巧奥数 4年级 第12讲 巧解图形拼割问题

合集下载

四年级奥数-图形分割和拼接

四年级奥数-图形分割和拼接

部分
部分.
图都图,得每都有个
将下图分成形状大小都相同的图形,使得每块都有一个圆圈。

用若干个边长为1,2,3,4的正方形纸片互不重叠地拼成一个边长为
个,,,拼个
5的大正方形,那么最少需要纸片____张。

图。

请你选取其中的一些或者全部,分别拼出一个五边形和一个七边
2cm2cm
下图是一个9×4的长方形,请把它分割成完全相等的两块,并拼成右图的方形请在左图中出分割线在右图中出拼接线
图的正方形,请在左图中画出分割线,在右图中画出拼接线。

如图,在5×8的长方形中,挖去了一个1×4的小长方形(阴影部分),图,中,个(影部),请你将它划分成两部分,使它们能拼成一个正方形。

四年级奥数《数学图形的分割与剪拼课件》

四年级奥数《数学图形的分割与剪拼课件》
(3)分成四部分: 先把阴影部分分成12个小正方形再分成四份, 这样每份正好有3个小正方形。
知识链接
单位元分割
例题(六)(★ ★ ★ )
正三角形ABC的面积是1平方米,将三条边分别向两端各延长一倍, 连结六个
端点得到一个六边形(如右图),求六边形的面积。
例题(六)(★ ★ ★ )
采用分割法,过A、B、C分别作平行线,得到下图;
目录
01
单击添加标题
02
单击添加标题
03
单击添加标题
04
单击添加标题
01 点击添加文字
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
根据等底高的三角形面积相等这一结论,只要把原三角形分成4 个等底高的小三角形分成4个等底等高的小三角形,它们的面积 必定相等。
知识链接
等底等高的两个三角形的面积相等
例题(四)(★ ★ ★ ★)
怎样把一个等边三角形分别分成8块和9块形状、大小都一样的三角 形。
(1)分成8块的方法:先取各边的中点并把它们连接起来, 得到4个大小、形状相同三角形,然后再把每一个三角形分成两部分。
图形的分割与剪拼
四年级 第13课
知识链接
一、了解一下 图形的分割与剪拼 用一条线段把一个长方形分成形状大小都相同的两块,一共有多少种 把一个几何图形按某种要求分成几个图形,就叫做图形的分割。 按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合。 将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼。 二、会用到的 几何变换:平移,旋转,对称 动手

四年级奥数第12讲-图形面积(教)

四年级奥数第12讲-图形面积(教)

学科教师辅导讲义 学员编号: 年 级:四年级 课 时 数:3学员姓名:辅导科目:奥数 学科教师: 授课主题第12讲-图形面积 授课类型 T 同步课堂 P 实战演练 S 归纳总结教学目标① 熟悉掌握基本图形面积的求法。

② 熟悉运用分解、平移、合并等技巧成基本图形,利用长方形、正方形面积计算公式求解。

③ 能够分析图形的特点,提高几何图形的观察能力和思维转换能力。

授课日期及时段T (Textbook-Based )——同步课堂解答有关“图形面积”问题时,应注意以下几点:1.细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利地解决;2.从整体上观察图形特征,掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。

例1、人民路小学操场长90米,宽45米。

改造后,长增加10米,宽增加5米。

现在操场面积比原来增加了多少平方米?【解析】用操场现在的面积减去操场原来的面积,就得到增加的面积。

操场现在的面积是(90+10)×(45+5)=5000平方米,操场原来的面积是90×45=4050平方米。

所以,现在的面积比原来增加5000-4050=950平方米。

例2、一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。

这个长方形原来的面积是多少平方米?【解析】由“宽不变,长增加6米,面积增加54平方米”可知,它的宽为54÷6=9米;由“长不变,宽减少3米,面积减少36平方米”可知,它的长为36÷3=12米。

