函数的表示法 教案3

合集下载

函数的表示法教案

函数的表示法教案

函数的表示法
一、教学目标
知识与技能:(1)进一步理解函数概念,使学生掌握函数的三中表示法:解析法、列表法、函数法;(2)能够恰当运用函数的三种表示法,并借此解决一些实际问题;初步培养学生将实际问题转化为数学问题的能力;(3)了解映射的概念。

过程与方法:(1)通过三种方法的学习,渗透数形结合思想;(2)在运用函数解决实际问题的过程中,培养学生分析问题、解决问题的能力,增强学生运用数学的意识。

(3)将映射作为函数的推广,并通过一些例子进一步理解映射的概念。

情感态度与价值观:(1)让学生体会数学在实际问题中的应用价值,培养学生学习兴趣。

二、教学重点与难点
重点:函数的三种表示方法,分段函数和映射的概念。

难点:根据不同的实际需要选择恰当的方法表示函数。

(因为“恰当”比较难把握)
三、教学手段:多媒体辅助教学
四、教学情境设计
五、板书设计
六、设计思想
本节课的实际遵循新课程的基本理念:发张学生的数学应用意识:体现数学的文化价值;注意信息技术与数学课程的整合。

使学生在学习的过程中学会用数学的思考方式去解决问题。

函数的表示方法教案

函数的表示方法教案

函数的表示法一.教学目标了解函数的三种表示方法(解析法、图象法、列表法);知道三种表示法各自的优缺点;会根据不同的实际情境选择恰当的方法表示函数.二.教学重难点教学重点:函数的三种表示方法.教学难点:在实际情境中,函数表示方法的恰当选择.三.教学过程(一) 导入新课以提问的方式复习函数的概念, 来揭示函数概念的内涵(尽量让学生自己总结出来).只要有一个对应关系, 使得取值范围中的每一个值都有唯一确定的y 和它对应即可, 不用管这个对应关系是以何种形式给出.让学生阅读课本15至16页的三个引例, 学生很容易就可以发现其对应关系分别以解析式、图象、表格的形式. 与之对应, 函数常用的三种表示法为解析法、图象法、列表法.设计意图:帮助学生回忆出初中就已经接触过的函数的三种表示法:解析法、图象法、列表法.(二) 讲解新课设计思路:围绕课本15至16页的三个引例讲解函数的三种表示法, 以下内容均通过这三个例子进行讲解.1. 三种表示法的定义(了解即可)解析法:用数学表达式表示两个变量之间对应关系的方法.图象法:用图象表示两个变量之间对应关系的方法.列表法:列出表格来表示两个变量之间对应关系的方法.2. 函数用不同方法表示时定义域、值域的不同求法(1)函数定义域的求法①当函数y =f (x ) 用解析式给出时, 函数的定义域是指使解析式有意义的实数x 的集合; ②当函数y =f (x ) 用图像给出时, 函数的定义域是指图像在x 轴上的投影所覆盖的实数x 的集合;③当函数y =f (x ) 用表格给出时, 函数的定义域是指表格中实数x 的集合.(2)函数值域的求法①当函数y =f (x ) 用解析式给出时, 函数的值域由函数的定义域及其对应关系唯一确定; ②当函数y =f (x ) 用图像给出时, 函数的值域是指图像在y 轴上的投影所覆盖的实数y 的集合;③当函数y =f (x ) 用表格给出时, 函数的值域是指表格中实数y 的集合.3. 函数三种表示法优缺点的对比(1)解析法的优点:一是简明, 全面地概括了变量间的关系; 二是可以通过解析式求出任意一个自变量的值所对应的函数值.缺点:不够形象, 直观, 具体, 而且并不是所有的函数都能用解析式表示出来.(2)图像法的优点:能形象直观地表示出函数的变化情况.缺点:只能近似地求出自变量的值所对应的函数值, 而且有时误差较大. (企业生产图、股市走势图等)(3)列表法的优点:不需要计算就可以直接看出与自变量的值相对应的函数值.缺点:它只能表示自变量取较少的有限值时的对应关系. (银行利率表、列车时刻表等)(四) 巩固练习课本练习小结1. 函数的三种表示法: 解析法、图象法、列表法.2. 函数用不同方法表示时定义域、值域的不同求法.3. 函数三种表示法优缺点的对比, 这也是选择函数表示法的标准.。

函数概念及表示法教案

函数概念及表示法教案

函数概念及表示法教案一、引言函数是数学中的一个重要概念,也是学习和应用数学的基础。

本教案将介绍函数的概念及相关表示法,以帮助学生深入理解和掌握函数的基本原理。

二、函数的概念函数是一个特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。

简而言之,函数就是一个输入输出的规则。

示例1:考虑一个函数f(x),它将自然数集合N的每个元素x映射到其平方,即f(x) = x^2。

例如,当x = 2时,f(2) = 4。

这里,N为输入集合,f(x)为输出集合。

三、函数的表示法函数有多种表示方法,以下是常见的几种表示法:1. 集合表示法函数可以使用集合表示法表示为 {(x, f(x)) | x ∈ N},表示函数包括了所有输入与输出的有序对。

