山东省威海市直高中2012-2013学年高二上学期期末考试数学(文)试题(扫描版)
山东省威海市2023-2024学年高三上学期期末考试 数学含答案
高三数学(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{||1|}A x x =-≥1,2{|20}B x x x =--<,则A B = A.(20)-, B.(10)-, C.(20]-, D.(10]-,2.已知向量(22)=,a ,(1)x =,b ,若∥a b ,则||=b A.1D.23.若复数z 满足(1i)|1|z -=+,则z =A .1i- B.1i+ C.22i- D.22i+4.cos 28cos73cos62cos17︒︒︒︒+=A.2B.2-C.2D.2-5.若正实数a ,b ,c 满足235a b c ==,则A.a b c<< B.b a c<< C.b c a<< D.c b a<<6.已知函数()y f x =的图象是连续不断的,且()f x 的两个相邻的零点是1,2,则“0(12)x ∃∈,,0()0f x >”是“(12)x ∀∈,,()0f x >”的A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知1F ,2F 分别为双曲线22221(00)x y a b a b -=>>,的左、右焦点,过点1F 的直线与圆222x y a +=相切于点P ,且与双曲线的右支交于点Q ,若2||||PQ QF =,则该双曲线的离心率为A.2B.3C.2D.58.在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,2PA PD ==,二面角P AD B --为60︒,则该四棱锥外接球的表面积为A.163πB.283π C.649π D.20π二、选择题:本题共4小题,每小题5分,共20分。
山东省2014届高三文科数学备考之2013届名校解析试题精选分类汇编5:数列 Word版含答案
山东省2014届高三文科数学一轮复习之2013届名校解析试题精选分类汇编5:数列一、选择题1 .(【解析】山东省青岛一中2013届高三1月调研考试文科数学)已知数列{n a }满足*331log 1log ()n n a a n ++=∈N ,且2469a a a ++=,则15793log ()a a a ++的值是 ( )A .15-B .5-C .5D .15【答案】B 【解析】由*331log 1log ()n n a a n ++=∈N ,得313log log 1n n a a +-=,即13log 1n na a +=,解得13n n a a +=,所以数列{}n a 是公比为3的等比数列.因为3579246()a a a a a a q ++=++,所以35579933a a a ++=⨯=.所以5515791333log ()log 3log 35a a a ++==-=-,选 B .2 .(【解析】山东省德州市2013届高三3月模拟检测文科数学)若正项数列{}n a 满足1111n n ga ga +=+,且a 2001+a 2002+a 2003+a 2010=2013,则a 2011+a 2012+a 2013+a 2020的值为( )A .2013·1010B .2013·1011C .2014·1010D .2014·1011【答案】A 由条件知1111lg1n n n n a ga ga a ++-==,即110n naa +=为公比是10的等比数列.因为102001201020112020()a a q a a ++=++ ,所以1020112020201310a a ++=⋅ ,选A .3 .(【解析】山东省实验中学2013届高三第一次诊断性测试数学(文)试题)在各项均为正数的等比数列{}n a 中,31,1,s a a ==则2326372a a a a a ++=( )A .4B .6C .8D.8-【答案】C 【解析】在等比数列中,23752635,a a a a a a a ==,所以22232637335522a a a a a a a a a ++=++22235()11)8a a =+=+==,选C .4 .(【解析】山东省济宁市2013届高三1月份期末测试(数学文)解析)已知函数()()2cos f n n n π=,且()()1,n a f n f n =++则123100a a a a +++⋅⋅⋅+=( )A .100-B .0C .100D .10200【答案】A 解:若n 为偶数,则()()221=(1)(21)na f n f n n n n =++-+=-+,为首项为25a =-,公差为4-的等差数列;若n 为奇数,则()()221=(1)21n a f n f n n n n =++-++=+,为首项为13a =,公差为4的等差数列.所以123100139924100()()a a a a a a a a a a +++⋅⋅⋅+=+++++++ 50495049503450(5)410022⨯⨯=⨯+⨯+⨯--⨯=-,选A . 5 .(【解析】山东省济南市2013届高三3月高考模拟文科数学)等差数列}{n a 中,482=+a a ,则它的前9项和=9S ( )A .9B .18C .36D .72【答案】B 在等差数列中,28194a a a a +=+=,所以1999()941822a a S +⨯===,选 B .6 .(【解析】山东省实验中学2013届高三第三次诊断性测试文科数学)已知各项为正的等比数列{}n a 中,4a 与14a 的等比数列中项为22,则1172a a +的最小值 ( )A .16B .8C .22D .4【答案】B 【解析】由题意知224149a a a ==,即9a =.所以设公比为(0)q q >,所以22971192228a a a a q q +=+=+≥=,2=,即42q =,所以q =,所以最小值为8,选B .7 .(【解析】山东省德州市2013届高三上学期期末校际联考数学(文))在各项均为正数的数列{a n }中,对任意m 、*n N Î都有m n m a a +=·n a 若636,a =则9a 等于 ( )A .216B .510C .512D .l024【答案】A 解:由题意可知26336a a ==,所以36a =,所以93636636216a a a a +===⨯= ,选A .8 .(【解析】山东省潍坊市2013届高三上学期期末考试数学文(a ))如果等差数列{}n a 中,15765=++a a a ,那么943...a a a +++等于 ( )A .21B .30C .35D .40【答案】C 【解析】在等差数列中,由15765=++a a a 得663155a a ==,.所以3496...=77535a a a a +++=⨯=,选C .9 .(山东省淄博市2013届高三复习阶段性检测(二模)数学(文)试题)已知等差数列{}n a 的前n 项和为n S ,满足1313113a S a ===,则 ( )A .14-B .13-C .12-D .11-【答案】D 在等差数列中,1131313()132a a S +==,所以1132a a +=,即113221311a a =-=-=-,选 D .10.(【解析】山东省枣庄市2013届高三3月模拟考试 数学(文)试题)两旅客坐火车外出旅游,希望座位连在一起,且仅有一个靠窗,已知火车上的座位的排法如表格所示,则下列座位号码符合要求的是( )A .48,49B .62,63C .84,85D .75,76【答案】C 根据座位排法可知,做在右窗口的座位号码应为5的倍数,所以C 符合要求.选 C .11.(山东省威海市2013届高三上学期期末考试文科数学){}n a 为等差数列,n S 为其前n 项和,已知77521a S ==,,则10S =( )A .40B .35C .30D .28【答案】【答案】A 设公差为d ,则由77521a S ==,得1777()2a a S +=,即17(5)212a +=,解得11a =,所以716a a d =+,所以23d =.所以1011091092101040223S a d ⨯⨯=+=+⨯=,选 ( )A .12.(【解析】山东省济宁市2013届高三1月份期末测试(数学文)解析)已知在等比数列{}n a 中,1346510,4a a a a +=+=,则该等比数列的公比为 ( )A .14B .12C .2D .8【答案】B 解:因为31346()a a q a a +=+,所以34613514108a a q a a +===+,即12q =,选B .13.(【解析】山东省实验中学2013届高三第三次诊断性测试文科数学)已知等差数列{}n a 的公差为d 不为0,等比数列{}n b 的公比q 是小于1的正有理数,若211,d b d a ==,且321232221b b b a a a ++++是正整数,则q 的值可以是 ( )A .71 B .-71 C .21 D .21-【答案】C 【解析】由题意知21312,23a a d d a a d d =+==+=,22222131,b b q d q b b q d q ====,所以2222221232222212349141a a a d d d b b b d d q d q q q ++++==++++++,因为321232221b b b a a a ++++是正整数,所以令2141t q q=++,t 为正整数.所以2114t q q ++=,即21014t q q ++-=,解得q ===,因为t 为正整数,所以当8t =时,12122q -+===.符合题意,选C .14.(【解析】山东省滨州市2013届高三第一次(3月)模拟考试数学(文)试题)已知数列{}n a 为等差数例,其前n 项的和为n S ,若336,12a S ==,则公差d = ( )A .1B .2C .3D .53【答案】B 在等差数列中,13133()3(6)1222a a a S ++===,解得12a =所以解得2d =,选 B . 15.(【解析】山东省济南市2013届高三上学期期末考试文科数学)已知数列{}n a 的前n 项和为n S ,且122-=n S n , 则=3a( )A .-10B .6C .10D .14【答案】C 解:22332231(221)10a S S =-=⨯--⨯-=,选 C .16.(【解析】山东省临沂市2013届高三3月教学质量检测考试(一模)数学(文)试题)已知等差数列{n a }中,74a π=,则tan(678a a a ++)等于( )A .B .C .-1D .1【答案】C 在等差数列中6787334a a a a π++==,所以6784tan()tan14a a a π++==-,选 C . 17.(【解析】山东省烟台市2013届高三5月适应性练习(一)文科数学)已知等比数列{a n }的公比q=2,前n硕和为S n .若S 3=72,则S 6等于 ( )A .312B .632C .63D .1272【答案】B 【解析】3131(12)77122a S a -===-,所以112a =.所以6161(12)6363122a S a -===-,选 B .二、填空题18.(【解析】山东省青岛市2013届高三第一次模拟考试文科数学)设n S 是等差数列{}n a 的前n 项和,1532,3a a a ==,则9S =_____________ ;【答案】54- 由1532,3a a a ==得1143(2)a d a d +=+,即12d a =-=-,所以919899298542S a d ⨯=+=⨯-⨯=-. 19.(山东省青岛即墨市2013届高三上学期期末考试 数学(文)试题)等比数列}{n a ,2=q ,前n 项和为=24a S S n ,则____________. 【答案】215解:在等比数列中,4141(12)1512a S a -==-,所以4121151522S a a a ==.20.(【解析】山东省实验中学2013届高三第一次诊断性测试数学(文)试题)数列{}n a 满足113,1,n n n n a a a a A +=-=表示{}n a 前n 项之积,则2013A =_____________.【答案】1-【解析】由113,1,n n n a a a a +=-=得11n n na a a +-=,所以231233a -==,312a =-,43a =,所以{}n a 是以3为周期的周期数列,且1231a a a =-,又20133671=⨯,所以6712013(1)1A =-=-.21.(山东省淄博市2013届高三复习阶段性检测(二模)数学(文)试题)在如图所示的数阵中,第9行的第2个数为___________.【答案】66 每行的第二个数构成一个数列{}n a ,由题意知23453,6,11,18a a a a ====,所以3243543,5,7,a a a a a a -=-=-=12(1)123n n a a n n --=--=-,等式两边同时相加得22[233](2)22n n n a a n n -+⨯--==-,所以()222223,2n a n n a n n n =-+=-+≥,所以29929366a =-⨯+=.22.(【解析】山东省泰安市2013届高三第一轮复习质量检测数学(文)试题)正项数列{}n a 满足:()222*121171,2,2,2,n n n a a a a a n N n a +-===+∈≥=则______.【答案】因为()222*112,2n n n a a a n N n +-=+∈≥,所以数列2{}n a 是以211a =为首项,以2221413d a a =-=-=为公差的等差数列,所以213(1)32n a n n =+-=-,所以1n a n =≥,所以7a ==23.(【解析】山东省潍坊市2013届高三第一次模拟考试文科数学)现有一根n 节的竹竿,自上而下每节的长度依次构成等差数列,最上面一节长为10cm,最下面的三节长度之和为114cm,第6节的长度是首节与末节长度的等比中项,则n=_____.【答案】16 设对应的数列为{}n a ,公差为,(0)d d >.由题意知110a =,12114n n n a a a --++=,261n a a a =.由12114n n n a a a --++=得13114n a -=,解得138n a -=,即2111(5)()n a d a a d -+=+,即2(105)10(38)d d +=+,解得2d =,所以11(2)38n a a n d -=+-=,即102(2)38n +-=,解得16n =.24.(【解析】山东省济宁市2013届高三第一次模拟考试文科数学 )已知等差数列{n a }中,35a a +=32,73a a -=8,则此数列的前10项和10S =____.【答案】190【解析】由7348a a d -==,解得2d =,由3532a a +=,解得110a =.所以101109101902S a d ⨯=+=. 25.(【解析】山东省潍坊市2013届高三第二次模拟考试文科数学)已知等差数列{}n a 的前n 项和为n S ,若2,4,3a 成等比数列,则5S =_________.【答案】40因为2,4,3a 成等比数列,所以232416a ==,所以38a =.又153535()525584022a a a S a +⨯====⨯=. 26.(【解析】山东省烟台市2013届高三上学期期末考试数学(文)试题)已知等比数列{a n }中,6710111,16a a a a ==g g ,则89a a g 等于_______【答案】4【解析】在等比数列中2676()10a a a q ==>g ,所以0q >,所以289670a a a a q =>g .所以67101116a a a a =,即289()16a a =g ,所以894a a =g .27.(【解析】山东省泰安市2013届高三上学期期末考试数学文)下面图形由小正方形组成,请观察图1至图4的规律,并依此规律,写出第n 个图形中小正方形的个数是___________.【答案】(1)2n n +【解析】12341,3,6,10a a a a ====,所以2132432,3,4a a a a a a -=-=-=, 1n n a a n --=,等式两边同时累加得123n a a n -=+++ ,即(1)122n n n a n +=+++=,所以第n 个图形中小正方形的个数是(1)2n n + 三、解答题28.(【解析】山东省烟台市2013届高三上学期期末考试数学(文)试题)已知数列{a n }的前n 项和为S n ,且22n n S a =-.(1)求数列{a n }的通项公式;(2)记1213(21)n n S a a n a =+++-g g L g ,求S n【答案】29.(【解析】山东省潍坊市2013届高三上学期期末考试数学文(a ))设数列{}n a 为等差数列,且9,553==a a ;数列{}n b 的前n 项和为n S ,且2=+n n b S . (I)求数列{}n a ,{}n b 的通项公式; (II)若()+∈=N n b a c nnn ,n T 为数列{}n c 的前n 项和,求n T . 【答案】30.(【解析】山东省滨州市2013届高三第一次(3月)模拟考试数学(文)试题)已知数列{}n a 的前n 项和是n S ,且11()2n n S a n *+=∈N (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设113log (1)()n n b S n *+=-∈N ,令122311n T b b b b =++11n n b b ++,求n T . 【答案】31.(【解析】山东省临沂市2013届高三5月高考模拟文科数学)已知点(1,2)是函数()(01)x f x a a a =≠>且的图象上一点,数列{}n a 的前n 项和()1n S f n =-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)将数列{}n a 前2013项中的第3项,第6项,,第3k 项删去,求数列{}n a 前2013项中剩余项的和.【答案】解:(Ⅰ)把点(1,2)代入函数()x f x a =,得2a =.()121,n n S f n ∴=-=-当1n =时,111211;a S ==-= 当2n ≥时,1n n n a S S -=-1(21)(21)n n -=---12n -=经验证可知1n =时,也适合上式,12n n a -∴=.(Ⅱ)由(Ⅰ)知数列{}n a 为等比数列,公比为2,故其第3项,第6项,,第2013项也为等比数列,首项31324,a -==公比32012201328,2a ==为其第671项∴此数列的和为67120134(18)4(21)187--=- 又数列{}n a 的前2013项和为2013201320131(12)21,12S ⨯-==--∴所求剩余项的和为2013201320134(21)3(21)(21)77----=32.(【解析】山东省实验中学2013届高三第三次诊断性测试文科数学)已知数列}{n a 的前n 项和为n S ,且)(14*∈+=N n a S n n . (Ⅰ)求21,a a ;(Ⅱ)设||log 3n n a b =,求数列{}n b 的通项公式.【答案】解:(1)由已知1411+=a S ,即31,14111=∴+=a a a ,又1422+=a S ,即91,1)42221-=∴+=+a a a a (;(2)当1>n 时,)1(41)1(4111+-+=-=--n n n n n a a S S a ,即13--=n n a a ,易知数列各项不为零(注:可不证不说),311-=∴-n n a a 对2≥n 恒成立, {}n a ∴是首项为31,公比为-31的等比数列,n n n n a ----=-=∴3)1()31(3111,n a n n -==∴-3log ||log 33,即n b n -=33.(【解析】山东省泰安市2013届高三上学期期末考试数学文)在等差数列{}n a 中,13a =,其前n 项和为n S ,等比数列{}n b 的各项均为正数,11b =,公比为q ,且222212,,n n S b S q a b b +==求与; 【答案】34.(【解析】山东省济宁市2013届高三1月份期末测试(数学文)解析)设数列{}n a 的前n 项和为n S ,若对于任意的正整数n 都有23n n S a n =-.(I)设3n n b a =+,求证:数列{}n b 是等比数列,并求出{}n a 的通项公式; (II)求数列{}n nb 的前n 项和T n .【答案】35.(【解析】山东省德州市2013届高三3月模拟检测文科数学)数列{}n a 是公差不小0的等差数列a 1、a 3,是函数2()1(66)f x n x x =-+的零点,数列{}n b 的前n 项和为n T ,且*12()n n T b n N =-∈ (1)求数列{}n a ,{}n b 的通项公式;(2)记n n n c a b =,求数列{}n c 的前n 项和S n .【答案】36.(【解析】山东省德州市2013届高三上学期期末校际联考数学(文))已知数列{a n }的公差为2的等差数列,它的前n 项和为n S ,且1321,1,1a a a +++成等比数列. (I)求{a n }的通项公式; (2)13{},.4n n n n T T S <记数列的前项求证: 【答案】37.(【解析】山东省济南市2013届高三上学期期末考试文科数学)已知等差数列{}n a 的前n 项和为n S ,且满足24a =,3417a a +=. (1)求{}n a 的通项公式; (2)设22n a n b +=,证明数列{}n b 是等比数列并求其前n 项和n T .【答案】解:(1)设等差数列{}n a 的公差为d .由题意知3411212317,4,a a a d a d a a d +=+++=⎧⎨=+=⎩解得,11a =,3d =, ∴32n a n =-(n N *∈) (2)由题意知, 2322n a n n b +==(n N *∈),3(1)33122n n n b ---==(,2n N n *∈≥)∴333312282n n n n b b --===(,2n N n *∈≥),又18b = ∴{}n b 是以18b =,公比为8的等比数列()()818881187n nn T -==-- 38.(山东省烟台市2013届高三3月诊断性测试数学文)设{a n }是正数组成的数列,a 1=3.若点()2*11,2()n n n a aa n N ++-∈在函数321()23f x x x =+-的导函数()y f x '=图像上. (1)求数列{a n }的通项公式; (2)设12n n nb a a +=⋅,是否存在最小的正数M,使得对任意n *N ∈都有b 1+b 2++b n <M 成立?请说明理由.【答案】39.(【解析】山东省济宁市2013届高三第一次模拟考试文科数学 )(本小题满分l2分)设数列{n a }满足:a 1=5,a n+1+4a n =5,(n ∈N*)(I)是否存在实数t ,使{a n +t }是等比数列?(Ⅱ)设数列b n =|a n |,求{b n }的前2013项和S 2013.【答案】解:(I)由+1+4=5n n a a 得+1=4+5n n a a -令()+1+=4+n n a t a t -,得+1=45n n a a t -- 则5=5t -,=1t - 从而()+11=41n n a a --- .又11=4a -, {}1n a ∴-是首项为4,公比为4-的等比数列,∴存在这样的实数=1t -,使{}+n a t 是等比数列(II)由(I)得()11=44n n a --⋅- ()=14nn a ∴--{1+4, 41==n n n n n n b a -∴为奇数,为偶数()()()()()123420132013122013=++=1+4+41+1+4+41++1+4S b b b ∴--1232013=4+4+4++4+1 201420144441=+1=143--- 40.(【解析】山东省枣庄市2013届高三3月模拟考试 数学(文)试题)已知等比数列13212{}1,6,,8n a q a a a a a >=-的公比且成等差数列.(1)求数列{a n }的通项公式;(2)设(1),: 1.n n nn n b b a +=≤求证 【答案】41.(【解析】山东省青岛市2013届高三第一次模拟考试文科数学)已知N n *∈,数列{}n d 满足2)1(3nn d -+=,数列{}n a 满足1232n n a d d d d =+++⋅⋅⋅+;数列{}n b 为公比大于1的等比数列,且42,b b 为方程064202=+-x x 的两个不相等的实根.