三角恒等变换2
3.2.2简单的三角恒等变换②

必修4
第三章
三角恒等变换
栏目导引
[题后感悟] 除了本题中的思路,“1”化为 sin2θ +cos2θ 后也常与 2sinθcosθ 凑成完全平方式,或 π 者化为 tan 的形式利用正切公式进行变形化简. 4
必修4
第三章
三角恒等变换
栏目导引
1.化简 2 1-sin 8+ 2+2cos 8.
π π 3sin2x-6 +2sin2x-12
(x∈R). (1)求函数 f(x)的最小正周期; (2)求使函数 f(x)取得最大值的 x 的集合.
必修4
第三章
三角恒等变换
栏目导引
[策略点睛]
必修4
第三章
三角恒等变换
栏目导引
[解题过程]
(1)∵f(x)=
2cos
必修4
第三章
三角恒等变换
栏目导引
3 3.函数 y= 3sin x· x+3cos x- 的最小值为 cos 2 ________.
2
31+cos x 3 3 解析: y= sin 2x+ - 2 2 2 1 3 = 3 sin 2x+ cos 2x 2 2 π = 3sin2x+3 ymin=- 3.
3.2
简单的三角恒等变换(二)
必修4
第三章
三角恒等变换
栏目导引
1.巩固三角恒等 变换的基本技 能. 2.掌握三角恒等 变换在三角函 数图象与性质 中的应用.
1.灵活运用三角公式,特别是 倍角公式进行三角恒等变 换.(重点) 2.利用半角公式时的符号.(易 混点) 3.利用三角恒等变换解决实际 问题.(难点)
π 3sin2x-6 +1-
三角恒等变换

三角恒等变换三角恒等变换是解决三角函数之间关系的重要工具,它们能够将一个三角函数表达式转化为与之等价的形式。
在解三角函数方程、简化和证明三角恒等式时,熟练掌握三角恒等变换是至关重要的。
1. 基本的三角恒等变换基本的三角恒等变换包括:- 正弦函数的平方加上余弦函数的平方等于1:sin^2(x) + cos^2(x) = 1- 1加上正切函数的平方等于secant函数的平方:1 + tan^2(x) = sec^2(x)- 1加上余切函数的平方等于cosecant函数的平方:1 + cot^2(x) = csc^2(x)这些基本的恒等变换在求解三角函数方程的时候经常会用到。
2. 倍角恒等变换倍角恒等变换是将角度翻倍的三角函数关系,其中包括:- 正弦函数的倍角公式:sin(2x) = 2sin(x)cos(x)- 余弦函数的倍角公式:cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x)- 正切函数的倍角公式:tan(2x) = (2tan(x))/(1 - tan^2(x))倍角恒等变换可以帮助我们简化三角函数表达式,从而更容易进行计算和证明。
3. 和差恒等变换和差恒等变换是将两个三角函数的和或差转化为一个三角函数的形式,常见的和差恒等变换包括:- 正弦函数的和差公式:sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)- 余弦函数的和差公式:cos(x ± y) = cos(x)cos(y) ∓ sin(x)sin(y)- 正切函数的和差公式:tan(x ± y) = (tan(x) ± tan(y))/(1 ∓ tan(x)tan(y))和差恒等变换可以帮助我们将复杂的三角函数表达式转化为简单的形式,方便计算和处理。
4. 半角恒等变换半角恒等变换是将一个角度的一半与三角函数的关系转化为另一个角度的三角函数关系。
2025版新教材高中数学第二章三角恒等变换2

2.1.2 两角和与差的正弦公式教材要点要点两角和与差的正弦公式名称简记符号公式运用条件两角和的正弦S(α+β)sin (α+β)=______________________α,β∈R两角差的正弦S(α-β)sin (α-β)=____________________α,β∈R状元随笔公式的记忆方法(1)理顺公式间的联系.C(α+β)C(α-β)S(α-β)S(α+β)(2)留意公式的结构特征和符号规律.对于公式C(α-β),C(α+β),可记为“同名相乘,符号反”.对于公式S(α-β),S(α+β),可记为“异名相乘,符号同”.公式逆用:sinαcosβ+cosαsinβ=sin(α+β),sinαcosβ-cosαsinβ=sin(α-β),cosαcosβ+sinαsinβ=cos(α-β),cosαcosβ-sinαsinβ=cos(α+β).基础自测1.思索辨析(正确的画“√”,错误的画“×”)(1)对随意的α,β角,都有sin (α+β)=sin α+sin β.( )(2)存在α,β角,使得sin (α+β)=sin α+sin β.( )(3)存在α,β角,使得sin (α-β)=sin α+sin β.( )(4)∀α,β,有sin (α+β)sin (α-β)=sin2α-sin2β.( ) 2.sin35°cos 25°+cos 35°sin 25°的值等于( )A. B. C. D.3.sin 15°cos 225°+cos 15°sin 45°的值为( )A.- B.- C. D.4.若cos α=-,α是第三象限的角,则sin =________.题型 1 给角求值例1 (1)化简sin 200°cos 140°-cos 160°sin 40°,得( )A. B.sin 20° C.cos 20° D.(2)的值是________.方法归纳(1)对于非特别角的三角函数式求值问题,肯定要本着先整体后局部的基本原则,假如整体符合三角函数式的形式,则整体变形,否则进行各局部的变形.(2)一般途径有:将非特别角化为特别角的和或差的形式,化为正负相消的项并消项求值,变换分子、分母的形式进行约分,解题时要留意逆用或变用公式.跟踪训练 1 (1)化简:sin (x+27°)cos (18°-x)+sin (63°-x)·sin (18°-x)=________.(2)求值:=________.题型 2 给值求值角度1 干脆法求值例2 已知sin α=,cos β=-,且α为第一象限角,β为其次象限角,求sin (α+β)的值.方法归纳(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式.(2)已知角的一个弦值,求另一个弦值时,肯定留意已知角的范围.角度2 拆角变换求值例3 已知<β<α<,cos (α-β)=,sin (α+β)=-,求:sin 2α、sin 2β.跟踪训练2 (1)已知α,β均为锐角,cos α=,cos (α+β)=-,则sin β=( )A.B.或C.D.(2)已知θ是其次象限角且cos θ=-,则sin =________.题型 3 已知三角函数值求角例4 已知cos α=,cos (α-β)=,且0<β<α<,求β的值.方法归纳(1)要求一个角,一般可以先求这个角的某种三角函数值,详细求哪种三角函数值,应依据所求角的范围确定.(2)考虑角的拼凑,留意到β=α-(α-β),故sin β=sin [α-(α-β)],或cos β=cos [α-(α-β)].(3)本题还可以将cos (α-β)绽开,结合同角三角函数的关系求解,但比较困难.跟踪训练3 已知cos α=,sin (α+β)=,0<α<,0<β<,求角β.课堂非常钟1.sin 105°的值为( )A.B.C.D.2.(多选)下面各式中,正确的是( )A.sin =sin cos cosB.cos =sin -cos cosC.cos =cos cosD.cos =cos -cos3.cos 16°cos 44°-cos 74°sin 44°的值为( )A. B.-C. D.-4.已知sin A=,且A∈,则sin =________.5.已知:α∈,β∈,且cos (α-β)=,sin β=-,求角α的大小.2.1.2 两角和与差的正弦公式新知初探·课前预习要点sin αcos β+cos αsin βsin αcos β-cos αsin β[基础自测]1.答案:(1)×(2)√(3)√(4)√2.解析:由题得sin 35°cos 25°+cos 35°sin 25°=sin (35°+25°)=sin 60°=.答案:D3.解析:∵cos 225°=cos (45°+180°)=-cos 45°,因此,sin 15°cos 225°+cos 15°sin 45°=sin 45°cos 15°-cos 45°sin 15°=sin (45°-15°)=sin 30°=.答案:C4.解析:因为cos α=-,α是第三象限的角,所以sin α=-,由两角和的正弦公式可得sin =sin αcos +cos αsin ==-.答案:-题型探究·课堂解透例1 解析:(1)sin 200°cos 140°-cos 160°sin 40°=sin 20°cos 40°+cos 20°sin 40°=sin 60°=.(2)原式=====.答案:(1)A (2)跟踪训练1 解析:(1)因为sin (63°-x)=sin [90°-(27°+x)]=cos (27°+x),所以,原式=sin (x+27°)cos (18°-x)+cos (27°+x)sin (18°-x)=sin [(x+27°)+(18°-x)]=sin 45°=.(2)∵sin 47°=sin (30°+17°)=sin 30°cos 17°+cos 30°sin 17°,∴原式==sin 30°=.答案:(1)(2)例2 解析:因为α为第一象限角,β为其次象限角,sin α=,cos β=-,所以cos α=,sin β=,所以sin (α+β)=sin αcos β+cos αsin β=×(-)+=.例3 解析:∵<β<α<,∴0<α-β<,π<α+β<又∵cos (α-β)=,sin (α+β)=-,∴sin (α-β)=,cos (α+β)=-sin 2α=sin [(α+β)+(α-β)]=sin (α+β)cos (α-β)+cos (α+β)sin (α-β)=-sin 2β=sin [(α+β)-(α-β)]=sin (α+β)cos (α-β)-cos (α+β)sin (α-β)=-.跟踪训练2 解析:(1)因为α,β均为锐角,故α+β∈(0,π),因为cos α=,cos (α+β)=-,所以sin α==,sin (α+β)==,所以sin β=sin [(α+β)-α]=sin (α+β)cos α-cos (α+β)sin α==.(2)∵θ是其次象限角且cos θ=-,∴sin θ==,∴sin=sin θcos +cos θsin==-.答案:(1)A (2)-例4 解析:由0<β<α<可知,0<α-β<,故sin α=,sin (α-β)=.故sin β=sin [α-(α-β)]=sin αcos (α-β)-cos αsin (α-β)==.又0<β<,因此β=.跟踪训练3 解析:因为0<α<,cos α=,所以sin α=.又因为0<β<,所以0<α+β<π.因为sin (α+β)=<sin α,所以cos (α+β)=-,所以sin β=sin [(α+β)-α]=sin (α+β)cos α-cos (α+β)sin α==.又因为0<β<,所以β=.[课堂非常钟]1.解析:sin 105°=sin (45°+60°)=sin 45°cos 60°+cos 45°sin 60°==.答案:D2.解析:∵sin =sin cos +cos sin =sin cos cos ,∴A正确;∵cos =-cos =-cos =sin -cos cos ,∴B正确;∵cos=cos =cos cos ,∴C正确;∵0<cos =cos ≠cos -cos <0,∴D不正确.答案:ABC3.解析:方法一cos 16°cos 44°-cos 74°sin 44°=cos 16°cos 44°-sin 16°sin 44°=cos (16°+44°)=cos 60°=.方法二cos 16°cos 44°-cos 74°sin 44°=sin 74°cos 44°-cos 74°sin 44°=sin (74°-44°)=sin 30°=.答案:C4.解析:因为sin A=,且A∈,所以cos A=-=-,因此sin=sin A cos +cos A sin==.答案:5.解析:因为α∈,β∈,所以α-β∈(0,π).由cos (α-β)=,知sin (α-β)=.由sin β=-,知cos β=.所以sin α=sin [(α-β)+β]=sin (α-β)cos β+cos (α-β)sin β==.又α∈,所以α=。
三角恒等变换

