高中数学必修二直线与方程经典
高中数学必修二讲义 专题3.2 直线的方程
一、直线的点斜式方程 1.直线的点斜式方程的定义已知直线l 经过点000(,)P x y ,且斜率为k ,则直线l 的方程为 . 这个方程是由直线上一定点及其斜率确定的,因此称为直线的 ,简称 .当直线l 的倾斜角为0°时(如图1),tan 00=,即k =0,这时直线l 与x 轴平行或重合,l 的方程就是00y y -=,或0y y =.当直线l 的倾斜角为90°时(如图2),直线没有斜率,这时直线l 与y 轴平行或重合,它的方程不能用点斜式表示.因为这时l 上每一点的横坐标都等于0x ,所以它的方程是00x x -=,或0x x =.深度剖析(1)当直线的斜率存在时,才能用直线的点斜式方程.(2)当k 取任意实数时,方程00()y y k x x -=-表示过定点00(,)x y 的无数条直线.2.直线的点斜式方程的推导如图,设点(,)P x y 是直线l 上不同于点000(,)P x y 的任意一点,根据经过两点的直线的斜率公式得y ykx x-=-(1),即00()y y k x x-=-(2).注意方程(1)与方程(2)的差异:点P的坐标不满足方程(1),但满足方程(2),因此,点P不在方程(1)表示的图形上,而在方程(2)表示的图形上,方程(1)不能称为直线l的方程.上述过程可以证明直线上每个点的坐标都是方程(2)的解.对上面的过程逆推,可以证明以方程(2)的解为坐标的点都在直线l上,所以这个方程就是过点P,斜率为k的直线l的方程.二、直线的斜截式方程1.直线的斜截式方程的定义我们把直线l与y轴交点(0,)b的纵坐标b叫做直线l在y轴上的.如果直线l的斜率为k,且在y轴上的截距为b,则方程为(0)y b k x-=-,即叫做直线的,简称.当b=0时,y kx=表示过原点的直线;当k=0且b≠0时,y b=表示与x轴平行的直线;当k=0且b=0时,0y=表示与x轴重合的直线.深度剖析(1)纵截距不是距离,它是直线与y轴交点的纵坐标,所以可取一切实数,即可为正数、零或负数. 纵截距也可能不存在,比如当直线与y轴平行时.(2)由于有些直线没有斜率,即有些直线在y轴上没有截距,所以并非所有直线都可以用斜截式表示.2.直线的斜截式方程的推导已知直线l在y轴上的截距为b,斜率为k,求直线l的方程.这个问题相当于给出了直线上一点(0,)b及直线的斜率k,求直线的方程,是点斜式方程的一种特殊情况,代入点斜式方程可得(0)y b k x-=-,即y kx b =+. 三、直线的两点式方程 1.直线的两点式方程的定义已知直线l 过两点111222(,),(,)P x y P x y ,当1212,x x y y ≠≠时,直线l 的方程为.这个方程是由直线l 上的两点确定的,因此称为直线的两点式方程,简称两点式. 2.直线的两点式方程的推导已知直线l 过两点111222(,),(,)P x y P x y (其中1212,x x y y ≠≠),此时直线的位置是确定的,也就是直线的方程是可求的.当12x x ≠时,所求直线的斜率2121y y k x x -=-.任取12,P P 中的一点,例如取111(,)P x y ,由点斜式方程,得211121()y y y y x x x x --=--,当12y y ≠时,可写为112121y y x x y y x x --=--.四、直线的截距式方程1.直线的截距式方程的定义已知直线l 过点(,0)A a ,(0,)B b (0,0a b ≠≠),则由直线的两点式方程可以得到直线l 的方程为 ___________.我们把直线l 与x 轴的交点的横坐标a 叫做直线在x 轴上的_____________,此时直线在y 轴上的截距是 ___________.这个方程由直线l 在两个坐标轴上的截距a 和b 确定,因此叫做直线的截距式方程,简称截距式. 2.直线的截距式方程的推导已知直线l 与x 轴的交点为(,0)A a ,与y 轴的交点为(0,)B b ,如图,其中0,0a b ≠≠.将两点(,0)A a ,(0,)B b 的坐标代入两点式,得000y x a b a --=--,即1x ya b+=. 五、中点坐标公式若点12,P P 的坐标分别为1122(,),(,)x y x y ,且线段12P P 的中点M 的坐标为(,)x y ,则____________________x y =⎧⎨=⎩.此公式为线段12P P 的中点坐标公式. 六、直线系方程 1.过定点的直线系方程当直线过定点000(,)P x y 时,我们可设直线方程为00()y y k x x -=-.由此方程可知,k 取不同的值时,它就表示不同的直线,且每一条直线都经过定点000(,)P x y ,当k 取遍所允许的每一个值后,这个方程就表示经过定点0P 的许多直线,所以把这个方程叫做过定点0P 的直线系方程.由于过点000(,)P x y 与x 轴垂直的直线不能被00()y y k x x -=-表示,因此直线系00()y y k x x -=- (k ∈R )中没有直线0x x =. 2.平行直线系方程在斜截式方程(0)y kx b k =+≠中,若k 一定,而b 可变动,方程表示斜率为k 的一束平行线,这些直线构成的集合我们称之为平行直线系. 七、直线的一般式方程 1.直线的一般式方程在平面直角坐标系中,任何一个关于x ,y 的二元一次方程都表示一条直线.我们把关于x ,y 的二元一次方程 (其中A ,B 不同时为0)叫做直线的一般式方程,简称一般式. 2.直线的一般式与斜截式、截距式的互化 直线的一般式、斜截式、截距式如下表:一般式斜截式截距式0(,Ax By C A B ++=不同时为0) (0)A C y x B B B=--≠ 1(,,x yA B C C CA B+=--都不为0)直线的一般式方程可以表示坐标平面内任意一条直线.因此在一定条件下,直线的一般式方程可以进行如下转化:(1)当0B ≠时,0Ax By C ++=可化为A Cy x B B=--,它表示在y 轴上的截距为,斜率为 的直线.(2)当,,A B C 均不为零时,0Ax By C ++=可化为1x yC C A B+=--,它表示在x 轴上的截距为 ,在y 轴上的截距为 的直线.注意:解题时,若无特殊说明,应把求得的直线方程化为一般式. 八、直线系方程 1.平行直线系方程把平面内具有相同方向的直线的全体称为平行直线系.一般地,与直线0Ax By C ++=平行的直线系方程都可表示为 (其中m 为参数且m ≠C ),然后依据题设中另一个条件来确定m 的值. 2.垂直直线系方程一般地,与直线0Ax By C ++=垂直的直线系方程都可表示为 (其中m 为参数),然后依据题设中的另一个条件来确定m 的值。
