高中数学2.6正态分布二教案北师大选修23

合集下载

《2.6 正态分布》 课件 3-优质公开课-北师大选修2-3精品

《2.6 正态分布》 课件 3-优质公开课-北师大选修2-3精品

课前探究学习
课堂讲练互动
若X~N(μ,σ2),则P(μ-a<X≤μ+a)的几何意义 想一想:
是什么?
提示 表示X取值的概率和正态曲线与x=μ-a,x=μ+a 以及x轴所围成的图形的面积相等.
课前探究学习
课堂讲练互动
名师点睛
1.对正态分布性质的理解 (1)曲线位于 x 轴上方,与 x 轴不相交; (2)曲线是单峰的,它关于直线 x=μ 对称; 1 (3)曲线在 x=μ 处达到峰值 ; σ 2π (4)曲线与 x 轴之间的面积为 1;
∴分布密度函数的解析式为 机变量的期望为 μ=20,方差 σ2=( 2)2=2.
x∈R.总体随 ,
课前探究学习
课堂讲练互动
规律方法
(1)用待定系数法求正态变量分布密度函数的表
达式,关键是确定 μ 和 σ 的值,并注意函数的形式. (2)当 x=μ 时,正态变量的密度函数取得最大值,即 f(μ)= 1 为最大值,应注意该式在解题中的作用. 2πσ (3)解题时注意数形结合思想的运用.
课前探究学习
课堂讲练互动
2.正态曲线
正态分布的分布密度函数 图像称为正态分布密度曲线,简称 正态曲线 ,x∈R 的 .
a
b f(x)dx, 随机变量 X 落在区间(a,b)内的概率为 P(a<X<b)=
即由正态曲线,过点(a,0)和点(b,0)的两条x轴的垂线及x轴 所围成的平面图形的面积 ,就是 X 落在区间(a,b)内的概 率的近似值.(如图)
课前探究学习
课堂讲练互动
(5)当σ一定时,曲线随着μ的变化而沿x轴ห้องสมุดไป่ตู้移,如图;
课前探究学习
课堂讲练互动
(6)当μ一定时,曲线的形状由σ确定.σ越小,曲线越 “瘦高”,表示总体的分布越集中;σ越大,曲线越“矮

北师大版数学高二学案 2.6 正态分布

北师大版数学高二学案 2.6 正态分布

2.6 正态分布[学习目标] 1.利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义.2.了解变量落在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)的概率大小.3.会用正态分布去解决实际问题.知识点一 连续型随机变量离散型随机变量的取值是可以一一列举的,但在实际应用中,还有许多随机变量可以取某一区间中的一切值,是不可以一一列举的,这种随机变量称为连续型随机变量. 知识点二 正态分布如果随机变量X 的分布密度函数为f (x )=1σ2π·exp ⎩⎨⎧⎭⎬⎫-(x -μ)22σ2(x ∈R ,μ,σ为常数,且σ>0,exp{g (x )}=e g (x )),称X 服从参数为μ,σ2的正态分布,通常用X ~N (μ,σ2)表示.其中EX =μ,DX =σ2.思考1 正态曲线f (x )=12πσ22()2e x μσ--,x ∈R 中的参数μ,σ2有何意义?答 μ可取任意实数,表示平均水平的特征数,EX =μ;σ2>0表示方差,DX =σ2.一个正态曲线方程由μ,σ2唯一确定,π和e 为常数,x 为自变量,x ∈R . 思考2 若随机变量X ~N (μ,σ2),则X 是离散型随机变量吗?答 若X ~N (μ,σ2),则X 不是离散型随机变量,由正态分布的定义:P (a <X <b )=⎠⎛ab f (x )d x可知,X 可取(a ,b)内的任何值,故X 不是离散型随机变量,它是连续型随机变量. 知识点三 正态分布密度函数满足的性质 1.(1)函数图像关于直线x =μ对称;(2)σ(σ>0)的大小决定函数图像的“胖”“瘦”;(3)P(μ-σ<X <μ+σ)=68.3%;P (μ-2σ<X <μ+2σ)=95.4%;P (μ-3σ<X <μ+3σ)=99.7%. 2.若随机变量服从正态分布,则它在区间(μ-3σ,μ+3σ)外取值的概率只有0.3%,由于这个概率值很小,通常称这些情况发生为小概率事件.即通常认为这些情况在一次试验中几乎不可能发生.题型一 正态曲线例1 如图为某地成年男性体重的正态曲线图,请写出其正态分布密度函数,并求P (|X -72|<20).解 由图可知μ=72,σ=10,故正态分布密度函数为φμ,σ(x )=12π·102(72)200e x --,x ∈(-∞,+∞).则P (|X -72|<20)=P (|X -μ|<2σ)=P (μ-2σ<X <μ+2σ)=95.4%.反思与感悟 利用图像求正态密度函数的解析式,关键是找对称轴x =μ与最值1σ2π,这两点确定以后,相应参数μ,σ的值便确定了.跟踪训练1 如图所示是一个正态曲线.试根据该图像写出其正态分布的概率密度函数的解析式,求出总体随机变量的均值和方差.解 从给出的正态曲线可知,该正态曲线关于直线x =20对称,最大值是12π,所以μ=20.12π·σ=12π, 解得σ= 2.于是概率密度函数的解析式是 φμ,σ(x )=12π·2(20)4ex --,x ∈(-∞,+∞).总体随机变量的均值是μ=20, 方差是σ2=(2)2=2. 题型二 利用正态分布求概率例2 设ξ~N (1,22),试求:(1)P (-1<ξ<3); (2)P (3<ξ<5).解 ∵ξ~N (1,22),∴μ=1,σ=2, (1)P (-1<ξ<3)=P (1-2<ξ<1+2) =P (μ-σ<ξ<μ+σ)=0.683. (2)∵P (3<ξ<5)=P (-3<ξ<-1),∴P (3<ξ<5)=12[P (-3<ξ<5)-P (-1<ξ<3)]=12[P (1-4<ξ<1+4)-P (1-2<ξ<1+2)] =12[P (μ-2σ<x <μ+2σ)-P (μ-σ<x <μ+σ)] =12(0.954-0.683)=0.135 5. 反思与感悟 解答此类题目的关键在于运用3σ原则将给定的区间转化为用μ加上或减去几个σ来表示;当要求服从正态分布的随机变量的概率所在的区间不对称时,不妨先通过分解或合成,再通过求其对称区间概率的一半解决问题.经常用到如下转换公式:①P (x ≥a )=1-P (x <a );②若b <μ,则P (X <μ-b )=1-P (μ-b <X <μ+b )2.跟踪训练2 若η~N (5,1),求P (5<η<7).解 ∵η~N (5,1),∴正态分布密度函数的两个参数为μ=5,σ=1,∵该正态曲线关于x =5对称,∴P (5<η<7)=12×P (3<η<7)=12×0.954=0.477.题型三 正态分布的实际应用例3 在某次数学考试中,考生的成绩ξ服从一个正态分布,即ξ~N (90,100). (1)试求考试成绩ξ位于区间(70,110)上的概率是多少?(2)若这次考试共有2 000名考生,试估计考试成绩在(80,100)间的考生大约有多少人? 解 ∵ξ~N (90,100),∴μ=90,σ=100=10.(1)由于正态变量在区间(μ-2σ,μ+2σ)内取值的概率是0.954,而该正态分布中,μ-2σ=90-2×10=70,μ+2σ=90+2×10=110,于是考试成绩ξ位于区间(70,110)内的概率就是0.954.(2)由μ=90,σ=10,得μ-σ=80,μ+σ=100,由于正态变量在区间(μ-σ,μ+σ)内取值的概率是0.683.一共有2 000名考生,所以考试成绩在(80,100)间的考生大约有2 000×0.683=1 366(人).反思与感悟解答此类题目的关键在于充分利用正态曲线的对称性,把待求区间内的概率向已知区间内的概率进行转化,在此过程中充分体现数形结合及化归的数学思想.跟踪训练3某设备在正常运行时,产品的质量服从正态分布,其参数为μ=500 g,σ2=1,为了检验设备运行是否正常,质量检查员需要随机地抽取产品,测量其质量.当检验员随机地抽取一个产品,测得其质量为504 g时,他立即要求停止生产,检查设备.他的决定是否有道理呢?解如果设备正常运行,产品质量服从正态分布N(μ,σ2),根据正态分布的性质可知,产品质量在μ-3σ=500-3=497(g)和μ+3σ=500+3=503(g)之间的概率为0.997,而质量超出这个范围的概率只有0.003,这是一个几乎不可能出现的事件.但是检验员随机抽取的产品为504 g,这说明设备的运行极可能不正常,因此检验员的决定是有道理的.1.如图是当σ取三个不同值σ1,σ2,σ3的三种正态曲线N(0,σ2)的图像,那么σ1,σ2,σ3的大小关系是()A.σ1>1>σ2>σ3>0B.0<σ1<σ2<1<σ3C.σ1>σ2>1>σ3>0D.0<σ1<σ2=1<σ3答案D2.把一个正态曲线a沿着横轴方向向右移动2个单位,得到新的一条曲线b.下列说法中不正确的是()A.曲线b仍然是正态曲线B.曲线a和曲线b的最高点的纵坐标相等C.以曲线b为概率密度曲线的总体的均值比以曲线a为概率密度曲线的总体的均值大2 D.以曲线b为概率密度曲线的总体的方差比以曲线a为概率密度曲线的总体的方差大2答案 D3.正态分布N (0,1)在区间(-2,-1)和(1,2)上取值的概率为P 1,P 2,则二者大小关系为( ) A .P 1=P 2 B .P 1<P 2 C .P 1>P 2 D .不确定答案 A解析 根据正态曲线的特点,图像关于x =0对称,可得在区间(-2,-1)和(1,2)上取值的概率P 1,P 2相等.4.一批灯泡的使用时间X (单位:小时)服从正态分布N (10 000,4002),求这批灯泡中“使用时间超过10 800小时”的概率. 解 依题意得μ=104,σ=400.∴P (104-800<X <104+800)=P (μ-2σ<X <μ+2σ)=0.954. 由正态分布性质知P (X <104-800)=P (X >104+800) 故2P (X >10 800)+P (104-800<X <104+800)=1, ∴P (X >10 800)=1-0.9542=0.023,故使用时间超过10 800小时的概率为0.023.。