2. 公式表示法函数可以使用公式表示法表示为 f(x) = x^2,通过一个明确的公式表达函数的输入与输出之间的关系。

3. 图像表示法函数可以使用图像表示法,通过绘制函数的图像来显示输入与输出之间的关系。

例如,绘制函数f(x) = x^2的平面直角坐标系图像。

示例2:考虑函数f(x) = x^2,它可以表示为以下三种方式:- 集合表示法:{(x, x^2) | x ∈ N}- 公式表示法:f(x) = x^2- 图像表示法:绘制平面直角坐标系图像,横轴为x,纵轴为f(x)四、函数的性质函数具有以下几个重要的性质:1. 定义域:函数的定义域是指所有可能的输入值的集合。

对于函数f(x) = x^2,定义域可以是实数集R。

2. 值域:函数的值域是函数在定义域中所有可能的输出值的集合。

对于函数f(x) = x^2,值域可以是非负实数集R≥0。

3. 单调性:函数的单调性描述了函数在定义域内的增减关系。

例如,函数f(x) = x^2在定义域上是非递减的。

4. 奇偶性:函数的奇偶性描述了函数在定义域内的对称性。

例如,函数f(x) = x^2是偶函数。

五、函数的应用函数在数学和科学中有广泛的应用,例如:1. 函数在代数和几何中的应用:函数在解方程、求导数、计算曲线的性质等方面起着重要作用。

函数的表示法教案三篇

函数的表示法教案三篇

函数的表示法教案三篇函数的表示法教案一篇一、目的要求1、使学生初步理解一次函数与正比例函数的概念。

2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。

二、内容分析1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。

2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。

第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。

3、函数及其图象这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。

另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。

通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。

函数的表示方法》教案

函数的表示方法》教案

函数的表示方法》教案缺点:对于非常复杂的函数,解析式可能很难得到或者很难处理.2)用列表法表示函数关系优点:适用于简单的函数,易于列出表格,易于找出自变量和函数值之间的对应关系.缺点:难以处理连续变化的函数,也难以处理非常复杂的函数.3)用图象法表示函数关系优点:通过图像可以直观地看出函数的性质,能够帮助我们更好地理解函数的变化规律.缺点:图象法只适用于可视化的函数,不适用于非常复杂的函数或者无法可视化的函数.个人看法:三种表示函数的方法各有其优缺点,需要根据具体情况选择合适的方法来表示函数关系.在实际应用中,可以根据问题的性质和需要,选择最适合的方法来解决问题.四.拓展应用1、分段函数的概念;2、设计掷骰子游戏的分段函数;3、小结.函数的表示方法》教案教学目标:1.知识目标:1) 掌握函数的三种常见表示方法;2) 了解函数表示形式的多样性,以及如何进行转化;3) 能够根据要求求出函数的解析式,了解分段函数及其简单应用。

2.能力目标:1) 使学生掌握函数的三种常用表示方法的选用;2) 使学生初步认识如何用函数的知识解决具体问题;3) 使学生初步了解数形结合的思想方法。

3.情感目标:通过本节课的教学,使学生认识到数学源于生活,数学也可应用于生活,能够解决生活中的实际问题。

教学重难点:重点:对函数图象的分析。

难点:通过函数的解析式分析函数的图象。

教学过程:一.复引入1.复函数的概念和定义域对应法则;2.回顾初中时如何作函数y=2x+1的图象。

二.概念形成1.引入人口普查实例,讨论列表法表示函数关系的优缺点;2.探讨图象法表示函数关系的优缺点;3.解析法表示函数关系的定义和优缺点。

三.概念深化1.讨论三种表示函数的方法各自的优缺点;2.总结如何根据问题的性质和需要选择最适合的方法来表示函数关系。

四.拓展应用1.引入分段函数的概念;2.设计掷骰子游戏的分段函数;3.小结。

改写后的教案通过删除明显有问题的段落,剔除了格式错误,同时对每段话进行了小幅度的改写,使其更加简洁明了,易于理解。

函数的表示法教案

函数的表示法教案

函数的表示法教案教案主题:函数的表示法教学目标:1. 理解函数的定义和属性;2. 掌握函数的表示法,包括算式表示法、图形表示法和符号表示法;3. 学会用不同的表示法来描述函数。

教学准备:1. 教师准备一份学生讲义,包括函数的定义、性质和表示法;2. 为学生准备白板、白板笔、计算器;3. 提前预习本课的内容,熟悉函数的表示法。

教学过程:Step 1: 引入函数的定义和属性(5分钟)1. 教师向学生介绍函数的概念,即每一个输入都对应唯一一个输出的关系;2. 教师解释函数的定义和属性,包括定义域、值域、单调性、奇偶性等。

Step 2: 函数的算式表示法(15分钟)1. 教师引导学生通过例子分析函数的算式表示法;2. 学生观察例子,找出输入和输出之间的关系,并写出函数的算式表示;3. 教师提醒学生要注意函数的定义域和值域。

Step 3: 函数的图形表示法(15分钟)1. 教师向学生展示函数的图形表示法,并解释其中的意义;2. 学生观察函数的图形表示,分析其特点;3. 学生练习根据图形表示写出函数的算式表示。

Step 4: 函数的符号表示法(15分钟)1. 教师介绍函数的符号表示法,包括用字母表示自变量和因变量;2. 学生观察函数的符号表示,猜测函数的性质;3. 学生练习根据符号表示写出函数的算式表示。

