配方法教学设计
八年级数学下册《配方法》教案、教学设计
(1)探究配方法在解决其他类型问题中的应用,如不等式的求解等。
(2)查阅资料,了解配方法在数学发展史上的地位和作用,撰写一篇小论文。
3.创新题:
(1)结合生活实际,设计一个具有挑战性的问题,运用配方法解决,并与同学分享解题过程。
(2)尝试对配方法进行拓展,如解决含有两个变量的方程组问题。
(2)课后反思自己的教学效果,找出存在的问题,不断优化教学设计,以提高教学效果。
四、教学内容与过程
(一)导入新课
1.创设情境:以一个与学生生活密切相关的问题为背景,如“小明家的花园是一个正方形,边长比小明身高多2米,如果小明身高1.6米,那么花园的面积是多少?”引发学生思考。
2.提出问题:引导学生从问题中提炼出一元二次方程,如x^2 - 3.2x + 2.56 = 0,让学生思考如何解这个方程。
(三)学生小组讨论
1.将学生分成若干小组,每组选择一个典型例题,如x^2 - 6x + 9 = 0,进行讨论。
2.小组成员共同探讨配方法的步骤,尝试用配方法解方程。
3.各小组展示解题过程和答案,其他小组进行评价和讨论。
4.教师引导学生总结讨论过程中的优点和不足,给出改进建议。
(四)课堂练习
1.设计具有梯度的练习题,让学生独立完成,巩固所学知识。
注意事项:
1.学生在完成作业过程中,要注意规范书写,养成良好的学习习惯。
2.鼓励学生独立思考,遇到问题时可以与同学讨论,提高解决问题的能力。
3.做题过程中,要求学生注重细节,避免出现计算错误。
4.教师在批改作业时,要关注学生的解题思路和方法,给予有针对性的评价和指导。
5.鼓励学生在完成作业后进行自我反思,总结学习过程中的优点和不足,不断提高。
人教版数学九年级上册教学设计21.2.1《配方法》
人教版数学九年级上册教学设计21.2.1《配方法》一. 教材分析《配方法》是人教版数学九年级上册第21.2.1节的内容,主要是让学生掌握配方法的原理和步骤,并能够运用配方法解决一些实际问题。
本节课的内容是学生在学习了二次函数的基础上进行学习的,对于学生来说,配方法是一种新的解决问题的方法,对于教师来说,需要引导学生从直观的图形理解配方法,逐步过渡到抽象的数学公式。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于二次函数的基本概念和性质有一定的了解。
但是,学生在学习过程中,对于一些抽象的数学公式可能会感到困惑,因此,教师需要通过具体的例子,引导学生理解配方法的原理和步骤。
三. 教学目标1.让学生理解配方法的原理和步骤,并能够运用配方法解决一些实际问题。
2.培养学生的逻辑思维能力和抽象思维能力。
3.通过对配方法的学习,培养学生解决问题的能力和创新精神。
四. 教学重难点1.配方法的原理和步骤。
2.如何引导学生从直观的图形理解配方法,逐步过渡到抽象的数学公式。
五. 教学方法1.采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解配方法的原理和步骤。
2.采用数形结合的教学方法,通过直观的图形,帮助学生理解配方法。
3.采用小组合作的学习方法,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备相关的教学PPT,包括配方法的原理和步骤,以及一些实际问题的例子。
2.准备一些相关的数学题目,用于巩固学生对配方法的理解。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何解决这个问题,从而引出配方法的概念。
2.呈现(10分钟)通过PPT,向学生介绍配方法的原理和步骤,以及一些相关的例子。
3.操练(10分钟)让学生通过小组合作,解决一些实际问题,从而加深对配方法的理解。
4.巩固(5分钟)通过一些相关的数学题目,巩固学生对配方法的理解。
5.拓展(5分钟)引导学生思考,配方法在实际生活中有哪些应用,从而培养学生的创新精神。
人教版九年级数学上册:21.2.1 配方法 教学设计1
人教版九年级数学上册:21.2.1 配方法教学设计1一. 教材分析人教版九年级数学上册21.2.1配方法是本册的一个重要内容。
配方法是解决一元二次方程的一种常用方法,它可以帮助学生更好地理解一元二次方程的解法,并且为后续的二次函数、不等式等内容的学习打下基础。
本节课通过配方法的学习,使学生掌握一元二次方程的解法,提高他们解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了一元一次方程、二元一次方程组等知识,具备了一定的数学基础。
但学生在解决实际问题时,往往对一元二次方程的解法感到困惑。
因此,在教学过程中,要注重引导学生理解配方法的原理,并通过大量的练习让学生熟练运用配方法解决实际问题。
三. 教学目标1.知识与技能:使学生掌握配方法解一元二次方程的基本步骤和技巧。
2.过程与方法:通过自主学习、合作交流,培养学生解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极向上的精神。
四. 教学重难点1.重点:配方法解一元二次方程的基本步骤和技巧。
2.难点:如何引导学生理解配方法的原理,并熟练运用配方法解决实际问题。
五. 教学方法1.引导法:教师引导学生自主学习,发现配方法的原理和步骤。
2.讲解法:教师通过讲解示例,让学生理解配方法的应用。
3.练习法:学生通过大量练习,巩固配方法解一元二次方程的能力。
4.合作交流法:学生分组讨论,分享解题心得,提高解决问题的能力。
六. 教学准备1.教学课件:制作课件,展示配方法解题的过程和步骤。
2.练习题:准备一定数量的练习题,让学生在课堂上进行练习。