知识梳理典例分析所以,这个长方形原来的面积是12×9=108平方米。

例3、下图是一个养禽专业户用一段16米的篱笆围成的一个长方形养鸡场,求它的占地面积。

【解析】根据题意,因为一面利用着墙,所以两条长加一条宽等于16米。

而宽是4米,那么长是(16-4)÷2=6米,占地面积是6×4=24平方米。

高斯小学奥数四年级上册含答案第12讲_乘法原理进阶

高斯小学奥数四年级上册含答案第12讲_乘法原理进阶

第十二讲乘法原理进阶在之前我们学习了“加法原理与乘法原理”一讲,即分类相加与分步相乘的思想.如果完成一件事分为几个步骤,在每一个步骤中又有不同的方法,那么把每步的方法数相乘就得到所有的方法数——这就是乘法原理.要想把过程分成几个步骤从而应用乘法原理,必须保证各步骤之间满足下面两个要求:1.2.那么是不是只要分步骤完成整件事情就可以直接用乘法原理呢?如下图,把A、B、C三部分用三种不同的颜色染色,要求相邻两部分不能同色,那么一共有多少种不同的染法呢?A B C其实,整个染色过程是需要分为三步的,即分别给其中一块染色:当染色顺序为A→B→C时,那么A有3种染法,B不能和A一样,有2种染法,同样C有2种,那么一共就有“322⨯⨯”种染法;(C→B→A同理)当染色顺序为B→A→C时,那么B有3种染法,A不能和B一样,有2种染法,同样C有2种,那么一共就有“322⨯⨯”种染法;(B→C→A同理)当染色顺序为A→C→B时,那么A有3种染法,第二步C没有限制,也有3种染法,但是最后的B就出问题了,我们没法确定它有2种还是1种染法——如果C和A同色,则B有2种染法;如果C和A不同色,则B只有1种染法——此时,根据分步相乘的思想计算整个过程的染色方法“33?⨯⨯”就不再适用了.(C→A→B同理)因此,并不是只要分步完成整件事情就一定可以应用乘法原理,要想应用乘法原理,还必须满足第三个要求:3.——简称“前不影响后.....原则”染色问题,是应用乘法原理最常见的一类题型,其实,从上面对A、B、C 三部分的染色分析我们应该可以发现,染色的时候,要尽量避免“隔”着染,一定不要“跳”着染,而且,第一步要尽量去染“接触最多”的那一部分,这样,才能够使得后面的染色过程尽量避开“前影响后”.例题1如图,把A 、B 、C 、D 、E 这五部分用4种不同的颜色染色,且相邻的部分不能使用同一种颜色.请问:这幅图共有多少种不同的染色方法?「分析」分五步染色,先染哪一块呢?能否按照A 、B 、C 、D 、E 的顺序染呢? 练习1如图,把A 、B 、C 、D 这四部分用4种不同的颜色染色,且相邻的部分不能使用同一种颜色.请问:这幅图共有多少种不同的染色方法?例题2某市实行垃圾分类处理.每个地方放置五个垃圾桶,从左向右依次标明:电池、塑料、废纸、易拉罐、其它.现在准备把五个垃圾桶染成红、绿、蓝这3种颜色之一.(1)要求相邻两个垃圾桶颜色不同,一共有多少种染色方法? (2)要求相邻两个垃圾桶颜色不同且回收易拉罐的垃圾桶不能染成红色,一共有多少种染色方法?「分析」如果我们先染废纸垃圾桶:当它染红色时,回收易拉罐的垃圾桶可以染绿、蓝两种颜色;而当它染绿色(蓝色)时,回收废纸的垃圾桶只能染蓝色(绿色).因此先染废纸垃圾桶时,会影响易拉罐垃圾桶的染色方法数,就不能直接用乘法原理计算了.那么我们应该先给哪个垃圾桶染色呢?练习2麦兜很挑食,只吃带有鱼丸或粗面的搭配.一天它和3位同学来餐厅吃东西,一开口就要鱼丸粗面,结果老板说没有.这个时候,由于时间太晚,餐厅快打烊了,只能做牛肚河粉,鱼丸油面,猪肉米线和牛肉拉面各一份,请问它们四只猪各点一份,有几种点法?在例题2中,有一个垃圾桶是有特殊要求的——易拉罐垃圾桶不能染成红色,我们通过尝试可知:如果一开始先染其他的垃圾桶,那么前面垃圾桶的染色方法就会影响到易拉罐垃圾桶的染色方法数,即不能满足“前不影响后”原则,而如果首先染易拉罐垃圾桶,则不会出现该问题,所以一般而言,如果题目中有些对象是有特殊要求的,那么我们分步..分析计算的时候,首先要考虑这些特殊的对象.例题3卡莉娅、墨莫、小高和大头4名同学竞选班委.有班长、学习委员、生活委员三个职位,每个人只能担任一个职位,并且每个职位只能由一个人担任.(1)有多少种可能的选举结果?(2)如果班长必须由卡莉娅来担任,有多少种可能的选举结果?(3)如果生活委员只能在墨莫和大头之中选,有多少种可能的选举结果?(4)如果学习委员不能由小高担任,有多少种可能的选举结果?「分析」可以按照职位一一确定,第(2)问中,班长只能由卡莉娅来担任,那么先确定哪一个职位的人选呢?其他小问呢?练习3甲、乙、丙、丁、戊5个人竞选班委.有班长、副班长、纪律委员、卫生委员四个职位,每个人只能担任一个职位,并且每个职位只能由一个人担任:请问:(1)一共有多少种可能的选举结果?(2)如果副班长只能在甲、丁和戊中选,有多少种可能的选举结果?(3)如果卫生委员不能由乙、丙担任,有多少种可能的选举结果?例题4甲、乙、丙、丁四个人要住进A、B、C、D四间房间,每个房间住一个人.其中甲不住A房间,丙只住D房间.请问:这四个人住进四个房间有多少种住法?「分析」本题中甲和丙有特殊要求,我们应该先考虑甲还是丙呢?练习4甲、乙、丙、丁四个人要住进A 、B 、C 、D 四间房间,每个房间住一个人.其中甲只住A 或B 房间,丙只住A 、B 或C 房间.请问:这四个人住进四个房间有多少种住法?例题5甲、乙、丙、丁、戊五人要驾驶A 、B 、C 、D 、E 这五辆不同型号的汽车,请计算在下列情况下,分别共有多少种不同的安排方案: (1)只有甲能开汽车A ,乙不会开汽车B ;(2)会开A 的只有甲和乙,会开E 的只有甲、乙、丙.「分析」第(1)问中,甲和丙两人有特殊要求,我们应该先考虑哪一个人呢?第(2)问中,A 和E 两车有特殊要求,我们应该先考虑哪辆车呢?接下来我们分析一下“放相同棋子”的问题.如右图,将2枚相同的棋子放入2×2的方格内,每个格子只能放1枚,且要求每行每列最多只能放1枚,那么一共会有几种方法呢?其实,要把两枚相同的棋子放进格子内,只需要选出两个格子即可,然后每个格子里放一枚棋子.一共有两行,所以必定会是每行一枚,所以我们完全可以分行选格子,第一行有两种选法,第一行选好后,第二行就只有一种选法了,所以一共有2×1=2种.例题6右图是一个阶梯形方格表,在方格中放入五枚相同的棋子,使得每行、每列中都只有一枚棋子,这样的放法共有多少种?「分析」容易看出,每行只能有1枚棋子,每列也只能由一枚棋子,我们可以把放五枚棋子的过程分成五步:一行一行或一列一列的放.课堂内外四色定理四色定理与费马大定理、哥德巴赫猜想并称为近代数学三大难题.四色定理的内容是:对于任何一张地图,只用四种颜色,就可以把有相邻边界的国家染上不同的颜色.四色问题的提出来自英国.1852年,在大学读书的格斯里向他的老师——著名数学家摩根提出了这个问题,摩根没有能找到解决这个问题的途径.“四色问题”提出以后,最初并没有引起广泛的重视,许多数学家低估了它的难度.就连素以谦虚著称的德国数论专家闵可夫斯基在大学上拓扑课时也说:四色问题之所以一直没有获得解决,那仅仅是由于没有一流的数学家来解决它.说罢,他拿起粉笔,竟要当堂给学生推导出来,结果没有成功.下一节课他又去试,还是没有成功.过了几个星期,仍无进展.有一天,他刚跨进教室,适逢天上雷声大作,震耳欲聋.他马上对学生说:“上天在责备我自大,我也无法解决四色问题.”这样,四色问题就成了世界最著名的问题之一.l00多年中,“四色问题”使数学家们深为困扰.没有人能证明它,也没有人推翻它.电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了四色猜想的证明进程.就在1976年6月,哈肯与阿佩尔在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿次判断,终于完成了四色定理的证明,轰动了世界.作业1. 五个座位排成一排,小高、墨莫、萱萱、阿呆、阿瓜每人选一个座位坐下,其中每个座位只能坐一个人,且萱萱不坐在中间的位置.这五个人有多少种坐法?2. 如图,把A 、B 、C 这三部分用4种不同的颜色染色,且相邻的部分不能使用同一种颜色.请问,这幅图共有多少种不同的染色方法?3. 把A 、B 、C 、D 、E 这五部分用4种不同的颜色染色,且相邻的部分不能使用同一种颜色.这幅图共有多少种不同的染色方法?4. 甲、乙、丙、丁四个人排成一队,甲不当排头,乙不当排头也不当排尾,共有多少种不同的排法?5. 在的方格中放入两枚相同的棋子,要求两枚棋子既不在同一行也不在同一列,共有多少种放法?24 ABCD E第十二讲乘法原理进阶1.例题1答案:96详解:分步,分别给E、B、C、A、D染色,分别有4、3、2、2、2种染法,所以一共有4322296⨯⨯⨯⨯=种染色方法.2.例题2答案:48;32方法;(2)分步,先染易拉罐垃圾桶,再分别给废纸、塑料、电池、其他这四个垃圾桶染色,五个垃圾桶分别有2、2、2、2、2种染法,所以一共有2222232⨯⨯⨯⨯=种染色方法.3.例题3答案:24;6;12;18种;(2)分别确定班长、学委、生活委员的人选,分别有1、3、2种选法,所以共有1326⨯⨯=种;(3)分别确定生活委员、学委、班长的人选,分别有2、3、2种选法,所以共有23212⨯⨯=种;(4)分别确定学委、班长、生活委员的人选,分别有3、3、2种选法,所以共有33218⨯⨯=种.4.例题4答案:4种选法.5.例题5答案:18;24详解:(1)先考虑甲,后考虑乙,再考虑其他三个人,分别有1、3、3、2、1种可能,共有⨯⨯⨯⨯=种;1332118(2)先考虑A,后考虑E,再考虑其他三辆车,分别有2、2、3、2、1种可能,所以共有⨯⨯⨯⨯=种.22321246.例题6答案:16详解:一共要选5个格子放棋子,一行一行选,每行1个,而且不能在同一列,从上往下,5行分别有2、2、2、2、1种选法,所以一共有2222116⨯⨯⨯⨯=种选法.7.练习1答案:48详解:分步,分别给B、C、A、D染色,分别有4、3、2、2种染法,所以一共有⨯⨯⨯=种染色方法.4322488.练习2答案:6详解:先让麦兜点,只有鱼丸油面1种可选,然后让其他3位同学依次点,分别有3、2、1种选法,共分四步,乘法原理,所以共有13216⨯⨯⨯=中不同的选法.9.练习3答案:120;72;72⨯⨯⨯=5432120(2)先确定副班长,再依次确定其他,共有343272⨯⨯⨯=种;(3)先确定卫生委员,再依次确定其他,共有343272⨯⨯⨯=种.10.练习4答案:8种选法.11.作业1答案:96.简答:可以按照萱萱、小高、墨莫、阿呆、阿瓜的顺序安排座位,有4432196⨯⨯⨯⨯=种.安排座位的顺序不唯一.12.作业2答案:24简答:可以按照A、B、C的顺序染色,43224⨯⨯=种.染色顺序不唯一.13.作业3答案:96简答:可以按照A、B、C、D、E的顺序染色,有4322296⨯⨯⨯⨯=种.染色顺序不唯一.14.作业4答案:8简答:按照乙、甲、丙、丁的顺序安排,有22218⨯⨯⨯=种排法.15.作业5答案:12简答:一行一行选位置,第一行有4个格子可选,即4种选法;第二行还有3个格子可选,即有3种选法.因此有4312⨯=种不同的放法.。