Step 5: 示例练习(15分钟)1. 教师给学生提供一些函数的表示法,要求学生分析函数的性质,并写出其他两种表示法;2. 学生独立完成示例练习;3. 学生互相交流答案,教师给予反馈和指导。

Step 6: 总结归纳(5分钟)1. 教师帮助学生总结函数的算式表示法、图形表示法和符号表示法的特点和使用方法;2. 学生自主回顾本课的内容,提出问题和意见。

Step 7: 作业布置(5分钟)1. 教师布置作业,要求学生练习使用函数的不同表示法;2. 提醒学生注意函数的定义域和值域;3. 教师讲解作业要求和截止时间。

教学设计3:3.1.2 函数的表示法

教学设计3:3.1.2 函数的表示法

20分钟2、学以致用定义域:t∈{0≤t≤24}(2)列表法:列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种用表格来表示两个变量之间的函数关系的方法叫做列表法.如3.1.1 问题4所说的恩格尔系数变化情况表:上表中r是y的函数,所以自变量y的定义域:y∈{2006,2007,2008,2009,2010,2011,2012,2013,2014,2015},可知,定义域也可以是离散型的.(3)解析法:用数学表达式表示两个变量之间的函数关系.如3.1.1问题1:某“复兴号”高速列车加速到350km/h后保持匀速运行半小时.这段时间内,列车行进的路程S(单位:km)与运行时间t(单位:h)的关系可以表示为:S=350t.(对应法则)其中,定义域:t∈{0≤t≤0.5},值域S∈{0≤S≤175}.因为有定义域和对应法则就可以求出值域,所以,我们一般用解析法表示函数时只要写出对应法则和定义域.二、学以致用接下来我们通过三道例题来进一步掌握函数的三种表示法及其特点.例1 某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用函数的三种表示法表示函数y=f(x).提问1:审题是理清思路的前提,也是成功解题的关键,所以仔细审题,题中有哪些关键点?如何准确又快速地把这道题数学化?讨论后回答:因为x∈{1,2,3,4,5},属于离散型,有限集,学生最直观的想法就是用列对应值表的方法表示函数y=f(x).(若x有1000个取值呢?)如下表所示:其中定义域:x∈{1,2,3,4,5}追问:通过列表的过程,我们发现,一方面,表格一目了然地把x和y的对应关系表示出来;另一方面,在得到表中第二行钱数y的值的时候,也是需要通过题意简单计算的.所以,我们思考一下,得到这个表格之后,我们如何进一步阐发这一道题呢?回答追问1:从表格两行的结构看,我们不妨以x为横轴,y为纵轴,建立直角坐标系,这样,上述表格中的每一列的(x,y)的值就可以表示为x−o−y坐标系中的点.如下图所示:这就是图象法表示函数y=f(x).(定义域:x∈{1,2,3,4,5})研究图象可知,和列表法相比,图象法虽然能直观反映x和y的对应关系,但是其横纵坐标不够精准,另一方面,图象法还能反映x和y的变化趋势,如图,反映了x越大,y越大,也就是买的笔记本越多,花的钱越多。

函数的表示法教案

函数的表示法教案

课题:函数的表示法(一)课 型:新授课教学目标:(1)掌握函数的三种表示方法(解析法、列表法、图像法),了解三种表示方法各自的优点;(2)在实际情境中,会根据不同的需要选择恰当的方法表示函数;(3)通过具体实例,了解简单的分段函数,并能简单应用。

教学重点:会根据不同的需要选择恰当的方法表示函数。

教学难点:分段函数的表示及其图象。

教学过程:一、课前准备(预习教材19p ---21p ,找出疑惑之处)复习1.回忆函数的定义;复习2.函数的三要素分别是什么?二、新课导学:(一)学习探究探究任务:函数的三种表示方法讨论:结合课本P 15 给出的三个实例,说明 三种表示方法的适用范围及其优点小结:解析法:就是用数学表达式表示两个变量之间的对应关系,如1.2.1的实例(1); 优点:简明扼要;给自变量求函数值。

图象法:就是用图象表示两个变量之间的对应关系,如1.2.1的实例(2);优点:直观形象,反映两个变量的变化趋势。

列表法:就是列出表格来表示两个变量之间的对应关系,如1.2.1的实例(3);优点:不需计算就可看出函数值,如股市走势图; 列车时刻表;银行利率表等。

*典型例题例1.(课本P 19 例3)某种笔记本的单价是2元,买x (x ∈{1,2,3,4,5})个笔记本需要y元.试用三种表示法表示函数y=f(x) .{}5,4,3,2,1,5∈=x x y变式:作业本每本0.3元,买x 个作业本的钱数y (元),试用三种方法表示此实例中的函数。

反思:例1及变式的函数有何特征?所有的函数都可用解析法表示吗?例2:(课本P 20 例4)下表是某校高一(1)班三位同学在高一学年度六次数学测试的成绩及班级平均分表:第一次 第二次 第三次 第四次 第五次 第六次王伟 98 87 91 92 88 95张城 90 76 88 75 86 80赵磊 68 65 73 72 75 82班级平均分 88.2 78.3 85.4 80.3 75.7 82.6请你对这三们同学在高一学年度的数学学习情况做一个分析例3:某市“招手即停”公共汽车的票价按下列规则制定:(1)5公里以内(含5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里的俺公里计算)。