专题三角恒等变换(一)一、诱导公式1、诱导公式(一~六)诱导公式一:sin(2)sin k απα+=,cos(2)cos k απα+=,tan(2)tan k απα+=,其中k Z ∈诱导公式二:sin()sin παα+=-,cos()cos παα+=-,tan()tan παα+=,其中k Z ∈诱导公式三:sin()sin αα-=-,cos()cos αα-=,tan()tan αα-=-,其中k Z ∈诱导公式四:sin()sin παα-=,cos()cos παα-=-,tan()tan παα-=-,其中k Z∈诱导公式五:sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭,其中k Z ∈诱导公式六:sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭,其中k Z∈2、诱导公式口诀:“奇变偶不变,符号看象限”,意思是说角90k α⋅±(k 为常整数)的三角函数值:当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变,然后α的三角函数值前面加上当视α为锐角时原函数值的符号.3、用诱导公式进行化简时的注意点:(1)化简后项数尽可能的少;(2)函数的种类尽可能的少;(3)分母不含三角函数的符号;(4)能求值的一定要求值;(5)含有较高次数的三角函数式,多用因式分解、约分等.二、利用诱导公式求任意角三角函数值的步骤1、“负化正”:用公式一或三来转化.2、“大化小”:用公式一将角化为0°到360°间的角.3、“角化锐”:用公式二或四将大于90°的角转化为锐角.4、“锐求值”:得到锐角的三角函数后求值.三、利用诱导公式求值与求解解题策略1、条件求值问题的策略(1)条件求值问题,首先要仔细观察条件与所求式之间的角、函数名称及有关运算之间的差异及联系.(2)将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.2、给值求角问题,先通过化简已给的式子得出某个角的某种三角函数值,再结合特殊角的三角函数值逆向求角.3、观察互余、互补关系:如π3-α与π6+α,π3+α与π6-α,π4α与π4+α等互余,π3+θ与2π3θ,π4+θ与3π4-θ等互补,遇到此类问题,不妨考虑两个角的和,要善于利用角的变换来解决问题.题型一利用诱导公式给角求值【例1】cos 210︒的值等于()A .12B 32C .32D .22-【变式1-1】35πsin 6=()A .12B .12-C 32D .32【变式1-2】计算:5π7ππ2sin2cos tan 663⎛⎫+--= ⎪⎝⎭______.题型二利用诱导公式给值求值【例2】若()4sin ,5πα+=-且α是第二象限角,则cos α=()A .45-B .35-C .35D .45【变式2-1】设02πα⎛⎫∈ ⎪⎝⎭,,若3sin ,5α=则cos 2πα⎛⎫+= ⎪⎝⎭()A .35B .45C .35-D .45-【变式2-2】若()4sin 5πα+=-,则3cos 2πα⎛⎫-= ⎪⎝⎭()A .45-B .35-C .45D .35【变式2-3】设sin 25a ︒=,则sin 65cos115tan 205︒︒︒=()A 221a -B .221a -C .2a -D .2a题型三利用互余互补关系求值【例3】已知π3cos 35α⎛⎫-= ⎪⎝⎭,则πsin 6α⎛⎫+= ⎪⎝⎭()A .45±B .45C .45-D .35【变式3-1】已知π1sin 43α⎛⎫+= ⎪⎝⎭,则πcos 4α⎛⎫- ⎪⎝⎭的值为()A .13B.3C .13-D.3-【变式3-2】若1sin ,63a π⎛⎫+= ⎪⎝⎭则2cos 3a π⎛⎫+= ⎪⎝⎭()A .13B .13-C .79D .79-【变式3-3】已知cos 6πθ⎛⎫- ⎪⎝⎭=a (|a |≤1),则cos 56πθ⎛⎫+⎪⎝⎭+sin 23πθ⎛⎫- ⎪⎝⎭的值是________.【变式3-4】已知函数()π5π10πcos 2cos 2tan 26334π4πtan 2sin 233x x x f x x x ⎛⎫⎛⎫⎛⎫--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭.(1)化简()f x ;(2)若()0310f x =,求00π2πsin 2cos 263x x ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭的值.题型四利用诱导公式化简求值A .sin 4cos4-B .sin 4cos4--C .cos 4sin 4-D .sin 4cos 4+【变式4-1】(多选)已知角α满足sin cos 0αα⋅≠,则()()()sin πcos πsin cos k k k αααα+++∈Z 的取值可能为()A .2-B .1-C .2D .0【变式4-2】已知α是第四象限角,且cos α=()()sin cos cos sin 22πααππαα++-=⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭___________.【变式4-3】(1)化简:222cos(4)cos ()sin (3)sin(4)sin(5)cos ()θπθπθπθππθθπ+++-+--(2)已知()sin 3n f n π=(n ∈Z ),求(1)f +(2)f +(3)f +…+(2012)f 的值.【变式4-4】已知()()()()()3sin cos tan cos 222sin 2tan sin f πππααπαααπααππα⎛⎫⎛⎫⎛⎫+--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=---+.(1)化简()f α;(2)若31cos 25πα⎛⎫-=- ⎪⎝⎭,求()f α的值.题型五三角恒等式的证明【例5】(1)求证:tan(2)sin(2)cos(6)tan 33sin()cos()22παπαπααππαα----=-++;(2)设8tan()7m πα+=,求证1513sin()3cos()37720221sin()cos()77m m ππααππαα++-+=+--+.【变式5-1】求证:232sin()cos()12212sin ()ππθθπθ-+--+=tan(9)1tan()1πθπθ+++-.专题三角恒等变换(二)一、升(降)幂缩(扩)角公式利用余弦的二倍角公式变形可得:升幂公式:21cos 22cos αα+=,21cos 22sin αα-=降幂公式:21cos 2cos 2αα+=,21cos 2sin 2αα-=二、半角公式(只要求推导,不要求记忆)sin2a =cos2a =sin 1cos tan.21cos sin ααααα-===+以上三个公式分别称作半角正弦、余弦、正切公式,它们是用无理式表示的.sin 1cos tan ,tan 21cos 2sin αααααα-==+;2sin2sin 1cos 22tan 2sin cos 2sin cos 222αααααααα-===以上两个公式称作半角正切的有理式表示.三、积化和差与和差化积公式1、积化和差1sin cos [sin()sin()]2αβαβαβ=-++1cos sin )sin()]2αβαβαβ=+--1cos cos )cos()]2αβαβαβ=-++1sin sin [cos()cos()]2αβαβαβ=--+2、和差化积sin sin 2sincos 22x y x yx y +-+=sin sin 2cossin 22x y x yx y +--=cos cos 2cos cos22x y x yx y +-+=cos cos 2sin 22x y x yx y +--=-四、辅助角公式对于形如sin cos a x b x +的式子,可变形如下:sin cos a x b x +sin cos x x ⎫⋅⋅的平方和为1,故令cos ϕϕ==则sin cos a x b x +)sin cos cos sin x x ϕϕ+)x ϕ+其中ϕ角所在象限由,a b 的符号确定,ϕ角的值由tan baϕ=确定,或由sin ϕ=和cos ϕ=五、万能公式22tan2sin 1tan 2ααα=+;221tan 2cos 1tan 2ααα-=+;22tan2tan 1tan 2ααα=-六、三角函数化简“三看”原则七、三角恒等变换综合应用的解题思路(1)将()f x 化为sin cos a x b x +的形式;(2)构造)cos sin ()(x ba b x ba ab a x f ⋅++⋅++=222222(3)和角公式逆用,得())f x x ϕ=+(其中φ为辅助角);(4)利用())f x x ϕ=+研究三角函数的性质;(5)反思回顾,查看关键点、易错点和答题规范.题型一半角公式与万能公式的应用【例1】已知,02πα⎛⎫∈- ⎪⎝⎭,3sin 5α=-,则tan 2α=()A .3B .3-C .13D .13-【变式1-1】已知π3,π,sin 25αα⎛⎫∈= ⎪⎝⎭,则cos π2α⎛⎫-= ⎪⎝⎭()A.10B.10C.10-D.10【变式1-2】若3sin 5θ=,5π3π2θ<<,则tan cos 22θθ+=()A.3B .3C .3D .3-【变式1-3】已知()tan 3πα+=,则cos 22πα⎛⎫-= ⎪⎝⎭()A .35B .310C .34D 【变式1-4】若sin 11cos 2αα=+,则sin cos αα+的值为________.题型二积化和差与和差化积的应用【例2】利用和差化积公式,求下列各式的值:(1)sin15sin105︒+︒;(2)sin20sin40sin80︒+︒-︒;(3)cos40cos60cos80cos160︒+︒+︒+︒.【变式2-1】利用积化和差公式,求下列各式的值:(1)cos15cos75︒︒;(2)sin20sin40sin80︒︒︒.【变式2-2】下列关系式中正确的是()A .sin 5sin 32sin 8cos 2θθθθ+=B .cos3cos52sin 4sin θθθθ-=-C .1sin3sin5cos4cos 2θθθθ-=-D .()()1cos cos sin sin 2x y x y x y --+=⎡⎤⎣⎦【变式2-3】若1cos cos sin sin 2x y x y +=,2sin 2sin 23x y +=,则()sin +=x y ()A .23B .23-C .13D .13-【变式2-4】求值:cos 40cos80cos80cos160cos160cos 40︒︒︒︒︒++︒.【变式2-5】在ABC 中,若30B = ,则cos sin A C 的取值范围是()A .[]1,1-B .11,22⎡⎤-⎢⎥⎣⎦C .13,44⎡⎤-⎢⎥⎣⎦D .31,44⎡⎤-⎢⎥⎣⎦题型三辅助角公式及其应用【例3】将下列各式化成()sin A x ϕ+的形式:(1cos x x -;(2).444x x ππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭【变式3-1】求下列函数的最大值和最小值:(1)1cos 2y x x =;(2)sin cos y x x =-;(3)sin y x x =+;(4)sin 22y x x =.【变式3-2】(多选)若1sin cos()22x x x ϕ+=+,则ϕ的值可能为()A .6π-B .6πC .56πD .116π【变式3-3】已知πcos(63x -=,则πcos cos()3x x +-等于()A B .±C .-1D .1【变式3-4】已知函数2()cos 2cos f x x x x =+.(1)求函数()f x 的单调增区间;(2)求函数()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值,以及此时x 的取值.题型四三角恒等变换的化简问题【例4】化简4sin 24cos 24tan12cos12︒︒︒︒+=()A .1B CD .2【变式4-1】化简()()sin5cos51︒+︒︒=()A .2B .C .2D【变式4-2】若1cos sin 222αα=,则1sin cos 14ααπα++=⎛⎫+ ⎪⎝⎭()A .1B .12CD.【变式4-3】若2πθπ<<,tan 3θ=-=_________.题型五三角形中的三角恒等变换【例5】在ABC ∆中,若sin cos()1sin()cos 22A B A B ππ-=--,则这个三角形是()A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形【变式5-1】已知ABC ,角,,A B C 所对应的边分别为,,a b c ,且sin sin cos cos A B A B +=+,则ABC 是()A .直角三角形B .等边三角形C .钝角三角形D .锐角三角形【变式5-2】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,()()2sin sin sin B C B C A +⋅-=.则△ABC的形状为()A .正三角形B .等腰直角三角形C .直角三角形D .等腰三角形。
第2课时 简单的三角恒等变换

α (0<α<π).
[解]
因为 tan
α2=1+sincoαs
, α
所以(1+cos α)tan α2=sin α.
第2课时 简单的三角恒等变换
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
又因为 cos32π-α=-sin α,且 1-cos α=2sin2α2,
所以原式=-sin
α-sin 2sin2α2
-β)-cos
αsin(α-β)=
55×3
1010-2
5
5×-
1100=
22.
又∵角 β 是锐角,∴β=π4.
第2课时 简单的三角恒等变换
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
(2)∵tan α=tan[(α-β)+β] =1-tantaαn-α-β+βttaann β β=1+12-12×71 71=13>0, ∴0<α<π2.
给值求值
[典例 2-2] (1)设 α 为锐角,若 cosα+π6=-13,则 sin2α+1π2 的值为( )
A.275
B.7
2-8 18
C.-1750 2
D.
2 5
第2课时 简单的三角恒等变换
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
(2)已知 0<x<π4,sinπ4-x=153,则cocsosπ4+2xx=________.
∴tan
α2=1+sincoαs
= α
5-2.]
第2课时 简单的三角恒等变换
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
3.2 简单的三角恒等变换2