奥数-12图形的分割与拼合+答案

奥数-12图形的分割与拼合+答案
2、三种塑料板的型号如下图,各有若干块。要拼成 4×4 的正方形,有哪几种拼的方 法?不同的型号用不同的字母在图中表示。
一 、 图形的分割
【例1】 画一条直线,将正六边形分成大小相等、 形状都相同的两部分,这样的直线有多少条?
解析:任何过正六边形中心点的直线均符合要 求,所以说这样的直线有无数条。 【例2】 将三个等边三角形分别分成 2 个、3 个、 4 个完全相等的三角形。
解析:要将等边三角形分成 2 个、3 个、4 个完 全相等的三角形,关键是要找准三角形边的中点和三 角形的中心点。 【例3】 将正六边形分别分成 2 个、3 个、4 个、6 个形状、大小相同的图形。
部分,但要保持每个小方格的完整。
2、已知左下图是由同样大小的 5 个正 方形组成的.试将图形分割成 4 块 形状、大小都一样的图形。
3、把下图剪成形状、大小相等的 8 个 小图形,怎么剪?画出分割线。
4、右图是由 15 个边长为 1 厘米的小正方形组成的。 请在原图中沿正方形的边线,把它划分为 5 个大 小、形状完全相同的图形,分割线用笔描粗。
练习三 1、将下图分割成大小、形状相同的
三块,使每一小块中都含有一个 。
2、请把图分成形状、大小都相同的 4 块,使每一块里面都有“春暖 花开”4 个字。
3、请你将下图分成四个图形,并且 使其中每个图形都含有“一帆风 顺”这四个字,应怎样分?
4、下图是由 15 个小正方形组成的图 形,请你把它分成 5 个形状、大 小都相同的图形。
练习二 1、用 3 个等腰直角三角形拼图,
要求边与边完全重合,能拼出 几种图形?在右边画一画。
2、用所给的四种形状的“四连块” 拼成一个正方形,按编号画入 右边图中。
【例3】 下面哪些图形用相同的四块就能拼成一个正方形?

四年级数学奥数培优讲义-专题10平面图形的切割与拼接(含解析)

四年级数学奥数培优讲义-专题10平面图形的切割与拼接(含解析)

四年级数学奥数培优讲义-专题10平面图形的切割与拼接(含解析)专题10平面图形的切割与拼接图形的拼切就是把一个图形分成若干块,然后再讲成一个规则的图形。

拼切前后的图形面积大小不变。

利用图形的对称性进行拼切是一种常用的方法,还要学会选择分割的方法和技巧。

1.用一张长方形纸剪同样的三角形(如下图),最多能剪多少个这样的三角形?2.一个三角形的底是12分米,高是8分米,用两个这样的三角形拼成一个平行四边形,这个平行四边形的面积是多少平方分米?3.一块装饰玻璃形状如下图所示,这块玻璃的面积是多少平方分米?4.王村有一个宽20米的长方形鱼塘。

因修路,鱼塘的宽减少了6米,这样鱼塘的面积就减少了180平方米。

现在鱼塘的面积是多少平方米?(先画出减少的部分,再解答)5.长方形纸长24厘米、宽14厘米,先剪下一个最大的正方形,再从剩下的长方形中剪下一个最大的正方形。

最后剩下的小长方形的面积是多少?6.欣欣和乐乐想用一张长8分米、宽5.5分米的长方形纸剪边长是2分米的正方形。

乐乐说:“我最多能剪出11个正方形”,欣欣说:“不可能,你吹牛”。

你认为乐乐是在吹牛吗?请你用画示意图的方式说明你的想法。

7.在一张长30厘米、宽18厘米的长方形纸的一端剪掉一个最大的正方形,在剩下的长方形纸的一端再剪掉一个最大的正方形.最后剩下部分是什么图形?它的面积是多少平方厘米?8.一块正方形的玻璃边长8分米,在它一角切下一个长4分米、宽3分米的长方形,这块玻璃剩下部分的周长多少分米?(先画图,再计算)9.李阿姨在一块长为80分米,宽为50分米的长方形花布上剪下一块最大的正方形花布,这块正方形花布的周长是多少分米?剩下的花布的周长是多少分米?10.一张长方形桌布长120厘米、宽90厘米。

这张桌布有了一个洞,为了不浪费,小明想剪下一块最大的正方形桌布。

剪下的这块正方形桌布的面积是多少平方厘米?11.在下图的长方形中,截取一个最大的正方形,剩下的小长方形的周长是多少厘米?12.一块长方形花圃,如果把它的长减少4米,面积就减少64平方米;如果把它的宽增加4米,面积就增加80平方米。