2.6正态分布 教案高中数学选修2-3 北师大版

2.6正态分布 教案高中数学选修2-3 北师大版

§6 正态分布●三维目标1.知识与技能(1)让学生理解正态函数及其曲线的有关性质,并运用它来解决一些简单的与正态分布有关的问题.(2)培养学生从图形上分析、解决问题的能力和抽象思维能力.2.过程与方法(1)探究法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系.3.情感、态度与价值观通过教学中一系列的探究过程,使学生体验发现的快乐,形成积极的情感,培养学生的进取意识和科学精神.●重点难点重点:正确认识正态分布密度曲线的特点及其所表示的意义;难点:数形结合归纳正态分布曲线的性质.教学时要通过一些贴近生活的实例,让学生对正态分布有初步直观的认识,同时使学生领悟到“数学来源于实践,又要回归到实践”,从而培养学生的学习兴趣,激发学习热情.教学中教师可利用多媒体引导学生分析归纳正态曲线的特点,既加强了学生的直观理解,也增强了学生观察归纳的能力.通过几何画板呈现了教学中难以呈现的课程内容,很好地锻炼了学生观察归纳的能力,体现了归纳、分类、化难为易、数形结合的思想.这样的处理很好地突出了重点、突破了难点.(教师用书独具)●教学建议由于高二学生已具有较好的数学基础和较强的分析问题、解决问题的能力.因此,在教学中以学生为中心,以严谨的思维为载体,采用启发、猜想、探究相结合的教学方法.(1)让学生在实例中发现问题、提出问题,并学会猜想,在思想的产生过程中不知不觉培养学生的猜想与看图能力;(2)提供“观察、探究、交流”的机会,引导学生独立思考,有效调动学生的思维,使学生在开放的活动中获取知识;(3)利用多媒体辅助教学,直观生动地呈现,突出重点,化解难点.既加大了课堂信息量又提高了教学效率.●教学流程提出问题如何描述随机变量的分布情况.⇒分析理解通过两个实例画出图形(频率分布直方图).⇒给出定义通过上面的实例,教师引导,分析得出分布密度曲线.⇒利用几何画板,学生分组讨论,自己总结正态分布密度函数的性质.⇒通过例题分析,讲解让学生体会正态分布的应用.⇒课堂小结,布置作业.1.离散型随机变量的取值有何特点?【提示】 离散型随机变量的取值是可以一一列举出来的.2.一件产品的使用寿命是否为随机变量?它能一一列举出来吗?【提示】 一件产品的使用寿命是随机变量,但它不能一一列举出来.离散型随机变量的取值是可以一一列举的,但在实际应用中,还有许多随机变量可以取某一区间中的一切值,是不可以一一列举的,这种随机变量称为连续型随机变量.【问题导思】1.如何由频率分布直方图得到正态分布密度曲线?【提示】样本容量越大,所分组越多.2.正态分布密度函数中μ与σ的意义分别是什么?【提示】μ表示随机变量的平均值,σ是衡量随机变量的总体波动水平.在频率分布直方图中,为了了解得更多,图中的区间会分得更细,如果将区间无限细分,最终得到一条曲线,这条曲线称为随机变量X的分布密度曲线,这条曲线对应的函数称为X 的分布密度函数,记为f(x).正态分布的密度函数为f(x)=1σ2πe-(x-μ)22σ2.它有两个重要的参数:均值μ和方差σ2(σ>0),通常用X~N(μ,σ2)表示X服从参数为μ和σ2的正态分布.1.从正态分布的密度函数的解析式中,求它的定义域、值域.【提示】定义域为R,值域为(0,12πσ].2.正态分布密度函数的对称轴方程是什么?【提示】对称轴方程为x=μ.3.σ是方差,它决定正态分布密度曲线的什么形状.【提示】“胖”、“瘦”.正态分布密度函数满足的性质:(1)函数图像关于直线x=μ对称;(2)σ(σ>0)的大小决定函数图像的胖、瘦;(3)P(μ-σ<X<μ+σ)=68.3%,P(μ-2σ<X<μ+2σ)=95.4%,P(μ-3σ<X<μ+3σ)=99.7%.求出总体随机变量的均值和方差.。

北师大版高中数学选修2-3课件:2.6 正态分布(共46张PPT)

北师大版高中数学选修2-3课件:2.6 正态分布(共46张PPT)

重点难点
[重点] 认识分布密度曲线的特点,曲线所表示的意义;正态分布曲线的性质、 标准正态曲线N(0,1) . [难点] 认识分布密度曲线的特点,曲线所表示的意义;通过正态分布曲线的图 形特征,归纳正态分布曲线的性质.
教学建议
如何使学生从抽象转化到具体、直观的问题里来,是我们教学的一个重 点和难点.要借助具体实例及多媒体课件演示,有条件的让学生也上机 进行实习,通过实验了解一些概念的形成过程.具体的方法是利用直方 图来引进正态曲线.
例2 某厂生产的圆柱形零件的外 直径X服从正态分布N(4,0.52), 质量人员从该厂生产的1000件零 件中随机抽查1件,测得它的外直 径为5.7 cm,试问该厂生产的这 批零件是否合格?
解:由于X服从正态分布N(4,0.52), 由正态分布的性质可知,正态分布N(4, 0.52)在(4-3×0.5,4+3×0.5)之外取值 的概率只有0.003,而5.7∉(2.5,5.5), 这说明在一次试验中,出现了几乎不 可能发生的小概率事件,据此可以认 为这批零件是不合格的.
预习探究
正态分布密度曲线
正态曲线
预习探究
预习探究
预习探究
[思考] 某一集成块使用寿命X可看作是连续型随机变量吗? 解:可以,因为它的可能取值是任何一个非负实数,我们是无法一一列出的.
预习探究
[思考] 正态分布密度函数f(x)有最值吗?
预习探究
[讨论] 正态分布中的参数μ,σ的含义分别是什么?
6.结合正态分布曲线的图形特征,归纳正态分布曲线的性质.正态分布曲 线的作图较难,教材没做要求,授课时可以借助几何画板作图,学生只要了 解大致的情形就行了,关键是能通过正态曲线,引导学生归纳其性质.
三维目标

高中数学2.6正态分布教案苏教版选修2-3

高中数学2.6正态分布教案苏教版选修2-3

2.6 正态分布教学目标(1)通过实际问题,借助直观(如实际问题的直方图),了解什么是正态分布曲线和正态分布;(2)认识正态分布曲线的特点及曲线所表示的意义;(3)会查标准正态分布表,求满足标准正态分布的随机变量X在某一个范围内的概率.教学重点,难点(1)认识正态分布曲线的特点及曲线所表示的意义;(2)求满足标准正态分布的随机变量X在某一个范围内的概率.教学过程一.问题情境1.复习频率分布直方图、频率分布折线图的意义、作法;回顾曲边梯形的面积()baS f x dx=⎰的意义.2.从某中学男生中随机地选出84名,测量其身高,数据如下(单位:cm):175 170 163 168 161 177 173 165 181 155 178161 174 177 175 168 170 169 174 164 176 181167 178 168 169 159 174 167 171 176 172 174180 154 173 170 171 174 172 171 185 164 172167 168 170 174 172 169 182 167 165 172 171157 174 164 168 173 166 172 161 178 162 172161 160 175 169 169 175 161 155 156 182 182上述数据的分布有怎样的特点?二.学生活动为了研究身高的分布,可以先根据这些数据作出频率分布直方图.第一步对数据分组(取组距4d=);第二步列出频数(或频率)分布表;第三步作出频率分布直方图,如图2-6-2.由图2-6-2可以看出,上述数据的分布呈“中间高,两边底,左、右大致对称”的特点.可以设想,若数据无限增多且组距无限缩小,那么频率直方图的顶边无限缩小乃至形成一条光滑的曲线,我们将此曲线称为概率密度曲线.再观察此概率密度曲线的特征.三.建构数学1. 正态密度曲线:函数22()2(),x P x x Rμσ--=∈的图象为正态密度曲线,其中μ和σ为参数( 0σ>,R μ∈).不同的μ和σ对应着不同的正态密度曲线.2.正态密度曲线图象的性质特征:(1)当x μ<时,曲线上升;当x μ>时,曲线下降;当曲线向左右两边无限延伸时,以x 轴为渐进线;(2)正态曲线关于直线x μ=对称;(3)σ越大,正态曲线越扁平;σ越小,正态曲线越尖陡;(4)在正态曲线下方和x 轴上方范围内的区域面积为1.3.正态分布:若X 是一个随机变量,对任给区间(,],()a b P a x b <≤恰好是正态密度曲线下方和X 轴上(,]a b 上方所围成的图形的面积,我们就称随机变量X 服从参数为μ和2σ的正态分布,简记为2~(,)X N μσ. 4. 正态总体在三个特殊区间内取得的概率值:具体地,如图所示,随机变量X 取值(1)落在区间(,)μσμσ-+上的概率约为0068.3,即()0.683P X μσμσ-<≤+=;(2)落在区间(2,2)μσμσ-+上的概率约为0095.4,即(22)0.954P X μσμσ-<≤+=;(3)落在区间(3,3)μσμσ-+上的概率约为0099.7,即(33)0.997P X μσμσ-<≤+=.5. 3σ原则: 服从于正态分布2(,)N μσ的随机变量X 只取(3,3)μσμσ-+之间的值,并简称为3σ原则.6.标准正态分布:事实上,μ就是随机变量X 的均值,2σ就是随机变量X 的方差,它们分别反映X 取值的平均大小和稳定程度.我们将正态分布(0,1)N 称为标准正态分布.通过查标准正态分布表(见附表1)可以确定服从标准正态分布的随机变量的有关概率.7.非标准正态分布转化为标准正态分布:非标准正态分布2(,)X N μσ 可通过X z μσ-=转化为标准正态分布(0,1)z N .四.数学运用1.例题:例1.一台机床生产一种尺寸为10mm 的零件,现在从中抽测10个,它们的尺寸分别如下(单位:mm ):10.2,10.1,10,9.8,9.9,10.3,9.7,10,9.9,10.1,如果机床生产零件的尺寸Y 服从正态分布,求正态分布的概率密度函数式. 解:由题意得1(10.210.1109.89.910.39.7109.910.1)1010μ=+++++++++=, 22222221[(10.210)(10.110)(1010)(9.810)(9.910)(10.310)10σ=-+-+-+-+-+- 2222(9.710)(1010)(9.910)(10.110)]0.03+-+-+-+-=,即10μ=,20.03σ=. 所以Y的概率密度函数为250(10)3(),xP x x R --=∈.例2.若随机变量~(0,1)Z N ,查标准正态分布表,求:(1)( 1.52)P Z ≤;(2)( 1.52)P Z >;(3)(0.57 2.3)P x <≤;(4)( 1.49)P Z ≤-.解:(1)( 1.52)0.9357P Z ≤=.(2)( 1.52)1( 1.52)P Z P Z >=-≤10.93570.0643=-=.(3)(0.57 2.3)( 2.3)(0.57)0.98930.71570.2736P x P Z P Z <≤=≤-≤=-=;(4)( 1.49)( 1.49)P Z P Z ≤-=≥1( 1.49)10.9319P Z =-≤=-0.0681=.例3.在某次数学考试中,考生的成绩X 服从一个正态分布,即(90,100)X N .试求考试成绩X 位于区间(70,110)上的概率是多少?解: 法一(将非标准正态分布转化为标准正态分布): 70909011090(70110)()(22)(2)(2)101010X P X P P Z P Z P Z ---<<=<<=-<<=≤-≤- [](2)1(2)2(2)120.977210.95440.954P Z P Z PZ =≤--≤=≤-=⨯-=≈.法二(3σ原则):因为(90,100)X N ,所以90,10μσ===.由于正态变量在区间(2,2)μσμσ-+内取值的概率是0.954,而该正态分布 29021070μσ-=-⨯=,290210110μσ+=+⨯=,所以考试成绩X 位于区间(70,110)上的概率就是0.954.2.练习:课本77P 练习 第1,2题.五.回顾小结:1.正态分布曲线的特点及曲线所表示的意义;2.正态总体在三个特殊区间内取得的概率值;3.求满足标准正态分布的随机变量X 在某一个范围内的概率的方法.六.课外作业:课本78P 习题2.6 第1,2,3,4题.。