《函数的表示法》教案

《函数的表示法》教案

《函数的表示法》教案教学目标:1.了解函数的三种表示法:解析法,列表法,图像法.2.理解函数值的概念.3.会在简单情况下,根据函数的表示式求函数的值.教学重难点:教学重点:函数的表示法,是今后进一步学习其他函数,以及运用函数模型解决实际问题的基础,因此函数的有关概念是本节的重点.教学难点:用图像来表示函数关系涉及数形结合,学生理解它需要一个较长且比较具体的过程.教学过程:(一)思考在前面,我们曾用s =80t ,y =3x²-2x+4,y =x +1,……来表示函数关系,其中:t ,3x -2x ,……都表示自变量;s ,y ,……都表示因变量.那么这些表示函数的式子有什么共同的特征?学生们纷纷讨论.师:它们都是用关于自变量的代数式来表示因变量的式子,应用它们可以由自变量的每一个值,计算出相对应的因变量的值.像这样,用含有表示自变量的字母的代数式表示因变量的式子叫做函数的表达式.这种表示函数关系的方法称为解析法.利用函数的表达式,既可以由函数的任意一个自变量的值求出相应的函数的值(简称函数值),也可以由某一个确定的函数值求出相应的自变量的值.(二)例题解析例:已知两个函数的表达式分别为y =2x -5和y =(1)当x =-4时,分别求出这两个函数的函数值;(2)当这两个函数的函数值都为18时,自变量x 分别取什么值?(三)探索某城市有一路全程共22站的公共汽车,其票价是这样规定的:1~4站,1.00元;5~812x .2站,1.50元;9~14站,2.00元;15~22站,2.50元.在这里,票价是乘站数的函数吗?如果是,怎样表示这个函数呢?学生们纷纷讨论.师:在这种乘车收费的规定下,对于乘车的每一站数,都有一个唯一确定的票价和这个站数相对应,所以票价与乘车站数也存在着函数关系.由于这个函数的自变量只有22个值,所以用列表的方法就可以表示出它们的对应关系:乘车站数票价/元1~41.005~81.509~142.0015~222.50像这样用列表来表示函数关系的方法称为列表法.(四)交流洞庭湖地区连日遭受暴雨袭击,导致湖水的水位猛涨,下图是涨水期22日至27日的水位记录.观察这个图形,你能从中获得什么信息?观察这个图形.(1)填下表,得:日期/日水位/m223023312431.525332633.52732(2)这几天中的每一时刻,都有唯一确定的水位和它对应,所以可以认为水位是时间的函数;(3)从22日起,水位开始上涨,26日水位达到最高;(4)从24日起,水位开始超过警戒水位,全天水位上涨了1.5m ;(5)从26日起,水位开始回落;……由此可见,用这样的图形表现一个函数关系的变化状态,可以做到直观、简洁和一目了然.我们把这样的图形叫做这个函数的图象.用画图象表示函数关系的方法称为图象法.归纳起来,表示函数关系的主要方法有解析法、列表法和图象法.课堂总结:本节课你学会了什么?。