小学奥数-图形的剪拼

小学奥数-图形的剪拼

3

• 三角形和六角星的每条边长都相等,那么用多少 个三角形可以拼成六角星?
精选课件
4
剪-拼
2、把图形剪成几块,然后拼成图形。
把如下图(1)所示的图形切成两块,然后拼成 一个正方形.
精选课件
5
变形及难点:切成多块,组合成某 个图形
• 如下左图将其切成3块,使之拼成一个正方形
• 把一个正方形分成8块,再把它们拼成一个正方形 和一个长方形,使这个正方形和长方形的面积相 等.
图形的剪拼
精选课件
1
定义
• 把一个几何图形剪成几块形状相同的图 形,或是把一个几何图形剪开后拼成另一 种满足某种条件的图形,叫做图形的剪拼。
精选课件
2

• 1、把一个几何图形剪成几块形状相同的图 形
例:把一个等边三角形分别分成8块和9块形状、大 小都一样精选课件
精选课件
6
变形及难点:变形后对面积或周长 有要求
• 把一个正方形分成8块,再把它们拼成一个正方形 和一个长方形,使这个正方形和长方形的面积相 等.
• 如何把一个长20厘米、宽12厘米的长方形切成两 块,拼成一个长16厘米、宽15厘米的新长方形.
精选课件
7
类似棋盘图形的剪拼问题
• 例: 如右图所示,请将这个正方形分切成两块, 使得两块的形状、大小都相同,并且每一块都含 有A、B、C、D、E五个字母.
精选课件
8
难点及变形-划分块数最少
• 如下图长方形的长、宽分别为120厘米、90厘米, 正中央开有小长方形孔,长为80厘米,宽为10厘 米,要拼成面积为100平方厘米的正方形.问如何 切分,能使划分的块数最少.
精选课件
9
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!

四年级奥数巧解图形拼割问题

四年级奥数巧解图形拼割问题

巧解图形拼割问题巧点晴——方法和技巧本讲主要讲述一些趣味性的拼图游戏以及图形面积的各种法,如平移、割补等。

要求同学们熟知一些特殊图形的面积计算公式,如三角形、长方形、梯形的面积公式;善于发现所求图形与基本图形之间的关系,熟练掌握图形的拼、割、补。

巧指导——例题精讲A级冲刺名校·基础点晴【例1】四边形ABCD是一个长方形,画一条直线把这个长方形分成两部分,并使这两部分能够拼成一个平行四边形、三角形或梯形。

问这条直线应该怎么画?做一做1 把下列各图分别剪成三块,各拼成正方形。

【例2】将一个长为9,宽为4的长方形(如下图①)分成两块,然后拼成一个正方形。

分析与解先算出所拼正方形的边长。

因为拼成的正方形的面积与原长方形的面积相等。

4×9=36=6×6,所以正方形的边长是6。

正方形的边长为6,将下图①分成两块,如下图②),然后拼成正方形,如下图③所示:③做一做2 将长为36,宽为25的长方形分成两块,然后拼成一个正方形。

【例3】如下图,用方格纸剪成面积是4平方厘米的图形,图形形状有7种。

其中有哪种图形可以拼成面积是16平方厘米的正方形?①②③④⑤⑥⑦做一做3 用方格剪成面积是4的图形,其形状只有以下7种。

如果用其中的四种图形拼成面积是16的正方形,那么这种图形的编号和的最小值是。

①②③④⑤⑥⑦B级培优竞赛·更上层楼【例4】怎样把两张正方纸拼成一个大正方形纸?分析与解1 把两张正方形纸都沿着其一条对角线剪开,然后拼成一张大正方形纸,如下图所示:分析与解2 把两张正方形纸中的一张正方形纸沿其两条对角线剪分析与解3 把两张正方形纸分别沿其两条对角线剪开,然后拼成一张大正方形纸,如下图所示:做一做4 你能想出例3的其他拼法吗?【例5】图钉钉画:把4张长方形画用图钉钉在墙上,要使每张画的4个角上都钉上图钉,一共需要几颗图钉?方法1 如下图所示,把4张画分开钉,每张需4个图钉,用16个图钉。