3.2 简单的三角恒等变换2一、三维目标知识与技能:会用已学公式进行三角函数式的化简、求值和证明,能推导半角公式,积化和差、和差化积公式(公式不要求记忆),进一步提高运用转化、换元、方程等数学思想解决问题的能力。
过程与方法:对变换对象目标进行对比、分析,形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形。
情感态度与价值观: 在变换过程中体现换元、逆向使用公式等数学思想方法,从而加深理解变换思想,提高学生的推理能力。
二、学习重、难点:重点: 形如sin cos y a x b x =+的函数的变换。
难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力。
三、学法指导:熟记所学的三角公式,体会三角变换的数学思想方法,利用小组合作,探讨研究形如sin cos y a x b x =+的函数的变换。
四、知识链接:写出三角函数的和(差)角公式、二倍角公式等公式 1. 两角和与差的余弦、正弦、正切公式:2.二倍角的正弦、余弦、正切公式:3.半角公式:1cos sin22αα-=±,1cos cos 22αα+=±,1cos tan 21cos ααα-=±+, 五、学习过程 A 例1.求证:⑴1sin cos [sin()sin()]2αβαβαβ=++-⑵sin sin 2sincos22θϕθϕθϕ+-+=.A 例2.计算或化简(1)、sin 72cos 42cos72sin 42-; 2、化简2cos 6sin x x -B 例3.如图,已知OPQ 是半径为1,圆心角为3π的扇形,C是扇形弧上的动点,ABCD 是扇形的内接矩形.记COP α∠=,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大面积。
C 例4. 已知函数2()5sin cos f x x x x =-+(其中x ∈R ),求: (1)函数()f x 的最小正周期; (2)函数()f x 的单调区间;(3)函数()f x 图象的对称轴和对称中心。
9种常用三角恒等变换技巧总结

9种常用三角恒等变换技巧总结三角恒等变换是数学中常用的一种技巧,在解决三角函数相关问题时非常有用。
下面总结了九种常见的三角恒等变换技巧。
1.倍角公式:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = 2tanθ / (1 - tan²θ)这些公式可以用于将一个三角函数中的角度变为它的倍角,从而简化计算。
2.半角公式:sin(θ/2) = ±√((1 - cosθ) / 2)cos(θ/2) = ±√((1 + cosθ) / 2)tan(θ/2) = ±√((1 - cosθ) / (1 + cosθ))这些公式可以用于将一个三角函数中的角度变为它的半角,从而简化计算。
3.和差公式:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)这些公式可以用于将两个角度的三角函数变成一个角度的三角函数,从而简化计算。
4.和差化积公式:sinA + sinB = 2sin((A+B)/2)cos((A-B)/2)sinA - sinB = 2cos((A+B)/2)sin((A-B)/2)cosA + cosB = 2cos((A+B)/2)cos((A-B)/2)cosA - cosB = -2sin((A+B)/2)sin((A-B)/2)这些公式可以用于将和或差的三角函数转化为乘积的三角函数,从而简化计算。
5.积化和差公式:sinAcosB = 1/2(sin(A+B) + sin(A-B))cosAsinB = 1/2(sin(A+B) - sin(A-B))cosAcosB = 1/2(cos(A+B) + cos(A-B))sinAsinB = -1/2(cos(A+B) - cos(A-B))这些公式可以用于将乘积的三角函数转化为和或差的三角函数,从而简化计算。
简单的三角恒等变换2

A
D
P
1 cos sin 2 2
2ቤተ መጻሕፍቲ ባይዱ
1 cos cos 2 2
2
1 cos tan 2 1 cos
2
分析: (1)找出S与 之间的函数关系;
(2)由函数解析式求最值。
O D
Q
C
A B P
1 sin 2 cos 2 求证: tan 1 sin 2 cos 2
1 1 1 1 3 化简: cos 2 ( 2 ) 2 2 2 2 2
Q B C N O M
sin sin cos cos sin
两角和与差公式:
cos( ) cos cos sin sin
tan tan tan 1 tan tan
sin 2 2 sin cos 2 2 2 2 cos 2 cos sin 2cos 1 1 2sin
先化简,再求函数的性质。
形如y a sin x b cos x
形如y A sin( x )
A a b
2
2
如图,已知OPQ是半径为1,圆心角为 3 的扇 形,C是扇形弧上的动点,ABCD是扇形的内接 矩形,记COP= ,求当角 取何值时,矩形 ABCD的面积最大?并求出这个最大面积。
2 tan tan 2 1 tan 2
二倍角公式:
x (1)求函数 y 2cos 1 的单调递增区间。 2 2 2 (2)求函数 y sin x 2sin x cos x 3cos x
2
的周期,最大值及取的最大值时x的集合。
简单的三角恒等变换(2)最新更新

;最大值是
3 2k
,对应的的x值是
5 12 ,k Z
2
x k
y m ax 7 , 2 x
2013-6-19
3
2k
2
x k
12
,k Z
13
王山喜--简单的三角变换2
5 5、已知x 0, ,求函数y cos( x) cos( x)的值域. 2 12 12
tanα- tanβ 1 + tanα tanβ
2
王山喜--简单的三角变换2
t a n ( α +β ) =
tanα+ tanβ 1 - tanα tanβ
t a n ( α -β ) =
tanα- tanβ 1 + tanα tanβ
正切公式的常见变形!
t a n α + t a n β = t a n ( α +β ) ( 1 - t a n α t a n β )
3
的扇形,
С是扇形弧上的动点,ABCD是扇形的内接矩形。记 ∠COP=α,求当角α取何值时,矩形ABCD的面积最 大?并求出这个最大面积。
分析: 要求当角α取何值时,矩形ABCD的面积S最大,可 分二步进行: ⑴找出S与α之间的函数关系; ⑵由得出的函数关系,求S的最大值。
D C Q
2013-6-19
a b cos x
2 2
a b sin x
2
2013-6-19
王山喜--简单的三角变换2
6
二、引入课题
上节我们学习利用和、差、倍角公式,作 为变换的工具,进行求值、化简、证明等三角 变换,这为我们的推理、运算能力提供了新的 平台.下面我们来研究和三角函数性质、三角 形及平面向量等知识有联系的问题。
第2讲 三角恒等变换

第2讲 三角恒等变换【知识梳理】一、两角和与差正余弦与正切公式sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=二、二倍角公式sin 22sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 三、降次公式211cos cos 222αα=+ 211sin cos 222αα=-(4) 辅助角公式sin cos )y a x b x y x ϕ=±⇒=±tan )baϕ=(其中【题型分类】一、公式的应用(顺用逆用变形用)例1:(1)若cos α=-45,α是第三象限角,则sin 4πα⎛⎫+ ⎪⎝⎭ =(2)若tan α=3,则sin 2αcos 2α的值等于例2:化简cos15°cos45°﹣cos75°sin45°的值为( ) A . B .C .﹣D .﹣例3:=( ) A .B .C .﹣D .﹣例4:若322tan=θ,则θθθθsin cos 1sin cos -1+++的值为例5:54cos -=θ,θ为第三象限的角,则2tan 12tan-1θθ+=二、整体思想例6:若0<α<π2,-π2<β<0,cos 4πα⎛⎫+ ⎪⎝⎭=13,cos 42πβ⎛⎫- ⎪⎝⎭=33,则cos 2βα⎛⎫+ ⎪⎝⎭= ( )A.33 B .-33 C.539 D .-69例7:若sin α+cos αsin α-cos α=3,tan(α-β)=2,则tan(β-2α)=________.例8:若cos(π8−α)=16,则cos(3π4+2α)的值为( )A. 1718B. −1718C. 1819D. −1819例9:(1)设1cos cos 2αβ+=,1sin sin 3αβ+=,求cos()αβ-的值; (2)若α、β是锐角,且sin α-sin β=-12,cos α-cos β=12,则tan(α-β)=________。
高中数学:第三章 三角恒等变换 第2节 简单的三角恒等变换 Word版含答案