函数的三种表示方法教案

函数的三种表示方法教案

函数的三种表示方法教案函数是数学中非常重要的概念,它在数学、物理、工程等领域都有着广泛的应用。

在学习函数的表示方法时,我们通常会接触到三种不同的表示方法,分别是表格法、图像法和公式法。

本教案将针对这三种方法进行详细的介绍和示范。

一、表格法。

表格法是最直观的函数表示方法之一。

通过建立自变量和因变量之间的对应关系,我们可以将函数的取值用表格的形式清晰地展现出来。

比如,对于函数y = 2x + 1,我们可以列出x的取值和相应的y的取值,然后将其整理成表格的形式。

这样,我们就可以清晰地看到x和y之间的对应关系,从而更好地理解函数的性质。

二、图像法。

图像法是通过绘制函数的图像来表示函数的方法。

通过将函数表示在坐标系中,我们可以直观地看到函数的增减性、奇偶性、周期性等特点。

同时,图像法也可以帮助我们更好地理解函数与几何图形之间的关系,比如直线函数对应着一条直线,二次函数对应着抛物线等。

因此,通过图像法,我们可以更深入地理解函数的几何意义。

三、公式法。

公式法是最常用的函数表示方法之一。

通过用代数符号和运算符号构成的公式来表示函数,我们可以简洁地表达函数的性质和特点。

比如,对于函数y = ax^2 + bx + c,其中a、b、c分别代表抛物线的开口方向、顶点坐标等特征。

通过公式法,我们可以直接得到函数的一些重要性质,比如导数、极值、零点等,从而更好地分析函数的性态。

综合运用。

在学习函数的表示方法时,我们需要综合运用表格法、图像法和公式法。

通过表格法,我们可以直观地看到函数值的对应关系;通过图像法,我们可以直观地看到函数的几何特征;通过公式法,我们可以简洁地表达函数的性质。

综合运用这三种方法,可以帮助我们更全面地理解函数的性质和特点。

结语。

通过本教案的学习,相信大家对函数的三种表示方法有了更深入的了解。

在学习函数时,我们要灵活运用这三种方法,从不同的角度去理解函数的性质和特点。

同时,我们也要注重实际问题与函数的联系,通过函数的表示方法去解决实际问题,提高数学建模和问题求解的能力。

函数概念及表示法教案

函数概念及表示法教案

函数概念及表示法教案一、引言函数在数学中是一个常见且重要的概念,它在各个领域都有广泛的应用。

本教案旨在介绍函数的基本概念以及表示法,帮助学生理解函数的本质与特点,并能够熟练运用函数的表示方法。

二、函数的定义函数是一种特殊的关系,它将一个集合中的每个元素都映射到另一个集合中的唯一元素。

形式化地说,设集合A和B,如果对于任意的a∈A,存在唯一的b∈B与之对应,那么我们就说存在一个从A到B的函数。

三、函数的表示法1. 函数的映射表表示法以映射表的形式表示函数,将集合A中的元素与集合B中的元素一一对应。

例如,对于函数f:A→B,可以使用以下形式表示: ![函数的映射表表示法](Function_Representation_1.png)2. 函数的解析式表示法使用方程或者公式来表示函数的规律。

例如,考虑函数f(x)=2x+1,其中x为实数。

这个函数表达了将实数x映射为2x+1的规则。

3. 函数的图像表示法将函数的映射关系可视化为图像,横轴表示定义域内的元素,纵轴表示值域内的元素。

函数的图像可以直观地展示函数的变化趋势。

例如,对于函数f(x)=2x+1,其图像为一条斜率为2的直线。

四、函数的性质1. 定义域和值域函数的定义域是输入变量的取值范围,值域是输出变量的取值范围。

通过确定定义域和值域,可以限定函数的输入和输出。

2. 奇偶性如果对于任意的x∈定义域,有f(-x)=-f(x),则函数为奇函数;如果对于任意的x∈定义域,有f(-x)=f(x),则函数为偶函数。

奇偶性可以由图像的对称性来判断。

3. 单调性如果对于定义域内的任意x1和x2,当x1<x2时,有f(x1)<f(x2),则函数为增函数;如果当x1<x2时,有f(x1)>f(x2),则函数为减函数。

4. 极值与最值若函数在某个点处的函数值大于或小于它邻近的函数值,则称该点为极值点。

最大极值即为函数的最大值,最小极值即为函数的最小值。

人教初中数学八下 19.1.2 函数的图象教案3 【经典教学设计合编】

人教初中数学八下 19.1.2 函数的图象教案3 【经典教学设计合编】

一、情境引入问题仓库里现有1000t 粮食,每天运进80t ,x(天)后仓库里一共有粮食y (t ) 1、y 与x 之间的关系式?2、说明y 随x 的变化情况吗?3、还有什么方法可描述它们的变化情况呢?4、怎样用描点法画出它的图象呢? 二、探究新知1、怎样画出y=x +0.5的图象问题:点(-2,-1.5)是否在函数图象上? 2、生独立完成画出)0(6>=x xy 的图象的过程 问题 :点(2,6)是否在函数图象上?3、总结出画函数图像的步骤及其具体操作过程第一步 列表 表中给出一些自变量的值及其对应函数值第二步 描点 在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。

第三步 连线 按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来4、观察 y=x +0.5与)0(6>=x xy 的图象,两个函数图象由左到右的变化规律是什么? y 是如何随 x 的变化而变化的?三、课堂训练1、如图是古代计时器----“漏壶”的示意图在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间。

用x 表示时间,y 表示壶底到水面的高度,下面的哪个图象适合表示一小段时间内y 与x 的函数关系?2、如图所示的曲线,哪个表示y 是x 的函数( )yx yxyxyxBADC一、情境引入问题仓库里现有1000t 粮食,每天运进80t ,x(天)后仓库里一共有粮食y (t ) 1、y 与x 之间的关系式?2、说明y 随x 的变化情况吗?3、还有什么方法可描述它们的变化情况呢?4、怎样用描点法画出它的图象呢? 二、探究新知1、怎样画出y=x +0.5的图象问题:点(-2,-1.5)是否在函数图象上? 2、生独立完成画出)0(6>=x xy 的图象的过程 问题 :点(2,6)是否在函数图象上?3、总结出画函数图像的步骤及其具体操作过程第一步 列表 表中给出一些自变量的值及其对应函数值第二步 描点 在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。