高斯小学奥数四年级下册含答案第12讲_直线形面积计算综合提高

高斯小学奥数四年级下册含答案第12讲_直线形面积计算综合提高

第十二讲直线形面积计算综合提高我们已经学过了基本直线形面积计算公式及其反求、等积变形、格点图形面积、割补法巧算面积等几何知识,本讲就是在之前学习的基础上,加强对基本公式、一些常见模型的掌握以及对画辅助线解决几何问题的过程深刻理解,并在此基础上学习勾股定理.1. 面积计算公式2. 常见模型在计算一些不规则图形的面积时,往往需要利用一些技巧把不规则图形变成规则图形来求解.常用的技巧有割补和平移,在割补和平移的同时往往需要连辅助线,画辅助线巧妙的解决问题是几何学习中的重点、也是一大难点.我们在之前学过的“等积变形”一讲中已经学习过了这一模块中的基本知识点,如下图所示:上面两个图形中,阴影部分面积都是其所在平行四边形面积的一半.一些特殊的平行四边形(如长方形、正方形)中存在这样的基本模型.AD三角形面积=底×高÷2阴影部分面积是长方形面积的一半 阴影部分面积是长方形(平行四边形)面积的一半正方形面积=对角线的平方÷2阴影部分面积是大正方形面积的一半2S ah =÷三角形 2S a =22S b =÷ 正方形 a 等腰直角三角形22=÷S a24=÷S b例题1如图,正方形ABCD 面积为20,E 是BC 上任意一点,DF 与AE 垂直.已知AE 长5,求DF 长度.「分析」已知正方形面积,我们可以计算出哪一块图形的面积呢?练习1如图,长方形ABCD 的长BC 为15,AE =6,DF =10.那么AB 长多少?例题2如图,在长方形ABCD 中,三角形ADE 的面积为20平方厘米,三角形BEF 的面积为12平方厘米.求三角形CDF 的面积. 「分析」你能找出图中哪些图形面积是长方形的一半吗?哪些与题目所给的20、12以及△CDF 有关系呢? 练习2如图,E 、F 分别是平行四边形ABCD 两条边上的点.已知△AFM 面积为12,△BNF 面积为8,△CEN 面积为11.那么△DEM 的面积是多少?128 11ABCDEF MN勾股定理如右图所示的直角三角形ABC 中,∠A =90°,直角边AC 与直角边AB长度的平方和等于斜边BC 长度的平方.即:反之,若三角形三边符合上述等式,则此三角形为直角三角形,BC 为斜边. 勾股图与弦图勾股图法:如上左图,小正方形内接于大正方形中,所截得的4个全等直角三角形的边长均已标出.大正方形的面积为()2a b +,小正方形的面积等于大正方形的面积减去4个全等直角三角形的面积.因此有:()22224222aba b a ab b ab c +-=++-=,所以222c a b =+. 弦图法:如上右图,将大正方形分成4个全等的直角三角形和1个小正方形,各边长均已在图中标出.小正方形的面积加上4个全等的直角三角形的面积就等于大正方形的面积.因此有:()22224222aba b a ab b ab c -+=-++=,所以222c a b =+.aabCB例题3(1)如右上图所示,直角三角形ABC 中,∠ABC =90°,已知AB =5cm ,BC =12cm ,求AC 的长度.(2)如右下图所示,直角三角形ABC 中,∠ABC =90°,已知BC =40cm ,AC =50cm ,求AB 的长度.「分析」直接应用勾股定理公式进行计算吧!注意:是2次方而不是乘2哦!练习3如图所示,其中AC 的长为12,BC 的长为16,BD 的长是15,那么AD 的长是多少?例题4如图,请根据所给出的条件,计算出大梯形的面积.(单位:厘米)「分析」要求梯形面积,就必须知道梯形的高,好好思考一下,能根据直角三角形的两条直角边计算出梯形的高吗?梯形的高与直角三角形有什么关系呢? 练习4如图,请根据给出的数据,求出直角三角形的斜边上的高的长度.A B512D3 4接下来我们看两道比较复杂的题目,要解决它们,我们需要灵活应用前面所学的模型与方法,有时甚至需要我们自己画辅助线构造如上模型. 例题5如图,四边形ABCD 和AEFG 分别是长方形和正方形.已知正方形的边长是10,△DFG 的面积是18.求长方形ABCD 的面积.「分析」你能从这个复杂的图中找出基本的“一半”关系吗? 例题6如图,四边形ABCD 各边的边长均已标在图中,其中∠A = 90°,求四边形ABCD 的面积.「分析」有90°直角,能否应用勾股定理呢?这个图中有直角三角形吗? 课堂内外勾股定理勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用.正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称.中国是发现和研究勾股定理最古老的国家之一.中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理.在公元前1000多年,据记载,商高(约公元前1120年)答周公曰:“故折矩,以为句广三,股修四,径隅五.既方之,外半其一矩,环而共盘,得成三四五.两矩共长二十有五,是谓积矩.”因此,勾股定理在中国又称“商高定理”.在公元前7至6世纪一中国学者陈子,24 C曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日.”在法国和比利时,勾股定理又叫“驴桥定理”.还有的国家称勾股定理为“平方定理”.在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理.为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.作业1.如图,ABCD是长方形,EF与宽平行,GH与长平行,AB的长是8厘米,BC的长是6厘米,那么图中阴影部分的面积是多少平方厘米.?2.如图,已知平行四边形面积为60平方厘米,那么长方形面积是多少平方厘米?3.已知甲、乙从同一位置出发,甲往西走了5米,乙往南走了12米,这时甲、乙相距多少米?4. 如下图,在△ABC 中,∠ACB =90°,AC =12,BC =5,AM =AC ,BN =BC ,则MN 的长多少?5. 如图,已知大梯形的下底为35,根据图中给出的条件,请求出大梯形的面积.CBNMA第十二讲 直线形面积计算综合提高1. 例题1答案:3.2详解:正方形边长为4,面积为16;三角形ADE 面积是正方形的一半,为8.三角形面积等于2AE DF ⨯÷,所以DF 长为825 3.2⨯÷=.2. 例题2答案:32平方厘米详解:ADE BEF DEF ++面积和是长方形的一半;CDF DEF +面积和是长方形的一半;比较可得,CDF 面积恰好等于ADE 与BEF 面积和,为201232+=平方厘米. 3. 例题3答案:13厘米;30厘米详解:(1)222512AC +=,AC =13;(2)2224050AB +=,AB =30. 4. 例题4答案:60平方厘米详解:画如图虚线,原图中的直角三角形直角边分别是6、8,所以斜边是10,即梯形上底为10;梯形的高即为直角三角形的高,如图虚线,高为6810 4.8⨯÷=厘米;梯形面积为()1015 4.8260+⨯÷=平方厘米.5. 例题5答案:64详解:如图,连接DE .首先,三角形ADE 与DFG 的面积和为正方形AEFG 的一半,等于50;其中DFG 面积为18,所以ADE 面积为32;而三角形ADE 面积为长方形ABCD 的一半,所以长方形面积为64.E6. 例题6答案:96详解:如图,连接BD .ABD 中,BD 为10.BCD 中,三边分别为10、24、26,有222102426+=,所以BCD 为直角三角形.三角形BCD 面积为10242120⨯÷=,三角形ABD 面积为68224⨯÷=,所以ABCD 面积为1202496-=. 7. 练习1答案:4详解:三角形AED 面积为610230⨯÷=,则长方形面积为60,长为15,所以宽AB 为60154÷=.8. 练习2答案:9详解:AMF BNF MENF ++面积和是长方形的一半;DME CNE MENF ++面积和是长方形的一半;比较可得,AMF BNF +面积恰好等于DME CNE +,所以DME 面积为128119+-=平方厘米.9. 练习3答案:25 简答:2221216AB +=,AB =20;2222015AD +=,AD =25.10. 练习4答案:2.4简答:直角三角形直角边分别是3、4,所以斜边是5,高为345 2.4⨯÷=厘米.11. 作业1答案:24 简答:四个阴影三角形面积分别等于各自所在的长方形面积的一半,所以阴影部分总面积即为大长方形ABCD 的一半,为68224⨯÷=平方厘米.12. 作业2答案:60简答:长方形和平行四边形面积都等于直角三角形的两倍,所以他们面积相等.24 C13.作业3答案:13简答:甲往西走了5米,乙往南走了12米,两个人的方向垂直,所以此时两人的距离即为两条直角边长分别为5和12的直角三角形的斜边长度,等于13.14.作业4答案:4简答:AC=12,BC=5,所以斜边AB=13;AM=AC=12,所以BM=1;而BN=BC=5,所以514=-=-=.MN BN BM15.作业5答案:360简答:直角三角形两条直角边分别是15、20,根据勾股定理可得斜边(即梯形上底)为25,因此斜边上的高(即梯形的高)为20152512⨯÷=.而梯形面积为()+⨯÷=.2535122360。

四年级《图形的拼割》奥数教案

四年级《图形的拼割》奥数教案

T字型闪电型 L型田字型一字型师:今天我们就来一起玩一下俄罗斯方块。

生:可以。

师:我们都知道玩俄罗斯方块的时候当凑成一排以后,会自动消失掉,现在我们改一下规则,我们用一个正方形来代替这个玩法。

师:如果要你用几个相同的图形组成一个正方形,你最少要用几个?生:因为正方形的四个边都相等,而这些图形都是由四个小正方形组成的,所以我们最少要用到四个这样的图形才能组成一个正方形。

师:这就是说,这个正方形一共要有16个小正方形。

师:现在请你用上面的这些图形组成一个正方形,组成成功的,可以获得小小的奖励哦!为了让大家更好的去尝试,老师准备了一些道具。

大家打开信封看一看。

生:打开信封,(里面有一个方格状的正方形,另外包含例题一中的各种形状俄罗斯方块各4张。

)师:现在大家自己去尝试一下,看看你能否用这些图形把我们的正方形拼好。

生:(学生尝试)师:现在有完成了的吗?说说你是怎么完成的?生1:我用“一字型”的图形,排满4排就是一个正方形了。

师:哦,你能用不同的颜色表示出来吗?生:师:还有别的方法的吗?生2:我用“田字型”,把四个“田字型”图形放在一起,就是一个正方形了。

师:这样想也是很棒的,还剩下3种图形,还可以用这些图形拼成正方形吗?生:(学生尝试去想,教师提示)生3:用“L型”和“T字型”都可以拼出来。

如:师:很棒,那“闪电型”图形可以拼出正方形吗?生:怎么拼都拼不出来。

师:根据俄罗斯方块这个游戏我们知道了上面5种图形除了闪电型,其他4种图形用一定的数量都可以拼成正方形。

其实正方形还可不可以用其他的图形拼出来?生:可以。

师:在日常生活和实际生产中,经常会碰到一些图形分割、拼合和剪拼的问题。

无论是图形的分割、拼合,还是图形的剪拼,都要结合所提供的图形特点来思考。

板书:答:(答案不唯一)练习1:(6分)请将下面的长方形分成4个形状、大小都相同的图形。

你能想到几种分法?分析:根据长方形的长与宽的特点,我们可以把长方形分成四个完全相等的小长方形,或根据长方形的对角线特点,可以将长方形分成四个完全相同的小三角形等。