(Ⅰ)求数列{}n a 和数列{}n b 的通项公式;(Ⅱ)将数列{}n b 中的第.1a 项,第.2a 项,第.3a 项,,第.n a 项,删去后剩余的项按从小到大的顺序排成新数列{}n c ,求数列{}n c 的前2013项和.【答案】解:(Ⅰ)2)1(3n n d -+= ,∴1232n n a d d d d =+++⋅⋅⋅+3232nn ⨯== 因为42,b b 为方程064202=+-x x 的两个不相等的实数根. 所以2042=+b b ,6442=⋅b b 解得:42=b ,164=b ,所以:n n b 2=(Ⅱ)由题知将数列{}n b 中的第3项、第6项、第9项删去后构成的新数列{}n c 中的奇数列与偶数列仍成等比数列,首项分别是12b =,24b =公比均是,8201313520132462012()()T c c c c c c c c =+++⋅⋅⋅+++++⋅⋅⋅+ 1007100610062(18)4(18)208618187⨯-⨯-⨯-=+=-- 42.(【解析】山东省潍坊市2013届高三第一次模拟考试文科数学)已知数列{}n a 的各项排成如图所示的三角形数阵,数阵中每一行的第一个数1247,,,,a a a a ⋅⋅⋅构成等差数列{}n b ,n S 是{}n b 的前n 项和,且1151,15b a S ===( I )若数阵中从第三行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知916a =,求50a 的值; (Ⅱ)设122111n n n nT S S S ++=++⋅⋅⋅+,求n T.【答案】解:(Ⅰ){}n b 为等差数列,设公差为155,1,15,51015,1d b S S d d ==∴=+== 1(1)1.n b n n ∴=+-⨯=设从第3行起,每行的公比都是q ,且0q >,2294,416,2,a b q q q === 1.+2+3++9=45,故50a 是数阵中第10行第5个数, 而445010102160.a b q ==⨯= (Ⅱ)12n S =++ (1),2n n n ++=1211n n n T S S ++∴=++21nS +22(1)(2)(2)(3)n n n n =++++++22(21)n n ++11112(1223n n n n =-+-+++++11)221n n +-+ 1122().121(1)(21)n n n n n =-=++++43.(山东省青岛即墨市2013届高三上学期期末考试 数学(文)试题)等差数列}{n a 中,9,155432==++a a a a . (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)设213+=n a n b ,求数列},21{n n b a +的前n 项和n S 【答案】解:(Ⅰ)设数列{}由题意得首项的公差为,1a d a n且⎩⎨⎧=+=+⎩⎨⎧==++941563915115432d a d a a a a a 即 解得⎩⎨⎧==211d a所以数列{}12-=n a a n n 的通项公式为 (Ⅱ)由(Ⅰ)可得n n n a b 3231==+ 所以n n n n b a 3..21=+ 所以+++=323.33.23.11n S 13.+n n两式相减得++++-=433333(22n S 13.)3+++n n n 10 分43).12(323..1233.31313111+++-+=-+=+---=n n n n n n S n n n 即)()(44.(【解析】山东省潍坊市2013届高三第二次模拟考试文科数学)某工厂为扩大生产规模,今年年初新购置了一条高性能的生产线,该生产线在使用过程中的维护费用会逐年增加,第一年的维护费用是4万元,从第二年到第七年,每年的维护费用均比上年增加2万元,从第八年开始,每年的维护费用比上年增加25%(I)设第n 年该生产线的维护费用为n a ,求n a 的表达式; (Ⅱ)设该生产线前n 年维护费为n S ,求n S .【答案】45.(山东省威海市2013届高三上学期期末考试文科数学)已知数列{}n a ,15a =-,22a =-,记()A n =12n a a a +++ ,23()B n a a =+1n a +++ ,()C n =342+n a a a +++ (*N n ∈),若对于任意*N n ∈,()A n ,()B n ,()C n 成等差数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ) 求数列{}||n a 的前n 项和.【答案】解:(Ⅰ)根据题意()A n ,()B n ,()C n 成等差数列∴()+()2()A n C n B n =整理得2121253n n a a a a ++-=-=-+= ∴数列{}n a 是首项为5-,公差为3的等差数列 ∴53(1)38n a n n =-+-=- (Ⅱ)38,2||38,3n n n a n n -+≤⎧=⎨-≥⎩记数列{}||n a 的前n 项和为n S .当2n ≤时,2(583)313222n n n n S n +-==-+ 当3n ≥时,2(2)(138)313714222n n n n S n -+-=+=-+综上,2231322231314322n n n n S n n n ⎧-+≤⎪⎪=⎨⎪-+≥⎪⎩ 46.(【解析】山东省实验中学2013届高三第一次诊断性测试数学(文)试题)已知{}n a 是公比大于1的等经数列,13,a a 是函数9()10f x x x=+-的两个零点(1)求数列{}n a 的通项公式;(2)若数列{}n a 满足312312,80n n b og n b b b b =+++++≥ 且,求n 的最小值.【答案】47.(【解析】山东省济南市2013届高三3月高考模拟文科数学)正项等比数列}{n a 的前n 项和为n S ,164=a ,且32,a a 的等差中项为2S . (1)求数列}{n a 的通项公式; (2)设12-=n n a n b ,求数列}{n b 的前n 项和n T .【答案】解:(1)设等比数列}{n a 的公比为)0(>q q ,由题意,得⎪⎩⎪⎨⎧+=+=)(2161121131q a a q a q a q a ,解得⎩⎨⎧==221q a所以n n a 2= (2)因为12122--==n n n n a n b ,所以12753224232221-+++++=n n nT , 121275322123222141+-+-++++=n n n nn T , 所以12127532212121212143+--+++++=n n n n T122411)411(21+---=n n n 12233432+⋅+-=n n故2181612992n n nT ++=-⋅ 48.(山东省淄博市2013届高三复习阶段性检测(二模)数学(文)试题)等比数列....{}n c 满足(){}1*1104,n n n n c c n N a -++=⋅∈数列的前n 项和为n S ,且2log .n n a c =(I)求,n n a S ;(II)数列{}{}1,41n n n n n b b T b S =-满足为数列的前n 项和,是否存在正整数m,()1m >,使得16,,m m T T T 成等比数列?若存在,求出所有m 的值;若不存在,请说明理由.【答案】解: (Ⅰ)40,103221=+=+c c c c ,所以公比4=q10411=+c c 得21=c121242--=⋅=n n n c所以212log 221n n a n -==-21()[1(21)]22n n n a a n n S n ++-=== (Ⅱ)由(Ⅰ)知211114122121n b n n n ⎛⎫==- ⎪--+⎝⎭于是11111112335212121n n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎣⎦假设存在正整数()1m m >,使得16,,m m T T T 成等比数列,则216213121m m m m ⎛⎫=⨯ ⎪++⎝⎭, 整理得24720m m --=, 解得14m =-或 2m = 由,1m N m *∈>,得2m =, 因此,存在正整数2m =,使得16,,m m T T T 成等比数列49.(【解析】山东省临沂市2013届高三3月教学质量检测考试(一模)数学(文)试题)已知等比数列{n a }的首项为l,公比q≠1,n S 为其前n 项和,a l ,a 2,a 3分别为某等差数列的第一、第二、第四项.(I)求n a 和n S ;(Ⅱ)设21n n b log a +=,数列{21n n b b +}的前n 项和为T n ,求证:34n T <.【答案】50.(【解析】山东省烟台市2013届高三5月适应性练习(一)文科数学)在等差数列{}n a 中,a 1 =3,其前n项和为S n ,等比数列{b n }的各项均为正数,b 1 =1,公比为q,且b 2 +S 2 =12, q=22S b . (1)求a n 与b n ; (2)设数列{C n }满足c n =1nS ,求{n c }的前n 项和T n . 【答案】51.(【解析】山东省青岛一中2013届高三1月调研考试文科数学)已知等差数列{}n a 的首项1a =1,公差d>0,且第2项、第5项、第14项分别为等比数列{}n b 的第2项、第3项、第4项. (1)求数列{}n a 与{}n b 的通项公式; (2)设数列{n c }对n ∈N +均有11c b +22c b ++nnc b =1n a +成立,求1c +2c 3c ++2012c . 【答案】.解答:(1)由已知得2a =1+d, 5a =1+4d, 14a =1+13d,∴2(14)d +=(1+d)(1+13d), ∴d=2, n a =2n-1又2b =2a =3,3b = 5a =9 ∴数列{n b }的公比为3,n b =3⋅23n -=13n -(2)由11c b +22c b ++nnc b =1n a + (1) 当n=1时,11c b =2a =3, ∴1c =3当n>1时,11c b +22c b ++11n n c b --= n a (2) (1)-(2)得nnc b =1n a +-n a =2 ∴n c =2n b =2⋅13n - 对1c 不适用∴n c =131232n n n -=⎧⎨∙≥⎩∴123c c c +++2012c =3+2⋅3+2⋅23++2⋅20113=1+2⋅1+2⋅3+2⋅23++2⋅20113=1+2⋅20121313--=2012352.(【解析】山东省泰安市2013届高三第一轮复习质量检测数学(文)试题)设等比数列{}n a 的前n 项和为,415349,,,n S a a a a a =-成等差数列.(I)求数列{}n a 的通项公式;(II)证明:对任意21,,,k k k R N S S S +++∈成等差数列.【答案】。
文科高考数学立体几何大题求各类体积方法
A BCD PA B CDP文科高考数学立体几何大题求各类体积方法【三年真题重温】1.【2011⋅新课标全国理,18】如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,∠DAB =60,2AB AD =,PD ⊥底面ABCD . (Ⅰ) 证明:PA ⊥BD ;(Ⅱ) 若PD AD =,求二面角A PB C --的余弦值. 2.【2011 新课标全国文,18】如图,四棱锥P ABCD -中,底面ABCD 为平行四边形.60,2,DAB AB AD PD ∠==⊥底面ABCD .(Ⅰ) 证明:PA BD ⊥;(Ⅱ) 设1PD AD ==,求棱锥D PBC -的高.根据DE PB PD BD ⋅=⋅,得32DE =.即棱锥D PBC -的高为32.3.【2010 新课标全国理,18】如图,已知四棱锥P-ABCD 的底面为等腰梯形,AB CD,AC ⊥BD ,垂足为H ,PH 是四棱锥的高 ,E 为AD 中点.(1) 证明:PE ⊥BC(2) 若∠APB=∠ADB=60°,求直线PA 与平面PEH 所成角的正弦值【解析】命题意图:本题主要考查空间几何体中的位置关系、线面所成的角等知识,考查空间想象能力以及利用向量法研究空间的位置关系以及线面角问题的能力.4.【2010 新课标全国文,18】如图,已知四棱锥P ABCD -的底面为等腰梯形,AB ∥CD ,AC BD ⊥,垂足为H ,PH 是四棱锥的高。
(Ⅰ)证明:平面PAC ⊥ 平面PBD ; (Ⅱ)若6AB =,APB ADB ∠=∠=60°,求四棱锥P ABCD -的体积。
5.【2012 新课标全国理】(本小题满分12分)如图,直三棱柱111ABC A B C -中,112AC BC AA ==, D 是棱1AA 的中点,BD DC ⊥1(1)证明:BC DC ⊥1(2)求二面角11C BD A --的大小。
6.【2012 新课标全国文】(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点(I)证明:平面BDC 1⊥平面BDC(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比。
山东省威海市文登一中高二数学上学期第二次段考试卷
2015-2016学年山东省威海市文登一中高二(上)第二次段考数学试卷(理科)一.选择题:(每小题5分,共10题)1 .符合下列条件的三角形有且只有一个的是()A.a=1,b=2,c=3 B.a=1,b=,∠A=30°C.a=1,b=2,∠A=100°D.b=c=1,∠B=45°2.在等比数列{a n}中,如果公比q>1,那么等比数列{a n}是()A.递增数列B.递减数列C.常数列D.递增数列或递减数列都有可能3.在△ABC中,若acosA=bcosB,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形4.函数f(x)=(x<0),取得最大值为()A.﹣2﹣2 B.2﹣2C.2﹣2 D.2+25.若{a n}是等差数列,首项a1>0,a4+a5>0,a4•a5<0,则使前n项和S n>0成立的最大自然数n的值为()A.4 B.5 C.7 D.86.如果方程+(m﹣1)x+m2﹣2=0的两个实根一个小于﹣1,另一个大于1,那么实数m 的取值范是()A.(﹣,)B.(﹣2,1)C.(0,1) D.(﹣2,0)7.如图所示的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则实数a+b的值为()1 20.5 1abA.B.C.D.8.对于任意实数a、b、c、d,下列命题:①若a>b,c≠0,则ac>bc;②若a>b,则ac2>bc2;③若ac2>bc2,则a>b;④若a>b,则<中.真命题个数为()A.1个B.2个C.3个D.4个9.已知三角形△ABC的三边长成公差为2的等差数列,且最大角的正弦值为,则这个三角形的周长是()A.18 B.21 C.24 D.1510.张先生从2005年起,每年1月1日到银行新存入a元(一年定期),若年利率为r保持不变,且每年到期存款自动转为新的一年定期,那么到2012年1月1日将所有存款及利息全部取回,他可取回的钱数为(单位为元)()A. B. C.a(1+r)7D.a(1+r)8二.填空题(每小题5分,共5题)11 .不等式≤x的解集是.12.不等式(a﹣2)x2+2(a﹣2)x﹣4<0对一切x∈R恒成立,则实数a的取值范围是.13.数列{a n}的前n项和为S n=n2+n+1,b n=(﹣1)n a n,n∈N*则数列{b n}的前50项的和为.14.等差数列{a n}中,若a4+a6+a8+a10+a12=50,则3a10﹣a14的值为.15.如图,一艘轮船按照北偏西40°的方向以30海里每小时的速度航行,一个灯塔原来在轮船的北偏东20°方向上,经过40分钟后,灯塔在轮船的北偏东65°方向上,则灯塔和轮船原来的距离为.三、解答题(共6小题,满分75分)16.在△ABC中,角A,B,C的对边分别为a,b,c,已知.(Ⅰ)求角B的大小;(Ⅱ)若b=,a+c=4,求△ABC的面积.17.(1)不等式ax2+5x﹣2>0解是,解不等式ax2﹣5x+a2﹣1>0;(2)求不等式|2x﹣1|+|x+2|≥4的解集.18.设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13 (Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.19.若a为实数,解关于x的不等式ax2+(a﹣2)x﹣2<0.20.在△ABC中,角A、B、C所对的边分别是a、b、c,且a2+c2﹣b2=ac.(1)求2sin2+sin2B的值.(2)若b=2,求△ABC面积的最大值.21.数列{a n}是首项a1=4的等比数列,且S3,S2,S4成等差数列,(1)求数列{a n}的通项公式;(2)若b n=log2|a n|,设T n为数列的前n项和,若T n≤λb n+1对一切n∈N*恒成立,求实数λ的最小值.2015-2016学年山东省威海市文登一中高二(上)第二次段考数学试卷(理科)参考答案与试题解析一.选择题:(每小题5分,共10题)1 .符合下列条件的三角形有且只有一个的是()A.a=1,b=2,c=3 B.a=1,b=,∠A=30°C.a=1,b=2,∠A=100°D.b=c=1,∠B=45°【考点】正弦定理的应用.【专题】计算题.【分析】A无解,因为三角形任意两边之和大于第三边,而这里a+b=c.B有2个解,由正弦定理可得 sinB=,故B=45°,或B=135°.C无解,由于a<b,∴A=100°<B,∴A+B>200°,这与三角形的内角和相矛盾.D有唯一解,∵b=c=1,∠B=45°,∴∠C=45°,∴∠A=90°.【解答】解:A无解,因为三角形任意两边之和大于第三边,而这里a+b=c,故这样的三角形不存在.B有2个解,由正弦定理可得,∴sinB=,故B=45°,或 B=135°.C无解,由于a<b,∴A=100°<B,∴A+B>200°,这与三角形的内角和相矛盾.D有唯一解,∵b=c=1,∠B=45°,∴∠C=45°,∴∠A=90°,故有唯一解.故选D.【点评】本题考查正弦定理的应用,三角形的解的个数判断,根据三角函数的值求角.根据三角函数的值求角是解题的难点.2.在等比数列{a n}中,如果公比q>1,那么等比数列{a n}是()A.递增数列B.递减数列C.常数列D.递增数列或递减数列都有可能【考点】等比数列的通项公式.【专题】等差数列与等比数列.【分析】对a1分类讨论即可得出单调性.【解答】解:在等比数列{a n}中,公比q>1,若a1>0,则数列{a n}是单调递增数列;若a1<0,则数列{a n}是单调递增数列.故选:D.【点评】本题考查了等比数列的单调性、分类讨论方法,考查了推理能力与计算能力,属于中档题.3.在△ABC中,若acosA=bcosB,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形【考点】三角形的形状判断.【专题】计算题.【分析】利用正弦定理化简已知的等式,再根据二倍角的正弦函数公式变形后,得到sin2A=sin2B,由A和B都为三角形的内角,可得A=B或A+B=90°,从而得到三角形ABC为等腰三角形或直角三角形.【解答】解:由正弦定理asinA=bsinB化简已知的等式得:sinAcosA=sinBcosB,∴sin2A=sin2B,∴sin2A=sin2B,又A和B都为三角形的内角,∴2A=2B或2A+2B=π,即A=B或A+B=,则△ABC为等腰或直角三角形.故选D【点评】此题考查了三角形形状的判断,涉及的知识有正弦定理,二倍角的正弦函数公式,以及正弦函数的图象与性质,其中正弦定理很好得解决了三角形的边角关系,利用正弦定理化简已知的等式是本题的突破点.4.函数f(x)=(x<0),取得最大值为()A.﹣2﹣2 B.2﹣2C.2﹣2 D.2+2【考点】函数的最值及其几何意义.【专题】不等式的解法及应用.【分析】由于x<0,可由x+≤﹣2,即可得到最大值.【解答】解:函数f(x)=(x<0)=x+﹣2≤﹣2﹣2=﹣(2+2),当且仅当x=,即x=﹣时,f(x)取得最大值﹣(2+2).故选A.【点评】本题考查函数的最值的求法,注意运用基本不等式,同时注意满足的条件:一正二定三等,属于基础题和易错题.5.若{a n}是等差数列,首项a1>0,a4+a5>0,a4•a5<0,则使前n项和S n>0成立的最大自然数n的值为()A.4 B.5 C.7 D.8【考点】等差数列的前n项和.【专题】等差数列与等比数列.【分析】由已知结合等差数列的单调性可得a4+a5>0,a5<0,由求和公式可得S9<0,S8>0,可得结论.【解答】解:∵{a n}是等差数列,首项a1>0,a4+a5>0,a4•a5<0,∴a4,a5必定一正一负,结合等差数列的单调性可得a4>0,a5<0,∴S9===9a5<0,S8==>0,∴使前n项和S n>0成立的最大自然数n的值为8故选D【点评】本题考查等差数列的前n项的最值,理清数列项的正负变化是解决问题的关键,属基础题.6.如果方程+(m﹣1)x+m2﹣2=0的两个实根一个小于﹣1,另一个大于1,那么实数m 的取值范是()A.(﹣,)B.(﹣2,1)C.(0,1) D.(﹣2,0)【考点】一元二次方程的根的分布与系数的关系.【分析】构建函数f(x)=+(m﹣1)x+m2﹣2,根据两个实根一个小于﹣1,另一个大于1,可得f(﹣1)<0,f(1)<0,从而可求实数m的取值范围.【解答】解:由题意,构建函数f(x)=+(m﹣1)x+m2﹣2∵两个实根一个小于﹣1,另一个大于1∴f(﹣1)<0,f(1)<0∴0<m<1故选C.【点评】本题以方程为载体,考查方程根的讨论,关键是构建函数,用函数思想求解.7.如图所示的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则实数a+b的值为()1 20.5 1abA.B.C.D.【考点】等比数列的性质;等差数列的性质.【专题】计算题.【分析】由题意和等差(等比)数列,分别求出第一列数、第二列数和第四行数,即求出a 和b的值,相加即可.【解答】解:由题意知,第一列数为:1,0.5,0.25,0.125;第二列数为:2,1,0.5,0.25;故第四行数为:0.125,0.25,0.375;故可得即a=0.5,b=0.375,则a+b=0.875=.故选C【点评】本题考查等差(等比)数列的通项公式的应用,利用表格给出条件,题目新颖,属基础题.8.对于任意实数a、b、c、d,下列命题:①若a>b,c≠0,则ac>bc;②若a>b,则ac2>bc2;③若ac2>bc2,则a>b;④若a>b,则<中.真命题个数为()A.1个B.2个C.3个D.4个【考点】不等式的基本性质.【专题】不等式的解法及应用.【分析】根据不等式的基本性质,逐一分析四个结论的真假,最后综合讨论结果可得答案.【解答】解:当c<0时,若a>b,则ac<bc,故①错误;当c=0时,若a>b,则ac2=bc2,故②错误;若ac2>bc2,则c2>0,则a>b,故③正确;若a>0>b,则>,故④错误;故真命题个数为1个,故选:A【点评】本题考查的知识点是不等式的基本性质,熟练掌握不等式的基本性质是解答的关键.9.已知三角形△ABC的三边长成公差为2的等差数列,且最大角的正弦值为,则这个三角形的周长是()A.18 B.21 C.24 D.15【考点】数列与三角函数的综合.【专题】综合题.【分析】设三角形的三边分别为a、b、c,且a>b>c>0,设公差为d=2,三个角分别为、A、B、C,则a﹣b=b﹣c=2,a=c+4,b=c+2,因为sinA=,所以A=60°或120°.若A=60°,因为三条边不相等,则必有角大于A,矛盾,故A=120°.由余弦定理能求出三边长,从而得到这个三角形的周长.【解答】解:不妨设三角形的三边分别为a、b、c,且a>b>c>0,设公差为d=2,三个角分别为、A、B、C,则a﹣b=b﹣c=2,a=c+4,b=c+2,∵sinA=,∴A=60°或120°.若A=60°,因为三条边不相等,则必有角大于A,矛盾,故A=120°.cosA====﹣.∴c=3,∴b=c+2=5,a=c+4=7.∴这个三角形的周长=3+5+7=15.故选D.【点评】本题考查三角形的周长的求法,考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.解题是要认真审题,注意余弦定理的合理运用.10.张先生从2005年起,每年1月1日到银行新存入a元(一年定期),若年利率为r保持不变,且每年到期存款自动转为新的一年定期,那么到2012年1月1日将所有存款及利息全部取回,他可取回的钱数为(单位为元)()A. B. C.a(1+r)7D.a(1+r)8【考点】等比数列的前n项和.【专题】等差数列与等比数列.【分析】由题意可得:到2012年1月1日将所有存款及利息全部=a(1+r)+a(1+r)2+…+a (1+r)7,利用等比数列的前n项和公式即可得出.