3.2 简单的三角恒等变换[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 139~P 142的内容,回答下列问题. (1)α与α2是什么关系?提示:倍角关系.(2)如何用cos α表示sin 2 α2,cos 2 α2和tan 2 α2?提示:sin 2α2=1-cos α2,cos 2α2=1+cos α2,tan 2α2=1-cos α1+cos α.2.归纳总结,核心必记 (1)半角公式(2)三角恒等变换的特点三角恒等变换常常寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式.[问题思考](1)能用不含根号的形式用sin α,cos α表示tan α2吗?提示:tan α2=sin α1+cos α=1-cos αsin α.(2)如何用tan α2表示sin α,cos α及tan α?提示:sin α=2sin α2·cosα2=2sinα2·cosα2sin2α2+cos2α2=2tanα21+tan2α2. cos α=cos2α2-sin2α2=cos2α2-sin2α2cos2α2+sin2α2=1-tan2α21+tan2α2.tan α=sin αcos α=2tanα21-tan2α2.[课前反思](1)半角公式的有理形式:;(2)半角公式的无理形式:.知识点1求值问题讲一讲1.已知sin α=-45,π<α<3π2,求sin α2,cos α2,tan α2的值.[尝试解答] ∵π<α<3π2,sin α=-45,∴cos α=-35,且π2<α2<3π4,∴sin α2=1-cos α2=255, cos α2=- 1+cos α2=-55,tan α2=sin α2cos α2=-2.类题·通法解决给值求值问题的思路方法已知三角函数式的值,求其他三角函数式的值,一般思路为: (1)先化简已知或所求式子;(2)观察已知条件与所求式子之间的联系(从三角函数名及角入手); (3)将已知条件代入所求式子,化简求值. 练一练1.已知sin α2-cos α2=-15,450°<α<540°,求tan α2的值.解:由题意得⎝⎛⎭⎫sin α2-cos α22=15, 即1-sin α=15,得sin α=45.∵450°<α<540°,∴cos α=-35,∴tan α2=1-cos αsin α=1-⎝⎛⎭⎫-3545=2.知识点2三角函数式的化简讲一讲2.化简:(1+sin α+cos α)⎝⎛⎭⎫sin α2-cos α22+2cos α(180°<α<360°).[尝试解答] 原式=⎝⎛⎭⎫2cos 2 α2+2sin α2cos α2⎝⎛⎭⎫sin α2-cos α22·2cos 2α2=2cos α2⎝⎛⎭⎫cos α2+sin α2⎝⎛⎭⎫sin α2-cos α22⎪⎪⎪⎪cos α2=cos α2(-cos α)⎪⎪⎪⎪cos α2.又∵180°<α<360°,∴90°<α2<180°,∴cos α2<0,∴原式=cos α2·(-cos α)-cosα2=cos α.类题·通法化简问题中的“三变”(1)变角:三角变换时通常先寻找式子中各角之间的联系,通过拆、凑等手段消除角之间的差异,合理选择联系它们的公式.(2)变名:观察三角函数种类的差异,尽量统一函数的名称,如统一为弦或统一为切. (3)变式:观察式子的结构形式的差异,选择适当的变形途径.如升幂、降幂、配方、开方等.练一练 2.化简:(1)1+sin θ-1-sin θ⎝⎛⎭⎫3π2<θ<2π; (2)sin (2α+β)sin α-2cos(α+β).解:(1)原式=⎪⎪⎪⎪sin θ2+cos θ2-⎪⎪⎪⎪sin θ2-cos θ2, ∵3π2<θ<2π,∴3π4<θ2<π, ∴0<sin θ2<22,-1<cos θ2<-22,从而sin θ2+cos θ2<0,sin θ2-cos θ2>0.∴原式=-⎝⎛⎭⎫sin θ2+cos θ2-⎝⎛⎭⎫sin θ2-cos θ2=-2sin θ2. (2)∵2α+β=α+(α+β),∴原式=sin[(α+β)+α]-2cos (α+β)sin αsin α=sin (α+β)cos α-cos (α+β)sin αsin α=sin[(α+β)-α]sin α=sin βsin α.知识点3三角恒等式的证明讲一讲3.求证:sin 2x 2cos x ⎝⎛⎭⎫1+tan x ·tan x 2=tan x . [尝试解答] 法一:左边=2sin x cos x 2cos x ⎝⎛⎭⎫1+sin x cos x ·1-cos x sin x =sin x ⎝⎛⎭⎫1+1-cos x cos x =sin x cos x =tan x =右边.法二:左边=sin 2x2cos x ·tan x -tan x2tan ⎝⎛⎭⎫x -x 2=sin 2x 2cos x ·sin x cos x -sin x2cos x 2tan x 2=sin 2x 2cos x ·sin x cos x 2-sin x 2cos x cos x cos x 2·tan x 2=2sin x cos x2cos x ·sinx 2cos x cos x 2·tanx2=sin xcos x=tan x =右边. 类题·通法三角恒等式证明的常用方法(1)执因索果法:证明的形式一般化繁为简; (2)左右归一法:证明左右两边都等于同一个式子;(3)拼凑法:针对题设和结论之间的差异,有针对性地变形,以消除它们之间的差异,简言之,即化异求同;(4)比较法:设法证明“左边-右边=0”或“左边/右边=1”;(5)分析法:从被证明的等式出发,逐步地探求使等式成立的条件,直到已知条件或明显的事实为止,就可以断定原等式成立.练一练3.求证:2sin x cos x(sin x +cos x -1)(sin x -cos x +1)=1+cos x sin x .证明:左边=2sin x cos x⎝⎛⎭⎫2sin x 2cos x 2-2sin 2 x 2⎝⎛⎭⎫2sin x 2cos x 2+2sin 2 x 2=2sin x cos x 4sin 2 x 2⎝⎛⎭⎫cos 2 x 2-sin 2 x 2=sin x2sin 2 x 2=cos x 2sin x 2=2cos 2x 22sin x 2cosx 2=1+cos xsin x =右边.∴原等式成立.[课堂归纳·感悟提升]1.本节课的重点是半角公式,难点是半角公式的应用. 2.要掌握三角恒等变换的三个应用 (1)求值问题,见讲1; (2)化简问题,见讲2; (3)三角恒等式的证明,见讲3. 3.对半角公式的四点认识(1)半角公式的正弦、余弦公式实际上是由二倍角公式变形得到的.(2)半角公式给出了求α2的正弦、余弦、正切的另一种方式,即只需知道cos α的值及相应α的条件,便可求出sin α2,cos α2,tan α2.(3)由于tan α2=sin α1+cos α及tan α2=1-cos αsin α不含被开方数,且不涉及符号问题,所以求解关于tan α2的题目时,使用相对方便,但需要注意该公式成立的条件.(4)涉及函数的升降幂及角的二倍关系的题目,常用sin 2 α2=1-cos α2,cos 2 α2=1+cos α2求解.课下能力提升(二十五)[学业水平达标练]题组1 求值问题1.设5π<θ<6π,cos θ2=a ,则sin θ4=( )A. 1+a2B. 1-a2C .-1+a2D .- 1-a2解析:选D ∵θ4∈⎝⎛⎭⎫5π4,6π4, ∴sin θ4=-1-cosθ22=- 1-a2.2.若f (x )=2tan x -2sin 2 x 2-1sin x 2cos x2,则f ⎝⎛⎭⎫π12的值是( ) A .-433 B .8 C .4 3 D .-4 3解析:选B f (x )=2tan x -2sin 2 x 2-sin 2 x 2-cos 2x 212sin x=2tan x +cos x 12sin x =2(tan x +1tan x ).又tan π12=sin π61+cosπ6=13+2,∴原式=2⎝⎛⎭⎪⎫13+2+3+2=8.3.已知cos θ=-35,且180°<θ<270°,求tan θ2.解:法一:∵180°<θ<270°,∴90°<θ2<135°,∴tan θ2<0,∴tan θ2=-1-cos θ1+cos θ=-1-⎝⎛⎭⎫-351+⎝⎛⎭⎫-35=-2. 法二:∵180°<θ<270°,∴sin θ<0, ∴sin θ=-1-cos 2θ=-1-925=-45, ∴tan θ2=sin θ1+cos θ=-451+⎝⎛⎭⎫-35=-2.题组2 三角函数式的化简4.化简2+cos 2-sin 21的结果是( ) A .-cos 1 B .cos 1 C.3cos 1 D .-3cos 1解析:选C 原式=2+1-2sin 21-sin 21=3-3sin 21=3(1-sin 21)=3cos 21=3cos 1.5.化简⎝⎛⎭⎫sin α2+cos α22+2sin 2⎝⎛⎭⎫π4-α2得( )A .2+sin αB .2+2sin ⎝⎛⎭⎫α-π4C .2D .2+2sin ⎝⎛⎭⎫α+π4 解析:选C 原式=1+2sin α2cos α2+1-cos2π4-α2=2+sin α-cos ⎝⎛⎭⎫π2-α=2+sin α-sin α=2.题组3 三角恒等式的证明6.求证:cos 4θ=14+12cos 2θ+14cos 22θ.证明:法一:原式左边=⎝⎛⎭⎫1+cos 2θ22=14+12cos 2θ+14cos 22θ=右边,∴原式成立. 法二:原式右边=14(cos 22θ+2cos 2θ+1)=14(cos 2θ+1)2=14(2cos 2θ-1+1)2=cos 4θ=左边, ∴原式成立.7.求证:2sin 4x +34sin 22x +5cos 4x -12(cos 4x +cos 2x )=2(1+cos 2x ).证明:左边=2⎝⎛⎭⎫1-cos 2x 22+34sin 22x +5⎝⎛⎭⎫1+cos 2x 22-12(cos 4x +cos 2x )=2×1-2cos 2x +cos 22x 4+34sin 22x +5×1+2cos 2x +cos 22x 4-12(2cos 22x -1+cos 2x )=2×14+54+12+2×-2cos 2x 4+5×2cos 2x 4-12cos 2x +2×cos 22x 4+5×cos 22x 4-12×2cos 22x +34sin 22x =94+cos 2x +34cos 22x +34sin 22x=94+cos 2x +34=3+cos 2x =3+(2cos 2x -1)=2(1+cos 2x )=右边. ∴原式成立.[能力提升综合练]1.函数f (x )=cos 2⎝⎛⎭⎫x +π4,x ∈R ,则f (x )( ) A .是奇函数 B .是偶函数C .既是奇函数,也是偶函数D .既不是奇函数,也不是偶函数解析:选D 由cos 2x =2cos 2x -1,得f (x )=cos 2x +π4=1+cos ⎝⎛⎭⎫2x +π22=12+12cos ⎝⎛⎭⎫2x +π2=12-sin 2x 2, 所以该函数既不是奇函数,也不是偶函数.2.设a =12cos 6°-32sin 6°,b =2tan 13°1+tan 213°,c =1-cos 50°2,则有( ) A .a >b >c B .a <b <cC .a <c <bD .b <c <a解析:选C a =sin 30°cos 6°-cos 30°sin 6°=sin 24°,b =sin 26°,c =sin 25°,∴a <c <b .3.已知关于x 的方程x 2+x cos A cos B -2sin 2 C 2=0的两根之和等于两根之积的一半,则△ABC 一定是( )A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形解析:选C 由一元二次方程根与系数的关系得-cos A cos B =12⎝⎛⎭⎫-2sin 2 C 2, 即cos A cos B =sin 2 C 2=sin 2π-(A +B )2=cos 2A +B 2=12[1+cos(A +B )].得cos(A -B )=1.∴A =B .4.已知sin ⎝⎛⎭⎫π6+α=23,则cos 2⎝⎛⎭⎫π6-α2=________. 解析:因为cos ⎝⎛⎭⎫π3-α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π3-α=sin π6+α=23.所以cos 2⎝⎛⎭⎫π6-α2=1+cos ⎝⎛⎭⎫π3-α2=1+232=56. ★答案★:565.已知sin αcos β=12,则cos αsin β的取值范围是________. 解析:法一:设x =cos α·sin β,则sin(α+β)=sin α·cos β+cos α·sin β=12+x ,sin(α-β)=sin α·cos β-cos α·sin β=12-x . 因为-1≤sin(α+β)≤1,-1≤sin(α-β)≤1,所以⎩⎨⎧ -1≤12+x ≤1,-1≤12-x ≤1,所以⎩⎨⎧ -32≤x ≤12,-12≤x ≤32,所以-12≤x ≤12. 法二:设x =cos α·sin β,sin α·cos β·cos α·sin β=12x ,即sin 2α·sin 2β=2x .由|sin 2α·sin 2β|≤1,得|2x |≤1,所以-12≤x ≤12. ★答案★:⎣⎡⎦⎤-12,12 6.已知tan α2=12,求sin ⎝⎛⎭⎫α+π6的值. 解:∵tan α2=12,∴sin α=2sin α2cos α2=2sin α2cos α2sin 2α2+cos 2α2=2tan α21+tan 2α2=2×121+14=45, cos α=cos 2α2-sin 2α2=cos 2α2-sin 2α2cos 2α2+sin 2α2=1-tan 2α21+tan 2α2=1-141+14=35. ∴sin ⎝⎛⎭⎫α+π6=sin αcos π6+cos αsin π6=45×32+35×12=3+4310. 7.设函数f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ(x ∈R )的图象关于直线x =π对称.其中ω,λ为常数,且ω∈⎝⎛⎭⎫12,1.(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝⎛⎭⎫π4,0,求函数f (x )的值域.解:(1)因为f (x )=sin 2ωx -cos 2ωx +23sin ωx ·cos ωx +λ=-cos 2ωx +3sin 2ωx +λ=2sin ⎝⎛⎭⎫2ωx -π6+λ . 由直线x =π是y =f (x )图象的一条对称轴,可得sin ⎝⎛⎭⎫2ωπ-π6=±1. 所以2ωπ-π6=k π+π2(k ∈Z ), 即ω=k 2+13(k ∈Z ). 又ω∈⎝⎛⎭⎫12,1,k ∈Z ,所以k =1,故ω=56.所以f (x )的最小正周期是6π5. (2)由y =f (x )的图象过点⎝⎛⎭⎫π4,0,得f ⎝⎛⎭⎫π4=0, 即λ=-2sin ⎝⎛⎭⎫56×π2-π6=-2sin π4=-2, 即λ=- 2.故f (x )=2sin ⎝⎛⎭⎫53x -π6-2,函数f (x )的值域为[-2-2,2- 2 ].。
三角恒等变换所有公式

