两缸发动机曲柄连杆机构研究说明书
曲柄连杆机构受力分析

五、曲轴轴颈和轴承的负荷 1,曲柄销负荷矢量固
.
.
2.连杆轴承负荷矢量固
.
.Leabharlann ....
第二节 曲柄连杆机构上的作用力 一、气体压力
.
二、惯性力
.
1.往复惯性力 2.旋转惯性力
.
.
.
三、作用在曲柄连杆机构上的力
.
.
.
四、发动机的扭矩 1.单缸扭矩
发动机的翻倒力矩M’
.
2.多缸机扭矩、各主轴颈和曲柄销扭矩 知道了单缸扭短在一个循环的变化规律,考虑
各缸的着火间隔角将各缸扭矩作移相叠加就得多缸 扭矩。
.
影响扭矩不均匀度的因素: 1、对于同一台发动机,μ值随工况而变化,标定工况 下的μ值最小,往复惯性力仅影响上式分子,而平均 扭矩与示功图有关。 2、对于不同的发动机,μ值的大小取决于发动机的行 程数,气缸数,转速,气体压力,往复运动质量,曲 柄排列载型式,气缸夹角和发火顺序。 一般转速,功率相同时,二行程发动机较四行程发动 机μ值为小,相同类型的发动机气缸数越多μ值越小。
多缸发动机曲轴的输出扭矩最大值mmax一般发生在位于曲轴中间的各个主轴颈而不是靠近功率输出端的主轴颈上26扭矩不均匀度扭矩不均匀度用来评价发动机曲轴输出扭矩变化的均匀程度
第二章 曲柄连杆机构受力分析
.
第二章 曲柄连杆机构受力分析
本章分析曲柄连杆机构的运动规律和作用在主要 零件上的力,作为分析计算强度、刚度、振动和磨损 问题的依据。
.
多缸发动机曲轴的输出扭矩。
多缸发动机各个缸的工作情况稍有不同,但可
近似地用其中一个气缸的扭矩曲线来求多发动机的 合成扭矩曲线。
先在一个循环周期内绘制第一缸的扭矩曲线, 再按发火相位差绘制第2、3、......缸的扭 矩曲线,并放在第一缸的扭矩曲线与之相应的曲轴 转角的位置,然后求出同一曲轴转角的各个气缸的 扭矩曲线纵坐标的代数和,即得到多缸发动机的合 成扭矩。
曲柄连杆机构概述

曲柄连杆机构受力分析
3.离心力——是指曲柄、连杆轴颈、连杆大头等围绕曲轴轴线做圆周运 动产生的离心惯性力,简称离心力,用FC表示。
离心力在垂直方向上的分力Fcy,与惯性力Fj的 方向总是一致的,因而加剧了发动机的上、下振动 。
而水平方向的分力Fcx则使发动机产生水平方向 的振动。
此外,离心力使连杆大头的轴承和轴颈受到又 一附加载荷,增加了它们的变形和磨损。
曲柄连杆机构受力分析
曲柄连杆机构受力分析
曲柄连杆机构在工作时做变速运动,受力情况相当复杂,气体压力、往复 惯性力、旋转运动的离心力、相对运动件接触表面的摩擦力等都作用在曲柄连 杆机构上。
(1)气体压力
(2)往复惯性力
(3)旋转运动的离心力
(4)相对接处表—在发动机工作循环的每个行程中,气
曲柄连杆机构受力分析
4.摩擦力——任何一对互相压紧并做 相对运动的零件表面之间都存在摩擦力。 在曲柄连杆机构中,活塞、活塞环与气缸 壁之间,以及曲轴、连杆轴承与轴颈之间 都存在摩擦力,摩擦力是造成零件配合表 面磨损的根源。
感谢您的观看
曲柄连杆机构的组成
曲柄连杆机构的作用 曲柄连杆机构的组成 曲柄连杆机构的工作条件
曲柄连杆机构的作用
将燃烧的油气混合气作用在活塞顶上的压力转变为曲轴旋转运动 而对外输出动力。
曲柄连杆机构的组成
机体组
活塞连杆组
曲轴飞轮组
曲柄连杆机构的工作条件
曲柄连杆机构是在高温、高压、高速和化学腐蚀的环境中工作的。 高温:最高可达 2500K以上 ; 高压:最高可达 5MPa—10MPa; 高速:最高可达 3000 r/min—6000 r/min; 化学腐蚀:可燃混合气和燃烧废气直接接触机件;
第二章曲柄连杆机构动力学分析

x (L R) (L cos R cos)
R(1 cos) L(1 1 2 sin 2 )
(精确式)
x
R(1 cos)
R
4
(1
c os2 )
xI
xII
(近似式)
近似式与精确式相比误差很小,如当λ=1/3.5时,曲柄转角为 90度时误差为最大,在0.003R左右,此精度在工程上已足够。
mCA
mC
L lA L
mCB
mC
L lB L
mC
lA L
对于有的高速发动机还须满足一个条件:
③ 两个换算质量对连杆质心的转动惯量之和等于原来连杆的转动惯
量,即
mCA
l
2 A
mCB
l
2 B
IC
式中IC为原连杆的转动惯量。但采用二质量替代系统时,在连杆 摆动角加速度下的惯性力矩要偏大 ΔMC=[(mCAlA2+mCBlB2)-IC]ε 为此,可用三质量替代系统:
a
R
2
cos
