中观察到了明显的塞曼效应,光谱线发生了分裂。

同时,通过测量仪器测得了塞曼效应的角度。

根据经验公式,可以计算出磁场的强度。

讨论:本实验的结果与塞曼效应的理论预测一致,证明了外磁场对原子能级的影响。

同时,在实验中观察到了较大的塞曼效应角度,说明原子在强磁场中的磁矩较大。

结论:本实验通过测量观察到了塞曼效应,并证明了原子在外磁场中能级的分裂情况。

实验结果表明,外磁场对原子的能级结构有重要影响。

改进:本实验可以进一步改进和完善。

首先,可以使用更强的磁场来观察更显著的塞曼效应。

其次,可以尝试使用不同波长的光源,研究不同条件下的塞曼效应变化。

另外,可以结合理论模型,进一步分析和解释实验结果。

总结:塞曼效应是描述原子或分子在外加磁场中能级分裂的现象。

通过本实验,我们观察到了塞曼效应,并证明了外磁场对原子能级结构的重要影响。

实验结果与理论预测一致,进一步验证了塞曼效应的存在和原子磁矩的重要性。

通过进一步改进和完善实验,我们可以更深入地研究塞曼效应及其背后的物理机制。

赛曼效应实验报告

赛曼效应实验报告

一、实验目的1. 观察塞曼效应,验证磁场对原子光谱线的影响。

2. 通过塞曼效应测量磁感应强度的大小。

3. 深入理解原子磁矩和空间取向量子化的概念。

二、实验原理塞曼效应是指在原子光谱线中,当原子置于外磁场中时,由于磁场的作用,原本的单条光谱线会分裂成几条偏振化的谱线。

这种现象反映了原子磁矩的存在以及空间取向量子化。

塞曼效应的发现是对光的电磁理论的有力支持,证实了原子具有磁矩和空间取向量子化。

三、实验仪器与材料1. 原子光谱仪2. 磁场发生器3. 磁场强度计4. 汞原子光谱灯5. 光栅6. 光电倍增管7. 计算机及数据处理软件四、实验步骤1. 将汞原子光谱灯放置在磁场发生器中,调整磁场方向。

2. 通过调整磁场发生器,使磁场强度逐渐增加,观察光谱线的分裂情况。

3. 记录不同磁场强度下光谱线的分裂情况,包括分裂谱线的数量、位置和强度。

4. 利用计算机及数据处理软件,对实验数据进行处理和分析。

5. 通过计算,得出磁感应强度与光谱线分裂之间的关系。

五、实验结果与分析1. 在磁场强度为0时,观察到汞原子光谱灯发出的光谱线为单条谱线,无分裂现象。

2. 随着磁场强度的增加,光谱线逐渐分裂成多条谱线,且分裂谱线的数量与磁场强度呈正相关关系。

3. 分裂谱线的位置和强度与磁场方向和强度有关。

在磁场方向与光谱线垂直时,分裂谱线的位置和强度较为明显;在磁场方向与光谱线平行时,分裂谱线的位置和强度较弱。

根据实验结果,可以得出以下结论:1. 塞曼效应确实存在,磁场对原子光谱线有显著影响。

2. 磁感应强度与光谱线分裂之间的关系符合理论预测。

3. 通过实验验证了原子具有磁矩和空间取向量子化的概念。

六、实验讨论1. 在实验过程中,由于磁场的不均匀性,导致光谱线分裂不完全对称,存在一定的误差。

2. 实验中使用的磁场发生器磁场强度有限,未能达到理想状态,影响了实验结果的准确性。

3. 实验过程中,由于仪器设备的限制,未能测量到所有分裂谱线的强度,导致数据处理存在一定的不完整性。

实验1 塞曼效应

实验1 塞曼效应

实验1 塞曼效应塞曼效应是指在磁场中观察原子光谱的一种现象,它是由磁场对原子能级的影响所引起的。

具体来说,在磁场作用下,原子的能级会发生分裂,使得原子光谱的锐线会变成多条锐线,这些锐线的位置和强度与磁场的大小和方向有关。

塞曼效应最早于1896年由德国物理学家约翰·克尔提出,并由法国物理学家皮埃尔·塞曼于1897年进行了实验证实。

在这个实验中,他们利用了氢原子的光谱,在强磁场作用下观察光谱的变化。

实验结果表明,光谱中的锐线被分裂成了多条锐线,这些锐线的位置和强度与磁场的大小和方向有关。

塞曼效应的实现需要满足一定的条件。

首先,磁场的大小必须足够强,以使得磁作用能够影响到原子的能级;其次,原子光谱的谱线必须足够锐利,这样才能观察到明显的分裂现象;最后,要求原子光谱中有磁感应强度非零的光谱线。