3.小组讨论:提前分组,便于学生在课堂上进行合作交流。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾一元一次方程、二元一次方程组的知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师展示一元二次方程的实例,引导学生尝试运用已有的知识解决。
学生在解决过程中,发现一元二次方程的解法存在困难。
配方法(一)教学设计(优秀范文5篇)
配方法(一)教学设计(优秀范文5篇)第一篇:配方法(一)教学设计第二节、配方法(一)一、学生知识状况分析:学生在八年级上学期已经学习过开平方,知道一个正数有两个平方根,会利用开方求一个正数的两个平方根,并且也学习了完全平方公式。
在本章前面几节课中,又学习了一元二次方程的概念,并经历了用估算法求一元二次方程的根的过程,初步理解了一元二次方程解的意义。
在相关知识的学习过程中,学生已经经历了用计算器估算一元二次方程解的过程,解决了一些简单的现实问题,感受到解一元二次方程的必要性和作用,基于学生的学习心理规律,在学习了估算法求解一元二次方程的基础上,学生自然会产生用简单方法求其解的欲望;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学目标分析:知识与技能会用开方法解形如(x+m)2=n(n≥0)的方程,理解配方法,会用配方法解二次项系数为1,一次项系数为偶数的一元二次方程。
过程与方法1、经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效模型,增强学生的数学应用意识和能力。
2、体会转化的数学思想方法。
3、能根据具体问题中的实际意义检验结果的合理性。
情感态度与价值观1、体会数学与人类社会的密切联系,了解数学的价值。
增进对数学的理解和学好数学的信心。
2、认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。
三、教与学互动设计:第一环节:创设情境,导入新课(1)工人师傅想在一块足够大的长方形铁皮上裁出一个面积为100CM2正方形,请你帮他想一想,这个正方形的边长应为;若它的面积为75CM2,则其边长应为。
(选1个同学口答)(2)如果一个正方形的边长增加3cm后,它的面积变为64cm2,则原来的正方形的边长为。
若变化后的面积为48cm2呢?(小组合作交流)(3)你会解下列一元二次方程吗?(独立练习)x2=5;(x+2)2=5; x2+12x+36=0。
人教版数学九年级上册22.2.1《配方法》教学设计1
人教版数学九年级上册22.2.1《配方法》教学设计1一. 教材分析《配方法》是人教版数学九年级上册第22.2.1节的内容,主要介绍了配方法的概念、意义和应用。
配方法是一种解决二次方程问题的方法,通过将二次方程转化为完全平方形式,使问题更易于解决。
这一节内容是学生学习二次方程解决实际问题的基础,对于培养学生的数学思维能力和解决问题的能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的代数基础,对于解决一些简单的数学问题已经有了一定的方法。
但是在解决复杂的二次方程问题时,还需要进一步引导和培养。
在教学过程中,教师需要关注学生的学习情况,针对不同学生的特点进行有针对性的教学,帮助学生理解和掌握配方法。
三. 教学目标1.理解配方法的概念和意义,掌握配方法的基本步骤。
2.能够运用配方法解决一些简单的二次方程问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.配方法的概念和意义的理解。
2.配方法的基本步骤的掌握。
3.运用配方法解决实际问题的能力的培养。
五. 教学方法1.讲解法:教师通过讲解配方法的概念、意义和步骤,帮助学生理解和掌握。
2.案例教学法:教师通过举例讲解,引导学生运用配方法解决实际问题。
3.小组合作学习:学生分组讨论,共同解决问题,培养学生的合作意识和解决问题的能力。
六. 教学准备1.教学课件:教师准备相关的教学课件,帮助学生直观地理解和掌握配方法。
2.练习题:教师准备一些相关的练习题,用于巩固学生的学习效果。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入配方法的概念,激发学生的兴趣和好奇心。
2.呈现(10分钟)教师讲解配方法的概念、意义和步骤,通过举例讲解,让学生理解和掌握。
3.操练(10分钟)学生分组讨论,共同解决问题,教师巡回指导,帮助学生巩固学习效果。
4.巩固(10分钟)教师出示一些相关的练习题,学生独立完成,教师点评和讲解。
5.拓展(10分钟)教师引导学生运用配方法解决一些实际问题,培养学生的解决问题的能力。
人教版数学九年级上册22.2.2《配方法》教学设计1
人教版数学九年级上册22.2.2《配方法》教学设计1一. 教材分析《配方法》是人教版数学九年级上册第22章第2节的内容,这部分内容是在学生已经掌握了整式的加减、乘除,以及完全平方公式的基础上进行学习的。
配方法是一种解决问题的方法,通过构造完全平方公式,将问题转化为学生已经掌握的知识点,从而解决问题。
配方法在解决二次方程、二次不等式以及函数图像的平移等问题中有着广泛的应用。
二. 学情分析九年级的学生已经具备了一定的数学基础,能够理解和运用整式的加减、乘除以及完全平方公式。
但是,对于配方法的原理和应用,他们可能还不太清楚。
因此,在教学过程中,需要通过具体例子让学生理解配方法的原理,并通过练习让学生掌握配方法的应用。
三. 教学目标1.知识与技能:让学生掌握配方法的原理,并能够运用配方法解决相关问题。
2.过程与方法:通过具体例子,让学生理解配方法的过程,并能够独立完成配方法的操作。
3.情感态度与价值观:培养学生对数学的兴趣,提高学生解决问题的能力。
四. 教学重难点1.配方法的原理理解2.配方法在解决实际问题中的应用五. 教学方法采用讲解法、示范法、练习法、讨论法等教学方法,通过具体例子引导学生理解配方法,并通过练习让学生巩固所学知识。