cos
c os2 c os3
R 2 cos cos2 sin
连杆摆角: arcsinsin
连杆摆动角速度:L
cos
1 2 sin 2
1/ 2
连杆摆动角加速度: L
2
(1 2
2 2 ) sin
1 2 sin
2 (1 sin 2 )
2 3/ 2
单缸切力曲线及六缸合成图 各轴颈输出扭矩
各轴颈输出扭矩如图
M TII M T (1) M TIII M TII M T (2)
M TIV M TIII M T (3) M TV M TIV M T (4)
连杆机构设计说明书

机械原理课程设计说明书设计题目平面连杆机构特性分析工程机械学院工业设计专业 2011250101班设计者肖丹 201125010131赵越 201125010132鲁崧201125010107 指导教师张伟社2014年1月16号目录一、设计题目简介及设计要求 (2)1.机构简介 (2)2.设计内容 (3)二、VC++程序设计说明 (5)1、四杆机构类型分析思路 (5)2、急回运动特性分析 (5)3、最大传动角和最小传动角 (5)三、程序设计 (6)1、设计思路 (6)2、程序代码 (6)3、程序框图 (10)4、图解法分析 (11)5、程序结果与解析法结果对比 (12)四、参考文献 (12)五、设计心得 (13)3.3图解法分析四杆机构的特性已知机架AD长500mm,连杆BC长350mm,连架杆1长200mm,连架杆2长450mm。
用Auto CAD画图解得极位夹角为11.459°课程设计心得体会两周的课程设计结束了,在这次的课程设计中不仅检验了我所学习的知识,也培养了我如何去把握一件事情,如何去做一件事情,又如何完成一件事情。
在设计过程中,与同学分工设计,和同学们相互探讨,相互学习,相互监督。
学会了合作,学会了运筹帷幄,学会了宽容,学会了理解,也学会了做人与处世。
课程设计是我们专业课程知识综合应用的实践训练,着是我们迈向社会,从事职业工作前一个必不少的过程.”千里之行始于足下”,通过这次课程设计,我深深体会到这句千古名言的真正含义.我今天认真的进行课程设计,学会脚踏实地迈开这一步,就是为明天能稳健地在社会大潮中奔跑打下坚实的基础.在此感谢我们的张伟社老师.,老师严谨细致、一丝不苟的作风一直是我工作、学习中的榜样;老师循循善诱的教导和不拘一格的思路给予我无尽的启迪;这次课程设计的每个细节和每个数据,都离不开老师您的细心指导。
而您开朗的个性和宽容的态度,帮助我能够很顺利的完成了这次课程设计。
第2章曲柄连杆机构

2.3机体组
2.3.1汽缸体
1.汽缸体的结构形式 水冷发动机的汽缸体和曲轴箱通常铸成一体,可称为汽缸体
一曲轴箱,也可简称为汽缸体。汽缸体上半部有一个或若十个为 活塞在其中运动导向的圆柱形空腔,称为汽缸;下半部为支承曲轴 的曲轴箱,其内腔为曲轴运动的空间。作为发动机各个机构和系 统的装配基体,汽缸体本身应具有足够的刚度和强度。其具体结 构形式分为三种,如图2-4所示。
汽缸套有干式和湿式两种,如图2-10所示。
上一页 下一页 返回
2.3机体组
2.3.2汽缸盖与汽缸衬垫
1.汽缸盖 汽缸盖的主要功用是密封汽缸上部,并与活塞顶部和汽缸一
起形成燃烧室。同时,汽缸盖也为其他零部件提供安装位置。汽 缸盖的燃烧室一侧直接受到高温、高压燃气的作用。在承受热负 荷时,由于形状复杂,冷却不均匀,各部分温差大,特别是在进、 排气门口之间以及进、排气门口与汽油机的火花塞之间(或进、排 气门)与柴油机的喷油器之间的所谓“鼻梁区”,热应力很高,是 容易出现裂纹损坏的部位;而汽缸盖在机械负荷和热负荷作用下产 生的变形会导致进、排气门密封被破坏和汽缸盖密封(气封、水封、 油封)被破坏,影响发动机的动力性、经济性和工作可靠性。因此, 要求汽缸盖应具有足够的强度和刚度。
下一页 返回
2.5曲轴飞轮组
按照曲轴的主轴颈数,可以把曲轴分为全支承曲轴和非全支 承曲轴两种。在相邻的两个曲拐之间,都设置一个主轴颈的曲轴, 称为全支承曲轴;否则称为非全支承曲轴。
因此,直列发动机的全支承曲轴,其主轴颈的总数(包括曲轴 前端和后端的主轴颈)比汽缸数多一个;V形发动机的全支承曲轴, 其主轴颈的总数比汽缸数的一半多一个。全支承曲轴的优点是可 以提高曲轴的刚度和恋曲强度,并目可减轻主轴承的载荷。其缺 点是曲轴的加工表面增多,主轴承增多,使机体加长。这两种形 式的曲轴均可用于汽油机,但柴油机多采用全支承曲轴,这是因 为其载荷较大的缘故。
发动机曲柄连杆机构的设计 更新版.