在实验中,我们可以利用灯谱仪和磁铁来达到观察塞曼效应的目的。

首先,我们将氢气放置在灯谱仪中,并通过电激发氢气来产生氢原子的光谱。

然后,我们将磁铁放置在灯谱仪的侧面,使得磁场垂直于氢原子的运动方向。

最后,我们观察光谱,发现原本单一的锐线被分裂成了多条锐线,这些锐线的位置和强度与磁场的大小和方向有密切关系。

塞曼效应的表现形式包括正常塞曼效应和反常塞曼效应。

正常塞曼效应是指在磁场作用下,原本没有自旋的原子发生分裂,其中一部分能级对应的电子的自旋方向与磁场方向相同,另一部分对应的电子自旋方向与磁场方向相反。

反常塞曼效应则是指在磁场作用下,原本有自旋的原子发生分裂,其中一部分能级对应的电子继续沿原来的自旋方向旋转,另一部分能级对应的电子改变自旋方向旋转。

塞曼效应的研究不仅有重要的基础物理意义,也有实际应用价值。

在实际应用中,塞曼效应可以用来研究物质的磁性质,例如铁、镍等磁性材料的塞曼效应特征可以用来测量它们的磁矩和磁场强度,这对于材料科学和工程学都有重要的应用。

此外,塞曼效应也可以应用于核磁共振成像技术中,通过使用强磁场和高频电磁波来观察人体组织的图像,可以实现人体的无创诊断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 b 2 K −1 2 a 2 K
=7.85×1011×0.223 =1.75×1011c/kg
公认值是: 公认值是:1.76×1011c/kg × /
E=(1.75-1.76)×1011/1.76×1011 ( ) × =0.57%
注意事项
(1)汞灯的电压近万伏,而又在暗室中操作,故整个实验中 要注意高压安全 。 (2)所有光学元件的光学面,都严禁用手或其他物体触摸 。 (3)在电磁铁的电源通电之前应将电流(或电压) 调节旋钮逆时针调到最小;断电之前更要将该旋钮调到最小, 否则强大的自感电动势将会损坏仪器
µL =
e PL , 2m PL = L( L + 1)h
(1)
原子的总自旋磁矩µ s 与总自旋角动量 p S 的关系为:
µs =
e ps m
p s = S ( S + 1) h
(2)
原子的轨道角动量和自旋角动量合成为原子的总角 动量p J ,原子的轨道磁距和自旋磁距合成为原子的 总磁距 µ 。 µJ称为原子的有效磁矩大小由下式决定
测量公式:
由于分裂后相邻暗条纹间频率差为 半个洛伦兹单位,而频率可利用波 数差表示.波数既是波长的倒数,因 此可以利用光的干涉法测波长,代 入洛伦兹单位即可得以下计算公式:
测量公式
e 2π c D − D = 2 2 m dB D K −1 − D K
2 b 2 a
d=2.000mm,B=1.20T,从分裂的谱线上片测出各环直径,就可计算e/m 为未加磁场时中心圆环的直径,D K −1 为与中心圆环相邻的圆环的直径。 D a为加磁场后第K级圆环中第5条圆环的直径,Db为加磁场后第K级圆环中第 7条(从内往外数)圆环的直径。也可加偏振片滤掉σ分量观察.
数据记录
谱线 K K-1 Da Db 环位置(mm) 6.834 7.654 5.641 5.861 4.667 3.808 3.867 3.561 环径(mm) 平方 2.167 3.846 1.774 2.3 4.70 14.79 3.147 5.29
数据处理
e 2π c D − D = m dB D − D
1908年美国天文学家海尔等人在威尔逊山天文台利用塞曼效应, 1908年美国天文学家海尔等人在威尔逊山天文台利用塞曼效应,首次测 年美国天文学家海尔等人在威尔逊山天文台利用塞曼效应 量到了太阳黑子的磁场。 太阳黑子的磁场 量到了太阳黑子的磁场。
塞 曼 效 应 的 图 示
实验原理