4年级奥数几何图形拼剪问题例题

4年级奥数几何图形拼剪问题例题

1.在图7-1所示的①号、②号、③号、④号这4个图形中,可以用图7-2所示的两种小块拼成的图形是第几号?[分析与解]①号和②号图形各有11个小方格,11不是3的整数倍,因此不能用这两种图形拼成.③号图形的右上角和下边只能用来拼,剩下的图形显然不能用这两种图形来拼.只有④号图形可以用这两种三个方格的图形来拼,拼法有多种,下面给出一种.2.在方格纸上剪出由4个单位小方格组成的连通图形,其形状只能有如图7-3所示的7种.如果只用其中的一种图形拼成面积是16的正方形,那么可以用的图形有几种?[分析与解]用四个图⑤或⑦,显然可以拼成面积为4×4的正方形.用图形①、②、⑥的拼法如下图所示:图形③、④不行,所以可用的图形有5种.3.在方格纸上剪出由4个单位小方格组成的连通图形,其形状只能有如图7-3所示的7种.如果用其中的4种拼成一个面积是16的正方形,那么这4种图形编号之和的最小值是多少?[分析与解]编号最小的为①、②、③、⑦,和的最小值为13.4.如图7-4,在一个5×5的方格表中,每个方格内都写有一个数.在挖去一个方格后,可以将方格表剪成8个1×3的长方形.那么应该挖去的方格内写的数是多少?[分析与解]由下图知,应将13号方格挖去.5.9个边长分别为1,4,7,8,9,10,14,15,18的正方形可以拼成一个长方形.问这个长方形的长和宽是多少?并请画出这个长方形的拼接图.[分析与解]长方形的面积为12+42+72+82+92+102+142+152+182=1056.长方形的宽显然大于等于18,而1056=22×48=24×44=32×33,但18只有与4相加得22,多出得18-4=14无法与其他数相加得出22,所以宽不能是22.同理,宽不是24,因而长方形的宽是32,长是33.具体拼法如下图.当然上图的对称图形也是符合要求的.6.把图7-5所示的正方形分割为3种面积不同的小正方形,并且使得小正方形的个数是8.[分析与解]可以如下的分出:评注:此图可以用来说明(3+2)2=32+22+2×(3×2).7.用l×l×2,l×1×3,l×2×2三种木块拼成3×3×3的正方体.现有足够多的l×2×2木块,还有14块l×l×3的木块,要拼成l0个3×3×3的正方体,最少需要l×1×2的木块多少块?[分析与解]因为有足够多的1×2×2木块,所以要尽可能多地利用这种木块.在拼成1个3×3×3的正方体时,1×2×2最多用5个,还要1×1×2的2个,1×1×3的1个,具体拼法如下图.其中1,2,3,4是1×2×2,还有一块在背面,紧贴2与3,5与6的是1×1×2,7是1×1×3.由于1×1×2和1×2×2的体积是偶数,而3×3×3=27是奇数,因此拼成的正方体中最少有1个1×1×3.现在有14个1×1×3,要拼成10个正方体,至少用药其中10个,也就是说,至多只能多出4个.为了上面拼成中的1×1×2尽可能的少,只有用2个1×1×3来代替1个1×1×2和1个1×2×2,这样可少用1个1×1×2.原来拼10个要用10×2=20个1×1×2,现在多了4个1×1×3,可少用2个1×1×2,只要20-2=18个.所以最少需要1×1×2的木块18个.8.从一张长14厘米、宽11厘米的长方形纸片中,最多能裁出多少个长4厘米、宽l厘米的纸条?请画图说明剪裁方法.[分析与解]长方形纸片的面积为14×11=154立方厘米,而每个小纸片的面积为4×1=4平方厘米.①②③9.请将图7-6所示的6×6方格表沿网格线分成大小形状都相同的4块,并且每块中都有黑子与白子各一个.[分析与解]注意利用对称性,下面给出剪拼方法:10.观察图7-7,ABCDEF是正六边形,D是它的中心.画出线段PQ后,就把ABCDEF分成两个形状、大小都相同的五边形PABCQ与PFEDQ.请在图7-8中画出3条线段,把正六边形ABCDEF,分成6个形状、大小都相同的正三角形.请在图7-9中画出几条线段,把正六边形ABCDEF分成3个形状、大小都相同的五边形.[分析与解]如下图所示:11.现在要将图7-10中所示的图形分割成4个形状和大小都相同的部分,然后将它们拼合成一个正方形.请在原图上标明分割线,并画出正方形的拼合图.[分析与解]我们不难计算出题中图形的面积为36,有36=6×6,所以拼成的正方形的边长为6,下面给出两种拼法.12.将边长分别为3厘米和4厘米的两个正方形切割成四块,然后将它们拼成一个边长是5厘米的大正方形.请在图7-1l中同时画出切割线和拼接线.[分析与解]如下图,给出一种拼接方法:13.如图7-12,长方形ABCD的长是4厘米、宽3厘米,从这个长方形中减去两个长2厘米、宽l厘米的小长方形后得到一个“T”形,请你沿直线对这个“T”形剪两刀,使剪开的部分恰好能拼成一个正方形.请在原图上标明分割线,并画出正方形的拼合图.[分析与解]这个“T”形图的面积为4×3-2×2×1=8,拼成的正方形边长不是整数,但是我们可以利用对角线来求解.下面给出两种不同的拼合方法.14.试将图7-13分成两块,然后拼成一个5×6的长方形.请在原图上标明分割线,并画出长方形的拼合图.[分析与解]注意运用对称性,15.如图7-15,在8×8的方格表中用形状如图7-14所示的“L”形纸片来覆盖,要求每个“L”形都恰好盖住3个小方格.为使所余部分不能再放入“L”形,最少需要摆放多少张纸片?[分析与解]最少需要11个.每个2×2的正方形至少被覆盖住2个小方格,才不能再放下“L”形.在8×8的正方形中有16个2×2的正方形,因此至少需要覆盖住2×16=32个小方格.而要覆盖住32个小方格至少需要11个“L”形,不然,10个只能覆盖3×10=30个小方格.具体的覆盖方法很多,下面给出几例.。