三角恒等变换所有公式三角恒等变换是指三角函数之间相互转化的一系列公式,利用这些公式可以简化三角函数的计算与证明。
下面是一些常用的三角恒等变换公式(完整版):1.倍角公式:- $\sin(2\theta) = 2\sin\theta\cos\theta$- $\cos(2\theta) = \cos^2\theta - \sin^2\theta =2\cos^2\theta - 1 = 1 - 2\sin^2\theta$- $\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$2.半角公式:- $\sin\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos\theta}{2}}$- $\cos\left(\frac{\theta}{2}\right) =\pm\sqrt{\frac{1+\cos\theta}{2}}$- $\tan\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos\theta}{1+\cos\theta}}$3.和差公式:- $\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm\cos\alpha\sin\beta$- $\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp\sin\alpha\sin\beta$- $\tan(\alpha \pm \beta) = \frac{\tan\alpha \pm\tan\beta}{1 \mp \tan\alpha\tan\beta}$4.二倍角公式:- $\sin(2\alpha) = 2\sin\alpha\cos\alpha$- $\cos(2\alpha) = \cos^2\alpha - \sin^2\alpha$- $\tan(2\alpha) = \frac{2\tan\alpha}{1-\tan^2\alpha}$5.和差化积公式:- $\sin\alpha\sin\beta = \frac{1}{2}(\cos(\alpha-\beta)-\cos(\alpha+\beta))$- $\cos\alpha\cos\beta = \frac{1}{2}(\cos(\alpha-\beta)+\cos(\alpha+\beta))$- $\sin\alpha\cos\beta =\frac{1}{2}(\sin(\alpha+\beta)+\sin(\alpha-\beta))$6.积化和差公式:- $\sin\alpha+\sin\beta =2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$- $\sin\alpha-\sin\beta = 2\sin\left(\frac{\alpha-\beta}{2}\right)\cos\left(\frac{\alpha+\beta}{2}\right)$- $\cos\alpha+\cos\beta =2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$- $\cos\alpha-\cos\beta = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$7.和差化积与积化和差的关系:- $\sin\alpha\pm\sin\beta =2\sin\left(\frac{\alpha\pm\beta}{2}\right)\cos\left(\frac{\alpha \mp\beta}{2}\right)$- $\cos\alpha+\cos\beta =2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$- $\cos\alpha-\cos\beta = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$8.和差化积的平方形式:- $\sin^2\alpha+\sin^2\beta = 1 -\cos(\alpha+\beta)\cos(\alpha-\beta)$- $\cos^2\alpha+\cos^2\beta = 1 +\cos(\alpha+\beta)\cos(\alpha-\beta)$这些公式在解三角方程、化简三角函数表达式、证明三角恒等式等方面有重要应用。
高中数学:3.2 简单的三角恒等变换(2)教案

3.2 简单的三角恒等变换(2)一、教学目标:知识与技能:1、加深对和差角、二倍角公式的记忆,推导降幂公式及其它变形形式。
2、理解三角恒等变换的基本思想,培养的定向思考和逆向思维能力,理解化归思想。
3、能独立分析和解决一些三角问题。
过程与方法:理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变换在数学中的应用.情感、态度与价值观通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力. 二.重点难点重点:三角恒等变换的模式难点:降次、化为一个角的三角函数三、教材与学情分析本节把三角恒等变换的应用放在三角变换与三角函数间的内在联系上,从而使三角函数性质的研究得到延伸.三角恒等变换不同于代数变换,后者往往着眼于式子结构形式的变换,变换内容比较单一.而对于三角变换,不仅要考虑三角函数是结构方面的差异,还要考虑三角函数式所包含的角,以及这些角的三角函数种类方面的差异,它是一种立体的综合性变换.从函数式结构、函数种类、角与角之间的联系等方面找一个切入点,并以此为依据选择可以联系它们的适当公式进行转化变形,是三角恒等变换的重要特点. 四、教学方法问题引导,主动探究,启发式教学.五、教学过程(一)导入新课前面已经学过如何把形如y=asinx+bcosx的函数转化为形如y=Asin(ωx+φ)的函数,本节主要研究函数y=asinx+bcosx的周期、最值等性质.三角函数和代数、几何知识联系密切,它是研究其他各类知识的重要工具.高考题中与三角函数有关的问题,大都以恒等变形为研究手段.三角变换是运算、化简、求值、证明过程中不可缺少的解题技巧,要学会创设条件灵活运用三角公式,掌握运算,化简的方法和技能.(二)新知探究、提出问题①三角函数y=sinx ,y=cosx 的周期,最大值和最小值是多少?②函数y=asinx+bcosx 的变形与应用是怎样的?③三角变换在几何问题中有什么应用?活动:教师引导学生对前面已学习过的三角函数的图象与性质进行复习与回顾,我们知道正弦函数,余弦函数的图象都具有周期性、对称性、单调性等性质.而且正弦函数,余弦函数的周期都是2kπ(k ∈Z 且k≠0),最小正周期都是2π.三角函数的定义与变化时,会对其周期性产生一定的影响,例如,函数y=sinx 的周期是2kπ(k ∈Z 且k≠0),且最小正周期是2π,函数y=sin2x 的周期是kπ(k ∈Z 且k≠0),且最小正周期是π.正弦函数,余弦函数的最大值是1,最小值是-1,所以这两个函数的值域都是[-1,1].函数y=asinx+bcosx=22b a +(2222sin b a b x b a a+++cosx ), ∵(sin ,cos 1)()(2222222222=+=+=+++b a b b a a ba b b a aϕ从而可令φ, 则有asinx+bcosx=22b a +(sinxcosφ+cosxsinφ)=22b a +sin (x+φ).因此,我们有如下结论:asinx+bcosx=22b a +sin (x+φ),其中tanφ=ab .在以后的学习中可以用此结论进行求几何中的最值问题或者角度问题.我们知道角的概念起源于几何图形,从而使得三角函数与平面几何有着密切的内在联系.几何中的角度、长度、面积等几何问题,常需借助三角函数的变换来解决,通过三角变换来解决几何中的有关问题,是一种重要的数学方法.讨论结果:①y=sinx ,y=cosx 的周期是2kπ(k ∈Z 且k≠0),最小正周期都是2π;最大值都是1,最小值都是-1.②—③(略)见活动.(三)应用示例例1 求函数y=sin 4x+23sinxcosx-cos 4x 的最小正周期和最小值;并写出该函数在[0,π]上的单调递增区间.活动:教师引导学生利用公式解题,本题主要考查二倍角公式以及三角函数的单调性和周期性等基础知识.先用二倍角公式把函数化成最简形式,然后再解决与此相关的问题.解:y=sin 4x+23sinxcosx-cos 4x=(sin 2x+cos 2x)(sin 2x-cos 2x)+3sin2x=3sin2x-cos2x=2sin (2x-6π).故该函数的最小正周期是π;最小值是-2;在[0,π]上单调增区间是[0, 3π],[65π,π]. 点评:本题主要考查二倍角公式以及三角函数的单调性和周期性等基础知识. 变式训练1.已知函数f(x)=cos 4x-2sinxcosx-sin 4x,(1)求f(x)的最小正周期;(2)若x ∈[0,2π],求f(x)的最大、最小值.解:f(x)=cos 4x-2sinxcosx-sin 4x=(cos 2x+sin 2x)(cos 2x-sin 2x)-sin2x=cos2x-sin2x=2cos(2x+4π), 所以,f(x)的最小正周期T=22π=π. (2)因为x ∈[0,2π],所以2x+4π∈[4π,45π]. 当2x+4π=4π时,cos(2x+4π)取得最大值22, 当2x+4π=π时,cos(2x+4π)取得最小值-1.所以,在[0,2π]上的最大值为1,最小值为-2.例2. 已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点M(43π,0)对称,且在区间[0,2π]上是单调函数,求φ和ω的值.活动:提醒学生在解此题时,对f(x)是偶函数这一条件的运用不在问题上,而在对“f(x)的图象关于M(43π,0)对称”这一条件的使用上,多数考生都存在一定问题.一般地:定义在R 上的函数y=f(x)对定义域内任意x 满足条件:f(x+a)=2b-f(a-x),则y=f(x)的图象关于点(a,b)对称,反之亦然.教师在这类问题的教学时要给予充分的提示与总结,多做些这种类型的变式训练. 解:由f(x)是偶函数,得f(-x)=f(x),即sin(-ωx+φ)=sin(ωx+φ),所以-cosφsinωx=cosφsinωx对任意x 都成立.又ω>0,所以,得cosφ=0.依题设0≤φ≤π,所以,解得φ=2π. 由f(x)的图象关于点M 对称,得f(43π-x)=-f(43π+x).取x=0,得f(43π)=-f(43π),所以f(43π)=0. ∵f(43π)=sin(43ωπ+2π)=cos 43ωπ,∴cos 43ωπ=0.又ω>0,得43ωπ=2π+kπ,k=0,1,2,…. ∴ω=32(2k+1),k=0,1,2,….当k=0时,ω=32,f(x)=sin(32x+2π)在[0,2π]上是减函数; 当k=1时,ω=2,f(x)=sin(2x+2π)在[0,2π]上是减函数; 当k≥2时,ω≥310,f(x)=sin(ωx+2π)在[0,2π]上不是单调函数.所以,综合得ω=32或ω=2. 点评:利用函数思想进行解题,结合三角函数的图象与性质,对函数进行变换然后进而解决此题.例3. 如图1,已知OPQ 是半径为1,圆心角为3π的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形.记∠COP=α,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大面积. 活动:要求当角α取何值时,矩形ABCD 的面积S 最大,先找出S 与α之间的函数关系,再求函数的最值.找S 与α之间的函数关系可以让学生自己解决,得到:S=AB·BC=(cosα33-sinα)sinα=sinαcosα-33-sin 2α. 求这种y=asin 2x+bsinxcosx+ccos 2x 函数的最值,应先降幂,再利用公式化成Asin(ωx+φ)型的三角函数求最值.教师引导学生思考:要求当角α取何值时,矩形ABCD 的面积S 最大,可分两步进行:图1(1)找出S 与α之间的函数关系;(2)由得出的函数关系,求S 的最大值.解:在Rt △OBC 中,BC=cosα,BC=sinα,在Rt △OAD 中,OADA =tan60°=3, 所以OA=33DA=33BC=33sinα.所以AB=OB-OA=c osα33-sinα.设矩形ABCD 的面积为S,则S=AB·BC=(cosα33-sinα)sinα=sinαcosα33-sin 2α =21sin2α+63cos2α-63=31(23sin2α+21cos2α)-63=31sin(2α+6π)-63. 由于0<α<3π,所以当2α+6π=2π,即α=6π时,S 最大=31-63=63. 因此,当α=6π时,矩形ABCD 的面积最大,最大面积为63. 点评:可以看到,通过三角变换,我们把形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数,从而使问题得到简化.这个过程中蕴涵了化归思想.此题可引申即可以去掉“记∠COP=α”,结论改成“求矩形ABCD 的最大面积”,这时,对自变量可多一种选择,如设AD=x,S=x(x x 3312--),尽管对所得函数还暂时无法求其最大值,但能促进学生对函数模型多样性的理解,并能使学生感受到以角为自变量的优点.变式训练2. 已知如图2的Rt △ABC 中,∠A=90°,a 为斜边,∠B 、∠C 的内角平分线BD 、CE的长分别为m 、n,且a 2=2mn.问:是否能在区间(π,2π]中找到角θ,恰使等式cosθ-sinθ=4(cos2C B +-cos 2C B -)成立?若能,找出这样的角θ;若不能,请说明理由. 解:在Rt △BAD 中,m AB =cos 2B ,在Rt △BAC 中,a AB =sinC,∴mcos 2B =asinC.图2同理,ncos2C =asinB.∴mncos 2B cos 2C =a 2sinBsinC.而a 2=2mn, ∴cos 2B cos 2C =2sinBsinC=8sin 2B ·cos 2B cos 2C sin 2C .∴sin 2B sin 2C =81. 积化和差,得4(cos 2C B +-cos 2C B -)=-1, 若存在θ使等式cosθ-sinθ=4(cos 2C B +-cos 2C B -)成立,则2cos(θ+4π)=-1, ∴cos(θ+4π)=22.而π<θ≤2π,∴45π<θ+4π≤29π.∴这样的θ不存在.点评:对于不确定的开放式问题,通常称之为存在性问题.处理这类问题的一般思路是先假设结论是肯定的,再进行演绎推理,若推证出现矛盾,即可否定假设;若推出合理结果,即假设成立.这个探索结论的过程可概括为假设——推证——定论.例4. 已知tan(α-β)=21,tanβ=71-,且α,β∈(0,π),求2α-β的值. 解:∵2α-β=2(α-β)+β,tan(α-β)=21,∴tan2(α-β)=)(tan 1)tan(22βαβα---=34. 从而tan(2α-β)=tan [2(α-β)+β]=713417134tan )(2tan 1tan )(2tan ⨯+-=--+-ββαββα=121252125=. 又∵tanα=tan [(α-β)+β]=ββαββαtan )tan(1tan )tan(--+-=31<1.且0<α<π,∴0<α<4π.∴0<2α<2π. 又tanβ=71-<0,且β∈(0,π),∴2π<β<π,-π<-β<2π-.∴-π<2α-β<0.∴2α-β=43π-. 点评:本题通过变形转化为已知三角函数值求角的问题,关键在于对角的范围的讨论,注意合理利用不等式的性质,必要时,根据三角函数值,缩小角的范围,从而求出准确角.另外,求角一般都通过三角函数值来实现,但求该角的哪一种函数值,往往有一定的规律,若α∈(0,π),则求cosα;若α∈(2π-,2π),则求sinα等.变式训练3.若α,β为锐角,且3sin 2α+2sin 2β=1,3sin2α-2sin2β=0,求证:α+2β=2π.证明:已知两个等式可化为3sin 2α=cos2β, ①3sinαcosα=sin2β, ② ①÷②,得a a cos sin =ββ2sin 2cos ,即cosαcos2β-sinαsin2β=0, ∴cos(α+2β)=0.∵0<α<2π,0<β<2π,∴0<α+2β<23π.∴α+2β=2π. 六、课堂小结本节课主要研究了通过三角恒等变形,把形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数,从而能顺利考查函数的若干性质,达到解决问题的目的,充分体现出生活的数学和“活”的数学.七、课后作业1.课时练与测八、教学反思。
数学高一专题 三角恒等变换