高中数学必修2知识点总结:第三章_直线与方程2
高中数学必修2知识点总结:第三章_直线与方程2直线与方程3.1直线的倾斜角和斜率3.1 倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.2、倾斜角α的取值范围:0°≤α<180°. 当直线l与x轴垂直时, α= 90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示, k = tanα⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l与x轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在. .....4、直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式: k = y2-y1/x2-x1 3.1.2 两条直线的平行与垂直1、两条直线的平行① 若两条直线的斜率都存在,则:k1 = k2 = L1∥L2或者..L1与L2重合② 两条不重合直线平行的判定条件:⑴ 两条直线的斜率都不存在;⑵ 两条直线的斜率存在,且k1 = k2...(若已知两条直线的斜率存在且平行,则应k1 = k2 且纵截距不相等;若已知两条直线的斜率不存在且平行,则应横截距不相等)2、两条直线垂直①若两条直线的斜率都存在,则:k1 k2 = - 1 = L1 ⊥ L2 .....②两条直线垂直的判定条件:⑴ 两条直线:一条斜率不存在,另外一条k =0 ;⑵ 两条直线的斜率存在:k1 k2 = - 1 3、利用系数来判断平行与垂直★ 已知L1: A1x+B1y+C1=0 , L2 : A2x+B2y+C2=0 那么:① A1B2-A2B1=0两条直线平行或重合....两条直线相交③ A1A2 + B1B2 = 0..② A1B2-A2B1 ≠0两条直线垂直..★ 如果已知两条直线的一般式方程,则可以通过系数关系求解相应的参数的值。
高中数学必修二直线与直线方程题型归纳总结
高中数学必修二直线与直线方程题型归纳总结知识点归纳概括:1.直线的倾斜角为0°≤α<180°,斜率为k=tanα(α≠90°)。
2.已知两点求斜率公式为k=(y2-y1)/(x2-x1)(x2≠x1)。
3.两直线平行时,它们的斜率相等;垂直时,它们的斜率之积为-1.4.直线的五种方程:点斜式、斜截式、两点式、截距式、一般式。
5.两直线的交点坐标可通过联立两直线方程求得,两点间距离可用距离公式计算。
题型归纳分析:1.直线的倾斜角与斜率的计算。
2.平行和垂直直线的判断及斜率之间的关系。
3.直线的方程及其应用。
4.两直线交点坐标和两点间距离的计算。
例1:过点M(-2,a)和N(a,4)的直线的斜率等于1,则a的值为()。
A。
1B。
4C。
1或3D。
1或4解析:由题意可得,直线MN的斜率为1,即(k=(4-a)/(a+2)=1),解得a=2,故选B。
变式1:已知点A(1,3)、B(-1,3),则直线AB的倾斜角是()。
A。
60°B。
30°C。
120°D。
150°解析:由斜率公式可得,k=(3-3)/(-1-1)=0,因为斜率为0,所以直线与x轴平行,倾斜角为0°,故选A。
变式2:已知两点A(3,2)、B(-4,1),求过点C(-1.)的直线l与线段AB有公共点,求直线l的斜率k的取值范围。
解析:首先求出AB的斜率k1=(1-2)/(-4-3)=-1/7,然后求出点C到直线AB的距离d,d=|(-1-3)×(-1)+(?-2)×(-4+3)|/√((-4+3)²+(1-2)²)=|4-2×(?-1)|/√5,因为直线l与AB有公共点,所以点C到直线l的距离也为d,根据距离公式可得,|k1×(-1)+1×(?-1)-d|/√(k1²+1²)=d,化简得,|k1×(-1)+1×(?-1)|=2d√(k1²+1²),即|k1+?(?-1)|=2d√(k1²+1²),因为直线l过点C,所以直线l的斜率为k2=(?-1)/(-1-3),代入得,|k1+k2|=2d√(k1²+1²),整理得,|?-1+7k2|=2d√(50),因为|?-1+7k2|≥0,所以d≥0,又因为√(50)>7,所以|?-1+7k2|≤2d×7,即|?-1+7k2|≤14d,代入得|?-1+7(?-1)/(-1-3)|≤14d,即|-2?-6/(-4)|≤14d,解得-1/2≤d≤1/2,因为d≥0,所以1/2≥d≥0,代入得-1/2≤?-1+7k2≤1/2,解得-3/14≤k2≤1/14,故k2的取值范围为[-3/14,1/14]。
高一数学必修2第三章《直线与方程》PPT 课件
直线的交点个数与直线位置的关系
方程组:
A1x+B1y+C1=0
A2x+B2y+C2=0的解
a=1或-3
求满足下列条件的直线方程: (1)经过点P(2,-1)且与直线2x+3y+12=0平行;
2x+3y-1=0
(2)经过点Q(-1,3)且与直线x+2y-1=0垂直; 2x-y+5=0
.