小学奥数图形的分割与拼接

小学奥数图形的分割与拼接

本讲主要学习三大图形处理方法: 1.理解掌握图形的分割; 2.理解掌握图形的拼合; 3.理解图形的剪拼.本讲中很多类型的题目还要求同学们去动手尝试.通过本讲知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力.把一个几何图形按某种要求分成几个图形,就叫做图形的分割.反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合. 将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼. 我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.板块一 图形的分割【例 1】 用一条线段把一个长方形平均分割成两块,一共有多少种不同的分割法?BAO【巩固】画一条直线,将六边形分成大小相等、形状相同的两部分,这样的直线有 条.【例 2】 把任意一个三角形分成面积相等的4个小三角形,有许多种分法.请你画出4种不同的分法.例题精讲图形的分割与拼接【巩固】把任意一个三角形分成面积相等的2个小三角形,有许多种分法.请你画出3种不同的分法.【例 3】 怎样把一个等边三角形分别分成8块和9块形状、大小都一样的三角形.【例 4】 下图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.321DCBA【例 5】 在一块长方形的地里有一正方形的水池(如下图).试画一条直线把除开水池外的这块地平分成两块.【例 6】 把下图四等分,要求剪成的每个小图形形状、大小都一样.除了剪正方形外,你还有别的方法吗?20604020【例 7】 下图是一个34 的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【巩固】右图是一个44的方格纸,请用六种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【例 8】下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的四部分.【巩固】下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的两部分.如果分三部分呢?【巩固】图中是由三个正三角形组成的梯形.你能把它分割成4个形状相同、面积相等的梯形吗?【例 9】下图是由五个正方形组成的图形.把它分成形状、大小都相同的四个图形,应怎样分?【例 10】已知左下图是由同样大小的5个正方形组成的.试将图形分割成4块形状、大小都一样的图形.【巩固】把右图剪成形状、大小相等的8个小图形,怎么剪?作出分出的小图形.【例 11】下图是由18个小正方形组成的图形,请你把它分成6个完全相同的图形.【例 12】 一个正三角形形状的土地上有四棵大树(如下图所示),现要把这块正三角形的土地分成和它形状相同的四小块,并且要求每块地中都要有一棵大树.应怎样分?【例 13】将下图分割成大小、形状相同的三块,使每一小块中都含有一个○.【例 14】 请把下面这个长方形沿方格线剪成形状、大小都相同的4块,使每一块内都含有“奥数读本”这四个字中的一个,该怎么剪?本读数奥【例 15】 (2008年第八届“春蕾杯”小学数学邀请赛初赛)请把下面的图形分成形状、大小都相同的4块,使每一块里面都有“春蕾杯赛”4个字.春春蕾杯赛春春蕾蕾蕾杯杯杯赛赛赛第13题【例 16】 学习与思考对小学生的发展是很重要的,学习改变命运,思考成就未来,请你将下图分成形状和大小都相同的四个图形,并且使其中每个图形都含有“学习思考”这四个字.应怎样分?学习思考学习思考学习思考考思习学【例 17】 如下图所示,请将这个正方形分切成两块,使得两块的形状、大小都相同,并且每一块都含有学而思奥数五个字.学而思奥数数奥思而学【巩固】如下图所示的正方形是由36个小正方格组成的.如图那样放着4颗黑子,4颗白子,现在要把它切割成形状、大小都相同的四块,并使每一块中都有一颗黑子和一颗白子.试问如何切割?【例 18】 如图,甲、乙是两个大小一样的正方形.要求把每一个正方形分成四块,两个正方形共分为八块,使每块的大小和形状都相同,而且都带一个○.甲 乙【例 19】 正三角形ABC 的面积是1平方米,将三条边分别向两端各延长一倍,连结六个端点得到一个六边形(如右图),求六边形的面积.CBA【巩固】正方形ABCD 的面积是1平方米,将四条边分别向两端各延长一倍,连结八个端点得到一个正方形(如图),求大正方形的面积.DCB A【巩固】正六边形ABCDEF 的面积是1平方米,将六条边分别向两端各延长一倍,交于六个点,组成如下图的图形,求这个图形的面积.【例 20】 (第九届“中环杯”小学生思维能力训练活动初赛)如图,它是由15个边长为1厘米的小正方形组成的.⑴ 请在原图中沿正方形的边线,把它划分为5个大小形状完全相同的图形,分割线用笔描粗. ⑵ 分割后每个小图形的周长是 厘米.⑶ 分割后5个小图形的周长总和与原来大图形的周长相差 厘米.第3题【例 21】 如何把下图中的三个图形分割成两个相同的部分(除了沿正方形的边进行分割外,还可沿正方形的对角线进行分割).【例 22】 (2003年《小学生数学报》数学邀请赛)如图,将一个等边三角形分割成互相不重叠的23个较小的等边三角形(这些较小的等边三角形的大小不一定都相同),请在图中画出分割的结果.【例 23】(2005年《小学生数学报》数学邀请赛)如图,将一个正方形分割成互相不重叠的21个小正方形,这些小正方形的大小不一定相同,请画图表示.板块二图形的拼合【例 24】用两块大小一样的等腰直角三角形能拼成几种常见的图形?【巩固】用3个等腰直角三角形拼图,要求边与边完全重合,能拼出几种图形?【巩固】用同样大小的四块等腰直角三角板,能否拼出一个三角形、一个正方形、一个长方形、一个梯形、一个平行四边形五种图形?若能,画出示意图.【例 25】下面哪些图形自身用4次就能拼成一个正方形?【例 26】用下面的3个图形,拼成右边的大正方形.【巩固】用“四连块”拼成一个正方形,按编号画入右边图中.④③②①【例 27】有6个完全相同的,你能将它们拼成下面的形状吗?【例 28】(保良局亚洲区城市小学数学邀请赛)三种塑料板的型号如图:(A ) (B ) (C )已有A 型板30块,要购买B 、C 两种型号板若干,拼成55 正方形10个,B 型板每块价格5元,C 型板每块价格为4元.请你考虑要各买多少块,使所花的总钱数尽可能少,那么购买B 、C 两种板要花多少元?【例 29】试用图a 中的8个相等的直角三角形,拼成图b 中的空心正八边形和图c 中的空心正八角星.板块三图形的剪拼【例 30】试将一个正方形分成相同的四块,然后用这四块分别拼成三角形、平行四边形和梯形.【例 31】把两个小正方形剪开以后拼成一个大正方形.【例 32】将下图分成4个形状、大小都相同的图形,然后拼成一个正方形.【例 33】试将一个49的长方形分割成两个大小相等、形状相同的图形,然后拼成一个正方形.【巩固】长方形的长和宽各是9厘米和4厘米,要把它剪成大小、形状都相同的两块,并使它们拼成一个正方形.【例 34】将下图分成两块,然后拼成一个正方形.【例 35】将图1分成4个形状、大小都相同的图形,然后拼成一个正方形.图1图2图3【例 36】小龙的妈妈在街上卖边角布料的地摊上,买回了一块形状是等腰直角三角形的绸布,想用它来做长方形的窗帘,为了不把布剪的太碎,裁剪的块数就要尽可能的少,请问小龙的妈妈应该怎样剪拼呢?【例 37】试将任意一个三角形分成三块,然后拼成一个长方形.【巩固】试将任意一个矩形分成两块,然后拼成一个三角形.【巩固】试将任意一个矩形分成三块,然后拼成一个三角形.【例 38】把一个正方形分成8块,再把它们拼成一个正方形和一个长方形,使这个正方形和长方形的面积相等.【例 39】有一块长8米、宽3米的长方形地毯,现在要把它移到长6米、宽4米的新房间里.请找出一种剪裁方法,使剪后的各块拼合后正好能铺满房间的地面,为了使剪后的地毯尽量完整,就要使剪裁的块数尽可能地少,应怎样剪拼?【例 40】如何把一个长20厘米、宽12厘米的长方形切成两块,拼成一个长16厘米、宽15厘米的新长方形.【例 41】长方形长24厘米,宽15厘米.把它剪成两块,使它们拼成一个长20厘米,宽18厘米的长方形.【例 42】如下图长方形的长、宽分别为120厘米、90厘米,正中央开有小长方形孔,长为80厘米,宽为10厘米,要拼成面积为100平方厘米的正方形.问如何切分,能使划分的块数最少.【例 43】把下图中两个图形中的某一个分成三块,最后都拼在一起,使它们成为一个正方形.【例 44】如下图两个正方形的边长分别是a和b(a b),将边长为a的正方形切成四块大小、形状都相同的图形,与另一个正方形拼在一起组成一个正方形.ab ba【例 45】如下图所示,这是一张十字形纸片,它是由五个全等正方形组成,试沿一直线将它剪成两片,然后再沿另一直线将其中一片剪成两片,使得最后得到的三片拼成两个并列的正方形.。