六. 教学准备1.教学PPT七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何解决这类问题。
例如,解决方程x^2 -5x + 6 = 0。
2.呈现(15分钟)讲解配方法的原理,并通过PPT展示配方法的具体步骤。
配方法的步骤如下:(1)将方程写成完全平方的形式;(2)根据完全平方公式,构造出两个相同的因式;(3)将方程转化为两个因式的乘积等于0的形式;(4)根据乘积等于0的性质,解出方程的解。
3.操练(15分钟)让学生独立完成配方法的操作,教师巡回指导。
4.巩固(10分钟)让学生解答一些相关的练习题,检验学生对配方法的理解和掌握程度。
5.拓展(10分钟)讲解配方法在解决二次方程、二次不等式以及函数图像的平移等问题中的应用。
人教版数学九年级上册教案21.2.1《配方法》
人教版数学九年级上册教案21.2.1《配方法》一. 教材分析《配方法》是人教版数学九年级上册第21章第2节的内容,本节课主要让学生掌握配方法的原理和步骤,并能够运用配方法解决一些实际问题。
教材通过引入“完全平方公式”的概念,引导学生探索如何将一个二次多项式转化为完全平方形式,从而引出配方法。
学生在学习过程中,需要理解并掌握配方法的基本步骤,以及如何判断一个多项式是否可以配成完全平方形式。
二. 学情分析学生在学习本节课之前,已经学习了二次方程的解法、完全平方公式等知识,对于二次多项式的基本概念和性质有一定的了解。
但学生在运用配方法解决实际问题时,可能会遇到一些困难,如判断多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。
因此,在教学过程中,教师需要关注学生的学习情况,引导学生积极参与课堂活动,提高学生运用配方法解决问题的能力。
三. 教学目标1.知识与技能目标:使学生掌握配方法的原理和步骤,能够运用配方法将一个二次多项式转化为完全平方形式。
2.过程与方法目标:通过小组合作、讨论交流等学习活动,培养学生探索问题、解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和自信心。
四. 教学重难点1.重点:配方法的原理和步骤。
2.难点:如何判断一个多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。
五. 教学方法1.启发式教学:教师通过提出问题,引导学生思考和探索,激发学生的学习兴趣。
2.小组合作学习:学生分组讨论,共同解决问题,培养学生的团队协作能力。
3.案例教学:教师通过举例子,让学生理解并掌握配方法的运用。
六. 教学准备1.准备相关教案和教学资料。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备一些实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)教师通过提出一个实际问题,引导学生思考如何解决。
例如:已知一个二次多项式 f(x) = x^2 - 6x + 9,请问如何将其转化为完全平方形式?2.呈现(10分钟)教师引导学生回顾二次方程的解法和完全平方公式,然后引导学生探索如何将 f(x) = x^2 - 6x + 9 转化为完全平方形式。
北师大版数学九年级上册2.2《配方法》教学设计3
北师大版数学九年级上册2.2《配方法》教学设计3一. 教材分析《配方法》是北师大版数学九年级上册第2.2节的内容,本节课主要让学生掌握配方法的步骤和应用。
配方法是解一元二次方程的一种方法,它将一元二次方程转化为完全平方形式,从而使方程的解法更加简便。
本节课的内容与九年级学生的学习水平和认知能力相符合,通过配方法的学习,为学生后续学习二次函数和一元二次方程打下基础。
二. 学情分析九年级的学生已经学习了代数的基本知识,对一元二次方程有一定的了解。
他们具备一定的逻辑思维能力和解决问题的能力,但对于配方法的理解和应用还需要进一步引导和培养。
在教学过程中,教师需要关注学生的学习情况,针对不同学生的需求进行个别辅导,提高他们的学习兴趣和自信心。
三. 教学目标1.让学生掌握配方法的步骤和应用。
2.培养学生运用配方法解决问题的能力。
3.引导学生通过合作交流,提高解决问题的策略。
四. 教学重难点1.配方法的步骤和运用。
2.理解并掌握配方法在解一元二次方程中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过解决问题来学习配方法。
2.运用合作交流的教学方法,鼓励学生分组讨论,共同解决问题。
3.采用案例分析的教学方法,通过具体案例让学生理解配方法的应用。
六. 教学准备1.准备相关的一元二次方程案例,用于引导学生学习和应用配方法。
2.准备教学PPT,展示配方法的概念和步骤。
3.准备黑板,用于板书解题过程和重要概念。
七. 教学过程导入(5分钟)教师通过一个实际问题引导学生思考如何解决一元二次方程。
例如,提出一个问题:小明身高1.5米,比小红高0.3米,求小红的身高。
学生可以尝试用配方法解决这个问题。
呈现(10分钟)教师通过PPT呈现配方法的概念和步骤。
配方法的步骤包括:将方程写成标准形式,找出方程中的a、b、c值,计算配方法的常数项,写出完全平方形式的方程,解出方程的解。
同时,教师可以通过具体的例子来解释配方法的应用。
九年级数学上册《配方法》教案、教学设计
1.通过导入实际问题,激发学生对配方法的学习兴趣,引导学生主动探究配方法的应用。
2.采用讲解、示范、讨论等教学方法,帮助学生掌握配方法的步骤和要领。
3.设计丰富的例题和练习题,让学生在实际操作中巩固所学知识,提高解题能力。
4.引导学生总结配方法的使用规律,培养学生的抽象思维和归纳能力。
难点:引导学生从实际问题中抽象出一元二次方程,并运用配方法进行求解。