高中数学第2章§6正态分布课件北师大选修23

高中数学第2章§6正态分布课件北师大选修23
(2)成绩在 80~90 分内的学生的人数占全班人数的百分比 是多少?
[分析] 正态曲线关于直线 x=μ 对称,故可利用对称性和 特殊值求解.
[解析] (1)设学生的得分为随机变量 X,则 X~N(70,102), 其中 μ=70 分,σ=10 分.学生的得分在(60,80)内的概率为
P(70-10<X<70+10)=0.683, 所以不及格的人数占全班人数的百分比为 12×(1-0.683)=15.85%. (2)P(70-20<X<70+20)=0.954, 成绩在 80~90 分内的学生的人数占全班人数的百分比为 12[P(50< X< 90)-P(60< X< 80)]=13.55%.
[点评] 本题考查正态分布的性质,考查分析和解决问 题的能力.利用正态曲线的性质求概率,应注意对称性的应 用.正态曲线关于直线x=μ对称,呈现“中间高,两边低” 的形状.
[点评] 利用样本平均数与样本方差估计总体的期望与 方差,从而得到正态分布的期望与标准差.代入,得到正态 分布密度函数的表达式.
探索延拓创新
正态变量在三个常用区间上的概率的应用
某年级的一次数学测验成绩近似服从参数为 μ =70 和 σ2=102 的正态分布,如果规定低于 60 分为不及格,求: (1)成绩不及格的人数占全班人数的百分比是多少?
[解析] 依题意得 μ=110(10.2+10.1+10+9.8+9.9+10.3+9.7+10+9.9+ 10.1)=10. σ2=110[(10.2-10)2+(10.1-10)2+(10-10)2+(9.8-10)2+ (9.9-10)2+(10.3-10)2+(9.7-10)2+(10-10)2+(9.9-10)2+ (10.1-10)2]=0.03. 所以 η 的概率密度函数为 f(x)= 160πe-50x-3 102.

高中数学苏教版选修2-3教案:2.6 正态分布2

高中数学苏教版选修2-3教案:2.6 正态分布2

§2.6 正态分布课时目标 1.利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义.2.了解变量落在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)的概率大小.3.会用正态分布去解决实际问题.1.正态密度曲线函数P(x)=________________________的图象为正态密度曲线,其中μ和σ为参数(σ>0,μ∈R).不同的μ和σ对应着不同的正态密度曲线.2.正态密度曲线图象的性质特征(1)当x<μ时,曲线______;当x>μ时,曲线______;当曲线向左右两边无限延伸时,以x轴为________;(2)正态曲线关于直线________对称;(3)σ越大,正态曲线越________;σ越小,正态曲线越________;(4)在正态曲线下方和x轴上方范围内的区域面积为________.3.正态分布若X是一个随机变量,对___________________________________________________ ________________________________________________________________________,我们就称随机变量X服从参数μ和σ2的正态分布,简记为____________.4.3σ原则服从正态分布N(μ,σ2)的随机变量X只取________________之间的值,简称为3σ原则.具体地,随机变量X取值落在区间(μ-σ,μ+σ)上的概率约为68.3%.落在区间(μ-2σ,μ+2σ)上的概率约为95.4%.落在区间(μ-3σ,μ+3σ)上的概率约为99.7%.5.标准正态分布在函数P(x)=12πσe-(x-μ)22σ2,x∈R中,μ是随机变量X的________,σ2就是随机变量X的________,它们分别反映X取值的平均大小和稳定程度.我们将正态分布________称为标准正态分布.通过查标准正态分布表可以确定服从标准正态分布的随机变量的有关概率.一、填空题1.设有一正态总体,它的概率密度曲线是函数f(x)的图象,且f(x)=18π·e-(x-10)28,则这个正态总体的平均数与标准差分别是________,________.2.已知X~N(0,σ2),且P(-2≤X≤0)=0.4,则P(X>2)等于________.3.已知随机变量ξ服从正态分布N(4,σ2),则P(ξ>4)=________.4.已知某地区成年男子的身高X~N(170,72)(单位:cm),则该地区约有99.7%的男子身高在以170 cm为中心的区间________内.5.下面给出了关于正态曲线的4种叙述,其中正确的是________.(填序号)①曲线在x轴上方且与x轴不相交;②当x>μ时,曲线下降;当x<μ时,曲线上升;③当μ一定时,σ越小,总体分布越分散;σ越大,总体分布越集中;④曲线关于直线x=μ对称,且当x=μ时,位于最高点.6. 如图所示是三个正态分布X~N(0,0.25),Y~N(0,1),Z~N(0,4)的密度曲线,则三个随机变量X,Y,Z对应曲线分别是图中的______、______、______.7.在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0),已知ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为________.8.工人生产的零件的半径ξ在正常情况下服从正态分布N(μ,σ2).在正常情况下,取出 1 000个这样的零件,半径不属于(μ-3σ,μ+3σ)这个范围的零件约有________个.二、解答题9.如图是一个正态曲线.试根据该图象写出其正态分布的概率密度函数的解析式,求出总体随机变量的期望和方差.10.在某次数学考试中,考生的成绩ξ服从一个正态分布,即ξ~N(90,100).(1)试求考试成绩ξ位于区间(70,110)上的概率是多少?(2)若这次考试共有2 000名考生,试估计考试成绩在(80,100)间的考生大约有多少人?能力提升11.若随机变量X~N(μ,σ2),则P(X≤μ)=________.12.某年级的一次信息技术测验成绩近似服从正态分布N(70,102),如果规定低于60分为不及格,求:(1)成绩不及格的人数占多少?(2)成绩在80~90分之间的学生占多少?1.要求正态分布的概率密度函数式,关键是理解正态分布密度曲线的概念及解析式中各字母参数的意义.2.解正态分布的概率计算问题,一定要灵活把握3σ原则,将所求问题向P(μ-σ<ξ<μ+σ),P(μ-2σ<ξ<μ+2σ),P(μ-3σ<ξ<μ+3σ)进行转化,然后利用特定值求出相应概率.同时要充分利用曲线的对称性和曲线与x轴之间的面积为1这一特殊性质.2.6 正态分布答案知识梳理1.12πσe-(x-μ)22σ2,x∈R2.(1)上升下降渐近线(2)x=μ(3)扁平尖陡 (4)13.任给区间(a,b],P(a<x≤b)恰好是正态密度曲线下方和X轴上(a,b]上方所围成的图形的面积X~N(μ,σ2)4.(μ-3σ,μ+3σ)5.均值方差N(0,1)作业设计1.10 2解析f(x)可以改写成f(x)=12π×4e-(x-10)22×4,对照可知μ=10,σ=2.2.0.1解析∵X~N(0,σ2),∴μ=0,又P(-2≤X≤0)=0.4,∴P(X>2)=12(1-0.4×2)=0.1.3.1 2解析由正态分布图象可知,μ=4是该图象的对称轴,∴P (ξ<4)=P (ξ>4)=12.4.(149,191) 5.①②④ 6.① ② ③解析 在密度曲线中,σ越大,曲线越“矮胖”;σ越小,曲线越“瘦高”. 7.0.8解析 正态曲线关于x =1对称,∴ξ在(1,2)内取值的概率也为0.4. 8.3解析 半径属于(μ-3σ,μ+3σ)的零件个数约有0.997×1 000=997, ∴不属于这个范围的零件个数约有3个.9.解 从给出的正态曲线可知,该正态曲线关于直线x =20对称,最大值是12π,所以μ=20,12π·σ=12π,解得σ= 2.于是概率密度函数的解析式是φμ,σ(x )=12πe -(x -20)24,x ∈R .总体随机变量的期望是μ=20,方差是σ2=(2)2=2.10.解 ∵ξ~N (90,100),∴μ=90,σ=100=10.(1)由于正态变量在区间(μ-2σ,μ+2σ)内取值的概率是0.954,而该正态分布中,μ-2σ=90-2×10=70,μ+2σ=90+2×10=110,于是考试成绩ξ位于区间(70,110)内的概率就是0.954.(2)由μ=90,σ=10,得μ-σ=80,μ+σ=100.由于正态变量在区间(μ-σ,μ+σ)内取值的概率是0.683,所以考试成绩ξ位于区间(80,100)内的概率是0.683.一共有2 000名考生,所以考试成绩在(80,100)间的考生大约有2 000×0.683=1 366(人).11.12解析 由于随机变量X ~N (μ,σ2),其概率密度函数关于x =μ对称,故P (x ≤μ)=12.12.解 (1)设学生的得分情况为随机变量X , X ~N (70,102),则μ=70,σ=10.分析成绩在60~80之间的学生所的比为P (70-10<X ≤70+10)=0.683,所以成绩不及格的学生的比为:12×(1-0.683)=0.158 5,即成绩不及格的学生占15.85%.(2)成绩在80~90之间的学生的比为 12P (70-2×10<X ≤70+2×10)-P (60<x ≤80)] =12(0.954-0.683)=0.135 5. 即成绩在80~90之间的学生占13.55%.。