.摘要以桑塔纳2000AJR型发动机为例,基于相关参数对发动机曲柄滑块机构主要零部件进行结构设计计算,同时进行强度、刚度等方面的校核,并进行相关力学分析和机构运动仿真分析,以达到良好的生产经济效益。
目前国内外对发动机曲柄连杆机构的动力学分析的方法很多,而且已经完善和成熟,但仍缺乏一种基于良好生产效益、经济效益上的综合性分析,本次设计在清晰、全面剖析的基础上,有机地将各研究模块联系起来,达到既简便又清晰的设计目的,力求为发动机曲柄滑块机构的设计提供一种综合全面的思路。
分析研究的主要模块分为以下三个部分:第一,对发动机曲柄滑块机构进行力学分析,着重分析活塞的位移、速度、加速度以及工质的作用力和机构的惯性力;第二,进行曲柄滑块机构活塞组、连杆组以及曲轴的结构设计,并对其强度和刚度进行校核;第三,应用Pro∕Engineer 建立曲柄滑块机构主要零部件的几何模型,并利用Pro/Mechanism进行机构仿真。
关键词:发动机;曲柄滑块机构;力学分析;机构仿真目录第一章绪论 (1)1.1国内外发展现状 (1)1.2研究的主要内容 (1)第二章总体方案的设计 (2)2.1原始参数的选定 (2)2.2原理性方案设计 (2)2.3 结构的设计 (3)2.4 确定设计方案 (3)第三章中心曲柄连杆机构的设计 (4)3.1 气缸内的作用力分析 (4)3.2 惯性力的计算 (4)第四章活塞以及连杆组件的设计 (6)4.1 设计活塞组件 (6)4.2 设计活塞销 (7)4.3 活塞销座 (7)4.4 连杆的设计 (7)第五章曲轴的设计 (9)5.1 曲轴的材料的选择 (9)5.2 确定曲轴的主要尺寸和结构细节 (9)第六章曲柄连杆机构的创建 (11)6.1 活塞的创建 (11)6.2 连杆的创建 (12)6.3 曲轴的创建 (14)6.4 曲柄连杆机构其它零件的创建 (16)第七章活塞及连杆的装配 (17)7.1添加活塞组件 (17)7.2添加连杆体组件 (17)7.3曲轴连杆的连接 (18)总结....................................................... 错误!未定义书签。
第2章曲柄连杆机构的构造与维修

第2章曲柄连杆机构的构造与维修学习目标1 掌握曲柄连杆机构的作用与组成;2 掌握机体组、活塞连杆组和曲轴飞轮组主要零部件的构造和装配连接关系;3 掌握主要零部件的检测方法和维修方法;4 掌握曲柄连杆机构的装配与调整方法和要求;5 掌握曲柄连杆机构常见异响的诊断与排除。
一、曲柄连杆机构的作用、组成和工作原理曲柄连杆机构的功用是:将燃气作用在活塞顶上的压力转变为能使曲轴旋转运动而对外输出的动力。
曲柄连杆机构是往复活塞式发动机将热能转换为机械能的主要机构。
在发动机工作过程中,燃料燃烧产生的气体压力直接作用在活塞顶上,推动活塞作往复直线运动,经活塞销、连杆和曲轴,将活塞的往复直线运动转换为曲轴的旋转运动。
发动机产生的动力,大部分经由曲轴后端的飞轮输出,一部分用于驱动本机其他机构和系统。
曲柄连杆机构由机体组、活塞连杆组和曲轴飞轮组三部分组成。
1 机体组主要包括气缸体、曲轴箱、气缸盖、气缸套和气缸垫等不动件。
2 活塞连杆组主要包括活塞、活塞环、活塞销和连杆等运动件。
3 曲轴飞轮组主要包括曲轴和飞轮等机件。
二、工作条件与受力分析发动机工作时,气缸内最高温度可达2500℃以上,最高压力可达5~9MPa。
现代发动机的最高转速一般可达4000~6000r/min,其线速度是很高的。
此外,与可燃混合气和燃烧废气接触的机件(如气缸、气缸盖、活塞组等)还将受到化学腐蚀和电化学腐蚀。
因此,曲柄连杆机构是在高温、高压、高速和有腐蚀的条件下工作的。
由于曲柄连轩机构是在高压下作变速运动,因此,它在工作中的受力情况很复杂,其中主要有气体作用力、运动质量的惯性力、旋转运动件的离心力以及相对运动件的接触表面所产生的摩擦力等。
1 气体作用力在每个工作循环的四个行程中,气体压力始终存在。
但由于进气、排气两个行程中的气体压力较小,对机件影响不大,故这里主要分析作功和压缩两个行程中气体的作用力。
在作功行程中,气体压力推动活塞向下运动,如图2-1a所示。
第二章-曲柄连杆机构

(轴向定位)
套与冷却水直接接触,薄厚(5-9mm),缸套下端带 橡胶封水圈,气缸套外圆上大,下小(因为气缸套下
气缸套
端带1-3道橡胶封水圈),且上端与气缸体内孔配合
紧,下端配合松,以方便推入气缸体内孔。
水套
(径向定位)
湿式缸套压配在气缸体内孔时,上部凸肩顶 面高出气缸体顶面0.05-0.15 mm,这样紧固缸盖 时,可将缸垫压得更紧,以密封燃气。
机的气缸体象风冷发动机的气缸体一样,将气缸体与上曲轴箱(其内腔为曲
轴运动的空间)分开铸造,而把油底壳称之为下曲轴箱。气缸体内孔一般镶
2入((、1(气 一 三、气2缸 ) )材缸级套 作 材料工加, 用 料作工((其和:表精12内工1))2面度、、表艺气气制)内外面:缸缸造孔部形套体工:((成::艺(12(气优灰))12( (缸质)铸各散)12工合铁机热活) )形作金或构塞精 珩成表铸铝和运镗 磨气面铁合系动(缸。或金统导网工合的向纹作金装状容钢配)积基2磨(体、1损二、避))改时免要善间拉求漏磨短缸:气合(1234:条金、、、、功件属耐度耐耐足率,熔高和高磨腐够下磨着温强压损蚀的降合、度刚
维修成本增加。(现代发动机大部分采用)
c、组合气缸盖:如两缸一盖,便于系列化。 (2)按所用燃料分
a、汽油机:(1)气缸盖中心加工有装火花塞的孔
(2)进、排气道一般铸在气缸盖的一侧(进气管布置在排
气管的上部,利用废气加热进气管壁面油膜,促进雾
化),但现代汽油机采用半球形燃烧室时则进、排气道铸