3.重点:通过小组讨论,培养学生的合作意识和团队协作能力。
难点:引导学生学会倾听、表达、交流,形成良好的讨论氛围,提高讨论效果。
(二)教学设想
1.针对重点和难点,采用以下教学策略:
a.讲解与示范:以生动的语言和具体的例题,阐述配方法的原理和应用,让学生在模仿中掌握配方法。
3.引入新课:在学生尝试解决问题的基础上,引入配方法的概念,告诉学生今天我们将学习一种解决这类问题的方法——配方法。
(二)讲授新知
1.配方法的定义:介绍配方法的概念,即通过添加和减去同一个数,使一元二次方程的左边成为一个完全平方公式,从而求解方程。
2.配方法的步骤:
a.将一元二次方程写成标准形式:ax^2 + bx + c = 0。
b.选择一道实际问题时,运用配方法求解,并将解题过程和答案写在作业本上。
c.总结配方法的步骤和要领,以书面形式提交。
2.选做题:
a.完成课后拓展题:根据已学的配方法,尝试解决更复杂的一元二次方程,如含参方程、分式方程等。
b.针对课堂所学,设计一道与实际生活相关的一元二次方程问题,并运用配方法求解。
3.小组合作作业:
b.变式练习:设计不同类型的练习题,让学生在解题过程中灵活运用配方法,巩固所学知识。
配方法教案[合集五篇]
配方法教案[合集五篇]第一篇:配方法教案一元二次方程的解法--配方一教学目标1、了解什么是配方法;2、会用配方法准确而熟练解一元二次方程;3、理解配方法的关键、基本思想和步骤;4、体会转化、类比、降次的思想。
二教学过程1、前提测评一般地,对于形如x2=a(a≥0)或(x+m)2=n(n≥0)的方程,根据平方根的定义, 两边直接开平方。
这种解一元二次方程的方法叫做开平方法.练习1(1)方程 x2=0.25 的根是(2)方程 2x2=18 的根是(3)方程(2x -1)2= 9 的根是 2.选择适当的方法解下列方程:(1)x2- 81=0(2)x2 =50(3)(x+1)2=4(4)x2+2x+5=0 2方程x+6x+9=2 可以化成_________,进行降次,得________,方程的根为______ ,。
思考:那么其它的一元二次方程是不是也可以仿照上面的练习,方程左边写成未知项的完全平方式,右边是一个常数的形式?2、新课讲解问题:要使一块长方形场地的长比宽多6m,并且面积为16m2,场地的长和宽应各是多少?解:设场地的宽为(x+60)m,列方程得x(x+6)=162x+6x-16=0 即方程 x2+6x-16=0和方程x+6x+9=2 有何联系与区别呢?2在此进行简单的分析。
解:x2+6x-16=0 移项x2+6x=16 方程两边同时加上9,使左边配成完全平方式得X2+6x+9=16+9 左边写成完全平方(x+3)2=25两边开平方得x+3=±5X+3=5或x+3=-5解得x1=2x2=-8概念:把一元二次方程的左边配成一个完全平方式,然后用开平方法求解,这种解一元二次方程的方法叫做配方法.提出用配方法解一元二次方程的关键是什么?——配方那么怎样进行配方?有什么规律吗?探索规律:(1)x2+8x+=(x+)2(2)x2-4x+=(x-)2(3)x2-6x+=(x-)2 思考:当二次项系数是1时,常数项与一次项的系数有怎样的关系?规律:当二次项系数是1时,常数项是一次项系数一半的平方。
沪科版数学八年级下册《配方法》教学设计2
沪科版数学八年级下册《配方法》教学设计2一. 教材分析《配方法》是沪科版数学八年级下册的教学内容,主要介绍了配方法的原理和应用。
通过配方法,可以将一个二次多项式转化为完全平方的形式,从而简化问题的求解过程。
本节课的教学内容主要包括配方法的步骤和配方法在解决实际问题中的应用。
二. 学情分析学生在学习本节课之前,已经掌握了二次多项式的基本概念和运算方法,具备了一定的代数基础。
但是,对于配方法的概念和应用可能还不够熟悉,需要通过本节课的学习来进一步理解和掌握。
三. 教学目标1.理解配方法的概念和原理,掌握配方法的步骤。
2.能够运用配方法将二次多项式转化为完全平方的形式。
3.能够运用配方法解决实际问题,提高解决问题的能力。
四. 教学重难点1.配方法的概念和原理的理解。
2.配方法的步骤的掌握。
3.配方法在解决实际问题中的应用。
五. 教学方法采用问题驱动的教学方法,通过引导学生思考和探索,让学生自主发现配方法的原理和应用。
同时,结合实例讲解和练习,让学生在实践中掌握配方法的操作步骤和运用技巧。
六. 教学准备1.准备相关的教学材料和课件,包括配方法的概念、步骤和应用实例。
2.准备一些练习题,用于巩固学生的学习成果。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾二次多项式的基本概念和运算方法,为新课的学习做好铺垫。
2.呈现(15分钟)讲解配方法的概念和原理,通过具体的例子演示配方法的步骤和过程。
让学生初步理解配方法的意义和作用。
3.操练(20分钟)让学生分组合作,运用配方法将给定的二次多项式转化为完全平方的形式。
教师巡回指导,解答学生的疑问。
4.巩固(15分钟)让学生独立完成一些配方法的练习题,检验学生对配方法的理解和掌握程度。
教师及时批改和反馈,帮助学生巩固所学知识。
5.拓展(10分钟)通过一些实际问题,让学生运用配方法解决问题,培养学生的应用能力。
同时,引导学生思考配方法在更广泛领域的应用。
6.小结(5分钟)让学生总结本节课所学的内容,回顾配方法的步骤和应用。
21.2.1第2课时配方法2024-2025学年九年级上册数学配套教学设计(人教版)
x^2 - 5x + 25/4 - 25/4 = 25/4 - 25/4 + 6
x^2 - 5x + 0 = 25/4 - 25/4 + 6
x^2 - 5x = 25/4 - 25/4 + 6
x^2 - 5x = 6
(2)观察:教师应时刻关注学生在课堂上的学习状态,观察他们是否能够积极参与讨论、主动思考问题。对于表现优秀的学生,可以给予表扬和鼓励;对于表现不足的学生,应及时进行个别辅导,帮助他们跟上课堂进度。