高中数学第二章概率2.6正态分布课件北师大版选修23

高中数学第二章概率2.6正态分布课件北师大版选修23

探究(tànjiū)

思维辨析
反思感悟 1.在实际应用题中,通常认为服从正态分布N(μ,σ2)的随机变
量X只取(μ-3σ,μ+3σ)之间的值,并简称为3σ原则.
2.正态总体几乎总取值于区间(μ-3σ,μ+3σ)之内,而在此区间以外取值的概率
只有0.003,通常认为这种情况在一次试验中几乎不可能发生,这是统计
2.6 正态分布
第一页,共28页。
学 习 目 标
思 维 脉 络
1.了解正态曲线和正态分布的概念.
2.认识正态曲线的特点及曲线所表示的意
义.
3.会根据正态曲线的性质求随机变量在某
一区间范围内的概率.
第二页,共28页。
-(-)2
22
1
e
,x∈(-∞,+∞)的图像称为正态分布密度

曲线,简称正态曲线.正态分布完全由参数μ和σ确定,常记作N(μ,σ2).如果随机变

探究(tànjiū)

探究
(tànjiū)三
思维辨析
∴成绩在(70,90]内的同学占全班同学的95.4%.
∴成绩在(80,90]内的同学占全班同学的47.7%.
∴成绩在90分以上的同学占全班同学的50%-47.7%=2.3%.即有
50×2.3%≈1(人),即成绩在90分以上的同学仅有1人.
第十四页,共28页。
思维辨析
正态分布的概率
【例2】在某次大型考试中,某班同学的成绩服从正态分布N(80,52),现已知
该班同学中成绩在80~85分的有17人.试计算该班成绩在90分以上的同学有
多少人.
分析本题主要考查正态分布及其应用,解题关键是要记住正态总体取值

高中数学 第二章 概率 6 正态分布学案 北师大版选修23

高中数学 第二章 概率 6 正态分布学案 北师大版选修23

§6 正态分布1.连续型随机变量 在频率分布直方图中,为了了解得更多,图中的区间会分得更细,如果将区间无限细分,最终得到一条曲线,这条曲线称为随机变量X 的分布密度曲线,这条曲线对应的函数称为X 的分布密度函数,记为f (x ).正态分布的密度函数为f (x )=1σ2πe -(x -μ)22σ2,-∞<x <+∞.它有两个重要的参数:均值μ和方差σ2(σ>0),通常用X ~N (μ,σ2)表示X 服从参数为μ和σ2的正态分布.预习交流1正态分布的密度函数曲线,当μ一定时,σ变化与曲线的影响怎样?提示:曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.2.正态分布密度函数的性质(1)函数图像关于直线x =μ对称;(2)σ(σ>0)的大小决定函数图像的“胖”“瘦”;(3)P (μ-σ<X <μ+σ)=68.3%,P (μ-2σ<X <μ+2σ)=95.4%,P (μ-3σ<X <μ+3σ)=99.7%.预习交流2若X ~N (μ,σ2),则P (μ-a <X <μ+a )的几何意义是什么?提示:表示X 取值的概率和正态曲线与X =μ-a ,X =μ+a 以及X 轴所围成的图形的面积.一、正态分布密度函数下列函数中哪个是正态分布密度函数( ). A .f (x )=12πσ22()2ex μσ--,μ和σ(σ>0)都是实数 B .f (x )=2π2π22e x -C .f (x )=122π2(1)4e x --D .f (x )=12π22ex -思路分析:根据正态分布密度函数f (x )=1σ2π22()2ex μσ--进行判断.答案:B解析:选项A 是错误的,错在系数部分中的σ应在分母的根号外. 选项B 是正确的,它是正态分布密度函数N (0,1).选项C 是错误的,从系数方面看σ=2,可从指数部分看σ,不统一. 选项D 是错误的,指数部分缺少一个负号.给出下列函数: ①f (x )=12πσ22()2ex μσ+-;②f (x )=12π2()4ex μ--;③f (x )=12·2π24ex -;④f (x )=1πe -(x -μ)2.其中μ∈(-∞,+∞),σ>0,则可以作为正态分布密度函数的是_____________. 答案:①③④解析:按照正态分布密度函数的解析式一一对比,进行判断. 对于①,f (x )=12πσ22()2ex μσ+-=12πσ22[()]2ex μσ---,由于μ∈(-∞,+∞),所以-μ∈(-∞,+∞),故它可以作为正态分布密度函数;对于②,若σ=1,则f (x )=12π2()2ex μ--;若σ=2,则f (x )=12π·22()4ex μ--,均与已知函数不相符,故它不能作为正态分布密度函数;对于③,当σ=2,μ=0时,符合函数形式;对于④,它是当σ=22时的正态分布密度函数.对于正态分布密度函数f (x )=12πσ22()2ex μσ--,x ∈(-∞,+∞),不但要熟记它的解析式;而且要知道其中字母是变量还是常量,还要注意指数上的σ和系数的分母上σ是一致的,且指数部分是一个负数.二、正态分布密度函数的性质在某项测量中,测量结果X 服从正态分布N (1,σ2)(σ>0),若X 在(0,1)内的取值的概率为0.4,则X 在(0,2)内取值的概率为______.思路分析:根据正态分布密度函数的性质知,图像关于x =1对称. 答案:0.8解析:由X ~N(1,σ2)可知,密度函数关于x=1对称.∵X ~N(1,σ2),故X 落在(0,1)及(1,2)内的概率相同均为0.4,如图,∴X 落在(0,2)内的概率为P(0<x <1)+P(1<x <2)=0.4+0.4=0.8.设随机变量ξ服从正态分布N (2,9),若P (ξ>c +1)=P (ξ<c -1),则c 等于( ). A .1 B .2 C .3 D .4 答案:B解析:∵ξ~N (2,9),∴P (ξ>c +1)=P (ξ<3-c ). 又P (ξ>c +1)=P (ξ<c -1), ∴3-c =c -1,∴c =2.解答此类题目的关键在于充分利用正态分布曲线的对称性,把待求区间的概率向已知区间内的概率进行转化.三、正态分布的应用在某次数学考试中,考生的成绩X 服从一个正态分布,即X ~N (90,100). (1)试求考试成绩X 位于区间(70,110)上的概率; (2)若这次考试共有2 000名考生,试估计考试成绩在(80,100)内的考生大约有多少人? 思路分析:正态分布已经确定,则总体的期望μ和方差σ就可以求出,根据正态分布在三个常见的区间上取值的概率进行求解.解:∵X ~N (90,100),∴μ=90,σ=100=10.(1)由于正态变量在区间(μ-2σ,μ+2σ)内取值的概率是0.954,而该正态分布中,μ-2σ=90-2×10=70,μ+2σ=90+2×10=110,于是考试成绩X 位于区间(70,100)内的概率为0.954.(2)由μ=90,σ=10得μ-σ=80,μ+σ=100.由于正态变量在区间(μ-σ,μ+σ)内取值的概率为0.683, 所以考试成绩X 位于区间(80,100)内的概率为0.683.一共有 2 000名考生,所以考试成绩在(80,100)内的考生大约有 2 000×0.683=1 366(人).某厂生产的圆柱形零件的外径X ~N (4,0.25),质检人员从该厂生产的1 000件零件中随机抽查一件,测得它的外径为5.7.试问该厂生产的这批零件是否合格?解:由于圆柱形零件的外径X ~N (4,0.25),由正态分布的特征可知,正态分布N (4,0.25)在区间(4-3×0.5,4+3×0.5)即(2.5,5.5)之外的取值概率只有0.003,而5.7∉(2.5,5.5),这说明在一次试验中,出现了几乎不可能发生的小概率事件,根据小概率事件原理,认为该厂的这批产品是不合格的.解答这类问题的关键是熟记正态变量的取值位于区间(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)上的概率值,同时又要根据已知的正态分布确定所给区间.1.正态分布曲线f (x )=12πσe -(x -μ)22σ2,x ∈R ,其中μ<0的图像是( ).答案:C解析:∵μ<0,∴正态分布曲线的对称轴应在y 轴左侧,且曲线在x 轴上方. 2.已知X ~N (0,1),则X 在区间(-∞,-2)内取值的概率为( ).A .0.954B .0.046C .0.977D .0.023 答案:D解析:因为X ~N (0,1),所以X 在区间(-∞,-2)和(2,+∞)内取值的概率相等.又知X 在(-2,2)内取值的概率是0.954,所以X 在(-∞,-2)内取值的概率为1-0.9542=0.023.3.若随机变量X 的概率分布密度函数是f (x )=12π·22(2)8ex +-,x ∈R ,则E (2X +1)=( ).A .-3B .4C .-4D .-5答案:A解析:由正态分布密度函数知,X ~N (-2,4),于是EX =-2, 所以E (2X +1)=2·EX +1=2×(-2)+1=-3.4.从正态分布曲线f (x )=132π2(8)18e x --,x ∈R 的图像可知,曲线在______上方,关于______对称,当______时,f (x )达到最大值,最大值为______.答案:x 轴 直线x =8 x =8 132π5.设X ~N (1,22),试求:(1)P (-1<X <3);(2)P (3<X <5);(3)P (X >5).解:∵X ~N (1,22),∴μ=1,σ=2.(1)P (-1<X <3)=P (1-2<X <1+2)=P (μ-σ<X <μ+σ)=0.683. (2)∵P (3<X <5)=P (-3<X <-1),∴P (3<X <5)=12[P (-3<X <5)-P (-1<X <3)]=12[P (1-4<X <1+4)-P (1-2<X <1+2)] =12[P (μ-2σ<X <μ+2σ)-P (μ-σ<X <μ+σ)] =12(0.954-0.683)=0.135 5. (3)∵P (X >5)=P (X <-3),∴P (X >5)=12[1-P (-3<X <5)]=12[1-P (1-4<X <1+4)] =12[1-P (μ-2σ<X <μ+2σ)]=12(1-0.954)=0.023.。