【解答】解:由题意可得:2006年1月1日本息合计为:a(1+r);2007年1月1日本息合计为:a(1+r)+a(1+r)2,…,那么到2012年1月1日将所有存款及利息全部=a(1+r)+a(1+r)2+…+a(1+r)7=a(1+r)=元,故选:A.【点评】本题考查了等比数列的通项公式、前n项和公式,考查了推理能力与计算能力,属于中档题.二.填空题(每小题5分,共5题)11 .不等式≤x的解集是{x|﹣1≤x<0或x≥1}.【考点】其他不等式的解法.【专题】不等式的解法及应用.【分析】本题可以先移项再通分,再分类讨论,转化为整式不等式组,再解整式不等式组,得本题答案.【解答】解:∵≤x,∴,∴.∴.∴或,∴x≥1或﹣1≤x<0.∴不等式≤x的解集是{x|﹣1≤x<0或x≥1}.故答案为:{x|﹣1≤x<0或x≥1}.【点评】本题考查的是分式不等式的解法,可以移项通分后进行分类讨论,也可以移项通分后直接化成整式不等式,本题有一定的难度,属于中档题.12.不等式(a﹣2)x2+2(a﹣2)x﹣4<0对一切x∈R恒成立,则实数a的取值范围是(﹣2,2] .【考点】函数恒成立问题;二次函数的性质.【专题】计算题.【分析】当a﹣2=0,a=2时不等式即为﹣4<0,对一切x∈R恒成立,当a≠2时利用二次函数的性质列出a满足的条件并计算,最后两部分的合并即为所求范围.【解答】解:当a﹣2=0,a=2时不等式即为﹣4<0,对一切x∈R恒成立①当a≠2时,则须即∴﹣2<a<2 ②由①②得实数a的取值范围是(﹣2,2]故答案为:(﹣2,2]【点评】本题考查不等式恒成立的参数取值范围,考查二次函数的性质.注意对二次项系数是否为0进行讨论.13.数列{a n}的前n项和为S n=n2+n+1,b n=(﹣1)n a n,n∈N*则数列{b n}的前50项的和为55 .【考点】数列的求和.【专题】等差数列与等比数列.【分析】利用递推关系可得:.b n=(﹣1)n a n,n∈N*则数列{b n}的前50项的和=3+2[(2﹣3)+(4﹣5)+…+(48﹣49)+50],即可得出.【解答】解:数列{a n}的前n项和为S n=n2+n+1,∴当n=1时,a1=S1=3;当n≥2时,a n=S n﹣S n﹣1=(n2+n+1)﹣[(n﹣1)2+(n﹣1)+1]=2n.∴.b n=(﹣1)n a n,n∈N*则数列{b n}的前50项的和=3+2(2﹣3+ (50)=3+2[(2﹣3)+(4﹣5)+…+(48﹣49)+50]=3+2(﹣24+50)=55.故答案为:55.【点评】本题考查了递推关系的应用、分组求和方法,考查了推理能力与计算能力,属于中档题.14.等差数列{a n}中,若a4+a6+a8+a10+a12=50,则3a10﹣a14的值为20 .【考点】等差数列的通项公式.【专题】等差数列与等比数列.【分析】由等差数列的性质可得:50=a4+a6+a8+a10+a12=5a8,解得a8.3a10﹣a14=a10+(a6+a14)﹣a14=a10+a6=2a8,即可得出.【解答】解:由等差数列的性质可得:50=a4+a6+a8+a10+a12=5a8,解得a8=10.∴3a10﹣a14=a10+(a6+a14)﹣a14=a10+a6=2a8=20.故答案为:20.【点评】本题考查了等差数列的性质,考查了推理能力与计算能力,属于中档题.15.如图,一艘轮船按照北偏西40°的方向以30海里每小时的速度航行,一个灯塔原来在轮船的北偏东20°方向上,经过40分钟后,灯塔在轮船的北偏东65°方向上,则灯塔和轮船原来的距离为10(+1)海里.【考点】解三角形的实际应用.【专题】计算题;解三角形.【分析】首先将实际问题抽象成解三角形问题,再借助于正弦定理求出边长.【解答】解:由题意可知△A1A2M中,A1A2=20,∠A2A1N=60°,∠A1A2M=75°,∴∠M=45°,由正弦定理可得,∴A1M=10(+1),故答案为:10(+1)海里.【点评】本题考查解三角形的实际应用,考查学生的计算能力,比较基础.三、解答题(共6小题,满分75分)16.在△ABC中,角A,B,C的对边分别为a,b,c,已知.(Ⅰ)求角B的大小;(Ⅱ)若b=,a+c=4,求△ABC的面积.【考点】余弦定理;三角函数中的恒等变换应用.【专题】计算题;解三角形.【分析】(Ⅰ)由已知根据三角函数中的恒等变换应用可解得,从而得即可求B的值.(Ⅱ)由余弦定理可得ac=1,代入三角形面积公式即可得解.【解答】解:(Ⅰ)由已知得,即有,…∵sinA≠0,∴,∵cosB≠0,∴…∵B∈(0,π),∴.…(Ⅱ)由b2=a2+c2﹣2accosB=(a+c)2﹣2ac(1+cosB),∴,∴ac=1,…∴.…【点评】本题主要考查了余弦定理、三角形面积公式的应用,三角函数中的恒等变换的应用,属于基础题.17.(1)不等式ax2+5x﹣2>0解是,解不等式ax2﹣5x+a2﹣1>0;(2)求不等式|2x﹣1|+|x+2|≥4的解集.【考点】绝对值不等式的解法;一元二次不等式的解法.【专题】不等式的解法及应用.【分析】(1)由条件利用韦达定理求得a的值,从而求得不等式ax2﹣5x+a2﹣1>0的解集.(2)把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.【解答】解:(1)∵不等式ax2+5x﹣2>0解是,∴ +2=﹣×2=,求得a=﹣2,不等式ax2﹣5x+a2﹣1>0,即﹣2x2﹣5x+3>0,即2x2+5x﹣3<0,求得﹣3<x <,故不等式ax2﹣5x+a2﹣1>0的解集为{x|﹣3<x<}.(2)求不等式|2x﹣1|+|x+2|≥4,等价于①,或②,或.解①求得x<﹣2,解②求得﹣2≤x≤﹣1,解③求得x≥1,综上可得,原不等式的解集为{x|x≤﹣1,或x≥1}.【点评】本题主要考查绝对值不等式的解法,一元二次不等式的解法,韦达定理,体现了分类讨论、等价转化的数学思想,属于中档题.18.设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13 (Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.【考点】等差数列的通项公式;等比数列的通项公式;数列的求和.【专题】等差数列与等比数列.【分析】(Ⅰ)设{a n}的公差为d,{b n}的公比为q,根据等比数列和等差数列的通项公式,联立方程求得d和q,进而可得{a n}、{b n}的通项公式.(Ⅱ)数列的通项公式由等差和等比数列构成,进而可用错位相减法求得前n项和S n.【解答】解:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,则依题意有q>0且解得d=2,q=2.所以a n=1+(n﹣1)d=2n﹣1,b n=q n﹣1=2n﹣1.(Ⅱ),,①S n=,②①﹣②得S n=1+2(++…+)﹣,则===.【点评】本题主要考查等差数列的通项公式和用错位相减法求和.19.若a为实数,解关于x的不等式ax2+(a﹣2)x﹣2<0.【考点】一元二次不等式的解法.【专题】分类讨论;不等式的解法及应用.【分析】讨论a=0和a>0与a<0时,不等式的解集是什么,求出对应的解集即可.【解答】解:当a=0时,不等式化为﹣2x﹣2<0,解得{x|x>﹣1};当a≠0时,不等式化为(x+1)(ax﹣2)<0,若a>0,则不等式化为(x+1)(x﹣)<0,且﹣1<,∴不等式的解集为{x|﹣1<x<};若a<0,则不等式化为(x+1)(x﹣)>0,当=﹣1,即a=﹣2时,不等式化为(x+1)2>0,解得{x|x≠﹣1};当a<﹣2,即>﹣1时,不等式的解集为{x|x>,或x<﹣1};当﹣2<a<0,即<﹣1时,不等式的解集为{x|x<,或x>﹣1}.综上,a=0时,不等式的解集为{x|x>﹣1},a>0时,不等式的解集为{x|﹣1<x<},﹣2<a<0时,不等式的解集为{x|x<,或x>﹣1},a=﹣2时,不等式的解集为{x|x≠﹣1},a<﹣2时,不等式的解集为{x|x>,或x<﹣1}.【点评】本题考查了含有字母系数的不等式的解法与应用问题,也考查了分类讨论思想的应用问题,是中档题目.20.在△ABC中,角A、B、C所对的边分别是a、b、c,且a2+c2﹣b2=ac.(1)求2sin2+sin2B的值.(2)若b=2,求△ABC面积的最大值.【考点】余弦定理;正弦定理.【专题】解三角形.【分析】(1)由余弦定理化简已知可得cosB=,结合范围0<B<π,解得sinB,利用三角函数恒等变换的应用即可得解.(2)由题意可得a2+c2=ac+4,由基本不等式得a2+c2=ac+4≥2ac,解得:ac≤5,即可求得△ABC面积的最大值为2.【解答】解:(1)∵a2+c2﹣b2=ac,又由余弦定理可得:a2+c2﹣b2=2accosB,∴ac=2accosB,解得:cosB=,∵0<B<π,解得:sinB==.∴2sin2+sin2B=1﹣cos(A+C)+sin2B=1+cosB+2sinBcosB=1=.(2)∵b=2,a2+c2﹣b2=ac.∴a2+c2=ac+4.∴a2+c2=ac+4≥2ac,解得:ac≤5,∴S△ABC=acsinB≤=2.故△ABC面积的最大值为2.【点评】本题主要考查了余弦定理,三角函数恒等变换的应用,基本不等式的应用,三角形面积公式的应用,属于基础题.21.数列{a n}是首项a1=4的等比数列,且S3,S2,S4成等差数列,(1)求数列{a n}的通项公式;(2)若b n=log2|a n|,设T n为数列的前n项和,若T n≤λb n+1对一切n∈N*恒成立,求实数λ的最小值.【考点】函数恒成立问题;等比数列的通项公式;等差数列的性质;数列与不等式的综合.【专题】计算题.【分析】(1)根据S3,S2,S4成等差数列建立等式关系,然后可求出公比q,根据等比数列的性质求出通项公式即可;(2)先求出数列b n的通项公式,然后利用裂项求和法求出数列的前n项和T n,将λ分离出来得λ≥,利用基本不等式求出不等式右侧的最大值即可求出所求.【解答】解:(1)∵S3,S2,S4成等差数列∴2S2=S3+S4即2(a1+a2)=2(a1+a2+a3)+a4所以a4=﹣2a3∴q=﹣2a n=a1q n﹣1=(﹣2)n+1(2)b n=log2|a n|=log22n+1=n+1=T n=(﹣)+(﹣)+…+()=﹣λ≥==×。
高中数学选择性必修二 高二上学期数学期末测试卷(A卷 夯实基础)同步单元AB卷(含答案)
班级 姓名 学号 分数高二上学期数学期末测试卷(A 卷·夯实基础)注意事项:本试卷满分150分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、单项选择题(本大题共8小题,每小题5分,共40分)1.过两点()()5,,3,1A y B -的直线的倾斜角是135°,则y 等于( ) A .2 B .2- C .3 D .3-【答案】D 【详解】因为斜率tan1351k ︒==-,所以1153y k +==--,得3y =-. 故选:D.2.40y --=,经直线10x y +-=反射,则反射光线所在直线的方程是( ) A50y ++= B.40x += C.50x += D.0x +=【答案】C 【详解】40y --=,令0x =,解得4y =-, 设()0,4A -,关于直线10x y +-=的对称点为(),B m n , 则4141022n mm n +⎧=⎪⎪⎨-⎪+-=⎪⎩,解得51m n =⎧⎨=⎩,即()5,1B ,40y --=,令x =1y =-,设)1C-,关于直线10x y +-=的对称点为(),D a b ,则11102b =--=,解得21a b =⎧⎪⎨=⎪⎩(2,1D ,BD k ==直线BD:)15y x -=-,即50x =。
故选:C3.已知异面直线,a b 的方向向量分别是()()2,1,3,1,3,2m n --==,则,a b 夹角的大小是( ) A .56πB .34π C .3π D .6π【答案】C 【详解】异面直线,a b 的方向向量分别是()()2,1,3,1,3,2m n --==∴21132371cos ,1424m n m n m n⨯+⨯-+⨯-⋅-====-, 异面直线,a b 所成角为范围为02πθ<≤,,a b ∴夹角的大小是3π故选:C4.设数列{}n a 的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16C .49D .64【答案】A 【详解】878644915a S S =-=-= 故选:A5.已知在等比数列{}n a 中,3544a a a =,等差数列{}n b 的前n 项和为n S ,且74b a =,则13S =( ) A .26 B .52 C .78 D .104【答案】B 【详解】因为在等比数列{}n a 中,3544a a a =,可得2444a a =,40a ≠,解得44a =,又因为数列{}n b 是等差数列,744b a ==,则()13113711313134522S b b b =⨯+==⨯=.故选:B.6.直三棱柱111ABC A B C -中,90BCA ∠=,M 、N 分别是11A B 、11A C 的中点,1BC CA CC ==,则BM 与NA 所成的角的余弦值为( )A .BCD . 【答案】C 【详解】由题意可知1CC ⊥平面ABC ,且90BCA ∠=,以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设12BC CA CC ===,则()2,0,0A 、()0,2,0B 、()1,0,2N 、()1,1,2M ,()1,0,2AN =-,()1,1,2BM =-,30cos ,56AN BM AN BM AN BM⋅<>===⨯⋅故BM 与NA 30故选:C.7.设抛物线C :y 2=4x 的焦点为F ,M 为抛物线C 上一点,N (2,2),则MF MN +的最小值为( ) A .3 B .2C .1D .4【答案】A 【详解】因为抛物线C :y 2=4x 的焦点为F (1,0),准线为1x =-, 根据抛物线定义可知MF =1M x +,所以当MN 垂直抛物线准线时,MF MN +最小, 最小值为:13N x +=. 故选:A .8.已知椭圆C :2222x y a b +=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率为34,点P 为椭圆上一点,若∠F 1PF 2=π2,且F 1PF 2内切圆的半径为1,则C 的方程为( ) A .22167x y +=1B .223214x y +=1C .24x +y 2=1D .22447x y +=1【答案】A 【详解】易知F 1PF 2中,内切圆半径r =1212-2PF PF F F +=a -c =1,又离心率为34c a =,解得a =4,c =3,所以椭圆C 的方程为22167x y +=1. 故选:A二、多项选择题(本大题共4小题,每小题5分,共20分.全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知等差数列{}n a 的公差为d ,前n 项和为n S ,316a =,512a =,则( ) A .2d =- B .124a =C .2628a a +=D .n S 取得最大值时,11n =【答案】AC 【详解】解法一:由题可得11216,412a d a d +=⎧⎨+=⎩,解得120,2,a d =⎧⎨=-⎩故选项A 正确,选项B 错误;易知()()2012222n a n n =+-⨯-=-+,则26181028a a +=+=,选项C 正确.因为1020a =>,110a =,1220a =-<,所以当10n =或11时,n S 取得最大值(技巧:由0d <得数列{}n a 递减,进而判断n S 最大时的临界项) 选项D 错误. 故选:AC解法二:对于A :易知53212164d a a =-=-=-,所以2d =-,选项A 正确;对于B :()132162220a a d =-=-⨯-=,选项B 错误; 对于C :263528a a a a +=+=,选项C 正确;对于D :易知()()2012222n a n n =+-⨯-=-+,1020a =>,110a =,1220a =-<(技巧:由0d <得数列递减,进而判断n S 最大时的临界项)所以当10n =或11时,n S 取得最大值,所以选项D 错误. 故选:AC10.已知直线:440l kx y k -+-=与圆22:4440M x y x y +--+=,则下列说法中正确的是( )A .直线l 与圆M 一定相交B .若0k =,则直线l 与圆M 相切C .当1k =时,直线l 被圆M 截得的弦最长D .圆心M 到直线l的距离的最大值为【答案】BCD【详解】22:4440M x y x y +--+=,即()()22224x y -+-=,是以()2,2为圆心,以2为半径的圆,A.因为直线:440l kx y k -+-=,直线l 过()4,4,2244444440+-⨯-⨯+>,则()4,4在圆外,所以直线l 与圆M 不一定相交,故A 错误;B.若0k =,则直线:4l y =,直线l 与圆M 相切,故B 正确;C.当1k =时,直线l 的方程为0x y -=,过圆M 的圆心,即直线l 是直径所在直线,故C 正确;D.由圆的性质可知当直线l 与过点()4,4的直径垂直时,圆心M 到直线l 的距离的最大,此时=故D 正确,故选:BCD.11.已知点P 在双曲线22:1169x y C -=上,1F ,2F 分别为双曲线的左、右焦点,若12PF F △的面积为20,则下列说法正确的是( ) A .点P 到x 轴的距离为4 B .12523PF PF += C .12PF F △为钝角三角形 D .1260F PF ∠=︒【答案】AC 【详解】由双曲线的方程可得4a =,3b =,则5c =,由12PF F △的面积为20,得112102022P P c y y ⨯⨯=⨯⨯=,解得4P y =,即点P 到x 轴的距离为4,故A 选项正确; 将4P y =代入双曲线方程可得203P x =,根据双曲线的对称性可设20,43P ⎛⎫⎪⎝⎭,则2133PF =,由双曲线的定义知1228PF PF a -==,则11337833PF =+=, 则12133750333PF PF +=+=,故B 选项错误; 在12PF F △中,12371321033PF c PF =>=>=, 则24012020553PF k -==>-,21PF F ∠为钝角,则12PF F △为钝角三角形,故C 选项正确;()2222121212121212122100cos 22PF PF PF PF PF PF F F F PF PF PF PF PF -+-+-∠==13376410021891331133713372233-+⨯⨯⨯==-≠⨯⨯⨯, 则1260F PF ∠=︒错误, 故选:AC.12.已知函数()2ln f x x x =,下列说法正确的是( )A .当1x >时,()0f x >;当01x <<时,()0f x <B .函数()f x的减区间为(,增区间为)+∞C .函数()f x 的值域1,2e ⎡⎫-+∞⎪⎢⎣⎭D .()1f x x ≥-恒成立 【答案】ACD 【详解】对于选项A ,当01x <<时,ln 0x <;当1x >时,ln 0x >,故选项A 正确; 对于选项B ,2ln 2ln 1fxx x x x x ,令()0f x '>可得2ln 10x ,有x >知函数()f x 的减区间为⎛⎝,增区间为⎫+∞⎪⎭,故选项B 错误;对于选项C ,由上可知()min 11e 2e f x f ===-,x →+∞时,()f x →+∞,故选项C 正确;对于选项D ,()22111ln 10ln 0f x x x x x x x x ≥-⇔-+≥⇔-+≥,令()211ln g x x x x=-+,有()()()22333121212x x x x x g x x x x x '-++--===+,令()0g x '>可得1x >,故函数()g x 的增区间为()1,+∞,减区间为()0,1,可得()()min 10g x g ==,故选项D 正确. 故选:ACD .三、填空题(本大题共4小题,每小题5分,共20分)13.与直线3250x y -+=的斜率相等,且过点()4,3-的直线方程为_________ 【答案】392y x =+【详解】直线3250x y -+=的斜率为32,故所求直线方程为()3342-=+y x ,即392y x =+.故答案为:392y x =+. 14.数列{}n a 中,11a =,()*12,2nn n a a n N a +=∈+,则5a =___________ 【答案】13【详解】 122nn n a a a +=+,11a =, 则1212223a a a ==+,2322122a a a ==+,3432225a a a ==+,4542123a a a ==+. 故答案为:13.15.若函数()ln f x x x =+在x =1处的切线与直线y =kx 平行,则实数k =___________. 【答案】2 【详解】∵()ln f x x x =+, ∴1()1f x x '=+,1(1)121f '=+=,又函数()ln f x x x =+在x =1处的切线与直线y =kx 平行, ∴2k =. 故答案为:2.16.设5(4P -是双曲线2222:1(0,0)x y C a b a b -=>>上一点,1(2,0)F -是C 的左焦点,Q 是C右支上的动点,则C 的离心率为______,1PQF △面积的取值范围是_______. 【答案】2)+∞ 【详解】双曲线C 的右焦点为2(2,0)F,则13||2PF =,27||2PF ,因点P 在双曲线C 上,则由双曲线定义得2122a PF PF =-=,即1a =,又2c =, 所以双曲线C 的离心率为2ce a==;因直线PF 1的斜率1PF k =ba=1PF 与双曲线C 在第一、三象限的渐近线平行,则这条渐近线与直线1PF 0y -+的距离d ==上的点Q 到直线PF 1距离h d >=,于是得11113222PQF SPF h =⋅⋅>⨯所以1PQF △面积的取值范围是)+∞.故答案为:2;)+∞ 四、解答题(本大题共6小题,共70分)17.已知圆()22:20C x y mx y m R ++-=∈,其圆心在直线0x y +=上.(1)求m 的值;(2)若过点()1,1的直线l 与C 相切,求l 的方程. 【答案】 (1)2m =(2)20x y +-=或0x y -= 【详解】 (1)圆C 的标准方程为:222(1)124m m x y ⎛⎫++-=+⎪⎝⎭, 所以,圆心为,12m ⎛⎫- ⎪⎝⎭由圆心在直线0x y +=上,得2m =. 所以,圆C 的方程为:22(1)(1) 2.x y ++-=(2)由题意可知直线l 的斜率存在,设直线l 的方程为:()11y k x -=-, 即10,kx y k --+=由于直线l 和圆C解得:1k =±所以,直线方程为:20x y +-=或0x y -=.18.如图,在三棱锥P -ABC 中,△ABC 是以AC 为底的等腰直角三角形,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC .(2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求直线PC 与平面PAM 所成角的正弦值. 【答案】 (1)证明见解析. (2【详解】 (1)证明:连接BO,AB BC ==O 是AC 的中点,BO AC ∴⊥,且 2BO =,又 2PA PC PB AC ====,,PO AC PO ∴⊥=222PB PO BO =+,则PO OB ⊥,OB AC O =,OB ⊂平面ABC ,AC ⊂平面ABC ,PO ∴⊥平面ABC ,(2)解:建立以 O 为坐标原点,,,OB OC OP 分别为,,x y z 轴的空间直角坐标系如图所示,则()0,2,0A -,(0,0,P ,()0,2,0C ,()2,0,0B ,设(2,2,0)BM BC λλλ==-()01λ≤≤,则()()(2,2,0)2,2,022,22,0AM BM BA λλλλ=-=----=-+,所以PC 与平面PAM 所成角的正弦值为则平面PAC 的法向量为() 1,0,0m =, 设平面MPA 的法向量(,,),n x y z =则(0,2,PA =--20,n PA y ⋅=--= ()()22220n AM x y λλ⋅=-++=,令1z =,则y =(11x λλ+=-,二面角M PA C --为30︒,∴3cos302m n m n︒⋅==⋅, 即=13λ= 或 3λ=( 舍),设平面MPA的法向量(23,n =,(0,2,PC =-,设PC 与平面PAM 所成的角为θ,则|sin |cos ,|12PC n θ-=<>==+19.