(3)测试:在课堂上,可以适时进行一些配方法的小测试,了解学生对知识点的掌握情况。测试结果可以作为评价学生学习效果的重要依据。
(5)参观数学博物馆:如果条件允许,可以组织学生参观数学博物馆,了解数学的历史和发展。
(6)参加数学讲座:邀请数学专家或教师为学生举办数学讲座,让学生了解数学的最新发展和应用。
课堂
1.课堂评价
(1)提问:在课堂上,教师可以通过提问的方式了解学生对配方法的理解情况。针对学生的回答,教师可以及时进行反馈,帮助学生巩固正确答案,纠正错误思路。
本节课的内容与学生的日常生活紧密相连,有利于激发学生的学习兴趣。在教学过程中,教师应注重引导学生通过观察、思考、讨论等方式主动探索配方法的应用,提高学生的数学思维能力和团队合作能力。同时,教师还要关注学生的个体差异,针对不同学生的学习情况给予适当的指导,使他们在原有基础上得到提高。
核心素养目标
本节课的核心素养目标包括:逻辑推理、数学建模、数学交流和问题解决。通过学习配方法的基本步骤和应用,学生能够提高逻辑推理能力,运用数学知识解决实际问题。同时,学生通过观察、思考、讨论等方式,培养数学建模和数学交流的能力。在解决一元二次方程的过程中,学生能够体会到数学在实际生活中的应用,提高问题解决能力。教师应关注学生的个体差异,给予适当的指导,使他们在原有基础上得到提高。
人教版数学九年级上册《配方法》教学设计1
人教版数学九年级上册《配方法》教学设计1一. 教材分析人教版数学九年级上册《配方法》是本学期的重点内容,主要让学生掌握配方法的基本概念、方法和应用。
通过配方法的学习,使学生能解决一些实际问题,提高他们的数学解决问题的能力。
本节课的教学内容主要包括配方法的基本概念、配方法的步骤和配方法在解决实际问题中的应用。
二. 学情分析九年级的学生已经具备了一定的代数基础,对一些基本的代数运算和数学概念有一定的了解。
但学生在学习过程中,对于较为复杂的数学问题,仍存在一定的困难。
因此,在教学过程中,需要教师引导学生逐步理解配方法的概念和步骤,并通过大量的例子让学生掌握配方法在解决实际问题中的应用。
三. 教学目标1.知识与技能:让学生掌握配方法的基本概念、方法和应用。
2.过程与方法:通过学生的自主探究和合作交流,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生体验到数学在生活中的重要性。
四. 教学重难点1.配方法的基本概念和步骤。
2.配方法在解决实际问题中的应用。
五. 教学方法1.引导法:教师引导学生自主探究,发现配方法的基本概念和步骤。
2.讲解法:教师通过讲解配方法的原理和例子,使学生理解和掌握配方法。
3.练习法:学生通过大量的练习,巩固所学的配方法知识。
4.合作交流法:学生分组讨论,共同解决问题,培养学生的合作精神。
六. 教学准备1.准备相关的教学PPT,包括配方法的基本概念、步骤和应用。
2.准备一些实际问题,让学生在课堂上进行配方法的实践操作。
3.准备一些练习题,用于巩固学生的学习效果。
七. 教学过程1.导入(5分钟)教师通过一个实际问题,引导学生思考如何解决这个问题。
例如,一个长方形的长是10cm,宽是5cm,求这个长方形的面积。
让学生尝试使用已学的知识解决这个问题,从而引出配方法的概念。
2.呈现(15分钟)教师通过PPT呈现配方法的基本概念和步骤,配方法的定义、目的和应用。
冀教版数学九年级上册《配方法》教学设计1
冀教版数学九年级上册《配方法》教学设计1一. 教材分析冀教版数学九年级上册《配方法》是学生在学习了二次根式、二次方程、二次不等式等知识的基础上,进一步探究数学中的配方法。
配方法是一种重要的数学思想,它将复杂的代数式通过一定的变换,转化为简单的形式,从而使问题得到解决。
这部分内容对于学生来说,既是知识的拓展,又是能力的提升。
二. 学情分析学生在学习配方法之前,已经具备了二次根式的知识,对于二次方程和二次不等式也有了一定的了解。
但学生在解决实际问题时,往往不知道如何运用配方法,因此,在教学过程中,教师需要引导学生将已有的知识与配方法相结合,从而更好地解决问题。
三. 教学目标1.知识与技能:使学生掌握配方法的基本步骤和应用。
2.过程与方法:培养学生运用配方法解决实际问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自信心。
四. 教学重难点1.重点:配方法的基本步骤和应用。
2.难点:如何引导学生将配方法与实际问题相结合。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过问题引导学生思考,案例教学使学生掌握配方法的具体步骤,小组合作学习使学生在实践中运用配方法。
六. 教学准备1.教材:冀教版数学九年级上册。
2.教案:详细的教学设计。
3.课件:配方法的动画演示。
4.练习题:针对性的练习题。
七. 教学过程1.导入(5分钟)利用一个实际问题,引导学生思考如何解决。
例如:已知一个二次方程的解,求该方程的系数。
2.呈现(10分钟)通过课件展示配方法的基本步骤:将二次项系数提出,补全平方,化简。
同时,结合案例,让学生直观地看到配方法的应用过程。
3.操练(10分钟)让学生分组进行练习,每组选一个练习题,运用配方法进行求解。
教师巡回指导,解答学生遇到的问题。
4.巩固(5分钟)选几个代表性的题目,让学生上黑板进行演示,讲解解题思路。
5.拓展(5分钟)让学生思考:配方法在实际生活中的应用。
例如:商品打折、土地面积计算等。
配方法教学设计
配方法教学设计关键信息项1、教学目标知识与技能目标:学生能够理解配方法的基本原理,掌握用配方法解一元二次方程的方法和步骤。
过程与方法目标:通过观察、类比、归纳等活动,培养学生的数学思维能力和逻辑推理能力。
情感态度与价值观目标:激发学生对数学的兴趣,增强学生的自信心和克服困难的勇气。