数学高一专题 三角恒等变换一、两角和差公式:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβ βαβαtan tan 1tan tan =β)+tan(α⋅-+βαβαtan tan 1tan tan =β)-tan(α⋅+-二、二倍角公式:αααcos sin 22sin =,ααα22sin cos 2cos -=,212cos cos 2+=αα,22cos 1sin 2αα-=α2tan = 三、和差化积公式:四、 辅助角公式:()A BB A B A =++=+ϕϕαααtan ,sin cos sin 22其中题型一:基础回顾1、(2016年山东高考)函数f (x )=x +cos x )x –sin x )的最小正周期是(A )2π(B )π (C )23π(D )2π2、已知sin α-cos α=2,α∈(0,π),则sin2α=( )A .-1B .-22C .22D .1 3、如果cos 2α-cos 2β=a ,则sin(α+β)sin(α-β)等于( )A .-a 2B .a 2C .-aD .a变式练习4、(2016年全国III 高考)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)16255、(2016年浙江高考)设函数2()sin sin f x x b x c =++,则()f x 的最小正周期A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关6、(2016年上海高考)方程3sin 1cos 2x x =+在区间[]π2,0上的解为___________7、(2014·陕西高考)设0<θ<π2,向量a =(sin2θ,cos θ),b =(1,-cos θ),若a ·b =0,则tan θ=________. 8、已知cos α=17,cos(α+β)=-1114,α、β∈⎝⎛⎭⎫0,π2,则β=________. 题型二:技能拓展1.已知函数f (x )=2cos(x -π12),x ∈R . (1)求f (π3)的值; (2)若cos θ=35,θ∈(3π2,2π),求f (θ-π6).变式练习2.(2014·江西高考)已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f (π4)=0,其中a ∈R ,θ∈(0,π). (1)求a ,θ的值;(2)若f (α4)=-25,α∈(π2,π),求sin(α+π3)的值.3.(2014·广东高考)已知函数f (x )=A sin(x +π4),x ∈R ,且f (5π12)=32.(1)求A 的值;(2)若f (θ)+f (-θ)=32,θ∈(0,π2),求f (3π4-θ).1.(2016·中山模拟)已知tan α=-a ,则tan(π-α)的值等于( )A .aB .-aC.1a D .-1a2.(2016·石家庄一模)已知cos α=k ,k ∈R ,α∈⎝ ⎛⎭⎪⎫π2,π,则sin (π+α)=( )A .-1-k 2 B.1-k 2C .±1-k 2D .-k3.已知sin (2π+θ)tan (π+θ)tan (3π-θ)cos ⎝ ⎛⎭⎪⎫π2-θtan (-π-θ)=1,则sin 2θ+3sin θcos θ+2cos 2θ的值是() A .1 B .2C .3D .64.(2016·成都外国语学校月考)已知tan(α-π)=34,且α∈⎝ ⎛⎭⎪⎫π2,3π2,则sin ⎝ ⎛⎭⎪⎫α+π2=( ) A.45B .-45 C.35 D .-355.(2016·苏州模拟)cos 9π4+tan ⎝ ⎛⎭⎪⎫-7π6+sin 21π的值为________. 6.(2015·高考四川卷)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________.7.(2016·黄冈模拟)已知sin ⎝ ⎛⎭⎪⎫α+π2=-55,α∈(0,π), (1)求cos 2⎝ ⎛⎭⎪⎫π4+α2-cos 2⎝ ⎛⎭⎪⎫π4-α2sin (π-α)+cos (3π+α)的值; (2)求cos ⎝ ⎛⎭⎪⎫2α-3π4的值.8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知向量m =⎝ ⎛⎭⎪⎫2cos A 2,sin A 2,n =⎝ ⎛⎭⎪⎫cos A 2,-2sin A 2,m ·n =-1. (1)求cos A 的值;(2)若a =23,b =2,求c 的值.。
三角恒等变换——二倍角及半倍角、积化和差及和差化积(解析版)