高中数学第二章概率6正态分布教学案北师大版选修2_3

高中数学第二章概率6正态分布教学案北师大版选修2_3

*§6正态分布[对应学生用书P35]1.正态分布正态分布的分布密度函数为:f(x)=1σ2πe-x-μ22σ2,x∈(-∞,+∞),其中μ表示均值,σ2(σ>0)表示方差.通常用X~N(μ,σ2)表示X服从参数为μ和σ2的正态分布.2.正态分布密度函数满足以下性质(1)函数图像关于直线x=μ对称.(2)σ(σ>0)的大小决定函数图像的“胖”“瘦”.(3)正态变量在三个特殊区间内取值的概率值P(μ-σ<X<μ+σ)=68.3%;P(μ-2σ<X<μ+2σ)=95.4%;P(μ-3σ<X<μ+3σ)=99.7%.通常服从于正态分布N(μ,σ2)的随机变量X在区间(μ-3σ,μ+3σ)外取值的概率只有0.3%.1.正态分布完全由参数μ和σ确定,因此可把正态分布记作N(μ,σ2).2.要正确理解μ,σ的含义.若X~N(μ,σ2),则EX=μ,DX=σ2,即μ为随机变量X取值的均值,σ2为其方差.[对应学生用书P35][例1] 设X~N(1)P(-1<X≤3);(2)P(X≥5).[思路点拨] 首先确定μ=1,σ=2,然后根据三个特殊区间上的概率值求解.[精解详析] 因为X ~N (1,22), 所以μ=1,σ=2.(1)P (-1<X ≤3)=P (1-2<X ≤1+2)=P (μ-σ<X ≤μ+σ)=0.683. (2)因为P (X ≥5)=P (X ≤-3), 所以P (X ≥5)=12[1-P (-3<X ≤5)]=12[1-P (1-4<X ≤1+4)] =12[1-P (μ-2σ<X ≤μ+2σ)] =12(1-0.954) =0.023.[一点通] 对于正态分布N (μ,σ2),由x =μ是正态曲线的对称轴知, (1)对任意的a ,有P (X <μ-a )=P (X >μ+a ); (2)P (X <x 0)=1-P (X ≥x 0); (3)P (a <X <b )=P (X <b )-P (X ≤a ).1.已知随机变量X 服从正态分布N (4,σ2),则P (X >4)=( ) A.15B.14 C.13D.12解析:由正态分布密度函数的性质可知,μ=4是该函数图像的对称轴,∴P (X <4)=P (X >4)=12.答案:D2.如图所示,是一个正态分布密度曲线.试根据图像写出其正态分布的概率密度函数的解析式,并求出总体随机变量的期望和方差.解:从正态曲线的图像可知,该正态曲线关于直线x =20对称,最大值为12π,所以μ=20,12π·σ=12π,解得σ= 2.于是概率密度函数的解析式为。

高中数学 2.6.正态分布(一)教案 北师大选修2-3

高中数学 2.6.正态分布(一)教案 北师大选修2-3

2.6.正态分布教学目标:知识与技能:掌握正态分布在实际生活中的意义和作用。

过程与方法:结合正态曲线,加深对正态密度函数的理理。

情感、态度与价值观:通过正态分布的图形特征,归纳正态曲线的性质。

教学重点:正态分布曲线的性质、标准正态曲线N(0,1) 。

教学难点:通过正态分布的图形特征,归纳正态曲线的性质。

教学课时:3课时教具准备:多媒体、实物投影仪。

教学设想:在总体分布研究中我们选择正态分布作为研究的突破口,正态分布在统计学中是最基本、最重要的一种分布。

内容分析:1.在实际遇到的许多随机现象都服从或近似服从正态分布在上一节课我们研究了当样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口正态分布在统计学中是最基本、最重要的一种分布2.正态分布是可以用函数形式来表述的其密度函数可写成:22()2(),(,)xf x xμσ--=∈-∞+∞,(σ>0)由此可见,正态分布是由它的平均数μ和标准差σ唯一决定的常把它记为),(2σμN 3.从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x轴,但永不与x轴相交,因此说曲线在正负两个方向都是以x轴为渐近线的4.通过三组正态分布的曲线,可知正态曲线具有两头低、中间高、左右对称的基本特征5.由于正态分布是由其平均数μ和标准差σ唯一决定的,因此从某种意义上说,正态分布就有好多好多,这给我们深入研究带来一定的困难但我们也发现,许多正态分布中,重点研究N (0,1),其他的正态分布都可以通过)()(σμ-Φ=xxF转化为N(0,1),我们把N(0,1)称为标准正态分布,其密度函数为22121)(xexF-=π,x∈(-∞,+∞),从而使正态分布的研究得以简化6.结合正态曲线的图形特征,归纳正态曲线的性质正态曲线的作图较难,教科书没做要求,授课时可以借助几何画板作图,学生只要了解大致的情形就行了,关键是能通过正态曲线,引导学生归纳其性质教学过程:学生探究过程:复习引入:总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a ,b )内取值的概率等于总体密度曲线,直线x =a ,x =b 及x 轴所围图形的面积.观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示:22()2,(),(,)x x x μσμσϕ--=∈-∞+∞式中的实数μ、)0(>σσ是参数,分别表示总体的平均数与标准差,,()xμσϕ的图象为正态分布密度曲线,简称正态曲线.讲解新课:一般地,如果对于任何实数a b <,随机变量X 满足,()()ba P a X B x dx μσϕ<≤=⎰, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2σμN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN .经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位.说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计.2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布.2.正态分布),(2σμN )是由均值μ和标准差σ唯一决定的分布通过固定其中一个值,讨论均值与标准差对于正态曲线的影响3.通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间高、左右对称正态曲线的作图,书中没有做要求,教师也不必补上讲课时教师可以应用几何画板,形象、美观地画出三条正态曲线的图形,结合前面均值与标准差对图形的影响,引导学生观察总结正态曲线的性质4.正态曲线的性质:(1)曲线在x 轴的上方,与x 轴不相交(2)曲线关于直线x=μ对称(3)当x=μ时,曲线位于最高点(4)当x <μ时,曲线上升(增函数);当x >μ时,曲线下降(减函数)并且当曲线向左、右两边无限延伸时,以x 轴为渐近线,向它无限靠近(5)μ一定时,曲线的形状由σ确定σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中:五条性质中前三条学生较易掌握,后两条较难理解,因此在讲授时应运用数形结合的原则,采用对比教学5.标准正态曲线:当μ=0、σ=l 时,正态总体称为标准正态总体,其相应的函数表示式是2221)(x e x f -=π,(-∞<x <+∞)其相应的曲线称为标准正态曲线标准正态总体N (0,1)在正态总体的研究中占有重要的地位任何正态分布的概率问题均可转化成标准正态分布的概率问题讲解范例:例1.给出下列三个正态总体的函数表达式,请找出其均值μ和标准差σ (1)),(,21)(22+∞-∞∈=-x e x f x π(2)),(,221)(8)1(2+∞-∞∈=--x e x f x π (3)22(1)(),(,)x f x x -+=∈-∞+∞ 答案:(1)0,1;(2)1,2;(3)-1,0.5例2求标准正态总体在(-1,2)内取值的概率.解:利用等式)()(12x x p Φ-Φ=有)([]}{11)2()1()2(--Φ--Φ=-Φ-Φ=p=1)1()2(-Φ+Φ=0.9772+0.8413-1=0.8151.1.标准正态总体的概率问题:对于标准正态总体N (0,1),)(0x Φ是总体取值小于0x 的概率,即 )()(00x x P x <=Φ,其中00>x ,图中阴影部分的面积表示为概率0()P x x <只要有标准正态分布表即可查表解决.从图中不难发现:当00<x 时,)(1)(00x x -Φ-=Φ;而当00=x 时,Φ(0)=0.52.标准正态分布表标准正态总体)1,0(N 在正态总体的研究中有非常重要的地位,为此专门制作了“标准正态分布表”.在这个表中,对应于0x 的值)(0x Φ是指总体取值小于0x 的概率,即 )()(00x x P x <=Φ,)0(0≥x .若00<x ,则)(1)(00x x -Φ-=Φ.利用标准正态分布表,可以求出标准正态总体在任意区间),(21x x 内取值的概率,即直线1x x =,2x x =与正态曲线、x 轴所围成的曲边梯形的面积1221()()()P x x x x x <<=Φ-Φ. 3.非标准正态总体在某区间内取值的概率:可以通过)()(σμ-Φ=x x F 转化成标准正态总体,然后查标准正态分布表即可在这里重点掌握如何转化首先要掌握正态总体的均值和标准差,然后进行相应的转化4.小概率事件的含义发生概率一般不超过5%的事件,即事件在一次试验中几乎不可能发生假设检验方法的基本思想:首先,假设总体应是或近似为正态总体,然后,依照小概率事件几乎不可能在一次试验中发生的原理对试验结果进行分析假设检验方法的操作程序,即“三步曲”一是提出统计假设,教科书中的统计假设总体是正态总体;二是确定一次试验中的a 值是否落入(μ-3σ,μ+3σ);三是作出判断讲解范例:例1. 若x ~N (0,1),求(l)P (-2.32<x <1.2);(2)P (x >2).解:(1)P (-2.32<x <1.2)=Φ(1.2)-Φ(-2.32)=Φ(1.2)-[1-Φ(2.32)]=0.8849-(1-0.9898)=0.8747.(2)P (x >2)=1-P (x <2)=1-Φ(2)=l-0.9772=0.0228.例2.利用标准正态分布表,求标准正态总体在下面区间取值的概率:(1)在N(1,4)下,求)3(F(2)在N (μ,σ2)下,求F(μ-σ,μ+σ);F(μ-1.84σ,μ+1.84σ);F(μ-2σ,μ+2σ);F(μ-3σ,μ+3σ) 解:(1))3(F =)213(-Φ=Φ(1)=0.8413 (2)F(μ+σ)=)(σμσμ-+Φ=Φ(1)=0.8413 F(μ-σ)=)(σμσμ--Φ=Φ(-1)=1-Φ(1)=1-0.8413=0.1587 F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=0.8413-0.1587=0.6826 F(μ-1.84σ,μ+1.84σ)=F(μ+1.84σ)-F(μ-1.84σ)=0.9342 F(μ-2σ,μ+2σ)=F(μ+2σ)-F(μ-2σ)=0.954 F(μ-3σ,μ+3σ)=F(μ+3σ)-F(μ-3σ)=0.997对于正态总体),(2σμN 取值的概率:在区间(μ-σ,μ+σ)、(μ-2σ,μ+2σ)、(μ-3σ,μ+3σ)内取值的概率分别为68.3%、95.4%、99.7%因此我们时常只在区间(μ-3σ,μ+3σ)内研究正态总体分布情况,而忽略其中很小的一部分例3.某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为π21,求总体落入区间(-1.2,0.2)之间的概率解:正态分布的概率密度函数是),(,21)(22)(+∞-∞∈=--x e x f x σμσπ,它是偶函数,说明μ=0,)(x f 的最大值为)(μf =σπ21,所以σ=1,这个正态分布就是标准正态分布( 1.20.2)(0.2)( 1.2)(0.2)[1(1.2)](0.2)(1.2)1P x -<<=Φ-Φ-=Φ--Φ=Φ+Φ- 巩固练习:书本第74页 1,2,3课后作业: 书本第75页 习题2. 4 A 组 1 , 2 B 组1 , 2教学反思:1.在实际遇到的许多随机现象都服从或近似服从正态分布在上一节课我们研究了当样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口正态分布在统计学中是最基本、最重要的一种分布2.正态分布是可以用函数形式来表述的其密度函数可写成:2()2(),(,)x f x x μσ--=∈-∞+∞, (σ>0)由此可见,正态分布是由它的平均数μ和标准差σ唯一决定的常把它记为),(2σμN3.从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x 轴,但永不与x 轴相交,因此说曲线在正负两个方向都是以x 轴为渐近线的4.通过三组正态分布的曲线,可知正态曲线具有两头低、中间高、左右对称的基本特征。