2、教学重难点重点:配方法的原理和步骤,用配方法解一元二次方程。
难点:配方的过程和技巧,理解配方法与完全平方公式的关系。
3、教学方法讲授法:讲解配方法的概念、原理和步骤。
练习法:通过练习让学生巩固所学知识。
讨论法:组织学生讨论,解决疑难问题。
4、教学过程导入环节新课讲授课堂练习课堂小结课后作业5、教学资源教材多媒体课件练习册11 教学目标111 知识与技能目标通过本节课的学习,学生能够:理解配方法的定义和本质。
熟练掌握配方法解一元二次方程的基本步骤。
正确运用配方法求解简单的一元二次方程。
112 过程与方法目标在教学过程中,引导学生:经历从具体到抽象的认知过程,体会配方法的形成过程。
通过观察、分析、归纳等数学活动,培养学生的数学思维能力和逻辑推理能力。
学会运用类比、转化等数学思想方法解决问题。
113 情感态度与价值观目标激发学生对数学的兴趣,培养学生:积极主动参与数学学习的态度。
勇于探索、敢于创新的精神。
培养学生严谨的科学态度和合作交流的意识。
12 教学重难点121 教学重点配方法解一元二次方程的原理和步骤。
让学生理解配方法的关键是在方程两边加上一次项系数一半的平方。
122 教学难点配方的过程和技巧,特别是当二次项系数不为 1 时的配方方法。
理解配方法与完全平方公式的内在联系,以及配方法在数学中的应用。
13 教学方法131 讲授法在教学过程中,教师清晰、准确地讲解配方法的概念、原理和步骤,使学生对配方法有初步的认识和理解。
通过教师的讲解,学生能够掌握配方法的基本知识和解题思路。
132 练习法安排适量的课堂练习和课后作业,让学生通过实际操作,巩固所学的配方法知识,提高解题能力。
配方法教学设计
配方法教学设计一、教学目标1、使学生理解配方法,会用配方法解一元二次方程。
2、通过对配方法的探究,培养学生观察、分析、归纳、概括的能力。
3、让学生在探索配方法的过程中,感受数学的严谨性和数学方法的多样性,体验数学学习的乐趣。
二、教学重难点1、教学重点:掌握用配方法解一元二次方程。
2、教学难点:如何配方。
三、教学方法讲授法、讨论法、练习法四、教学过程(一)引入新课同学们,咱们先来玩一个小游戏。
假设老师有一个神秘的盒子,这个盒子里装着一些数字。
老师告诉你们,当我在这个数字上加上 5,然后平方,得到的结果是 49 。
你们能猜猜这个数字是多少吗?这时候大家就开始七嘴八舌地讨论啦,有的同学说:“老师,是不是 2 呀?” 有的说:“不对不对,应该是 4 。
” 那咱们一起来算一算。
假设这个数字是 x ,那么根据题意可以列出方程:(x + 5)²= 49 。
接下来咱们就要用今天要学的配方法来解开这个方程,找到这个神秘的数字啦。
(二)讲解新课1、什么是配方法咱们先来看一个简单的方程 x²+ 6x + 4 = 0 。
为了用配方法解方程,我们要把方程左边变成一个完全平方式。
那怎么变呢?我们在方程两边加上 9 ,得到 x²+ 6x + 9 + 4 9 = 0 ,整理一下就是(x +3)² 5 = 0 。
这就是配方法,通过在方程两边加上一个适当的常数,把方程左边变成一个完全平方式。
2、用配方法解方程咱们再来看看刚才那个方程(x + 5)²= 49 。
这时候咱们就可以开平方啦,得到 x + 5 = ±7 。
所以 x =-5 ± 7 ,也就是 x₁= 2 ,x₂=-12 。
咱们再来看一个例子,解方程 x² 4x 5 = 0 。
首先在方程两边加上4 ,得到 x² 4x + 45 4 = 0 ,整理一下就是(x 2)² 9 = 0 。
人教版九年级数学上册21.2.1:配方法(教案)
此外,我也在思考如何能够更好地利用课堂时间,让学生在有限的课时内充分吸收和理解配方法的精髓。可能需要我在备课上下更多的功夫,精心设计教学活动和问题,以提高课堂效率。
2.配方法的一般步骤:常数项移项、配方、开方、解方程;
3.应用配方法求解以下类型的一元二次方程:
a. x^2 + bx + c = 0(b、c为常数)
b. (ax + b)^2 = c(a、b、c为常数,a≠0)
4.配方法在实际问题中的应用。
二、核心素养目标
1.培养学生逻辑推理能力,使其能够理解并运用配方法的逻辑原理;
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了配方法的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对配方法的理解。我希望大家能够掌握这些知识点,并在解决一元二次方程时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-应用配方法解决实际问题时,如何建立数学模型,将实际问题抽象成一元二次方程,并运用配方法求解。
-对于含有多个变量或复杂条件的实际问题,如何筛选信息,抓住关键点,将问题简化为一元二次方程。
举例:在解决一个与面积相关的实际问题时,学生需要学会如何从问题中提取出关键信息,建立方程,然后应用配方法求解。
四、教学流程
五、教学反思
公开课教案(配方法)
公开课教案(配方法)第一章:教学目标与内容简介一、教学目标1. 让学生理解配方法的含义和作用。
2. 培养学生运用配方法解决问题的能力。
3. 提高学生对数学知识的兴趣和积极性。
二、教学内容简介1. 配方法的定义和基本步骤。
2. 配方法在解决实际问题中的应用。
3. 配方法与其他数学方法的联系和区别。
第二章:教学准备与过程三、教学准备1. 教学课件或黑板。
2. 练习题和案例。
3. 教学辅助工具,如计数器、几何模型等。
四、教学过程1. 引入新课:通过一个实际问题引入配方法的概念。
2. 讲解配方法:解释配方法的定义和基本步骤。
3. 案例分析:分析一些实际问题,引导学生运用配方法解决。
4. 练习与讨论:学生分组练习,教师解答疑问,引导学生总结配方法的应用规律。