在气缸盖的两侧
湿式缸套优点是:气缸套冷却好;制造成本
气缸体 橡胶封水圈
(径向定位)
低;气缸体铸造工艺性好;缸心距短,曲轴不易弯
曲。 湿式缸套缺点是:气缸体刚性差,容易变形,
曲柄连杆机构

曲柄连杆机构曲柄连杆机构的作用是提供燃烧场所,把燃料燃烧后气体作用在活塞顶上的膨胀压力转变为曲轴旋转的转矩,不断输出动力。
曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。
在作功冲程,它将燃料燃烧产生的热能活塞往复运动、曲轴旋转运动而转变为机械能,对外输出动力;在其他冲程,则依靠曲柄和飞轮的转动惯性、通过连杆带动活塞上机体组主要由气缸体、气缸盖、气缸垫、曲轴箱和油底壳等部件组成。
气缸体气缸体是发动机各个机构和系统的装配基体,是发动机中最重要的一个部件。
气缸体有水冷式缸体和风冷式气缸体。
水冷式气缸体一般与上曲轴箱铸成一体。
气缸体上部拍了出所有气缸,气缸周围的空腔相互连通构成水套。
下半部分是用来支承曲轴的曲轴箱。
气缸体有直列、V形和水平对置三种形式,在汽车上常用直列和V形两种。
气缸体下部的结构有一般式、龙门式、和隧道式三种形式风冷式气缸体和曲轴箱采用分体式结构,气缸体和曲轴箱分开铸造,然后再装配到一起。
气缸体和气缸盖外表面铸有许多散热片来保证充分散热,缸体的材料一般用灰铸铁,为提高气缸的耐磨性,有时在铸铁中加入少量合金元素如镍、钼、铬、磷等。
但是,实际上除了与活塞配合的气缸壁表面外,其他部分对耐磨性要求并不高。
为了材料上的经济性,广泛采用缸体内镶入气缸套来形成气缸工作表面。
这样,缸套可用耐磨性较好的合金铸铁或合金钢制造,以延长气缸使用寿命,而缸体可用价格较低的普通铸铁或铝合金材料制造。
气缸套有干式和湿式两种。
干式气缸套外表面不直接与冷水接触,其壁厚一般为1~3mm。
缸套外表面与其装配的气缸体内表面采用过盈配合。
湿式缸套外表面直接与冷却水接触,冷却效果好。
其壁厚比干式缸套,一般为5~9mm。
气缸盖气缸盖的主要作用是封闭气缸上部,与活塞顶部和气缸壁一起构成燃烧室。
一般水冷式发动机气缸盖内铸有冷却水套,缸盖下端面与缸体上端面向所对应的水套是相通的,利用水的循环来冷却燃烧室壁等高温部分;风冷式发动机气缸盖上铸有许多散热片,靠增大散热面积来降低燃烧室的温度。
第04章曲柄连杆机构介绍

第四章曲柄连杆机构第一节概述一、功用与组成曲柄连杆机构是内燃机完成工作循环、实现能量转换的传动机构。
它在作功行程中把活塞的往复运动转变成曲轴的旋转运动;而在进气、压缩、排气行程中又把曲轴的旋转运动转变为活塞的往复直线运动。
因此曲柄连杆机构的功用是:将燃料燃烧时产生的热能转变为活塞往复运动的机械能,再通过连杆将活塞的往复运动变为曲轴的旋转运动而对外输出动力。
曲柄连杆机构由以下3部分组成:机体组主要包括气缸盖、气缸垫、气缸体、气缸套、曲轴箱和油底壳等不动件。
活塞连杆组主要包括活塞、活塞环、活塞销和连杆等运动件。
曲轴飞轮组主要包括曲轴、飞轮和扭转减振器、平衡轴等机构。
二、工作条件及受力分析曲柄连杆机构是在高温、高压、高速以及有化学腐蚀的条件下工作的。
在发动机作功时,气缸内的最高温度可达2 500k以上,最高压力可达5 MPa~9MPa,现代汽车发动机最高转速可达3 000r/min~6 000r/min,则活塞每秒钟要行经约100~200个行程,可见其线速度是很大的。
此外,与可燃混合气和燃烧废气接触的机件(如气缸、气缸盖,活塞等)还将受到化学腐蚀。
由于曲柄连杆机构是在高压下作变速运动,因此它在工作时的受力情况是很复杂的。
在此只对受力情况作简单分析。
曲柄连杆机构受的力主要有气体压力,往复惯性力,旋转运动件的离心力以及相对运动件接触表面的摩擦力。
1.气体压力在每个工作循环的四个行程中,气缸内气体压力始终存在而且是不断变化的。
作功行程压力最高,其瞬间最高压力汽油机可达3MPa~5MPa;柴油机可达5MPa~9MPa,这意味着作用在曲柄连杆机构上的瞬间冲击力可达数万牛顿(N)。
下面分析各机件作功行程的受力情况。
如图4-1a所示,气体压力对气缸盖和活塞顶作用有大小相等,方向相反的力,分别用P'和P p表示。
作用力P p经活塞传到活塞销上,分解为N p和S p两个力。
N p垂直于集中力p气缸壁,它使活塞的一个侧面压向气缸壁,称为侧压力。
曲柄连杆机构设计说明书

摘要本文以捷达EA113汽油机的相关参数作为参考,对四缸汽油机的曲柄连杆机构的主要零部件进行了结构设计计算,并对曲柄连杆机构进行了有关运动学和动力学的理论分析与计算机仿真分析。
首先,以运动学和动力学的理论知识为依据,对曲柄连杆机构的运动规律以及在运动中的受力等问题进行详尽的分析,并得到了精确的分析结果。
其次分别对活塞组、连杆组以及曲轴进行详细的结构设计,并进行了结构强度和刚度的校核。
再次,应用三维CAD软件:Pro/Engineer建立了曲柄连杆机构各零部件的几何模型,在此工作的基础上,利用Pro/E软件的装配功能,将曲柄连杆机构的各组成零件装配成活塞组件、连杆组件和曲轴组件,然后利用Pro/E软件的机构分析模块(Pro/Mechanism),建立曲柄连杆机构的多刚体动力学模型,进行运动学分析和动力学分析模拟,研究了在不考虑外力作用并使曲轴保持匀速转动的情况下,活塞和连杆的运动规律以及曲柄连杆机构的运动包络。
仿真结果的分析表明,仿真结果与发动机的实际工作状况基本一致,文章介绍的仿真方法为曲柄连杆机构的选型、优化设计提供了一种新思路。