(3)经过点R(-2,3)且在两坐标轴上截距相等; x+y-1=0或3x+2y=0
已知 △ ABC 的三个顶点坐标是 A ( 1 , - 1 ) , B ( - 1 , 3 ) , C ( 3 , 0 )
2.直线的斜率:
(1)定义:倾斜角不是90°的直线它的倾 斜角α的正切值叫做这条直线的斜率,常 用k表示,即k=tanα.
α=90°的直线斜率不存在;
(2)经过两点P(x1,y1),Q(x2,y2)的直
线的斜率公式
k
y2
y1 (其中x1≠x2).
x2 x1
k=tanα,
当0<α< π 2
时,k>0;
当 π <α<π时,k <0; 2
当α=0时,k=0;
牢记特殊角的斜率 (正切)值!
当α= π 时,k不存在. 2
B
如图,已知A(3,2),B(-4,1),C(0,-1),求直线 AB,BC,CA的斜率,并判断这些直线的倾斜角是锐角 还是钝角.
高一数学人必修二课件第三章直线的两点式方程直线的一般式方程
03
直线上任意两点的中点坐标满
足该直线的方程。
04
两条平行直线的斜率相等,即
$k_1 = k_2$。
05
两条垂直直线的斜率互为相反
数的倒数,即 $k_1 cdot k_2
= -1$。
06
02
两点式方程
两点式方程推导
通过已知两点坐标 $(x_1, y_1)$ 和 $(x_2, y_2)$,推导直 线方程。
一般式方程与截距关系
截距定义
直线与坐标轴的交点到原点的距离称为该直线的截距。
一般式方程与截距的关系
直线的一般式方程可以直接反映出该直线在坐标轴上的截距。通过一般式方程 可以求出直线在x轴和y轴上的截距。
04
直线方程求解方法
代入法求解直线方程
已知直线上一点$P(x_0, y_0)$和斜率$k$,则直线方程可表示为$y - y_0 = k(x x_0)$。
直线在坐标轴上的截距可以通 过直线方程求出。
一般式方程形式
综合斜率和截距公式,可以得 到直线的一般式方程。
一般式方程应用
求解直线交点
求解点到直线的距离
两条直线的交点坐标可以通过联立两 条直线的一般式方程求解。
利用点到直线距离公式和直线的一般 式方程,可以求出点到直线的距离。
判断点与直线的位置关系
通过代入点的坐标到直线的一般式方 程中,可以判断点是否在直线上或者 直线的哪一侧。
两点式
已知直线上两点 $(x_1, y_1)$ 和 $(x_2, y_2)$,则直 线可表示 $frac{y y_1}{y_2 - y_1} = frac{x - x_1}{x_2 x_1}$。
截距式
$frac{x}{a} + frac{y}{b} = 1$,其 中 $a$ 是直线在 $x$ 轴上的截距, $b$ 是直线在 $y$ 轴上的截距。
高中数学必修2第三章直线与方程总结
第三章 直线与方程 知识点 总结代县中学高二数学组一、概念理解:1、倾斜角:①找α:直线向上方向、x 轴正方向;②平行:α=0°;③范围:0°≤α<180° 。
2、斜率:①找k :k=tan α (α≠90°);②垂直:斜率k 不存在;③范围: 斜率 k ∈ R 。
当 α=0°时,k=0当0<α<90°时,k.>0当α=90°时,k 不存在当90°<α<180°,k<03、斜率与坐标:12122121tan x x y y x x y y k --=--==α ①构造直角三角形(数形结合);②斜率k 值于两点先后顺序无关;③注意下标的位置对应。
4、直线与直线的位置关系:判断方法一:222111:,:b x k y l b x k y l +=+=①平行:<1> 斜率都存在时:2121,b b k k ≠=;<2> 斜率都不存在时:两直线都与x 轴垂直②垂直:<1> 0211=⊥k k x l 不存在,则轴,即;<2> 斜率都存在时:121-=•k k 。
③重合: 斜率都存在时:2121,b b k k ==;④相交:斜率21k k ≠(前提是斜率都存在)判断方法二:11112222:0,:0l A x B y C l A x B y C ++=++=,①1l ∥2l ⇔ 122112211221A B A B B C B C =≠≠且或A C A C ,当(A ,B ,C 不为0时)212121C C B B A A ≠= ②1l ⊥2l ⇔12120A A B B +=③重合:A 1B 2=A 2B 1且B 1C 2=B 2C 1或A 1C 2=A 2C 1,212121C C B B A A == ④相交:A 1B 2≠A 2B 1 ,2121B B A A ≠ 二、方程与公式:1、直线的五个方程:①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可; ④截距式:1=+by a x 将已知截距坐标),0(),0,(b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0在距离公式当中会经常用到直线的“一般式方程”。
高二数学直线与方程知识点
高二数学直线与方程知识点直线和方程是高中数学中常见的知识点,对于学习数学的同学来说是非常重要的基础内容。
本文将对高二数学中与直线和方程相关的知识点进行详细介绍。
一、直线的一般方程在平面直角坐标系中,一条直线可以由其一般方程表示,即Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0。
这个方程表示了所有直线上的点的集合。
二、直线的斜截式方程直线的斜截式方程表示为y = kx + b,其中k为直线的斜率,b 为直线与y轴的截距。
斜截式方程直观地表示了直线与y轴交点的位置以及直线的斜率。
三、直线的点斜式方程直线的点斜式方程表示为y - y₁ = k(x - x₁),其中(x₁, y₁)是直线上的一点,k为直线的斜率。
点斜式方程表示了直线上两点之间的关系,通过已知一点和斜率可以确定一条直线。
四、直线的截距式方程直线的截距式方程表示为x/a + y/b = 1,其中a、b分别为直线与x轴和y轴的截距。
截距式方程可以快速确定直线与坐标轴的交点位置。
五、直线的平行和垂直关系两条直线平行的充要条件是它们的斜率相等,而两条直线垂直的充要条件是它们的斜率的乘积为-1。
平行和垂直关系是直线之间的重要性质,可以通过斜率的性质进行判断和证明。
六、直线与线段的位置关系直线与线段的位置关系可以分为三种情况:相交,平行和重合。
通过判断直线与线段的交点个数和位置可以确定其位置关系。
七、直线的距离公式直线与平面上任意一点的距离可以通过点到直线的距离公式计算。