第三章:教学重点与难点1. 配方法的定义和基本步骤。
2. 配方法在解决实际问题中的应用。
六、教学难点1. 理解配方法的本质和原理。
2. 灵活运用配方法解决不同类型的问题。
第四章:教学评价与反思七、教学评价1. 课堂参与度:观察学生在课堂中的积极参与和提问情况。
2. 练习正确率:评估学生练习题的正确率,及时给予反馈。
3. 学生作品:评估学生的练习作品,关注学生的理解和应用能力。
八、教学反思1. 总结教学中的成功之处和改进之处。
2. 分析学生的学习情况,调整教学策略和方法。
3. 反思教学过程中的师生活动,提高教学质量。
第六章:教学活动与策略九、教学活动1. 小组合作:学生分组讨论,共同解决实际问题,培养团队合作能力。
2. 互动提问:教师引导学生提问,培养学生的思考和表达能力。
3. 案例研究:学生选择一个案例进行深入研究,提高学生的分析能力。
1. 情境创设:通过生活情境引入配方法,提高学生的学习兴趣。
2. 逐步引导:教师引导学生逐步探索配方法的应用,培养学生的自主学习能力。
3. 激励评价:教师及时给予学生鼓励和评价,提高学生的学习动力。
第七章:教学拓展与延伸十一、教学拓展1. 对比分析:比较配方法与其他数学方法在解决同一问题时的优缺点。
配方法 优秀教学设计(教案)
配方法【教学目标】1.知识与技能:(1)理解一元二次方程“降次”的转化思想。
(2)根据平方根的意义解形如()20x p p =≥的一元二次方程,然后迁移到解()()20mx n p p +=≥型的一元二次方程。
(3)把一般形式的一元二次方程(二次项系数是1,一次项系数是偶数)与左边是含有未知数的完全平方式右边是非负常数的一元二次方程对比,引入配方法,并掌握。
2.过程与方法:(1)通过根据实际问题列方程,向学生渗透知识来源于生活。
(2)通过观察,思考,对比获得一元二次方程的解法——直接开平方法,配方法。
3.情感态度与价值观:通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情。
【教学重点】1.运用开平方法解形如()()20mx n p p +=≥的方程;领会降次──转化的数学思想。
2.用配方法解二次项是1,一次项系数是偶数的一元二次方程。
【教学难点】掌握降次思想,配方法。
【教学过程】一、复习导入。
导语:已经学习了一元二次方程的概念,本节课开始学习其解法,首先学习直接开平方法,配方法。
二、探究新知。
(一)探究课本问题分析。
1.用列方程方法解题的等量关系是什么?2.解方程的依据是什么?3.方程的解是什么?问题的答案是什么?4.该方程的结构是怎样的?(二)归纳。
可根据数的开方的知识解形如()20x p p =≥的一元二次方程,方程有两个根,但是不一定都是实际问题的解。
(三)解决课本思考。
1.如何理解降次?2.本题中的一元二次方程是通过什么方法降次的?3.能化为()()20x m n n +=≥的形式的方程需要具备什么特点?4.归纳。
(1)运用平方根知识将形如x 2=p (p≥0)或(mx+n )2=p (p≥0)的一元二次方程降次,转化为两个一元一次方程,解一元一次方程即可。
(2)左边是含有未知数的完全平方式,右边是非负常数的一元二次方程可化为()()20x m n n +=≥。
(四)探究课本问题。
人教版九年级上册21.2.1配方法课程设计 (2)
人教版九年级上册21.2.1配方法课程设计一、课程设计目标本课程旨在帮助学生掌握人教版九年级上册21.2.1配方法的相关知识,能够熟练应用该方法完成简单的练习题,提高学生的数学解题能力和思维能力。
二、学情分析本课程的教学对象为九年级学生,他们已经具备了初中阶段的数学基础,对于21.2.1配方法这个知识点,他们已经有了初步的了解。
但是,在实际的解题过程中,学生还有很多不足之处,需要进一步加强练习和掌握。
三、教学重难点本课程的教学重点在于帮助学生深入理解21.2.1配方法的基本思路,掌握配方法的基本步骤以及应用技巧。
教学难点在于帮助学生解决具体的应用问题,提高学生的实际操作能力。
四、教学方法本课程采用多种教学方法,包括讲解法、示范法、练习法、讨论法和实验法,以帮助学生全面和深入地理解配方法的相关知识。
五、教学内容和步骤1.教学内容本课程的教学内容主要包括以下几个方面:•21.2.1配方法的基本思路和步骤;•21.2.1配方法的具体应用;•21.2.1配方法在其他知识点中的应用;•21.2.1配方法中需要注意的问题。
2.教学步骤(1)导入环节在导入环节中,可以通过问题、情景等方式使学生产生学习兴趣和学习动力。
(2)知识传授在知识传授环节中,教师应首先简要介绍21.2.1配方法的基本思路和步骤,然后通过示范、讲解等方式详细讲解配方法的具体应用和注意事项。
(3)练习环节在练习环节中,教师可以根据学生的实际情况设计一些简单的练习题,让学生熟练应用配方法解题。
同时,教师可以针对学生的实际情况进行适当调整,加强练习环节的实用性。
(4)巩固环节在巩固环节中,教师可以通过讨论、合作等方式对学生进行知识巩固和综合提高,以达到更好的教学效果。
(5)总结环节在总结环节中,教师可以对本节课的教学内容进行简要回顾和总结,让学生对配方法的相关知识有更深刻的理解和掌握。
同时,教师可以向学生询问对本节课程的掌握情况,以便为下一节课做好准备工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17.2 一元二次方程的解法
1.配方法
学习目标
1.学会用直接开平方法解形如(x +m )2=n (n ≥0)的一元二次方程;(重点)
2.理解配方法的思路,能熟练运用配方法解一元二次方程.(难点) 教学过程
一、情境导入
读诗词解题:
(通过列方程,算出周瑜去世时的年龄。
)
大江东去浪淘尽,千古风流数人物。
而立之年督东吴,早逝英年两位数。
十位恰小个位三,个位平方与寿符。
哪位学子算得快,多少年华属周瑜?