高中数学新北师大版精品教案《北师大版高中数学选修2-3 6.2正态分布》9

高中数学新北师大版精品教案《北师大版高中数学选修2-3 6.2正态分布》9

正态分布合浦廉州中学包日勇一、教学目标知识与技能:1、了解正态分布在实际生活中的意义和作用。

2、掌握正态分布的特点及正态分布曲线所表示的意义、性质。

3、掌握正态分布3-σ原则及实际应用。

过程与方法:1、利用高尔顿顶板实验,借助直观(如实际问题的直方图)图表,了解正态分布曲线和正态分布。

3、结合正态曲线,加深对正态密度函数的理解。

4、通过正态分布的图形特征,归纳正态曲线的性质、特点。

情感、态度与价值观:1、介绍数学家的生平、伟绩以及相对应课程的数学史,激发学生学习数学的兴趣,增强学好数学的信心。

通过对生活中正太分布现象的介绍,发展学生在实践中探索的数学的意识及兴趣的审美能力。

2、通过多次呈现实验演示,引导学生分析、归纳、总结,间接培养学生收集、统计、分析实验数据的能力,体会到如何用科学的数学方法来解决实际生活中的问题。

3、经历观察、操作、思想交流等过程,了解正太曲线的概念及表达的意义,进一步提高学生从一般到特殊的归纳能力。

二、教学重点与难点教学重点:正态分布函数和正态曲线的性质。

正态分布3-σ原则及实际应用。

教学难点:正态曲线的性质。

三、教学的方法与手段教学方法:启发式教学、探究式学习教学软件:Poweroint课件、视频、几何画板四、教学过程创设情境,导入新知:通过对高尔顿高尔顿钉板实验引出正态密度曲线。

高尔顿钉板的实验原理是什么呢?首先在一块木板上钉着若干排相互平行但相互错开的圆柱形小木块,小木块之间留有适当的空隙作为通道,前面当有一块玻璃,让一个小球从高尔顿钉板上方的通道口落下,小球在下落的过程中与层层小木块碰撞,最后掉入高尔顿钉板下方的某一个球槽内。

那么小球下落后,我们就要观察每个球槽内小球的个数,因此在这之前要把球槽进行编号,以方便我们观察,然后多次重复这个实验,就可以发现掉入各个球槽内的小球的个数,小球堆积的高度越来越高。

为了更好的研究实验结果呈现的现象,我们将结果化成频率直方图,请同学们也仔细观察频率直方图,总之整个实验过程分三个步骤,小球下落——观察小球个数——观察频率直方图。

2019-2020北师大版高中数学选修2-3备课:2.6+正态分布

2019-2020北师大版高中数学选修2-3备课:2.6+正态分布

*§6 正态分布备课资源参考教学建议1.本节是新课标的重要内容之一,常以选择题或填空题的形式出现.2.本节的重点是正态分布曲线的特点及其表示的意义,难点是在实际中什么样的随机变量服从正态分布.3.正态分布在统计中是很常用的分布,它能刻画很多随机现象.教学中可利用高尔顿钉板或计算机模拟的方式进行试验,使学生对正态分布密度曲线有一个直观的印象,从而引入其函数表达式,并利用图形展示两个参数μ,σ对曲线的影响,进而得出正态分布的一些性质.另外,为了体现其重要性,教学中还应列举大量的服从正态分布的实例.教师可以引导学生分析一下为什么它们都近似服从正态分布,以加深学生对随机变量产生背景的印象,说明正态分布在概率统计理论和实际应用中都占有重要的地位.备选习题1某正态分布的密度函数是偶函数,而且该函数的最大值为(2π)-12,若总体落在区间(-∞,x )内的概率为0.001 5,则x 的值是 .解析:∵密度函数为偶函数,∴对称轴x=μ=0.函数最大值为σ√2π=(2π)-12, ∴σ=1.∴X~N (0,1).∵P (X<x )=0.001 5,∴P (x<X<-x )=1-2P (X<x )=1-2×0.001 5=0.997.又∵P (μ-3σ<X<μ+3σ)=P (-3<X<3)=0.997,故x=-3.答案:-32设在一次数学考试中,某班学生的分数服从X~N (110,202),且知满分为150分,这个班的学生共54人.求这个班在这次数学考试中及格(不小于90分)的人数和130分以上的人数.解:∵X~N (110,202),∴μ=110,σ=20,P (110-20<X ≤110+20)=0.683.∴P(X>130)=1×(1-0.683)=0.1585.2∴P(X≥90)=P(90≤X<130)+P(X>130)=0.683+0.1583=0.8415.∴及格的人数为54×0.8415≈45,130分以上的人数为54×0.1585≈9.。