设直线的一般方程为Ax + By + C = 0,点P的坐标为(x₁, y₁),则点P到直线的距离为d = |Ax₁ + By₁ + C| / √(A² + B²)。
八、方程的根与解法在解方程时,我们常用到的方法有因式分解法、配方法、公式法等。
根据方程的形式选择合适的解法,通过化简方程逐步求解来确定方程的根。
九、一次函数方程一次函数方程表示为y = kx + b,其中k为斜率,b为截距。
高中数学必修二 直线与方程必考 知识点总结
第三章 直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用 当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; 当直线l 与x 轴垂直时, α= 90°, k 不存在.当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0<k ; 当 90=α时,k 不存在。
过两点的直线的斜率公式:)(211212x x x x y y k ≠--= ( P1(x1,y1),P2(x2,y2),x1≠x2)注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。
注意:○1各式的适用范围 ○2特殊的方程如:(6)两直线平行与垂直注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(7)两条直线的交点0:1111=++C y B x A l 0:2222=++C y B x A l 相交交点坐标即方程组⎩⎨⎧=++=++00222111C y B x A C y B x A 的一组解。
方程组无解21//l l ⇔ ; 方程组有无数解⇔1l 与2l 重合(8设1122(,),A x y B x y ,()是平面直角坐标系中的两个点,(9一点()00,y x P 到直线0:1=++C By Ax l 的距离(10已知两条平行线直线1l 和2l 的一般式方程为1l :01=++C By Ax ,2l :02=++C By Ax ,则1l 与2l 第四章 圆与方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
高中数学人必修二课件直线的两点式方程
自由落体运动: 通过直线方程描 述体下落的速
度和时间关系
抛体运动:通过 直线方程描述物 体抛出后的轨迹
和落地时间
直线运动:通过 直线方程描述物 体在平面上的直
线运动规律
光线传播:通过 直线方程描述光 线在空间中的传 播路径和折射规
斜率和截距。
添加标题
点斜式方程与一 般式方程的转换:
可以通过解方程 组将点斜式方程 转换为一般式方 程,也可以通过 代入法将一般式 方程转换为点斜
式方程。
添加标题
公式:y = kx + b,其中k 是斜率,b是截距
定义:斜截式方程是直线方 程的一种形式,表示直线在 y轴上的截距和斜率
特点:斜截式方程可以表示 任何一条直线,但需要知道
点斜式方程:y-y1=k(xx1)
斜截式方程:y=kx+b
一般式方程: Ax+By+C=0
截距式方程:x/a+y/b=1
两点式方程:(y-y1)/(xx1)=(y2-y1)/(x2-x1)
物理问题:解 决力学、光学、 电磁学等问题
代数问题:解决 代数方程、不等
式等问题
几何问题:解决 平面几何、立体
特点:一般式方程可以表示任意一条直线,包括垂直于坐标轴的直线
应用:一般式方程在解决实际问题中,如求直线的交点、距离等问题时, 具有重要作用 与其他形式方程的关系:一般式方程可以转化为其他形式方程,如点斜式、 斜截式等,反之亦然
05
直线方程在解析几何中的应用:求解直线的斜率、截距等参数
直线方程在解析几何中的应用:求解直线与直线、直线与圆、直线与椭圆等几何图形的 位置关系 直线方程在解析几何中的应用:求解直线与平面、直线与球等几何图形的位置关系
数学必修二直线方程知识点
数学必修二直线方程知识点
1. 直线的一般方程:一般地,直线的一般方程可表示为Ax + By + C = 0,其中A、B
和C为实数且A和B不同时为0。
2. 斜率截距方程:斜率截距方程是直线的另一种常用表示方法,可表示为y = mx + b,其中m为直线的斜率,b为直线与y轴的截距。
3. 斜率公式:直线的斜率可通过两点的坐标(x1, y1)和(x2, y2)计算,斜率m = (y2 - y1)/(x2 - x1)。
4. 点斜式方程:点斜式方程是直线的一种特殊表示方法,可表示为y - y1 = m(x - x1),其中(x1, y1)为直线上的一点,m为直线的斜率。
5. 两直线的关系:两条直线可以相交、平行或重合。
两条直线平行的条件是它们的斜
率相等,两条直线重合的条件是它们的斜率相等且有一个公共点。
6. 垂直平分线:两条直线相互垂直的条件是它们的斜率的乘积为-1。
7. 两点间的距离公式:可以使用两点的坐标(x1, y1)和(x2, y2)来计算两点间的距离d = √((x2 - x1)^2 + (y2 - y1)^2)。
8. 角的平分线:直线和另一条直线的夹角的平分线将夹角分成两个相等的角。
9. 线段的中点:直线的中点是指直线上且离两个端点等距离的点。
10. 线段的延长线:直线上的延长线是指直线上的一条线段,其中一端点在直线上,另一端点在直线的外部。
这些是数学必修二中关于直线方程的一些重要知识点。
人教版数学必修2直线与方程知识点专题讲义_