解:设个位数字为x ,十位数字为x-3
x 2=10(x-3)+x
二、合作探究
探究点一:用直接开平方法解一元二次方程
用直接开平方法解下列方程:
(1)x 2=9; (2)x 2=0.25;
(32x 2=18; (4)(2x -1)2=9.
解析:用直接开平方法解方程时,要先将方程化成左边是含未知数的完全平方式,右边
是非负数的形式,再根据平方根的定义求解.注意开方后,等式的右边取“正、负”两种情
况.
解:(1)移项,得x 2=9根据平方根的定义,得x =±3,即x 1=3,x 2=-3;
(2)移项,得x 2=0.25根据平方根的定义,得x =±0.5,即x 1=0.5,x 2=-0.5;
(3)两边同时除以2,得x 2=9,根据平方根的定义,得得x =±3,即x 1=3,x 2=-3;
(4)根据平方根的定义,得2x -1=±3,即2x -1=3或2x -1=-3,即x 1=2,x 2=-1
方法总结:直接开平方法是解一元二次方程的最基本的方法,它的理论依据是平方根的
定义,它的可解类型有如下几种:①x 2=a (a ≥0);②(x +a )2=b (b ≥0);③(ax +b )2=c (c ≥0);
④(ax +b )2=(cx +d )2(|a |≠|c |).
探究点二:用配方法解一元二次方程
【类型一】 用配方法解一元二次方程
1、x 2-4x +1=0如何解这个方程?想想可能转化成
的形式?
2、复习完全平方
(1)x 2+8x + =(x +4)2
()2a ••••=
(2)x 2-4x + =(x - )2
(3)x 2-___x + 9 =(x - )2
3、概念:像这种先对原一元二次方程配方,使它出现完全平方式后, 再用直接开平方法求解的方法叫做配方法.
用配方法解下列方程:
(1)x 2-4x -1=0;
(2)2x 2-3x -1=0.
解析:当二次项系数是1时,先把常数项移到右边,然后左、右两边同时加上一次项系数一半的平方,把左边配方成完全平方式,即为(x +m )2=n (n ≥0)的形式,再用直接开平方法求解;当二次项系数不是1时,先将二次项系数化为1,再用配方法解方程.
解:(1)移项,得x 2-4x =1.配方,得x 2-4x +22=1+22,即(x -2)2=5直接开平方,得x -2=±5.所以原方程的根是x 1=2+5,x 2=2-5;
(2)方程两边同时除以2,得x 2-23x -21=0.移项,得x 2-23x =21.配方,得x 2-23x +(43)2=21+(43)2,即(x —43)2=16
17.直接开平方,得x —43=±417.所以原方程的根是x 1=4173+,x 2=4
173-. 方法总结:运用配方法解一元二次方程的关键是先把一元二次方程转化为二次项系数为1的一元二次方程,然后在方程两边同时添加常数项,使其等于一次项系数一半的平方.
用配方法解一元二次方程的步骤:
化1:将二次项的系数化为1
移项:把常数项移到方程的右边;
配方:方程两边都加上一次项系数一半的平方;
开方:根据平方根意义,方程两边开平方;
求解:解一元一次方程;
定解:写出原方程的解.
【类型二】 利用配方法求代数式的最值或判定代数式的取值范围
请用配方法说明:不论k 取何值,代数式k 2-3k +5的值恒为正.
解析:本题是要运用配方法将代数式化为一个平方式加上一个常数的形式.
解:∵k 2-3k +5=x 2-3x +(
23)2+5-(23)2=(x -23)2+411,而(x -23)2≥0, ∴(x -23)2+411≥4
11. ∴代数式x 2-5x +7的值恒为正.
方法总结:对于代数式是一个关于x 的二次式且含有一次项,在求它的最值时,常常采用配方法,将原代数式变形为一个完全平方式加一个常数的形式,根据一个数的平方是一个非负数,就可以求出原代数式的最值.
课堂总结:
1.一般地,对于形如x2=a(a ≥0)的方程,根据平方根的定义,可解得 ,
这种解一元二次方程的方法叫做直接开平方法. 2.像这种先对原一元二次方程配方,使它出现完全平方式后, 再用直接开平方法求解的方法叫做配方法.
注意:配方时, 二次项系数化为1后,等式两边同时加上的是一次项系数一半的平方
拓展:利用配方法求代数式的值
已知a 2-3a +b 2-b 2+3716
=0,求a -4b 的值. 解析:观察方程可以知道,原方程可以用配方法转化为两个数的平方和等于0的形式,得到这两个数都为0,从而可求出a ,b 的值,再代入代数式计算即可.
解:原等式可以写成:(a -32)2+(b -14
)2=0. ∴a -32=0,b -14=0,解得a =32,b =14
. ∴a -4b =32-4×14=-12
. 方法总结:这类题目主要是配方法和平方的非负性的综合应用,通过配方把等式转化为两个数的平方和等于0的形式是解题的关键.
变式训练:见《学练优》本课时练习“课后巩固提升”第11题
【类型三】 利用配方法求代数式的最值或判定代数式的取值范围
请用配方法说明:不论k 取何值,代数式k 2-3k +5的值恒为正.
解析:本题是要运用配方法将代数式化为一个平方式加上一个常数的形式.
a x ,a x 21
-==
解:∵k 2-3k +5=x 2-3x +(
23)2+5-(23)2=(x -23)2+411,而(x -23)2≥0, ∴(x -23)2+411≥4
11. ∴代数式x 2-5x +7的值恒为正.
方法总结:对于代数式是一个关于x 的二次式且含有一次项,在求它的最值时,常常采用配方法,将原代数式变形为一个完全平方式加一个常数的形式,根据一个数的平方是一个非负数,就可以求出原代数式的最值.。