已知椭圆与双曲线221169x y -=具有共同的焦点1F 、2F ,点P 在椭圆上,12PF PF ⊥,____________①椭圆过点(),②椭圆的短轴长为10,③(①②③中选择一个) (1)求椭圆的标准方程; (2)求12PF F △的面积. 【答案】(1)条件选择见解析,椭圆方程为2215025x y += (2)1225PF F S=【详解】 (1)解:设椭圆方程()222222210,x y a b c a b a b+=>>=-.因为椭圆与双曲线221169x y -=具有共同的焦点,则225c =.选①:由已知可得a =225b =,椭圆方程为2215025x y +=; 选②:由已知可得5b =,则250a =,椭圆方程为2215025x y +=;选③得c a =,则250a =,椭圆方程为2215025x y +=. (2)解:由椭圆定义知122PF PF a +==, 又12PF PF ⊥,222124100PF PF c ∴+==②,由①可得2212121221002200PF PF PF PF PF PF ++⋅=+⋅=,解得1250PF PF ⋅=, 因此,12121252PF F SPF PF =⋅=. 20.设函数()322f x x x x =--++.(1)求()f x 在2x =-处的切线方程;(2)求()f x 的极大值点与极小值点;(3)求()f x 在区间[]5,0-上的最大值与最小值.【答案】(1)7100x y ++=;(2)极小值点为1x =-,极大值点为13x =; (3)()min 1f x =,()max 97f x =.【详解】(1)由题意得:()2321f x x x '=--+,则()212417f '-=-++=-,又()284224f -=--+=,()f x ∴在2x =-处的切线方程为()472y x -=-+,即7100x y ++=; (2)令()23210f x x x '=--+=,解得:1x =-或13x =, 则()(),,x f x f x '变化情况如下表:()f x ∴的极小值点为1x =-,极大值点为3x =; (3)由(2)知:()f x 在[)5,1--上单调递减,在(]1,0-上单调递增; 又()5125255297f -=--+=,()02f =,()111121f -=--+=, ()()min 11f x f ∴=-=,()()max 597f x f =-=.21.已知椭圆C 的离心率e =()1A ,)2A (1)求椭圆C 的方程;(2)设动直线:l y kx b =+与曲线C 有且只有一个公共点P ,且与直线2x =相交于点Q ,求证:以PQ 为直径的圆过定点()1,0N .【答案】(1)2212x y +=; (2)证明见解析.【详解】(1)椭圆长轴端点在x 轴上,∴可设椭圆方程为()222210x y a b a b+=>>,由题意可得:222a b c c e a a ⎧=+⎪⎪==⎨⎪⎪=⎩,解得:11a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的方程为:2212x y +=; (2) 由2212x y y kx b ⎧+=⎪⎨⎪=+⎩得:()222124220k x kbx b +++-=,曲线C 与直线l 只有一个公共点,()228120k b ∴=+-=,即2221b k =+,设(),P P P x y ,则()22422212P kb kb k x b b k =-=-=-+, 222221p P k b k y kx b b b b b-∴=+=-+==,21,k P b b ⎛⎫∴- ⎪⎝⎭; 由2y kx b x =+⎧⎨=⎩得:22x y k b =⎧⎨=+⎩,即()2,2Q k b +; ()1,0N ,211,k NP bb ⎛⎫∴=-- ⎪⎝⎭,()1,2NQ k b =+, 2210k k b NP NQ b b+∴⋅=--+=,即NP NQ ⊥, ∴以PQ 为直径的圆恒过定点()1,0N .22.已知函数()ln xe f x ax a x x=-+. (1)若a e =,求()f x 的极值点;(2)若()0f x ≥,求a 的取值范围.【答案】(1)极小值点为1,无极大值点(2)(,]e -∞【详解】(1)解:(1)()f x 定义域为(0,)+∞,222(1)(1)(1)()()x x x x xe e e x e e x x e ex f x e x x x x x -----'=-+=-=, 令(),(0,)x g x e ex x =-∈+∞,则()x g x e e '=-,当01x <<时,()0g x '<,当1x >时,()0g x '>,所以函数()g x 在()0,1上递减,在()1,+∞上递增,所以()()10g x g ≥=,即0x e ex -≥,当01x <<时,()0f x '<,当1x >时,()0f x '>,所以函数()f x 在()0,1上递减,在()1,+∞上递增,()f x ∴的极小值点为1,无极大值点;(2)由()0f x ≥得ln (ln )x x e a x x --≥,令ln ,(0,)t x x x =-∈+∞,则t e at ≥,111x t x x-'=-=, 当01x <<时,0t '<,当1x >时,0t '>,所以函数ln ,(0,)t x x x =-∈+∞在()0,1上递减,在()1,+∞上递增,所以当1x =时,min 1t =,[1+t ∴∈∞,),te a t∴≤, 令(),[1,)te m t t t =∈+∞,则2(1)()0t e t m t t -'=≥, 所以函数()t e m t t=在[1,)t ∈+∞上递增,所以min ()(1)m t m e ==, 所以a e ≤,所以a 的取值范围为(,]e -∞.。
2022-2023学年山东省威海市高二上学期期末考试化学试题
2022-2023学年山东省威海市高二上学期期末考试化学试题1.下列关于物质应用的说法错误的是A.在医疗上,BaCO 3可用作钡餐B.食用纯碱可用作食品添加剂C.可用于制作抗胃酸药品“胃舒平”D.将铁粉、食盐和活性炭等混合可用于制作一次性保暖贴2.下列事实不能用平衡移动原理解释的是A.使用热碱水清除厨房里的油污B.醋酸溶液中加甲基橙试剂溶液变红,升温颜色加深C.石灰岩经过千百万年的积聚形成钟乳石、石笋D.由H 2、、HI组成的平衡体系,加压后颜色加深3.下列关于仪器名称或使用的说法错误的是A.甲仪器有“0”刻度,使用前需要先检漏、洗涤和润洗B.乙仪器可用于加热硫酸铜溶液得到硫酸铜晶体C.用丙仪器(不限数量)、电极材料、导线及必要试剂可设计一个产生电流的装置D.丁仪器的名称为坩埚,需垫石棉网进行固体加热4.下列有关物质分类正确的是SOCO NHA.A B.B C.C D.D5.下列说法中正确的是A.当生成物的总键能大于反应物的总键能时,该反应是吸热反应B.原电池的负极、电解池的阳极均发生氧化反应C.催化剂能改变速率常数和平衡常数的大小D.转化率和平衡常数的大小都与反应物的初始浓度无关6.下列对应的方程式错误的是A.溶液水解离子方程式:B.用铜片作阴、阳极电解氯化钠溶液,总反应方程式:C.用醋酸和淀粉-KI溶液检验加碘盐中的离子方程式:D.将碳酸氢钙溶液与过量的澄清石灰水混合反应的离子方程式:7.下列说法中错误的是A.25℃时,向纯水中加入稀氨水,水的电离平衡逆向移动,增大,K w不变B.将纯水加热到95℃时,K w变大,pH不变,水仍呈中性C.常温下,pH=3的醋酸溶液和pH=11的氢氧化钡溶液等体积混合后溶液的pH<7 D.常温下,pH均为5的硫酸铝和醋酸两种溶液中,由水电离的之比为10 4:1 8. 25℃时,有关物质的K sp如表所示。
下列说法错误的是5.6×10 -12 2.2×10 -20A.在的酸性溶液中,逐滴加入NaOH稀溶液,先沉淀B.在溶液中,加入的溶液,无沉淀析出C.将0.001mol·L -1 AgNO 3溶液滴入KCl和KI的混合溶液中,一定有AgI沉淀生成D.化工生产废水中含Pb 2+,可用MnS(s)作沉淀剂进行转化而除去9.下列有关金属腐蚀及防护的说法错误的是A .图1中,铁钉发生析氢腐蚀B .图2中,铁钉发生吸氧腐蚀,向插石墨棒的玻璃筒内滴入酚酞试液,溶液变红C .图3中,开关K 置于M 处促进铁腐蚀,K 置于N 处抑制铁腐蚀D .图4中,燃气灶中的铁在高温下主要发生化学腐蚀10. 研究表明,合成氨反应更多地发生在催化剂表面上相邻的吸附氮与吸附氢分子之间,N 2在催化剂表面的均匀吸附可提升反应速率。
2013届山东省各地市高考模拟试题汇编:精装版
2014年四川省高考模拟试题132013.11.28山东省高考模拟试题汇编山东省2014届高三理科数学备考之2013届名校解析试题精选分类汇编1:函数一、选择题1.(山东省潍坊市2013届高三上学期期末考试数学理(A .)已知函数⎩⎨⎧>≤+=0,10,2)(x nx x kx x f ()k R ∈,若函数()y f x k =+有三个零点,则实数k 的取值范围是( )A .2k ≤B .10k -<<C .21k -≤<-D .2k ≤-【答案】D【解析】由()0y f x k =+=,得()f x k =-,所以0k ≤.做出函数()y f x =的图象如图,要使函数()y f x k =+有三个零点,则由2k -≥,即2k ≤-,选D .2错误!未指定书签。
.(山东省威海市2013届高三上学期期末考试理科数学)对于函数()f x ,如果存在锐角θ使得()f x 的图象绕坐标原点逆时针旋转角θ,所得曲线仍是一函数,则称函数()f x 具备角θ的旋转性,下列函数具有角4π的旋转性的是 ( )A .y x =B .ln y x =C .1()2x y =D .2y x =【答案】C 设直线y x b =+,要使()f x 的图像绕坐标原点逆时针旋转角4π,所得曲线仍是一函数,则函数y x b =+与()f x 不能有两个交点.由图象可知选 C .3错误!未指定书签。
.(山东省潍坊市2013届高三第二次模拟考试理科数学)某学校要召开学生代表大会,规定根据班级人数每10人给一个代表名额,当班级人数除以10的余数大于6时,再增加一名代表名额.那么各班代表人数y 与该班人数x 之间的函数关系用取整函数[]y x =([x]表示不大于*的最大整数)可表示为 ( )A .[]10x y = B .3[]10x y += C .4[]10x y += D .5[]10x y += 【答案】B 法一:特殊取值法,若x=56,y=5,排除 C .D,若x=57,y=6,排除A,所以选B法二:设)90(10≤≤+=ααm x ,,时⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡+≤≤10103103,60x m m x αα 1101103103,96+⎥⎦⎤⎢⎣⎡=+=⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡+≤<x m m x αα时当,所以选B 4错误!未指定书签。
高二上学期数学期末试卷
高二上学期数学期末试卷(文科数学)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“,x x e x ∀∈>R ”的否定是( )A .x e R x x <∈∃0,0B .,x x e x ∀∈<RC .,x x e x ∀∈≤RD .x e R x x ≤∈∃0,0.2.设实数和满足约束条件,则的最小值为( )A .B .C .D .3.抛物线22y x =的准线方程为( )A .14y =-B .18y =-C .1y =D .12y =4.“α为锐角”是“0sin >α”的()A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件5.设双曲线)0(19222>=-a ya x 的渐近线方程为023=±y x ,则a 的值为() A .4 B .3 C .2 D .16. 在空间直角坐标系中,已知点P (x ,y ,z ),给出下列四条叙述:①点P 关于x 轴的对称点的坐标是(x ,-y ,z )②点P 关于yOz 平面的对称点的坐标是(x ,-y ,-z )③点P 关于y 轴的对称点的坐标是(x ,-y ,z )④点P 关于原点的对称点的坐标是(-x ,-y ,-z )其中正确的个数是( ) A .3 B .2 C .1 D .0 7.给定下列四个命题: ①若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行; ④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是( ) A .①和② B .②和③ C .③和④ D .②和④ 8.若双曲线193622=-y x 的弦被点(4,2)平分,则此弦所在的直线方程是( ) A .02=-y x B .042=-+y x C .014132=-+y x D .082=-+y x 9.设1F ,2F 是椭圆E :2222x y a b +=1(a >b >0)的左、右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为( )A .12B .23C .34D .45 10.椭圆221259x y +=的左焦点为1F , 点P 在椭圆上, 若线段1PF 的中点M 在y 轴上, 则1PF =( ) A .415 B .95 C .6 D .7 x y 1024x y x y x +≤⎧⎪-≤⎨⎪≥⎩23z x y =+26241614二、填空题:本大题共5小题,每小题5分,共25分.11.若圆心在轴上、的圆位于轴左侧,且与直线相切,则圆的方程是 .12.某三棱锥的三视图如图所示,该三棱锥的体积是 。
山东省威海市第四中学2012-2013学年高二数学下学期期中试题 理(无答案)新人教A版
威海市第四中学2012~2013学年第二学期 高二数学(理科)试题 (学分认定)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)注意事项:每小题选出答案后,用铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. i 是虚数单位,()=-+113i i i ( )A .1-B .1C .i -D .i2. 4名学生参加3项不同的竞赛,每名学生必须参加其中的一项竞赛,有( )种不同的结果A . 43 B.34A C. 34C D.34 3. 随机变量X 的概率分布列为)1()(+==n n a n X P ,(1,2,3,4n =) 其中a 为常数,则)2521(<<X P 的值为( )A.23 B.34 C.45 D.564.抛掷甲、乙两骰子,若事件A :“甲骰子的点数小于3”;事件B :“甲、乙两骰子的点数之和等于6”,则P(B|A)的值等于( ) A 、31 B 、181 C 、61 D 、91 5. 曲线2x y =在(1,1)处的切线方程是( ) A. 230x y ++= B. 032=--y x C. 210x y ++= D. 012=--y x 6.13)1(x -的展开式中系数最小的项是( )A .第6项 B.第7项 C. 第8项 D.第9项 7.曲线3()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( )A.(1,0)B.(2,8)C.(2,8)和(1,4)--D.(1,0)和(1,4)--8.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有( )A .96种B .180种C .240种D .280种 9.随机变量ξ服从二项分布ξ~()p n B ,,且,200,300==ξξDE 则p 等于( )A 、32 B 、 31C 、 1D 、0 10.设()f x 、()g x 是定义域为R 的恒大于零的可导函数,且//()()()()0f x g x f x g x -<, 则当a x b <<时有( )A. ()()()()f x g x f b g b >B. ()()()()f x g a f a g x >C. ()()()()f x g b f b g x >D.()()()()f x g x f a g a >11.用数学归纳法证明“(1)(2)...()2135...(21)()nn n n n n n N *+++=⋅⋅⋅-∈”时,从n k = 到1n k =+,给等式的左边需要增乘的代数式是( )A .21k +B .211k k ++ C .(21)(22)1k k k +++ D .231k k ++12..如果函数y=f(x)的图象如右图,那么导函数)(/x f y =的图象可能是( )第Ⅱ卷(非选择题 共90分)注意事项:1. 请用0.5毫米的黑色签字笔将每题的答案填写在第Ⅱ卷答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写上新答案.2. 不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效. 3. 第Ⅱ卷共包括填空题和解答题两道大题.二.填空题(本大题共4小题,每小题4分,共16分.)13.用反证法证明命题:“三角形的内角中至少有一个不大于60”时,反设应该是 ; 14.设a >0,若曲线x y =与直线x =a ,y=0所围成封闭图形的面积为a ,则a=______;15.已知32()3f x x x a =++(a 为常数)在[33]-,上有最小值3,那么在[33]-,上()f x 的最大值是 ;16====, (a , b R ∈), 则a= , b= .三.解答题(本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)实数m 分别取什么数时,复数)156()25()1(2i m i m i z -+-++=是(1)实数; (2)虚数; (3)纯虚数; (4)对应点在第三象限.18.(本小题满分12分) (Ⅰ)求9(3x +的展开式常数项及中间两项;(Ⅱ)已知22)nx+的展开式中,第5项的系数与第3项的系数之比是56:3,求n .19.(本小题满分12分)某工厂为了保障安全生产,每月初组织工人参加一次技能测试.甲、乙两名工人通过每次测试的概率分别是45和34.假设两人参加测试是否通过相互之间没有影响.(1)求甲工人连续3个月参加技能测试至少有1次未通过的概率;(2)求甲、乙两人各连续3个月参加技能测试,甲工人恰好通过2次且乙工人恰好通过1次的概率; (3)工厂规定:工人连续2次没通过测试,则被撤销上岗资格.求乙工人恰好参加4次测试后被撤销上岗资格的概率.20.(本小题满分12分)(Ⅰ)设b a ,均为正数,且b a ≠,求证:2233ab b a b a +>+.(Ⅱ)已知,,,+∈R c b a 求证:33322cb ac b a ++≥++;21.(本小题满分12分).袋中装有大小相同的黑球、白球和红球共10个.已知从袋中任意摸出1个球,得到黑球的概率是52;从袋中任意摸出2个球,至少得到1个白球的概率是.97(Ⅰ)求袋中各色球的个数;(Ⅱ)从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的分布列及数学期望E ξ和方差 D ξ;22.(本小题满分14分)已知ax x x x f -=ln )(,2)(2--=x x g , (Ⅰ)对一切)()(),,0(x g x f x ≥+∞∈恒成立,求实数a 的取值范围; (Ⅱ)当时,1-=a 求函数]3,[)(+m m x f 在(0m >)上的最小值.。
2023-2024学年山东省威海市高二上学期期末考试英语试题
2023-2024学年山东省威海市高二上学期期末考试英语试题Are you looking for teen volunteer opportunities that provide a rewarding experience for high school students to be completely involved in new cultures while giving back to communities around the world? Whether you’re looking for volunteer opportunities fo r high school students, mission trips for teens, or teen summer service trips, International Volunteer HQ (IVHQ) enables teen volunteers to give back on meaningful community development and conservation projects in destinations like Bali, Costa Rica, Portugal and more.Sea Turtle Conservation Project in BaliIVHQ’s Sea Turtle Conservation project is on the small but breathtaking island of Nusa Penida off the southeastern coast of Bali. Volunteers will gain experience in turtle care and marine conservation while helping to increase the population of these incredible creatures in Indonesia.Animal Care Volunteer Project in Costa RicaIVHQ’s Animal Care project sets volunteers up to assist at veterinary clinics (兽医诊所) and animal welfare programs that aim to re-home abandoned or stray (流浪的) animals. Volunteers gain experience caring for animals while helping to provide them with medical treatment, companionship and playtime so they are ready to find their forever homes.Environmental Scuba Diving Volunteer Project in PortugalIVHQ’s Environmental Scuba Diving project is an exciting opportunity for volunteers to assist with marine conservation efforts in Portugal. Volunteers gain scuba and environmental protection experience while learning about the challenges marine ecosystems face and what can be done to help overcome them.1. What are volunteers expected to do in the project in Bali?A.Take care of sea turtles. B.Discover new turtle species.C.Rescue endangered animals. D.Post animal photos on social media.2. What do the projects have in common?A.They all provide medical training.B.They all help with ocean ecosystem.C.They all get communities connected.D.They all engage teens in new cultures.3. Where is the text probably taken from?A.A brochure for a teen travel agency.B.A plan for a social practice program.C.A website of a volunteer organization.D.A newsletter from a conservation