人教版数学必修2直线与方程知识点专题讲义不存在,另一条直线的斜率为0时,12l l 与互相垂直.一般式:已知 1111:0l A x B y C++=, 2222:0lA xB yC ++=,则212121=+⇔⊥B B A A l l4、线段的中点坐标公式若两点),(),,(222111y x P y x P ,且线段21,P P 的中点M 的坐标为),(y x ,则⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x5、 直线系方程 (1)过定点的直线系①斜率为k 且过定点),(0y x 的直线系方程为)(0x x k y y -=-②过两条直线0:1111=++Cy B x A l , 0:2222=++C y B x A l的交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ(λ为参数),其中直线l 2不在直线系中 (2)平行垂直直线系 ①平行于已知直线0Ax By C ++=的直线系10Ax By C ++=②垂直于已知直线0Ax By C ++=的直线系10Bx Ay C -+=6、两条直线的交点设两条直线的方程是:1111=++C y B x A l ,:2222=++C y B x A l 两条直线的交点坐标就是方程组⎩⎨⎧=++=++00222111C y B x A C y B x A 的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立. 7、几种距离 (1)两点间的距离平面上的两点),(),,(222111y x P y x P 间的距离公式21221221)()(y y x x P P -+-=特别地,原点)0,0(O 与任一点),(y x P 的距离22y x OP +=(2)点到直线的距离点),(0y x P 到直线0:=++C By Ax l 的距离2200BA C By Ax d +++=(3)两条平行线间的距离 两条平行线0:11=++CBy Ax l , 0:22=++C By Ax l间的距离2212BA C C d +-=注:①求点到直线的距离时,直线方程要化为一般式;②求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算.8、有关对称问题 (1)中心对称①若点),(11y x M 及),(22y x N 关于),(b a P 对称,则由中点坐标公式得⎩⎨⎧-=-=1122y b y x a x②直线关于点的对称,其主要方法是:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用21//l l ,由点斜式得到所求直线方程. (2)轴对称 ①点关于直线的对称若两点),(111y x P 与),(222y x P 关于直线0:=++C By Ax l 对称,则线段21P P 的中点在对称轴l 上,而且连接21P P 的直线垂直于对称轴l 上,由方程组⎪⎪⎩⎪⎪⎨⎧-=-•--=++++1)(0)2()2(12122121B A x x y y C y y B x x A ⎩⎨⎧==⇒22y x ?可得到点1P 关于l 对称的点2P 的坐标),(22y x (其中21,0x x A ≠≠)②直线关于直线的对称此类问题一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.注:①曲线、直线关于一直线b x y +±=对称的解法:y 换x ,x 换y . 例:曲线0),(=y x f 关于直线2-=x y 对称曲线方程是0)2,2(=-+x y f②曲线0),(:=y x f C 关于点),(b a 的对称曲线方程是0)2,2(=--y b x a f9、直线l 上一动点P 到两个定点A 、B 的距离“最值问题”:(1)在直线l 上求一点P ,使PB PA +取得最小值, ① 若点B A 、位于直线l 的同侧时,作点A (或点B)关于l的对称点/A 或/B ,.)(//即为所求点,则点于交或连接P P l AB B A② 若点B A 、位于直线的异侧时,连接AB 交于l点P ,则P 为所求点.可简记为“同侧对称异侧连”.即两点位于直线的同侧时,作其中一个点的对称点;两点位于直线的异侧时,直接连接两点即可.(2)在直线l 上求一点P 使PB PA -取得最大值, 方法与(1)恰好相反,即“异侧对称同侧连”① 若点B A 、位于直线l 的同侧时,连接AB 交于l点P ,则P 为所求点.② 若点B A 、位于直线的异侧时,作点A (或点B )关于l的对称点/A 或/B ,.)(//即为所求点,则点于交或连接P P l AB B A(3) 22PBPA+的最值:函数思想“转换成一元二次函数,找对称轴”. 10、直线过定点问题(1)含有一个未知参数,12)1(-+-=a x a y 1)2(+-+=⇒x x a y(1)令202-=⇒=+x x ,将3)1(2=-=y x 式,得代入,从而该直线过定点)3,2(-(2)含有两个未知参数0)2()3(=-++-n y n m x n m 0)12()3(=-+-++⇒y x n y x m令⎩⎨⎧-+-=+1203y x y x⎪⎪⎩⎪⎪⎨⎧=-=⇒7371y x ,从而该直线必过定点11 )73,71( .。
数学必修二直线方程知识点
数学必修二直线方程知识点假如想要提高数学成果,可以在做数学题的过程中多商量规律。
不要总是硬套公式,试着进行思维的转换,这样有助于数学思维的开发。
下面是我整理的数学必修二直线方程学问点,仅供参考希望能够关怀到大家。
数学必修二直线方程学问点1直线方程形式一般式:Ax+By+C=0(AB≠0)斜截式:y=kx+b(k是斜率b是x轴截距)点斜式:y-y1=k(x-x1)(直线过定点(x1,y1))两点式:(y-y1)/(x-x1)=(y-y2)/(x-x2)(直线过定点(x1,y1),(x2,y2))截距式:x/a+y/b=1(a是x轴截距,b是y轴截距)做题过程中,点斜式和斜截式用的最多(两种合占90%以上),一般式属于中间过渡形态。
在与圆及圆锥曲线结合的过程中,还要用到点到直线距离公式。
2直线方程的局限性各种不同形式的直线方程的局限性:(1)点斜式和斜截式都不能表示斜率不存在的直线;(2)两点式不能表示与坐标轴平行的直线;(3)截距式不能表示与坐标轴平行或过原点的直线;(4)直线方程的一般式中系数A、B不能同时为零。
数学集合间的基本关系1.“包含”关系—子集留意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”即:①任何一个集合是它本身的子集。
AíA②真子集:假如AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)③假如AíB,BíC,那么AíC④假如AíB同时BíA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集个数:有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集学数学的好方法第一,兴趣。
必修2-直线与方程知识点归纳总结
第三章 直线与方程直线的斜率①直线的斜率就是直线倾斜角的正切值,而倾斜角为090的直线斜率不存在。