专题2.20三角恒等变换——二倍角及半倍角、积化和差及和差化积重难点知识讲解一.同角三角函数间的基本关系【基础知识】1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:=tanα.2.诱导公式公式一:sin(α+2kπ)=sinα,cos(α+2kπ)=cos_α,其中k∈Z.公式二:sin(π+α)=﹣sin_α,cos(π+α)=﹣cos_α,tan(π+α)=tanα.公式三:sin(﹣α)=﹣sin_α,cos(﹣α)=cos_α.公式四:sin(π﹣α)=sinα,cos(π﹣α)=﹣cos_α.公式五:sin(﹣α)=cosα,cos(﹣α)=sinα.公式六:sin(+α)=cosα,cos(+α)=﹣sinα3.两角和与差的正弦、余弦、正切公式(1)cos(α﹣β)=cosαcosβ+sinαsinβ;(2)cos(α+β)=cosαcosβ﹣sinαsinβ;(3)sin(α+β)=sinαcosβ+cosαsinβ;(4)sin(α﹣β)=sinαcosβ﹣cosαsinβ;(5)tan(α+β)=.(6)tan(α﹣β)=.4.二倍角的正弦、余弦、正切公式(1)sin2α=2sin_αcos_α;(2)cos2α=cos2α﹣sin2α=2cos2α﹣1=1﹣2sin2α;(3)tan2α=.【技巧方法】诱导公式记忆口诀:对于角“±α”(k∈Z)的三角函数记忆口诀“奇变偶不变,符号看象限”,“奇变偶不变”是指“当k为奇数时,正弦变余弦,余弦变正弦;当k为偶数时,函数名不变”.“符号看象限”是指“在α的三角函数值前面加上当α为锐角时,原函数值的符号”.二.两角和与差的三角函数【基础知识】(1)cos(α﹣β)=cosαcosβ+sinαsinβ;(2)cos(α+β)=cosαcosβ﹣sinαsinβ;(3)sin(α+β)=sinαcosβ+cosαsinβ;(4)sin(α﹣β)=sinαcosβ﹣cosαsinβ;(5)tan(α+β)=.(6)tan(α﹣β)=.三.二倍角的三角函数【基础知识】二倍角的正弦其实属于正弦函数和差化积里面的一个特例,即α=β的一种特例,其公式为:sin2α=2sinα•cosα;其可拓展为1+sin2α=(sinα+cosα)2.二倍角的余弦其实属于余弦函数和差化积里面的一个特例,即α=β的一种特例,其公式为:cos2α=cos2α﹣sin2α=2cos2α﹣1=1﹣2sin2α.二倍角的正切其实属于正切函数和差化积里面的一个特例,即α=β的一种特例,其公式为:tan2α=.对于这个公式要求是能够正确的运用其求值化简即可.四.半角的三角函数【基础知识】半角的三角函数关系主要是指正切函数与正余弦函数之间的关系(正余弦的半角关系其实就是二倍角关系),其公式为:①tan===;②tan===.五.三角函数的积化和差公式【基础知识】三角函数的积化和差公式:(1)sinαsinβ=[cos(α﹣β)﹣cos(α+β)]cosαcosβ=[cos(α﹣β)+cos(α+β)](2)sinαcosβ=[sin(α+β)+sin(α﹣β)]cosαsinβ=[sin(α+β)﹣sin(α﹣β)](3)tanαtanβ=tanαcotβ=.六.三角函数的和差化积公式【基础知识】三角函数的和差化积公式:(1)sinα+sinβ=2sin cossinα﹣sinβ=2cos sin(2)cosα+cosβ=2cos coscosα﹣cosβ=﹣2sin sin(3)cosα+sinα=sin (+α)=cos ()cosα﹣sinα=cos (+α)=sin (﹣α)真题解析一.选择题(共10小题)1.(2020·榆树市第一高级中学校期末)已知(0,)απ∈,3cos()65πα+=,则sin α的值为()A .43-310B .33-410C .710D .235【答案】A 【解析】由(0,)απ∈,3cos()65πα+=得in(4s 65πα+=所以sin sin sin cos cos sin 666666ππππππαααα⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭4331433525210-=⨯-⨯=故选:A2.(2020·山东日照期末)角α的终边过点()43P ,-,则sin 2α=()A .1225-B .1225C .2425-D .2425【答案】C 【解析】解:由三角函数的定义,得3sin 5α=,4cos 5α=-,所以3424sin 22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭.故选:C3.(2020·甘肃凉州武威十八中期末)已知函数31()2cos 222f x x x =-.则下列判断正确的是()A .关于直线4x π=对称B .关于直线6x π=对称C .关于点,012π⎛⎫⎪⎝⎭对称D .关于点,03π⎛⎫⎪⎝⎭对称【答案】C 【解析】31()sin 2cos 222f x x x=-πsin(26x =-,因为(sin(2)sin 144632f ππππ=⨯-==≠±,所以A 不正确;因为1(sin(2)sin 166662f ππππ=⨯-==≠±,所以B 不正确;因为()sin(2)sin 0012126f πππ=⨯-==,所以C 正确;因为(sin(2)sin 103362f ππππ=⨯-==≠,所以D 不正确;故选:C.4.(2020·安徽宣城月考(文))已知tan tan m αβ=,cos()n αβ-=,则cos()αβ+=()A .2(1)1n m m -+B .(1)1n m m -+C .6(1)1n m m -+D .(1)1n m m -+【答案】B 【解析】因为tan tan m αβ=,所以sin sin cos cos m αβαβ=,又cos()cos cos sin sin n αβαβαβ-=+=,所以cos cos 1nm αβ=+,sin sin 1mnm αβ=+,所以(1)cos()111n mn n m m m m αβ-+=-=+++.故选:B5.(2020·哈尔滨市第一中学校一模(理))若3tan 24α=-,则22sin 2cos 12sin ααα+=+()A .14-或14B .34或14C .34D .14【答案】D 【解析】由二倍角的正切公式得22tan 3tan 21tan 4ααα==--,整理得23tan 8tan 30αα--=,解得tan 3α=或13-,所以,2222222sin cos cos 2tan 13sin cos 3tan 1sin 2cos 12sin αααααααααα++=+=+++.当tan 3α=时,原式223113314⨯+==⨯+;当1tan 3α=-时,原式21211341313⎛⎫⨯-+ ⎪⎝⎭==⎛⎫⨯-+ ⎪⎝⎭.综上所述,22sin 2cos 112sin 4ααα+=+.故选:D.6.(2020·邵阳市第二中学(文))已知函数()sin (0)f x x x ωωω=>的图象关于直线8x π=对称,则ω的最小值为()A .13B .23C .43D .83【答案】C 【解析】()sin 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭Q ,由于该函数的图象关于直线8x π=对称,则()832k k Z πππωπ+=+∈,得()483k k Z ω=+∈,0ω> ,当0k =时,ω取得最小值43.故选:C.7.(2020·上海杨浦复旦附中期末)已知2sin 23α=,则2sin 4πα⎛⎫+= ⎪⎝⎭()A .16B .12C .13D .56【答案】D 【解析】由二倍角的降幂公式可得221cos 211sin 2523sin 42226παπαα⎛⎫-++⎪+⎛⎫⎝⎭+==== ⎪⎝⎭.故选:D.8.(2020·荣成市教育教学研究培训期中)设θ为第二象限角,若1tan()47θπ+=,则sin cos θθ+=()A .15-B .15C .75D .75-【答案】A 【解析】tan 11tan()41tan 7θθθπ++==-,即()7tan 11tan θθ+=-可得:8tan 6θ=-,解得:3tan 4θ=-由22sin 3tan cos 4sin cos 1θθθθθ⎧==-⎪⎨⎪+=⎩可得:3sin 54cos 5θθ⎧=⎪⎪⎨⎪=-⎪⎩所以1sin cos 5θθ+=-.故选:A9.(2020·江西景德镇一中月考(文))已知tan 3θ=,则3cos 22πθ⎛⎫+=⎪⎝⎭()A .45-B .35-C .35D .45【答案】C 【解析】3cos 2cos 2sin 222ππθθθ⎛⎫⎛⎫+=-+= ⎪ ⎪⎝⎭⎝⎭2222sin cos 2tan 2sin cos sin cos tan 1θθθθθθθθ===++,因为tan 3θ=,所以23233cos 22315πθ⨯⎛⎫+==⎪+⎝⎭,故选:C.10.(2020·全国)已知函数()()()()()2sin cos 02f x x x x ϕϕϕϕ=++++->的图象关于原点对称,则ϕ的最小值为()A .6πB .4πC .3πD .2π【答案】C 【解析】因为()()()()2sin cos 2f x x x x ϕϕϕ=++++-()()()()()2112cos 12sin cos sin 2cos 22222x x x x x ϕϕϕϕϕ⎡⎤=+-+⨯++=+++⎣⎦sin 223x πϕ⎛⎫=++ ⎪⎝⎭其图象关于原点对称,所以23k πϕπ+=,k ∈Z ,解得62k ππϕ=-+,由0ϕ>可得1k =时,ϕ取得最小值,最小值为3π.故选:C .二.填空题(共5小题)11.(2020·上海市行知中学期末)已知1tan 2α=,()5tan 2αβ-=,则tan β=_______【答案】89-【解析】1tan 2α=,()5tan 2αβ-=,因此,()()()15tan tan 822tan tan 151tan tan 9122ααββααβααβ---=--===-⎡⎤⎣⎦+-+⨯.故答案为:89-.12.(2020·河南新乡县一中期末)2cos802cos 501cos35cos 65cos55cos155︒︒︒︒︒︒-+=+______.【答案】2-【解析】原式()()2cos802cos 501cos80cos1002cos802sin 55cos 65cos55sin 65sin 5565sin 10︒-︒+︒-︒︒====-︒︒-︒︒︒-︒-︒.故答案为:2-.13.(2020·商丘市第一高级中学期末)函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.【答案】1【解析】由题意知:()()()sin 22sin cos f x x x ϕϕϕ=+-+=()()sin[]2sin cos x x ϕϕϕϕ++-+=()sin cos x ϕϕ++()cos sin x ϕϕ+-()2sin cos x ϕϕ+=()cos sin x ϕϕ+-()sin cos x ϕϕ+=()sin[]x ϕϕ+-=sin x ,即()sin f x x =,因为x R ∈,所以()f x 的最大值为1.14.(2020·江苏天宁常州高级中学)已知10,,cos 233ππαα⎛⎫⎛⎫∈+= ⎪ ⎪⎝⎭⎝⎭,则cos 26πα⎛⎫+ ⎪⎝⎭的值是_________.【答案】429【解析】10,,cos 233ππαα⎛⎫⎛⎫∈+= ⎪ ⎪⎝⎭⎝⎭,故5,336πππα⎛⎫+∈ ⎪⎝⎭,故sin 33πα⎛⎫+=⎪⎝⎭,22cos 2cos 2sin 22sin cos 633233ππππππααααα⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭9=.故答案为:9.15.(2020·江苏南通)已知()()sin 23sin 2a a ββ+=-,()tan αβ-=,则tan α的值是_____________.【答案】【解析】由()()sin 23sin 2αβαβ+=-得sin 2cos cos 2sin 3sin 2cos 3cos 2sin αβαβαβαβ+=-,则tan 22tan αβ=,所以21tan tan tan 221tan αβαα==-.而()232tan tan tan tan 1tan tan tan tan 1tan tan 1tan 1tan αααβααβαααβαα----===-++⋅-.所以,()3tan tan ααβ=--=-tan α=.故答案为:.三.解析题(共5小题)16.(2020·甘肃城关兰州一中期末)已知函数()22sin 2xf x x =-.(1)求函数()f x 的最小正周期;(2)求函数()f x 在[]0,2π内的所有零点.【答案】(1)2π;(2)0,23π,2π.【解析】解:(1)()()22sin 1cos 2sin 126x f x x x x x π⎛⎫=-=--=+- ⎪⎝⎭.221T ππ∴==,(2)令2sin 106x π⎛⎫+-= ⎪⎝⎭,即1sin 62x π⎛⎫+= ⎪⎝⎭.∴2,66x k k Z πππ+=+∈或52,66x k k Z πππ+=+∈.可得:函数()f x 在[]0,2π内的所有零点为:0,23π,2π.17.(2020·湖南省长沙县第九中学期末)已知函数2()cos cos )sin f x x x x x =+-.(1)求函数()f x 的最小正周期;(2)若当0,2x π⎡⎤∈⎢⎥⎣⎦时,不等式()f x m 有解,求实数m 的取值范围.【答案】(1)π;(2)2m ≤.【解析】(1)22()cos cos sin 2cos 2f x x x x x x x=+-=+122cos 222x x ⎛⎫=+ ⎪ ⎪⎝⎭2sin 26x π⎛⎫=+ ⎪⎝⎭所以函数()f x 的最小正周期T=π.(2)由题意可知,不等式()f x m 有解,即()max m f x ≤,因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72,666x πππ⎡⎤+∈⎢⎥⎣⎦,故当262x ππ+=,即6x π=时()f x 取得最大值,且最大值26f π⎛⎫= ⎪⎝⎭.从而可得2m ≤.18.(2020·上海浦东新·华师大二附中期末)已知函数()()2sin 0,22f x x ππωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的图象如图所示,直线38x π=、78x π=是其两条对称轴.(1)求函数()f x 的解析式;(2)已知()65f α=,且388ππα<<,求8f πα⎛⎫+ ⎪⎝⎭的值.【答案】(1)()2sin 24f x x π⎛⎫=-⎪⎝⎭;(2)7285f πα⎛⎫+= ⎪⎝⎭.【解析】(1)因为直线38x π=、78x π=是其两条对称轴,所以732,2288T T Tππππω=-∴===,因为77()2sin()184f ππϕ=-∴+=-73+2()+2()424k k Z k k Z πππϕπϕπ∴+=∈∴=-∈224πππϕϕ-<<∴=Q ,所以()2sin 24f x x π⎛⎫=- ⎪⎝⎭;(2)因为()65f α=,所以3sin 245πα⎛⎫-=⎪⎝⎭因为388ππα<<,所以0242ππα<-<∴4cos 245πα⎛⎫-=⎪⎝⎭2sin(2))cos(2)]844445f πππππαααα⎛⎫+=-+=-+-=⎪⎝⎭19.(2020·山东日照期末)已知函数2()cos 2cos 1()f x x x x x R =+-∈.(I )求函数()f x 的最小正周期及在区间[0,2π上的最大值和最小值;(II )若006(),[,]542f x x ππ=∈,求0cos2x 的值.【答案】函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值为2,最小值为-100003cos 2cos 2cos 2cos sin 2sin 66666610x x x x ππππππ⎡⎤-⎛⎫⎛⎫⎛⎫=+-=+++=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦【解析】(1)所以又所以由函数图像知.(2)解:由题意而所以所以所以=.20.(2020·湖北黄冈期末)已知函数()2sin cos f x x x =+.(1)求函数()f x 的值域;(2)当()0f x =时,求22sin sin 2cos 21x x x -+的值.【答案】(1)⎡⎣;(2)1-.【解析】(1)因为()()12sin cos tan 2f x x x x φφ=+=+=,,所以函数()f x 的值域为⎡⎣.