关键词:发动机;曲柄连杆机构;受力分析;仿真建模;运动分析;Pro/EABSTRACTThis article refers to by the Jeeta EA113 gasoline engine’s related parameter achievement, it has carried on the structural design compution for main parts of the crank link mechanism in the gasoline engine with four cylinders, and has carried on theoretical analysis and simulation analysis in computer in kinematics and dynamics for the crank link mechanism.First, motion laws and stress in movement about the crank link mechanism are analyzed in detail and the precise analysis results are obtained. Next separately to the piston group, the linkage as well as the crank carries on the detailed structural design, and has carried on the structural strength and the rigidity examination. Once more, applys three-dimensional CAD software Pro/Engineer establishing the geometry models of all kinds of parts in the crank link mechanism, then useing the Pro/E software assembling function assembles the components of crank link into the piston module, the connecting rod module and the crank module, then using Pro/E software mechanism analysis module (Pro/Mechanism), establishes the multi-rigid dynamics model of the crank link, and carries on the kinematics analysis and the dynamics analysis simulation, and it studies the piston and the connecting rod movement rule as well as crank link motion gear movement envelopment. The analysis of simulation results shows that those simulation results are meet to true working state of engine. It also shows that the simulation method introduced here can offer a new efficient and convenient way for the mechanism choosing and optimized design of crank-connecting rod mechanism in engine.Key words: Engine;Crankshaft-Connecting Rod Mechanism;Analysis of Force;Modeling of Simulation;Movement Analysis;Pro/E目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 选题的目的和意义 (1)1.2 国内外的研究现状 (1)1.3 设计研究的主要内容 (3)第2章曲柄连杆机构受力分析 (4)2.1 曲柄连杆机构的类型及方案选择 (4)2.2 曲柄连杆机构运动学 (4)2.1.1 活塞位移 (5)2.1.2 活塞的速度 (6)2.1.3 活塞的加速度 (6)2.2 曲柄连杆机构中的作用力 (7)2.2.1 气缸内工质的作用力 (7)2.2.2 机构的惯性力 (7)2.3 本章小结 (14)第3章活塞组的设计 (15)3.1 活塞的设计 (15)3.1.1 活塞的工作条件和设计要求 (15)3.1.2 活塞的材料 (16)3.1.3 活塞头部的设计 (16)3.1.4 活塞裙部的设计 (21)3.2 活塞销的设计 (23)3.2.1 活塞销的结构、材料 (23)3.2.2 活塞销强度和刚度计算 (23)3.3 活塞销座 (24)3.3.1 活塞销座结构设计 (24)3.3.2 验算比压力 (24)3.4 活塞环设计及计算 (25)3.4.1 活塞环形状及主要尺寸设计 (25)3.4.2 活塞环强度校核 (25)3.5 本章小结 (26)第4章连杆组的设计 (27)4.1 连杆的设计 (27)4.1.1 连杆的工作情况、设计要求和材料选用 (27)4.1.2 连杆长度的确定 (27)4.1.3 连杆小头的结构设计与强度、刚度计算 (27)4.1.4 连杆杆身的结构设计与强度计算 (30)4.1.5 