organization.On January 14, 2006, Ben Keene received an email that changed his life. He had just taken a sip of hot tea when the message popped up, and Keene did a double-take at the subject line: “A TRIBE IS WANTED”.From there, Ben co-founded Tribewanted, an eco-friendly sustainable community existing in the virtual world of the internet and on an actual desert island at the same time.With huge media interest, the courageous and bold idea could have had enormous consequences for tourism. The idea behind Tribewanted was to recruit (招募) a group of similar people online before heading to the Fijian Island of Vorovoro to build a sustainable community alongside the local native tribe.The idea was swept along with a flood of interest, with the island lease (租约) was secured, the virtual community sprung to life. All major decisions on the island were voted on by an online tribe that anyone around the world could join. The idea was so exciting that the journey was turned into a 5 part BBC series “Paradise or Bust” and a book, Tribewanted.Ben spent 10 years building and expanding Tribewanted beyond the crowdfunded sustainable-tourism villages on an island in Fiji, to a beach in Sierra Leone and a farm in Umbria. He faced challenges including a fire sweeping through the island in the first week of the project, a military coup (政变), and a hurricane that threatened to destroy the emerging village. Online disagreements also made decision making hard and pushed the project to the edge.The project survived, and for a while, thrived. From there Ben joined Escape the City, a global community with the mission to help one million people to do work that matters to them and the world, inspiring thousands of talented career changers and ambitious businessmen to take the leap and launch their ideas into the world. Ben led the Escape school team for 5 years, and became a business advisor and guider at Virgin Startup, and Zinc. Ben has supported and guided thousands of people to set up impactful businesses on a limited budget.4. What is Tribewanted?A.A voting software. B.An island adventure project.C.An employment plan. D.An eco-community in virtual and realworlds.5. Which phrase may best replace the underlined “sprung to life”?A.passed on. B.came into being.C.got involved. D.struggled to survive.6. What might be Ben’s intention of joining Escape the City?A.To seek funds for his Tribewanted .B.To call for investment in remote islands.C.To support people to launch influential businesses.D.To help ambitious businessmen to change careers.7. In which column can you read this text?A.Inspiring people. B.Connected lives.C.Inventive solutions. D.Global business.About two months ago, I removed Uber Eats from my phone. Not because I didn’t like using it. I loved it. Like most cheap, modern luxuries though, there are hidden costs.“Restaurants are barely surviving. Delivery apps will kill them” was a headline in a newspaper, one of many stories exploring the unfair sign-up strategies and high fees taken by these tech companies. Moreover, there were reports about bad working conditions for delivery riders, leading to tragic accidents, even deaths. That’s truly unbearable!I deleted the app and haven’t used it, or any of its competitors, since. Instead of ordering online, now I either cook something or get takeaway nearby. Cooking better food has been a great motivation for me. On lazy nights, I’ve discovered that I can still make a satisfying meal by using whatever ingredients I have on hand. This approach has also saved me much money. As with lots of online shopping, I’d been ordering food without much th ought about the cost. Cooking is almost always cheaper and so is old-school takeaway.These changes have cost me one thing — time. One reason the apps are so popular is that they meet the needs of the convenience-seeking, time-starved individuals. But rather than adding to my stress, having to plan meals again somehow made life less so. Some days it’s been a good motivation to stop work earlier, and engage in activities like going to the shops, or start chopping onions. Walking to pick up takeaway forces you to go for a walk. The change in habit forced me to be on my devices a bit less and to be in my actual life and neighbourhood a bit more.The process has made me think about how technological advances do save us time, but time for what? For me, the answer was often just more time working, or more time online. Making my own food feels like taking back time I had given up for things far less nourishing (有营养的).8. Which might be the reason for the author to remove Uber Eats?A.Her passion for cooking. B.Her boredom with online ordering.C.Her preference for another app. D.Her concern for its negative impacts.9. What does the author think of cooking?A.Addictive and money-saving. B.Cheap and convenient.C.Time-consuming but rewarding. D.Motivating but stressful.10. What does “the process” refer to in the last paragraph?A.Reflecting on the influence of hi-tech.B.Adapting to life free of delivery apps.C.Getting into a healthy eating habit.D.Rediscovering the fun of cooking.11. What can be a suitable title for the text?A.My Order Never ArrivedB.Why Uber Eats Gets Less ActiveC.What Delivery Apps Can Not Offer MeD.The Convenience Was Not Worth The CostAccording to Americans for the Arts, more than two-thirds of U.S. adults say that the arts “lift me up beyond everyday experiences.” Still, only 30 percent attended a concert of any type in 2017; 23 percent visited an art museum; six percent attended a literary event. Fewer than half actively created art of any kind.What has caused this phenomenon is that we do not have time for art — we are weighed down by our day-to-day responsibilities. Maybe you like to play a little background music while you work but most of us rarely, if ever, went to see a live performance, let alone visited a gallery. And reading poetry? Perhaps not since high school.Too often, we let the realities of life get in the way of the arts, which can feel insignificant by comparison. But this is a mistake. The arts might be the single most in-depth experience you will ever be given to explore the nature and meaning of life. And if you make time to consume and produce art, you will find your life become fuller and happier.Some philosophers address the problem of life consumed by work and material pursuits. They argue that art provides relief from this routine, expanding our perspective and bringing us closer to true reality.Think of a time when you heard a piece of music and wanted to cry. Or recall your fast heartbeats as you stared at a delicate lifelike sculpture. Chances are that it probably stimulated (刺激) a sudden awakening, much like the shock from a lungful of pure oxygen after breathing in smoggy air.If you are among those who feel that art is “pure pleasure to experience and participate in,” you might see it the same way you see eating out, or skydiving: as a luxury (奢侈品) item in your limited budgets of time and money. As such, it probably gets the same sort of treatment as any minor hobby. Don’t make this error. Treat art more like exercise or sleep: a necessit y for a life full of deep satisfaction.12. What does paragraph 1 focus on?A.The opinion of U.S. adults about art.B.The types of art that U.S. adults engage with.C.The mismatch between value and behaviour as to art.D.The connection between everyday experiences and art.13. What is a mistaken idea in the author’s opinion?A.Art reveals the nature of life. B.Art gives way to material pursuits.C.Life without art is meaningless. D.Background music is a kind of art.14. What does the author want to convey in paragraph 5?A.Art awakes people’s talents.B.Art improves physical health.C.Art brings us closer to nature. D.Art makes life fuller and happier.15. What might be the best title?A.Art: A Habit, Not a Luxury B.Art: A Bridge, Not a BarrierC.Art: A Decoration, Not a Reality D.Art: A Pleasure, Not a BurdenCrab traps (蟹笼) work like this: crabs crawl in, but they don’t crawl out. 16 However, when traps get lost at sea, they become a threat to all sorts of animals.With no one there to ge t them back, the traps continue to fish, says a researcher. “Marine life gets into the trap. Eventually, they can’t eat so they die, and then other marine life becomes attracted to it. They get into the trap, and they die. 17 ”Abandoned crab traps harm wildlife and affect other fishers, especially shrimpers (捕虾者). Large and heavy crab traps get caught in shrimping nets, tearing them open or blocking them from catching shrimp. Helpless shrimpers, with nowhere to put the smelly traps, generally just throw them back, continuing the cycle.But a group in Mississippi has found a solution: 18 In just three years, the program has removed almost 3,000 crab traps from Mississippi waters. Crab traps are marked, and those that are still in good condition are returned to their owners, while traps that are too broken down are recycled.19 Wildlife is safer, the water is cleaner and there’s been a clear trend that shrimpers are encountering fewer traps.Chloé Dubois, head of a nonprofit focused on marine debris (废弃物), calls it “a great success story.” Dubois says there have been programs historically very successful at recycling waste products at the end of their life cycle. But in the ghost fishing and marine debris field, she says, “ 20 There aren’t many examples of programs like this.”Emily Bhatnagar has always loved reading. “Growing up, I was really shy, so I always turned to_______,” she said. “They sort of became my best friends when I didn’t have one.”In 2019, when Emily was in her second year of high school, her dad was diagnosed with cancer. The news was difficult for the family. Books became an even bigger _______ and she started thinking about kids in _______ situations.When her father recovered, she came up with a plan to _______ others. “The idea came from just great thankfulness that the doctors were able to perform such a(n) _______,” she says. “But also a little _______ that there were kids who were fighting the same battle.”Emily started a book drive (书籍捐赠活动) in her hometown. The goal was to _______ books and give them to _______ being treated for cancer in local hospitals. Since the start of the book drive, which she calls For Love & Buttercup, Emily has collected more than 10,000 books.Emily had no idea how much _______ her work would get. She started by posting on social media, asking people in her area to ________. “I was expecting maybe two or three ________from neighbors,” she says. “But it ended up ________,” especially when news stations began reporting it. Emily hopes to expand the project to ________ more kids one day. The ________ of the first time she visited children who’d ________ her books sticks with her. “It was the best day of my life,” she says. “I realized I wanted to do this type of work forever.”21.A.toys B.movies C.books D.songs22.A.award B.comfort C.dream D.burden23.A.familiar B.normal C.complex D.similar24.A.train B.serve C.befriend D.help25.A.miracle B.survey C.role D.experiment26.A.sadness B.confusion C.understanding D.disappointment 27.A.write B.collect C.buy D.translate28.A.kids B.neighbors C.students D.citizens29.A.money B.praise C.attention D.improvement 30.A.search B.donate C.prepare D.gather31.A.gifts B.hints C.responses D.invitations32.A.blowing up B.dying away C.breaking down D.coming back 33.A.amuse B.teach C.adopt D.reach34.A.task B.difficulty C.memory D.benefit35.A.read B.received C.reviewed D.recommended阅读下面短文,在空白处填入1个适当的单词或括号内单词的正确形式。