函数的表示法(第三课时)教案

函数的表示法(第三课时)教案

1.2.2 函数的表示法(第三课时)一、教材分析:二、学习目标:①了解映射的概念及表示方法;②会利用映射的概念来判断“对应关系”是否是映射;③感受对应关系在刻画函数和映射概念中的作用,提高对数学高度抽象性和广泛应用性的进一步认识.三、教学重点:通过具体实例,了解简单的分段函数.四、教学难点:了解简单的分段函数,并能简单应用.五、课时安排:1课时六、教学过程1、(一)、合作学习(课堂导入)1、设计问题,创设情境前面学习了函数的概念:一般地,设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一的数和它对应.(1)对于任意一个实数,在数轴上都有唯一的点与之对应.(2)班级里的每一位同学在教室都有唯一的坐位与之对应.(3)对于任意的三角形,都有唯一确定的面积与之对应.那么这些对应又有什么特点呢?2、自主探索,尝试解决问题1:①给出以下对应关系:这三个对应关系有什么共同特点?②像问题①中的对应我们称为映射,请给出映射的定义.③“都有唯一”是什么意思?④函数与映射有什么关系?3、信息交流,揭示规律分组讨论归纳的结论:(老师对学生得出的结论进行点评和指正,并一起归纳概括得出结论)①集合A,B均为非空集合,并且集合A中的元素在集合B中都有唯一的元素与之对应.②一般地,设A,B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A 到集合B的一个映射.记作“f:A→B”.③包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思,即是一对一或多对一.④函数是特殊的映射,映射是函数的推广.(二)、当堂检测1、课本P23练习3;2、下列哪些对应是从集合A到集合B的映射?(1)A={P|P是数轴上的点},B=R,对应关系f:数轴上的点与它所代表的实数对应;(2)A={P|P是平面直角坐标系中的点},B={(x,y)|x∈R,y∈R},对应关系f:平面直角坐标系中的点与它的坐标对应;(3)A={三角形},B={x|x是圆},对应关系f:每一个三角形都对应它的内切圆;(4)A={x|x是新华中学的班级},B={x|x是新华中学的学生},对应关系f:每一个班级都对应班里的学生.解:(1)是映射;(2)是映射;(3)是映射;(4)不是映射.新华中学的每个班级对应其班内的多个学生,是一对多,不符合映射的定义.3、下列对应是不是从集合A到集合B的映射,为什么?(1)A=R,B={x∈R|x≥0},对应法则是“求平方”;(2)A=R,B={x∈R|x>0},对应法则是“求平方”;(3)A={x∈R|x>0},B=R,对应法则是“求平方根”;(4)A={平面内的圆},B={平面内的矩形},对应法则是“作圆的内接矩形”.解:(1)是映射,因为A中的任何一个元素,在B中都能找到唯一的元素与之对应.(2)不是从集合A到集合B的映射,因为A中的元素0,在集合B中没有对应的元素.(3)不是从集合A到集合B的映射,因为任何正数的平方根都有两个值,即集合A中的任何元素,在集合B中都有两个元素与之对应.(4)不是从集合A到集合B的映射.因为一个圆有无穷多个内接矩形,即集合A中任何一个元素在集合B中都有无穷多个元素与之对应.点评:本题主要考查映射的概念.给定两集合A,B及对应法则f,判断是否是从集合A到集合B的映射,主要利用映射的定义.用通俗的语言讲:A→B的对应有“多对一”“一对一”“一对多”,前两种对应是A到B的映射,而后一种不是A到B的映射.4、变式演练,深化提高(1)设映射f:x→-x2+2x是实数集R=M到实数集R=N的映射,若对于实数p∈N,在M中不存在原象,则实数p的取值范围是()A.(1,+∞)B.[1,+∞)C.(-∞,1)D.(-∞,1](1).解析:方法一:由于集合M,N都是数集,则映射f:x→-x2+2x就是函数f(x)=-x2+2x,其定义域是M=R,则有值域Q={y|y≤1}⊆N=R.对于实数p∈N,在M中不存在原象,则实数p的取值范围是∁N Q=∁R Q={y|y>1},即p的取值范围是(1,+∞);方法二:当p=0时,方程-x2+2x=0有解x=0,2,即在M中存在原象0和2,则p=0不合题意,排除C,D两项;当p=1时,方程-x2+2x=1有解x=1,即在M中存在原象1,则p=1不合题意,排除B项.答案:A点评:本题主要考查映射的概念和函数的值域,以及综合应用知识解决问题的能力.解决本题的关键是转化思想的应用.把映射问题转化为函数的值域问题,进一步转化为求函数的值域在实数集中的补集.其转化的依据是对映射概念的理解以及对函数与映射关系的把握程度.(2)设f,g都是由A到A的映射,其对应法则如下表(从上到下):则与f[g(1)]相同的是()A.g[f(1)]B.g[f(2)]C.g[f(3)]D.g[f(4)](2).解析:f(a)表示在对应法则f下a对应的象,g(a)表示在对应法则g下a对应的象.由表1和表2,得f[g(1)]=f(4)=1,g[f(1)]=g(3)=1,g[f(2)]=g(4)=2,g[f(3)]=g(2)=3,g[f(4)]=g(1)=4,则有f[g(1)]=g[f(1)]=1,故选A.答案:A(3)设集合A={a,b,c},集合B=R,以下对应关系中,一定能建立集合A到集合B的映射的是()A.对集合A中的数开平方B.对集合A中的数取倒数C.对集合A中的数取算术平方根D.对集合A中的数立方(3).解析:当a<0时,对a开平方或取算术平方根均无意义,则A,C两项错;当a=0时,对a取倒数无意义,则B项错;由于对任何实数都能立方,并且其立方仅有一个,所以对集合A中的数立方能建立映射,故选D项.答案:D(三)、课堂小结请同学们回想一下,本节课我们学了哪些内容?师生共同归纳本节主要内容.七.课外作业必做:课本P23练习1、4题.选做:已知下列集合A到B的对应,请判断哪些是A到B的映射?并说明理由.(1)A=N,B=Z,对应法则:“取相反数”;(2)A={-1,0,2},B={-1,0,},对应法则:“取倒数”;(3)A={1,2,3,4,5},B=R,对应法则:“求平方根”;(4)A={0,1,2,4},B={0,1,4,9,64},对应法则f:a→b=(a-1)2;(5)A=N*,B={0,1},对应法则:除以2所得的余数.八、教学反思:。