连杆大头的结构设计与强度、刚度计算 (33)4.2 连杆螺栓的设计 (35)4.2.1 连杆螺栓的工作负荷与预紧力 (35)4.2.2 连杆螺栓的屈服强度校核和疲劳计算 (35)4.3 本章小结 (36)第5章曲轴的设计 (37)5.1 曲轴的结构型式和材料的选择 (37)5.1.1 曲轴的工作条件和设计要求 (37)5.1.2 曲轴的结构型式 (37)5.1.3 曲轴的材料 (37)5.2 曲轴的主要尺寸的确定和结构细节设计 (38)5.2.1 曲柄销的直径和长度 (38)5.2.2 主轴颈的直径和长度 (38)5.2.3 曲柄 (39)5.2.4 平衡重 (39)5.2.5 油孔的位置和尺寸 (40)5.2.6 曲轴两端的结构 (40)5.2.7 曲轴的止推 (40)5.3 曲轴的疲劳强度校核 (41)5.3.1 作用于单元曲拐上的力和力矩 (41)5.3.2 名义应力的计算 (45)5.4 本章小结 (47)第6章曲柄连杆机构的创建 (48)6.1 对Pro/E软件基本功能的介绍 (48)6.2 活塞的创建 (48)6.2.1 活塞的特点分析 (48)6.2.2 活塞的建模思路 (48)6.2.3 活塞的建模步骤 (49)6.3 连杆的创建 (50)6.3.1 连杆的特点分析 (50)6.3.2 连杆的建模思路 (50)6.3.3 连杆体的建模步骤 (51)6.3.4 连杆盖的建模 (52)6.4 曲轴的创建 (52)6.4.1 曲轴的特点分析 (52)6.4.2 曲轴的建模思路 (52)6.4.3 曲轴的建模步骤 (53)6.5 曲柄连杆机构其它零件的创建 (55)6.5.1 活塞销的创建 (55)6.5.2 活塞销卡环的创建 (55)6.5.3 连杆小头衬套的创建 (55)6.5.4 大头轴瓦的创建 (55)6.5.5 连杆螺栓的创建 (56)6.6 本章小结 (56)第7章曲柄连杆机构运动分析 (57)7.1 活塞及连杆的装配 (57)7.1.1 组件装配的分析与思路 (57)7.1.2 活塞组件装配步骤 (57)7.1.3 连杆组件的装配步骤 (58)7.2 定义曲轴连杆的连接 (59)7.3 定义伺服电动机 (60)7.4 建立运动分析 (60)7.5 进行干涉检验与视频制作 (61)7.6 获取分析结果 (62)7.7 对结果的分析 (64)7.8 本章小结 (64)结论 (65)参考文献 (66)致谢 (67)附录 (68)第1章绪论1.1 选题的目的和意义曲柄连杆机构是发动机的传递运动和动力的机构,通过它把活塞的往复直线运动转变为曲轴的旋转运动而输出动力。
曲柄连杆机构

曲柄连杆机构的常见故障与维护
曲轴磨损 曲轴是发动机的 核心部件之一, 若曲轴磨损严重, 会影响发动机的 动力输出和运转
平稳性
飞轮损坏 飞轮是储存和释放动力的关键部件,若飞轮损坏,会
影响发动机的动力输出和运转平稳性
连杆弯曲或断裂 连杆是连接活塞和 曲轴的重要部件, 若连杆弯曲或断裂, 会导致活塞无法正 常运动,严重时会
导致发动机损坏
曲柄连杆机构的常见故障与维护
3.2 维护与保养
为了延长曲柄连杆机构的使用寿命和提高发动机的性能 ,以下是一些建议的维护与保养措施
定期更换机油:机油是发动机的润滑剂,定期更换 机油有助于减少机件的摩擦和磨损 检查机体组:定期检查机体组各部位是否松动、变 形或损坏,如有异常应及时修复 检查活塞环:定期检查活塞环是否磨损严重、老化 或断裂,如有问题应及时更换 检查气缸:定期对气缸进行测量和检查,如发现气 缸磨损超限应更换气缸套或进行修理
3
曲柄连杆机构的常见故障与维护
曲柄连杆机构的常见故障与维护
曲柄连杆机构由于长时间处于高温、高压和高摩擦 的工作环境中,容易出现磨损和变形等问题
因此,日常维护和保养非常重要
这些问题的出现会影响发动机的正常运转,严重时 会导致发动机损坏或失效
曲柄连杆机构的常见故障与维护
3.1 常见故障
活塞环磨损:活塞环是活塞连杆组中重要的部件之一,它的主要作用是密封燃烧室内 的气体。若活塞环磨损严重,会导致燃烧室内气体泄漏,影响发动机的动力输出和燃 油经济性
曲柄连杆机构主要由机体组、活塞连杆组和曲轴飞轮组三部分组成
曲柄连杆机构的组成
1.1 机体组
曲柄连杆机构设计说明书。

精心打造课程设计说明书2115柴油机连杆设计学生学号:学生姓名:专业班级:指导教师姓名:杜家益/张登攀2018年 1 月目录目录 0第1章绪论 01.1 选题的目的和意义 01.2设计研究的主要内容 0第2章曲柄连杆机构受力分析 (1)2.1 曲柄连杆机构的类型及方案选择 (1)2.2 曲柄连杆机构运动学 (2)未来0精心打造2.1.1 活塞位移 (2)2.1.2 活塞的速度 (3)2.1.3 活塞的加速度 (4)2.2 曲柄连杆机构中的作用力 (4)2.2.1 气缸内工质的作用力 (4)2.2.2 机构的惯性力 (5)2.3 本章小结 (10)3.1 活塞的设计 (10)3.1.1 活塞的工作条件和设计要求 (10)3.1.2 活塞的材料 (11)第4章连杆组的设计 (12)4.1 连杆的设计 (12)4.1.1 连杆的工作情况、设计要求和材料选用 (12)4.1.2 连杆长度的确定 (12)4.1.3 连杆小头的结构设计与强度、刚度计算 (12)4.1.4 连杆杆身的结构设计与强度计算 (14)4.1.5 连杆大头的结构设计与强度、刚度计算 (16)4.2 连杆螺栓的设计 (16)4.2.1 连杆螺栓的工作负荷与预紧力 (16)4.2.2 连杆螺栓的屈服强度校核和疲劳计算 (17)4.3 本章小结 (17)5.1 曲轴的结构型式和材料的选择 (18)5.1.1 曲轴的工作条件和设计要求 (18)5.1.2 