威海中考数学及答案(word版)
2012年中考数学试题(山东威海卷)(本试卷满分120分,考试时间120分钟)第Ⅰ卷 (选择题 共36分)一、选择题:(本大题共12小题,每小题3分,共36分) 1. 64的立方根是【 】A.8B.±8C.4D.±4 【答案】C 。
2. 2012年是威海市实施校安工程4年规划的收官年。
截止4月底,全市已开工项目39个,投入资金4999万元。
请将4999万用科学计数法表示【 】(保留两个有效数字) A.4999×104 B. 4.999×107 C. 4.9×107 D. 5.0×107 【答案】D 。
3.如图,a ∥b ,点A 在直线a 上,点C 在直线b 上,∠BAC=900,AB=AC 。
若∠1=200,则∠2的度数为【 】A.250B.650C.700D.750 【答案】B 。
4.下列运算正确的是【 】A.326a a a ⋅=B. 5510a +a a =C. 23a a a -÷=D. ()223a 9a -=- 【答案】C 。
5.如图所示的零件的左视图是【 】【答案】C 。
6.函数1y=x 3-的自变量x 的取值范围是【 】A. x >3B. x≥3C. x≠3D. x <-3 【答案】A 。
7.某外贸公司要出口一批食品罐头,标准质量为每听454克,现抽取10听样品进行检测,它们的质量与标准质量的差值(单位:克)如下:-10,+5,0,+5,0,0,-5,0,+5,+10。
则这10听罐头质量的平均数及众数为【 】A.454,454B.455,454C.454,459D.455,0 【答案】B 。
8.化简22x 1+x 93x--的结果是【 】 A. 1x 3- B. 1x+3 C. 13x- D. 23x+3x 9-【答案】B 。
9.下列选项中,阴影部分面积最小的是【 】【答案】C 。
10.如图,在ABCD 中,AE ,CF 分别是∠BAD 和∠BCD 的平分线。
山东省威海市2012届高三第二次模拟考试 数学理科试题(2012威海二模)
2012年威海市高考模拟考试理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共5页.满分150分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合1{1,10,}10A =,{|lg ,}B y y x x A ==∈,则A B = A.1{}10 B. {10} C. {1} D. ∅ 2.复数11i -的共轭复数为A.11+22iB. 1122i -C. 11+22i -D. 1122i -- 3.如图,三棱锥V ABC -底面为正三角形,侧面VAC 与底面垂直且VA VC =,已知其主视图的面积为23,则其左视图的面积为A.2B. 3C. 4D. 64.若函数()sin()f x x ϕ=+是偶函数,则tan2ϕ=A.0B.1 C .1- D. 1或1- 5.等差数列{}n a 中,10590,8S a ==,则4a =A.16B.12C.8D.66.已知命题p :函数12x y a +=-恒过(1,2)点;命题q :若函数(1)f x -为偶函数,则()f xV AB C第3题图的图像关于直线1x =对称,则下列命题为真命题的是A.p q ∧B.p q ⌝∧⌝C.p q ⌝∧D.p q ∧⌝7.R 上的奇函数()f x 满足(3)()f x f x +=,当01x <≤时,()2x f x =,则(2012)f = A. 2- B. 2 C. 12-D. 128.函数2lg ()=xf x x的大致图像为C D9.椭圆2222+1(0)x y a b a b =>>的离心率为3,若直线kx y =与其一个交点的横坐标为b ,则k 的值为A.1±B.C.±D. 10.设6(x 的展开式中3x 的系数为A ,二项式系数为B ,则:A B = A.4 B. 4- C.62 D.62-11.如图,菱形ABCD 的边长为2,60A ∠=,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM AN ⋅ 的最大值为 A.3 B. C.6 D.912.函数()f x 的定义域为A ,若存在非零实数t ,使得对于任意()x C C A ∈⊆有,x t A +∈ 且()()f x t f x +≤,则称()f x 为C 上的t 度低调函数.已知定义域为[)0+∞,的函数()=3f x mx --,且()f x 为[)0+∞,上的6度低调函数,那么实数m 的取值范围是 A.[]0,1 B. [)+∞1, C.(],0-∞ D.(][),01,-∞+∞第Ⅱ卷( 共90分)二、填空题:本大题共4小题,每小题4分,共16分.C 第11题图A13.某商场调查旅游鞋的销售情况,随机抽取了部分顾客的购鞋尺寸,整理得如下频率分布直方图,其中直方图从左至右的前3个小矩形的面积之比为1:2:3,则购鞋尺寸在[)39.5,43.5内的顾客所占百分比为______.14.阅读右侧程序框图,则输出的数据S 为______. 15.将,,a b c 三个字母填写到3×3方格中,要求每行每列都不能出现重复字母,不同的填写方法有________种.(用数值作答)16.若集合12,n A A A 满足12n A A A A = ,则称12,n A A A 为集合A 的一种拆分.已知:①当12123{,,}A A a a a = 时,有33种拆分; ②当1231234{,,,}A A A a a a a = 时,有47种拆分; ③当123412345{,,,}A A A A a a a a a = ,时,有515种拆分;……由以上结论,推测出一般结论:当112123{,,,}n n A A A a a a a += 有_________种拆分.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数2()sin cos f x x x x ωωω=⋅0>ω),直线1x x =,2x x =是)(x f y =图象的任意两条对称轴,且||21x x -的最小值为4π. (I )求()f x 的表达式;(Ⅱ)将函数()f x 的图象向右平移8π个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数()y g x =的图象,若关于x 的方程()0g x k +=,在区第14题图间0,2π⎡⎤⎢⎥⎣⎦上有且只有一个实数解,求实数k 的取值范围. 18.(本小题满分12分)某市职教中心组织厨师技能大赛,大赛依次设基本功(初赛)、面点制作(复赛)、热菜烹制(决赛)三个轮次的比赛,已知某选手通过初赛、复赛、决赛的概率分别是34,23,14且各轮次通过与否相互独立.(I )设该选手参赛的轮次为ξ,求ξ的分布列和数学期望; (Ⅱ)对于(I )中的ξ,设“函数()3sin()2x f x x R ξπ+=∈是偶函数”为事件D ,求事件D 发生的概率.19.(本小题满分12分)在等比数列}{n a 中,412=a ,512163=⋅a a .设22122log 2log 2n n n a a b +=⋅,n T 为数列{}n b 的前n 项和.(Ⅰ)求n a 和n T ;(Ⅱ)若对任意的*∈N n ,不等式n n n T )1(2--<λ恒成立,求实数λ的取值范围.20.(本小题满分12分)如图所示多面体中,AD ⊥平面PDC ,ABCD 为平行四边形,E 为AD 的中点,F 为线段BP 上一点,∠CDP =120,AD =3,AP =5,PC=(Ⅰ)若F 为BP 的中点,求证:EF ∥平面PDC ; (Ⅱ)若13BF BP =,求直线AF 与平面PBC 所成角的正弦值.21.(本小题满分12分)已知函数21()ln 12a f x a x x +=++. (Ⅰ)当21-=a 时,求)(x f 在区间],1[e e上的最值;(Ⅱ)讨论函数)(x f 的单调性; (Ⅲ)当10a -<<时,有()1ln()2af x a >+-恒成立,求a 的取值范围. 22.(本小题满分14分)F DCB APE如图,在平面直角坐标系xoy 中,设点()0,F p (0p >), 直线l :y p =-,点P 在直线l 上移动,R 是线段PF 与x 轴的交点, 过R 、P 分别作直线1l 、2l ,使1l PF ⊥,2l l ⊥ 12l l Q = . (Ⅰ)求动点Q 的轨迹C 的方程;(Ⅱ)在直线l 上任取一点M 做曲线C 的两条切线,设切点为A 、B ,求证:直线AB 恒过一定点;(Ⅲ)对(Ⅱ)求证:当直线,,MA MF MB 的斜率存在时,直线,,MA MF MB 的斜率的倒数成等差数列.理科数学参考答案一、选择题C B BD D, B A D C A, D D二、填空题13. 55% 14. 0 15. 12 16. 1(21)n n +-三、解答题17.(本小题满分12分)解:(Ⅰ)11()sin 2sin 22sin(2)22223f x x x x x πωωωω=+-=+=+,-------------------------------------------3分由题意知,最小正周期242T ππ=⨯=,222T πππωω===,所以2ω=, ∴()sin(4)3f x x π=+-----------------------------------------6分(Ⅱ)将()f x 的图象向右平移个8π个单位后,得到sin(4)6y x π=-的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到sin(2)6y x π=-的图象.()sin(2).6g x x π=-所以 -------------------------9分令26x t π-=,∵02x π≤≤,∴566t ππ-≤≤()0g x k +=,在区间0,2π⎡⎤⎢⎥⎣⎦上有且只有一个实数解,即函数()y g x =与y k =-在区间0,2π⎡⎤⎢⎥⎣⎦上有且只有一个交点,由正弦函数的图像可知1122k -≤-<或1k -= ∴1122k -<≤或1k =-. -------------------12分18.(本小题满分12分)解:(I )ξ可能取值为1,2,3. -------------------------------2分 记“该选手通过初赛”为事件A ,“该选手通过复赛”为事件B ,31(1)()1,44321(2)()()()(1),434P P A P P AB P A P B ξξ===-=====⨯-=321(3)()()().432P P AB P A P B ξ====⨯= --------------------------5分ξ的分布列为:ξ的数学期望123.4424E ξ=⨯+⨯+⨯= -------------------------- 7分(Ⅱ)当1ξ=时,1()3sin =3sin()222x f x x πππ+=+()f x 为偶函数; 当2ξ=时,2()3sin 3sin()22x f x x πππ+==+()f x 为奇函数; 当3ξ=时,33()3sin 3sin()222x f x x πππ+==+()f x 为偶函数;∴事件D 发生的概率是34. -----------------------------------12分 19.(本小题满分12分)解:(Ⅰ)设}{n a 的公比为q ,由5121161552263==⋅=q q a a a 得21=q , ∴n n n qa a )21(22=⋅=-. ---------------------------------- 2分 22211211()2122()2log 2log 2=log 2log 21111()(21)(21)22121n n nn n a a b n n n n -++=⋅⋅==--+-+∴)1211215131311(21+--++-+-=n n T n 111)22n 121nn =-=++(.-------------------------------------5分(Ⅱ)①当n 为偶数时,由2-<n T n λ恒成立得,322)12)(2(--=+-<nn n n n λ恒成立,即min )322(--<n n λ, ----------------------------------6分 而322--n n 随n 的增大而增大,∴2=n 时0)322(min =--nn ,∴0<λ; ----------------------------------8分 ②当n 为奇数时,由2+<n T n λ恒成立得,522)12)(2(++=++<nn n n n λ恒成立,即min )522(++<nn λ, -----------------------------------9分 而95222522=+⋅≥++nn n n ,当且仅当122=⇒=n n n 等号成立,∴9<λ. ---------------------------------------11分综上,实数λ的取值范围0∞(-,). ----------------------------------------12分 20.(本小题满分12分)解(Ⅰ)取PC 的中点为O ,连FO ,DO , ∵F ,O 分别为BP ,PC 的中点, ∴FO ∥BC ,且12FO BC =, 又ABCD 为平行四边形,ED ∥BC ,且12ED BC =,∴FO ∥ED ,且FO ED =∴四边形EFOD 是平行四边形即EF ∥DO 又EF ⊄平面PDCP∴EF ∥平面PDC . --------------------------------------------- 4分 (Ⅱ)以DC 为x 轴,过D 点做DC 的垂线为y 轴,DA 为z 轴建立空间直角坐标系, 则有D (0 ,0 , 0),C (2,0,0),B (2,0,3),P(-,A (0,0,3) ------------------------------6分设(,,)F x y z,14(2,,3)(1)33BF x y z BP =--==--∴2(2),3F则2(1)3AF =- -----------------------------8分 设平面PBC 的法向量为1(,,)n x y z =则1100n CB n PC ⎧⋅=⎪⎨⋅=⎪⎩即3040z x =⎧⎪⎨-=⎪⎩ 取1y =得1n = -----------------10分2cos ,AF n AF n AF n+⋅<>====⋅ ∴AF 与平面PBC. -------------------------12分21. (本小题满分12分)解:(Ⅰ)当21-=a 时,14ln 21)(2++-=x x x f , ∴xx x x x f 21221)(2-=+-='. ∵)(x f 的定义域为),0(+∞,∴由0)(='x f 得1=x . ---------------------------2分 ∴)(x f 在区间],1[e e 上的最值只可能在)(),1(),1(e f ef f 取到,而421)(,4123)1(,45)1(22e e f e e f f +=+==,∴45)1()(,421)()(min 2max==+==f x f e e f x f . ---------------------------4分(Ⅱ)2(1)()(0,)a x af x x x++'=∈+∞,. ①当01≤+a ,即1-≤a 时,)(,0)(x f x f ∴<'在),0(+∞单调递减;-------------5分②当0≥a 时,)(,0)(x f x f ∴>'在),0(+∞单调递增; ----------------6分③当01<<-a 时,由0)(>'x f 得1,12+->∴+->a a x a ax 或1+--<a ax (舍去) ∴)(x f 在),1(+∞+-a a 单调递增,在)1,0(+-a a上单调递减; --------------------8分 综上,当0≥a 时,)(x f 在),0(+∞单调递增;当01<<-a 时,)(x f 在),1(+∞+-a a 单调递增,在)1,0(+-a a上单调递减. 当1-≤a 时,)(x f 在),0(+∞单调递减; -----------------------9分(Ⅲ)由(Ⅱ)知,当01<<-a 时,min ()f x f =即原不等式等价于1ln()2af a >+- ---------------------------10分即111ln()212a a aa a a +-⋅+>+-+ 整理得ln(1)1a +>- ∴11a e>-, ----------------------------11分 又∵01<<-a ,所以a 的取值范围为11,0e ⎛⎫- ⎪⎝⎭. ---------------------------12分 22. (本小题满分14分)解:(Ⅰ)依题意知,点R 是线段FP 的中点,且RQ ⊥FP , ∴RQ 是线段FP 的垂直平分线. ---------------------------------------2分 ∴PQ QF =.故动点Q 的轨迹C 是以F 为焦点,l 为准线的抛物线,其方程为:24(0)x py p =>. -----------------------------------4分(Ⅱ)设(,)M m p -,两切点为11(,)A x y ,22(,)B x y 由24x py =得214y x p =,求导得12y x p'=. ∴两条切线方程为1111()2y y x x x p-=- ① 2221()2y y x x x p-=-② -------------------6分 对于方程①,代入点(,)M m p -得,1111()2p y x m x p --=-,又21114y x p= ∴211111()42p x x m x p p--=-整理得:2211240x mx p --= 同理对方程②有2222240x mx p --=即12,x x 为方程22240x mx p --=的两根.∴212122,4x x m x x p +==- ③ -----------------------8分设直线AB 的斜率为k ,2221211221211()4()4y y x x k x x x x p x x p--===+--所以直线AB 的方程为211211()()44x y x x x x p p-=+-,展开得:12121()44x x y x x x p p =+-,代入③得:2my x p p=+ ∴直线恒过定点(0,)p . -------------------------------------10分 (Ⅲ) 证明:由(Ⅱ)的结论,设(,)M m p -, 11(,)A x y ,22(,)B x y且有212122,4x x m x x p +==-, ∴1212,MA MB y p y pk k x m x m++==-- ----------------------------11分∴11MA MB k k +=1212122222221212124()4()4444x m x m x m x m p x m p x m x x y p y p x p x p p p p p------=+=+=+++++++ =1212212221122121212124()4()4()4()44()4p x m p x m p x m x p x m x pm pm m x x x x x x x x x x x x p p-----+====----- --------------------------13分 又∵12MF m mk p p p ==---,所以112MA MB MFk k k += 即直线,,NA NM NB 的斜率倒数成等差数列.----------------------------14分。
2024-2025学年山东省济南市山东省实验中学高二上学期10月测试数学试题(含答案)
2024-2025学年山东省实验中学高二上学期10月测试数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知点A(1,−1,2)关于z 轴的对称点为B ,则|AB |等于( )A. 22B. 26C. 2D. 322.如图,在斜三棱柱ABC−A 1B 1C 1中,M 为BC 的中点,N 为A 1C 1靠近A 1的三等分点,设AB =a ,AC =b ,AA 1=c ,则用a ,b ,c 表示NM 为( )A. 12a +16b−c B. −12a +16b +c C. 12a−16b−cD. −12a−16b +c3.直线的一个方向向量为v =(1,−3),且经过点(0,2),则直线的方程为( )A. 3x−y +2=0B. 3x +y−2=0C. 3x +y +2=0D. 3x−y−2=04.已知直线l 的方向向量为e =(2,1,−2),平面α的法向量为n =(−2,b−a,a +b),(a,b ∈R).若l ⊥α,则a +3b 的值为( )A. 1B. 3C. 4D. −45.“m =3”是“直线l 1:mx +y +m =0与l 2,3x +(m−2)y−3m =0平行”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.正四面体P−ABC 的棱长为2,点D 是AB 的中点,则PD ⋅BC 的值为( )A. 1B. 23C. −23D. −17.已知正方形的一条对角线所在直线的斜率为3,则其一条边所在直线的斜率是( )A. −3B. −2C. 13D. 28.设动点P 在棱长为1的正方体ABCD−A 1B 1C 1D 1的对角线BD 1上,且D 1PD 1B =λ,当∠APC 为锐角时,λ的取值范围是( )A. [0,13)B. [0,12)C. (13,1)D. (12,1)二、多选题:本题共3小题,共18分。
山东省威海市2022-2023学年高二上学期期末数学试题(解析版)
(1)求直线 与平面 所成角的正弦值;
(2)求平面 与平面 所成角的正弦值.
【答案】(1)
(2)
【解析】
【分析】(1)建立空间直角坐标系,然后利用空间向量法求直线 与平面 所成角的正弦值;
(2)利用空间向量法求平面 与平面 所成角的正弦值.
【小问1详解】建立如图来自示的空间直角坐标系 ,平面PBC,
故直线MN到平面PBC的距离即为点N到平面PBC的距离,设为
,
,
点P到面ABCD的距离 ,
由 ,得 ,
,
得 .
20.已知抛物线C: ,过点 的直线l与抛物线C交于M,N两点,圆A为 的外接圆(点O为坐标原点).
(1)求证:线段MN为圆A的直径;
(2)若圆A过点 ,求圆A的方程.
【答案】(1)证明过程见详解
则
,
设面 的法向量为 ,
,取 ,得 ,
即面 的一个法向量为 ,
设直线 与平面 所成角为 ,
,
即直线 与平面 所成角的正弦值 ;
【小问2详解】
由(1)知面 的一个法向量为 ,
又平面 的一个法向量明显为 ,
,
设平面 与平面 所成角为 , ,
,
即平面 与平面 所成角的正弦值为 .