函数的表示法教案

函数的表示法教案

函数的表示法教案教案标题:函数的表示法教案教案目标:1. 理解函数的定义和基本概念。

2. 掌握函数的不同表示法,包括映射图、函数表、函数关系式和函数图像。

3. 能够根据给定的函数关系式或函数图像,确定函数的定义域、值域和特征。

4. 运用函数的表示法解决实际问题。

教学准备:1. 教师准备:投影仪、白板、白板笔、教学PPT、练习题。

2. 学生准备:课本、笔记本、铅笔、橡皮、直尺。

教学过程:Step 1: 引入函数的概念 (10分钟)1. 教师通过引导学生的思考,提出问题:“你们对函数有什么了解?”2. 学生回答后,教师给出函数的定义:“函数是一种特殊的关系,每个自变量对应唯一的因变量。

”3. 教师通过实际例子和图示解释函数的定义,帮助学生更好地理解。

Step 2: 函数的映射图表示法 (15分钟)1. 教师介绍函数的映射图表示法,解释映射图的构成和含义。

2. 教师通过示例,引导学生绘制函数的映射图,并解释图中的元素代表的意义。

3. 学生进行练习,绘制给定函数的映射图。

Step 3: 函数的函数表表示法 (15分钟)1. 教师介绍函数的函数表表示法,解释函数表的构成和含义。

2. 教师通过示例,教授学生如何根据函数关系式填写函数表,并解释表中的元素代表的意义。

3. 学生进行练习,根据给定的函数关系式填写函数表。

Step 4: 函数的函数关系式表示法 (15分钟)1. 教师介绍函数的函数关系式表示法,解释函数关系式的构成和含义。

2. 教师通过示例,教授学生如何根据函数表或函数图像写出函数关系式,并解释关系式中的元素代表的意义。

3. 学生进行练习,根据给定的函数表或函数图像写出函数关系式。

Step 5: 函数的函数图像表示法 (15分钟)1. 教师介绍函数的函数图像表示法,解释函数图像的构成和含义。

2. 教师通过示例,教授学生如何根据函数关系式或函数表绘制函数图像,并解释图像中的元素代表的意义。

3. 学生进行练习,根据给定的函数关系式或函数表绘制函数图像。

高一数学教案:函数的表示法

高一数学教案:函数的表示法

高一数学教案:函数的表示法教学目标:1. 理解函数的概念,掌握函数的基本性质;2. 掌握函数的表示法:显式表示法、隐式表示法和参数表示法;3. 能够根据题目要求选择适当的函数表示法。