②经过两点),(),,(222111y x P y x P (21x x ≠)的直线的斜率公式是1212x x y y k --=(21x x ≠) ③每条直线都有倾斜角,但并不是每条直线都有斜率。
2、两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k ⇔=。
特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行。
(2)两条直线垂直如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ⊥⇔=-注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。
如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直。
二、直线的方程1、直线方程的几种形式 名称方程的形式已知条件局限性点斜式 )(11x x k y y -=- ),(11y x 为直线上一定点,k 为斜率不包括垂直于x 轴的直线斜截式 b kx y +=k 为斜率,b 是直线在y 轴上的截距不包括垂直于x 轴的直线两点式121121x x x x y y y y --=--),(2121y y x x ≠≠其中),(),,(2211y x y x 是直线上两定点不包括垂直于x 轴和y 轴的直线截距式 1=+by a xa 是直线在x 轴上的非零截距,b 是直线在y 轴上的非零截距不包括垂直于x 轴和y 轴或过原点的直线一般式 0=++C By Ax )不同时为其中0,(B A A ,B ,C 为系数无限制,可表示任何位置的直线注:过两点),(),,(222111y x P y x P 的直线是否一定可用两点式方程表示?(不一定。
高中数学必修二-直线的方程
直线的方程知识集结知识元直线的点斜式方程知识讲解1.定义:方程由直线上一定点及其斜率决定,我们把叫做直线的点斜式方程,简称点斜式.2.注意:(1).点斜式方程是由直线上一点和斜率确定的,点斜式的前提是直线的斜率存在.点斜式不能表示平行于y轴的直线,即斜率不存在的直线;(2).当直线的倾斜角为0°时,直线方程为;(3).当直线倾斜角为90°时,直线没有斜率,它的方程不能用点斜式表示.这时直线方程为:.(4).表示直线去掉一个点;表示一条直线.例题精讲直线的点斜式方程例1.'(1)经过点C(-1,-1),与x轴平行;(2)经过点D(1,1),与x轴垂直.'例2.经过点(-3,2),倾斜角为60°的直线方程是()A.y+2=(x-3)B.y-2=(x+3)C.y-2=(x+3)D.y+2=(x-3)例3.已知点A(1,1),B(3,5),若点C(―2,y)在直线AB上,则y的值是()A.―5B.25C.5D.―2.5例4.斜率与直线的斜率相等,且过点(-4,3)的直线的点斜式方程是________.直线的斜截式方程知识讲解1.定义:如果直线的斜率为,且与轴的交点为,根据直线的点斜式方程可得,即.我们把直线与轴的交点的纵坐标叫做直线在轴上的截距,方程由直线的斜率与它在轴上的截距确定,所以方程叫做直线的斜截式方程,简称斜截式.2.注意:(1).b为直线在y轴上截距,截距可以取一切实数,即可以为正数、零、负数;距离必须大于或等于零;(2).斜截式方程可由过点(0,b)的点斜式方程得到;(3).当时,斜截式方程就是一次函数的表示形式.(4).斜截式的前提是直线的斜率存在.斜截式不能表示平行于y轴的直线,即斜率不存在的直线.(5).斜截式是点斜式的特殊情况,在方程中,是直线的斜率,是直线在轴上的截距.例题精讲直线的斜截式方程例1.'已知直线l的斜率为2,在y轴上的截距为m.(1)求直线l的方程;(2)当m为何值时,直线通过(1,1)点.'例2.'写出下列直线的斜截式方程:(1)斜率是3,在y轴上的截距是-3;(2)倾斜角是60°,在y轴上的截距是5;'例3.倾斜角为135°,在y 轴上的截距为-1的直线方程为()A .x -y +1=0B .x -y -1=0C .x +y -1=0D .x +y +1=0例4.在y 轴上的截距为-6,且与y 轴相交成30°角的直线方程是________.直线的两点式方程知识讲解1.定义:经过两点(其中)的直线方程为,称这个方程为直线的两点式方程,简称两点式.2.注意:(1).这个方程由直线上两点确定;(2).当直线没有斜率()或斜率为时,不能用两点式求出它的方程.(3).直线方程的表示与选择的顺序无关.(4).在应用两点式求直线方程时,往往把分式形式通过交叉相乘转化为整式形式,从而得到的方程中,包含了x 1=x 2或y 1=y 2的情况,但此转化过程不是一个等价的转化过程,不能因此忽略由x 1、x 2和y 1、y 2是否相等引起的讨论.要避免讨论,可直接假设两点式的整式形式.例题精讲直线的两点式方程例1.'三角形的顶点是A(-5,0)、B(3,-3)、C(0,2).求这个三角形AB和AC所在直线的方程.'例2.'已知三角形的三个顶点A(-4,0)、B(0,-3)、C(-2,1),求BC边上中线所在直线的方程.'例3.'求经过点M(-1,-2)和N(-1,3)的直线方程.'直线的截距式方程知识讲解1.定义:若直线与x轴的交点为A(a,0),与y轴的交点为B(0,b),其中,则过AB两点的直线方程为,这个方程称为直线的截距式方程.a叫做直线在x轴上的截距,b叫做直线在y轴上的截距.2.注意:(1).截距式的条件是,即截距式方程不能表示过原点的直线以及不能表示与坐标轴平行的直线.(2).求直线在坐标轴上的截距的方法:令x=0得直线在y轴上的截距;令y=0得直线在x轴上的截距.(3).截距相等问题中,勿忽略a=b=0即直线过原点时的情况.例题精讲直线的截距式方程例1.'直线l经过点P(2,3)且在x,y轴上的截距相等,求该直线的方程.'例2.若直线的方程是,则它的截距式方程为;直线与轴交点为;与轴的交点为.例3.直线在轴上的截距是()A.B.C.D..直线的一般式方程知识讲解1.定义:关于x和y的一次方程都表示一条直线.我们把方程写为Ax+By+C=0,这个方程(其中A、B不全为零)叫做直线方程的一般式.2.注意:(1).A、B不全为零才能表示一条直线,若A、B全为零则不能表示一条直线.当B≠0时,方程可变形为,它表示过点,斜率为的直线.当B=0,A≠0时,方程可变形为Ax+C=0,即,它表示一条与x轴垂直的直线.由上可知,关于x、y的二元一次方程,它都表示一条直线.