18.已知等比数列 的各项均为正数, ,10, 成等差数列,且 .
【详解】对A,由题知 , , ,
所以, , ,即 ,故A选项正确;
对B, ,即 ,故B选项错误;
所以, ,
对C, ,故C选项正确;
对D,当 为奇数时, ,
当 为偶数时, ,
所以,当 为偶数时, 为单调递减数列,
所以, 的最大值为 ,故D选项正确.
2013年山东省高考数学试卷及解析(文科)
2013年山东省高考数学试卷(文科)一、选择题:本题共12个小题,每题5分,共60分、1、(5分)复数z=(i为虚数单位),则|z|=()A、25B、C、5D、2、(5分)已知集合A、B全集U={1、2、3、4},且∁U(A∪B)={4},B={1,2},则A∩∁U B=()A、{3}B、{4}C、{3,4}D、∅3、(5分)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=()A、2B、1C、0D、﹣24、(5分)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示该四棱锥侧面积和体积分别是()A、4,8B、C、D、8,85、(5分)函数f(x)=+的定义域为()A、(﹣3,0]B、(﹣3,1]C、(﹣∞,﹣3)∪(﹣3,0]D、(﹣∞,﹣3)∪(﹣3,1]6、(5分)执行两次如图所示的程序框图,若第一次输入的a的值为﹣1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为()A、0.2,0.2B、0.2,0.8C、0.8,0.2D、0.8,0.87、(5分)△ABC的内角A、B、C的对边分别是a、b、c,若B=2A,a=1,b=,则c=()A、B、2 C、D、18、(5分)给定两个命题p,q、若¬p是q的必要而不充分条件,则p是¬q的()A、充分而不必要条件B、必要而不充分条件C、充要条件D、既不充分也不必要条件9、(5分)函数y=xcosx+sinx的图象大致为()A、B、C、D、10、(5分)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为()A、 B、C、36 D、11、(5分)抛物线C1:的焦点与双曲线C2:的右焦点的连线交C1于第一象限的点M、若C1在点M处的切线平行于C2的一条渐近线,则p=()A、B、C、D、12、(5分)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最小值时,x+2y ﹣z的最大值为()A、0B、C、2D、二、填空题:本大题共4小题,每小题4分,共16分13、(4分)过点(3,1)作圆(x﹣2)2+(y﹣2)2=4的弦,其中最短的弦长为、14、(4分)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则线段|OM|的最小值为、15、(4分)在平面直角坐标系xOy中,已知,,若∠ABO=90°,则实数t的值为、16、(4分)定义“正对数”:ln+x=,现有四个命题:①若a>0,b>0,则ln+(a b)=bln+a;②若a>0,b>0,则ln+(ab)=ln+a+ln+b;③若a>0,b>0,则;④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2、其中的真命题有(写出所有真命题的序号)三、解答题:本大题共6小题,共74分,17、(12分)某小组共有A、B、C、D、E五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如表所示:A B C D E身高 1.69 1.73 1.75 1.79 1.82体重指标19.225.118.523.320.9(Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率、18、(12分)设函数f(x)=﹣sin2ωx﹣sinωxcosωx(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为,(Ⅰ)求ω的值(Ⅱ)求f(x)在区间[]上的最大值和最小值、19、(12分)如图,四棱锥P﹣ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB、AB、BC、PD、PC的中点、(Ⅰ)求证:CE∥平面PAD(Ⅱ)求证:平面EFG⊥平面EMN、20、(12分)设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1、(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足=1﹣,n∈N*,求{b n}的前n项和T n、21、(12分)已知函数f(x)=ax2+bx﹣lnx(a,b∈R)(Ⅰ)设a≥0,求f(x)的单调区间(Ⅱ)设a>0,且对于任意x>0,f(x)≥f(1)、试比较lna与﹣2b的大小、22、(14分)在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x 轴上,短轴长为2,离心率为(Ⅰ)求椭圆C的方程(Ⅱ)A,B为椭圆C上满足△AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C与点P,设,求实数t的值、参考答案与试题解析一、选择题:本题共12个小题,每题5分,共60分、1、(5分)复数z=(i为虚数单位),则|z|=()A、25B、C、5D、分析:化简复数z,然后求出复数的模即可、解答:解:因为复数z==,所以|z|==、故选:C、点评:本题考查复数的代数形式的混合运算,复数的模的求法,考查计算能力、2、(5分)已知集合A、B全集U={1、2、3、4},且∁U(A∪B)={4},B={1,2},则A∩∁U B=()A、{3}B、{4}C、{3,4}D、∅分析:通过已知条件求出A∪B,∁U B,然后求出A∩∁U B即可、解答:解:因为全集U={1.2.3.4、},且∁U(A∪B)={4},所以A∪B={1,2,3},B={1,2},所以∁U B={3,4},所以A={3}或{1,3}或{3,2}或{1,2,3}、所以A∩∁U B={3}、故选:A、点评:本题考查集合的交、并、补的混合运算,考查计算能力、3、(5分)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=()A、2B、1C、0D、﹣2分析:由条件利用函数的奇偶性和单调性的性质可得f(﹣1)=﹣f(1),运算求得结果、解答:解:∵已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=﹣f(1)=﹣(1+1)=﹣2,故选:D、点评:本题主要考查函数的奇偶性的应用,属于基础题、4、(5分)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示该四棱锥侧面积和体积分别是()A、4,8B、C、D、8,8分析:由题意可知原四棱锥为正四棱锥,由四棱锥的主视图得到四棱锥的底面边长和高,则其侧面积和体积可求、解答:解:因为四棱锥的侧棱长都相等,底面是正方形,所以该四棱锥为正四棱锥,其主视图为原图形中的三角形PEF,如图,由该四棱锥的主视图可知四棱锥的底面边长AB=2,高PO=2,则四棱锥的斜高PE=、所以该四棱锥侧面积S=,体积V=、故选:B、点评:本题考查了棱锥的体积,考查了三视图,解答的关键是能够由三视图得到原图形,是基础题、5、(5分)函数f(x)=+的定义域为()A、(﹣3,0]B、(﹣3,1]C、(﹣∞,﹣3)∪(﹣3,0]D、(﹣∞,﹣3)∪(﹣3,1]分析:从根式函数入手,根据负数不能开偶次方根及分母不为0求解结果,然后取交集、解答:解:根据题意:,解得:﹣3<x≤0∴定义域为(﹣3,0]故选:A、点评:本题主要考查函数求定义域,负数不能开偶次方根,分式函数即分母不能为零,及指数不等式的解法、6、(5分)执行两次如图所示的程序框图,若第一次输入的a的值为﹣1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为()A、0.2,0.2B、0.2,0.8C、0.8,0.2D、0.8,0.8分析:计算循环中a的值,当a≥1时不满足判断框的条件,退出循环,输出结果即可、解答:解:若第一次输入的a的值为﹣1.2,满足上面一个判断框条件a<0,第1次循环,a=﹣1.2+1=﹣0.2,第2次判断后循环,a=﹣0.2+1=0.8,第3次判断,满足上面一个判断框的条件退出上面的循环,进入下面的循环,不满足下面一个判断框条件a≥1,退出循环,输出a=0.8;第二次输入的a的值为1.2,不满足上面一个判断框条件a<0,退出上面的循环,进入下面的循环,满足下面一个判断框条件a≥1,第1次循环,a=1.2﹣1=0.2,第2次判断后不满足下面一个判断框的条件退出下面的循环,输出a=0.2;故选:C、点评:本题考查循环结构的应用,注意循环的结果的计算,考查计算能力、7、(5分)△ABC的内角A、B、C的对边分别是a、b、c,若B=2A,a=1,b=,则c=()A、B、2 C、D、1分析:利用正弦定理列出关系式,将B=2A,a,b的值代入,利用二倍角的正弦函数公式化简,整理求出cosA的值,再由a,b及cosA的值,利用余弦定理即可求出c的值、解答:解:∵B=2A,a=1,b=,∴由正弦定理=得:===,∴cosA=,由余弦定理得:a2=b2+c2﹣2bccosA,即1=3+c2﹣3c,解得:c=2或c=1(经检验不合题意,舍去),则c=2、故选:B、点评:此题考查了正弦、余弦定理,二倍角的正弦函数公式,熟练掌握定理是解本题的关键、8、(5分)给定两个命题p,q、若¬p是q的必要而不充分条件,则p是¬q的()A、充分而不必要条件B、必要而不充分条件C、充要条件D、既不充分也不必要条件分析:根据互为逆否命题真假性相同,可将已知转化为q是¬p的充分不必要条件,进而根据逆否命题及充要条件的定义得到答案、解答:解:∵¬p是q的必要而不充分条件,∴q是¬p的充分不必要条件,即q⇒¬p,但¬p不能⇒q,其逆否命题为p⇒¬q,但¬q不能⇒p,则p是¬q的充分不必要条件、故选:A、点评:本题考查的知识点是充要条件的判断,其中将已知利用互为逆否命题真假性相同,转化为q是¬p的充分不必要条件,是解答的关键、9、(5分)函数y=xcosx+sinx的图象大致为()A、B、C、D、分析:给出的函数是奇函数,奇函数图象关于原点中心对称,由此排除B,然后利用区特值排除A和C,则答案可求、解答:解:因为函数y=xcosx+sinx为奇函数,所以排除选项B,由当x=时,,当x=π时,y=π×cosπ+sinπ=﹣π<0、由此可排除选项A和选项C、故正确的选项为D、故选:D、点评:本题考查了函数的图象,考查了函数的性质,考查了函数的值,是基础题、10、(5分)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为()A、 B、C、36 D、分析:根据题意,去掉两个数据后,得到要用的7个数据,先根据这组数据的平均数,求出x,再用方差的个数代入数据和平均数,做出这组数据的方差、解答:解:∵由题意知去掉一个最高分和一个最低分后,所剩数据的数据是87,90,90,91,91,94,90+x、∴这组数据的平均数是=91,∴x=4、∴这这组数据的方差是(16+1+1+0+0+9+9)=、故选:B、点评:本题考查茎叶图,当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,在刻画样本数据的分散程度上,方差和标准差是一样的,但在解决实际问题时,一般多采用标准差、11、(5分)抛物线C1:的焦点与双曲线C2:的右焦点的连线交C1于第一象限的点M、若C1在点M处的切线平行于C2的一条渐近线,则p=()A、B、C、D、分析:由曲线方程求出抛物线与双曲线的焦点坐标,由两点式写出过两个焦点的直线方程,求出函数在x取直线与抛物线交点M的横坐标时的导数值,由其等于双曲线渐近线的斜率得到交点横坐标与p的关系,把M点的坐标代入直线方程即可求得p的值、解答:解:由,得x2=2py(p>0),所以抛物线的焦点坐标为F()、由,得,、所以双曲线的右焦点为(2,0)、则抛物线的焦点与双曲线的右焦点的连线所在直线方程为,即①、设该直线交抛物线于M(),则C1在点M处的切线的斜率为、由题意可知,得,代入M点得M()把M点代入①得:、解得p=、故选:D、点评:本题考查了双曲线的简单几何性质,考查了利用导数研究曲线上某点的切线方程,函数在曲线上某点处的切线的斜率等于函数在该点处的导数,是中档题、12、(5分)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最小值时,x+2y ﹣z的最大值为()A、0B、C、2D、分析:将z=x2﹣3xy+4y2代入,利用基本不等式化简即可求得x+2y﹣z的最大值、解答:解:∵x2﹣3xy+4y2﹣z=0,∴z=x2﹣3xy+4y2,又x,y,z为正实数,∴=+﹣3≥2﹣3=1(当且仅当x=2y时取“=”),即x=2y(y>0),∴x+2y﹣z=2y+2y﹣(x2﹣3xy+4y2)=4y﹣2y2=﹣2(y﹣1)2+2≤2、∴x+2y﹣z的最大值为2、故选:C、点评:本题考查基本不等式,将z=x2﹣3xy+4y2代入,求得取得最小值时x=2y 是关键,考查配方法求最值,属于中档题、二、填空题:本大题共4小题,每小题4分,共16分13、(4分)过点(3,1)作圆(x﹣2)2+(y﹣2)2=4的弦,其中最短的弦长为2、分析:由圆的方程找出圆心与半径,判断得到(3,1)在圆内,过此点最短的弦即为与过此点直径垂直的弦,利用垂径定理及勾股定理即可求出、解答:解:根据题意得:圆心(2,2),半径r=2,∵=<2,∴(3,1)在圆内,∵圆心到此点的距离d=,r=2,∴最短的弦长为2=2、故答案为:2点评:此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,点与圆的位置关系,垂径定理,以及勾股定理,找出最短弦是解本题的关键、14、(4分)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则线段|OM|的最小值为、分析:首先根据题意做出可行域,欲求|OM|的最小值,由其几何意义为点O(0,0)到直线x+y﹣2=0距离为所求,代入点到直线的距离公式计算可得答案、解答:解:如图可行域为阴影部分,由其几何意义为点O(0,0)到直线x+y﹣2=0距离,即为所求,由点到直线的距离公式得:d==,则|OM|的最小值等于、故答案为:、点评:本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题、15、(4分)在平面直角坐标系xOy中,已知,,若∠ABO=90°,则实数t的值为5、分析:利用已知条件求出,利用∠ABO=90°,数量积为0,求解t的值即可、解答:解:因为知,,所以=(3,2﹣t),又∠ABO=90°,所以,可得:2×3+2(2﹣t)=0、解得t=5、故答案为:5、点评:本题考查向量的数量积的应用,正确利用数量积公式是解题的关键、16、(4分)定义“正对数”:ln+x=,现有四个命题:①若a>0,b>0,则ln+(a b)=bln+a;②若a>0,b>0,则ln+(ab)=ln+a+ln+b;③若a>0,b>0,则;④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2、其中的真命题有①③④(写出所有真命题的序号)分析:由题意,根据所给的定义及对数的运算性质对四个命题进行判断,由于在不同的定义域中函数的解析式不一样,故需要对a,b分类讨论,判断出每个命题的真假、解答:解:(1)对于①,由定义,当a≥1时,a b≥1,故ln+(a b)=ln(a b)=blna,又bln+a=blna,故有ln+(a b)=bln+a;当a<1时,a b<1,故ln+(a b)=0,又a<1时bln+a=0,所以此时亦有ln+(a b)=bln+a,故①正确;(2)对于②,此命题不成立,可令a=2,b=,则ab=,由定义ln+(ab)=0,ln+a+ln+b=ln2,所以ln+(ab)≠ln+a+ln+b,故②错误;(3)对于③,i、≥1时,此时≥0,当a≥b≥1时,ln+a﹣ln+b=lna﹣lnb=,此时则,命题成立;当a>1>b>0时,ln+a﹣ln+b=lna,此时,>lna,则,命题成立;当1>a≥b>0时,ln+a﹣ln+b=0,成立;ii、<1时,同理可验证是正确的,故③正确;(4)对于④,当a≥1,b≥1时,ln+(a+b)=ln(a+b),ln+a+ln+b+ln2=lna+lnb+ln2=ln(2ab),∵a+b﹣2ab=a﹣ab+b﹣ab=a(1﹣b)+b(1﹣a)≤0,∴a+b≤2ab,∴ln(a+b)<ln(2ab),∴ln+(a+b)≤ln+a+ln+b+ln2、当a>1,0<b<1时,ln+(a+b)=ln(a+b),ln+a+ln+b+ln2=lna+ln2=ln(2a),∵a+b﹣2a=b﹣a≤0,∴a+b≤2a,∴ln(a+b)<ln(2a),∴ln+(a+b)≤ln+a+ln+b+ln2、当b>1,0<a<1时,同理可证ln+(a+b)≤ln+a+ln+b+ln2、当0<a<1,0<b<1时,可分a+b≥1和a+b<1两种情况,均有ln+(a+b)≤ln+a+ln+b+ln2、故④正确、故答案为①③④、点评:本题考查新定义及对数的运算性质,理解定义所给的运算规则是解题的关键,本题考查了分类讨论的思想,逻辑判断的能力,综合性较强,探究性强、易因为理解不清定义及忘记分类讨论的方法解题导致无法入手致错、三、解答题:本大题共6小题,共74分,17、(12分)某小组共有A、B、C、D、E五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如表所示:A B C D E身高 1.69 1.73 1.75 1.79 1.82体重指标19.225.118.523.320.9(Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率、分析:(Ⅰ)写出从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件,查出选到的2人身高都在1.78以下的事件,然后直接利用古典概型概率计算公式求解;、(Ⅱ)写出从该小组同学中任选2人,其一切可能的结果组成的基本事件,查出选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的事件,利用古典概型概率计算公式求解、解答:(Ⅰ)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)共6个、由于每个同学被选到的机会均等,因此这些基本事件的出现是等可能的、选到的2人身高都在1.78以下的事件有:(A,B),(A,C),(B,C)共3个、因此选到的2人身高都在1.78以下的概率为p=;(Ⅱ)从该小组同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)共10个、由于每个同学被选到的机会均等,因此这些基本事件的出现是等可能的、选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的事件有:(C,D)(C,E),(D,E)共3个、因此选到的2人的身高都在 1.70以上且体重指标都在[18.5,23.9)中的概率p=、点评:本题考查了古典概型及其概率计算公式,解答的关键在于列举基本事件时做到不重不漏,是基础题、18、(12分)设函数f(x)=﹣sin2ωx﹣sinωxcosωx(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为,(Ⅰ)求ω的值(Ⅱ)求f(x)在区间[]上的最大值和最小值、分析:(Ⅰ)通过二倍角的正弦函数与余弦函数化简函数为一个角的一个三角函数的形式,利用函数的正确求出ω的值(Ⅱ)通过x 