(2)()2sin cos 0f x x x =+=,所以1tan 2x =-,所以2222sin 2sin sin tan 1sin 2cos 212sin cos 2sin cos sin 1tan x x x xx x x x x x x x====--++++.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学案22 简单的三角恒等变换导学目标: 1.能推出二倍角的正弦、余弦、正切公式,并熟练应用.2.能运用两角和与差的三角公式进行简单的恒等变换.自主梳理1.二倍角的正弦、余弦、正切公式 (1)sin 2α=________________;(2)cos 2α=______________=________________-1=1-________________;(3)tan 2α=________________________ (α≠k π2+π4且α≠k π+π2).2.公式的逆向变换及有关变形(1)sin αcos α=____________________⇒cos α=sin 2α2sin α;(2)降幂公式:sin 2α=________________,cos 2α=________________; 升幂公式:1+cos α=________________,1-cos α=_____________; 变形:1±sin 2α=sin 2α+cos 2α±2sin αcos α=________________________. 自我检测 1.(2010·陕西)函数f (x )=2sin x cos x 是A .最小正周期为2π的奇函数B .最小正周期为2π的偶函数C .最小正周期为π的奇函数D .最小正周期为π的偶函数 2.函数f (x )=cos 2x -2sin x 的最小值和最大值分别为A .-3,1B .-2,2C .-3,32D .-2,323.函数f (x )=sin x cos x 的最小值是A .-1B .-12 C.12D .14.(2011·清远月考)已知A 、B 为直角三角形的两个锐角,则sin A ·sin BA .有最大值12,最小值0B .有最小值12,无最大值C .既无最大值也无最小值D .有最大值12,无最小值探究点一 三角函数式的化简例1 求函数y =7-4sin x cos x +4cos 2x -4cos 4x 的最大值和最小值.变式迁移1 (2011·泰安模拟)已知函数f (x )=4cos 4x -2cos 2x -1sin ⎝⎛⎭⎫π4+x sin ⎝⎛⎭⎫π4-x . (1)求f ⎝⎛⎭⎫-11π12的值; (2)当x ∈⎣⎡⎭⎫0,π4时,求g (x )=12f (x )+sin 2x 的最大值和最小值.探究点二 三角函数式的求值例2 已知sin(π4+2α)·sin(π4-2α)=14,α∈(π4,π2),求2sin 2α+tan α-1tan α-1的值.变式迁移2 (1)已知α是第一象限角,且cos α=513,求sin (α+π4)cos (2α+4π)的值.(2)已知cos(α+π4)=35,π2≤α<3π2,求cos(2α+π4)的值.探究点三 三角恒等式的证明 例3 (2011·苏北四市模拟)已知sin(2α+β)=3sin β,设tan α=x ,tan β=y ,记y =f (x ). (1)求证:tan(α+β)=2tan α;(2)求f (x )的解析表达式;(3)若角α是一个三角形的最小内角,试求函数f (x )的值域.变式迁移3 求证:sin 2x(sin x +cos x -1)(sin x -cos x +1)=1+cos x sin x .转化与化归思想的应用例 (12分)(2010·江西)已知函数f (x )=⎝⎛⎭⎫1+1tan x sin 2x +m sin ⎝⎛⎭⎫x +π4sin ⎝⎛⎭⎫x -π4. (1)当m =0时,求f (x )在区间⎣⎡⎦⎤π8,3π4上的取值范围;(2)当tan α=2时,f (α)=35,求m 的值.【突破思维障碍】三角函数式的化简是指利用诱导公式、同角基本关系式、和与差的三角函数公式、二倍角公式等,将较复杂的三角函数式化得更简洁、更清楚地显示出式子的结果.化简三角函数式的基本要求是:(1)能求出数值的要求出数值;(2)使三角函数式的项数最少、次数最低、角与函数的种类最少;(3)分式中的分母尽量不含根式等.1.求值中主要有三类求值问题:(1)“给角求值”:一般所给出的角都是非特殊角,从表面来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.2.三角恒等变换的常用方法、技巧和原则:(1)在化简求值和证明时常用如下方法:切割化弦法,升幂降幂法,和积互化法,辅助元素法,“1”的代换法等.(2)常用的拆角、拼角技巧如:2α=(α+β)+(α-β),α=(α+β)-β,α=(α-β)+β,α+β2=⎝⎛⎭⎫α-β2+⎝⎛⎭⎫β-α2,α2是α4的二倍角等. (3)化繁为简:变复角为单角,变不同角为同角,化非同名函数为同名函数,化高次为低次,化多项式为单项式,化无理式为有理式.消除差异:消除已知与未知、条件与结论、左端与右端以及各项的次数、角、函数名称、结构等方面的差异.(满分:75分)一、选择题(每小题5分,共25分)1.(2011·平顶山月考)已知0<α<π,3sin 2α=sin α,则cos(α-π)等于 ( ) A.13 B .-13 C.16 D .-162.已知tan(α+β)=25,tan ⎝⎛⎭⎫β-π4=14,那么tan ⎝⎛⎭⎫α+π4等于 ( ) A.1318 B.1322 C.322 D.163.(2011·石家庄模拟)已知cos 2α=12(其中α∈⎝⎛⎭⎫-π4,0),则sin α的值为 ( ) A.12 B .-12 C.32 D .-324.若f (x )=2tan x -2sin 2x 2-1sin x 2cosx2,则f ⎝⎛⎭⎫π12的值为 ( ) A .-433B .8C .4 3D .-4 3 5.(2010·福建厦门外国语学校高三第二次月考)在△ABC 中,若cos 2B +3cos(A +C )+2=0,则sin B 的值是 ( )A.12B.22C.32 D .1 二、填空题(每小题4分,共12分)6.(2010·全国Ⅰ)已知α为第二象限的角,且sin α=35,则tan 2α=________.7.函数y =2cos 2x +sin 2x 的最小值是________.8.若cos 2αsin ⎝⎛⎭⎫α-π4=-22,则cos α+sin α的值为________.三、解答题(共38分)9.(12分)化简:(1)cos 20°cos 40°cos 60°cos 80°; (2)3-4cos 2α+cos 4α3+4cos 2α+cos 4α.10.(12分)(2011·南京模拟)设函数f (x )=3sin x cos x -cos x sin ⎝⎛⎭⎫π2+x -12. (1)求f (x )的最小正周期;(2)当∈⎣⎡⎦⎤0,π2时,求函数f (x )的最大值和最小值.11.(14分)(2010·北京)已知函数f (x )=2cos 2x +sin 2x -4cos x .(1)求f (π3)的值;(2)求f (x )的最大值和最小值.答案 自主梳理1.(1)2sin αcos α (2)cos 2α-sin 2α 2cos 2α 2sin 2α(3)2tan α1-tan 2α 2.(1)12sin 2α (2)1-cos 2α2 1+cos 2α2 2cos 2α2 2sin 2α2 (sin α±cos α)2 自我检测1.C 2.C 3.B 4.D 课堂活动区例1 解题导引 化简的原则是形式简单,三角函数名称尽量少,次数尽量低,最好不含分母,能求值的尽量求值.本题要充分利用倍角公式进行降幂,利用配方变为复合函数,重视复合函数中间变量的范围是关键.解 y =7-4sin x cos x +4cos 2x -4cos 4x =7-2sin 2x +4cos 2x (1-cos 2x ) =7-2sin 2x +4cos 2x sin 2x=7-2sin 2x +sin 22x =(1-sin 2x )2+6,由于函数z =(u -1)2+6在[-1,1]中的最大值为z max =(-1-1)2+6=10,最小值为z min =(1-1)2+6=6, 故当sin 2x =-1时,y 取得最大值10, 当sin 2x =1时,y 取得最小值6. 变式迁移1 解 (1)f (x ) =(1+cos 2x )2-2cos 2x -1sin ⎝⎛⎭⎫π4+x sin ⎝⎛⎭⎫π4-x=cos 22xsin ⎝⎛⎭⎫π4+x cos ⎝⎛⎭⎫π4+x=2cos 22x sin ⎝⎛⎭⎫π2+2x =2cos 22x cos 2x =2cos 2x ,∴f ⎝⎛⎭⎫-11π12=2cos ⎝⎛⎭⎫-11π6=2cos π6= 3. (2)g (x )=cos 2x +sin 2x=2sin ⎝⎛⎭⎫2x +π4. ∵x ∈⎣⎡⎭⎫0,π4,∴2x +π4∈⎣⎡⎭⎫π4,3π4, ∴当x =π8时,g (x )max =2,当x =0时,g (x )min =1.例2 解题导引 (1)这类问题一般是先化简再求值;化简后目标更明确;(2)如果能从已知条件中求出特殊值,应转化为特殊角,可简化运算,对切函数通常化为弦函数.解 由sin(π4+2α)·sin(π4-2α)=sin(π4+2α)·cos(π4+2α)=12sin(π2+4α)=12cos 4α=14, ∴cos 4α=12,又α∈(π4,π2),故α=5π12,∴2sin 2α+tan α-1tan α-1=-cos 2α+sin 2α-cos 2αsin αcos α=-cos 2α+-2cos 2αsin 2α=-cos 5π6-2cos5π6sin 5π6=532.变式迁移2 解 (1)∵α是第一象限角,cos α=513,∴sin α=1213.∴sin (α+π4)cos (2α+4π)=22(sin α+cos α)cos 2α=22(sin α+cos α)cos 2α-sin 2α=22cos α-sin α=22513-1213=-13214.(2)cos(2α+π4)=cos 2αcos π4-sin 2αsin π4=22(cos 2α-sin 2α), ∵π2≤α<32π, ∴3π4≤α+π4<74π. 又cos(α+π4)=35>0,故可知32π<α+π4<74π,∴sin(α+π4)=-45,从而cos 2α=sin(2α+π2)=2sin(α+π4)cos(α+π4)=2×(-45)×35=-2425.sin 2α=-cos(2α+π2)=1-2cos 2(α+π4)=1-2×(35)2=725.∴cos(2α+π4)=22(cos 2α-sin 2α)=22×(-2425-725)=-31250.例3 解题导引 本题的关键是第(1)小题的恒等式证明,对于三角恒等式的证明,我们要注意观察、分析条件恒等式与目标恒等式的异同,特别是分析已知和要求的角之间的关系,再分析函数名之间的关系,则容易找到思路.证明三角恒等式的实质就是消除等式两边的差异,有目的地化繁为简,左右归一或变更论证.对于第(2)小题同样要从角的关系入手,利用两角和的正切公式可得关系.第(3)小题则利用基本不等式求解即可.(1)证明 由sin(2α+β)=3sin β,得sin[(α+β)+α] =3sin[(α+β)-α],即sin(α+β)cos α+cos(α+β)sin α=3sin(α+β)cos α-3cos(α+β)sin α, ∴sin(α+β)cos α=2cos(α+β)sin α, ∴tan(α+β)=2tan α.(2)解 由(1)得tan α+tan β1-tan αtan β=2tan α,即x +y1-xy =2x ,∴y =x 1+2x 2,即f (x )=x1+2x 2. (3)解 ∵角α是一个三角形的最小内角,∴0<α≤π3,0<x ≤3,设g (x )=2x +1x ,则g (x )=2x +1x ≥22(当且仅当x =22时取“=”).故函数f (x )的值域为(0,24].变式迁移3 证明 因为左边=2sin x cos x[sin x +(cos x -1)][sin x -(cos x -1)]=2sin x cos x sin 2x -(cos x -1)2=2sin x cos xsin 2x -cos 2x +2cos x -1 =2sin x cos x -2cos 2x +2cos x =sin x 1-cos x =sin x (1+cos x )(1-cos x )(1+cos x )=sin x (1+cos x )sin 2x =1+cos x sin x=右边.所以原等式成立. 课后练习区1.D [∵0<α<π,3sin 2α=sin α,∴6sin αcos α=sin α,又∵sin α≠0,∴cos α=16,cos(α-π)=cos(π-α)=-cos α=-16.]2.C [因为α+π4+β-π4=α+β,所以α+π4=(α+β)-⎝⎛⎭⎫β-π4. 所以tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =tan (α+β)-tan ⎝⎛⎭⎫β-π41+tan (α+β)tan ⎝⎛⎭⎫β-π4=322.]3.B [∵12=cos 2α=1-2sin 2α,∴sin 2α=14.又∵α∈⎝⎛⎭⎫-π4,0, ∴sin α=-12.]4.B [f (x )=2tan x +1-2sin 2x212sin x =2tan x +2cos xsin x=2sin x cos x =4sin 2x∴f ⎝⎛⎭⎫π12=4sinπ6=8.] 5.C [由cos 2B +3cos(A +C )+2=0化简变形,得2cos 2B -3cos B +1=0,∴cos B =12或cos B =1(舍).∴sin B =32.]6.-247解析 因为α为第二象限的角,又sin α=35,所以cos α=-45,tan α=sin αcos α=-34,所以tan 2α=2tan α1-tan 2α=-247. 7.1- 2解析 ∵y =2cos 2x +sin 2x =sin 2x +1+cos 2x=sin 2x +cos 2x +1=2sin ⎝⎛⎭⎫2x +π4+1, ∴当sin(2x +π4)=-1时,函数取得最小值1- 2.8.12解析 ∵cos 2αsin ⎝⎛⎭⎫α-π4=cos 2α-sin 2α22(sin α-cos α)=-2(sin α+cos α)=-22,∴cos α+sin α=12.9.解 (1)∵sin 2α=2sin αcos α,∴cos α=sin 2α2sin α,…………………………………………………………………………(2分)∴原式=sin 40°2sin 20°·sin 80°2sin 40°·12·sin 160°2sin 80°=sin (180°-20°)16sin 20°=116.……………………………………………………………………(6分)(2)原式=3-4cos 2α+2cos 22α-13+4cos 2α+2cos 22α-1………………………………………………………(9分)=(1-cos 2α)2(1+cos 2α)2=(2sin 2α)2(2cos 2α)2=tan 4α.………………………………………………………(12分) 10.解 f (x )=3sin x cos x -cos x sin ⎝⎛⎭⎫π2+x -12=32sin 2x -12cos 2x -1 =sin ⎝⎛⎭⎫2x -π6-1.…………………………………………………………………………(4分) (1)T =2π2=π,故f (x )的最小正周期为π.…………………………………………………(6分)(2)因为0≤x ≤π2,所以-π6≤2x -π6≤5π6.所以当2x -π6=π2,即x =π3时,f (x )有最大值0,……………………………………………………………………………………………(10分)当2x -π6=-π6,即x =0时,f (x )有最小值-32.……………………………………………………………………………………………(12分)11.解 (1)f (π3)=2cos 2π3+sin 2π3-4cos π3=-1+34-2=-94.………………………………………………………………………(4分)(2)f (x )=2(2cos 2x -1)+(1-cos 2x )-4cos x =3cos 2x -4cos x -1=3(cos x -23)2-73,x ∈R .………………………………………………………………(10分)因为cos x ∈[-1,1],所以,当cos x =-1时,f (x )取得最大值6;当cos x =23时,f (x )取得最小值-73.…………………………………………………(14分)。