教学重点:1. 函数的概念和基本性质;2. 函数的显式表示法、隐式表示法和参数表示法的具体形式;3. 根据题目要求选择适当的函数表示法。

教学难点:1. 函数的隐式表示法和参数表示法的理解和应用;2. 根据题目要求选择适当的函数表示法。

教学过程:一、引入新知(5分钟)教师通过引入例子或问题,让学生思考函数的概念和基本性质,并引导学生发现函数的表示法。

二、讲解函数的显式表示法(10分钟)1. 定义:函数的显式表示法是直接给出函数关系式的一种表示方法,即用公式表示函数。

2. 表示形式:函数的显式表示法可以用 y = f(x) 的形式表示,其中 f(x) 是关于 x 的公式。

3. 示例:例如,函数 f(x) = 2x + 1 就是一个使用显式表示法表示的函数。

三、讲解函数的隐式表示法(10分钟)1. 定义:函数的隐式表示法是通过给出函数的关系式,但不直接解出 y 的一种表示方法。

2. 表示形式:函数的隐式表示法可以是一个方程式或等式表达式,其中可能包含 y 和x 的幂次、根式、对数、三角函数等。

3. 示例:例如,函数 x^2 + y^2 = 1 就是一个使用隐式表示法表示的函数。

四、讲解函数的参数表示法(10分钟)1. 定义:函数的参数表示法是通过引入参数的方式来表示函数。

2. 表示形式:函数的参数表示法可以用 y = f(t) 的形式表示,其中 t 是一个参数。

3. 示例:例如,函数 y = sin(t) 就是一个使用参数表示法表示的函数。

五、练习与讨论(15分钟)教师提供一些练习题供学生进行训练和讨论,并引导学生根据题目要求选择适当的函数表示法。

1. 练习题:根据给定的函数关系式选择适当的函数表示法。

(1)关系式:y = 2x^2 + 3x + 1,选择合适的函数表示法。

函数的表示方法教案

函数的表示方法教案

3.1.2函数的表示方法【教学目标】1. 了解函数的解析法、列表法、图象法三种主要表示方法.2. 已知函数解析式会用描点法作简单函数的图象.3. 培养学生数形结合、分类讨论的数学思想方法,通过小组合作培养学生的协作能力.【教学重点】函数的三种表示方法;作函数图象.【教学难点】作函数图象.【教学方法】这节课主要采用问题解决法和分组讨论教学法.本节课先借助一个实例,简要介绍函数的三种表示方法,进一步刻画函数概念;然后通过两个例题,使学生初步感知如何由解析式分析函数性质以指导画图,避免画图的盲目性.通过本节教学,使学生初步了解数形结合研究函数的方法,为下面学习函数的单调性和奇偶性做铺垫.【教学过程】环节教学内容师生互动设计意图导入1.函数的定义是什么?2.你知道的函数表示方法有哪些呢?师:提出问题.生:回忆思考回答.为知识迁移做准备.新课1.函数的三种表示方法:(1) 解析法(2) 列表法(3) 图象法2.问题.由3.1.1节的问题中所给的函数解析式s=100 t (0≤t≤2)作函数图象.解:列表(略);画图学生阅读教材P62,了解函数的三种表示方法.师:函数的三种基本表示方法,各有各的优点和缺点,有时把这三种方法结合起来使用,即由已知的函数解析式,列出自变量与对应的函数值的表格,再画出它的图象.师:你知道画函数图象的步骤是什么吗?生:第一步:列表;第二步:描点;第三步:连线.师:在问题及解答过程中,我们分别用到了哪些函数的表示方法?生:解析法、列表法、图象法这一部分内容简单,可采用阅读思考等方式进行教学,充分利用教材资源发挥学生的主动性.培养学生勤于思考善于分析的意识和能新课3.针对上面的例子,思考并回答下列问题:(1) 在上例描点时,是怎样确定一个点的位置的?哪个变量作为点的横坐标?哪个变量作为点的纵坐标?(2) 函数的定义域是什么?(3) s的值能大于200吗?能是负值吗?为什么?函数的值域是什么?(4) 距离s 随行驶时间t 的增大有怎样的变化?4.例1作函数y=x3 的图象.解列表画图5.结合例1完成下列问题:(1) 函数y=x3 的定义域、值域是什么?(2) 函数值y随x的增大有怎样的变化?(3) f(a)与f(-a)相等吗?有怎样的关系?(4) 函数图象是轴对称图形还是中心对称图教师引导学生利用函数图象分析回答函数的性质.师:由上例可以看出,我们在列表、作图时,要认真分析函数,避免盲目列表计算.函数的图象有利于我们研究函数的性质,如本例中函数的定义域、值域以及y随x增大而增大等性质.教师引导学生分析:函数y=x3 的定义域是R,当x>0时,y>0,这时函数的图象在第一象限,y 的值随着x 的值增大而增大;当x<0时,y<0,这时函数的图象在第三象限,y 的值随着x 的值减小而减小.教师引导学生完成列表、描点及连线,完成函数图象.师生合作完成例1,让学生体会取值前如何分析研究函数式的特点.学生分组讨论完成,从讨论中掌握分析函数性质的方法.力.本题的设置起到了承上启下的作用.为突破本节课难点而设计.问题(4)为下节引入函数的单调性做准备.让学生在作图过程中体会函数的性质,从做中学.尽可能把主动权交给学生,使学生在自主探索中发现问题解决问题.问题(3)(4)的设置是为引入函数的奇偶性作准备.新课形?6.例2作函数y=1x2的图象.解列表画图7.结合例2解答下列问题:(1) 函数y=1x2的定义域、值域是什么?(2) 在第一象限中,函数值y随x的增大有怎样的变化?在第二象限中呢?(3) f (a)与f (-a)相等吗?有怎样的关系?(4) 函数图象是轴对称图形还是中心对称图形?学生小组合作分析课本例2如何取值.学生作出例2图象,教师针对出现的情况进行点评或让学生互评.教师强调自变量的取值,即{x | x≠0}.学生分组讨论完成,从讨论中掌握分析函数性质的方法.避免为作图象而作图象,让学生在画图的过程中学习.让学生进一步掌握分析函数性质的方法.并为下一步学习函数的单调性与奇偶性做准备.小结1. 函数的三种表示方法.2. 作函数图象.学生畅谈本节课的收获,老师引导梳理,总结本节课的知识点.梳理总结也可针对学生薄弱或易错处进行强调和总结.作业教材P65 ,练习A组第3题;练习B 组第2题.巩固拓展.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的表示法教案3
课型:新授课
教学目标:
(1)进一步了解分段函数的求法;
(2)掌握函数图象的画法。

教学重点:函数图象的画法。

教学难点:掌握函数图象的画法。

教学过程:
一、复习准备:
1.举例初中已经学习过的一些函数的图象,如一次函数,二次函数,反比例函数的图象,并在黑板上演示它们的画法。

2. 讨论:函数图象有什么特点?
二、讲授新课:
例1.画出下列各函数的图象:
(1)()22(22)
f x x x
=--<≤
(2)2
()243(03)
f x x x x
=--≤<

例2.(课本P
21例5)画出函数()
f x x
=的图象。

例3.设(),x ∈-∞+∞,求函数()213f x x x =--的解析式,并画出它的图象。

变式1:求函数()213f x x x =--的最大值。

变式2:解不等式2131x x -->-。

例4.当m 为何值时,方程2
45x x m -+=有4个互不相等的实数根。

变式:不等式245
x x m
-+>对x R
∈恒成立,求m的取值范围。

(三)课堂练习:
1.课本P
23
练习3;
2.画出函数
1
(01)
()
(1)
x
f x x
x x

<<

=⎨
⎪≥

, 
, 
的图象。

归纳小结:
函数图象的画法。

作业布置:
课本P
24
习题1.2A组题7,B组题2;课后记:。

相关文档
最新文档