的范围求出相位的范围,利用正弦函数的值域与单调性直接求解f (x)在区间[]上的最大值和最小值、解答:解:(Ⅰ)函数f(x)=﹣sin2ωx﹣sinωxcosωx===、因为y=f(x)的图象的一个对称中心到最近的对称轴的距离为,故周期为π又ω>0,所以,解得ω=1;(Ⅱ)由(Ⅰ)可知,f(x)=﹣sin(2x﹣),当时,,所以,因此,﹣1≤f(x),所以f(x)在区间[]上的最大值和最小值分别为:、点评:本题考查二倍角的三角函数以及两角和的正弦函数,三角函数的周期,正弦函数的值域与单调性的应用,考查计算能力、19、(12分)如图,四棱锥P﹣ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB、AB、BC、PD、PC的中点、(Ⅰ)求证:CE∥平面PAD(Ⅱ)求证:平面EFG⊥平面EMN、分析:(Ⅰ)取PA的中点H,则由条件可得HE和CD平行且相等,故四边形CDHE 为平行四边形,故CE∥DH、再由直线和平面平行的判定定理证明CE∥平面PAD、(Ⅱ)先证明MN⊥平面PAC,再证明平面EFG∥平面PAC,可得MN⊥平面EFG,而MN在平面EMN内,利用平面和平面垂直的判定定理证明平面EFG⊥平面EMN、解答:解:(Ⅰ)证明:∵四棱锥P﹣ABCD中,AB∥CD,AB=2CD,E,F,G,M,N分别为PB、AB、BC、PD、PC的中点,取PA的中点H,则由HE∥AB,HE=AB,而且CD∥AB,CD=AB,可得HE和CD平行且相等,故四边形CDHE为平行四边形,故CE∥DH、由于DH在平面PAD内,而CE不在平面PAD内,故有CE∥平面PAD、(Ⅱ)证明:由于AB⊥AC,AB⊥PA,而PA∩AC=A,可得AB⊥平面PAC、再由AB∥CD可得,CD⊥平面PAC、由于MN是三角形PCD的中位线,故有MN∥CD,故MN⊥平面PAC、由于EF为三角形PAB的中位线,可得EF∥PA,而PA在平面PAC内,而EF不在平面PAC内,故有EF∥平面PAC、同理可得,FG∥平面PAC、而EF 和FG是平面EFG内的两条相交直线,故有平面EFG∥平面PAC、∴MN⊥平面EFG,而MN在平面EMN内,故有平面EFG⊥平面EMN、点评:本题主要考查直线和平面平行的判定定理的应用,平面和平面垂直的判定定理的应用,属于中档题、20、(12分)设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1、(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足=1﹣,n∈N*,求{b n}的前n项和T n、分析:(Ⅰ)设等差数列{a n}的首项为a1,公差为d,由S4=4S2,a2n=2a n+1得到关于a1与d的方程组,解之即可求得数列{a n}的通项公式;(Ⅱ)由(Ⅰ)知,a n=2n﹣1,继而可求得b n=,n∈N*,于是T n=+++…+,利用错位相减法即可求得T n、解答:解:(Ⅰ)设等差数列{a n}的首项为a1,公差为d,由S4=4S2,a2n=2a n+1得:,解得a1=1,d=2、∴a n=2n﹣1,n∈N*、(Ⅱ)由已知++…+=1﹣,n∈N*,得:当n=1时,=,当n≥2时,=(1﹣)﹣(1﹣)=,显然,n=1时符合、∴=,n∈N*由(Ⅰ)知,a n=2n﹣1,n∈N*、∴b n=,n∈N*、又T n=+++…+,∴T n=++…++,两式相减得:T n=+(++…+)﹣=﹣﹣∴T n=3﹣、点评:本题考查数列递推式,着重考查等差数列的通项公式与数列求和,突出考查错位相减法求和,考查分析运算能力,属于中档题、21、(12分)已知函数f(x)=ax2+bx﹣lnx(a,b∈R)(Ⅰ)设a≥0,求f(x)的单调区间(Ⅱ)设a>0,且对于任意x>0,f(x)≥f(1)、试比较lna与﹣2b的大小、分析:(Ⅰ)由函数的解析式知,可先求出函数f(x)=ax2+bx﹣lnx的导函数,再根据a≥0,分a=0,a>0两类讨论函数的单调区间即可;(Ⅱ)由题意当a>0时,是函数的唯一极小值点,再结合对于任意x>0,f(x)≥f(1)、可得出=1化简出a,b的关系,再要研究的结论比较lna与﹣2b的大小构造函数g(x)=2﹣4x+lnx,利用函数的最值建立不等式即可比较大小解答:解:(Ⅰ)由f(x)=ax2+bx﹣lnx(a,b∈R)知f′(x)=2ax+b﹣又a≥0,故当a=0时,f′(x)=若b≤0时,由x>0得,f′(x)<0恒成立,故函数的单调递减区间是(0,+∞);若b>0,令f′(x)<0可得x<,即函数在(0,)上是减函数,在(,+∞)上是增函数、所以函数的单调递减区间是(0,),单调递增区间是(,+∞),当a>0时,令f′(x)=0,得2ax2+bx﹣1=0由于△=b2+8a>0,故有x2=,x1=显然有x1<0,x2>0,故在区间(0,)上,导数小于0,函数是减函数;在区间(,+∞)上,导数大于0,函数是增函数综上,当a=0,b≤0时,函数的单调递减区间是(0,+∞);当a=0,b>0时,函数的单调递减区间是(0,),单调递增区间是(,+∞);当a>0,函数的单调递减区间是(0,),单调递增区间是(,+∞)(Ⅱ)由题意,函数f(x)在x=1处取到最小值,由(1)知,是函数的唯一极小值点故=1整理得2a+b=1,即b=1﹣2a令g(x)=2﹣4x+lnx,则g′(x)=令g′(x)==0得x=当0<x<时,g′(x)>0,函数单调递增;当<x<+∞时,g′(x)<0,函数单调递减因为g(x)≤g()=1﹣ln4<0故g(a)<0,即2﹣4a+lna=2b+lna<0,即lna<﹣2b点评:本题是函数与导数综合运用题,解题的关键是熟练利用导数工具研究函数的单调性及根据所比较的两个量的形式构造新函数利用最值建立不等式比较大小,本题考查了创新探究能力及转化化归的思想,本题综合性较强,所使用的方法具有典型性,题后应做好总结以备所用的方法在此类题的求解过程中使用、22、(14分)在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x 轴上,短轴长为2,离心率为(Ⅰ)求椭圆C的方程(Ⅱ)A,B为椭圆C上满足△AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C与点P,设,求实数t的值、分析:(Ⅰ)设椭圆的标准方程为,焦距为2c、由题意可得,解出即可得到椭圆的方程、(Ⅱ)由题意设直线AB的方程为x=my+n,代入椭圆方程x2+2y2=2,化为(m2+2)y2+2mny+n2﹣2=0,利用判别式、根与系数的关系即可得到弦长|AB|,再利用点到直线的距离公式即可得到原点O到直线AB的距离,进而得到三角形AOB的面积,利用即可得到m,n,t的关系,再利用,及中点坐标公式即可得到点P的坐标代入椭圆的方程可得到m,n,t的关系式与上面得到的关系式联立即可得出t的值、解答:解:(Ⅰ)由题意设椭圆的标准方程为,焦距为2c、则,解得,∴椭圆的方程为、(Ⅱ)由题意设直线AB的方程为x=my+n,代入椭圆方程x2+2y2=2,化为(m2+2)y2+2mny+n2﹣2=0,则△=4m2n2﹣4(m2+2)(n2﹣2)=4(2m2+4﹣2n2)>0,(*),,∴|AB|===、原点O到直线AB的距离d=,∵,∴=,化为、(**)另一方面,=,∴x E=my E+n==,即E、∵,∴、代入椭圆方程得,化为n2t2=m2+2,代入(**)得,化为3t4﹣16t2+16=0,解得、∵t>0,∴、经验证满足(*)、当AB∥x轴时,设A(u,v),B(﹣u,v),E(0,v),P(0,±1)、(u>0)、则,,解得,或、又,∴,∴、综上可得:、点评:本题综合考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式、点到直线的距离公式、三角形的面积公式、向量共线等基础知识与基本技能,考查了推理能力和计算能力、分类讨论的能力及化归思想方法、。
高二上学期期末考试数学(文)试题及答案 (6)
高二年级期末统考数学(文科)试卷命题学校: 命题人:参考资料:一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列变量是线性相关的是( )A .人的身高与视力B .角的大小与弧长C .收入水平与消费水平D .人的年龄与身高 2.给出以下问题:①求面积为1的正三角形的周长; ②求所输入的三个数的算术平均数; ③求所输入的两个数的最小数; ④求函数=)(x f3x x 3x x 22<≥,,,当自变量取0x 时的函数值.其中不需要用条件语句来描述算法的问题有( )A .1个B .2个C .3个D .4个 3.以下是解决数学问题的思维过程的流程图:在此流程图中,①、②两条流程线与“推理与证明”中的思维方法匹配正确的是( )A .①—综合法,②—分析法B .①—分析法,②—综合法C .①—综合法,②—反证法D .①—分析法,②—反证法4.为了考察两个变量x 和y 之间的线性相关性,甲、乙两位同学各自独立地做100次和150次试验,并且利用线性回归方法,求得回归直线分别为1t 和2t ,已知两人在试验中发现对变量x 的观测数据的平均值都是s ,对变量y 的观测数据的平均值都是t ,那么下列说法正确的是( )A .t 1和t 2有交点(s,t)B .t 1与t 2相交,但交点不一定是),(t s)d b )(c a )(d c )(b a ()bc ad (n K ++++-=22C .t 1与t 2必定平行D .t 1与t 2必定重合5.从装有两个红球和两个黑球的口袋里任取两个球,那么互斥而不对立的两个事件是( )A .“至少有一个黑球”与“都是黑球”B .“至少有一个黑球”与“至少有一个红球”C .“恰好有一个黑球”与“恰好有两个黑球”D .“至少有一个黑球”与“都是红球”6.设i 为虚数单位,a,b ∈R,下列命题中:①(a+1)i 是纯虚数;②若a>b,则a+i>b+i;③若(a 2-1)+(a 2+3a+2)i 是纯虚数,则实数a=±1;④2i 2>3i 2.其中,真命题的个数有( ) A.1个 B.2个 C.3个 D.4个7.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y|的值为( )A .1B .2C .3D .48.如右图,小黑圆表示网络的结点,结点之间的连线表示它们有网线相连.连线上标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为( )A .26B . 24C .20D .199.在等腰三角形ABC 中,过直角顶点C 在∠ACB 内作一条射线CD 与线段AB 交于点D ,则AD<AC 的概率是( ).A.22 B.41 C.222 D.43 10.某程序框图如图所示,若该程序运行后输出的k 的值是6,则满足条件的整数S 0的个数是( ) A.31 B.32 C.63 D.6411.定义A*B 、B*C 、C*D 、D*B 分别对应下列图形,那么下面的图形中,可以表示A*D ,A*C 的分别是( )开始 输出k 结束k=0,S=S 0k=k+1S>0?是否S=S-2k 4 63 7 561212 86 BAA .(1)、(2)B .(2)、(3)C .(2)、(4)D .(1)、(4)12.设a ,b ,c 大于0,a +b +c =3,则3个数:a +1b ,b +1c ,c +1a 的值( )A .都大于2B .至少有一个不大于2C .都小于2D .至少有一个不小于2二、填空题 (本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.)13.下面是关于复数z =i12+-的四个命题:P 1:|z|=2;P 2:z 2=2i ;P 3:z 的共轭复数为1+i ;P 4:z 的虚部为-1.其中的真命题个数为 .14.若一组观测值(x 1,y 1),(x 2,y 2),…,(x n ,y n )之间满足y i =a +bx i +e i (i =1,2,…,n),若e i 恒为0,则R 2等于________.15.把十进制108转换为k 进制数为213,则k=_______. 16.正偶数列有一个有趣的现象:2+4=6;8+10+12=14+16;18+20+22+24=26+28+30,…按照这样的规律,则2016在第 等式中.三、解答题( 本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17. (Ⅰ)计算(本小题满分6分):))(()(i 1i 45i 54i 222--++)(;(Ⅱ)(本小题满分6分)在复平面上,平行四边形ABCD 的三个顶点A,B,C 对应的复数分别为i,1,4+2i.求第四个顶点D 的坐标及此平行四边形对角线的长. 18.(本小题满分12分).按右图所示的程序框图操作:(Ⅰ)写出输出的数所组成的数集. (Ⅱ)如何变更A 框内的赋值语句,使得根据这个程序框图所输出的数恰好是数列{}n 2的前7项?(Ⅲ)如何变更B 框内的赋值语句,使得根据这个程序框图所输出的数恰好是数列{}2n 3-的前7项?19.(本小题满分12分).设f(x)331x +=,先分别计算f(0)+f(1),f(-1)+f(2),f(-2)+f(3)的值,然后归纳猜想一般性结论,并给出证明.20.(本小题满分12分)田忌和齐王赛马是历史上有名的故事,设齐王的三匹马分别为A 、B 、C ,田忌的三匹马分别为a 、b 、c 。
2020-2021学年山东省威海市高二上学期期末考试语文试卷及答案
2020-2021学年山东省威海市高二上学期期末考试语文试卷及答案一、现代文阅读(41分)(一)现代文阅读I(本题共4小题,18分)阅读下面的文字,完成1~4题。
材料一:谈到科学技术对经济发展的贡献,自然科学好像比较容易量化。
但是,反过来,如果没有人文社会科学,自然科学不可能转化为生产力。
因为科学转变为技术,技术转变为产品,这需要社会的动力、机制和资源的配置。
一种产品能不能生产,在什么地方生产,以多大规模生产,生产的动机和动力是什么,这些问题解决不好,任何技术都不可能转化为产品。
做一张桌子,要用到物理的、化学的、数学的知识,但是,这张桌子做成什么款式、什么风格能反映出美学观点、审美情趣、文化传统,这就体现了人文精神,是人文社会科学的范畴,而不是自然科学技术本身的问题。
中国要解决的环境问题,光有自然科学知识不行,还要有人文社会科学方面的知识。
而光有人文社会科学方面的知识,没有自然科学知识同样解决不了。
任何一种实际问题都是多个学科综合起来解决。
科学转变为技术,技术转变为产品,是一步一步投入人文社会科学怀抱的过程。
人文社会科学对自然科学技术起到导向和支撑作用。
如果没有正确的价值导向、价值判断,自然科学技术不一定是第一生产力,它完全可能是第一破坏力,完全可能祸害人类。
比如核技术、克隆技术,如果没有价值判断,没有正确的人文科学理论和价值导向来引导它,科学家完全可能变成疯子,完全可能祸害人类。
正如爱因斯坦讲过的那样:“科学虽然伟大,但它只能回答‘世界是什么’的问题,‘应当如何’的价值目标,却在它的视野和职能范围之外。
”(《人大校长:我国人文社会科学受到挤压》)在人文科学中重要的是正确处理科学与价值的关系问题。
在自然科学中,当然也存在科学与价值的关系,因为自然科学既具有人文价值又具有社会价值。
但就自然科学知识的客观性而言,价值是中立的,价值观属于科学研究的主体。
自然科学学者的理想与信仰、爱国主义感情和对科学成果及效用的人文关怀,与自然科学知识的真理性无直接关联。
山东省威海市2022-2023学年高二上学期期末语文试题(无答案)
山东省威海市2022-2023学年高二上学期期末语文试题本试卷共150分,考试时间150分钟。
注意事项:1.答卷前,考生务必将自己的姓名、座号和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
回答非选择题时,将答案写在答题卡上。
写在试卷上无效。
一、现代文阅读(37分)(一)现代文阅读I(本题共5小题,17分)阅读下面的文字,完成1-5题。
材料一:人民是历史的创造者,也是时代的创造者。
在人民的壮阔奋斗中,随处跃动着创造历史的火热篇章,汇聚起来就是一部人民的史诗。
人民是文艺之母。
文学艺术的成长离不开人民的滋养,人民中有着一切文学艺术取之不尽、用之不竭的丰沛源泉。
文艺要对人民创造历史的伟大进程给予最热情的赞颂,对一切为中华民族伟大复兴奋斗的拼搏者、一切为人民牺牲奉献的英雄们给予最深情的褒扬。
茅盾说过:“一个做小说的人不但须有广博的生活经验,亦必须有一个训练过的头脑能够分析那复杂的社会现象。
”生活就是人民,人民就是生活。
人民是真实的、现实的、朴实的,不能用虚构的形象虚构人民,不能用调侃的态度调侃人民,更不能用丑化的笔触丑化人民。
广大文艺工作者只有深入人民群众、了解人民的辛勤劳动、感知人民的喜怒哀乐,才能洞悉生活本质,才能把握时代脉动,才能领悟人民心声,才能使文艺创作具有深沉的力量和隽永的魅力。
广大文艺工作者不仅要让人民成为作品的主角,而且要把自己的思想倾向和情感同人民融为一体,把心、情、思沉到人民之中,同人民一道感受时代的脉搏、生命的光彩,为时代和人民放歌。
文学艺术以形象取胜,经典文艺形象会成为一个时代文艺的重要标识。
一切有追求、有本领的文艺工作者要提高阅读生活的能力,不断发掘更多代表时代精神的新现象新人物,以源于生活又高于生活的艺术创造,以现实主义和浪漫主义相结合的美学风格,塑造更多吸引人、感染人、打动人的艺术形象,为时代留下令人难忘的艺术经典。
(摘编自习近平《在中国文联十一大、中国作协十大开幕式上的讲话》)材料二:回视厚重绵延的中华文明、博大精深的中国文化,我们会发现自先秦伊始就甚为发达的“人文关怀意识”,引领一代又一代的思想家、文艺家关怀社稷民生,心系民间冷暖,担当人民利益,为民立言,为民请愿,为民著史,为民述怀,积淀成为厚重的“民本”思想和“人学”文论。
山东省威海市一中2012-2013学年高三语文 走近鲁迅及作品主题单元设计 鲁教版
某某省威海市一中2012-2013学年高三语文走近鲁迅及作品主题单元设计鲁教版主题学习目标〔描述该主题学习所要达到的主要目标〕知识与技能:1、了解鲁迅的生平简历和文学创作的主要成就。
2、明白如何塑造典型环境中的典型人物3.能够依据鲁迅小说的人物特征,通过“知人论文〞,综合分析其情感经历对小说创作的影响。
4.结合具体语境,领会含义深刻的语句过程与方法:1、鉴赏文本综合运用肖像描写、动作描写、语言描写等塑造人物的手法,准确把握主要人物形象特征。
2、分析社会环境对人物的影响,理解环境描写的作用。
3、通过分析深刻含义的句子,提高小说鉴赏能力。
4、通过反复研读、质疑、交流,进一步把握文本蕴含的深意及作者丰富的情感。
情感态度与价值观:1、理解鲁迅小说的深刻社会主题并思考小说的现实意义。
2、利用网络平台交流和使用多媒体技术展示研究成果,提升信息技术素养。
对应课标《高中语文课程标准》阅读与鉴赏1.在阅读与鉴赏活动中,不断地充实精神生活,完善自我人格,提升人生境界,加深对个人与社会、自然、国家关系的思考和认识。
2.发展独立阅读能力。
从整体上把握文本内容,理清思路,概括要点,理解文本所表达的思想、观点和感情。
根据语境揣摩语句含义,体会语言表达效果。
对阅读材料能作出自己的分析判断,努力从不同的角度和层面进行阐发、评价和质疑。
3.注重个性化的阅读,充分调动自己的生活经验和知识积累,在主动积极的思维和情感活动中,获得独特的感受、体验和理解。
学习探究性阅读和创造性阅读,发展想像能力、思辨能力和批判能力。
4.根据不同的阅读目的、针对不同的阅读材料,灵活运用精读、略读、浏览、速读等阅读方法,提高阅读效率和效果。
学习目标知识与能力1.理清文章思路,把握文章主旨,领会作者的思想感情;2.结合具体语境,领会含义深刻的语句。
3.学习记叙、抒情、议论相结合的表现手法过程与方法通过反复诵读、研读、质疑、交流,进一步把握文本蕴含的深意及作者丰富的情感。