曲轴的结构型式 (18)5.1.3 曲轴的材料 (18)5.2 曲轴的主要尺寸的确定和结构细节设计 (19)5.2.1 曲柄销的直径和长度 (19)5.2.2 主轴颈的直径和长度 (19)5.2.3 曲柄 (20)5.2.4 平衡重 (20)5.2.5 油孔的位置和尺寸 (20)5.2.6 曲轴两端的结构 (21)5.2.7 曲轴的止推 (21)5.3 曲轴的疲劳强度校核 (21)5.3.1 作用于单元曲拐上的力和力矩 (22)5.3.2 名义应力的计算 (24)参考文献 (40)未来1精心打造第1章绪论1.1 选题的目的和意义曲柄连杆机构是发动机的传递运动和动力的机构,通过它把活塞的往复直线运动转变为曲轴的旋转运动而输出动力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1绪论 ...................................................................................................................... 错误!未定义书签。
2曲柄连杆机构多刚体动力学模型的建立 (3)2.1 多刚体系统动力学模型的建立 (3)2.1.1 多刚体动力学方程 (3)2.1.2 多刚体系统建模 (3)2.1.3 曲轴系统建模 (4)2.1.4 活塞系统建模 (4)2.1.5 连杆组件系统建模 (5)2.1.6 曲轴、活塞与连杆组件的装配 (8)3CATIA与ADAMS的曲柄连杆机构动力学模型的转换 (9)3.1 CATIA两缸发动机曲柄连杆结构建模的导出 (9)3.1.1 导出文件的建立 (9)3.1.2 模型文件的导出与保存 (10)3.2 两缸发动机曲柄连杆机构建模在ADAMS中的导入.......... 错误!未定义书签。
3.2.1 模型文件的导入 ............................................................ 错误!未定义书签。
4 曲柄连杆机构系统动力学仿真与分析 (11)4.1 运动副的施加与运动仿真的初始条件 (11)4.1.1 运动副的施加 (11)4.1.2 运动仿真的初始条件 (12)4.2 动力学仿真结果与分析 (12)4.2.1 运动仿真的结果与分析 ................................................ 错误!未定义书签。
结论 . (14)参考文献 (15)1绪论汽车由4部分组成:发动机、底盘、车身和电气.发动机是汽车的心脏,它将燃料燃烧产生的热能转化为机械能,驱动汽车行驶.曲柄连杆机构是发动机完成这一能量转化的关键机构.燃料燃烧产生的热使发动机燃烧室内的气体迅速膨胀,在活塞顶部产生巨大推力推动活塞下行,通过连杆传至曲轴,从而将直线运动转化为曲轴的旋转运动.该旋转运动通过离合器、变速器、传动轴、差速器等机构传至车轮,实现汽车的路面行驶功能⋯.曲柄连杆机构的工作环境非常恶劣:温度高、速度快、压力大且受力复杂.发动机在作功时,气缸内最高温度可达2500K 以上,高温使得各零件的刚度和强度降低,易发生变形、断裂和磨损,因而引起发动机曲柄连杆机构运动的不协调.现代汽车发动机最高转速可达4 000~6 000 r/min,活塞每秒钟要行走几十个行程,线速度非常快.由此而引起的惯性力也非常大.由于曲柄连杆机构是在高压下作变速运动,因此它在工作中的受力情况非常复杂.其中有活塞顶部的气体作用力、运动零件的质量惯性力与离心力、各摩擦表面的摩擦力以及外界阻力等.上述各种力,作用在曲柄连杆机构和机体的各有关零件上,使它们受到压缩、拉伸、弯曲和扭转等不同形式的载荷.活塞的主要作用是承受气缸中气体压力所造成的作用力,并将此力通过活塞销传给连杆,以推动曲轴旋转.活塞顶部在作功行程时,承受着燃气带冲击性的高压力.对于汽油机活塞,瞬时的压力最大值可达3~5 MPa,对于柴油机活塞,其最大值可达6~9 MPa,采用增压时则更高.再加上高速运动而产生的惯性力,使得活塞对气缸壁的侧压力非常大,加速活塞和气缸套的磨损,也容易引起活塞变形.发动机工作过程中活塞承受的气体压力和惯性力是呈周期性变化的,故活塞、连杆与曲轴的运动特性也应该是周期变化的.在压缩行程中,活塞对气缸的侧向力作用于气缸的次推力面上,而当压缩行程向作功行程转化时,由于连杆角度的变化,使得活塞对气缸的侧向力方向发生突然转变而作用到气缸的主推力面上,此时又恰逢高压燃气突然燃烧而对活塞产生极大的作用力,这个作用力使得活塞对气缸壁主推力面产生剧烈的“拍击”.因此,在压缩行程终止和作功行程开始这个过程中(活塞处于上止点附近),活塞和气缸的磨损最为严重.本文采用虚拟样机技术研究模拟,虚拟样机技术在内燃机领域获得了越来越广泛的应用.利用计算机建造柴油机曲柄连杆机构的实体模型,并进行动力学仿真分析,可得到整个系统协调运作下的运动规律和动力学特性参数。
本文以多体系统动力学为理论基础,采用ADAMS及CATIA软件平台进行两缸发动机曲柄连杆机构多刚体系统动力学,对曲柄连杆机构的动力学特性进行研究,分析各运动部件的运动规律进而分析出其受力,将为发动机曲柄连杆机构进行优化设计以降低噪声和减少磨损奠定基础。
2曲柄连杆机构多体动力学模型的建立多刚体系统动力学模型的建立多刚体系统动力学方程ADAMS多刚体系统运动微分方程是采用拉格朗日方程建立的。
首先选择适当的广义坐标对物体进行描述,对于刚体,采用质心在惯性参考系中的笛卡尔坐标和反映刚体方位的欧拉角作为广义坐标:qi = [x,y,z,ψ,θφ],q = [q1,…qn]T,即每个刚体用六个广义坐标描述。