塞曼效应的产生是原子磁距与外加磁场作用的 结果。根据原子物理理论,原子中的电子既作轨 道运动又作自旋运动。原子的总轨道磁距µ L 与总 轨道角动量 p L的关系 为:
洛仑兹单位:
L = eB 4πme
赛曼效应效果图
分裂前 分裂后
在磁场中,其上下能级发生分裂 原子发光遵从选择定则为 因此,从 在磁场中 其上下能级发生分裂,原子发光遵从选择定则为 其上下能级发生分裂 原子发光遵从选择定则为∆M = 0 或±1 ,因此 从 因此 垂直于磁场方向(横向 观察,共有 种跃迁存在,故原 横向)观察 共有9 故原546. 07nm 一条谱线将分 垂直于磁场方向 横向 观察 共有 种跃迁存在 故原 裂为9 条彼此靠近的谱线(三条 分量,三条 三条π分量 三条σ+ 分量 三条 分量 ,为了分辨裂距 分量,三条 分量) 为了分辨裂距 三条σ裂为 条彼此靠近的谱线 三条 分量 三条 只有nm 数量级的谱线 我们采用 ( Fabry —perot ) 标准具 测量时 调节偏振片从 数量级的谱线,我们采用 标准具,测量时 测量时,调节偏振片从 只有 0 度(九条线角度 到90 度角即可看到塞曼 分量 滤掉 分量 可以观察到如下图 九条线角度) 度角即可看到塞曼π分量 滤掉σ分量 分量,滤掉 分量,可以观察到如下图 九条线角度 所示图像
塞பைடு நூலகம்效应
内容:测量荷质比-公认值是:1.76×10 c/kg 公认值是:1.76× 基本要求:出现7条以上的分裂线
11
前言
1896年,荷兰物理学家塞曼(P.Zeeman) 在实验中发现,当光源放在足够强的磁场 中时,原来的一条光谱线会分裂成几条光 谱线,分裂的条数随能级类别的不同而不 同,且分裂的谱线是偏振光。这种效应被 称为塞曼效应
µJ = g
e PJ , 2m pJ = J ( J + 1)h
(3)
实验原理
轨道磁矩和自旋磁矩合成为原子的总磁矩
e ∆ν = ( M 2 g 2 − M 1 g1 ) B 4πmc
上能级6s7s2s1分裂为三个子能级,下能级分裂为五个能 级,选择定则允许的跃迁共有九种。因此,原来的 谱线 将分裂成九条谱线。分裂后的九条谱线是频率间隔相等的, 间距都为二分之一的洛仑兹单位,九条谱线的光谱范围为 4个洛仑兹单位。各线段的长度表示谱线的相对强度。
作业
(1)如何从塞曼分裂谱确定能级的J量子数? (2)根据塞曼分裂谱的裂距如何确定能级的 g因子?
DK
实验仪器
法布里—珀罗标准具 J为光源 N,S为电磁铁的磁极 L1为会聚透镜 L2为成像透镜 P为偏振片 F为透射干涉滤光片 F-P为法布里—珀罗标准具 L3和L4分别为望远镜的 物镜和目镜
λ a − λb =
λ2 D 2 b − D 2 a
2d D 2 κ −1 − D 2 κ
1 D 2b − D 2 a ~ ~ ⋅ 2 ν b −ν a = 2d D κ −1 − D 2 κ
实验步骤
调整光路
1)将导轨调制水平 2)放置测微目镜,调节目镜,可以观察到汞灯 3)放置聚光透镜,使汞灯光斑均匀 4)放置F –P标准具,调节其与透镜同轴
观察塞曼效应
1)测量K,K-1级的环径 2)打开磁场,电流调至4.50A,观察汞绿线的分裂与磁场关系 3)加偏振片,旋转确定π线成分和σ线成分 4)测量Da,Db的环径
完整解释塞曼效应需要用到量子力学,电子的轨道磁矩和自旋磁矩耦 合成总磁矩,并且空间取向是量子化的,磁场作用下的附加能量不同, 引起能级分裂
塞曼效应的发现使人们对物质光谱、原子、 分子有更多了解,塞曼效应证实了原子磁 矩的空间量子化,为研究原子结构提供了 重要途径,被认为是19世纪末20世纪初物 理学最重要的发现之一。利用塞曼效应可 以测量电子的荷质比。在天体物理中,塞 曼效应可以用来测量天体的磁场。本实验 采取Fabry-Perot(以下简称F-P)标准具观 察Hg的546.1nm利用塞曼效应测量电子的 荷质比。
相关文档
最新文档