柯西不等式的应用技巧修订稿

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

柯西不等式的应用技巧 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

柯西不等式的应用技巧及练习

柯西不等式的一般形式是:设12

12,,,R n n a a a b b b ∈,则 222222212121122()()()n n n n a a a b b b a b a b a b ++++++≥+++ 当且仅当1212n n a a a b b b ===或120n b b b ====时等号成立.

其结构对称,形式优美,应用极为广泛,特别在证明不等式和求函数的最值中

作用极大.应用时往往需要适当的变形:添、拆、分解、组合、配凑、变量代

换等,方法灵活,技巧性强.

一、巧配数组

观察柯西不等式,可以发现其特点是:不等式左边是两个因式的积,其中

每一个因式都是项的平方和,右边是左边中对立的两项乘积之和的平方,因

此,构造两组数:1212,,n n a a a b b b 和,便是应用柯西不等式的一个主要技巧.

例1 已知,,225x y z x y z ∈-+=R,,且求222(5)(1)(3)x y z ++-++的最小值.

例2 设

,,R x y z ∈

,求证:22

-≤≤. 二、巧拆常数

运用柯西不等式的关键是找出相应的两组数,当这两组数不太容易找到

时,常常需要变形,拆项就是一个变形技巧.

例3 设a 、b 、c 为正数且各不相等,

求证:c

b a a

c c b b a ++>+++++9222 .

有些问题本身不具备运用柯西不等式的条件,但是只要我们改变一下式子

的形式结构,认清其内在的结构特征,就可达到运用柯西不等式的目的.

例6 a 、b 为非负数,a +b =1,+∈R x x 21,

求证:212121))((x x ax bx bx ax ≥++

例7 设,121+>>>>n n a a a a 求证:

011111

113221>-+-++-+-++a a a a a a a a n n n

练习题

1. (2009年浙江省高考自选模块数学试题)已知实数z y x ,,满足,12=++z y x 设

.2222z y x t ++=

(1) 求t 的最小值;

(2) 当2

1=t 时,求z 的取值范围

2 (2010年浙江省第二次五校联考)已知,,a b c R +∈,1a b c ++=。

(1) 求()222149a b c +++的最小值;

(2)

2≥

3 (2010年杭二中高三年级第三次月考)已知正数,,a b c 满足:1=++ca bc ab ,

求的最大值.

4 (浙江省镇海中学高考模拟试题) 已知,,x y z 是正数,且121,x y += 求22122x x y y

+++的最小值;

5 (金华十校2009年高考模拟考试)若+∈R c b a ,, , 求证:1222≥+++++b

a c a c

b

c b a

6 (2010年宁波市高三模拟测试卷)已知,,a b c 为正实数,且3a b c ++=. 证明:2222()()()4()3

a c

b a

c b a c a b c ---++≥-,并求等号成立时,,a b c 的值.

7 (浙江省镇海中学高考模拟试题)

若0,,1,x y z <<且1xy yz zx ++=

+≥。

8(2010年金华十校高考模拟考试) 设正数x ,y ,z 满足1543=++z y x 求

x z z y y x +++++111值.

9 (2008年陕西高考理科数学压轴题)已知数列{}n a 的首项135

a =

, 13,1,2,.21n n n a a n a +==⋅⋅⋅+(1) 求{}n a 的通项公式; (2) 证明:对任意的()21120,,1,2,;131n n x a x n x x ⎛⎫>≥--=⋅⋅⋅ ⎪+⎝⎭

+

相关文档
最新文档