《2.6 正态分布》教案

《2.6 正态分布》教案

《2.6 正态分布》教案教学目标:1. 知识目标:理解并掌握(标准)正态分布和正态曲线的概念、意义及性质,并能简单应用。2. 能力目标:能用正态分布、正态曲线研究有关随机变量分布的规律,引导学生通过观察并探究规律,提高分析问题,解决问题的能力;培养学生数形结合,函数与方程等数学思想方法。3. 情感目标:通过教学中一系列的探究过程使学生体验发现的快乐,形成积极的情感,培养学生的进取意识和科学精神。教学重点:正态分布的概念、正态曲线的性质和标准正态分布的一些简单计算。教学难点:正态分布的意义和性质。教学过程:【一】导入新课1、问题引入:在2007年的高考中,某省全体考生的高考平均成绩是490分,标准差是80,计划本科录取率为0.4 ,则本科录取分数线可能划在多少分?2、回顾样本的频率分布与总体分布之间的关系.前面我们研究了离散新随机变量,他们只取有限个或可列个值,我们用分布列来描述总体的统计规律;而许多随机现象中出现的一些变量,如上节课研究的某产品的尺寸,它的取值是可以充满整个区间或者区域的,总体分布通常不易知道,我们是用什么去估计总体分布的呢?----用样本的频率分布(即频率分布直方图)去估计总体分布.回头看上一节得出的100个产品尺寸的频率分布直方图,发现:横坐标是产品的尺寸;纵坐标是频率与组距的比值,什么才是在各组取值的频率呢?---直方图的面积。设想:当样本容量无限增大,分组的组距无限的缩小时,这个频率直方图无限接近于一条光滑的曲线-----总体密度曲线。它能够很好的反映了总体在各个范围内取值的概率。由概率的性质可以知道(1)整条曲线与x轴所夹的总面积应该是?---1(2)总体在任何一个区间内取值的概率等于这个范围内面积下面,同学们一起观察一下总体密度曲线的形状,看它具有什么特征?“中间高,两头低,左右对称”的特征。像具有这种特征的总体密度曲线一般就是或者近似的是以下函数的图像。(板书函数、标题):【二】正态分布(1)正态总体的函数解析式、正态分布与正态曲线产品尺寸的总体密度曲线具有“中间高,两头低”的特征,像这种类型的总体密度曲线,一般就是或近似地是以下一个函数的图象:(板书)),(x ,e 21)x (f 222)x (+∞-∞∈σπ=σμ--①这个总体是具有无限容量的抽象总体,其分布叫做正态分布,其图像叫做正态曲线。 在函数解析式中有两个参数μ、σ:μ表示总体的平均数;σ(σ>0)表示总体的标准差,下面我们来研究一下这两个参数在图像上有怎样的影响呢?1、μ表示总体的平均数(它不就是前面学习的随机变量的?---期望,而期望是反映总体分布的?---平均水平),(回头看频率分布直方图)大家思考一下,这个总体分布的平均数在什么位置呢?最高点那个位置,为什么呢?因为规定的尺寸为25.40mm,总体在它的左右取值的概率最大,尺寸过大或过小毕竟占少数,所以图像才会呈现“中间高,两头低”的特征。下面大家看一下flash (改变μ的值,肯定学生的回答,得出1、2、3条性质)用《几何画板》画出三条正态曲线:即①μ=-1,σ=0.5;②μ=0,σ=1;③μ=1,σ=2,其图象如下图所示:得出正态曲线的前四条性质: ①曲线在x 轴的上方,与x 轴不相交。②曲线关于直线x=μ对称,且在x=μ时位于最高点。③当x<μ时,曲线上升;当x>μ时,曲线下降。并且当曲线向左、右两边无限延伸时,以x 轴为渐近线,向它无限靠近。以上便是参数μ对正态曲线的影响2、下面我们再分析若 μ是定值,即对称轴一定,σ决定着曲线的什么?σ(σ>0)是总体的标准差(总体标准差是衡量总体波动大小的特征数,反映了总体分布的集中与离散程度)(再用《几何画板》改变的σ值,让学生总结规律,得出正态曲线的第五条性质)σ越小,曲线越“瘦高”,表示总体的分布越集中,那集中在什么位置?----平均数μ附近,同理: 若σ越大,曲线越“矮胖”,表示总体的分布越分散,越远离平均数;④当μ一定时,曲线的形状由改变μ的值确定。σ越大,曲线越“矮胖”,表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中。结论:正态分布由μ、σ唯一确定,因此记为:N(μ,σ2)(利用图像、性质解题)【例1】 (2007全国2理14)在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为 。解.在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0),正态分布图象的对称轴为x=1,ξ在(0,1)内取值的概率为0.4,可知,随机变量ξ在(1,2)内取值的概率于ξ在(0,1)内取值的概率相同,也为0.4,这样随机变量ξ在(0,2)内取值的概率为0.8。(5)当μ=0,σ=1时,相应的函数解析式大大的简化了:R x ,e 21)x (f 2x 2∈π=-。其图像也简单了,关于y 轴对称,我们把这样的正态总体称为标准正态总体,相应的曲线称为标准正态曲线由于标准正态总体N(0,1)在正态总体研究中有非常重要的作用,人们专门制定了《标准正态分布表》以供查用(P —65)(在课件上,调出标准正态分布表,教学生查阅)1、在这个表中,相应于 x 0 的值Φ(x 0)是指总体取值小于x 0 的概率 即Φ(x 0)=p(x<x 0))(0x x P ≤=。(如图)2、利用标准正态曲线的对称性说明等式Φ(x 0)=1-Φ(-x 0)3、 标准正态总体在任一区间(x 1,x 2)内取值概率p )(21x x x <<=Φ(x 0)-Φ(x 1)的几何意义。【例2】 求标准正态总体在(-1,2)内取值的概率。 解:利用等式p=Φ(x 0)-Φ(x 1)有p=Φ(2)-Φ(-1)= Φ(2)-[1-Φ(1)] 【三】 课堂练习1(2007湖南卷)设随机变量ξ服从标准正态分布(01)N ,,已知( 1.96)0.025Φ-=, 则(|| 1.96)P ξ<=( C ) A.0.025B.0.050C.0.950D.0.975【分析】ξ服从标准正态分布(01)N ,,(|| 1.96)( 1.96 1.96)P P ξξ⇒<=-<<= (1.96)( 1.96)12( 1.96)120.0250.950.ΦΦΦ--=--=-⨯=【五】新的问题,激发兴趣我们通过标准正态曲线的对称性以及标准正态分布表,可以求出标准正态总体N(0,1)在任一区间(x 1,x 2)内取值的概率P )(21x x x <<=Φ(x 0)-Φ(x 1)我们知道任何一对不同的μ,σ就有一个不同的正态总体,对于一般的正态总体N(μ,σ2),在任一区间(a,b)内的取值概率如何进行计算呢?可否也通过查标准正态分布表来求出它呢?-回答是肯定的,否则制定了标准正态分布表就失去了它的意义。 2.正态总体N(μ,σ2)在任一区间取值的概率计算(点拨思路,计算应用)。一般的正态总体N(μ,σ2)均可以化成标准正态总体N(0,1)进行研究.可以证明,对任一正态总体N(μ,σ2),取值小于x 的概率F(0x )=P(x<0x )转化公式为: ⎪⎪⎭⎫⎝⎛-Φ=σμ00)(x x F向学生指出,等式⎪⎭⎫⎝⎛σμ-Φ=x )x (F 的严格证明要用到积分变换的知识,它有待在今后的学习中解决。最后,可向学生展示公式⎪⎭⎫⎝⎛σμ-Φ=x )x (F 的应用。 【例3】 已知正态总体N(1,4),.求F(|x|<3)。 (4)学习正态分布有什么意义? 服从正态分布的总体特征一般地,当一随机变量是大量微小的独立随机因素共同作用的结果,而每一种因素都不能起到压倒其他因素的作用时,这个随机变量就被认为服从正态分布.像产品尺寸这一类典型总体,它的特征是:生产条件正常稳定,即工艺、设备、技术、操作、原料、环境等可以控制的条件都相对稳定,而且不存在产生系统误差的明显因素.所以它服从正态分布下面,大家一起来找找实际生活中那些现象都服从或近似服从正态分布?生产中,在正常生产条件下各种产品的质量指标、测量的误差(如电子管的使用寿命、零件的尺寸等)在生物学中,同一群体的某种特征(如08年广西区高考考生体检的身高、体重、肺活量),在一定条件下生长某农作物的产量等,在气象中,梧州今年五月份的平均气温、平均降雨量等,两江的水位等 在生活中,某一时间段的车流量、人流量,同学的考试成绩,喝的饮料等 总之:正态分布广泛存在于各个领域当中,在概率和统计中都占有重要地位 【五】课堂小结1.本节课我们主要学习了正态分布的若干性质,服从正态分布的总体的特征,如何使用《标准正态分布表》,要求同学们能知道正态曲线的大致形状以及从图象上直观得到正态分布的性质,并能利用《标准正态分布表》及相关等式进行计算。2.本节课介绍了如何利用标准正态分布表计算一般正态分布在任一区间取值的概率的方法。这种方法体现了化归的思想方法。对公式⎪⎭⎫⎝⎛σμ-Φ=x )x (F ,应在理解的基础上加以运用 【三】 课堂练习1、设随即变量ξ服从正态分布)4,2(N , 求)42(<<ξP 。(参考数据:;8413.0)1(=φ 9772.0)2(=φ,6915.0)5.0(=φ )2、 在2007年的高考中,某省全体考生的考试成绩服从正态分布N(490,80)2,若该省计划本科录取率为0.4 ,则本科录取分数线可能划在多少分? (参考数据:6.0)25.0(=φ)A.500分B.505分C.510分D.515分【六】布置作业:1、(2007浙江卷5)已知随机变量ξ服从正态分布2(2)N σ,,(4)0.84P ξ=≤,则(0)P ξ=≤( A )A.0.16B.0.32C.0.68D,0.842.(2006年湖北卷)在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布()100,70N .已知成绩在90分以上(含90分)的学生有12名.(Ⅰ)试问此次参赛的学生总数约为多少人?(Ⅱ)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分? 可供查阅的(部分)标准正态分布表()()00x x P x <=φ率统计知识解决实际问题的能力。解:(Ⅰ)设参赛学生的分数为ξ,因为ξ~N(70,100),由条件知, P(ξ≥90)=1-P(ξ<90)=1-F(90)=1-Φ)107090(-=1-Φ(2)=1-0.9772=0.228. 这说明成绩在90分以上(含90分)的学生人数约占全体参赛人数的2.28%,因此, 参赛总人数约为0228.012≈526(人)。(Ⅱ)假定设奖的分数线为x 分,则 P(ξ≥x)=1-P(ξ<x)=1-F(x)=1-Φ)1070(-x =52650=0.0951, 即Φ)1070(-x =0.9049,查表得1070-x ≈1.31,解得x=83.1. 故设奖得分数线约为83.1分。。

高中数学新北师大版精品教案《北师大版高中数学选修2-3 6.2正态分布》

高中数学新北师大版精品教案《北师大版高中数学选修2-3 6.2正态分布》

正态分布教学目标1.知识与技能①通过高尔顿板试验,了解正态分布密度曲线的线特点,掌握利用σ3原则解决一些简单的与正态分布有关的概率计算问题2.过程与方法①通过试验、频率分布直方图、折线图认识正态曲线,体验从有限到无限的思想方法②通过观察正态曲线研究正态曲线的性质,体会数形结合的方法,增强观察、分析和归纳的能力3、情感态度与价值观①通过经历直观动态的高尔顿试验,提高学习数学的兴趣②通过σ3原则的学习,充分感受数学的对称美教学重点、难点重点:正态分布密度曲线的特点,利用σ3原则解决一些简单的与正态分布有关的概率计算问题难点:正态分布密度曲线的特点教法与学法1、教法本节课是概念课教学,我采取直观教学法、探究教学法和多媒体辅助教学法。