(2).在平面直角坐标系中,一个关于x、y的二元一次方程对应着唯一的一条直线,反过来,一条直线可以对应着无数个关于x、y的一次方程(如斜率为2,在y轴上的截距为1的直线,其方程可以是2x―y+1=0,也可以是,还可以是4x―2y+2=0等.)例题精讲直线的一般式方程例1.直线Ax+By+C=0,当A>0,B<0,C>0时,必经过的象限是()A.第一、二、三象限B.第二、三、四象限C.第一、三、四象限D.第一、二、四象限例2.在x轴和y轴上的截距分别是―2,3的直线方程是()A.2x―3y―6=0B.3x―2y―6=0C.3x―2y+6=0D.2x―3y+6=0例3.直线方程(3a+2)x+y+8=0,若直线不过第二象限,则a的取值范围是()A.(-∞,-)B.C.(,+∞)D.[,+∞)例4.若三条直线4x+y+4=0,mx+y+1=0,x―y+1=0不能围成三角形,则实数m取值范围是________.备选题库知识讲解本题库作为知识点“直线的方程”的题目补充.例题精讲备选题库例1.过(1,2),(5,3)的直线方程是()A.=B.=C.=D.=例2.与直线3x-2y=0平行,且过点(4,-3)的直线方程为()A.y+3=(x-4)B.y-3=(x+4)C.y+3=(x-4)D.y-3=(x+4)例3.已知直线x+ay+4=0与直线ax+4y-8=0互相平行,则实数a的值为()A.0B.2C.-2D.±2例4.过点(-1,-3)且垂直于直线x-2y+3=0的直线方程为()A.2x+y-1=0B.x-2y-5=0C.x-2y+7=0D.2x+y+5=0当堂练习单选题练习1.已知直线l1:mx-y+3=0与l2:y=-垂直,则m=()A.B.C.-2D.2练习2.如果平面直角坐标系内的两点A(a-1,a+1),B(a,a)关于直线l对称,那么直线l的方程为()A.x-y+1=0B.x+y+1=0C.x-y-1=0D.x+y-1=0练习3.已知△ABC的顶点A(1,2),AB边上的中线CM所在的直线方程为x+2y-1=0,∠ABC的平分线BH所在直线方程为y=x,则直线BC的方程为()A.2x-3y-1=0B.2x+3y-1=0C.3x-2y-1=0D.3x-2y+1=0练习4.一条光线从点(-2,3)射出,经x轴反射后与圆(x-3)2+(y-2)2=1相切,则反射光线所在直线的斜率为()A.或B.或C.或D.或练习5.已知点A(-2,0),B(2,0),C(1,1),D(-1,1),直线y=kx+m(k>0)将四边形ABCD分割为面积相等的两部分,则m的取值范围是()A.(0,1)B.C.D.练习6.已知A(3,0),B(0,3),从点P(0,2)射出的光线经x轴反射到时直线AB上,又经过直线AB反射回到时P点,则光线所经过的路程为()A.B.6C.D.练习7.如果平面直角坐标系内的两点A(a-1,a+1),B(a,a)关于直线l对称,那么直线l的方程为()A.x-y+1=0B.x+y+1=0C.x-y-1=0D.x+y-1=0填空题练习1.设直线l:x+2y-2=0与x轴、y轴分别交于A,B两点,已知点C的坐标是(3,0),那么∠CAB的正切值是__;过C点且垂直于直线l的方程是__________.练习2.点A(3,-4)与点B(-1,8)关于直线l对称,则直线l的方程为__________.练习3.若直线ax+2y+6=0和直线x+a(a+1)y+a2-1=0垂直,则a=___.练习4.如果平面直角坐标系中的两点A(a-1,a+1),B(a,a)关于直线L对称,那么直线L的方程为_________.练习5.一条光线沿直线2x-y+2=0入射到直线x+y-5=0后反射则反射光线所在直线方程为__________.解答题练习1.'已知△ABC的三个顶点坐标为A(-3,1),B(3,-3),C(1,7)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修2知识点——直线与方程一、直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即0tan (90)k αα=≠。
斜率反映直线与x 轴的倾斜程度。
当[) 90,0∈α时,0≥k ; 当() 180,90∈时,0<k ; 当 90=α时,k 不存在。
②过两点的直线的斜率公式:)(211212x x x x y y k ≠--= 注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
例.如右图,直线l 1的倾斜角α=30°,直线l 1⊥l 2,求直线l 1和解:k 1=tan30°=33 ∵l 1⊥l 2 ∴ k 1·k 2 =—1 ∴k 2 =—3例:直线053=-+y x 的倾斜角是( ) A.120° B.150° C.60°(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。
②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)即不包含于平行于x 轴或y 直线两点轴的直线,直线两点()11,y x ,()22,y x ,当写成211211()()()()x x y y y y x x --=--的形式时,方程可以表示任何一条直线。
④截矩式:1x y a b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。
对于平行于坐标轴或者过原点的方程不能用截距式。
⑤一般式:0=++C By Ax (A ,B 不全为0)注意:○1各式的适用范围 ○2特殊的方程如: 平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数); 例题:根据下列各条件写出直线的方程,并且化成一般式:(1)斜率是12-,经过点A(8,—2); . (2)经过点B(4,2),平行于x 轴; .(3)在x 轴和y 轴上的截距分别是3,32-; . 4)经过两点P 1(3,—2)、P 2(5,—4); .例1:直线l 的方程为A x +B y +C =0,若直线经过原点且位于第二、四象限,则( ) A .C =0,B>0 B .C =0,B>0,A>0C .C =0,AB<0D .C =0,AB>0例2:直线l 的方程为A x —B y —C =0,若A 、B 、C 满足AB.>0且BC<0,则l 直线不经的象限是( )A .第一B .第二C .第三D .第四(4)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)(二)过定点的直线系(ⅰ)斜率为k 的直线系:()00y y k x x -=-,直线过定点()00,y x ; (ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。