系统动力学方程是最大数量但却高度稀疏耦合的微分代数方程,适于用稀疏矩阵的方法高效求解。
应用拉格朗日待定乘子法,得到多刚体系统的动力学方程为:式中:q 为广义坐标列阵;Q 为广义力列阵;p 为对应于完整约束的拉氏乘子列阵;μ为对应于非完整约束的拉氏乘子列阵;T 为系统能量,其中,准(q,t)=0 为完整约束方程,θ(q,q,t)=0 为非完整约束方程。
多刚体系统建模两缸发动机曲柄连杆机构多刚体系统动力学模型主要包括:曲轴系统刚体模型及活塞组件刚体模型和连杆组件刚体模型。
应用CATIA实体建模软件,建立装配零部件的三维实体模型,如图2.1所示。
图2.1多刚体系统动力学仿真模型曲轴系统建模曲轴系统动力学模型主要包括曲轴身与平衡块。
应用CATIA实体建模软件,建立零部件的三维实体模型,如图2.2所示。
图2.2曲轴系统零部件模型活塞系统建模活塞系统动力学模型主要包括活塞与活塞销,但在建立模型时需要对其两部分分开建立,因为在装配设计整体模型时,两部分间有相对运动。
应用CATIA实体建模软件,建立零部件的三维实体模型,活塞建模如图2.3所示,活塞销建模如图2.4所示。
图2.3活塞零部件模型图2.4活塞销零部件模型连杆组件系统建模连杆组件系统动力学模型主要包括连杆体、连杆衬套、连杆盖、连杆轴瓦、连杆螺栓。
在建立模型时,分别建立连杆体、连杆衬套、连杆盖、连杆轴瓦、连杆螺栓的零部件模型之后,对其五部分进行装配。
应用CATIA实体建模软件,建立零部件的三维实体模型,连杆体建模如图2.5所示,连杆衬套建模如图2.6所示连杆盖建模如图2.7所示、连杆轴瓦建模如图2.8所示、连杆螺栓建模如图2.9所示。
图2.5连杆体零部件模型图2.6连杆衬套零部件模型图2.7连杆盖零部件模型图2.8连杆螺栓零部件模型图2.9连杆轴瓦零部件模型在装配时,将连杆轴瓦和连杆螺栓组合载入两次。
连杆体上的与活塞销连接的孔与连杆衬套中心轴相合约束,两外表面偏移约束值为0;连杆体上的与曲轴的曲拐连接的孔与轴瓦中心轴相合约束,两外表面偏移约束值为0;螺栓与螺栓孔中心轴相合约束;连杆盖与轴瓦中心相合约束,其上表面与两岸下表面偏移约束值为0,两外表面偏移约束值为0,装配后整体装配如图2.10所示。
图2.10连杆组件装配部件模型曲轴、活塞、连杆组件的装配将连杆组件、活塞、活塞销与曲轴组合导入新的装配设计中,并且由于本文研究的是两缸发动机,连杆组件、活塞与活塞销需要导入两对。
在施加约束时,曲轴曲拐中心轴与连杆轴瓦中心轴相合约束,断面并施加偏移约束,约束值为0;连杆与活塞销、活塞销与活塞同样施加相合约束与偏移约束,值均为0;并调整活塞轴线与曲轴轴线成90度。
总装配模型如图2.11所示。
图2.11总装配部件模型3CATIA与ADAMS的曲柄连杆机构动力学模型的转换CATIA两缸发动机曲柄连杆机构建模的导出导出文件的建立本文利用SimDesigner for CATIA V5R17软件导出在ADAMS中能打开的.cmd文件, SimDesigner 创成式产品系列将MSC.Software 仿真解决方案无缝集成到CAD环境中,侧重于对产品进行多学科综合的特性评估,例如结构线性、动力学、热、结构非线性等。
SimDesigner 接口类产品系列在CATIA环境与客户所拥有的独立的VPD产品之间提供了无缝的双向链接。
SimDesigner 垂直应用类产品可以在CATIA V5环境下进行产品评估及流程知识的捕获、存储和重新利用,这些知识涉及产品制造、测试和验证等各个方面。
在文件导出前必须对曲柄连杆机构的各部分运动施加以运动副,这样才能保证在ADAMS中完全导入,如果某一部分未用运动副连接在CATIA整体模型上,在ADAMS 中将会出现丢失现象。
本文在SimDesigner for CATIA V5R17的数字模型SD Motion Workbench中施加运动副,并完成了在CATIA中的运动仿真。
运动仿真如图3.1所示。
图3.1运动仿真示意图模型文件的导出与保存在CATIA中运动仿真完成后点击expertthe current motion model功能键,会弹出如右图3.2所示的导出对话框,第二项Result Export中选择ALL,点击确定。
之后会弹出保存对话框,在对话框中浏览所要保存的文件夹位置,点击确定即完成保存,注意文件夹路径与名称必须为纯英文字符。
图3.2导出对话框两缸发动机曲柄连杆机构建模在ADAMS中的导入模型文件的导入开启ADAMS程序后选择导入文件,并在浏览对话框中选择所要导入文件的位置文件夹,之后打开文件即完成模型的导入。
导入后如图3.3所示。
图3.3 ADAMS导入后模型示意图4曲柄连杆机构系统动力学仿真分析运动副的施加与运动仿真的初始条件运动副的施加在CATIA中打开总装配图,并依次进入数字模型与SD Motion Workbench,在模拟运动中施加运动副。
在曲轴左右轴与地面之间分别施加绕曲轴中心轴的旋转副;在连杆组件1、2与曲轴左右曲拐之间分别施加绕曲拐中心轴的旋转副;在连杆组件1、2与活塞销1、2之间分别施加绕活塞销中心轴的旋转副;在活塞1、2与活塞销1、2之间施加绕活塞销中心轴的旋转副;在活塞1、2与地之间施加沿活塞中心轴的移动副。
施加后如图4.1所示。
图4.1 模型运动副施加示意图运动仿真的初始条件在施加运动副的同时,在曲轴与地面之间的旋转副的定义对话框的motion选项中给予一个绕Z轴旋转的转动力,转速为70r/min。
具体如图4.2所示。
图4.2 仿真动力施加示意图动力学仿真结果与分析运动仿真的结果与分析由于发动机的两个缸的运动情况完全相同,只是彼此相差一定的相位角。
所以只需取一个气缸支路来进行分析。