通过“观察—探究—再观察—再探究”等思维途径完成整个教学过程。

而多媒体的辅助教学,不仅激发学生的学习兴趣,还有利于培养学生动向观察、抽象概括、分析归纳的逻辑思维能力,提高了课堂教学的有效性。

2、学法纵观整堂课的设计,我注重培养学生以下学习方法:⑴观察探究:观察探究有助于学生初步了解数学概念和结论产生的过程,培养学生发现、提出、解决数学问题的能力。

(如利用高尔顿板探究正态曲线的归纳,能缩短解决问题的时间,锻炼数学思维。

(如通过几何画板的观察,归纳分析参数μ、σ对图像的影响)⑶理解应用在应用中体会到数学受到数学的价值,提高学习数学的兴趣。

教学过程通过对高尔顿板试验进行演示。

1.用频率分布直方图从频率角度研⑵以球槽的编号为横坐标,以小球落入各个球槽内的频率与组距的比值为纵坐标,画出频率分布直方图。

连接各个长方形上端的中点得到频率分布折线图。

⑶将高尔顿板下面的球槽去掉,试验次数增多,频率分布直方图无限分割,于是折线图就越来越接近于一条光滑的曲线。

式中含有两个参数μ和σ。

下面结合函数解析式研究曲线特点,并分析参数μ和σ对曲线的影响:⑴固定σ的值,观察μ对图像的影响教学内容μ的值,观察σ对图像的影⑵固定响⑶综合以上图像,你还能得到正态曲线的哪些特点?探 论 证()6826.0=+≤-σμσμX P <()9544.022=+≤-σμσμX P <()9974.033=+≤-σμσμX P <有,通常认为这种情况在一次试验中几乎不可能发生。

高中数学新北师大版精品教案《北师大版高中数学选修2-3 6 正态分布》

高中数学新北师大版精品教案《北师大版高中数学选修2-3 6 正态分布》

§ 2.6 正态分布教材分析:1、结合实际问题让学生了解连续性随机变量的意义,如产品寿命,等车的时间等。

体会连续性随机变量的取值是某一区间的任意值,无法一一列举,如何描述其分布列就是本节研究的重点,从而引起学生对本节的兴趣。

2、在实际遇到的许多量(如长度、质量、噪音等)都服从或近似服从正态分布 。

在研究频率分布直方图时,当样本容量无限增大时,频率分布直方图和道尔顿钉板实验的图像就无限接近于一条分布密度曲线,分布密度曲线较科学地反映了总体分布 但分布密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口 ,正态分布在统计学中是最基本、最重要的一种分布 。

3、正态分布是可以用函数形式来表述的 其密度函数可写成: 22()2(),(,)x f x x μσ--=∈-∞+∞, (σ>0)由此可见,正态分布是由它的均值(平均数)μ和标准差σ唯一决定的 常把它记为),(2σμN 。

正态分布曲线具有两头低、中间高、左右对称的基本特征 。

4、从形式上看,正态分布是一条中间高、两边低呈钟形的曲线,其对称轴为x=μ,从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x 轴,但永不与x 轴相交,因此说曲线在正负两个方向都是以x 轴为渐近线的5、结合正态曲线的图形特征,归纳正态曲线的性质 。

正态曲线的作图较难,教科书没做要求,授课时可以借助几何画板作图,学生只要了解大致的情形就行了,关键是能通过正态曲线,引导学生归纳其性质和解决实际问题 ,从实际中来,到实际中去。

教学分析教学时要通过一些贴近生活的实例,让学生对连续性随机变量和正态分布有初步直观的认识,同时使学生领悟到“数学来源于实践,又要回归到实践”,从而培养学生的学习兴趣,激发学习热情.教学中教师可利用多媒体引导学生分析归纳正态曲线的特点,既加强了学生的直观理解,也增强了学生观察归纳的能力,也能锻炼了学生观察归纳的能力,体现了归纳、分类、化难为易、数形结合的思想.这样的处理很好地突出了重点、突破了难点.教学目标:1、知识与技能:掌握正态分布在实际生活中的意义和作用,了解连续性随机变量的意义,掌握正态分布在实际生活中的意义和作用,了解分布密度曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.6.正态分布
教学目标
(1)通过实际问题,借助直观(如实际问题的直方图),了解什么是正态分布曲线和正态分布;
(2)认识正态分布曲线的特点及曲线所表示的意义;
(3)会查标准正态分布表,求满足标准正态分布的随机变量X 在某一个范围内的概率. 重点,难点
(1) 认识正态分布曲线的特点及曲线所表示的意义;
(2) 求满足标准正态分布的随机变量X 在某一个范围内的概率.
教学过程
一.问题情境
1.复习频率分布直方图、频率分布折线图的意义、作法;
回顾曲边梯形的面积()b
a S f x dx =⎰的意义.
2.从某中学男生中随机地选出84名,测量其身高,数据如下(单位:cm ):
164 175 170 163 168 161 177 173 165 181 155 178
164 161 174 177 175 168 170 169 174 164 176 181
181 167 178 168 169 159 174 167 171 176 172 174
163 180 154 173 170 171 174 172 171 185 164 172
164 167 168 170 174 172 169 182 167 165 172 171
185 157 174 164 168 173 166 172 161 178 162 172
179 161 160 175 169 169 175 161 155 156 182 182
上述数据的分布有怎样的特点?
二.学生活动
为了研究身高的分布,可以先根据这些数据作出频率分布直方图.
第一步 对数据分组(取组距4d =);
第二步 列出频数(或频率)分布表;
第三步 作出频率分布直方图,如图
2-6-2.
由图2-6-2可以看出,上述数据的分
布呈“中间高,两边底,左、右大致
对称”的特点.
可以设想,若数据无限增多且组距
无限缩小,那么频率直方图的顶边
无限缩小乃至形成一条光滑的曲线,
我们将此曲线称为概率密度曲线.
再观察此概率密度曲线的特征.
三.建构数学
1. 正态密度曲线:
函数22()2(),x P x x R μσ--=∈的图象为正态密度曲线,
其中μ和σ为参数( 0σ>,R μ∈).不同的μ和σ对应着不同的正态密度曲线.
2.正态密度曲线图象的性质特征:
(1)当x μ<时,曲线上升;当x μ>时,曲线下降;当曲线向左右两边无限延伸时,以
x 轴为渐进线;
(2)正态曲线关于直线x μ=对称;
(3)σ越大,正态曲线越扁平;σ越小,正态曲线越尖陡;
(4)在正态曲线下方和x 轴上方范围内的区域面积为1.
3.正态分布:
若X 是一个随机变量,对任给区间(,],()a b P a x b <≤恰好是正态密度曲线下方和X 轴上(,]a b 上方所围成的图形的面积,我们就称随机变量X 服从参数为μ和2
σ的正态分布,简记为2~(,)X N μσ.
4. 正态总体在三个特殊区间内取得的概率值:
具体地,如图所示,随机变量X 取值
(1)落在区间(,)μσμσ-+上的概率约为 0068.3,即()0.683P X μσμσ-<≤+=;
(2)落在区间(2,2)μσμσ-+上的概率约为0095.4,即
(22)0.954P X μσμσ-<≤+=;
(3)落在区间(3,3)μσμσ-+上的概率约为0099.7,即
(33)0.997P X μσμσ-<≤+=.
5. 3σ原则: 服从于正态分布2
(,)N μσ的随机变量X 只取(3,3)μσμσ-+之间的值,并
简称为3σ原则.
6.标准正态分布:
事实上,μ就是随机变量X 的均值,2σ就是随机变量X 的方差,它们分别反映X 取值的平均大小和稳定程度.我们将正态分布(0,1)N 称为标准正态分布.通过查标准正态分布表(见附表1)可以确定服从标准正态分布的随机变量的有关概率.
7.非标准正态分布转化为标准正态分布:
非标准正态分布2(,)X N μσ可通过X z μ
σ-=转化为标准正态分布(0,1)z N .
四.数学运用
1.例题:
例1.一台机床生产一种尺寸为10mm 的零件,现在从中抽测10个,它们的尺寸分别如下(单位:mm ):10.2,10.1,10,9.8,9.9,10.3,9.7,10,9.9,10.1,如果机床生产零件的尺寸Y 服从正态分布,求正态分布的概率密度函数式. 解:由题意得1(10.210.1109.89.910.39.7109.910.1)1010
μ=+++++++++=, 22222221[(10.210)(10.110)(1010)(9.810)(9.910)(10.310)10
σ=-+-+-+-+-+- 2222(9.710)(1010)(9.910)(10.110)]0.03+-+-+-+-=,即10μ=,20.03σ=.
所以Y 的概率密度函数为250(10)3(),
x P x x R --=∈.
例2.若随机变量~(0,1)Z N ,查标准正态分布表,求:
(1)( 1.52)P Z ≤;
(2)( 1.52)P Z >;
(3)(0.57 2.3)P x <≤;
(4)( 1.49)P Z ≤-.
解:(1)( 1.52)0.9357P Z ≤=.
(2)( 1.52)1( 1.52)P Z P Z >=-≤10.93570.0643=-=.
(3)(0.57 2.3)( 2.3)(0.57)0.98930.71570.2736P x P Z P Z <≤=≤-≤=-=;
(4)
( 1.49)( 1.49)P Z P Z ≤-=≥
1( 1.49)10.9319
P Z =-≤=- 0.0681=.
例3.在某次数学考试中,考生的成绩X 服从一个正态分布,即(90,100)X N .试求
考试成绩X 位于区间(70,110)上的概率是多少?
解: 法一(将非标准正态分布转化为标准正态分布):
70909011090(70110)(
)(22)(2)(2)101010X P X P P Z P Z P Z ---<<=<<=-<<=≤-≤- [](2)1(2)2(2)120.977210.95440.954P Z P Z P Z =≤--≤=≤-=⨯-=≈.
法二(3σ原则):因为(90,100)X N ,所以90,10μσ===. 由于正态变量在区间(2,2)μσμσ-+内取值的概率是0.954,而该正态分布
29021070μσ-=-⨯=,290210110μσ+=+⨯=,
所以考试成绩X 位于区间(70,110)上的概率就是0.954.。

相关文档
最新文档