(三)垂直直线系 垂直于已知直线0Ax By C++=(,A B 是不全为0的常数)的直线系: 0Bx Ay C '-+=例1:直线l :(2m+1)x +(m+1)y —7m —4=0所经过的定点为 。
(m ∈R)(5)两直线平行与垂直当111:b x k y l +=,222:b x k y l +=时,(1)212121,//b b k k l l ≠=⇔;(2)12121-=⇔⊥k k l l 注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(3)1212,k k b b ==⇔1l 与2l 重合;(4)12k k ≠⇔1l 与2l 相交。
另外一种形式:一般的,当1111110:0(,)l A x B y C A B ++=不全为, 与2222220:0(,)l A x B y C A B ++=不全为时,(1)122112210//120A B A B l l B C B C -=-≠⎧⇔⎨⎩,或者1221122100A B A B AC A C -=⎧⎨-≠⎩。
(2)1212120l l A A B B ⊥⇔+=。
(3)1l 与2l 重合⇔1221A B A B -=1221B C B C -=1221AC A C -=0。
(4)1l 与2l 相交⇔12210A B A B -≠。
例.设直线 l 1经过点A(m ,1)、B(—3,4),直线 l 2经过点C(1,m )、D(—1,m +1), 当(1) l 1/ / l 2 (2) l 1⊥l 1时分别求出m 的值例1.已知两直线l 1: x +(1+m ) y =2—m 和l 2:2mx +4y +16=0,m 为何值时l 1与l 2①相交②平行例2. 已知两直线l 1:(3a +2) x +(1—4a ) y +8=0和l 2:(5a —2)x +(a +4)y —7=0垂直,求a 值(6)两条直线的交点0:1111=++C y B x A l 0:2222=++C y B x A l 相交交点坐标即方程组⎩⎨⎧=++=++00222111C y B x A C y B x A 的一组解。
方程组无解21//l l ⇔ ; 方程组有无数解⇔1l 与2l 重合例3.求两条垂直直线l 1:2x + y +2=0和l 2: mx +4y —2=0的交点坐标例4. 已知直线l 的方程为121+-=x y , (1)求过点(2,3)且垂直于l 的直线方程;(2)求过点(2,3)且平行于l 的直线方程。
例2:求满足下列条件的直线方程(1) 经过点P(2,3)及两条直线l 1: x +3y —4=0和l 2:5x +2y+1=0的交点Q ;(2) 经过两条直线l 1: 2x +y —8=0和l 2:x —2y+1=0的交点且与直线4x —3y —7=0平行;(3) 经过两条直线l 1: 2x —3y +10=0和l 2:3x +4y —2=0的交点且与直线3x —2y +4=0垂直;(7)两点间距离公式:设1122(,),A x y B x y ,()是平面直角坐标系中的两个点,则||AB =(8)点到直线距离公式:一点)00,y x P 到直线1:0l Ax By C ++=的距离2200B A CBy Ax d +++=(9)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解。
对于0:1111=++C y B x A l 0:2222=++C y B x A l 来说:d =。
例1:求平行线l 1:3x + 4y —12=0与l 2: ax +8y +11=0之间的距离。
例2:已知平行线l 1:3x +2y —6=0与l 2: 6x +4y —3=0,求与它们距离相等的平行线方程。
(10) 对称问题1) 中心对称 A 、若点11(,)M x y 及(,)N x y 关于(,)P a b 对称,则由中点坐标公式得112,2.x a x y b y =-⎧⎨=-⎩ B 、直线关于点的对称,主要方法是:在已知直线上取两点,利用中点坐标公式求出它们对于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用12//l l ,由点斜式得出所求直线的方程。
2) 轴对称 A 、点关于直线的对称: 若111(,)P x y 与222(,)P x y 关于直线:0l Ax By C ++=对称,则线段12P P 的中点在对称轴l 上,而且连结12P P 的直线垂直于对称轴l ,由方程组121212120,22,x x y y A B C y y B x x A++⎧⋅+⋅+=⎪⎪⎨-⎪=-⎪⎩可得到点1P 关于l 对称的点2P 的坐标22(,)x y (其中120,)A x x ≠≠。
B 、直线关于直线的对称:此类问题一般转化为关于直线对称的点来解决,若已知直线1l 与对称轴l 相交,则交点必在与1l 对称的直线2l 上,然后再求出1l 上任一个已知点1P 关于对称轴l 对称的点2P ,那么经过交点及点2P 的直线就是2l ;若已知直线1l 与对称轴l 平行,则与1l 对称的直线和1l 到直线l 的距离相等,由平行直线系和两条平行线间的距离,即可求出1l 的对称直线。
例1:已知直线l :2x —3y +1=0和点P(—1,—2).(1) 分别求:点P(—1,—2)关于x 轴、y 轴、直线y=x 、原点O 的对称点Q 坐标(2) 分别求:直线l :2x —3y +1=0关于x 轴、y 轴、直线y=x 、原点O 的对称的直线方程.(3) 求直线l 关于点P(—1,—2)对称的直线方程。
(4) 求P(—1,—2)关于直线l 轴对称的直线方程。
例2:点P(—1,—2)关于直线l : x +y —2=0的对称点的坐标为 。
11. 中点坐标公式:已知两点P 1 (x 1,y 1)、P 1(x 1,y 1),则线段的中点M 坐标为(221x x +,221y y +) 例. 已知点A(7,—4)、B(—5,6),求线段AB 的垂直平分线的方程。