小学奥数思维训练几何图形剪拼通用版

小学奥数思维训练几何图形剪拼通用版

2014 年四年级数学思想训练:几何图形剪拼1.如图,将一个正方形纸片剪成形状、大小都同样的四块,能够怎么剪?请大家画出尽量多的方法.(假如两个图形经过旋转或翻转后重合,就以为它们的形状、大小是同样的)2 .察看图,ABCDEF 是正六边形, O 是它的中心,画出线段 PQ 后,就把正六边形ABCDEF 分红了两个形状、大小都同样的五边形.可否画出3 条线段,把正六边形分红6 个形状、大小都同样的图形?可否画出几条线段,把正六边形分红 3 个形状、大小都同样的四边形?可否画出几条线段,把正六边形分红 3 个形状、大小都同样的五边形?3.如图,在一块正方形纸片中有一个正方形的空洞.此刻要求用一条经过大正方形中心点的线段,把纸片分红面积相等的两部分,应当怎么办?4.请把图中的两个图形分别沿格线剪成四个形状、大小都同样的图形.-可编写改正 -5 .请把图沿格线分红形状、大小都同样的三部分,使得每部分都恰巧含有一个“○” .6.如图,三角形和六角星的每条边长都相等,那么用多少个三角形能够拼成六角星?请在图中表示出来.7 .图 1 是由五个同样大小的小正方形拼成的,图 2 是一个正方形和一个等腰直角三角形拼成的.请把这两个图形分别剪成四个形状、大小都同样的图形.8.如图,请把一个大正方形切割为两种面积不一样的小正方形.( 1)假如要求两种小正方形一共有 6 个,应当怎么分?( 2)假如要求两种小正方形一共有7 个,应当怎么分?试卷第 2 页,总 7 页。

9.如图,有两个面积相等的正方形纸片,此刻想把它们剪拼成一个更大的正方形,要求以下:(1)假如分别剪开这两个正方形,再拼接成一个大正方形,应当怎么办?( 2)假如只同意剪开一个正方形,再拼接成一个大正方形,应当怎么办?10 .如图是由若干个小正方形构成的图形,你能将其剪成两块,而后拼成一个正方形吗?11 .请在图中标出切割线,把下列图沿格线分红形状、大小都同样的四个部分,(假如两个图形经过旋转或翻转后重合,就以为它们的形状、大小是同样的)12.把图沿格线切割成形状、大小都同样的四个部分,请在图中画出详细的切割方法.13 .将图切割成形状、大小完整同样的四块,请起码画出 4 种不一样的分法.-可编写改正 -14.一个边长是 7厘米的正方形纸片,最多能裁出多少个长是 4 厘米,宽是 1 厘米的纸条,请绘图说明.15.将图分红大小、形状都同样的四块,使得每一块中都有 A 、 B、 C、 D .16 .将边长分别是 3 厘米和 4 厘米的两个正方形切割成四块,而后将它们拼成一个边长是 5 厘米的大正方形.(先在左下列图画出切割表示图,后在右下列图画出新拼成的正方形表示图.)17.请将图剪成三块,再拼成一个正方形.18 .将图切割成四个形状和大小都同样的部分,而后将它们拼接成一个正方形,请在原图上注明切割线,并画出正方形的拼接图.试卷第 4 页,总 7 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案
问题
如下图①,可以过AB的中点E和C点作一条直线,将长方形截成一个直角三 角形和一个直角梯形。拼法如下图②所示:
把下列各图分别剪成三块,各拼成正方形。
问题
将一个长为9,宽为4的长方形 (如下图①)分成两块,然后拼 成一个正方形。
问题
先算出所拼正方形的边长。因为拼成的正方形的面积与原长方形的面积相等。 4×9=36=6×6,所以正方形的边长是6。 正方形的边长为6,将下图①分成两块,如下图②),然后拼成正方形,如下图③所示:
答案
将长为36,宽为25的长方形分成两块, 然后拼成一个正方形。
问题
答案
如下图,用方格纸剪成面积是4平 方厘米的图形,图形形状有7种。 其中有哪种图形可以拼成面积是 16平方厘米的正方形?
问题
答案
用方格剪成面积是4的图形,其形状只有以下7种。 如果用其中的四种图形拼成面积是16的正方形, 那么这种图形的编号和的最小值是 。
问题
答案
四年级奥数- 更上层楼
巧解图形拼割问题
本讲主要讲述一些趣味性的拼图游戏以及图形面积的各种法, 如平移、割补等。要求同学们熟知一些特殊图形的面积计算公式, 如三角形、长方形、梯形的面积公式; 善于发现所求图形与基本图形之间的关系个大正方形纸?
答案
分析与解 把两张正方形纸都沿着其一条对角线剪开,然后拼成一 张大正方形纸,如下图所示:
问题
图钉钉画:把4张长方形画用图钉钉在墙上,要使每张画的4个角上 都钉上图钉,一共需要几颗图钉?
答案
四年级奥数- 基础点睛
巧解图形拼割问题
本讲主要讲述一些趣味性的拼图游戏以及图形面积的各种法, 如平移、割补等。要求同学们熟知一些特殊图形的面积计算公式, 如三角形、长方形、梯形的面积公式; 善于发现所求图形与基本图形之间的关系,熟练掌握图形的拼、割、补。
四边形ABCD是一个长方形,画一条直线把这个长方形分 成两部分,并使这两部分能够拼成一个平行四边形、三角 形或梯形。 问这条直线应该怎么画?
相关文档
最新文档